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Abstract

Equilibrium Statistical Mechanics is the study of the large systems on which statistical

methods and probability theories are applied. It is concerned with the properties of the

matter at the thermal equilibrium, i.e. there is no net flow of heat between the system and

surroundings. It aims to derive not only the general laws of thermodynamics but also the

thermodynamic functions of a given system. The real system in statistical mechanics is

considered to be in various possible states, collection of which is termed as ensemble.

However, the systems are subjected to time-dependent phenomenons which are not in the

state of thermal equilibrium. Hence, the study of Non-Equilibrium Statistical Mechanics

is important to analyze the behaviour of such systems with time as a parameter. The

fluctuations also play an important role in these systems. But there is a difficulty in

dealing with such systems as we don’t have any postulates for non-equilibrium states.

A powerful approach to such non-equilibrium states and the fluctuations is stochastic

differential equations which accurately model the large number of physical situations.

The Langevin model is a mathematical model used to understand the dynamics of the

molecular systems by writing the equations of motion for the particle in a fluid medium.

In this thesis, the Langevin model is used to study the behaviour of particle in a fluid

medium under different potentials. The time correlation functions and mean squared

values of velocity and positions are plotted as a function time to observe how the particle

is behaving at shorter and longer time scales. It is also observed whether the behaviour

of the particle at longer time limits matches with that at thermal equilibrium.
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Chapter 1

Non-Equilibrium Statistical Mechanics

1.1 Introduction

Equilibrium Statistical Mechanics (ESM) helps us understand the behaviour of average

values of the system at the thermal equilibrium. It also enables us to deal with the fluctu-

ations of physical quantities about their mean values only at the thermal equilibrium. We

can say that ESM only deals with systems at thermal equilibrium. It does not deal with

the time-dependent phenomena. All the ensembles considered in ESM - microcanonical,

canonical and the grand canonical concerns to the systems in thermal equilibrium.

However, in real life we usually deal with the open systems (which exchange both en-

ergy and matter with the surroundings) which are not in thermal equilibrium with other

systems with which they interact. The time variation of these systems must be dealt with.

So, we go beyond ESM to non-equilibrium statistical mechanics in which time is taken

as a variable parameter. But there is a serious difficulty in dealing with these systems. As

the ESM resides on the postulate that all the accessible microstates of an isolated system

in thermal equilibrium are equally probable. But there is no such postulate in NESM. We

do know that if a system is slightly disturbed away from the thermal equilibrium, it will

return back to the state of equilibrium. But we do not have the complete understanding of
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all the possible non-equilibrium states, those far away from the equilibrium. Biological

systems, for instance typically operate under the far from equilibrium conditions.

Fluctuations are an important part of the natural processes. They make the processes

undetermined and statistical in nature. In the systems with a large number of degree

of freedom, one would expect randomness and irregularity in the systems. One such

simplest process is the Brownian motion which corresponds to the irregular motion of

the large particles suspended in the fluid. These large particles will experience collisions

with the fluid particles, which produce no effect on an average, giving rise to random

walks. Early investigations of this phenomena were made on pollen grains, dust particles

or various other objects of colloidal size. Later it was made clear that this theory can be

applied to many other phenomena. In particular, the theory of Brownian motion has

been extended to situations where ’Brownian particle’ is not a real particle but some

collective property of a macroscopic system. To study these collective properties, we

use stochastic approach based on the Langevin equation. This is a model in which

random force or noise part is introduced in the equation of motion of the particles with

prescribed statistical properties[2].

1.2 Probability Density Function

Probability Density function, Pa(x)dx is defined as the probability of the event a to

happen lies between x and x + dx. This density function is normalisable,

� �

⇥�
Pa(x)dx = 1. (1.1)

Similarly, Joint PDF Pa,b(x, y)dxdy, is defined as the probability of the event a to occur

lies in the interval x and x+dx and the probability of the event b to occur lies in the
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interval y and y+dy.
� �

⇥�
dx

� �

⇥�
dy Pa,b(x, y) = 1 (1.2)

If the two variables x and y are independent of each other then, the Joint PDF can be

reduced to the Pa,b(x, y) = Pa(x)Pb(y).

Now we will define the probability density function for the particles in a fluid at the

thermal equilibrium. Consider a container of volume V filled with the ideal gas i.e. there

are no interactions between the particles. The gas is in equilibrium with its surroundings.

The probability density function (PDF) for a given particle at the equilibrium is defined

as the �eq(�r,�v). Since the particle is free to move inside the container and probability

distribution of v is given by the Maxwellian distribution of velocities,

�eq(�r,�v) =
1
V

⇥
m

2⇥kBT
e
⇥mv2
2kBT (1.3)

If we ask of what happens to the particle inside the container as a function of time given

the initial conditions (r0, v0, t0); then we talk of Conditional PDF which is denoted as

�(�r,�v, t|�r0, �v0, t0).

We know that as (t ⇥ t0) ⇤ �, system will tend towards thermal equilibrium, so it will

follow the equation (1.3). Also as (t ⇥ t0) ⇤ 0, the PDF is written as,

�(�r,�v, t|�r0, �v0, t0) = ⇤3(�r ⇥ �r0)⇤
3(�v ⇥ �v0) (1.4)

Now we know the extreme conditions for this Conditional PDF, but we don’t know how

the particle will behave in between. For that we will introduce the Langevin model and

write the equations of motion for this particle.
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Chapter 2

Langevin Model

2.1 Brownian Motion and Langevin Equation

In this model, we write an appropriate equation of motion for the system, in which its

interaction with other degrees of freedom is modeled in terms of stochastic or random

force with suitable statistical properties.

Consider a particle of mass m having initial velocity v0 at some instant t0 immersed in

the fluid medium. It is in thermal equilibrium with the molecules of the fluid. The latter

causes some fluctuations in the velocity of the particle via some small collisions with the

particle which is a random process. At large times, we expect the average velocity of

the particle to be zero, no matter what v0 was. At any time t, we can write the Newton’s

equation of motion of the particle as,

mv̇(t) = F(t) (2.1)

where F(t) is the total force on the particle. Let there be an external force as well so,

F(t) = Fint(t) + Fext(t), (2.2)
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where Fext(t) is the applied external force and Fint(t) is the internal force arising from

the bombardment of the molecules of the fluid. The Fint(t) is a random force, as it arises

due to random collisions of the particle with the fluid molecules.

The internal force is divided into a systematic part and a fluctuating part. Both these

forces come from the interaction of the particle with its environment.

Fint(t) = ⌅(t) + Fsys(t) (2.3)

Here, ⌅(t) is truly a random force (fluctuations) whose average is zero and is indepen-

dent of the state of motion of the particle. Fsys(t) is a deterministic force that depends

on the state of motion of particle, it generally prevents very large velocity fluctuations

from building up. If the speed of the particle is very large at some instant of time, it will

experience more collisions with the fluid molecules which will slows down its speed.

We generally assume the Fsys(t) to be frictional force proportional to the instantaneous

velocity of the particle, directed opposite to it.

Fsys(t) = ⇥m⇧v(t), (2.4)

where ⇧ is the viscous drag coefficient. From Stoke’s law, we know that the drag force

on the sphere of mass m, radius a flowing in a viscous medium with viscosity ⌃ is given

as: m⇧ = 6⇥⌃a So, the equation of motion we get for the particle is,

mv̇(t) = ⇥m⇧v(t) + ⌅(t) + Fext(t), (2.5)

with initial condition v(0) = v0. This is the famous Langevin equation for the Brownian

particle. It is a linear stochastic differential equation for the velocity of the particle of

mass m with v as the driven variable and ⌅ is the noise that induces randomness in the

velocity.
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The solution of this equation is,

v(t) = v0e⇥⇧t +
1
m

� t

t0
dt1e⇥⇧(t⇥t1)[⌅(t1) + Fext(t1)], (2.6)

Now we will talk about the random (fluctuations) force, ⌅(t). This force is supposed to

come from the impacts of the Brownian particle with the molecules of the surrounding

medium. The force during an impact is supposed to vary with extreme rapidity over

the time of observation. So, we will summarize the force by giving its first and second

moments as time averages over the infinitesimal time interval.

Since, mean value of the random force is zero at all times, i.e.

⌅(t) = 0 for all t. (2.7)

Note:

1. (.....) is the conditional average over all the possible realizations of random force

⌅(t).

2. < (.....) > is the total average over all the possible values of the initial conditions

as well. We can do this by integrating the function with the probability distribution

function i.e.

< v(t) >=
� �

⇥�
�eq(v0) v(t)dv0

So, we can write,

v(t) = v0 e⇥⇧t +
1
m

� t

0
dt1 e⇥⇧(t⇥t1) Fext(t1), (2.8)

because Fext is imposed from the outside on the system and is unaffected by any aver-

aging. In absence of any external force acting on the system, above equation will be
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reduced to,

v(t) = v0 e⇥⇧t (2.9)

Therefore,

lim
t⇤+�

v(t) = 0 (2.10)

This shows that the state of thermal equilibrium is maintained with the friction in the

system: the dissipative mechanism helps the fluctuations to damp out with time and

restore the system to equilibrium.

The mean squared velocity in the absence of applied force is written as:

v2(t) = v2
0e⇥2⇧t +

1
m2

� t

0
dt2

� t

0
dt1e⇥⇧(t⇥t1)⇥⇧(t⇥t2) ⌅(t1)⌅(t2) (2.11)

The cross terms vanishes as ⌅(t) = 0. The simplest assumption we make is that ⌅(t)

is a random force or a white noise i.e., it is delta-correlated, stationary, Gaussian and

Markov process (random process in which future of the process is independent of the

past, given the present). So, ⌅(t) has no memory at all; its autocorrelation function can

be written into product of averages,

⌅(t1)⌅(t2) = (⌅(t1)) (⌅(t2)) = 0 for all t1 ⌅= t2. (2.12)

Therefore, the random force is not related at two different times and is independent of

each other, no matter how close t1 and t2 are. Since the random force is stationary; it

means that it is a function of the magnitude of the time difference only i.e. |t1 ⇥ t2|.

Hence the autocorrelation function must be of the form,

⌅(t1)⌅(t2) = 2B ⇤(t1 ⇥ t2), (2.13)

B is the measure of the strength of the white noise.
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So, we define the random force (fluctuating force or white noise) as:

< ⌅(t) >= 0 (2.14)

< ⌅(t1)⌅(t2) >= 2B ⇤(t ⇥ t�) (2.15)

The delta function in time indicates that there is no correlation between impacts at dif-

ferent instants of time t and t�. Also, the fluctuating force has the Gaussian distribution

determined by these moments.

Putting the values in the equation 2.15, we get the mean squared velocity as:

v2(t) = v2
0 e⇥2⇧t +

B
m2⇧

(1 ⇥ e⇥2⇧t). (2.16)

As t ⇤ �,

v2(t) =
B

m2⇧
(2.17)

From Equilibrium Statistical Mechanics, we know that the mean squared velocity is

proportional to the absolute temperature T at the thermal equilibrium;

< v2(t) >eq =
kBT
m

(2.18)

Hence, both the equations 2.17 and 2.18 should be equal, so,

B = m⇧kBT. (2.19)

This is a very important result in NESM. This is the Fluctuation Dissipation Theorem.

It relates the strength of random noise B with the magnitude of friction coefficient ⇧. If

an object is moving through a fluid, it experiences a drag. Drag dissipates kinetic energy,

turning it into heat. The corresponding fluctuation due to heat is Brownian motion. An
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object in a fluid does not sit still, but rather moves around with a small and rapidly-

changing velocity as molecules in the fluid bump into it. Brownian motion converts heat

energy into kinetic energy, the reverse of drag.

2.2 Correlation Functions

Equilibrium statistical mechanics is based on the idea of ensembles. Thermodynamic

properties of the system can be found by calculating the partition function, Z of the en-

semble. Similarly, in Non-equilibrium Statistical Mechanics various properties of the

systems can be found by a pair of correlation functions. A fundamental difference

between the two is that there is only one equilibrium state while there are many non-

equilibrium states. We cannot write various partition functions for different states, hence

we deal with time correlation functions which play the same role as partition functions.

2.2.1 Time Average vs. Ensemble average

Noise is a stochastic process consisting of a randomly varying function of time and

space. We cannot talk of the single event at a certain time or position, we can only

discuss the average quantities over a certain time interval or averaged quantity of many

identical systems at a given time. The former is called as the time average and the latter

as ensemble average. Let us consider N systems which produce the noisy waveforms

xi(t),

Correlation function describes how the observable x at time t is related to its value at t�.

It is also referred to as the autocorrelation function to distinguish it from the correlation

functions of x with other observables. It is written as Cxx(t, t�).

Cxx(t, t�) =< xi(t)xi(t�) > = lim
⌥⇤�

1
⌥

� ⌥

0
dt� x(t�) x(t + t�) (2.20)
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Figure 2.2.1: Ensemble average vs. Time average

This is the Time correlation function.

Similarly, Ensemble averaged correlation function is written as,

Cxx(t, t�) = lim
N⇤�

1
N

N

⇥
i=1

xi(t)xi(t�)

=
� �

⇥�
x1(t)x2(t�)p(x1, x2, t, t�)dx1dx2

(2.21)

Here, x1 = x(t), x2 = x(t�) and p(x1, x2, t, t�)dx1dx2 is the probability density func-

tion such that x is found in the range between x1 and x1 + dx1 at time t and also in the

range between x2 and x2 + dx2 at time t�.

If the system under investigation is ergodic, a long time average is equivalent to an equi-

librium ensemble average. It is often said that time averaging and ensemble averaging

are identical for statistically stationary systems. A stationary random process is defined

as the one whose statistical properties do not change with time. In particular, the auto-

correlation function of a stationary random process is a function only of the difference

of the two time arguments involved, and not of the two arguments separately [7].
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Chapter 3

Computational Results

3.1 Particle in Gaussian white noise

My first task was to solve the Langevin equation considering only the white noise term

on the particle in the fluid medium. We are supposing the internal force due to molecular

collisions to be zero. So, the equation of motion for this system is:

v̇(t) = ⌅(t) (3.1)

The white noise is defined in the same way as in equations 2.14 and 2.15. Solving the

above equation, we get:

v(t) = v0 +
�

⌅(t)dt (3.2)

where v0 is the initial velocity of the particle. If we calculate the average velocity of the

particle, it will be equal to:

v(t) = v0, (3.3)



14 Chapter 3. Computational Results

since the average of white noise is zero. The total average of the velocity (over all the

possible initial v0 values) will be,

< v(t) > =
� �

⇥�
v0 e⇥

mv2
0

2kBT dv0

= 0.

The time correlation function of the velocity of the particle is equal to:

v(t)v(t�) = v2
0 +

� t

0
dt1

� t�

0
dt2 ⌅(t1)⌅(t2)

= v2
0 + 2Bt(or t�). (3.4)

Similarly, the total average of mean squared velocity will be,

< v2(t) > =
� �

⇥�
(v2

0 + 2Bt) e⇥
mv2

0
2kBT dv0

=
kBT
m

+ 2Bt.

The mean squared displacement of the velocity of the particle is also same as time cor-

relation function.

v2(t) = v2
0 + 2Bt.

The figure 3.1.1 clearly shows the random movement of the particle around its mean

position. Since the particle is not allowed to leave the volume, so it will not move in a

particular direction, henceforth its mean velocity will be zero.

The figure 3.1.2 shows the computational results of this system. In this plot, I considered

the initial velocity of the particle (v0) to be zero. The three coloured lines represents the

different values of B, the strength of white noise. For the blue line, the slope is 1, so the

equation is: < v(t)v(t�) >= t as I took the 2B value to be equal to 1. We can verify
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Figure 3.1.1: Velocity vs. time

that the analytical results are matching with the computational ones.

So, we can conclude from these expressions that,

• This is not a stationary system as its properties depend on time.

• The initial velocity of the particle persists for all time as its conditional average

velocity.

• The mean squared displacement of the velocity of the particle is proportional to

the time.

• As 1
2 m < v2(t) >= 1

2 kBT (for 1D), this implies that the temperature of the

system will also keep in increasing with time. For t ⇤ �, the temperature will

also be �, hence violating the results at the thermal equilibrium.

Hence, the dissipative term plays an important role in maintaining the thermal

equilibrium of the system.
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Figure 3.1.2: Time correlation function vs. time

3.2 Addition of drag force term

Now the dissipative term is also included in the Langevin equation:

v̇(t) = ⇥⇧v(t) +
1
m

⌅(t) (3.5)

So,

v(t) = v0e⇥⇧t +
1
m

� t

0
dt1e⇥⇧(t⇥t1)⌅(t1),

If we calculate the average velocity of the particle, it will be equal to:

v(t) = v0e⇥⇧t. (3.6)

Similarly, the time correlation function of the velocity of the particle will be written as:

v(t)v(t�) = v2
0e⇥⇧(t+t�) +

1
m2

� t

0
dt2

� t�

0
dt1e⇥⇧(t⇥t1)⇥⇧(t�⇥t2) ⌅(t1)⌅(t2)
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Putting the value of second moment of ⌅(t), we get the velocity correlation function as:

v(t)v(t�) =
B

m2⇧
e⇥⇧|t⇥t�| + (v2

0 ⇥
B

m2⇧
)e⇥⇧(t+t�) (3.7)

Similarly, the mean squared velocity will be equal to:

v2(t) =
B

m2⇧
+ (v2

0 ⇥
B

m2⇧
)e⇥2⇧t (3.8)

The total average mean squared velocity is,

< v2(t) > =
� �

⇥�
�(v0) v2(t) dv0

=
B

m2⇧
+ (

kBT
m

⇥ B
m2⇧

)e⇥2⇧t

=
kBT
m

.

since the total average should be independent of time and we also know from the Fluc-

tuation - Dissipation relation that B = m⇧kBT.

So, we can conclude that:

• The average velocity of the particle is simply that of a damped particle in the

absence of white noise. It is equal to zero for very longer times.

• The mean squared velocity will be a constant (= B
m2⇧

) at the thermal equilibrium

(at longer times).

• The auto correlation function of the velocity of the particle is proportional to the

difference of t and t� noticing that the second term will be zero at the thermal

equilibrium. Therefore, it is a stationary system.

• The velocity correlation is an exponentially correlated function at the thermal equi-

librium.
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• From the expression of velocity autocorrelation 3.7, we can notice that the ⇧⇥1

has the units of time. This is known as the velocity correlation time, the time

scale over which the system returns to the thermal equilibrium when disturbed out

of that state by a small perturbation.

3.3 Solving the Langevin equation for position of parti-

cle

Now we will solve the Langevin equation for the position of the particle as a function of

time, x(t). The equations of motion are,

ẋ(t) = v(t);

mv̇(t) = ⇥m⇧v(t) + ⌅(t).
(3.9)

We already solved the second equation for v(t) in the section 3.2. Now we will solve the

for x(t).

x(t) = x0 +
� t

0
v(t�) dt�

The average displacement of the particle is,

x(t) = x0 +
� t

0
v0e⇥⇧t�dt�

= x0 +
v0
⇧
(1 ⇥ e⇥⇧t).

(3.10)

The average position of the particle is same as its initial position, coincides with that of

the particle which does not experience any force though the average of noise is zero. For
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Figure 3.3.1: The region of integration over t1 and t2 for the case of (t > t�). The t1 = t2
line divides the square into two equal parts. Hence area under the square can be written as twice
the area of one triangle, where t2 will be integrated from 0 to t1 and t1 will run from 0 to t�.
Similarly, in the rectangle region, integration of t1 will run from t� to t and of t2 will run from 0

to t�.

the calculation of variance in position, we have the expression as,

x(t)x(t�) = x2
0 +

� t

0
dt1

� t�

0
dt2 v(t)v(t�)

= x2
0 +

B
m2⇧

� t

0
dt1

� t�

0
dt2 e⇥|t1⇥t2|

= x2
0 +

B
m2⇧

(2
� t�

0
dt1

� t1

0
dt2 e⇥(t1⇥t2) +

� t

t�
dt1

� t�

0
dt2 e⇥(t1⇥t2))

= x2
0 +

B
m2⇧3 (2⇧t� + e⇥⇧t� + e⇥⇧t ⇥ e⇥⇧(t⇥t�) ⇥ 1)

= x2
0 +

kBT
m⇧2 (2⇧t� + e⇥⇧t� + e⇥⇧t ⇥ e⇥⇧(t⇥t�) ⇥ 1) (t > t�)

We can observe that the correlation is a function of both t and t�, hence the position of

the particle is not a stationary random process in contrast to the velocity of the particle.

The mean squared displacement of the particle is,

x2(t) = x2
0 +

2kBT
m⇧2 (⇧t ⇥ 1 + e⇥⇧t). (3.11)
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Figure 3.3.2: The mean squared displacement with time is shown. The purple line corresponds
to the original data curve. We can see that the green line(which corresponds to f (x) = x2 fit
curve) coincides with the purple line at smaller time scales i.e. shows the ballistic behaviour of
the particle while the red line (which corresponds to the curve f (x) = 2x) coincides with the

data curve at larger time scales which shows the diffusive behaviour of the particle.

For the limit ⇧t ⇤ 0, the above expression is reduced to,

x2(t) =
kBT
m

t2.

The particle is following the ballistic motion for smaller time scales. Similarly, in the

limit ⇧t >> 1, the mean squared displacement is,

x2(t) =
2kBT
m⇧

t. (3.12)

Hence, the root mean square of the distance increases as
⇧

t with time. This is the

characteristic behaviour of the diffusion. So, the diffusion constant, D is equal to

x2(t) = 2Dt for 1-D.
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So,

D =
kBT
m⇧

. (3.13)

We can notice that D is inversely proportional to the ⇧ or viscosity of the medium.

So, the amount the particle gets kicked increases with decrease in the viscosity of the

medium. This is the famous Einstein relation. This relation can be used to determine the

value of Boltzmann constant(kB) experimentally.

3.4 Brownian Oscillator

In the above section, we solved the Langevin equation for overdamped limits. Now we

will repeat our analysis retaining the inertial term i.e.,

ẋ(t) = v(t);

mv̇(t) = ⇥m⇧v(t)⇥ m�2
0x(t) + ⌅(t).

(3.14)

An external potential of V(x) = 1
2 kx2 is applied to the system. The tagged particle is

harmonically bound in the fluid medium. Hence it will undergo an influence of restor-

ing force ⇥m�2
0x, where �0 is the frequency with which particle is oscillating in the

medium.

Solving the equation, we get the shifted frequency as:

�2
s = �2

0 ⇥
1
4
⇧2 (3.15)

Depending on the values of �0 and ⇧, we will be having three cases: underdamped

(�0 > 1
2⇧), critically damped (�0 = 1

2⇧) and overdamped (�0 < 1
2⇧). Performing

the algebra of the equations using the Green’s function with the given initial conditions
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(x0, v0), we get the solution as,

x(t) =
e
⇥⇧t

2

�s
[(�s cos �st +

⇧

2
sin �st)x0 + (sin �st)v0]

v(t) =
e
⇥⇧t

2

�s
[⇥(�2

0 sin �st)x0 + (�s cos �st ⇥
⇧

2
sin �st)v0]

(3.16)

Both x(t) and v(t) are tending to zero as t ⇤ � irrespective of the initial condition

values (x0, v0). Likewise, we can calculate the values for mean square displacement and

velocity at longer time scales:

< x2(t) > =
kBT
m�2

0

< v2(t) > =
kBT
m

(3.17)

Both the expressions matches with what we expect at the equilibrium conditions. We can

also observe that the particle is not showing diffusive behaviour at long time limits i.e.

not proportional to t as in the case when no external force was applied. We can also verify

it physically. Since the particle is confined to move in a parabolic bowl shape potential,

it can never reach infinity as a restoring force ⇥m�2
0x will always push the particle back

to its mean position. This force is strong enough to overcome the fluctuating effects of

the white noise which always diverges the particle at t ⇤ � limit.

Also, in this case of Brownian oscillator, both displacement and velocity are the station-

ary processes which was not the case when no external field was applied.
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3.5 Particle in overdamped limits

Now consider the overdamped limits i.e. inertial term is put to zero. Also there is an

external potential of V(x) = 1
2 kx2 applied to the system. So there will be an extra

trapping force (⇥kx) experienced by the particle. So, now the equation of motion is

changed to,

⇥⇧ẋ(t)⇥ kx + ⌅(t) = 0.

ẋ(t) +
k
⇧

x(t) =
1
⇧
⌅(t)

(3.18)

where k is the trapping constant. Let x0 be the initial position of the particle. Solving

the equation, we get the solution as,

x(t) = x0 e⇥
k
⇧ t +

� t

0
dt� e⇥

k
⇧ (t⇥t�) ⌅(t�) (3.19)

Average displacement of the particle will be,

x(t) = x0e⇥
k
⇧ t. (3.20)

The time correlation function of the position of the particle will be:

x(t)x(t�) = x2
0e⇥

k
⇧ (t+t�) +

1
⇧2

� t

0
dt2

� t�

0
dt1e⇥

k
⇧ (t⇥t1)⇥ k

⇧ (t
�⇥t2) ⌅(t1)⌅(t2)

Putting the value of second moment of ⌅(t), we get the result:

x(t)x(t�) =
B
⇧k

e⇥
k
⇧ |t⇥t�| + (x2

0 ⇥
B
⇧k

)e⇥
k
⇧ (t+t�) (3.21)
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The mean squared displacement of the particle will be:

x2(t) =
B
⇧k

+ (x2
0 ⇥

B
⇧k

)e⇥2 k
⇧ t (3.22)

Figure 3.5.1: The mean squared displacement is plotted with the time in the overdamped limits.
The quantities are plotted on the log-log scale. There is an approx. linear relation initially and

then the value saturates to a constant value (= kBT
m ) for larger times.
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So, we can conclude that,

• The average displacement of the particle is zero i.e. it performs the random motion

around its mean position.

• The autocorrelation function depends on the trapping constant(k) and the viscous

drag coefficient(⇧) as e⇥
k
⇧ |t⇥t�|. For a large value of trapping constant, the corre-

lation value is decaying rapidly than for a smaller value of k.

• Similarly, the correlation between displacement values at different times stays for

some longer time with the increase in the ⇧ value. Both these conclusions are also

verified by the computational results.

• It is a stationary process since the statistical properties do not depend upon time.

• The mean squared displacement value increases with the time initially and then

attains a constant value at larger times.
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Figure 3.5.2: The normalized autocorrelation function of the position of the particle vs. time.
The time is plotted on the log scale. It is clear from the graph that correlation between velocities

decays exponentially.

(a) The graph indicates the behaviour of autocorrelation function with the variations in k (trapping con-
stant) value. From the graph, it is clear that with the increase in k value, the autocorrelation value is

decaying faster. f(x), g(x), h(x) drawn in the plots are the fitting curves corresponding to each k value.

(b) The graph represents the behaviour of autocorrelation function with the variations in viscous drag
coefficient ⇧ value. The correlation function is decaying slower with the increase in gamma value.
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3.6 Particles in Repulsive Potential

By far we consider one-particle system, i.e. there is only one particle in the fluid medium.

There are no interactions between the tagged particle and the fluid molecules. Earlier we

study the behaviour of the tagged particle in different types of systematic (deterministic)

potentials: when dissipation term was added to the equation of motion, when the particle

act as Brownian oscillator in the fluid medium and more. In all these cases, we neglected

the interactions between the molecules.

Now we will consider a system of 512 particles in the fluid medium, interacting with

each other. Particles are placed on the FCC lattice which means we already know the

initial position of each particle in the system. In this case, the interaction between the

particles is taken as repulsive; of the type V = a
r12 , where a is constant and r is the

separation distance between the particles. Closer the particles, more will be the repulsive

force between them. We can verify this from the formula too, closer the particles lesser

will be the separation distance r and hence more will be the interaction potential or vice

versa.

This potential is sufficient enough to hold the system together in the simulation, or we

have to apply a potential which will act as a container for the particles, preventing them

from drifting apart. Since the particles are confined in the 2D lattice, there will be some

conditions on the particle’s movement inside the lattice:

• Periodic boundary conditions: Consider this 2D lattice is reproduced throughout

the space to form an infinite lattice. The properties of each reproduced box is same

as the original one. As a molecule moves in the original box, we consider that its

periodic images in the neighboring boxes will also move in the same way. If a

particle move out of the box from any side, its image from the opposite side will

enter the box so that particle number is conserved in the middle box. Hence, the
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Figure 3.6.1: Particles are placed on the lattice sites in the FCC 2D lattice.
Here the lattice constant is taken as one.

periodic boundary conditions are defined as,

r(x + L, y) = r(x, y)

r(x, y + L) = r(x, y)
(3.23)

where r(x,y) is the position coordinate of the particle and L is the length of the

lattice.

So, if any particle position lies outside the original box length, we will apply the

conditions as:

i f rx(x, y) > L; rx(x, y) = rx(x, y)⇥ L

i f rx(x, y) < L; rx(x, y) = rx(x, y) + L
(3.24)

where rx(x, y) is the value of x coordinate of the particle. Similar conditions are

for the y coordinate of the particle.
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• Potential Truncation: Now we will calculate the forces on each particle in the

system using the periodic boundary conditions. The force on each particle will

be added pairwise. For N molecules there will be N-1 terms of the force. It is

difficult to calculate the force due to each molecule if the value of N is very large.

Also, the molecules closer will contribute more to the force than which are very far

away. Therefore, we will restrict the terms using an approximation. The molecule

will interact with only those molecules which are within a spherical cut-off radius

(rc) keeping the molecule at the centre. Hence, the contribution from the terms to

the force which lie outside the cut off radius will be zero. This spherical cut off

concept is taken as a small perturbation applied to the system and to ensure this,

the cut off radius should be large. Usually the value of cut off radius is taken as

1
2 L [1].
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Box Muller Transformation

This transform is a random sampling method for generating pairs of normally distributed

random numbers given a source of uniformly distributed random numbers [6]. If x1 and

x2 are uniformly distributed between 0 and 1, then z1 and z2 as defined below have

normal distribution with mean as 0 and variance as 1.

z1 = R cos  =
⇤
⇥2 ln x1 cos 2⇥x2

z2 = R sin  =
⇤
⇥2 ln x1 sin 2⇥x2

(A.1)

Here, R2 and  are the random variables in the corresponding polar coordinates:

R2 = ⇥2 ln x1

 = 2⇥x2

(A.2)

This transformation method is used while writing the code to obtain the value of ⌅(t) in

the equation of motion in the code,

⌅(t) =
⇥

2B
dt

⌃ Gaussian Random no. (A.3)

where ⌅(t) is the white noise part, B is the strength of white noise and dt is the step size

of the integration.
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Computation Codes

• Notations:

h = s t e p s i z e , k = t r a p p i n g c o n s t a n t , K = S t r e n g t h o f

w h i t e n o i s e , n = n o r m a l i z a t i o n c o n s t a n t ,

g = d i s s i p a t i o n c o n s t a n t , m = mass o f p a r t i c l e ,

L = l a t t i c e c o n s t a n t , s igma = r e p u l s i v e c o e f f i c i e n t .

msd = mean s q u a r e d d i s p l a c e m e n t ,

c o r r = c o r r e l a t i o n f u n c t i o n ,

N = t o t a l no . o f p a r t i c l e s , r = p o s i t i o n o f p a r t i c l e ,

v = v e l o c i t y o f p a r t i c l e , t = t ime , x , y , z ,w = i n i t i a l

c o o r d i n a t e s , $ r_c$ = c u t o f f r a d i u s , F = t o t a l f o r c e

• Brownian Oscillator:

# i n c l u d e < i o s t r e a m >

# i n c l u d e < c s t d l i b >

# i n c l u d e < iomanip >

# i n c l u d e <cmath >

# i n c l u d e < ct ime >

# i n c l u d e < f s t r e a m >
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u s i n g namespace s t d ;

/ / G a u s s i a n random g e n e r a t o r

do ub l e sampleNormal ( ) {

do ub l e u = ( ( d oub l e ) r and ( ) / (RAND_MAX))*2 ⇤1 ;

do ub l e v = ( ( d oub l e ) r and ( ) / (RAND_MAX))*2 ⇤1 ;

do ub l e r = u * u + v * v ;

i f ( r == 0 | | r > 1 ) r e t u r n sampleNormal ( ) ;

do ub l e c = s q r t ( ⇤2 * l o g ( r ) / r ) ;

r e t u r n u * c ;

}

i n t main ( )

{ f l o a t x [ 1 0 0 ] , t [ 1 0 0 ] , h , K, c o r r [ 1 0 0 , k ,

msd [ 1 0 0 ] , v [ 1 0 0 ] , n , g , m;

i n t i , j ;

cou t << " e n t e r t h e v a l u e o f h : " ;

c i n >>h ;

c o u t << e n d l ;

c o u t <<" e n t e r t h e v ( 0 ) : " ;

c i n >>v [ 0 ] ;

c o u t << e n d l ;

c o u t <<" e n t e r t h e t ( 0 ) : " ;

c i n >> t [ 0 ] ;

c o u t << e n d l ;

c o u t <<" e n t e r t h e x ( 0 ) : " ;

c i n >>x [ 0 ] ;
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c o u t << e n d l ;

cou t <<" e n t e r t h e v a l u e o f K, mass and gamma : " ;

c i n >>K >>m >>g ;

cout << e n d l ;

s r a n d ( ( u n s i g n e d ) t ime (NULL ) ) ;

o f s t r e a m f i l e ;

/ / t o save t h e d a t a i n a f i l e

f i l e . open ( " t a s k 3 . t x t " ) ;

s r a n d ( ( u n s i g n e d ) t ime (NULL ) ) ;

f o r ( i =0 ; i <95000; i ++)

{

x [ i +1] = x [ i ] + h*v [ i ] ;

v [ i +1] = v [ i ] + h *( ( ⇤ g*v [ i ] ⇤ omega ^2 x [ i ]

+ s q r t ( ( 2 *K ) / h )* sampleNormal ( ) ) / m) ;

t [ i +1] = t [ i ] + h ;

}

f l o a t sum =0;

f l o a t sum1 = 0 ;

f l o a t c o u n t =0;

f o r ( i =0 ; i <95000; i ++)

{ sum = sum +x [ i ] ;

sum1 = sum1 + v [ i ] ;

c o u n t ++; }

f l o a t d=sum / c o u n t ;
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f l o a t s = sum1 / c o u n t ;

cou t <<" t h e mean v a l u e o f x and v : "

<<d < <"\ t "<< s << e n d l ;

/ / N o r m a l i z a t i o n f a c t o r

f l o a t sum2= 0 ;

f l o a t co un t1 =0;

f o r ( i =0 ; i <95000; i ++)

{

sum2 = sum2 + x [ i ]* x [ i ] ;

co u n t1 ++; }

n = sum2 / c ou n t 1 ;

cout <<" t h e n o r m a l i z a t i o n f a c t o r i s : " ;

cou t <<n << e n d l ;

/ / C o r r e l a t i o n f u n c t i o n

f o r ( j =0 ; j <95000; j ++)

{

f l o a t sum3 =0;

f l o a t co un t2 =0;

f o r ( i =0 ; i <(95000 ⇤ j ) ; i ++)

{

sum3 = sum3 + x [ i ]* x [ i + j ] ;

co un t2 ++; }

c o r r [ j ] = sum3 / ( n* co un t2 ) ;

}
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/ / Mean s q u a r e d i s p l a c e m e n t

f o r ( j =0 ; j <95000; j ++)

{ f l o a t sum4 =0;

f l o a t co un t3 = 0 ;

f o r ( i =0 ; i <(95000 ⇤ j ) ; i ++)

{

sum4 = sum4 + pow ( ( x [ i + j ] ⇤ x [ i ] ) , 2 ) ;

co un t3 ++;}

msd [ j ] = sum4 / c ou n t3 ;

}

/ / P r i n t i n g v a l u e s i n t h e f i l e

f o r ( i =0 ; i <95000; i ++)

{

f i l e << t [ i ] < <"\ t " <<v [ i ] < <"\ t " <<x [ i ]

< <"\ t " <<msd [ i ] < <"\ t " << c o r r [ i ] << e n d l ; }

f i l e . c l o s e ( ) ;

r e t u r n 0 ;

}

• For particles in Repulsive potential:

# i n c l u d e < i o s t r e a m >

# i n c l u d e < c s t d l i b >

# i n c l u d e < iomanip >

# i n c l u d e <cmath >

# i n c l u d e < ct ime >
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# i n c l u d e < f s t r e a m >

u s i n g namespace s t d ;

/ / G a u s s i a n random g e n e r a t o r

do ub l e sampleNormal ( ) {

do ub l e u = ( ( d oub l e ) r and ( ) / (RAND_MAX))*2 ⇤1 ;

do ub l e v = ( ( d oub l e ) r and ( ) / (RAND_MAX))*2 ⇤1 ;

do ub l e r = u * u + v * v ;

i f ( r == 0 | | r > 1 ) r e t u r n sampleNormal ( ) ;

do ub l e c = s q r t ( ⇤2 * l o g ( r ) / r ) ;

r e t u r n u * c ;

}

i n t main ( )

{

f l o a t x [ 2 5 0 ] , y [ 2 5 0 ] , z [ 2 5 0 ] , w[ 2 5 0 ] , t [ 2 5 0 ] , r =0 ,

r1 , h , K, c o r r [ 2 5 0 ] , k , msd [ 2 5 0 ] , v [ 2 5 0 ] [ 2 5 0 ] , n ,

g , m, sigma , r_c , L , r_x [ 2 5 0 ] [ 2 5 0 ] , r_y [ 2 5 0 ] [ 2 5 0 ] , F ;

i n t i , j , p =0 , q ;

i n t N, row , c o l ;

c o u t <<" E n t e r t h e Number o f rows : " ;

c in >>row ;

cout << e n d l ;

c o u t <<" E n t e r t h e Number o f columns : " ;

c in >> c o l ;

cou t << e n d l ;

cou t <<" E n t e r t h e v a l u e o f l a t t i c e c o n s t a n t : " ;



Appendix B. Computation Codes 39

c in >>L ;

cout << e n d l ;

/ / T o t a l number o f p a r t i c l e s

cout <<" T o t a l number o f p a r t i c l e s : " ;

N = row* c o l + ( row ⇤ 1 ) * ( co l ⇤ 1 ) ;

c o u t <<N << e n d l ;

cou t << " e n t e r t h e v a l u e o f h : " ;

c i n >>h ;

c o u t << e n d l ;

c o u t <<" e n t e r t h e t ( 0 ) : " ;

c i n >> t [ 0 ] ;

c o u t << e n d l ;

c o u t <<" e n t e r t h e v a l u e o f c u t o f f r a d i u s : " ;

c i n >> r _ c ;

c o u t << e n d l ;

cou t <<" e n t e r t h e v a l u e o f K, mass ,

s igma and gamma : " ;

c i n >>K >>m >>sigma >>g ;

cout << e n d l ;

/ / i n i t i a l v e l o c i t y o f p a r t i c l e s

f o r ( j =0 ; j <N; j ++)

{ v [ 0 ] [ j ] = 0 ;

}

/ / i n i t i a l c o o r d i n a t e s o f atoms



40 Appendix B. Computation Codes

x [ 0 ] = 0 ;

y [ 0 ] = 0 ;

z [ 0 ] = L / 2 ;

w[ 0 ] = L / 2 ;

/ / f a c e c e n t e r e d c u b i c l a t t i c e

c o u t <<" x y : " << e n d l ;

f o r ( j =0 ; j < c o l ; j ++)

{ y [ j +1] = y [ j ] + L ;

w[ j +1] = w[ j ] + L ;

f o r ( i =0 ; i <( row ⇤ row / 2 ) ; i ++)

{

x [ i +1] = x [ i ] + L ;

z [ i +1] = z [ i ] + L ;

r_x [ 0 ] [ p ] = x [ i ] ;

r_x [ 0 ] [ p +1] = z [ i ] ;

r_y [ 0 ] [ p ] = y [ j ] ;

r_y [ 0 ] [ p +1] = w[ j ] ;

p=p +2;}}

/ / p r i n t i n g t h e c o o r d i n a t e s

f o r ( i =0 ; i <N; i ++)

{ c o u t << r_x [ 0 ] [ i ] < <"\ t " << r_y [ 0 ] [ i ]<< e n d l ;

}

o f s t r e a m f i l e ;

f i l e . open ( " t a s k 4 . t x t " ) ;
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s r a n d ( ( u n s i g n e d ) t ime (NULL ) ) ;

f o r ( q =0; q <100; q ++)

{ F =0;

f o r ( i =0 ; i <(N⇤ 1 ) ; i ++)

{

/ / p e r i o d i c boundary c o n d i t i o n

f o r ( j = i +1 ; j <N; j ++)

{ f l o a t dx = r_x [ q ] [ i ] ⇤ r_x [ q ] [ j ] ;

f l o a t dy = r_y [ q ] [ i ] ⇤ r_y [ q ] [ j ] ;

i f ( dx >(L / 2 ) )

{ dx = dx⇤L ;

}

e l s e i f ( dx <( ⇤L / 2 ) )

{ dx= dx+L ;

}

e l s e { dx = dx ;

}

i f ( dy >(L / 2 ) )

{ dy = dy⇤L ;

}

e l s e i f ( dy <( ⇤L / 2 ) )

{ dy= dy+L ;

}

e l s e { dy=dy ;

}
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r1 = s q r t ( dx*dx + dy*dy ) ;

/ / c u t o f f r a d i u s a p p r o x i m a t i o n

i f ( r1 <= r _ c )

{

F = F + 12*pow ( sigma , 1 2 ) / pow ( r1 , 1 3 ) ; }

}

r_x [ q + 1 ] [ i ] = r_x [ q ] [ i ] + h*v [ q ] [ i ] ;

r_y [ q + 1 ] [ i ] = r_y [ q ] [ i ] + h*v [ q ] [ i ] ;

v [ q + 1 ] [ i ] = v [ q ] [ i ] + h * ( ( F ⇤g*v [ q ] [ i ]

+ s q r t ( ( 2 *K ) / h )* sampleNormal ( ) ) / m) ;

t [ q +1] = t [ q ] + h ;

}}

/ / Mean s q u a r e d i s p l a c e m e n t

f o r ( j =0 ; j <100; j ++)

{ f l o a t dx1= 0 , dy1 =0;

f l o a t co un t3 =0 , sum4 =0;

f o r ( i =0 ; i <N; i ++)

{

dx1= dx1+ pow ( r_x [ j + 1 ] [ i ] ⇤ r_x [ j ] [ i ] , 2 ) ;

dy1= dy1+ pow ( r_y [ j + 1 ] [ i ] ⇤ r_y [ j ] [ i ] , 2 ) ;

co un t3 ++;}

sum4 = s q r t ( dx1+dy1 ) ;

msd [ j ] = sum4 / c ou n t3 ;

}
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/ / P r i n t i n g v a l u e s i n t h e f i l e

f o r ( i =0 ; i <100; i ++)

{

f i l e << t [ i ] < <"\ t " <<msd [ i ] ;

f i l e << e n d l ; }

f i l e . c l o s e ( ) ;

r e t u r n 0 ;

}
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