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Abstract

Image formation near point singularities in strong gravitational lensing is a less

explored field as the number of such lensed systems is small. However, with the ongoing

and upcoming surveys, the number of strong lens systems is expected to increase by

more than several orders of magnitude. Hence, the probability of observation of strong

lens systems with image formation near point singularities is also expected to increase.

Thus, it is timely to explore these point singularities in strong lensing. In this thesis, we

look at the various properties of point singularities and the possibility of their detection

with upcoming facilities. We also study the effects of strong lensing and microlensing

on the gravitational wave signals. The work reported in this thesis is as follows.

Finding Singularities in Gravitational Lensing

In order to study the point singularities in detail, the first step is to locate these singu-

larities for a given lens model. In this work, we developed an algorithm to find various

point singularities (swallowtail, hyperbolic umbilic, elliptic umbilic) in strong gravita-

tional lensing. The output of our algorithm is a singularity map comprising of A3-lines

and all the point singularities for the given lens model. Such a singularity map locates

all the regions in the lens plane with high magnification. Hence, these are optimal sites

for deep surveys to probe the high redshift universe. We have applied and validated our

algorithm in the case of ideal and actual lenses. In this work, we have also studied the

stability of the point singularities in presence of external effects in ideal lens models.

We find that the hyperbolic umbilic is least sensitive to the external effects, followed by

swallowtail and elliptic umbilic, respectively. We also find that the length of A3-lines

also increases in the presence of external effects.
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Exotic Image Formation in Cluster Lenses – I: Cross-
Section

In this work, we have applied our algorithm to ten different cluster lenses. Out of

these ten clusters, five were chosen from the Hubble Frontier Fields (HFF) survey and

five were selected from the Reionization Lensing Cluster Survey (RELICS). In these

clusters, we have identified regions with high magnification for sources up to redshift

ten. To determine the dependence of unstable (point) singularities on the lens mass

model reconstruction techniques, we compared singularity maps corresponding to the

different mass models (provided by various groups in the HFF survey) for each clus-

ter lens. We find that the non-parametric (free-form) lens mass reconstruction method

yields the least number of point singularities. In contrast, mass models reconstructed

by various groups using a parametric approach have a significantly larger number of

point singularities. We also estimate the expected number of galaxies lying near these

unstable (point) singularities, which can be observed with the James Webb Space Tele-

scope (JWST). We find that we expect to get at least one hyperbolic umbilic and one

swallowtail image formation for a source at z > 1 for every five clusters with JWST.

Exotic Image Formation in Cluster Lenses – II: Uncer-
tainties

Due to the finite amount of observational data, the best-fit parameters corresponding to

the reconstructed cluster mass have uncertainties. In turn, these uncertainties affect the

inferences made from these mass models. In this work, we studied the effect of such

uncertainties on the singularity maps in simulated and actual galaxy clusters. The mass

models for both simulated and real clusters have been constructed using Grale. We find

that the final best-fit mass models created using Grale give the simplest singularity maps

and a lower limit on the number of point singularities that a lens has to offer. Hence, the

estimates of point singularity cross-section presented in our earlier work is the lower

limit. The simple nature of these singularity maps also puts a lower limit on the number

of three image (tangential and radial) arcs that a cluster lens has to offer. Hence, we

estimate the number of galaxy sources giving rise to the three image arcs, which can

be observed with the James Webb Space Telescope (JWST). We find that we expect to

observe at least 20-30 tangential and 5-10 radial three-image arcs in the Hubble Frontier

Fields cluster lenses with JWST with mAB = 29.
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Gravitational lensing of gravitational waves: wave nature
and prospects for detection

We discuss the gravitational lensing of gravitational wave (GW) signals from coalescing

binaries. We delineate the regime where wave effects are significant from the regime

where geometric limit can be used. Further, we focus on the combined effect of strong

lensing and microlensing. We find that microlensing combined with strong lensing can

introduce time varying phase shift in the signal and hence can lead to significant dif-

ferences in the signal observed for different images produced by strong lensing. This,

coupled with the coarse localization of signal source in the sky for GW detections, can

make it difficult to identify the common origin of signal corresponding to different im-

ages and use observables like time delay. Sources of gravitational waves can undergo

microlensing due to lenses in the disc/halo of the Galaxy, or due to lenses in an inter-

vening galaxy even in absence of strong lensing.
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Chapter 1

Introduction

This chapter provides a brief overview of gravitational lensing and describes various

notions related to it. This chapter is organized as follows: Section 1.1 contains a very

brief history of gravitational lensing. Section 1.2 and 1.3 contain discussion of deflec-

tion of light in Newtonian and General theory of gravity, respectively. Relevant basics

of cosmology for lensing are reviewed in Section 1.4. Section 1.5 describes the ba-

sics of the gravitational lens equation and its various properties. Section 1.6 discusses

different type of singularities in gravitational lensing.

1.1 Historic Remarks

The concept of bending of light due to gravity has a fascinating history and goes all

the way back to Newton. Newton, in his Opticks (the first edition came out in 1704

and later reprinted based on the fourth edition Newton 1952), listed 31 queries to be

further explored by upcoming generations, and the first of these queries was: Do not

Bodies act upon Light at a distance, and by their action bend its Rays; and is not this

action (cæteris paribus) strongest at the least distance? In 1783, in a letter to Henry

Cavendish, John Michell (Michell, 1784) discussed the possibility of light emitted by a

body falling onto itself under its gravity. Henry Cavendish did calculate the light deflec-

tion due to gravity but never published (see Will 1988 for more details). Independent

of Michell and Cavendish, in 1795, Peter Simon Laplace (de Laplace, 1795, please also

see appendix A in Hawking & Ellis 1973) also arrived at the similar idea of light un-

able to escape its source due to gravity. In 1801, Johann Von Soldner (Soldner, 1804,

please also see Jaki 1978) published a paper with a detailed calculation about the bend-

ing of light in Newtonian theory. However, no observational follow-up was possible at
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that time due to the small expected value of the deflection angle. Later, during most

of the 19th century, Newton’s corpuscular theory was disfavored due to the success of

the wave theory of the light, and along with it the possibility of bending of light as the

waves do not have a mass associated with them.

At the beginning of the 20th century, Albert Einstein revived the particle nature of

light (Einstein, 1905) and, a few years later, the deflection of light. In 1911, when

Einstein was working on his theory of gravity (Einstein, 1911), he came to the same

deflection value as Soldner and tried to persuade astronomers to observe this effect.

However, the observations could not be successfully finished at that time due to World

War I. In 1915, when Einstein finalized his theory of gravity, he revisited the deflection

angle calculation to see that the value is twice the value that he got earlier (Einstein,

1915). After that, it became crucial to observe the deflection of light as the results

were different from Newton’s theory of gravitation, which was consistent with all ex-

periments. In 1919, a team led by F. Dyson and A. Eddington determined the light

deflection value due to the Sun during a total solar eclipse (Dyson et al., 1920) (please

also see Kennefick 2019 for further details about various aspects of the observation of

the 1919 solar eclipse). The final verdict was in favor of Einstein. The exciting thing

about all this is that from the time of Newton, people were quite comfortable with the

bending of light due to gravity. The only problem that existed was the smallness of the

deflection angle, which hindered the observations of the bending of light.

Although the bending of light due to gravity was observationally confirmed, how-

ever, owing to the smallness of the deflection angle, in the first half of the 20th century,

only a handful of people (excluding Einstein himself) were interested in the phenom-

ena. One of these was F. Zwicky, who pointed out the possibility of deflection of light

due to a whole galaxy or a cluster of galaxies (Zwicky, 1937a,b). In the 20th century,

development of technology enabled many discoveries in astrophysics, and it became in-

creasingly feasible to look for the deflection of light coming from distant extragalactic

sources due to the massive intermediate structures. In 1964, during his Ph.D., Sjur

Refsdel looked into light deflection in a cosmological scenario and its applications

and pointed out the possibility of measuring the Hubble constant (Refsdal, 1964a,b,

1966a,b). In 1979, the light deflection was observed in a cosmological scenario (Walsh

et al., 1979), and an entirely new field to study the universe came into the picture.

The light coming from a distant quasar, Q0957+561, was deflected by an intermediate

galaxy. Due to this bending of light, multiple images of the background quasar were

observed around the deflector galaxy.

Today, light deflection (also known as gravitational lensing) is an important tool to

2



Figure 1.1: Orbit of the light around the Sun: The black solid line represents the path
of light near the surface of the Sun. R is the radius of the Sun. The Blue lines represent
the asymptotes to the hyperbolic path of the Sun. δ represents the angle by which the
light has been deflected due to the gravity of the Sun.

study our Universe. After the discovery of the first lens system in 1979, the field evolved

very rapidly. Its applications range from planetary scales to the scale of observable uni-

verse. There are more than a dozen books and review articles covering various appli-

cations of gravitational lensing. Some of these are: Schneider et al. (1992) (hereafter

SEF), Narayan & Bartelmann (1996), Petters et al. (2001), Lewis & Challinor (2006),

Ellis (2010), Kneib & Natarajan (2011), Dodelson (2017), Congdon & Keeton (2018).

Thanks to gravitational lensing, we are able to map the distribution of visible and dark

matter in galaxy clusters (Paraficz et al., 2016), observed very distant galaxies (Coe

et al., 2013), and witnessed multiple images of a supernova (Kelly et al., 2016).

1.2 Light Deflection in Newtonian Theory

Let us assume that a light ray coming from a distant star passes near the Sun. As we

know, gravity behaves as a central force in Newtonian theory. Hence, the path of the

light ray can be described by a hyperbolic orbit around the Sun as the speed of light

is significantly greater than the escape velocity for the Sun. As shown in Figure 1.1,

the black line shows the hyperbolic path of the light as it passes near the surface of the

Sun centered at O. The radius of the Sun is denoted by R. The blue lines represent the

asymptotes to the path of the light. Near the Sun, due to gravity, light gets deflected by

an angle δ . The eccentricity of the light path (ε) and the deflection angle (δ ) are related

3



to each other as,

δ = 2 sin−1
(

1
ε

)
. (1.1)

If the light particles has mass m, total Energy E, and angular momentum L, then the

eccentricity (ε) of the path of the light with respect to the center of the Sun is,

ε =

(
1+

2EL2

G2m3M2
s

)1/2

(1.2)

where G is the Newton’s gravitational constant and Ms is the mass of the Sun. As

mentioned above, gravity is a central force, as a result, the total energy (E) and the

angular momentum (L) are constants of motion and given as,

E =
1
2

mc2− GmMs

R
, L = mcR, (1.3)

where R is the radius of the Sun and c is the speed of light. From Equation (1.2)

and (1.3),

ε =

(
1+

c2R2

G2M2
s

[
c2− 2GMs

R

])1/2

≈ c2R
GMs

. (1.4)

The approximation is based on the fact that speed of light is significantly larger than

the other terms. Hence, from Equation (1.1) and (1.4), the light deflection angle in

Newtonian theory is,

δ = 2 sin−1
(

GMs

c2R

)
≈ 2GMs

c2R

δ =
2GMs

c2R
. (1.5)

Soldner got this result in 1801 (Soldner, 1804) and Einstein (unaware of Soldner’s

work) recalculated this result in 1911 (Einstein, 1911) using Equivalence principle. As

expected, the deflection of the light ray is directly proportional the total mass of the

deflector as the increment in the deflector mass will increase the magnitude of gravita-

tional force on the light. On the other hand, the deflection angle is inversely proportional

to the distance of the light ray from the deflector as the gravity becomes weaker as one

goes away from the source. However, this is not the correct result. The correct deflec-

tion value is twice the above value and can be derived using the Einstein’s theory of

gravitation, which is discussed in the next section.
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1.3 Light Deflection in General Relativity

Hermann Minkowski (Lorentz, 1952) very well describes the crucial difference between

Newton’s theory of gravity and Einstein’s theory of gravity (also known as the general

theory of relativity) in words as, ‘Henceforth space by itself, and time by itself, are

doomed to fade away into mere shadows, and only a kind of union of the two will pre-

serve an independent reality.’ Although these words were originally said in the context

of special relativity, they are also equally valid for the general theory of relativity. In

Newton’s theory, space and time are absolute and independent entities, whereas in the

(special and) general theory of relativity, space and time do not exist independently, and

the properties of their coexistence (generally called as spacetime) can be described by

the differential geometry. As a result, in the general theory of relativity, the so-called

gravitational force is only an apparent force due to the curved geometry of the space-

time. In general relativity, spacetime geometry around an isolated Sun-like star can be

very well described by the Schwarzschild metric (Ryder, 2009),

ds2 =−
(

1− 2GMs

rc2

)
c2dt2 +

1(
1− 2GMs

rc2

)dr2 + r2(dθ
2 + sin2

θdφ
2), (1.6)

where ds is the interval, (t,r,θ ,φ) are the spacetime coordinates, G is the Newton’s

gravitational constant, Ms is the mass of the Sun, c is the speed of light. In general

relativity, the motion of light around the Sun is described by the geodesic equation,

d2xµ

dλ 2 + Γ
µ

νρ

dxν

dλ

dxρ

dλ
= 0, (1.7)

where λ is an affine parameter. Solving Equation (1.7), for µ = 0,2,3.

For µ = 0, (
1− 2GMs

rc2

)
dt
dλ

= constant = b. (1.8)

For µ = 2,
d2θ

dλ 2 +
2
r

dr
dλ

dθ

dλ
− sinθθ

(
dφ

dλ

)2

= 0. (1.9)

For µ = 3,
d2φ

dλ 2 +
2
r

dr
dλ

dφ

dλ
+2 cotθ

dθ

dλ

dφ

dλ
= 0. (1.10)

Consider a geodesic in the equatorial plane (θ = π/2) and dθ/dλ = 0. Then, from

Equation (1.9), d2θ/dλ 2 = 0, as a result, dθ/dλ will always be zero and from (1.10),

r2 dφ

dλ
= constant = a ⇒ dr

dλ
=

dr
dφ

a
r2 . (1.11)
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As we know, for light ds2 = 0, hence, Equation (1.6) can be written as(
1− 2GMs

rc2

)(
dt
dλ

)2

−
(

1− 2GMs

rc2

)−1 1
c2

(
dr
dλ

)2

−r2

c2

[(
dθ

dλ

)2

+ sin2
θ

(
dφ

dλ

)2
]
= 0,

using Equation (1.8) and (1.11) and simplifying a little bit gives,

d2

dφ 2

(
1
r

)
+

1
r
=

3GMs

r2c2 . (1.12)

Equation (1.12), describes the orbit of light near the Sun or a Sun-like star. As the

right hand side is very small compared to one, the equation can be solved iteratively.

The zeroth-order solution is

d2

dφ 2

(
1
r

)
+

1
r
= 0 ⇒ 1

r
=

1
r0

cosφ , (1.13)

corresponding to a straight line. The first-order solution can be calculated by substitut-

ing the zeroth-order solution in the right side of Equation (1.12),

d2

dφ 2

(
1
r

)
+

1
r
=

3GMs

c2r2
0

cosφ ⇒ 1
r
=

GMs

c2r2
0

(
1+ sin2

θ
)
. (1.14)

From Equation (1.13) and (1.14), the general solution is,

1
r
=

1
r0

cosφ +
GMs

c2r2
0

(
1+ sin2

θ
)
. (1.15)

Now again considering asymptotes from Figure 1.1, r→∞, φ →±π/2+δ/2 and from

Equation (1.15) δ = 4GMs/r0c2. For light passing from near the surface of the Sun, the

closest distance will be equal to the radius of the Sun (R),

δ =
4GMs

c2R
. (1.16)

Equation (1.16), represents the deflection of light due to the Sun or a Sun-like star

with mass Ms and radius R. Comparing Equation (1.5) and (1.16), one can see that the

deflection in the general relativity is twice the deflection in the Newtonian theory.

As one can see from Equation (1.6), the line element becomes singular at the so

called Schwarzschild radius Rsch = 2GMs/c2. Our calculation is not valid near the
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Schwarzschild radius as the curvature of spacetime near the Schwarzschild radius be-

comes significant and one will need to solve the geodesic equation explicitly with-

out approximations (Virbhadra & Ellis, 2000). However, near the surface of the Sun,

Rsch/R� 1, as a result, the above derived result is valid as it is well within the weak

field limit.

1.4 Basic Cosmology

This section briefly discuss the basic cosmology. For an in-depth coverage of cosmol-

ogy, interested readers are encouraged to look into the following references: Weinberg

(1972), Dodelson (2003), Hartle (2003), Ryder (2009).

1.4.1 The Spacetime Metric

According to observations, the Universe is homogeneous and isotropic at large scales

(�100Mpc). In general relativity, such a universe can be described by the Friedmann-

Robertson-Walker (FRW) metric,

ds2 = c2dt2−a2(t)
[
dχ

2 + f 2
K (χ)

(
dθ

2 + sin2
θ dφ

2)] , (1.17)

where, c is the speed of light. a(t) = a is the time dependent scale factor that de-

scribes cosmological expansion (or contraction). The scale factor is normalized such

that a(t = t0) = 1. (t,χ,θ ,φ) represent a coordinate system based upon the physical

time or cosmic time t, line-of-sight comoving distance χ , and two angular coordinates

(θ ,φ). fK(χ) represents the comoving angular diameter distance

fk(χ) =


sin
(√

Kχ
)
/
√

K K > 0,

χ K = 0,

sinh
(√
−Kχ

)
/
√
−K K < 0,

where K is the curvature of space. K = 1,0,−1 implies space with positive, zero (flat),

and negative curvature.
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1.4.2 The Cosmological Redshift

The definition of the cosmological redshift is based on the light propagation in the FRW

metric. Consider a source at a fixed comoving distance χ . For a photon that travels

along the null geodesic, from Equation (1.17),

dχ =
cdt
a

⇒ χ = c
∫ dt

a
.

Let us assume that the source emits a photon at a time te and it propagates radially,

(θ = 0,φ = 0), and it is observed by the observer at a time to. A second photon is

emitted by the source at a time te +∆te and observed at to +∆to. Hence, for a fixed

comoving distance,

χ =
∫ to

te

dt
a

=
∫ to+∆to

te+∆te

dt
a
. (1.18)

As the comoving distance does not depend on time, the above equation can also be

written as, ∫ to

te

dt
a

=

(∫ to

te
+
∫ to+∆to

to
−
∫ te+∆te

te

)
dt
a
,

which implies ∫ to+∆to

to

dt
a

=
∫ te+∆te

te

dt
a
.

For small time intervals,
∆to
ao

=
∆te
ae

. (1.19)

Now let us assume that∆te is equal to the period of the emitted photon,∆te = λe/c.

Then the relation between the emitted and observed wavelength of the photon is (again

assuming ao = 1)

(1+ z)≡ λo

λe
=

1
ae
, (1.20)

where z is defined as the redshift of the source. In general, the redshift (also known

as Doppler shift) of an object is defined as the fractional change in the observed wave-

length of the emitted photon due to the radial motion of the object. However, cosmo-

logical redshift is not a consequence of the object’s motion. Instead, it is a result of the

expansion of the Universe itself. In addition to the expansion, if the light source also

has a radial motion relative to the observer, then the final redshift will be a combination

of both Doppler shift and cosmological redshift.
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1.4.3 Cosmological Parameters

One can solve the Einstein’s field equation for Equation (1.17) to get the so-called

Friedmann Equations,

H2(t)≡
(

ȧ
a

)2

=
8πG

3
ρ− Kc2

a2 , (1.21)

ä
a
=−4πG

3
(ρ +3p) , (1.22)

where G is the Newton’s gravitational constant, ρ is the energy density of the Universe

at a cosmic time t, and p is the corresponding pressure. The dot represents the derivative

with respect to the cosmic time and H(t) is the Hubble parameter. The present value of

the Hubble parameter is known as the Hubble constant and denoted as H0.

According to observations (Planck Collaboration et al., 2020), our Universe can be

very well described by the standard ΛCDM model with the cosmological constant (as

the dark energy), cold dark matter, Baryons and Radiation. Hence, the energy density,

ρ , in Equation (1.21) has three different components: (i) the pressure-less cold dark

matter density and Baryons, ρm, (ii) the radiation density, ρrad , (iii) the cosmological

constant, ρΛ. Using the continuity equation, these three density values (ρm, ρrad, ρΛ) at

a cosmic time t can be related to their present values (ρm,0, ρrad,0, ρΛ) as

ρm =
ρm,0

a3 , ρrad =
ρrad,0

a4 , ρΛ = ρΛ. (1.23)

One can define the critical density as

ρc ≡
3H2(t)
8πG

(1.24)

and the Friedmann Equation (1.21), can be written as

H2(t) = H2
0

(
Ωm,0

a3 +
Ωrad,0

a4 +ΩΛ

)
, (1.25)

where Ωm,0 = ρm,0/ρc,0, Ωrad,0 = ρrad,0/ρc,0 and ΩΛ = ρΛ/ρc,0 are dimensionless den-

sity parameters with ρc,0 being the present critical density of the Universe.

In our current work, until mentioned otherwise, the present values of different cos-

mological parameters are as follows: K = 0, H0 = 70 km/s/Mpc, Ωm,0 = 0.3, ΩΛ = 0.7,

and Ωrad,0 = 0.0.
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1.4.4 Cosmological Distances

Due to the expansion of the Universe, measures of distances, which would have been the

same in a non-expanding universe, are different from each other. However, one cannot

say that one is correct and the others are not. One of these is the comoving distance

between two objects which is mentioned above. The line-of-sight (or radial) comoving

distance between two objects is independent of the cosmic time unless they have motion

other than the expansion of the Universe. From Equation (1.17), the comoving distance

between two objects is defined as

χ =
∫

dχ = c
∫ dt

a
. (1.26)

Using Equation (1.25), the comoving distance in terms of dimensionless density param-

eters can be written as,

Dc ≡ χ =
c

H0

∫ da√
Ωm,0
a3 +

Ωrad,0
a4 +ΩΛ

. (1.27)

Measurement of the angular extent of an object gives another measure of the dis-

tance to the object known as the angular diameter distance (DA). The angular diameter

distance and the comoving distance are related to each other as

DA = a Dc =
Dc

1+ z
(1.28)

Another way to measure distances is to measure the observed flux from an ob-

ject with known luminosity. The luminosity distance, DL, is related to other distances

as (Hogg, 1999)

DL = (1+ z)DC = (1+ z)2DA. (1.29)

1.5 Basics of Gravitational Lensing

In the last section, we have derived the deflection angle due to a spherically symmet-

ric and static object. However, for most of the astrophysical objects, the assumption

of spherical symmetry is not valid. Hence, one needs to have a general lensing for-

malism applicable for both spherical and non-spherical objects. In subsection 1.5.1,

we discuss the general lensing configuration in astrophysics. Later, following SEF, in

subsection 1.5.2, we derive the fundamental quantity in lensing, the so-called gravita-
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tional lens equation. Various properties of gravitational lens equation are discussed in

subsection 1.5.3.

1.5.1 General Lensing Scenario

⇒

Figure 1.2: Schematic diagram of a general lens system: The left panel shows the
typical lens system without approximations. The lens, source, and observer are centered
at L, S, and 0, respectively. In the absence (presence) of lensing, the source is located
at angle β (θ) with respect to the observer. The right panel is the same lens system
with small angle and thin lens approximations. The angular diameter distances from
observer to lens, observer to source, and lens to source are represented by Dd , Ds, Dds,
respectively. (Image credit: SEF)

As mentioned above, gravitational lensing is the bending of light due to the presence

of a massive object along its path. Hence, as shown in the left panel of Figure 1.2,

a gravitational lens system consists of three components: (i) source (S): object that

emits light, (ii) gravitational lens (L): intermediate-mass distribution responsible for

the bending of light coming from source, and (iii) observer (O): us. In the left panel of

Figure 1.2, OLN represents an arbitrarily defined reference line, the so-called optical

axis, with respect to which different angles and distances will be measured. The dashed

SO line represents the light ray path in the absence of the lens (L) with an angle ~β with

respect to the optical axis measured by the observer. However, due to the presence of the

lens (L), SO is no longer physical and light travels along the SI′O with an angle ~θ with

respect to the optical axis. One can see that SI′O is not a straight line like SO. Instead, it

gets curved near the gravitational lens (L). In all of the cases discussed in this thesis, the
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deflection angle is very small (of the order of arcseconds). Hence, only a small region

around the optical axis needs to be considered. As a result, one can replace the source

(Ss) and lens sphere (Sd) by the so-called source plane and lens plane, respectively,

and the light path can be approximated by two asymptotes (SI and IO) to SI′O meeting

each other in the lens plane. As a result of this assumpation, one can say that all the

deflection ~̂α is taking place in the lens plane.

In principle, the above mentioned approximations are enough to derive the lens

equation. However, there is one more approximation, the thin lens approximation,

which is also very crucial for gravitational lensing. In general, the lens mass distri-

bution is three dimensional in nature. However, the extension of lens mass distribution

along the line of sight is very small compared to other relevant scales like Dd , Dds,

Ds. Hence, instead of treating the lens mass distribution as three-dimenstional, one can

safely assume that lens mass disribution is two dimensional and distributed in the lens

plane. With the above mentioned approximations, the left panel in Figure 1.2, can be

transformed into the right panel. In the right panel of figure 1.2, the source lies in the

source plane, and its distance from the optical axis is given by a two-dimensional vec-

tor, ~η = Ds
~β . Similarly, in the lens plane, the distance of the light ray from the optical

axis is given by a two-dimensional vector, ~ξ = Dd~θ , with a deflection angle, ~̂α , in the

lens plane.

1.5.2 Deflection Angle and Lens Equation

As discussed in section 1.3, the deflection angle due to a point mass lens can be given by

Equation (1.16). As one can see from Equation (1.16), the deflection angle is linearly

proportional to the mass of the object. As a result, the deflection due to the N point

mass lenses, distributed in the lens plane, can be written as a linear superposition,

~̂α(~ξ ) =
N

∑
i=1

4GMi

c2

~ξ −~ξi

|~ξ −~ξi|2
, (1.30)

where Mi and ~ξi are the mass and position of ith point mass lens, respectively. For a

continuous mass distribution, with the projected mass density Σ(~ξ ), the above equation

can be written as,

~̂α(~ξ ) =
4G
c2

∫
Σ(~ξ ′)d2

ξ
′
~ξ −~ξ ′

|~ξ −~ξ ′|2
, (1.31)

where the integration is over the lens plane. One should keep in mind that the deflection

angle written in this form is the consequence of the thin lens approximation and the
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weak field limit. One can also see that for general mass distribution, the deflection angle

is a vector quantity, unlike the spherically symmetric case discussed above, where only

radial dependence in deflection angle was meaningful. Similar to the projected mass

density, one can also define the projected lens potential as,

ψ(~ξ )≡
∫

dz φ(~ξ ,z), (1.32)

where φ(~ξ ,z) is the three dimensional potential corresponding to the lens mass distri-

bution. Following SEF, the deflection angle in terms of projected lens potential can be

written as,
~̂α(~ξ ) = ~∇~ξ

ψ(~ξ ), (1.33)

where

ψ(~ξ ) =
4G
c2

∫
d2

ξ
′Σ(~ξ ′) ln

(
|~ξ −~ξ ′|

ξ0

)
+ constant (1.34)

and ξ0 is an arbitrary length scale. The lens potential can only be determined up to an

additive constant.

Based on the geometry of the Figure 1.2, one can derive a relation between the

lensed and unlensed position of the source known as the lens equation,

~η =
Ds

Dd

~ξ −Dds~̂α(~ξ ), (1.35)

where ~η is the distance of source in the source plane from the optical axis and ~ξ is the

impact parameter of light ray in the lens plane (minimum distance of light ray from the

optical axis in the lens plane). It is a common practice to write down the lens equation

in dimensionless form by introducing an arbitrary length scale ξ0 on the lens plane and

a corresponding length scale in the source plane η0 = ξ0Ds/Dd . Using Equation (1.33),

(1.34), (1.35), the lens equation in dimensionless form is written as,

~y =~x−~α(~x), (1.36)

where ~y = ~η/η0, ~x = ~ξ/ξ0 are dimensionless source and lens position in the source

and lens plane, respectively and the dimensionless potential Ψ(~x) and dimensionless

deflection angle ~α(~x) are given as

Ψ(~x) =
1
π

∫
d2x′ κ(~x′) ln|~x−~x′|,

~α(~x) = ~∇~xΨ(~x) =
1
π

∫
d2x′ κ(~x′)

~x−~x′
|~x−~x′|2 , (1.37)
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Figure 1.3: Radio image of double quasar Q0957+561 at λ = 6cm: A and B represent
the two images of the background quasar because of the lensing galaxy G. C, D, E are
radio structures associated with the quasar image A. (Image credit: Roberts et al. 1985)

where κ(~x) = Σ(~x)/Σcr is the convergence and Σcr =
c2

4πG
Ds

DdDds
is the critical density.

We discuss this in more details in the next section.

1.5.3 Properties of Lens Equation

Multiple Image Formation: As one can see from Equation (1.36), the gravitational

lens equation describes a mapping from the lens plane to the source plane. For a given

lens mass distribution, the mapping is surjective, i.e., for every point in the lens plane,

there is a corresponding point in the source plane. However, the inverse is not true, i.e.,

one point in the source plane can be mapped to multiple points in the lens plane. As

a result, due to the presence of a gravitational lens, a distant source can be observed at

multiple positions in the sky. This phenomenon is known as multiple image formation,

and one of the example of this, Q0957+561 (Walsh et al., 1979), is shown in Figure 1.3.

For different lens systems, the number of multiple images of the source is different de-

pending on the lens mass distribution and the overall geometry of the lens system.

Magnification: Apart from giving rise to multiple image formation, gravitational lens-

ing also distorts the individual images and changes their flux. This distortion can be
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Figure 1.4: Effect of convergence and shear on a circular source: The left panel shows
the unlensed circular source. The presence of convergence affect the source size isotrop-
ically which is denoted by the dotted circle on the right. On the other hand, presence of
both shear and convergence affect the size as well as its shape and transform it into an
ellipse. (Image credit: Narayan & Bartelmann 1996)

described by the Jacobian (matrix) of the lens equation,

A≡ ∂~y
∂~x

= δi j−
∂αi(~x)

∂x j
= δi j−

∂ 2Ψ(~x)
∂xi∂x j

, (1.38)

where xi (i = 1,2) represents the ith component of the ~x on the lens plane. For conve-

nience, the ∂ 2Ψ
∂xi∂x j

can also be written as Ψi j. Hence, the Equation (1.38) can be written

as

Ai j = δi j−Ψi j, (1.39)

and one can see that the Jacobian matrix can be written in terms of the second derivatives

of the lens potential, Ψi j, also known as the deformation tensor. Now, let us define the

so-called convergence (κ) and shear (γ = (γ1,γ2)) as

κ =
1
2
(Ψ11 +Ψ22) , γ1 =

1
2
(Ψ11−Ψ22) , γ2 = Ψ12 = Ψ21. (1.40)

The Jacobian matrix can be written as

A=

(
1−κ− γ1 −γ2

−γ2 1−κ + γ1

)
=

(
1−κ 0

0 1−κ

)
−
(

γ1 γ2

γ2 −γ1

)
. (1.41)

The meaning of convergence and shear can be explained using Equation (1.41). The Ja-
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Figure 1.5: Image formation due to an elliptical lens: The panel (a) represents the
source plane and the panel (b) represents the lens plane. The dotted and solid lines
in the panel (a) represent the radial and tangential caustics, respectively. The inner
and outer dotted lines in panel (b) represent the corresponding radial and tangential
critical lines. The various colored circles in the panel (a) are different sources and the
corresponding images are shown in the panel (b). (Image credit: Ellis 2010)

cobian matrix determines the distortion of images by lensing. As the convergence only

appears in the diagonal part of the Jacobian, the distortions induced by it are isotropic

in nature. On the other hand, shear stretches the image in a preferred direction based

on the values of (γ1,γ2). As one can see from Figure 1.4, the unlensed circular source

is mapped into a circle if the convergence is non-zero, whereas if shear (or both shear

and convergence) is non-zero, then the circular source is mapped into an ellipse with

semi-major (a) and semi-minor (b) axis given as

a =
r

1−κ− γ
, b =

r
1−κ + γ

,

where r is the radius of the unlensed circular source and γ =
√

γ2
1 + γ2

2 . The major

and minor-axis of the ellipse are aligned with the principal axis of the Jacobian and the

amount of stretching depends on the corresponding eigenvalues.

The change in the shape implies a change in the observed solid angle of the source.

If there is no emission or absorption of photons during the gravitational lensing, then it

implies that the surface brightness of the source remains conserved. Hence, the change

in solid angle means a change in the flux coming from the source. From Equation (1.38),

the magnification of a lensed image is defined as

µ =
1

detA
=

1
λtλr

=
1

(1−κ− γ)(1−κ + γ)
, (1.42)

where λt and λr are the tangential and radial eigenvalues of the Jacobian of the lens

equation describing the tangential and radio distortion of the lensed image, respectively.
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Critical lines and caustics: As one can see from above Equation (1.42), the magni-

fication value diverges for an image if λt = 0 or λr = 0 at the image position. Points

in the lens plane where λt = 0 (λr = 0) form smooth closed curves and these curves

are known as tangential (radial) critical curves. Panel (a) and panel (b) in Figure 1.5

represent the source and lens plane for a typical elliptical lens, respectively. The critical

lines for the elliptical lens are shown in the panel (b) by the dashed lines. The outer

dashed line is the tangential critical line and the inner dashed line is the radial critical

line. The corresponding curve in the source plane are known as caustics and they are

not necessarily smooth. The caustics for the elliptical lens are shown in the panel (a).

The diamond shaped caustic is known as tangential caustic as it is corresponding to the

tangetial critical line in the panel (b). Similarly, the dotted circular line represents the

radial caustic corresponding to the radial critical line in the panel (b). One can see that

the tangential (diamond-shaped) caustic is made of two different parts, smooth curves

(known as folds) and points where two of these smooth curves meet with each other

(known as cusps).

If a source lies on the caustics then, in principle, the corresponding images will be

infinitely magnified. However, this in not true in reality as all the sources are extended

in nature and the total magnification is given as

µ =

∫
µp(~y)I(~y)d2y∫

I(~y)d2y
, (1.43)

where I(~y) is the surface brightness profile of the source and µp(~y) represents the mag-

nification of a point source located at~y. The above equation always gives a finite mag-

nification value for an extended source.

From Figure 1.5, we also notice that whenever a source crosses a caustic, two addi-

tional images appear or disappear in the lens plane. If the source resides outside all of

the caustics, then there is only one image in the lens plane (violet source in the panel

(a)). As the source crosses the radial caustic (aqua color source in the panel (a)), two

additional radially elongated images appear near the radial critical curve in the lens

plane, making the total image count in the lens plane three. Once the source crosses the

tangential diamond-shaped caustics, two additional tangentially elongated images ap-

pear near the tangential critical curve in the lens plane, and the total number of images

become five. One can also see that the images are more distorted if the source lies near

the caustics.

From the image formation corresponding to various source positions in Figure 1.5,
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one can also notice that if the source lies outside the caustics, there is only one im-

age, and the multiple images only form if the source is inside the caustic. Hence, one

can divide the gravitational lens systems into two different categories, (I) Strong grav-

itational lens system: (Kochanek, 2006) gravitational lens system with multiple image

formation and, (II) weak gravitational lens system: (Schneider, 2005) gravitational lens

system with only one image formation. Although there are other categories of lensing

like Microlensing (Wambsganss, 2006), Femtolensing (Ulmer & Goodman, 1995), but

as these are not relevant for this thesis, we are not going to define these categories.

Time Delay: In the case of light deflection, the light ray follows a longer path com-

pared to the undeflected light ray. Hence, the time taken by light to reach the observer

from the source will be greater than the time taken by the undeflected light ray. This

extra time taken by light is known as the geometric time delay. Apart from the geomet-

ric time delay, the presence of the lens itself introduces an additional time delay known

as the Shapiro time delay. As a result, following SEF, the total time delay with respect

to the undeflected light ray is given as

T (~x,~y) =
ξ 2

0
c

Ds

DdDds
(1+ zd)ϕ (~x,~y)

=
ξ 2

0
c

Ds

DdDds
(1+ zd)

[
(~x−~y)2

2
−Ψ (~x)

]
,

(1.44)

where different symbols have their usual meaning as defined above. The first term in

the square bracket represents the contribution from the geometric time delay and the

second term represents the Shapiro time delay. ϕ (~x,~y) is a scalar function known as the

Fermat potential (Schneider, 1985; Blandford & Narayan, 1986). One can see that the

lens Equation (1.36) satisfies the condition ∇xϕ = 0, hence, the stationary points of the

Fermat potential represent the solutions of lens equations.

One cannot measure the time delay in the absence of the lens. Hence, Equa-

tion (1.44) is not an observational quantity. Instead, one can only measure the time

delay between two images given by

∆Ti j =
ξ 2

0
c

Ds

DdDds
(1+ zd)

[
ϕ (~xi,~y)−ϕ

(
~x j,~y

)]
, (1.45)

where ϕ (~xi,~y) and ϕ
(
~x j,~y

)
are the Fermat potentials corresponding to ith and jth im-

ages, respectively.

Image Type: From the definition of the Fermat potential, for a given value of ~y, it

defines a two-dimensional surface in~x. The ordinary images (when the source does not
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Figure 1.6: Parity of different type of images: The left most circle shows the unlensed
source. The ‘+’ and ‘-’ represent the sign of eigenvalue of Jacobian matrix. The ‘+ +’
represents the minima image. The ‘- -’ represents the maxima image. The ‘+ -’ and ‘-
+’ represent the saddle images.

lie on a caustic) are the stationary points (∇xϕ = 0) on this two-dimensional surface and

the coresponding magnification matrix is A= ϕi j. Based on the sign of eigenvalues of

Jacobian (1.38), these ordinary images can be divided into three types:

• Type I: Minina Image: Minima point of Fermat potential,

– Condition: detA> 0 and trA> 0

• Type II: Saddle Image: Saddle point of Fermat potential,

– Condition: detA< 0

• Type III: Maxima Image: Maxima point of Fermat potential.

– Condition: detA> 0 and trA< 0

The minima and maxima images (detA> 0) have a positive parity, whereas the sad-

dle image (detA < 0) has negative parity. The meaning of parity can be further under-

stood from Figure 1.6. The leftmost circle represents the unlensed source. The source

has been divided into four quadrants with different colors. The ‘+’ and ‘-’ symbol rep-

resent the sign of the eigenvalue. The next figure with ‘+ +’ represents the minima type

image. One can see that the unlensed source and the minima image are similar to each

other. But the ‘- -’ image, which denotes the maxima image, is rotated by an angle of

180◦. The saddle images ‘+ -’ and ‘- +’ are the mirror images of the unlensed source

with respect to the y and x axis, respectively.

19



1.6 Image Formation near Critical Points

Gravitational lens equation defines a gradient mapping, f : R2→ R2, from lens plane

(~x) to source plane (~y). This mapping can also be described by the Fermat potential,

ϕ (~x,~y;~p) =
(~x−~y)2

2
−Ψ (~x;~p) , (1.46)

where ~p denotes the parameters of the lens potential. For given (~y,~p) the image posi-

tions are the stationary points (∇xϕ = 0) of the Fermat potential. At ordinary images,

the detA 6= 0, hence, the lens mapping is locally invertible. As a result, for such images,

the number of images in the lens plane remains a constant under an infinitesimal change

in (~y,~p).

However, the same does not hold for the critical images (images formed on critical

curves) as the D≡ detA= 0, and an infinitesimal change in (~y,~p) can lead to a change

in the observed number of lensed images. Such violent discontinuous variations in the

final state of the system, given the smooth continuous changes in the initial state of the

system, are known as catastrophes, and their study comes under the so-called catas-

trophe theory (Stewart, 1982; Arnold, 1983; Gilmore, 2007) A detailed discussion of

singularities in gravitational lensing is given in Blandford & Narayan (1986); Schnei-

der & Weiss (1986); Petters et al. (2001); Kovner (1987) and chapter 6 of SEF. Here,

we will only review the basics of the theory.

As D = 0 for a critical image, the corresponding Jacobian matrix, A, either has

rank 1 (one vanishing eigenvalue) or rank 0 (two vanishing eigenvalues). If, for a given(
~x(0),~p(0)

)
, the Jacobian matrix has a rank one (rank(A) = 1 andA22 = 0), and ∇D 6= 0.

Then, by introducing a cartesian coordinate system at x(0) in the lens plane and at y(0)

in the source plane such that the x and y-axis are parallel to each other, one can see that

x2 direction get annihilated due to A22 = 0. In such a case, one can introduce a second

direction at the x(0) along the critical curve given by D = 0. The normal vector to the

critical curve at x(0) is given by

∇D(0) = ϕ
(0)
11

(
ϕ
(0)
221,ϕ

(0)
222

)
,

and the corresponding tangent vector is,

~T(0) = R
(

π

2

)
∇D(0) = ϕ

(0)
11

(
−ϕ

(0)
222,ϕ

(0)
122

)
.
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Again due to the A22 = 0, there are two distinct possibilities

ϕ
(0)
222 6= 0 ⇒ A(0).~T(0) 6= 0, (1.47)

and

ϕ
(0)
222 = 0 ⇒ A(0).~T(0) = 0. (1.48)

The first condition, Equation (1.47), represents the points on the critical lines in the lens

plane that have a well-defined tangent vector at the corresponding caustic points in the

source plane. These points in the source plane form smooth curves known as the folds.

On the other hand, the second condition, Equation (1.48), marks the points in the source

plane where the tangent vector is not necessarily well-defined. Such points are known

as cusp points in the source plane.

1.6.1 Fold

As mentioned above, the fold is described by

D(0) = 0, trA 6= 0, ∇D 6= 0, A(0).~T(0) 6= 0. (1.49)

The lens mapping near the lens plane can be described by Taylor series expansion of the

Fermat potential and dropping the higher degree insignificant terms (please see Section

6.2 in SEF for rules of truncating the Taylor series) as

y1 =ϕ
(0)
11 x1 +

1
2

ϕ
(0)
122x2

2 +ϕ
(0)
112x1x2,

y2 =
1
2

ϕ
(0)
112x2

1 +ϕ
(0)
122x1x2 +

1
2

ϕ
(0)
222x2

2.

(1.50)

The corresponding Jacobian matrix is given by

A=

(
ϕ
(0)
11 +ϕ

(0)
112x2 ϕ

(0)
112x1 +ϕ

(0)
122x2

ϕ
(0)
112x1 +ϕ

(0)
122x2 ϕ

(0)
122x1 +ϕ

(0)
222x2

)
, (1.51)

and the corresponding tangent to the critical curve in the lens plane can be obtained

using the condition A22 = 0 as

ϕ
(0)
122x1 +ϕ

(0)
222x2 = 0, (1.52)
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and the corresponding caustic in the source plane can be obtained by using Equa-

tions (1.50) and (1.52) as

Q(y) := 2(ϕ(0)
11 )2

ϕ
(0)
222y2−

(
ϕ
(0)
122ϕ

(0)
222

[
ϕ
(0)
122

]2
)

y2
1 = 0. (1.53)

For a given source position (y1,y2) near the fold in the source plane, the corresponding

image positions in the lens plane are given as

(x1,x2) =

(
ϕ
(0)
222y1−ϕ

(0)
122y2

ϕ
(0)
11 ϕ

(0)
222

,
−ϕ

(0)
122y1±

√
Q(~y)

ϕ
(0)
11 ϕ

(0)
222

)
. (1.54)

If the Q < 0, then there is no real image of the source in the image plane whereas if

the Q > 0, then there are two images. Here the images near the region of interest are

considered and it is possible that there may be other images away from this region.

This can been seen in Figure 1.5, where two additional images appear in the image

plane when the source crosses a fold in the source plane and there were extra images

far from the region where these new images appear.

Using Equation (1.50), (1.51), and (1.52), one can calculate the variation of magni-

fication near fold singularities in lens plane as

|µ|= 1

|ϕ(0)
11 |
√

2ϕ
(0)
222∆y2

, (1.55)

where ∆y2 is the normal (y1 = 0) distance from fold in the source plane. The corre-

sponding relation in the lens plane is given as

|µ|= 1

|ϕ(0)
11 ||ϕ

(0)
222|∆x2

, (1.56)

where the∆x2 is the image distance from the critical line in the lens plane. This formula

represents the magnification of the images that are near the critical line. In order to get

total magnification, we need to include any other images in the lens plane.

1.6.2 Cusp

Unlike folds, at a cusp point, the tangent vector in the source plane cannot be uniquely

defined as the tangent vector is annihilated by the A22 = 0 condition. The cusp points
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Figure 1.7: The critical curves (a) in the lens plane and the corresponding caustics
structure (b) in the source plane near a cusp singularity. Inside and outside of the caustic
the source will have three and one image as marked in the panel(b). The dotted line
represents the path along which the outer images will move and merge with the inner
image as source moves towards the origin from the inside of the caustic. (Image credit:
SEF)

are described by

D(0) = 0, trA 6= 0, ∇D 6= 0, A(0).~T(0) = 0. (1.57)

Again, retaining the leading order terms in the Taylor series leads to the lens mapping

y1 =ϕ
(0)
11 x1 +

1
2

ϕ
(0)
222x2

2 +ϕ
(0)
112x1x2,

y2 =
1
2

ϕ
(0)
112x2

1 +ϕ
(0)
2222x1x2 +

1
6

x3
2,

(1.58)

and the corresponding Jacobian is

A=

(
ϕ
(0)
11 +ϕ

(0)
112x2 ϕ

(0)
112x1 +ϕ

(0)
122x2

ϕ
(0)
112x1 +ϕ

(0)
122x2 ϕ

(0)
122x1 +

1
2ϕ

(0)
2222x2

2

)
. (1.59)

The critical curve and caustic equations can be obtained using the condition D = 0 as

given in Section 6.2 of SEF and as shown in Figure 1.7. As one can see, the critical line

in the image plane is a parabola whereas the corresponding source plane shows a cusp

connecting two fold lines. The number of images for a given source position are also

denoted in the source plane. The dotted line represents the path of the images x(2) and

x(3) as we move the source towards the origin. Once source reaches the origin, x(2) and

x(3) merges with x(1) and becomes one image. The position of these three images as a
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Figure 1.8: Caustic structure near a swallowtail singularity: The left panel represents
the caustic structure in source plane with one control parameter, p, at the third axis. The
middle panel and the right panel represent the caustic structure for two different value
of p≤ 0 and p > 0, respectively. The different numerical values in the middle and right
panel represent the image multiplicity of the source. (Image credit: SEF)

function of source position are given as

~x(1) =
(y1

c
,0
)
,

~x(2,3) =

 ϕ
(0)
2222y1/3

ϕ
(0)
11 ϕ

(0)
2222/3−

[
ϕ
(0)
122

]2 ,±

√√√√√ 2y1ϕ
(0)
122

ϕ
(0)
11 ϕ

(0)
2222/3−

[
ϕ
(0)
122

]2

 ,

(1.60)

and the corresponding magnification value are given as

µ
(1) =

1

ϕ
(0)
122y1

, µ
(2,3) =− 1

2ϕ
(0)
122y1

. (1.61)

One can see that the x(1) image has the opposite parity compared to the x(2) and x(3)

and near the cusp the total magnification of x(2) and x(3) is equal to the magnification of

x(1).

The fold and cusp are the only stable singularities of the lens mapping, i.e., slight

perturbation in the parameter p(0) values cannot make the fold and cusp disappear en-

tirely from the source plane. Instead, such a change can only shift the position of the

fold and cusp in the source plane. A very simple example of this is the redshift evolu-

tion of the fold and cusp. The fact that change in the redshift only change the position

of the fold and cusp in the source plane implies their stability. Other singularities of

the lens mapping discussed in the following subsections are the unstable singularities

of the lens mapping, i.e., a small perturbation in the lens system parameters can remove

these singularities from the lens mapping entirely, leaving only fold and cusp.
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Figure 1.9: Caustic structure near an hyperbolic umbilic: The left panel represents the
caustic structure for one specific value of control parameter p in the source plane. The
different numerical values represent the image multiplicity of the source. The right
panel shows the large caustic in (~y, p)-space. (Image credit: SEF)

1.6.3 Swallowtail

A swallowtail kind of singularity is given by the condition,

A(0).~T(0) = 0, (~T.∇(A.~T))(0) = 0. (1.62)

At a swallowtail singularity, the Jacobian matrix has a rank one like fold and cusp.

The lens equation near a swallowtail singularity can again be obtained using the above

condition (please see SEF for more details). The corresponding caustic structure is

shown in Figure 1.8. From the left panel, one can see that the caustic structure is

very sensitive to the values of control parameter p. For p ≤ 0, the caustic only show

a fold line with image multiplicity of 0 and 2. However, as p becomes positive two

extra cusps appear and take an overall form of swallowtail (as its name suggests). The

corresponding caustic structure divides the local source plane in three different regions

with image multiplicity of 0, 2, 4.

1.6.4 Umbilics

The umbilic is given by the condition,

A= 0. (1.63)

It means that at an umbilic point both the eigenvalues of the Jacobian matrix are zero,

1−κ− γ = 0 = 1−κ + γ. (1.64)

25



Figure 1.10: Caustic structure near an elliptic umbilic: The left panel represents the
caustic structure for one specific value of control parameter p in the source plane. The
different numerical values represent the image multiplicity of the source. The right
panel shows the large caustic in (~y, p)-space. (Image credit: SEF)

This above condition can only be satisfied if the shear is zero and the convergence is

equal to one. Hence, at the umbilic point in the lens plane the projected lens mass

density is equal to the critical density defined below Equation (1.37).

Following Equation (1.63) one can see that at an umbilic point,D(0)= 0 and ∇D(0)=
0. Assuming that the “∆” represents the determinant of the Hessian matrix of D, one

can divide the umbilics in two types:

• ∆(0) > 0 :⇒ Elliptic umbilic,

• ∆(0) < 0 :⇒ Hyperbolic umbilic,

where

∆(0) =
(
6ϕ111ϕ112ϕ122ϕ222−4ϕ111ϕ

3
122

−4ϕ
3
112ϕ222 +3ϕ

2
112ϕ

2
122−ϕ

2
111ϕ

2
222
)(0)

. (1.65)

The caustic structures near hyperbolic and elliptic umbilic are shown in Figure 1.9

and 1.10, respectively. We can notice that, unlike swallowtail, there is an exchange of

(one/three) cusps between caustics in the source plane at (hyperbolic/elliptic) umbilics

such that the total number of cusps in the source plane remains unchanged. The caustic

structure near hyperbolic umbilic divides the local source plane in three different re-

gions with image multiplicity of 0, 2, 4. On the other hand, the local source plane near

elliptic umbilic is divided in two regions with image multiplicity of 2, 4.

In gravitational lensing with three control parameters, other unstable singularities
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like lips and beak-to-beak can also manifest themselves (see SEF). At both of these

singularities, two extra cusps appear in the source plane. If we increase the number of

control parameters, then we can also observe the manifestation of other higher-order

singularities. However, these singularities are not subject to our current analysis.

All of these unstable singularities are related to the cusps in the source plane. Hence,

one does not expect to observe them in the circular lenses as they have only one fold

caustic and one point caustic in the source plane. The point caustic maps into a circu-

lar (tangential) critical curve and the tangent vector to every point on this curve is an

eigenvector of the Jacobian with zero eigenvalue. Any perturbation (without rotational

symmetry) will turn this point caustic into a diamond-shaped caustic with four cusps.

The other important observation from the above analysis is that the number of cusps in

the source plane is always even for a transparent lens. It can be seen from the fact that

the unstable singularities change the number of cusps in the source plane by 0 or 2, and

only lips have the property of creating two cusps from nothing (see SEF).

In this chapter, different singularities are discussed using the Fermat potential. How-

ever, these singularities can also be addressed using eigenvalues and eigenvectors of the

deformation tensor. This method is used and described in details in the following chap-

ters.
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Chapter 2

Finding Singularities in Gravitational
Lensing

This chapter is based on:

Meena, A. K., Bagla J. S., "Finding singularities in gravitational lensing", MNRAS,

492, 3294 (2021).

2.1 Introduction

Strong gravitational lenses are unique probes of the Universe. By producing multi-

ple images, they provide constraints on the lens mass distribution (Kneib & Natarajan,

2011). The high magnification due to lensing gives us the opportunity to look further

into the history of the Universe by observing magnified sources which otherwise would

have remained unobserved, (e.g., Atek et al., 2018). In a given lensing system, the

observed configuration and magnification of multiple images depends on properties of

the lens and the location of the source with respect to the lens. The set of all points in

the plane of the lens is called the image plane: here we are working in the small angle

approximation. Each point on the image plane can be mapped to a plane at the source

redshift, the so-called source plane. For a given lens, and the distance to the source,

there is a set of directions where the magnification is formally infinite. The set of points

on the image plane representing these directions form the critical curves. As all sources

have a finite size, magnification is always finite. The critical curves, mapped to the

source plane form the caustics. High magnification images are formed if the source lies

on or close to a caustic (Blandford et al., 1989; Schneider et al., 1992).
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We have mentioned above that the critical curves and caustics correspond to infinite

magnification. This happens because the lens mapping at these points is singular: a

finite solid angle element in the image plane gets mapped to a line or a point in the

source plane. The structure of the caustic depends on the form of the singularity: singu-

larities of the lensing map can be classified using catastrophe theory (Berry & Upstill,

1980; Gilmore, 2007). The use of catastrophe theory in gravitational lensing was first

discussed by Blandford & Narayan (1986) in the case of elliptical lenses. Later this

was discussed by Nityananda (1990), Kassiola et al. (1992), SEF and Petters et al.

(2001). Independently, classification of singularities in the same map in the context of

Zel’dovich approximation was done by Arnold et al. (1982).

One can divide singularities of the lensing map into two types: stable (fold and

cusp) and unstable singularities (swallowtail, umbilics). Stable caustics are called so

because a small perturbation in the lensing potential leads to a correspondingly small

shift in the location of the fold and cusp. On the other hand, the so-called unstable

caustics may disappear entirely on the introduction of a small perturbation. In view

of this, the focus of most of the studies has been on stable caustics with only a few

efforts to improve our understanding of image formation and characteristics of unstable

singularities in realistic lens maps (Bagla, 2001; Orban de Xivry & Marshall, 2009)

though these caustics have been known and studied theoretically (SEF).

In this work, we propose that unstable caustics can be potentially useful to constrain

lens models much more strongly than the stable caustics. The unstable caustics have

a stronger variation of magnification around the singular points as compared to stable

caustics. Further, if we can predict the location of unstable singularities in the image

plane then these regions may be targeted for deep surveys to look for highly magnified

sources (Yuan et al., 2012; Zheng et al., 2012; Coe et al., 2013; McLeod et al., 2015;

Ebeling et al., 2018). The high magnification comes with a characteristic image forma-

tion, and due to the unstable nature of the singularity, the characteristic image formation

is visible only for a small range of source redshift. With the upcoming observing fa-

cilities like: Euclid: (Laureijs, 2009), James Webb Space Telescope: (JWST, Gardner

et al., 2006), Nancy Grace Roman Space Telescope: (WFIRST, Akeson et al., 2019),

Vera Rubin Observatory: (LSST, Ivezić et al., 2019), the number of strongly lensed sys-

tem is expected to increase by more than an order of magnitude. Thus the possibility

of observing lensing near unstable singularities is higher and therefore it is timely that

we carry out a detailed study. Preliminary results of this study were reported in Bagla

(2001). We use algorithms described briefly in that work. We have developed and re-

fined these algorithms further and used them in the case of simple lens models. The

algorithms make use of the definitions of singularities, e.g., see (Arnold et al., 1982)
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and are similar to those reported in Hidding et al. (2014) for the case of Zel’dovich

approximation in two dimensions. These algorithms allow us to locate all singulari-

ties of the lensing map in the image plane starting from the lensing potential. We then

proceed to analyse lens models with one or two major components and study the sin-

gularities. We also study variation in singularities in presence of perturbing shear. We

illustrate characteristic image formations for each type of unstable singularity. This ef-

fort is complementary to an atlas of observed images in exotic lenses (Orban de Xivry &

Marshall, 2009) and makes the task of predicting possibility of such image formations

much easier.

This chapter is organized as follows. In Section 2.2, we review the classification of

singularities and their properties. Section 2.3 contains a description of the algorithm

used. Results are given in Section 2.4 for a variety of lenses. Summary and conclusions

are presented in Section 2.5. We discuss possibilities for future work in this section.

2.2 Classification of Singularities

In Section 1.6, the stable and unstable singularities are introduced using the Fermat

potential. However, here we use the deformation tensor (Equation 1.39) for the same.

Here, we redefine the deformation tensor as

Ψi j := Ψi j/a, (2.1)

where a is the distance ratio Dds/Ds. Redefining the deformation tensor in such a way

remove the dependency on the source plane. Then the magnification can be written as

µ =
1

(1−aα)(1−aβ )
, (2.2)

where α and β are the eigenvalues of the deformation tensor and the magnification goes

to infinity if α = 1/a or β = 1/a or α = β = 1/a. Following Equation (2.2), one can

see that the critical curves are the eigenvalue contours of the deformation tensor with a

value 1/a. This implies that for a given lens system, the position of critical curves in the

image plane can be completely determined by the deformation tensor. The following

subsection uses the deformation tensor in terms of its eigenvalues and eigenvectors to

classify the different kinds of singularities that can occur in strong gravitational lensing.
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2.2.1 A3-Lines

A3-lines are the essential elements of the singularity map for a given lens model. In

the image plane, these are the lines on which cusps form. As all point singularities are

associated with creation, destruction or exchange of cusps, our first goal is to identify

the A3-lines for a lensing potential.

In the image plane A3-lines pass through the points where the gradient of the eigen-

value of the deformation tensor is orthogonal to the corresponding eigenvector nλ ,

nλ .∇xλ = 0. (2.3)

which implies that at A3-lines the eigenvector nλ is tangent to the corresponding eigen-

value contour. The reader may note that this is also true at points where the eigenvalues

have extrema, however such points are isolated. At generic points along these lines an

infinitesimal portion of the critical curve, which essentially is a contour level for the

eigenvalue, is mapped onto itself as we go from the image plane to the source plane.

In case of a spherically symmetric lens, every point on the tangential critical in the

lens plane satisfies Equation (2.3) and the corresponding caustic in the source plane is a

point caustic. Hence, one cannot use the underlying method for spherically symmetric

lenses.

In general, we observe two different sets of A3-lines in lens plane, one for each

eigenvalue of the deformation tensor. The points in the lens plane where A3-lines and

the corresponding eigenvalue contour (with α or β = 1/a) cross each other correspond

to the cusp singularities in source plane at that redshift.

These lines do not intersect each other though as we shall see, lines corresponding

to the two eigenvalues can meet at degenerate points (α = β ). The presence of A3-lines

itself proves the stability of cusp singularities in lens mapping: changing the redshift of

the source plane merely shifts the cusp to a neighbouring point.

2.2.2 Swallowtail Singularity

The characteristic image formation for a swallowtail singularity is an elongated arc.

This arc is made up of four images. As we move away from swallowtail singularity

the arc changes into multiple images. At a swallowtail singularity, the number of cusps

in source plane change by two. In lens plane, swallowtail singularities mark the points
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Figure 2.1: Evolution of caustics and critical lines around a swallowtail singularity. The
left column (A1, B1, C1) shows the caustics in source plane for three different redshifts
including redshift at which swallowtail singularity becomes critical (panel B1). The
middle column (A2, B2, C2) shows the corresponding critical lines and the singularity
map including A3-lines (red and dark green lines), swallowtail (violet point), hyperbolic
umbilics (blue points). And the right column (A3, B3, C3) shows the image formation.

where eigenvector nλ of deformation tensor is tangent to the corresponding A3-line.

Which implies that at a swallowtail singularity, the corresponding eigenvalue λ reaches

a local maxima along A3-lines, but this is not a true local maxima. We use this method

to identify swallowtail singularity in lens maps.

Figure 2.1 illustrates the caustics and critical curves in source and lens plane around

a redshift at which a swallowtail singularity becomes critical. The lens model used

here is a two-component softened elliptical isothermal lens. The first column shows

the formation of tangential (radial) caustics, denoted by thick (thin) lines, in the source
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plane for three different redshifts including redshift zs, at which the swallowtail singu-

larity becomes critical (panel B1). The second column shows the corresponding critical

curves and the singularity map consisting of A3-lines (red for α and dark green for β

eigenvalue) and other singularities in the lens plane. Position of the swallowtail singu-

larity is denoted by a violet point on the A3-line: this is the point where the A3 line is

tangential to the critical curve. The blue points denote the position of hyperbolic umbil-

ics, discussed in the following subsection. The third column shows the corresponding

image formation in lens plane for a given source position in source plane. To see the

multiple image formation, we take a circular source: a different color in each quadrant.

Such a multi-color source is helpful to recognize positive and negative parity images.

The source is shown in the source plane in panels in the left column. A circle is plotted

around the source for easy localisation, this circle is not used in the lensing map. The

top-left panel (A1) shows the caustics for a redshift smaller than the zs with a circular

source lying outside to both caustics. In the lens plane (top-right panel (A3)), we ob-

serve a single distorted image. As the source redshift is set to zs (panel (B1)), we can

see a kink (origin of two extra cusps) in the tangential caustic near the source position.

In panel (B1), the centre of the source in source plane lies on this kink. In the corre-

sponding lens plane (B2) at swallowtail singularity three vectors: tangent to the A3-line,

tangent to the eigenvalue contour and the local eigenvector are parallel to each other.

The corresponding image formation (B3) shows the formation of a tangential arc made

of four images. The magnification factor (|µ (r) |) around a swallowtail singularity is

proportional to r−3/4, where r is the distance from the singular point. Whereas in the

case of fold (cusp), the magnification factor is proportional to the r−1/2 (r−2/3). Hence,

the slope of the magnification factor around the swallowtail singularities is steeper than

fold and cusp.

As we further increase the source redshift (C1), the newly formed cusps in source

plane move away from each other and the corresponding arc in lens plane (C3) become

more stretched. One can see that the arc in the lens plane is made of four images, two

of them have positive parity and two of them have negative parity. Due to the finite

size of the source, the images shown here are merging into one another. And the image

on the upper left corner has positive parity. Eventually, the gradual increment in the

source redshift changes the arc into four individual images. Formation of such giant

arcs around swallowtail singularities has been already encountered in investigations of

strong lens systems (e.g., Abdelsalam et al., 1998; Suyu & Halkola, 2010)
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Figure 2.2: Evolution of caustics and critical lines around a hyperbolic umbilic (purse).
The left column (A1, B1, C1) shows the caustics in source plane for three different
redshifts including redshift at which purse singularity becomes critical (panel B1). The
middle column (A2, B2, C2) shows the corresponding critical lines and the singular-
ity map including A3-lines (red and dark green lines) and purse (blue point). And the
right column (A3, B3, C3) shows the image formation. One can notice the exchange of
the cusp between radial and tangential caustics (panel B1) and the ring shaped image
formation (panel B3) at hyperbolic umbilic. Kindly note that as the umbilics are sym-
metric, the image formation about either one will be the same apart from a reflection.
Here, we show images corresponding to one of the umbilics, as marked by the source
position in the left column.

2.2.3 Umbilics

For a given lens model, the presence of umbilics in the corresponding singularity map

denote the points with zero shear (γ) in lens plane. At these points, both of the eigen-

values of the deformation tensor are equal to each other (α = β ). The dependence
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Figure 2.3: Evolution of caustics and critical lines near an elliptic umbilic (denoted
by blue point in singularity map). At elliptic umbilic, the triangular shaped caustic
corresponding to the tangential caustic (panel A1) goes to a point caustic (panel B1)
and emerges as a triangular shaped caustic corresponding to the radial caustic (panel
C1). The corresponding image formation shows a Y-shaped seven image configuration.

on both eigenvalues simultaneously separates these singularities from the A3-lines and

swallowtail singularities, which have dependency on one eigenvalue in their definitions.

The equality of both eigenvalues implies that at umbilics, eigenvectors of the deforma-

tion tensor are degenerate. As a result, any vector at these points can behave as an

eigenvector. We can always choose the eigenvector in such a way that A3-line condi-

tion is always satisfied (for a quantitative analysis see Hidding et al. 2014). At these

points A3-lines corresponding to different eigenvalues meet with each other. There are

two types of umbilics present in gravitational lens mapping: elliptic and hyperbolic
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umbilics. This division of the umbilics depends on the sign of the quantity sD,

sD ≡ t2
111t2

222−3t2
112t2

122−6t111t112t122t222

+4t111t3
122 +4t222t3

112 ,
(2.4)

where ti jk =
Ψi j
∂xk

. If sD is positive, the singularity is called hyperbolic umbilic and if

it is negative then the singularity is elliptic umbilic. At umbilics, the number of cusps

in the source plane remains unchanged but there is an exchange of one or three cusps

between tangential and radial caustics depending on the type of the umbilic. In case of a

hyperbolic umbilic, one cusp is exchanged between the tangential and the radial caustic:

in the image plane an A3-line corresponding to each of the two eigenvalues meet at this

point. Whereas three A3-lines of each of the two eigenvalues meet at the elliptic umbilic

in the image plane, and three cusps are exchanged between the tangential and the radial

caustic in the source plane.

In order to discuss the evolution of the caustics and critical curves near a hyperbolic

umbilic (because of the simplicity of its singularity map), we use a one-component

elliptical lens. The evolution of caustics and critical curves near a hyperbolic umbilic is

shown in Figure 2.2. The A3-lines in the singularity map (middle column) are denoted

by red and dark green lines for two different eigenvalues. The positions of hyperbolic

umbilic in lens plane are denoted by blue points, at which two A3-lines (one for α and

one for β eigenvalue) meet with each other. For a redshift smaller than the redshift at

which hyperbolic umbilic becomes critical, zu both (radial and tangential) caustics in

source plane each have two cusps (A1). As we increase the source redshift to zu, there is

an exchange of cusp from radial caustic to tangential caustic (panel B1) (For the single

component elliptical lens model, because of the symmetry of the lens model, both of

the hyperbolic umbilics become critical at the same redshift. The symmetry is broken in

presence of a second component or shear.). The corresponding image formation (panel

B3) shows a single demagnified image with positive parity and a loop formed by four

images, two of them with positive parity and two of them with negative parity. As

we increase the source redshift further, source plane has a diamond shaped tangential

caustic and a smooth radial caustic (panel C1) and in lens plane the highly magnified

ring shaped image changes into four individual less magnified images (panel C3). The

ring and the cross (for higher redshifts) is not centered at the lens centre but is off centre.

We have studied the location of the ring by varying the mass profile of the lens and we

find that the ring is located where the projected surface density begins to drop sharply.

The magnification factor |µ| falls as r−1 around both umbilics as one moves away from

the singular point. Thus magnification factor falls much more rapidly around umbilics

than other singularities. So far only one lens system (Abell 1703) with image formation
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near a hyperbolic umbilic has been seen (Zitrin et al., 2010).

Unlike the hyperbolic umbilic, at elliptic umbilic, there are six A3-lines (three each

for each of the two eigenvalues of the deformation tensor) meet with each other. For

an illustration, formation of an elliptic umbilic in case of a two-component elliptical

lens model is shown in the Figure 2.3. We find that often, two of three A3-lines of one

or both eigenvalues form a small closed loop. This can be seen in examples shown in

Figure 2.4. In panel (A1), we only see tangential caustics, and the source lies inside the

triangular shaped caustic. Panel (A3) shows the characteristic image formation (seven

images in a shape of Y) near an elliptic umbilic. The central image has positive parity.

The next three images from the central image have negative parity. And the three outer

images again have positive parity. As we increase the source redshift, the size of the

triangular shaped caustic decrease and at the same time, it moves away from the source

position. At a redshift zp, where elliptic umbilic becomes critical, it becomes a points

caustic (panel B1), and the source lies close to this point caustic. The corresponding

images still form a Y-shaped structure in lens plane but with only five images. As we

further increase the source redshift, the point caustic turns into a triangular shaped radial

caustic (panel C3). Which implies that at elliptic umbilic, there is an exchange of three

cusps between tangential and radial caustics. In panel (C1), we moved the source inside

the triangular caustic to see whether it still gives a Y-shaped image formation. We get a

different kind of image formation with central image rotated by π .

Figure 2.3, shows the singularity map close to the elliptic umbilic (shown by blue

point). Swallowtail singularities are shown as violet points. The complete singularity

map for Figure 2.3 is given in Figure 2.4 (panel A5). The characteristic image form is

six images radiating out from the singularity. The singularity need not coincide with

the centre of the lens, The images do not have any tangential deformation.

2.3 Algorithm

In this section, we briefly discuss the algorithm used to find out the singularities for a

given lens model. We set up a uniform grid in the lens plane for calculations of physical

quantities in order to locate the singularities. The grid-size depends on the resolution

required for the lens model. In general we require adequate resolution as we are dealing

with non-linear combinations of second derivatives of the lensing potential, even the

smallest features should be well resolved on the grid. We use finite difference methods

to compute derivatives on the grid. To calculate the position of the umbilics in the lens

plane, we use the fact that at umbilics, both components of the shear tensor vanish,
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identically. Our approach closely follows that of Hidding et al. (2014). The flow of the

code is as follows:

• INPUT (Lens Potential)

• CALCULATE first and second derivatives of the potential

• CALCULATE eigenvalue and eigenvectors of the deformation tensor

• CALCULATE gradient of eigenvalue

• CALUCLATE extrema

– CALCULATE local maxima

– CALCULATE local minima

• Identify points on A3-lines

• Identify A4 -points using the algorithm given subsection 2.2.2

• Identify D4 -points using the algorithm given subsection 2.2.3

The potential of the given lens model is the input in this algorithm. The potential

can be computed from a mass model, or be provided directly. Given the potential, the

deformation tensor is computed at each point followed by calculation of its eigenvalues

and corresponding eigenvectors. This information along with gradient of eigenvalues

is sufficient to identify points on the A3 -lines. Note that points on the A3 -lines can be

identified on the mesh and need not coincide with the grid points. The points need to

be ordered to construct curves: this is required for identifying A4 points as we need to

locate maxima of eigenvalue along the A3-lines.

We find that it is simpler to identify umbilics by realizing that the diagonal com-

ponents of the deformation tensor are equal, and the off-diagonal component of the

deformation tensor (shear) vanishes. Each of these conditions specifies curves in the

image plane, and intersections of these curves give us umbilics. We can classify the

type of umbilics by counting the number of A3-lines that converge at this point.

2.4 Results

We validate our algorithm by applying it to a single component lens where the potential

can be expressed in a closed form and the image structure has been studied in detail.
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Then, we apply it to multi-component lenses and study a variety of configurations.

Lastly, we apply it to one real lens model. As mentioned above, this technique does not

work in case of isolated spherically symmetric lenses because of the absence of cusp

formation. We study elliptical lenses with one and two components. In the case of one-

component elliptical lens, there are two A3-lines and two hyperbolic umbilics. Whereas

for two-component lens, the location of A3-lines and other singularities in lens plane

depend on the lens configuration.

We also discuss the behaviour of swallowtail and umbilics in a lens model under

external perturbations in case of one and two component elliptical lenses. This gives

us the estimate about the amount of external shear under which a singularity does not

vanish from the lens plane and hence gives us an idea about how robust these point

singularities really are. In the following subsections, we will discuss the singularity

maps for elliptical lenses and Abell 697 in detail. After that, we study the stability of

these different singularities in lens mapping.

2.4.1 One-Component Elliptical Lens

We first consider a one-component elliptical lens. This is a good model for an isolated

lens that is dynamically relaxed, e.g., an isolated galaxy or a cluster of galaxies. The

elliptical isothermal lens with a finite core has a potential of the form:

Ψ(x1,x2) = Ψ0

√
r2

0 +(1− ε)(x1− x01)
2 +(1+ ε)(x2− x02)

2, (2.5)

where r0 is the core radius of the lens, ε is the ellipticity, (x01,x02) are the coordinates

of the centre of the lens with respect to the optical axis and ψ0 describes the strength of

the lens.

The characteristics of this lens are described in detail in Blandford & Narayan

(1986, see Fig 10). The singularity map in lens plane for this lens model is shown

in Figure 2.2 (middle column (A2,B2,C2)). It has two A3-lines (represented in red and

dark green) for two eigenvalues of the deformation tensor, running along the major and

the minor axis of the lens potential. This lens model also has two hyperbolic umbilics

along the minor axis and their position depends on the lens parameters, primarily on the

core radius r0. Because of the elliptical symmetry in the lens model, both umbilics lie at

the same distance from the centre of the lens. As a result, both umbilics become critical

at the same source redshift. If we change the core radius, this distance from the centre

and the redshift at which these hyperbolic umbilics becomes critical, also change.
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2.4.2 Two-Component Elliptical Lens

Most realistic lenses have several components, though one of the components may dom-

inate over the others. In this section, we consider two-component lenses. We consider

one primary (dominant) and one secondary component. The presence of secondary

lens significantly affects the lensing due to primary lens. In order to include the effects

of the secondary lens, one has to modify the lensing potential in Equation (2.2). If the

secondary lens is also an elliptical lens (for simplicity), then the lens potential becomes:

ψ(x1,x2) = Ψp +Ψs, (2.6)

with Ψp and Ψs are one-component elliptical lenses centered at different points in the

image plane with different core radii and ellipticities and the major axes of the two

components can be at an angle. r01 (r02) are the corresponding core radii for the two

potentials, ε1 (ε2) is the ellipticity and (x11,x12) ((x21,x22)) are the coordinates of the

centre of the primary (secondary) lens with respect to the optical axis.

Different sets of lens parameters give different kinds of singularity map and image

formation. For example, Figure 2.1 and Figure 2.3 represent singularity map for two-

component lens models with two different sets of lens parameters. Figure 2.4 shows

some other possible singularity maps for two-component elliptical lens with a fixed pri-

mary lens and different (randomly picked) position and orientation of the secondary

lens. As before, red and dark green lines represent the A3-lines with swallowtail and

umbilic points denoted by violet and blue points, respectively. One can see the depen-

dency of unstable singularities on lens parameters: as we change the secondary lens,

the position and critical redshift for the unstable singularities also change. From Fig-

ure 2.4, we also gain some knowledge about the sensitivity of the unstable singularities

to the lens parameters. All panels in Figure 2.4 have hyperbolic umbilics and swallow-

tail (except first panel), whereas only three panels show elliptic umbilic. We infer that

elliptic umbilics are more sensitive to the lens parameters than the swallowtail and the

hyperbolic umbilic.

2.4.3 Stability

In general, finding an isolated gravitational lens with one or two components is highly

unlikely. Real gravitational lenses reside in an environment made of several structures.

These external local structure perturb the lensing potential, by introducing (constant)

external convergence (κext) and shear (γext). As a result, the perturbed lensing potential
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Figure 2.4: Singularity maps for different positions and orientations of the secondary
lens in case of two-component elliptical lens with a fixed position and orientation of
primary lens. The red and dark green lines are the A3-lines with swallowtail and umbil-
ics denoted by violet and blue points, respectively. The position and number of unstable
singularities change with the change in lens parameters. Which shows the strong de-
pendency of singularity map on the lens parameters.

is given by,

Ψ(x1,x2) = Ψp +
κext

2
(
x2

1 + x2
2
)
+

γ ′1
2
(
x2

1− x2
2
)
+ γ
′
2x1x2, (2.7)

where Ψp is the potential of primary lens, given by Equation (2.5) or (2.6) in case of

elliptical lenses or given by some other profile and (γ ′1,γ
′
2) denotes the component of

external shear (γext).

The effect of the external convergence (κext) is equivalent to the addition of a con-

stant mass sheet in the lens model, which simply changes the total strength of the pri-
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Figure 2.5: Effect of external convergence and shear on singularity map in case of a
one-component elliptical lens. One can see the motion of extra pair of umbilics towards
the already existing pair of umbilics. After a certain amount of external shear all point
singularities disappear from the singularity map (bottom-right panel).

mary lens. As a result, the critical redshift for unstable singularities changes, but neither

the unstable singularities vanish nor the location of A3-lines in lens plane changes due

to the presence of external convergence. On the other hand, the presence of external

shear (γext) shifts the location of A3-lines significantly and as a result, it changes the

singularity map for a given lens model. The presence of external shear can also intro-

duce or remove point singularities. The effect of external shear with a fixed value of

external convergence in case of a one-component elliptical lens model, Equation (2.5) is

shown in Figure 2.5. One can see that, for non-zero external shear, two extra hyperbolic

umbilics occur in the lens plane along the major or minor axis depending on the values

of shear components. As we increase the amount of external shear, this extra pair of

umbilics move towards already existing umbilics and merge with them. This implies
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Figure 2.6: Image formation and singularity map for Abell 697: The left panel shows
caustics, the middle column shows critical curves in the image plane and the right col-
umn shows the lensed images. The top panel represents image formation near a swal-
lowtail singularity at source redshift zs = 0.67. The two middle panels represent image
formation for a source at zs = 0.82 and the bottom panel represents image formation for
a source at redshift zs = 2.0.
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that introducing a finite amount of external shear can also remove the already existing

point singularities from the singularity map and it is possible (in highly symmetric case)

to have a singularity map without any point singularities. The amount of external shear

γext =
(√

γ ′21 + γ ′22

)
, under which point singularities shift but remain in the lens plane

depends on the type of the singularity. In case of hyperbolic umbilic, it is of the order

of 10−3. Similarly, the amount of external shear for which a swallowtail (elliptic um-

bilic) shifts but survives in the lens plane is of the order of 10−4 (10−5). But for some

particular directions of external shear, the swallowtail and elliptic umbilics show extra

stability, i.e., the magnitude of external shear under which these singularities remain in

the lens plane attain a higher value than the other cases. This reinforces the impression

from the qualitative study in the last subsection that the elliptic umbilic is less stable as

compared to the hyperbolic umbilic and swallowtail.

2.4.4 Abell 697

After testing our approach with simple model lenses, we apply the algorithm to a real

lens to illustrate the utility and efficacy of our approach. We work with the cluster

lens Abell 697 (z = 0.282). We use the data for the lens from RELICS (Cibirka et al.,

2018; Coe et al., 2019). The reason for choosing the Abell 697 for the preliminary

analysis is the relative simplicity of the critical lines in the lens plane. The study of more

complicated lenses is under consideration, and the results for a large set of clusters will

be presented in the forthcoming Chapter along with a statistical analysis of occurrence

of point singularities. Figure 2.6 shows the singularity map along with the critical lines

and caustics in image and source plane for Abell 697. Here we only considered the

central region of Abell 697 with size 440×440pixels (1 pixel =0.06′′) (Cibirka et al.,

2018). We can see that the dominant component here is like an elliptical lens and there

is a lot of small-scale structure contributed by other components in the lens. The role

of other components is to increase the length of A3-lines and also to introduce point

singularities.

The top panel in Figure 2.6 shows the image formation near a swallowtail singularity

for a source at redshift zs = 0.67. The second and third panel shows the image formation

for a source at redshift zs = 0.82 for two different source positions. The bottom panel

shows the image formation for a source at redshift zs = 2.0. Here the source position

is chosen in such a way so that it can reproduce the image formation for system 1

in Cibirka et al. (2018). One can see that we were able to reproduce the four images for

system 1 along with the fifth image, which was not observed due to the contamination

from BCG, as mentioned in Cibirka et al. (2018). Since we considered a circular source,
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the shape of the images can be different from Cibirka et al. (2018). As one can see from

the bottom panel, one pair of hyperbolic umbilic is still outside the critical curves. This

means that the critical redshift for this pair is higher than the 1.1. Locations of these

singularities are optimal sites for searching for faint sources at high redshifts.

2.5 Conclusions

In this work, we have analyzed stable and unstable singularities that can occur in strong

gravitational lensing. In order to locate these singularities, we have implemented al-

gorithms which take lens potential as an input. We have applied our algorithm in the

case of simple lens models as well as a real lens. Singularity map, which comprises all

these singularities provides a compact representation of the given lens model in the lens

plane. The presence of these unstable singularities in the singularity map can be used to

constrain the lens model if we can find a lensed source in the vicinity. Magnification is

very large in the vicinity of these singularities and each of these singularities has a char-

acteristic image formation that can be used to identify the singularities. Multiple images

in these characteristic image formations lie in a very compact region (of the order of

a few arcsec around the singular point) of the lens plane. Further, the regions with A3

-lines and point singularities are obvious targets for deep surveys that use gravitational

lenses to search for very faint sources at high redshifts.

The singularities can be identified using the characteristic image forms. In the case

of A4 points (swallowtail), we get four images in a straight line: the images form an arc

with a radius of curvature much larger than the distance from the cluster centre. Abell

370 has an image system of this type. The hyperbolic umbilic (purse) has an image

formation of a ring or a cross centered away from the centre of the lens. Further, in this

case the radius of curvature of the ring is much smaller than the characteristic radius of

the lens system. Such an image system has been seen in Abell 1703 (Orban de Xivry &

Marshall, 2009). The elliptic umbilic (pyramid) has images radiating out from a centre,

these do not show any tangential distortion. The centre of the image system need not

coincide with the centre of the lens system. To the best of our knowledge such an image

system has not been seen so far.

We have studied the dependency of unstable singularities on lens parameters as well

as on the external shear. The magnitude of external shear under which these singulari-

ties remain in the singularity map is different for different singularities. This is of the

order of 10−3, 10−4, and 10−5 in case of hyperbolic umbilic, swallowtail, and ellip-

tic umbilic, respectively. Thus the elliptic umbilic is most sensitive to perturbations in
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lensing potential and hence is the most unstable.

The somewhat unstable nature of such singularities can be put to good use in two

ways: finding characteristic image formations can be used to constrain lens models,

and, with multiple constraints on the lens model we can potentially invert the problem

and constrain redshifts of sources to better than what can be achieved with photomet-

ric redshifts. Multiple images for a single source also open up the exciting possibility

of measuring time delays between each pair. Multiple measurements of pairwise time

delay can provide very significant constraints on the lens model and the scale of the Uni-

verse. Such measurements can potentially be made even if the images are not resolved

(Borra, 2008).

We have applied our approach in case the of simple lens models and one real lens:

Abell 697. We are studying other lens systems using our approach and an atlas of lens

singularities and their statistical analysis will be presented in a forthcoming paper. Such

an atlas can be of use for refinement of lens models with further observations and also

for targeting specific regions in searches for very faint sources at high redshifts. Along

with an atlas of lens models, we also propose to construct an atlas of variations around

the characteristic image forms. Such an atlas of image forms can be used for training

machine learning programs (e.g., Davies et al., 2019). However, for a complete analysis

of the lens system, one requires detailed modeling of the gravitational lens.
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Chapter 3

Exotic Image Formation in Cluster
Lenses – I: Cross-Section

This chapter is based on:

Meena, A. K., Bagla J. S., "Exotic Image Formation in Strong Gravitational Lensing

by Clusters of Galaxies – I: Cross-Section", MNRAS, 503, 2097 (2021).

3.1 Introduction

In this work, we locate the highly magnified regions in the lens plane, for all source

redshifts, for 10 different cluster lens systems from the Hubble Frontier Fields Survey

(HFF) and the Reionization Lensing Cluster Survey (RELICS). The algorithm to do this

has been discussed briefly in Bagla (2001) and presented in detail in Meena & Bagla

(2020b). As discussed in Chapter 2, a singularity map consisting of A3-lines and un-

stable (point) singularities is ideal for our study. These point singularities (swallowtail,

hyperbolic umbilic, elliptic umbilic) are formed only for some specific source redshifts

and specific source positions in the source plane. Apart from that, every point singu-

larity comes with a characteristic image formation. A3-lines correspond to cusp in the

source plane and these are present over a wide range of source redshifts. As cusps

are stable singularities, these are continuous lines instead of points in the singularity

map, with points corresponding to different source redshifts. The image formation cor-

responding to structures (A3-lines and point singularities) in singularity maps (for the

appropriate source redshift) shows three or more highly magnified images lying near

each other in a small region of the lens plane in the vicinity of the singularity. The sin-
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gularity maps corresponding to cluster lenses not only point out the highly magnified re-

gions in the lens plane but are also sensitive to the lens mass reconstruction techniques.

Here, we also compare different mass models corresponding to each cluster lens. These

mass models are reconstructed using different (parametric and non-parametric) meth-

ods. The comparison has been done to see how sensitive the A3-line structure and the

total number of point singularities is to the cluster mass reconstruction method as dif-

ferent approaches use different sets of underlying assumptions.

Apart from locating the highly magnified regions in the lens plane and looking at

the effect of mass reconstruction methods on the singularity map, the other important

point that has been discussed (Orban de Xivry & Marshall, 2009) is to estimate the ex-

pected number of source galaxies lying near the point singularities. This allows us to

estimate the probability of observing these characteristic image formations in the up-

coming large-scale surveys. In order to do so, we require the distribution of galaxies as a

function of redshift. This can be determined from the galaxy luminosity function (GLF)

and the Schechter function (Schechter, 1976) is widely used to parametrize it. Various

studies using different surveys have been carried out to determine the rest frame GLF as

a function of the redshift in different wavelength bands (UV:Ono et al. (2018); Bowler

et al. (2020); Moutard et al. (2020), IR: Cirasuolo et al. (2007, 2010); Mortlock et al.

(2017)). Different groups have estimated the number of galaxies that may be observed

with JWST considering different models of galaxy formation and evolution (Cowley

et al., 2018; Williams et al., 2018a; Yung et al., 2019). Following Cowley et al. (2018),

we estimate the number of exotic images that may be observed with JWST in one of

the NIRCam bands.

This Chapter is organized as follows. The cluster lenses used in the present analysis

are enumerated in Section 3.2. The results are presented in Section 3.3. The con-

struction of singularity maps for different cluster lenses is discussed in Section 3.3.1.

Discussion of stability of singularity maps is presented in Section 3.3.2. In Section

3.3.3, we estimate the number of strongly lensed galaxy sources with characteristic im-

age formations near these point singularities that can be observed with the JWST. In

Section 3.3.4, we discuss the possibility of constraining the source redshift using point

singularities. Summary and conclusions are presented in Section 3.4. We also discuss

the future work in this section.
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Table 3.1: Cluster lenses used in current analysis: The upper half of the table lists the
cluster lenses taken from the Hubble Frontier fields (HFF) survey, whereas the lower
part of the table has details of the cluster lenses from the Reionization Lensing Cluster
Survey (RELICS). For the HFF clusters, four different mass models provided by Keeton,
Sharon, Williams, and Zitrin (zitrin_nfw) groups are used. For the RELICS clusters, we
only use one mass model for each cluster provided by Zitrin group (zitrin_ltm_gauss).
The version and the resolution of these mass models is listed below.

HFF Clusters
Keeton Sharon Williams Zitrin

Abell 370 (A370) v4(0.06′′) v4(0.05′′) v4(0.05′′) v1(0.050′′)
Abell 2744 (A2744) v4(0.06′′) v4(0.05′′) v4(0.05′′) v3(0.060′′)
Abell S1063 (AS1063) v4(0.06′′) v4(0.05′′) v4(0.05′′) v1(0.065′′)
MACS J0416.1-2403 (MACS0416) v4(0.06′′) v4(0.05′′) v4(0.05′′) v3(0.060′′)
MACS J1149.5+2223 (MACS1149) v4(0.06′′) v4(0.05′′) v4(0.05′′)

RELICS Clusters
Zitrin

MACS J0159.8-0849 (MACS0159) v1(0.06′′)
MACS J0308.9+2645 (MACS0308) v1(0.06′′)
PLCK G171.9-40.7 (PLCKG171 v1(0.06′′)
PLCK G287.0+32.9 (PLCKG287) v1(0.06′′)
SPT-CLJ0615-5746 (SPT0615) v1(0.06′′)

3.2 Cluster lenses

In this section, we briefly discuss the cluster lenses used to construct and study the

singularity maps. Preliminary analysis in this direction consisting of ideal lens models

and one real cluster lens, Abell 697, has been presented in 2. In the present analysis,

we selected ten clusters for a detailed study of their singularity maps. Five out of these

ten clusters were chosen from the Hubble Frontier Fields (HFF) survey (Lotz et al.,

2017) 1 and the other five were chosen from the Reionization Lensing Cluster Survey

(RELICS) (Coe et al., 2019) 2. The cluster lenses used in current study are described in

Table 3.1. The table provides relevant details, e.g„ the resolution and the version of the

mass models corresponding to various groups of modelers.

The HFF program targets a total of six massive merging clusters to study the dis-

tant, faint sources and the cluster dynamics (please see Lotz et al. (2017) for further

details). Our analysis requires a model for the gravitational lenses. Mass reconstruction

of the clusters has been attempted by multiple groups (Diego et al., 2005; Merten et al.,

2011; Jauzac et al., 2014; Johnson et al., 2014; McCully et al., 2014; Grillo et al., 2015;

Ishigaki et al., 2015; Hoag et al., 2016; Caminha et al., 2017; Kawamata et al., 2018)

1https://archive.stsci.edu/prepds/frontier/
2https://archive.stsci.edu/prepds/relics/
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using different approaches. The data from the observations is finite, one cannot model

these cluster lenses with arbitrary precision and resolution. Different groups use differ-

ent methods to reconstruct the cluster lens mass distribution; for example, some groups

use parametric modeling (including the light distribution of cluster galaxies, some pre-

ferred profile for the mass of cluster substructures) whereas some other groups use the

non-parametric approach which does not rely on any assumption. Some groups also use

hybrid methods which take inputs from both parametric and non-parametric approaches

(please see Priewe et al. (2017); Meneghetti et al. (2017) for a comparison of different

modeling techniques). In our work, for five different HFF clusters, we used best-fit

lens mass models provided by four different teams: Keeton, Sharon (Jullo et al., 2007;

Johnson et al., 2014), Williams (Liesenborgs et al., 2007) and Zitrin (Zitrin et al., 2009,

2013) (in the case of Zitrin group, we used mass models reconstructed using NFW pro-

file, i.e., zitrin_nfw) to construct the singularity maps for an HFF cluster. We chose the

central region of every cluster for our analysis, as these regions are responsible for the

strong lensing. The size of the central part which we chose depends on the resolution of

the lens model. In our analysis, we decided to use square regions with a side of 40′′. For

low-resolution cluster lens models, the choice of a large area introduces noise, and this

affects the reliability of that particular singularity map as the noise can introduce spuri-

ous singularities. For the HFF cluster lenses, the central (ra, dec) values of the Sharon

group are considered as standard values whenever we compare different singularity map

for an HFF cluster. This is for ensuring uniformity and the choice does not arise from

any preference for one set of models. As can be seen from Table 3.1, one of the HFF

clusters, MACSJ0717.5+3745, is not part of our current analysis as the corresponding

singularity maps consist of a large number of spurious point singularities (please see

section 3.3.1 for a discussion about noise in the singularity maps and its effects).

RELICS consists of a total of 41 cluster lenses (please see Section 2 in Coe et al.

2019). For RELICS cluster lenses, at present, the mass modeling is done by three differ-

ent groups using the Lenstool (Cerny et al., 2018; Paterno-Mahler et al., 2018; Mahler

et al., 2019), the LTM method (Acebron et al., 2018, 2019, 2020; Cibirka et al., 2018),

and the Glafic tool (Okabe et al., 2020). The Glafic mass models have a resolution of

0.1′′, whereas most of the Lenstool mass models have a resolution between 0.1′′ to 1.0′′.

Therefore, for RELICS clusters, due to the low resolution, we cannot use the Glafic or

the Lenstool mass models and cannot perform a comparison between different mass

model reconstruction techniques (please see Section 3.3.1 and 3.3.2 for further details

about the effect of mass model resolution). The Zitrin group mass models have a reso-

lution of 0.06′′ but consist of a large number of spurious point singularities. The reason

for the high number of spurious point singularities can be the inadequate resolution or

the fact that the higher-order derivatives of the lens potential are not well constrained.
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Hence, in our current study, we only use one mass model for five different RELICS

clusters to construct the singularity maps (see Table 3.1). The best-fit lens mass mod-

els considered here for RELICS clusters are parametric in nature and constructed by

the Zitrin group using the light-traces-mass (LTM) method with Gaussian smoothing

(zitrin_ltm_gauss). A more detailed comparison may become possible in future with

the availability of deep, high resolution images and construction of corresponding lens

models.

3.3 Results

Construction of singularity maps helps us in identifying the high magnification regions

in the lens plane of a given cluster lens, which are obvious targets for the deep surveys.

The high sensitivity of A3-lines and point singularities to the lens potential encouraged

us to compare the singularity maps corresponding to the different mass models for a

cluster lens, which are constructed using different techniques. Such a comparison pro-

vides us information about the effects of the reconstruction methods and the presence of

substructures in a cluster lens on the singularity map. Future observations of character-

istic image formation around point singularities may help distinguish between different

models based on present observations. In this section, we present results of our study

of the construction of singularity maps for the HFF and RELICS clusters, followed by a

comparison of different mass models for a cluster lens (Section 3.3.1). In Section 3.3.2,

we study the stability of these singularity maps against the mass model resolution and

determined the optimal resolution to construct the singularity map for a given lens. In

Section 3.3.3, we estimate the number of source galaxies lying near the point singular-

ities and the possibility of observing the corresponding characteristic image formation

in upcoming all-sky surveys followed by the constraints on the source redshift using the

point singularities in Section 3.3.4.

3.3.1 Singularity Maps

We use the algorithm discussed in Chapter 2 to construct the singularity maps for dif-

ferent lens models throughout this work. In order to keep it concise, we only present

singularity maps corresponding to one cluster lens (A370) in this article. The rest of

the singularity maps are available at the end of the chapter in Section 3.5. Figure 3.1,

represents the singularity maps for A370 corresponding to four different mass models

(please see Table 3.1). In every panel, the red and green lines are the A3-lines cor-
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Figure 3.1: Singularity maps for the A370 cluster lens corresponding to mass mod-
els provided by four different groups (Keeton, Sharon, Williams, Zitrin): The red and
green lines represent the A3-lines corresponding to the tangential and radial cusps, re-
spectively. The blue points denote the umbilics (hyperbolic and elliptic). At hyperbolic
umbilics, one red and one green line meet with each other, whereas at elliptic umbilic,
three red and three green lines meet. The cyan and magenta points represent the swal-
lowtail singularities corresponding to the Aα

3 and Aβ

3 -lines. The shaded regions in the
lower right panel mark the noisy region in the singularity map. These regions are not
included in further calculations. In each panel, the background is the cluster image in
the F435W band.

responding to the α and β eigenvalues of the deformation tensor, respectively. The

blue points show the hyperbolic and elliptic umbilics. The cyan and magenta colored

points represent the swallowtail singularities corresponding to the α and β eigenvalues,

respectively. In each panel, the background is the cluster image in the F435W band.

Every map in Figure 3.1 is a 40′′×40′′ central square region of the cluster with center

coordinates (in degrees) (39.971355,−1.582223). The source redshift (zs) in the range
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between the lens redshift and zs ≤ 10 is used here. Singularities in this range are shown

in these plots. Hence, the A3-lines trace the location of cusps for sources up to a redshift

of ten.

As one can see from Figure 3.1, different singularity maps show differences in the

A3-line structures and the number of point singularities. However, one can still identify

an overall A3-line structure similar to an elliptical lens in every panel, which represents

the entire cluster as an elliptical gravitational lens (please see Chapter 2 for singularity

map corresponding to an elliptical lens). These differences arise mainly due to the fact

that different groups use different mass reconstruction methods, and the number of sub-

structures used by different teams is also different, which is evident from Figure 3.1.

For example, mass models from Keeton, Sharon, and Zitrin groups are reconstructed us-

ing the parametric approach, which takes into account different properties of the cluster

substructures as input and finds the best-fit parameters. On the other hand, the non-

parametric reconstruction by Williams group uses no information regarding the cluster

substructures as an input. Hence, the singularity map corresponding to the Williams

group shows the simplest A3-line structure and least number of point singularities as

their reconstruction method does not give significant weightage to the presence of clus-

ter substructures. It is possible that substructure in their models is suppressed to some

extent due to averaging over a large number of realizations in their approach. This is

also evident from the fact that the best-fit mass model corresponding to the Williams

group does not give a five-image configuration for a source at the giant arc’s redshift

(zs = 0.7251) in A370. This can also be seen from the corresponding singularity map

as there is no swallowtail from the center to the giant arc, which can give rise to a five-

image geometry. On the other hand, all parametric mass models have swallowtails near

the giant arc in the lens plane, which gives rise to five-image geometry. Looking at the

singularity maps corresponding to parametric mass models, one can see that different

small scale structures introduce extra A3-lines and point singularities in the singularity

maps.

As mentioned above, due to the finite amount of observational data, one cannot

achieve arbitrary high resolution during cluster lens mass reconstruction. The finite res-

olution of lens models also introduces a few problems in singularity maps. The first

problem is the noise in the singularity map, which can be seen in the bottom right panel

of Figure 3.1. The low resolution directly affects the shape of the A3-lines, and it in-

troduces spurious swallowtails point singularities as our algorithm first identifies the

A3-lines and uses these to locate swallowtail singularities. To eliminate the effect of

the noise, we do not include these spurious point singularities in our further calcula-

tions. We mark these spurious point singularities utilizing the fact that in the absence

55



of noise, the A3-lines are smooth lines, which can be seen in every panel of Figure 3.1

and 3.2. However, as the noise increases, points near the A3-lines in the lens plane also

contribute to the A3-lines and affect the local shape of the A3-lines. This, by definition,

influences the number of swallowtails in the singularity map. We manually inspect ev-

ery singularity map and mark such regions. The other problem that has been introduced

due to finite resolution are the missing point singularities. Sometimes when the distance

between two similar kinds of point singularities is less than the grid size, our method is

resolution limited and it does not find these as two different point singularities. Instead,

it only assigns one point singularity into that pixel. This mainly happens in the case of

hyperbolic umbilics as pair of hyperbolic umbilic forms at the position of substructures

in the singularity map. However, this does not affect the overall cross-section of hyper-

bolic umbilics significantly, as the number of such missed out points is tiny, and most

of these points get critical at very low redshifts. Hence, the contribution of these (left

out) points in the cross-section is negligible.

The finite resolution of the mass models also affects the size of the singularity map.

Hence, we are only able to construct singularity maps for the central region of the lens.

As one goes away from the central region, the length of A3-lines, and the total number

of point singularities increases. However, the number of spurious structures introduced

by noise also increases. As a result, the number of point singularities that one can

see in Figure 3.1, should be considered as the lower limit of the total number of point

singularities that one cluster lens has to offer.

3.3.2 Stability of Singularity Maps

One can deal with the above mentioned difficulties (noise and the left out point sin-

gularities) by increasing the resolution of the mass models. However, an increment in

resolution can be computationally expensive. Apart from being computationally expen-

sive, the other point that one needs to take into account is the stability of the singularity

maps. We know that the structures in a singularity map depend on the lens potential and

its higher-order derivatives in a non-linear fashion. Hence, the question arises, whether

the increase in resolution can introduce new structures in a singularity map? Or do we

reach convergence at some stage? Addressing this question also helps us to find out the

optimal resolution for the construction of singularity maps. To answer this question, we

constructed singularity maps corresponding to mass models provided by the Williams

group for the HFF clusters with four different resolution values, 0.2′′, 0.1′′, 0.05′′, and
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Figure 3.2: Singularity map for the MACS1149 cluster lens corresponding to four dif-
ferent resolution values, 0.20", 0.10", 0.05", 0.02". The color scheme is similar to the
Figure 3.1. As expected, increasing the resolution of the mass map helps in resolv-
ing the small scale structures in the singularity maps. Increase in resolution does not
introduce any significant extra structures in the singularity map.

0.02′′. 3

Figure 3.2, shows the singularity map for MACS1149 with four different resolution

values, 0.2′′, 0.1′′, 0.05′′, and 0.02′′. It is apparent that increasing the resolution of the

mass models helps us to better resolve the structures in the singularity maps. It does

not introduce any new significant structures apart from the bottom right panel (resolu-

tion 0.02′′), where one extra loop of A3-line corresponding to β -eigenvalue along with a

3The publicly available Williams group data files have a resolution of ≥ 0.2′′. However, using data
files provided by Prof. Liliya Williams, we can (in principle) resolve their mass models with an arbi-
trary resolution, as their mass models are superposition of a large number of projected Plummer density
profiles.
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swallowtail makes an appearance. This is the case, at least in the case of non-parametric

modeling. This is because there is no structure smaller than the resolution 0.10′′ in Fig-

ure 3.2. However, in the case of parametric models, some structures are very small even

at a resolution of 0.05′′ and one can miss these structures at a resolution of 0.10′′ or

0.20′′. This is also evident from the fact that in parametric models, even at a resolution

of 0.05′′, some hyperbolic umbilics are missed. Hence, the optimal resolution to con-

struct singularity maps, in the case of both parametric and non-parametric modeling,

should be of the order of 0.02′′. This can be further confirmed in the case of paramet-

ric models by making singularity maps with different resolutions (as we have done in

Figure 3.2 for non-parametric models). For non-parametric mass models, somewhat

low-resolution singularity maps can also do the job. However, in the case of paramet-

ric modeling, one should construct mass models with a resolution of at least 0.02′′ for

construction of singularity maps. In general, the resolution of mass models should be

better than or at least equal to the resolution of observations used to arrive at the map

for completeness.

3.3.3 Cross-Section

Singularity maps can be used to study the variety of characteristic image formation near

point singularities. This, then becomes a template for searching different image types

in observations. We expect the upcoming surveys to yield a number of systems, and a

quantitative prediction requires calculation of cross-section for each type of singularity.

Once we draw the singularity maps for different mass models, the next task is to

determine the number of characteristic image formations near different kinds of unsta-

ble singularities which can be observed in surveys with different upcoming facilities. In

order to make the estimate, we identify the range in redshift around the critical redshift

z for each point singularity. We wish to choose the range such that the image forma-

tion can be identified as characteristic of the given type of singularity. As discussed in

the Chapter 2 and mentioned above, image formation for different point singularities

evolves differently with redshift. Hence, the redshift interval in which one can observe

the characteristic image formation will also be different for different point singulari-

ties. Source redshift comes in the equation via distance ratio, a(= Ds/Dds). Therefore

we determine the corresponding distance ratio interval, [a−δa,a+δa] and use it to

deduce the appropriate redshift interval.

In the case of hyperbolic umbilic, one can observe the characteristic image forma-

tion at redshifts significantly smaller and larger than the critical redshift, and we choose
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Figure 3.3: The cumulative number of source galaxies near point singularities as a func-
tion of redshift for A370 galaxy cluster: the y-axis shows the number at redshifts higher
than z. Different panels are corresponding to different singularity maps in Figure 3.1,
respectively. The solid lines represent the galaxy numbers calculated using the fiducial
model used in C18, whereas the dashed lines indicate the galaxy numbers calculated
using the model with evolving feedback (please see C18 for more details). The black
and red lines denote the cumulative galaxy numbers corresponding to the hyperbolic
and elliptic umbilic point singularities, respectively. Similarly, green and blue lines
represent the cumulative galaxy numbers corresponding to the swallowtail singularities
for Aα

3 and Aβ

3 -lines, respectively.

δa= 0.1a(z), where a(z) is the distance ratio at the critical redshift. The choice of δa in

this way also automatically takes into account the fact that at small source redshifts, the

caustics in the source plane evolve more rapidly compared to the high redshifts. Hence,

the distance ratio interval, [a−δa,a+δa], for a point singularity is small for smaller

source redshifts. As we go towards higher source redshifts, the size of the distance

ratio interval increases. For swallowtail, one can only observe the characteristic image

formation beyond the critical redshift. So, in the case of swallowtail singularity, the

distance ratio interval modifies to [a,a+δa], and the δa is taken to be equal to 7% of

the distance ratio at the critical redshift. For elliptic umbilic, the seven image Y-shaped

image formation can only be observed up to the critical redshift. Hence, for elliptic
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Figure 3.4: The total cumulative number of the source galaxies near point singularities
as a function of redshift corresponding to the five of the HFF clusters, namely, A370,
A2744, AS1063, MACS0416, and MACS1149: the y-axis shows the number at red-
shifts higher than z. The left, right, and bottom panels show the total galaxy numbers
calculated using the Keeton, Sharon, and Williams group mass models for each cluster,
respectively. Similar to Figure 3.3, the solid lines represent the galaxy numbers calcu-
lated using the fiducial model used in C18, whereas the dashed lines indicate the galaxy
numbers calculated using the model with evolving feedback. The black and red lines
denote the cumulative galaxy numbers corresponding to the hyperbolic and elliptic um-
bilic point singularities, respectively. The green and blue lines represent the cumulative
galaxy numbers corresponding to the swallowtail singularities for Aα

3 - and Aβ

3 -lines,
respectively.

umbilic, the distance ratio interval modifies to [a−δa,a], and the δa is equal to 0.5%

of the distance ratio at the critical redshift as elliptic umbilics are highly sensitive to the

redshift evolution.

Once we determine the redshift interval corresponding to the different point singu-

larities, we proceed to estimate the area in the source plane around the caustics in which

the source must lie to produce characteristic image formation. As we know, the magni-

fication factor for extended sources is smaller than a point source (Diego, 2019). Hence,

if a compact source such as a star lies near the caustics in the source plane, then we get
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an observation of the characteristic image formation. However, such sources are very

rare in cluster lensing (Kelly et al., 2018), and mostly we observe a galaxy as a source.

We are mainly considering galaxies as potential sources. We consider a circular area in

the source plane near the caustic structure corresponding to the point singularities with

a radius of 5 kpc.

The above-chosen values of the distance ratio interval for different point singular-

ities and source plane area near point singularities cannot be calculated mathemati-

cally. Hence, we manually estimate these numbers by observing a large number of lens

systems (from galaxy to cluster scales) near point singularities and inspecting the corre-

sponding image formations. One should keep in mind that these numbers directly affect

the calculated cross-section of point singularities and should be chosen very carefully.

Apart from that, as discussed in Section 3.3.1 and 3.3.2, the finite resolution of the mass

maps introduces the spurious point singularities, directly affecting the corresponding

point singularity cross-section. As one can see in supplementary material (Section 3.5),

the number of such spurious point singularities is relatively high for RELICS clusters

compared to the HFF clusters. Hence, we do not calculate the point singularity cross-

section for the RELICS clusters in our current work and restrict ourselves to the HFF

clusters for point singularity cross-section estimation.

The remaining information that we need is the surface density of the observed galax-

ies as a function of redshift. However, the surface density of observed galaxies is sensi-

tive to the underlying models of galaxy formation and evolution as well as the waveband

and limiting magnitude. We consider a recent study by Cowley et al. (2018, heareafter

C18) for JWST. In C18, a part of the work was to estimate the number of galaxies ob-

served in different bands of JWST, considering an exposure time 104 seconds (please

see C18 for a detailed description). The useful quantity for our analysis, the surface

density of observed galaxies, is shown in Figures 9 and 10 of C18. Here, for simplicity,

we only consider one NIRCam filter, F200W, for our analysis.

Figure 3.3, represents the cumulative distribution of the number of galaxies as a

function of redshift which can provide us the characteristic image formation corre-

sponding to different point singularities for A370: we have plotted the numbers ex-

pected at higher redshifts. Different panels in Figure 3.3 correspond to the singularity

maps in Figure 3.1 for different mass models, respectively. The solid lines represent

the galaxy numbers with the fiducial model, and the dashed lines correspond to a model

with evolving feedback (please see C18 for further details). The black, red, green, and

blue lines are cumulative source galaxy numbers that provide the characteristic image

formations corresponding to the hyperbolic umbilic, elliptic umbilic, swallowtail for
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Aα
3 -line, and swallowtail for Aβ

3 -line, respectively.

As one can see from Figure 3.3, the probability of finding a source galaxy at z ≥ 1

with characteristic image formation near hyperbolic umbilic or swallowtail for Aα
3 -line

is an order of magnitude higher for the Keeton/Sharon group mass models compared to

the Williams group mass model. This is due to the fact that the number of point sin-

gularities in the Keeton/Sharon group mass models is much higher than the Williams

group mass models (please see Figure 3.1). On the other hand, the number of galax-

ies for the Zitrin group mass model lies somewhat in between the galaxy numbers for

Keeton/Sharon and William models.

This difference in the number of observed galaxy sources near point singularities

can also be seen in Figure 3.4. Figure 3.4 represents the composite cumulative distri-

bution of the number of galaxies near point singularities for five of the HFF clusters

we are using for the present study. The left, right, and bottom panels correspond to

the Keeton, Sharon, and Williams group mass models, respectively. Here we did not

calculate the galaxy numbers near point singularities for the Zitrin group mass models

(zitrin_nfw) as the coresponding singularity maps contain spurious point singularities.

However, the singularity maps are available in Section 3.5 (except for MACS1149 since

the corresponding zitrin_nfw mass model is not available). One can again see that the

parametric mass reconstruction models give an order of magnitude more source galaxies

with characteristic image formations at redshifts zs ¦ 1 compared to the non-parametric

mass reconstruction models. From the Keeton and the Sharon group mass models, one

expects to observe at least one image formation near swallowtail in every HFF clusters

and (on average) one image formation near hyperbolic umbilic in every HFF cluster.

On the other hand, from the Williams group mass models, one expects to observe at

least one image formation near swallowtail and one image formation near hyperbolic

umbilic in all of the HFF clusters. Given this pattern, singularity maps corresponding

to the non-parametric mass models can be used to estimate the minimum number of

expected characteristic image formation in the upcoming surveys.

Our current analysis is based only on the best-fit models provided by different

groups. Each of these models also has uncertainties associated with them due to the

finite number of constraints available (Lotz et al., 2017; Priewe et al., 2017). These un-

certainties affect the caustic structure in the source plane, and as a result, will also affect

the point singularity cross-section. However, we cannot estimate these uncertainties at

present as we will need to construct the singularity map for each ensemble map to do

that, and the corresponding potential or deflection maps are not available online (ex-

cept for the Williams and Zitrin group). A detailed investigation of the effects of these
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uncertainties is subjected to our future study and will be presented in the forthcoming

Chapter.

3.3.4 Redshift Measurements

We have mentioned above that point singularities are critical only for certain source red-

shifts, and the corresponding characteristic image formation is only observable within a

finite range for source redshift. This encourages us to ask the question: can these point

singularities be used to constrain the source redshift as the corresponding characteristic

image formation is only visible within a specific redshift range? In order to address this

question, we consider the distance ratio intervals, for characteristic image formation

near different kinds of point singularities. We find that point singularities constrain the

source redshift more strongly at smaller source redshifts than higher source redshifts.

For example, if a hyperbolic umbilic is critical at source redshift one for a lens at red-

shift 0.35, then the characteristic image formation is observable in the redshift range

≈ [0.85,1.25]. If the hyperbolic umbilic is critical at redshift below one, then the red-

shift interval for the characteristic image formation further narrows down considerably.

On the other hand, if the hyperbolic umbilic is critical at redshift five, then the image

formation can be observed in the redshift range ≈ [2.2,10]. The same argument can

also be used for other point singularities. However, for other point singularities the red-

shift range is smaller than the redshift range for hyperbolic umbilic (please see subsec-

tion 3.3.3) and these can provide stronger constraints on source redshift than the hyper-

bolic umbilics, if observed. Hence, point singularities are more useful in constraining

the source redshift at smaller redshifts. One can also understand such behavior from

the fact that the caustic structure evolves more rapidly at smaller redshifts compared

to higher redshifts. The elliptic umbilic can be useful at higher redshifts; however, the

observational cross-section for the corresponding image formation is negligible (please

see Figure 3.3 and 3.4). It is also important to keep the context of a known lens map for

this discussion, if there are uncertainties in the lens map then it may be better to find

out the source redshift to constrain the lens map.

3.4 Conclusion

We have constructed singularity maps corresponding to ten different galaxy clusters

selected from the HFF and the RELICS survey. To construct singularity maps, we fol-

lowed the algorithm developed and discussed in the Chapter 2. Such a singularity map
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traces all the optimal sites for the upcoming deep surveys in the cluster lens plane as well

as mark the locations of all the point singularities. Point singularities are very sensitive

to the lens potential as these have a non-linear dependence on higher-order derivatives of

the lens potential. Hence, these are also sensitive to the mass reconstruction methods as

different methods use a different set of assumptions to construct mass models. We have

constructed singularity maps corresponding to five of the HFF clusters (Table 3.1), con-

sidering mass models reconstructed using both parametric (Keeton, Sharon, and Zitrin

groups) and non-parametric (Williams group) techniques. On the other hand, for five

of the RELICS clusters, we only considered one mass model (provided by the Zitrin

group) for each cluster lens. We find that the number of point singularities correspond-

ing to parametric and non-parametric mass models is very different. The parametric

models give a large number of point singularities compared to non-parametric models

where only a handful of point singularities are present (Figure 3.1). This also affects

the estimated number of galaxy sources with characteristic image formation as the para-

metric models yield an order of magnitude large number of such sources compared to

non-parametric models (Figure 3.3 and 3.3). We suspect that the assumption of mass

associated with each of the galaxies in the lensing cluster is the reason for this (Jullo

et al., 2007). As the number of point singularities corresponding to the non-parametric

mass models is the least, one can use these models to compute the lower limit on the

observation of characteristic image formation in the upcoming all-sky surveys. We find

that the number of point singularities is significantly higher than estimates in earlier

studies (Orban de Xivry & Marshall, 2009). Recently Meneghetti et al. (2020) pointed

out an order of magnitude discrepancy in substructure lenses in the observed galaxy

clusters (which are modeled using the parametric approach) and simulated galaxy clus-

ters. While the discrepancy with LCDM is disputed (Bahé, 2021; Robertson, 2021), one

can expect a significant difference in the number of point singularities that may arise as

lens models are better constrained with more images.

The key takeaway from our analysis is that the predicted number of instances of

point singularities in cluster lenses is likely to be much higher than estimated earlier

(Orban de Xivry & Marshall, 2009). We expect to get at least one hyperbolic umbilic

and one swallowtail image formation for a source at z > 1 for every five clusters with

JWST. This estimation is based on the non-parametric mass models corresponding to

the Williams group, and it can be considered as a lower limit since the number of point

singularities is much higher in parametric models than non-parametric models.

We have not considered galaxy lenses in our analysis. Each galaxy scale lens has at

least one pair of hyperbolic umbilics (as these are modeled as elliptical mass distribu-

tions with more details thrown in) and sometimes a few swallowtails (if a substructure
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also exists). Including the galaxy lenses will further increase the possibility of observ-

ing the image formations near point singularities.

Addition of substructure always adds more singular points, hence the numbers and

distribution of singular points can be connected with the amount of substructure in clus-

ters. Image formation near a point singularity consists of multiple images lying very

close to each other in the lens plane: the characteristic image formation being differ-

ent for each type of singularity. This opens up the possibility of measuring the relative

time delay between these images. Such measurements are possible even if the multi-

ple images are not well resolved (Borra, 2008). Along with the time delay analysis,

one can also construct an atlas of realistic image configurations near point singularities

for training and identification using machine learning programs in the upcoming sur-

veys (Davies et al., 2019). These possibilities are the subject of our future studies and

the results will be presented in forthcoming publications.

3.5 Supplementary Material
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Figure 3.5: Singularity maps for the A2744 cluster lens corresponding to mass mod-
els provided by four different groups (Keeton, Sharon, Williams, Zitrin): The red and
green lines represent the A3-lines corresponding to the tangential and radial cusps, re-
spectively. The blue points denote the umbilics (hyperbolic and elliptic). At hyperbolic
umbilics, one red and one green line meet with each other, whereas at elliptic umbilic,
three red and three green lines meet. The cyan and magenta points represent the swal-
lowtail singularities corresponding to the Aα

3 and Aβ

3 -lines. The shaded regions in the
lower right panel mark the noisy region in the singularity map. These regions are not
included in further calculations. In each panel, the background is the cluster image in
the F435W band.
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Figure 3.6: The cumulative number of source galaxies near point singularities as a
function of redshift for A2744 galaxy cluster: the y-axis shows the number at redshifts
higher than z. Different panels are corresponding to different singularity maps in Fig-
ure 3.5, respectively. The solid lines represent the galaxy numbers calculated using
the fiducial model used in C18, whereas the dashed lines indicate the galaxy numbers
calculated using the model with evolving feedback (please see C18 for more details).
The black and red lines denote the cumulative galaxy numbers corresponding to the
hyperbolic and elliptic umbilic point singularities, respectively. Similarly, green and
blue lines represent the cumulative galaxy numbers corresponding to the swallowtail
singularities for Aα

3 and Aβ

3 -lines, respectively.
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Figure 3.7: Singularity maps for the AS1063 cluster lens corresponding to mass mod-
els provided by four different groups (Keeton, Sharon, Williams, Zitrin): The red and
green lines represent the A3-lines corresponding to the tangential and radial cusps, re-
spectively. The blue points denote the umbilics (hyperbolic and elliptic). At hyperbolic
umbilics, one red and one green line meet with each other, whereas at elliptic umbilic,
three red and three green lines meet. The cyan and magenta points represent the swal-
lowtail singularities corresponding to the Aα

3 and Aβ

3 -lines. The shaded regions in the
lower right panel mark the noisy region in the singularity map. These regions are not
included in further calculations. In each panel, the background is the cluster image in
the F435W band.
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Figure 3.8: The cumulative number of source galaxies near point singularities as a
function of redshift for AS1063 galaxy cluster: the y-axis shows the number at red-
shifts higher than z. Different panels are corresponding to different singularity maps in
Figure 3.7, respectively. The solid lines represent the galaxy numbers calculated using
the fiducial model used in C18, whereas the dashed lines indicate the galaxy numbers
calculated using the model with evolving feedback (please see C18 for more details).
The black and red lines denote the cumulative galaxy numbers corresponding to the
hyperbolic and elliptic umbilic point singularities, respectively. Similarly, green and
blue lines represent the cumulative galaxy numbers corresponding to the swallowtail
singularities for Aα

3 and Aβ

3 -lines, respectively.
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Figure 3.9: Singularity maps for the MACS0416 cluster lens corresponding to mass
models provided by four different groups (Keeton, Sharon, Williams, Zitrin): The red
and green lines represent the A3-lines corresponding to the tangential and radial cusps,
respectively. The blue points denote the umbilics (hyperbolic and elliptic). At hyper-
bolic umbilics, one red and one green line meet with each other, whereas at elliptic
umbilic, three red and three green lines meet. The cyan and magenta points represent
the swallowtail singularities corresponding to the Aα

3 and Aβ

3 -lines. The shaded regions
in the lower right panel mark the noisy region in the singularity map. These regions are
not included in further calculations. In each panel, the background is the cluster image
in the F435W band.
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Figure 3.10: The cumulative number of source galaxies near point singularities as a
function of redshift for A370 galaxy cluster: the y-axis shows the number at redshifts
higher than z. Different panels are corresponding to different singularity maps in Fig-
ure 3.9, respectively. The solid lines represent the galaxy numbers calculated using
the fiducial model used in C18, whereas the dashed lines indicate the galaxy numbers
calculated using the model with evolving feedback (please see C18 for more details).
The black and red lines denote the cumulative galaxy numbers corresponding to the
hyperbolic and elliptic umbilic point singularities, respectively. Similarly, green and
blue lines represent the cumulative galaxy numbers corresponding to the swallowtail
singularities for Aα

3 and Aβ

3 -lines, respectively.
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Figure 3.11: Singularity maps for the MACS1149 cluster lens corresponding to mass
models provided by four different groups (Keeton, Sharon, Williams, Zitrin): The red
and green lines represent the A3-lines corresponding to the tangential and radial cusps,
respectively. The blue points denote the umbilics (hyperbolic and elliptic). At hyper-
bolic umbilics, one red and one green line meet with each other, whereas at elliptic
umbilic, three red and three green lines meet. The cyan and magenta points represent
the swallowtail singularities corresponding to the Aα

3 and Aβ

3 -lines. The shaded regions
in the lower right panel mark the noisy region in the singularity map. These regions are
not included in further calculations. In each panel, the background is the cluster image
in the F435W band.
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Figure 3.12: The cumulative number of source galaxies near point singularities as a
function of redshift for A370 galaxy cluster: the y-axis shows the number at redshifts
higher than z. Different panels are corresponding to different singularity maps in Fig-
ure 3.11, respectively. The solid lines represent the galaxy numbers calculated using
the fiducial model used in C18, whereas the dashed lines indicate the galaxy numbers
calculated using the model with evolving feedback (please see C18 for more details).
The black and red lines denote the cumulative galaxy numbers corresponding to the
hyperbolic and elliptic umbilic point singularities, respectively. Similarly, green and
blue lines represent the cumulative galaxy numbers corresponding to the swallowtail
singularities for Aα

3 and Aβ

3 -lines, respectively.
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Figure 3.13: Singularity maps of RELICS clusters for mass models provided by the
Zitrin group (zitrin ltm gauss). The name of the cluster is written in every panel. In
each panel of left (right) column, the background is the cluster image in the F435W
(F606W) band.
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Figure 3.13: Cont.
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Chapter 4

Exotic Image Formation in Cluster
Lenses – II: Uncertainties

This chapter is based on:

Meena, A. K., Ghosh, A., Bagla J. S., Williams, L. L. R., "Exotic Image Formation in

Strong Gravitational Lensing by Clusters of Galaxies – II: Uncertainties", 2103.13617,

Submitted to MNRAS.

4.1 Introduction

In order to use galaxy clusters as a probe, we need to model their mass distributions.

However, as the data from the observation is limited, one cannot model the mass dis-

tribution of these clusters with arbitrary precision and resolution. As a result, to recon-

struct the lens mass distribution, different groups start with different sets of prior. For

examples, light trace mass (LTM, Broadhurst et al., 2005; Zitrin et al., 2009) parametric

mass reconstruction assumes that the mass distribution in the cluster lenses follows the

light distribution. On the other hand, the non-parametric (free-form, Liesenborgs et al.,

2007) mass reconstruction methods do not rely on any preliminary information related

to the mass model and only take into account the strong and weak (Liesenborgs et al.,

2020) lensing data. Hybrid mass reconstruction methods take input from both para-

metric and non-parametric approaches (Sendra et al., 2014). Due to the finite amount

of data and different set of priors, it is possible that these different methods give dif-

ferent results when applied on the same cluster lens (e.g., Smith et al., 2009; Zitrin &

Broadhurst, 2009). Hence, it is very important to compare these different techniques in
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case of simulated as well as real lenses to improve these methods and for more robust

predictions (e.g., Meneghetti et al., 2017; Priewe et al., 2017; Rodney et al., 2015; Re-

molina González et al., 2018; Raney et al., 2020). Each of these methods results into

the best-fit mass model parameters and uncertainties associated with them. One avenue

to observe the effect of these uncertainties is the cluster lens magnification maps. For

the best-fit lens mass model, one will have a certain area in the lens plane that gives

higher magnification than a threshold value. However, once we account for the statis-

tical uncertainties, the area with a magnification greater than the threshold area is not

a unique number; instead, it will be denoted by a range. As a result, various obser-

vational estimates (like the number of highly magnified galaxies) are also subjected to

these uncertainties.

In our previous work, we have described the method to locate these unstable singu-

larities for a given lens model (Meena & Bagla, 2020b, hereafter paper I) and applied

this method in the case of actual cluster lenses (Meena & Bagla, 2021, hereafter paper

II). The final output of this method is a singularity map containing all the point sin-

gularities and A3-lines. Since these A3-lines correspond to cusps in the source plane,

they mark the high-magnification regions in the lens where image formation near cusps

will occur (three or more lensed images lying near each other). The point singularities

depend on the second and higher-order derivatives of the lens potential. Hence, they are

very sensitive to the presence of small/intermediate-scale structures and the variations

in the lens parameters. As a result, the singularity maps corresponding to the para-

metric and non-parametric mass models can be very different for the same cluster lens

As pointed out in paper II, parametric mass models give significantly larger number of

point singularities due to the small scale structures compared to non-parametric mass

models.

In our current work, we study the effect of the statistical uncertainties associated

with the reconstructed lens mass model parameters on the singularity maps and the

higher-order singularity cross-section. In order to study the effect of mass model un-

certainties on the singularity maps, we have considered two simulated galaxy cluster

lenses, Irtysh I and II from Ghosh et al. (2020, hereafter GWL20) and all of the six

galaxy cluster lenses from the Hubble Frontier Fields (HFF) survey. The lens mass

reconstruction of all of these cluster lenses has been done using Grale1 (Liesenborgs

et al., 2007). We choose the Grale mass models as the corresponding singularity maps

are simplest and provide a lower limit on the point singularity cross-section (paper II).

Further, as the Grale mass model does not make any assumption about density profiles

of substructure, the reconstruction is independent of the nature of dark matter. Due to

1https://research.edm.uhasselt.be/jori/grale2/
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the simple nature, we can construct singularity maps for a larger region of the lens plane

without introducing spurious point singularities. Apart from that, different Grale runs

for a cluster lens give independent mass maps. Hence, there is no correlation between

different mass maps reconstructed for a lens using Grale that may not be true for the

parametric mass models. For simulated clusters, Irtysh I and II, we construct the singu-

larity maps for the original mass models, for the individual runs (with 150, 500, 1000

lensed images) and for the final best-fit mass model. For HFF clusters, we construct the

singularity maps for the individual runs and for the best-fit mass model obtained by the

averaging of the individual runs.

As we know that the A3-lines in the singularity maps correspond to the cusps in the

source plane. Hence, a singularity map also gives the information about the number

of cusps formed in the source plane at a given source redshift. By drawing the critical

lines for a given source redshift overlaid on the singularity map, one can calculate the

number of cusps in the source plane by counting the points where a critical line and

corresponding A3-line cut each other. Following that, we also estimate the (tangential

and radial) arc cross-section in case of both simulated and HFF cluster lenses. The

source galaxy luminosity function has been taken from Cowley et al. (2018, hereafter

C18). In C18, authors estimate the number of galaxies expected in the deep galaxy

surveys with the JWST in different the filters. In our present study, we only considered

the expected galaxy population in one JWST filter, F200W (please see C18 for more

details).

This Chapter is organized as follows. In Section 4.2, we present our results for

simulated Irtysh clusters. The corresponding singularity maps are discussed in Section

4.2.1, followed by the discussion of the redshift distribution of singularities in Section

4.2.2. The results for the HFF clusters are presented in Section 4.3. The correspond-

ing singularity maps, redshift distribution of singularities, and the arc cross-section are

discussed in Section 4.3.1, Section 4.3.2, and Section 4.3.3, respectively. Summary and

conclusions are presented in Section 4.4.

4.2 Simulated Clusters

In paper II, it has been shown that the parametric and non-parametric mass models for

a given HFF cluster show a significant difference in both cusp and point singularity

cross-section. However, each mass model has uncertainties associated with it due to the

finite amount of observational data. As a result, these uncertainties also affect the results

derived from the reconstructed mass models. In this section, we study the effect of these

79



uncertainties on the singularity maps corresponding to reconstructed mass models for

simulated galaxy clusters. We have considered two simulated clusters, Irtysh I and

II from GWL20. GWL20 reconstructed free-form mass models using Grale for both

Irtysh I and II with three different sets of multiple images, 150, 500, 1000. The lens

mass reconstruction with 150 images corresponds to the current observational scenario,

whereas the 500 and 1000 multiple image cases correspond to future observations with

the Hubble Space Telescope (HST) and James Webb Space Telescope (JWST). For each

case, the final output is forty individual mass models and the final best-fit mass model

that is the average of these forty individual mass models. We refer the reader to look

into GWL20 for more details. Hereafter, for simplicity, the average mass models for

1000, 500, 150 image cases for Irtysh I/II will be referred as Irtysh IA/IIA, IB/IIB,

IC/IIC.

4.2.1 Simulated Clusters: Singularity Maps

Once we have all the reconstructed mass models, we construct the singularity maps for

all individual mass models and also for the final averaged one and the original mass

models. To construct the singularity maps, we chose a resolution of 0.06′′ in the lens

plane to calculate relevant quantities. As discussed in paper II, for mass models re-

constructed using Grale, such a resolution of mass maps is adequate for constructing

singularity maps. The singularity maps cover sources upto a redshift of ten. The singu-

larity maps for the original and final averaged mass models for Irtysh I and II are shown

in Figure 4.1 and 4.2. In each panel, the red and green lines represent the A3-lines cor-

responding to the α and β eigenvalues of the deformation tensor. The (hyperbolic and

elliptic) umbilics are shown by the blue points, whereas the swallowtail singularities

corresponding to α and β eigenvalues are denoted by cyan and magenta points, respec-

tively. One example of singularity maps corresponding to individual runs for Irtysh

IA/IB/IC, IIA/IIB/IIC is shown in Figure 4.8. For both Irtysh I and II, we see that final

averaged mass maps are not able to recover the contribution of the marginally critical

structures in the singularity maps. In a singularity map, such structures can be located

by looking for the isolated A3-lines. Even if some of the individual runs are able to

recover contribution from such marginal structures, it may be possible that these struc-

tures are not present in the final best-fit mass models due to the averaging over forty

individual mass reconstruction. On the other hand, it is also possible to have some ad-

ditional contribution from the spurious structures which are not present in the original

mass distribution, as can be seen in Irtysh IIA in Figure 4.2.

Apart from that, one can also notice differences between the A3-line structures in the
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singularity maps near the core region of Irtysh clusters in the original and reconstructed

mass models. These differences may be a result of the fact that in the reconstruction

of Irtysh I and II, there are no sources below redshift one. This difference is more

significant between the original and individual runs (Figure 4.8), but the averaging in

the final best-fit mass model decreases this difference and brings the reconstructed mass

distributions closer to the original ones.

4.2.2 Simulated Clusters: Redshift Distribution of Singularities

In this subsection, we study the redshift distribution of the point singularities for Irtysh I

and II. In Figure 4.3, we represent the point singularities for different mass models as a

function of redshift. Here we compare the number of singularities in the original Irtysh

I and II mass models with the corresponding individual reconstructed mass models and

with the corresponding final averaged mass model. For example, the top-left panel

of Figure 4.3 shows the number of singularities in the original Irtysh I (thin lines),

the number of singularities in the final averaged Irtysh IA mass model (thick dotted

lines), and the average number of singularities in the corresponding individual runs

(thick dashed lines). The error bars represent the one-sigma scatter within these forty

individual runs. The red lines represent the (hyperbolic + elliptic) umbilics. Here, we

are not discriminating between hyperbolic and elliptic umbilics as the number of elliptic

umbilics is very small compared to the hyperbolic umbilics. The green and blue lines

represent the number of swallowtail singularities corresponding to α and β eigenvalues

of the deformation tensor, respectively.

In each panel of Figure 4.3, for source redshift < 2, we notice that the number of

singularities in individual runs is significantly large compared to the number of singular-

ities in the original Irtysh mass models, which is also evident from the individual runs in

Figure 4.8. This is due to the fact that Grale introduces a significant number of structure

(which decrease as the number of lensed images increase) at different positions in each

individual reconstruction, and as GWL20 do not have any sources at redshift < 1, this

effect is more significant in the central regions. As we move towards the higher source

redshifts, the difference between original and individual run starts to narrow down. Al-

though, the individual runs still predict slight excess of point singularities compared to

the actual mass models.

Although the individual runs give a significant excess of point singularities below

source redshift 2, such excess does not occur in the final averaged mass models. This

behavior is expected from the fact that the averaging over multiple individual runs

81



smooths out spurious structures and brings the final reconstructed mass model closer

to the original mass model, although most of the time with slight underestimation of the

point singularities. The averaging over multiple realizations sometimes also introduces

a small number of spurious point singularities at high redshifts, for example, as seen in

the Irtysh IA, Irtysh IIB, and Irtysh IIC panels in Figure 4.3. However, the number of

these spurious singularities is not significant (® 2 from Figure 4.3).

4.3 HFF Clusters

Under the Hubble Frontier Fields (HFF) Survey2 program, Hubble Space Telescope ob-

served a total of six massive merging clusters (see Lotz et al. 2017 for more details). For

every HFF cluster, different groups have reconstructed mass models using parametric,

non-parametric, and hybrid (a combination of parametric and non-parametric) meth-

ods (e.g., Diego et al., 2007; Bradač et al., 2005; Jauzac et al., 2015; Johnson et al.,

2014; Lam et al., 2014; Merten et al., 2011; Mohammed et al., 2016; Oguri, 2010;

Sendra et al., 2014; Williams et al., 2018b; Zitrin et al., 2013). To study the statisti-

cal uncertainties on the singularity maps, we consider the non-parametric HFF cluster

mass models. These mass models for HFF clusters are reconstructed using the free-

form method Grale. There are two reasons for choosing these mass models for the HFF

clusters:

(1) The best-fit Grale mass models for HFF clusters give the simplest singularity maps

compared to other techniques as shown in paper II and put the lower limit on the point

singularity cross-section. Hence, it is worthwhile to check how statistical uncertainties

affect the lower limit.

(2) In paper II, we only considered the central 40′′× 40′′ region for the analysis. This

choice was made due to the increasing number of spurious singularities in the paramet-

ric mass models as we go away from the center of the cluster. Hence, it will not be

useful to analyze the effect of uncertainties on the singularity map in the presence of

artifacts. However, such a problem does not exist for these non-parametric mass models

as the singularity map is very simple and a resolution of < 0.1′′ is sufficient enough as

shown in paper II.

Similar to the Irtysh clusters, for every HFF cluster, Grale provides forty individual

mass maps and one best-fit mass map that is the average of these forty mass maps. De-

pending on the number of images used in the reconstruction, there are different versions

of the reconstructed mass models available. Here, we are using the v4 mass models for

2https://archive.stsci.edu/prepds/frontier/
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Figure 4.1: Singularity maps for original and reconstructed Irtysh I mass models: The
top-left panel represents the singularity map corresponding to the original Irtysh I mass
models. The top-right, bottom-left, bottom-right panels represent the singularity maps
for Irtysh IA, IB, IC, respectively. In each panel, the red and green lines represent the
A3-lines corresponding to the α and β eigenvalues of the deformation tensor. The blue
points represent the location of (hyperbolic and elliptic) umbilics. The cyan and ma-
genta points represent the swallowtail singularities corresponding to the α and β eigen-
values of the deformation tensor. In each panel, the background is the corresponding
normalized mass distribution in the lens plane.
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Figure 4.2: Singularity maps for original and reconstructed Irtysh II mass models: The
top-left panel represents the singularity map corresponding to the original Irtysh II mass
models. The top-right, bottom-left, bottom-right panels represent the singularity maps
for Irtysh IIA, IIB, IIC, respectively. In each panel, the red and green lines represent
the A3-lines corresponding to the α and β eigenvalues of the deformation tensor. The
blue points represent the location of (hyperbolic and elliptic) umbilics. The cyan and
magenta points represent the swallowtail singularities corresponding to the α and β

eigenvalues of the deformation tensor. In each panel, the background is the correspond-
ing normalized mass distribution in the lens plane.
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Figure 4.3: Number of singularities as a function of redshift in Irtysh I and II: In each
panel, of left (right) column, the thin lines represent the number of singularities cor-
responding to the original Irtysh I (II). The thick dotted lines represent the number of
singularities corresponding to the final averaged mass models of Irtysh I and II (the
corresponding cluster name is written in each panel). The thick dashed lines show
the average number of singularity in individual mass models for Irtysh I and II. The
error bars represent the corresponding one sigma scatter. The red lines represent the
distribution of (hyperbolic+elliptic) umbilics. The green and blue lines represent the
distribution of swallowtail singularities corresponding to α and β eigenvalues of the
deformation tensor.
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Figure 4.3: Cont.

all of the HFF clusters, and, for simplicity, we will be using the abbreviated names for

the HFF cluster lenses.

4.3.1 HFF Clusters: Singularity Maps

Following the procedure used for simulated clusters, we reconstruct the singularity

maps for individual and the best-fit mass models of the HFF clusters. The best-fit mass

model singularity maps for the HFF clusters are shown in Figure 4.4. Here again, the

singularity maps are drawn for sources upto redshift ten. The red and green lines show

the A3-lines corresponding to the α and β eigenvalues of the deformation tensor. The

blue, cyan, and magenta points represent the (hyperbolic and elliptic) umbilics, swal-

lowtail for α , and swallowtail for β eigenvalue, respectively. The online available v4

mass models have a resolution of ≥ 0.2′′. However, in our current work, we use a reso-

lution of 0.06′′ for all of the HFF clusters. Although, as mentioned above, a resolution

of∼ 0.1′′ is sufficient for Grale mass models but, in order to be more certain that we did

not miss any point singularities, we chose a resolution of 0.06′′ (please see discussion

about stability of point singularities in paper II).

We can see in Figure 4.4 that the A370 yields a very complex singularity map com-

pared to other HFF clusters. Hence, the cross-section for image formation near a cusp

or a point singularity is maximum for the A370 in the HFF clusters. One can also see

that the point singularity cross-section calculation done in paper II was based on the

central region of 40′′×40′′; however, the full singularity map extends upto a much big-

ger region in the lens plane for a source redshift of ten. Hence, the estimations done in
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Figure 4.4: Singularity maps for HFF clusters: Every panel represents the singularity
map for one of the HFF clusters. The name of the corresponding cluster is written
in the upper left corner. In each panel, the red and green lines represent the A3-lines
corresponding to the α and β eigenvalues of the deformation tensor. The blue points
represent the location of (hyperbolic and elliptic) umbilics. The cyan and magenta
points represent the swallowtail singularities corresponding to the α and β eigenvalues
of the deformation tensor. In each panel, the background is the cluster image in F435W
band.
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Figure 4.4: Cont.

paper II are actually underestimations. Due to consideration of the central region, the

cross-section of the hyperbolic umbilics was more than the swallowtails corresponding

to the α eigenvalues. However, looking at the complete singularity maps in Figure 4.4,

one can see that the cross-section for the image formation near swallowtails correspond-

ing to α eigenvalue is higher compared to the hyperbolic umbilics as the outer regions

of the singularity maps show more swallowtails than umbilics. This also explains why

we observed a larger number of images near swallowtails (corresponding to α eigen-

value) than hyperbolic umbilics. Here, we do not repeat that calculation and consider

the earlier estimates as a lower limit.

Comparing the singularity maps of HFF clusters with each other, one can also see

that not all cluster lenses contribute equally in the point singularity or arc cross-section.

For example, we can see that A370 is roughly five times more efficient in producing

image formation near a swallowtail or a cusp compared to MACS0416. The efficiency

of other HFF clusters lies between MACS0416 and A370. Such a difference is also

observed in the corresponding magnification maps (e.g., Johnson et al., 2014; Vega-

Ferrero et al., 2019). However, one should keep in mind that the area in the source

plane magnified by a factor µ ≥ µth has a significant contribution from the fold caustic.

Hence, having a larger source plane area magnified by µ ≥ µth does not directly imply

that the corresponding point singularity cross-section will also be higher. One can still

use the magnification maps to get a qualitative idea about the arc and point singularity

cross-section since large critical lines in the lens plane mean having more probability

of a substructure introducing distortions in it and introducing extra cusps in the source

plane. We would like to remind the reader that these inferences are based on specific

models of HFF clusters, and these numbers can vary based on the reconstruction method
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Figure 4.5: Number of singularities as a function of redshift in the HFF clusters: In each
panel, the thin lines represent the number of singularities corresponding to the best-fit
average mass model for the HFF clusters. The thick dashed lines show the average
number of singularity in individual mass models for the HFF clusters. The error bars
represent the corresponding one sigma scatter. The red lines represent the distribution
of (hyperbolic+elliptic) umbilics. The green and blue lines represent the distribution
of swallowtail singularities corresponding to α and β eigenvalues of the deformation
tensor.
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Figure 4.5: Cont.

used.

4.3.2 HFF Clusters: Redshift Distribution of Singularities

Unlike simulated clusters, we do not have the actual mass distribution of a real galaxy

cluster. Hence, for HFF clusters, we compare the point singularities in the individual

runs with the point singularities in the corresponding final best-fit mass models. The

redshift distribution of point singularities in the HFF clusters is shown in Figure 4.5. In

each panel, the red, green, and blue lines represent the number of (hyperbolic + elliptic)

umbilics, the number of swallowtail singularity for α , and the number of swallowtail

singularity for β eigenvalues, respectively. Here, we do not differentiate between hyper-

bolic and elliptic umbilics as the number of elliptic umbilics is negligible as compared

to the hyperbolic umbilics. In each panel, the thin solid lines represent the number of

point singularities corresponding to the averaged best-fit mass models, and the thick

dotted lines represent the average number of point singularities in the individual runs.

The errorbars associated with thick dotted lines represent the one-sigma scatter in the

number of point singularities in the 40 realizations.

As with the simulated Irtysh clusters, the average number of point singularities in the

individual runs is higher (more than one sigma difference in some clusters) compared

to the best-fit mass models at redshifts z < 2. In Irtysh clusters, we expected to observe

such discrepancy in the central regions of the clusters as there were no sources below

redshift one that can provide lensed images near the central region in order to constrain

it better. For A370 and AS1063, there are lensed images below redshift one, but we
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still observe an excess of point singularities in the individual runs. Hence, we can

say that introducing additional images below redshift one may help in decreasing the

discrepancy in the central images. But we cannot be sure that it will always bring the

numbers within one sigma error bars.

As we go towards higher source redshifts, the number of point singularities de-

creases in individual runs. However, the same cannot be said for the best-fit mass mod-

els. For example, in the case of A2744, there are some umbilics and swallowtails that

are present even at very high source redshifts. Following the simulated Irtysh cluster,

we may infer that these point singularities at very high redshift are spurious features.

However, just by considering the Grale mass models, we cannot be sure about that as

there are no reference mass models for the real cluster lenses. As the point singularities

depend on the higher-order derivatives of the deformation tensor, taking inputs from the

parametric reconstruction for validations of these features may not be very useful.

4.3.3 HFF Clusters: Arc Cross-Section

The A3-lines constitute the backbone of a singularity map. These lines trace the points

in the lens plane that correspond to cusps in the source plane. Hence, if we draw the

critical curves for a given redshift on the top of the A3-lines in the lens plane, then

these critical curves cut the A3-lines at the points that correspond to cusps in the source

plane for that source redshift. As a result, without looking into the source plane, one can

count (in a very simple way) the number of cusps on tangential and radial caustics in the

source plane. Hence, using the A3-lines and the critical curves, we easily calculate the

(tangential and radial) arc cross-section for a given lens model with a given population

of sources.

To calculate the arc cross-section, we divided the source redshift range [0.6, 10] in

equal intervals of 4z = 0.01. After that, we draw the critical curves in the lens plane

for each interval and calculate the number of points in the lens plane where a (tangential

or radial) critical curve cuts the corresponding A3-line. We assume that the number of

such points is constant in the respective redshift interval of4z = 0.01. Similar to point

singularities in paper II, we consider an area of 5 kpc in the source plane and calculate

the number of source galaxies with the image formation near the cusp points. This

method will underestimate the number of cusp points if two A3-lines are very near to

each other. Such a scenario occurs when a swallowtail singularity gets critical, and two

cusps emerge in the source plane. However, the underestimation is not significant as

the singularity maps for non-parametric models are not very complex.
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Figure 4.6: The cumulative number of source galaxies near the (tangential and radial)
cusps as a function of redshift for HFF cluster lenses: the y-axis shows the number at
redshifts higher than z. The solid (dashed) lines represent the galaxy numbers calculated
using the fiducial (evolving feedback) model used in C18. The red and green lines
denote the cumulative galaxy numbers corresponding to the tangential and radial cusps
(corresponding to α and β eigenvalues of the deformation tensor).
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Figure 4.7: The total cumulative number of the source galaxies near tangential and ra-
dial cusps as a function of redshift for the HFF clusters: The y-axis shows the number at
redshifts higher than z. Similar to Figure 4.6, the solid lines represent the galaxy num-
bers calculated using the fiducial model used in C18, whereas the dashed lines indicate
the galaxy numbers calculated using the model with evolving feedback. The red and
green lines denote the cumulative galaxy numbers corresponding to the tangential and
radial cusps (corresponding to α and β eigenvalues of the deformation tensor).

Following this method, we calculated the cusp cross-section for HFF clusters. The

galaxy source population is taken from C18 for one filter (F200W) of the JWST. The

results are shown in Figure 4.6. The x-axis represents the source redshift, and the y-axis

shows the number of source galaxies that are expected to give the image formation near

cusps in the source plane higher than redshift z. The red and green lines represent the

number of source galaxies near the tangential and radial arcs in the source plane. In

each panel, the cross-section is plotted considering sources in the redshift range [0.6,

10]. These cross-section plots again validate our inference from the singularity maps

(in Section 4.3.1) that A370 is most efficient in producing the tangential and radial arcs

among the HFF clusters. The cumulative arc cross-section for all clusters is shown in

Figure 4.7. From our analysis, we expect to observe at least 10-20 tangential and 5-10

radial three image arcs with the JWST. Again, as the Grale mass models have a very

small contribution from galaxy scale substructures in the cluster lenses, these values

should be considered as a lower limit.
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4.4 Conclusions

In this work, we have studied the effect of statistical uncertainties associated with clus-

ter lens mass reconstruction with Grale on point singularities. We considered two simu-

lated clusters, Irtysh I and II from GWL20 and six galaxy clusters from the HFF survey.

For both simulated and real galaxy clusters, the mass models were reconstructed using

Grale. For each simulated galaxy cluster, we had three different mass models recon-

structed with different sets of multiple images (please see GWL20 for more details).

For each cluster lens, 40 reconstructions were done, and the best-fit mass models were

the average of them. As a first step, we have constructed singularity maps for the orig-

inal mass models (in the case of Irtysh I and II) for all of the individual mass models

and the best-fit mass models. In the next step, we have compared the singularity maps

corresponding to the individual realizations with the original and average best-fit mass

models. These comparisons for simulated and HFF clusters are shown in Figure 4.3 and

4.5, respectively.

We find that the singularity maps corresponding to the best-fit mass models have a

relatively small number of point singularities compared to the individual runs. As a re-

sult, the best-fit mass models provide a lower bound on the number of singularities that

a lens has to offer. For mass models reconstructed by Grale, such a result is expected

due to the fact that individual realizations contain spurious features, and the averaging

to get the best-fit mass models is done in order to remove the contribution from these

spurious features. Hence, the final best-fit mass model contains a low number of small

scale structure and a low number of point singularities. The differences in the number

of point singularities between individual runs and the best-fit are maximum at source

redshift z < 2 for both simulated and real clusters. One can expect such discrepancy

to arise at these redshifts as the mass models in the central regions of the clusters, at

present, is not very well constrained. However, in order to be sure about this explana-

tion, one will need to construct the mass models for simulated clusters with multiple

images near the cluster center.

Such an averaging (over 40 realizations) to get the final best-fit mass model also

simplifies the over A3-line structures in the singularity maps. As A3-lines in the sin-

gularity maps correspond to the number of cusps in the source plane at every source

redshift, the final best-fit mass model also has a smaller number of cusps compared to

individual realizations. Hence, the final best-fit mass models also provide a lower limit

on the number of image formations near cusps. In our current work, we have also cal-

culated the cusp cross-section for the HFF clusters using the best-fit mass models. We

find that A370 is most efficient in producing three image arcs and the image formation
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near point singularities among the HFF clusters based on Grale modeling. In the HFF

clusters, one would expect to observe at least 10-20 tangential and 5-10 radial three

image arcs with JWST.

The key takeaway from our current work is that the best-fit mass models constructed

using the Grale provide the lower limit on the number of cusps and point singularities

for a given cluster lens. Folding in the statistical uncertainties does not decrease the

numbers obtained from the best-fit mass models. As shown in paper II, one would

expect to observe at least one hyperbolic umbilic and one swallowtail for every five

clusters with JWST even when we include the corresponding statistical uncertainties.

Apart from that, one also expects at least 10-20 tangential and 5-10 radial three image

arcs with JWST in the HFF clusters.

The above results are based on the non-parametric modeling by Grale, which un-

derestimates the contribution from the galaxy scale substructures in the cluster lenses.

Hence, if one considers parametric modeling, the above quoted numbers are expected to

increase. Apart from that, in the HFF survey, there are only six cluster lenses. As shown

above, these singularity maps also provide a very nice way to compare the efficiency of

different cluster lenses. This feature can also be used to compare the simulated and real

clusters on qualitative (visual comparison of singularity maps) and quantitative basis

(arc and point singularity cross-sections).

Apart from that, image formation corresponding to arcs or point singularities shows

three or more images lie in a very small region of the lens plane. Hence, the time

delay between these images is expected to be small compared to other (typical) multiple

image formation scenarios. The other important feature of point singularities is their

characteristic image formation, which can be very helpful in locating them. These

possibilities are the subject of our ongoing work.

4.5 Supplementary Material
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Figure 4.8: Every panel represents one singularity map for one realization for different
Irtysh mass models. The name of the realization is written in the upper left corner. The
red and green lines represent the A3-lines corresponding to the α and β eigenvalues of
the deformation tensor. The blue points represent the (hyperbolic and elliptic) umbilics.
The cyan (magenta) points represent the swallowtail points corresponding to the α (β )
eigenvalues of the deformation tensor.
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Figure 4.9: Singularity maps for individual runs of A370: Every panel represents one
singularity map for one realization of A370. The name of the realization is written
with the cluster name in the upper left corner. The red and green lines represent the
A3-lines corresponding to the α and β eigenvalues of the deformation tensor. The blue
points represent the (hyperbolic and elliptic) umbilics. The cyan and magenta points
represent the swallowtail singularities corresponding to the α and β eigenvalues of the
deformation tensor.
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Figure 4.10: Singularity maps for individual runs of A2744: Every panel represents
one singularity map for one realization of A2744. The name of the realization is written
with the cluster name in the upper left corner. The red and green lines represent the
A3-lines corresponding to the α and β eigenvalues of the deformation tensor. The blue
points represent the (hyperbolic and elliptic) umbilics. The cyan and magenta points
represent the swallowtail singularities corresponding to the α and β eigenvalues of the
deformation tensor.
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Figure 4.11: Singularity maps for individual runs of AS1063: Every panel represents
one singularity map for one realization of AS1063. The name of the realization is
written with the cluster name in the upper left corner. The red and green lines represent
the A3-lines corresponding to the α and β eigenvalues of the deformation tensor. The
blue points represent the (hyperbolic and elliptic) umbilics. The cyan and magenta
points represent the swallowtail singularities corresponding to the α and β eigenvalues
of the deformation tensor.
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Figure 4.12: Singularity maps for individual runs of MACS0416: Every panel repre-
sents one singularity map for one realization of MACS0416. The name of the realization
is written with the cluster name in the upper left corner. The red and green lines repre-
sent the A3-lines corresponding to the α and β eigenvalues of the deformation tensor.
The blue points represent the (hyperbolic and elliptic) umbilics. The cyan and magenta
points represent the swallowtail singularities corresponding to the α and β eigenvalues
of the deformation tensor.
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Figure 4.13: Singularity maps for individual runs of MACS0717: Every panel repre-
sents one singularity map for one realization of MACS0717. The name of the realization
is written with the cluster name in the upper left corner. The red and green lines repre-
sent the A3-lines corresponding to the α and β eigenvalues of the deformation tensor.
The blue points represent the (hyperbolic and elliptic) umbilics. The cyan and magenta
points represent the swallowtail singularities corresponding to the α and β eigenvalues
of the deformation tensor.
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Figure 4.14: Singularity maps for individual runs of MACS1149: Every panel repre-
sents one singularity map for one realization of MACS1149. The name of the realization
is written with the cluster name in the upper left corner. The red and green lines repre-
sent the A3-lines corresponding to the α and β eigenvalues of the deformation tensor.
The blue points represent the (hyperbolic and elliptic) umbilics. The cyan and magenta
points represent the swallowtail singularities corresponding to the α and β eigenvalues
of the deformation tensor.
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Chapter 5

Gravitational Lensing of Gravitational
Waves

This chapter is based on:

Meena, A. K., Bagla J. S., "Gravitational lensing of gravitational waves: wave nature

and prospects for detection", MNRAS, 492, 1127 (2020).

5.1 Introduction

The recent detection of gravitational wave (GW) signal (Abbott et al., 2019) from coa-

lescing binaries opens up a new window to observe the Universe (Rosswog, 2015; Wei

& Wu, 2017). The upcoming runs of LIGO and Virgo with increased sensitivity and

new detector facilities (Akutsu et al., 2018) will increase the number of observed GW

signals significantly. As a result, the possibility of detecting a gravitationally lensed

GW will also increase.

Propagation of gravitational waves is influenced by gravitational fields and results

in a deflection in a manner similar to electromagnetic waves (Lawrence, 1971; Ohanian,

1974). In the typical cases of gravitational lensing of electromagnetic radiation, geo-

metric optics is sufficient to study the effects of gravitational lensing as the sources have

a finite size and the wavelength of the radiation is much smaller than all other scales of

interest (Deguchi & Watson, 1986a; Schneider et al., 1992; Matsunaga & Yamamoto,

2006). Sources of gravitational waves are fairly compact and the wavelength of radi-

ation that can be detected by existing and future detectors is larger than the region of

emission. The wavelength of gravitational waves is comparable with the Schwarzschild

103

https://ui.adsabs.harvard.edu/abs/2020MNRAS.492.1127M/abstract


radius of many astronomical objects. Thus in the case of gravitational waves, the geo-

metric optics is not always valid (Bontz & Haugan, 1981; Deguchi & Watson, 1986b;

Nakamura, 1998; Baraldo et al., 1999; Christian et al., 2018). In LIGO frequency band

(10Hz− 10kHz) for galaxy mass lenses geometric optics is sufficient (Varvella et al.,

2004) as the wavelengths are much smaller than the size of a galaxy. Under geometric

optics approximation, for galaxy mass lenses, the GW signal gets multiply imaged, and

each signal is amplified by a constant factor
√

µ , where µ is the corresponding strong

lensing magnification. Although extra amplification can help us in observing events

that are beyond LIGO range, the amplification factor is degenerate with the luminosity

distance to the source and the chirp mass of the source which can introduce errors in

the analysis (Broadhurst et al., 2018, 2019). If we can identify the multiple images in

a lensed system then the time delay between these different signals can constrain the

cosmological parameters (Sereno et al., 2011). The presence of small compact objects

(micro-lenses) in the lens can further affect the signal. In this case, the wave nature

can become important and hence, the effect of lensing is a combination of a wavelength

dependent amplification factor as well as the phase of the signal (Diego et al., 2019).

In this work, we discuss the effects of micro-lensing in strongly lensed GW signal

considering ideal microlens scenario. The effects of micro-lensing are non-negligible

in the LIGO frequency band (Christian et al., 2018; Diego et al., 2019). As we shall

see, these effects introduce frequency dependence in amplification as well as the phase

of the lensed GW signal.

In section §5.2, we review the relevant basics of wave optics in gravitational lensing.

Results are given in §5.3. Summary and conclusions are given in §5.4. We also discuss

possibilities for future work in this section.

5.2 Basics of Gravitational Lensing

In this section, we review some aspects of wave effects in gravitational lensing, which is

relevant for our analysis (Schneider et al., 1992; Nakamura & Deguchi, 1999; Takahashi

& Nakamura, 2003). To describe the effect of the gravitational lens, one can consider a

perturbed FRW as background metric, given by

ds2 =−(1+2U)dt2 +a2(1−2U)dr2 = g(B)µν dxµdxν , (5.1)

where U is the gravitational potential of the lens. The gravitational waves in this back-

ground are described as a tensor perturbation, hµν . The linear perturbation can be
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Figure 5.1: Lens mass versus gravitational wave frequency: The diagonal thin line from
top left to bottom right represents the critical frequency below which wave effects are
essential to calculate the lensing effects for a given point mass. The light and dark
shaded regions represent the relevant frequencies for LISA and LIGO, respectively.
The horizontal lines (dotted, dashed, thick solid line) represent the GW frequency at
the innermost stable circular orbit (ISCO) emitted by the source binaries of masses,
100M�+100M�, 10M�+10M�, 1M�+1M�, respectively.

written as φeµν ; where φ represents the amplitude, and eµν is the polarization tensor of

the gravitational wave. During propagation, the change in polarization tensor due to the

presence of the lens is negligible (Takahashi & Nakamura, 2003; Misner et al., 1973).

As a result, one can assume the polarization vector to be a constant. The propagation

equation (to the leading order) for the scalar amplitude φ , in frequency domain is,

(
∇2 + ω̃

2)
φ̃ = 4ω̃

2U φ̃ , (5.2)

where ω̃ = 2π f , and f is the frequency of the gravitational wave. One can solve the

equation (5.2) using Kirchhoff diffraction integral (Baraldo et al., 1999; Takahashi &

Nakamura, 2003) for waves coming from a source at a distance DS to the observer.

Following Takahashi & Nakamura (2003), the amplification factor, F ( f ) is defined as

the ratio of lensed and unlensed (U = 0) gravitational wave amplitudes φ̃ . This implies

that in no-lens limit (U = 0), the amplification factor is unity (|F |= 1).

In order to calculate the amplification factor, we need to solve the equation (5.2)

for a given lens system. Under the thin lens approximation, for a gravitational wave

source at a distance DS and a lens at DL, the amplification factor at the observer is given
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by (Takahashi & Nakamura, 2003),

F ( f ,y) =
DSξ 2

0 (1+ zL)

cDLDLS

f
i

∫
d2x exp [2πi f td (x,y)] , (5.3)

where x = ξ/ξ0, y = ηDL/ξ0DS are the dimensionless lens and source positions in the

lens and source planes, respectively, ξ0 is an arbitrary length scale, zL is the lens redshift

and td is the arrival time, given by

td (x,y) =
DSξ 2

0 (1+ zL)

cDLSDS

[
1
2
|x−y|2−ψ (x)+φm (y)

]
. (5.4)

The constant φm (y) does not depend on the lens properties and one can choose a form

to simplify calculations. Here we choose φm (y) such that the value of time delay for

minima image (image for which time delay is a global minimum) is zero: time delays

for other points are measured with respect to this image. The phase of the amplification

factor can be defined as,4φ =−i ln [F/|F |].

In the limit of geometric optics approximation ( f � t−1
d ), the integral in equation

(5.3) is a highly oscillatory function, and the amplification factor gets a significant con-

tribution only from stationary points of the integrand. The form of amplification factor

in geometric optics limit is

F ( f ,y) = ∑
i

√
|µ j|exp

(
2πi f td, j− iπn j

)
, (5.5)

where td, j is the value of time delay for j-th image, µ j is the magnification of the j-

th image and n j is the Morse index with values 0, 1/2, 1 for images corresponding

to minima, saddle and maxima of the time delay function, respectively (Takahashi &

Nakamura, 2003). One can see that the lensed gravitational waveform corresponding to

maxima (saddle) of the time delay has a phase difference of e−iπ (e
−iπ

2 ) compared to the

waveform corresponding to the minima of time delay (Dai & Venumadhav, 2017).

In order to find out the amplification factor for different lens models, we solve equa-

tion (5.3) numerically. However, for a point mass lens, the solution of equation (5.3)

can be obtained analytically and is given in terms of the hyper-geometric function,

F (ω,y) = exp

[
πω

4
+

iω
2

{
ln
(

ω

2

)
−2φm (xm)

}]

Γ

(
1− iω

2

)
1F1

(
iω
2
,1;

iω
2

y2
)
, (5.6)

where ω = 8πG(1+zL)ML f/c3, φm (y)= (xm− y)2 /2−ln xm with xm =
(

y+
√

y2 +4
)
/2.
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Figure 5.2: Micro-lensing within a strongly lensed image: The left column represents
the amplification factor for two different micro-lenses within a strong lens represented
by external shear and convergence. The right column shows the corresponding phase.
For each row, the mass of the micro-lens and the values for external convergence and
shear are mentioned in the right side of the respective row. The x-axis represents the
frequency of gravitational waves in Hertz. The y-axis represents the amplification factor
(|F |) and phase (4φ ) in left and right panel, respectively.

107



Here we used Einstein radius corresponding to a point mass lens as the scale length

ξ0 =
(
4GMLDLDLS/c2DS

)1/2. Using geometric optics approximation (ω � 1), the

above equation reduces to,

F (ω,y) =
√
|µ+|− i

√
|µ−|exp [2πi f4td] , (5.7)

where µ±, are the magnification factors for primary and secondary images for a point

mass lens in geometric optics limit and4td is the time delay between these two images.

One can see the oscillatory behavior of the amplification factor at higher frequencies.

To get the conventional expression for amplification factor, we need to take a square

followed by an average of equation (5.7). In our approach, we have assumed a point

source for gravitational waves. A further refinement where we take the finite size of the

emitting region can be made (Matsunaga & Yamamoto, 2006).

5.3 Results

In this section, we present the results of our study of gravitational lensing of gravita-

tional waves emitted from a coalescing binary. For illustration, we neglect the role of

eccentricity of the orbit. This section is further divided into subsections, considering

different circumstances in which a gravitational wave can be affected by a gravitational

lens.

5.3.1 Applicability of geometrical optics

In case of lensing of electromagnetic radiation, due to the small wavelength, use of ge-

ometric optics is adequate as corrections from the wave optics are negligible (Schneider

et al., 1992). However, the wavelength of gravitational waves that can be detected with

existing and future detectors is much larger and is comparable to the relevant scales of

some gravitational lenses. Therefore, in order to discuss the lensing of gravitational

waves, we need to ascertain whether wave effects are significant or not? We find that

for wavelengths equal to or larger than the path difference between the multiple images

of the source, one should use wave optics instead of geometric optics. Taking equation

(5.3) into account, one can write the above condition in mathematical form as (Taka-

hashi, 2017),

2π f td ® 1, (5.8)
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Figure 5.3: Parameter estimation of a lensed GW signal at high and small SNR values:
The left column shows the parameter estimation for a GW signal at SNR value 34
(in unlensed case), whereas the right column shows the parameter estimation at SNR
value 10 (in unlensed case). The x-axis represents the microlens mass. The y-axis
represents the different parameter values. In different panels, the horizontal dotted line
represents the input value of the corresponding parameters. The top row represents
the mass estimation of binary components for different microlens values. The middle
and bottom rows represent the spin component estimation for first and second binary
components, respectively. The error bars show one sigma error in the estimation of
different parameters.
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Figure 5.4: Cont.

where f is the frequency of the gravitational waves and td is the time delay between the

images. Figure 5.1 shows the plot of the equation (5.8) for a point mass lens. The thin

solid line denotes the condition 2π f td = 1. Below this line, one should use the wave

optics results as the wavelength of the gravitational waves is much larger than the path

difference between the two images, which is of the order of the Schwarzschild radius of

the lens. Above but near this line, the correction terms from diffraction effects continue

to be non-negligible. As one moves away from this line, the correction terms due to

diffraction effects become negligible, and finally one can use geometric optics if the

wavelength of the gravitational wave is much smaller than the Schwarzschild radius of

the lens. Geometric optics is a good approximation if we are a factor of at least a few

above this line.
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Figure 5.4: Effect of lensing on gravitational waveform in time domain. The top panel
is for a 10 M�+ 10 M� binary, the lower panels are for a 1 M�+ 1 M� binary. The
black curve shows unlensed signal, the red curve shows the effect of strong lensing (in
the geometric limit), and the green curve shows the effect of micro-lensing in addition
to strong lensing. The top panel includes micro-lensing by a 10 M� lens, the middle
panel includes micro-lensing by a 1 M� lens, and the lowest panel includes micro-
lensing by a 20 M� lens. In each panel the x−axis shows the time, the corresponding
frequency of gravitational waves is marked on the top of each panel. Each panel shows
the gravitational wave amplitude as a function of time (and frequency). The unlensed
signal is amplified uniformly by strong lensing, independent of frequency. However,
the inclusion of micro-lensing brings in the frequency dependence in the amplification
where the amplitude of the signal gets amplified more at some frequencies. This can
be seen in all the rows but it is seen most dramatically in the lowest row where this
introduces a strong modulation. Such modulation is seen if we cover a wider range of
frequencies, i.e., if the signal is from a lower mass source, or if the micro-lens is much
more massive than a sun like star. There is also a frequency dependent phase shift that
is obvious from lowest panel and can be read off in right panels of Figure 5.2.

The light and dark shaded regions represent the frequency ranges covered by LISA

and LIGO, respectively. The horizontal lines (dotted, dashed, thick solid line) represent

the frequency of the gravitational waves at the innermost stable circular orbit (ISCO)

emitted by the source binaries of masses, 100M�+ 100M�, 10M�+ 10M�, 1M�+

1M�, respectively. For the purpose of illustration, we have neglected the effects of

eccentricity and post-Newtonian corrections while computing the relevant frequency.

The corresponding time delay is shown in the right side of the plot. One can see that for

most of the relevant sources, the frequency of gravitational waves at ISCO lies in the

LIGO band and the wave effects are only important in case of a micro-lensing scenario

(Christian et al., 2018).
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The frequency dependent amplification and phase shift leads to chromatic effects

and this is the key signature of wave effects. These effects modify the waveform from

coalescing binaries as the frequency keeps on increasing with time in the signal. The

changes can be large enough to lead to mis-identification of source properties. Christian

et al. (2018) have shown that disentangling the effects of micro-lensing is feasible for

detections with a high signal to noise ratio (SNR≥ 30).

5.3.2 Micro-lensing Effects

The possibility of strong lensing of gravitational waves gives us the opportunity to ob-

serve the same source more than once due to the nonzero time delays (Piórkowska et al.,

2013; Smith et al., 2018; Li et al., 2018; Haris et al., 2018; Hannuksela et al., 2019). In

general, these different signals have different constant amplification factor, depending

on the geometry of the lensing system. However, as we know smaller mass compact

objects (stars, stellar remnants, black holes) are a part of galaxies and can further affect

the gravitational wave signal via micro-lensing. The lensing due to these micro-lenses

can also help us in observing intermediate mass black holes (IMBH) (Lai et al., 2018).

As mentioned above, in LIGO frequency range, only micro-lensing (Mlens ≤ 103 M�)

can give rise to the significant frequency dependent effects.

For simplicity, we only consider a single object as a potential micro-lens. In order

to calculate the effect of micro-lensing, we choose the object to be located at the origin.

The effect of the galaxy as a whole does not vary significantly over the relevant length

scale of a star. As a result, the effect of the galaxy can be describe in terms of constant

external convergence (κ ′) and constant shear (γ ′1, γ ′2). Due to the presence of external

effects, the resultant lensing potential of the star will be modified and can be written

as (Schneider et al., 1992):

ψ (x1,x2) = ln
(√

x2
1 + x2

2

)
+

κ ′

2
(
x2

1 + x2
2
)

+
γ ′1
2
(
x2

1− x2
2
)
+ γ
′
2 x1x2. (5.9)

Using equation (5.3) and (5.9), we can calculate the effect of the star on the amplifica-

tion factor as well as the phase of the gravitational wave signal.

Here we show results for three different possibilities: non-zero convergence, non-

zero shear, and non-zero convergence and shear for a lens at redshift z = 0.05 and the

source positioned at (y1,y2) = (1,0) at redshift z = 0.2. The mass of the micro-lens

is fixed to 10M� and 20M�. As one can see from Figure 5.2, the non-zero value of
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convergence (shear) introduces a frequency dependence in the amplification factor as

well as in the phase (these would have been independent of frequency in the absence

of micro-lensing). Further, this frequency dependence is highly sensitive to the lens

parameters (M,κ,γ1,γ2). For example, if we change the mass on the micro-lens from

10M� to 20M�, the amplification and phase pattern show significant changes. Similarly,

if we consider a different combination of (κ,γ1,γ2) which is equivalent to shifting the

position of the micro-lens, the amplification pattern changes (see Figure 5.2). The effect

on the chirp signal from coalescing binaries is to modulate the amplitude as we have a

frequency dependent amplification, and also to introduce time varying phase shifts.

The effect of these oscillations on parameter estimation is shown in Figure 5.3. We

have considered the effect of the microlens and ignored the effect of the strong lens

galaxy as that does not introduce any frequency dependent variations in the signal.

The left and the right column represent the parameter estimation of different binary

parameters for a 2.5 M�+2.5 M� binary for different SNR values. The SNR value in

the left column is 34 for the unlensed signal, whereas the SNR value in the right column

is 10 for the unlensed signal. These cover a reasonable range in SNR and give us a

glimpse of what to expect. Here we used PyCBC for parameter estimation (Biwer et al.,

2019). As one can see in the right column of Figure 5.3, at small SNR values (∼10),

the estimated values of various binary parameters do not differ significantly within one

sigma errors. However, if the SNR value is larger than 30, then the microlensing effects

on the parameter estimation can be distinguished within one sigma errors. Hence, the

effect of microlensing is to modify the estimated values of binary parameters. This can

be seen in the middle and bottom panel of the left column of Figure 5.3, where a non-

zero spin is estimated even though the input spin is zero. It is interesting to note that the

extent of the allowed region remains similar to the case of no micro-lensing (marked

by 0 on the x-axis) but the allowed region moves around with variation in the microlens

mass. These modifications can be more significant if we also take into account the

impact of the host galaxy as the effect of the host galaxy can further increase the SNR

value (Figure 5.2).

This introduces a severe problem in identifying different counterparts of a strongly

lensed GW signal as the micro-lensing can introduce a different type of frequency de-

pendence in different images.

Keeping source properties the same, if we explore the effects with changes in the

mass of the micro-lens, we find that the form of variation of amplification and phase

shift with frequency is monotonic in the LIGO range for micro-lenses with a smaller

mass (∼M�), whereas it undergoes oscillations for a larger mass (> 102M�). This is to
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be expected as with larger masses we gradually approach the geometric limit.

For better visualization, Figure 5.4 represents the lensed waveform in the time do-

main. We show the expected signal in the final moments before coalescence for three

cases. We see here that for the low mass binary, we can probe gravitational waves of a

higher frequency and hence, we are able to see the effect of oscillation in amplification.

No such feature is seen in the signal from the higher mass binary as it does not reach

higher frequencies. However, a frequency dependent amplification is seen in all cases.

There is a frequency dependent phase shift that is not obvious from these figures but

which is large enough to mislead in the mapping from the signal to the source parame-

ters. As micro-lensing does not affect each sight line in the same manner, a comparison

of the red and the green color waveform in bottom panel of Figure 5.4 is a representa-

tion of the differences that we may encounter due to this effect. It is clear from here that

it may be difficult to identify signal from different strongly lensed images as coming

from the same source due to the variations introduced by micro-lensing.

The probability of a micro-lensing event depends on many factors but it is not small.

We are doing a detailed estimation but a preliminary analysis suggests that a few percent

of the images are likely to be affected by micro-lensing. This order of magnitude anal-

ysis is done for an elliptical galaxy acting as a gravitational lens with de Vaucouleurs

profile along with the Salpeter initial mass function. The average microlensing event

rate for such a galaxy lens is of the order of 10−2. If we specifically consider the

microlensing near half-light radius, then the value of optical depth is larger than the

average value: this is perhaps more relevant as the impact parameter in most cases is of

this order or smaller. Similarly, if we consider microlensing due to an edge-on spiral

galaxy, then the probability of microlensing can further rise as the projected density of

the microlenses within the disk is much higher. On the other hand, the probability for

microlensing for off-plane images is much lower in this case.

5.4 Conclusions

We have described the effects of micro-lensing alone and in case of a strongly lensed

GW signal. As shown above, micro-lensing is the only way in which lensed signal in

LIGO frequency band can get frequency dependent effects. The micro-lens may reside

in our galaxy or it may be embedded in a bigger lens, e.g., an intervening galaxy. The

effects of micro-lensing depend strongly on the lens parameters. For large values of

SNR (> 30), as we change any of the lens parameters, the variation of amplification

and phase with frequency changes significantly. Because of the possibility that differ-
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ent counterparts of strongly lensed GW signal can get affected differently by micro-

lensing, or only one image may be affected significantly, it introduces a real challenge

in identifying the counterparts of the strongly lensed GW signal. The other difficulty

in identifying the different counterparts of a strongly lensed GW signal is the poor lo-

calization of the GW signal. However, this identification can be possible if SNR is

large enough (more than about 30) but most detections fall below this threshold. Apart

from that, if the magnification factor due to the strong lens is large, then the possibility

of microlensing is unavoidable. In such a case, even a few solar mass microlens can

introduce significant distortions in the observed GW signal (Diego et al., 2019).

The challenge can be turned into an opportunity if a counterpart is observed in the

electromagnetic radiation as this may permit better localization and identification of the

images. In such cases, we can recover information about the wave effects and param-

eters of the micro-lens. Here, the sensitivity of the amplification and phase difference

to parameters of the lens are useful features. In addition, time delay measurements

with optical counterparts can be used to infer a lot of information about the lens and

cosmological parameters (Piórkowska et al., 2013; Hongsheng & Xilong, 2018).

Gravitational lensing in the LISA band by much heavier lenses retains effects of the

wave nature and hence it should be possible to detect these (Liao et al., 2019). However,

lens masses required are in a range where few potential lens candidates are available.

We propose that super massive black holes in intervening galaxies may produce effects

that can be tracked in the LISA band. Observations here are sensitive to the mergers

of very massive black holes, or to other coalescing binaries at epochs much before the

final merger. In the latter case, superposition of signals with different time delays can

produce modulation effects (Takahashi & Nakamura, 2003; Sereno et al., 2010).

Micro-lensing can affect gravitational waves from distant sources even in the ab-

sence of strong lensing. This may happen due to a lens in an intervening galaxy or a

lens in the Galaxy. The probability for this to happen is small in most directions but

is relatively (Wood & Mao, 2005) very high in the galactic plane region. Given that

this can affect signal from sources in more than 10% of the sky with a high probabil-

ity, effects of micro-lensing need to be taken into account seriously. It has been shown

(Christian et al., 2018) that for detections with a high SNR, it is possible to disentangle

the micro-lensing effects and source parameter determination. However, it is important

that for other events we budget for the uncertainty that is introduced because of the

likelihood of micro-lensing.

115



116



Chapter 6

Summary and Future Work

In this thesis, we have studied the point singularities (swallowtail, hyperbolic umbilic,

and elliptic umbilic) in gravitational lensing. In addition, we also studied the effect of

strong and micro-lensing on gravitational wave signals.

In Chapter 2, we have discussed the algorithm that we developed to locate these

point singularities and validated it in the case of ideal and actual lenses. The end prod-

uct of this algorithm is a singularity map comprising all the point singularities and

A3-lines. These A3-lines denote the points in the lens plane, which correspond to the

cusps in the source plane. In Chapter 3, we applied our algorithm in the case of ten

different cluster lenses from the Hubble Frontier Fields (HFF) Survey and Reioniza-

tion Lensing Cluster Survey (RELICS) and constructed the corresponding singularity

maps. For each cluster lens from the HFF survey, we have constructed four different

singularity maps corresponding to mass models provided by different teams. In this

work, we also calculated the point singularity cross-section for the James Webb Space

Telescope (JWST) in filter F200W. In Chapter 4, we studied the effect of uncertainties

associated with the mass models on the singularity maps. For this purpose, we have

considered simulated and HFF cluster lenses. We showed that the cross-section estima-

tions presented in Chapter 3 are the lower limit and one expect to observe at least one

swallowtail and one hyperbolic umbilic in every five clusters. Here, we also estimated

the cusp cross-section for HFF clusters. We find that we expect to observe at least 20-30

tangential and 5-10 radial three-image arcs in the Hubble Frontier Fields cluster lenses

with the JWST.

In chapter 5, we investigated the effect of microlenses on the strongly lensed grav-

itational wave signal in ideal lensing scenarios. We find that micro-lensing combined

with strong lensing can introduce a time-varying phase shift in the signal and hence can
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Figure 6.1: Strong lensing of HXDF from A370: The left panel represents the unlensed
HXDF. The right panel represents the corresponding lensed HXDF due to the A370.
One can see the formation of image formation near swallowtail (giant arc).

lead to detectable differences in the signal observed for different images produced by

strong lensing. This, coupled with the coarse localization of signal source in the sky for

gravitational wave detections, can make it challenging to identify the common origin of

the signal corresponding to different images and use observables like time delay.

6.1 Strong Lensing of HXDF

So far, we have looked at the possibility of detecting image formation near point sin-

gularities with the JWST. However, another very exciting idea is to look for these point

singularities with Hubble eXtreme Deep Field (HXDF, Illingworth et al., 2013) as a

template of the source galaxy distribution. By using HXDF, one can verify the predic-

tions based on different lens mass models. With different magnitude cuts on the lensed

HXDF field, one should be able to illustrate why we have only detected a few image

formations near point singularities. In this work, we will use HFF cluster lens models

provided by the Williams group (discussed in Chapter 3 and 4) as they give the mini-

mum number of point singularities and as they are superposition of a large number of

Plummer models, hence, we can have an arbitrary resolution.

The other important part for the lensing of HXDF is the properties of source galaxies

in the HXDF. One example of HXDF lensing is presented in Figure 6.1. The left panel

represents the unlensed HXDF with the source cutouts taken from Nolan et al. (2020).
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The right side panel represents the corresponding lensed HXDF field due to A370. The

A370 is situated at (18.72′′,5.22′′) and rotated by an angle of 41◦. In Nolan et al. (2020),

only around half (∼ 5200) of the (brightest) sources are considered for their study. But

in our work, to get the correct estimates of image formation near point singularities, we

need to consider all the sources (∼ 10000) from HXDF. From this study, we will also

be able to get realistic estimates of the time-delay between multiple images formed near

point singularities.

The other obvious extension of the work presented in this thesis is to consider a

larger sample of cluster lenses and revisit the cross-section estimations and the effect of

uncertainties. From Chapter 4, it is evident that the best-fit mass models reconstructed

using Grale will give the lower limit. However, the same cannot be said for the paramet-

ric mass models. Hence, it will be exciting to see how the uncertainties in the parametric

model parameters affect the point singularity cross-section.

In Mishra et al. (2021), we have studied the effects of microlenses population on

the strongly lensed gravitational wave signal. We see that the microlens population can

introduce significant modulations in the strongly lensed signal, and these modulations

are very sensitive to the strong lens magnification. Following Meena & Bagla (2020a,

Chapter 5) and Mishra et al. (2021), we will study the effect of gravitational lensing

on gravitational waves signal and the corresponding parameters in highly magnified

regions in the galaxy and cluster scale lenses.
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