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Abstract

It is believed that after the Big-Bang, in early age of the universe, a hot dense soup of quarks

and gluons was formed named QGP(Quark Gluon Plasma), having high energy density and

number density. QGP is a fireball consist of quarks and gluons in the deconfined form. Due

to high internal Pressure and Temperature it expanded and cooled down, the deconfined-

to-confined phase transition occurred and hadrons were formed resulting in the baryonic

matter that we observe today. Study about this kind of a phase transition can lead us to

understand the early stages of the universe. The promising technique to produce such state

of matter in lab is by heavy-ion collisions. Due to complexity of underline theory of these

partons i.e. QCD, we rely generally on other effective models like hydrodynamics and Sta-

tistical Thermodynamic approaches to study the system.

The Thesis is based on ‘Study of Calculation of Pressure’ in formed QGP in heavy ion col-

lisions and final hadronic matter formed. Standard statistical models based on Boltzmann-

Gibbs distribution(B-G) which is known for its great success on non-interacting classically

large systems. Since the number of particle produced in heavy-ion collisions are much less

than that of Avogadro number, we need to use non-extensive statistical mechanics to esti-

mate thermal properties of matter formed. As the system undergoes collective expansion,

to study the dynamics, hydrodynamics is used, as it provides a simple, intuitive descrip-

tion of dynamical collective behaviour of system under evolution in relativistic heavy-ion

collisions. We will use generalised non-extensive statistics known as ‘Tsallis-statistics’ for

the calculations. Tsallis statistics is based on generalization of B-G distribution which in

particular limit gives back the standard statistics. For analysis we have used data generated

by UrQMD simulator in hydro mode and experimental data extracted from HEPData and

carried out the analysis using ROOT.
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Chapter 1

Introduction

High Energy Physics(HEP) is an intriguing branch of Physics which studies the nature of

particles that constitute matter and radiation. It is focused on understanding the behavior

of these particles. The primary goal of HEP is to determine the most fundamental building

block of matter and understand the interactions between these elementary particles. In the

current scenario,these elementary particles are excitations of ‘quantum fields’. ‘Standard

Model’ is currently dominant Quantum Field Theory which almost explains these indivis-

ible fundamental particles and their interaction [2]. It is developed by both theoretical and

experimental physicists. According to Standard Model of particle physics[3][4], these ele-

mentary particles can be classified into fermion and bosons1. Fermions are half-integer-spin

particles which are matter particles.They are classified according to how they interact (or

equivalently, what charges2 they carry). There are six quarks and six leptons, which are

further divided into pairs exhibiting similar behaviour named by generations. The lightest

and most stable particles belongs to first generation , whereas the heavier and less stable

make up the second and third generation. Bosons(gauge) are integral-spin particles which

are mediators of interaction between these matter particles. Particles of matter transfer dis-

crete amount of energy by exchanging these bosons. These are carrier particles that carries

any fundamental interactions of nature.

Fig: 1.1 Summarizes Standard-Model of particle physics.

1Also Anyons, these are quasi-particles occurs in 2D systems[5]
2charges here include electric charge, color charge.
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Figure 1.1: Standard Model of Particle Physics [ Wikipedia ]

These handful of fundamental constituent particles interact in known four definite manners:

(i) Electromagnetic interaction (ii) Strong interaction

(iii) Weak interaction (iv) Gravitational interaction

Electromagnetic interaction: The electromagnetic force is responsible for practically all

phenomena one encounters in daily life (with the exception of gravity) that are above the

nuclear scale e.g. friction, chemical bonds between atoms etc. It occurs between electric

charged particles, it is the reason for keeping negatively charge electron cloud around pos-

itively charge nucleus to form atom. It is governed by Lorentz Force which includes both

electric and magnetic force, which are both manifestation of same phenomenon. In modern

QFT, Quantum Electrodynamics (QED) is the mathematical theory which describes all the

phenomenon happens according to electromagnetic interaction.

Strong interaction: Before 1970’s it was uncertain to explain how nucleus bound together,

as it was known that nucleus compose of protons and neutrons, and protons being pos-

itively charge particles and neutron being neutral particles, so due to electric repulsion

between protons, nucleus should fly apart. However, we do observe nucleus, to explain
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this, strong interaction was postulated for binding neutron and proton to form atomic nuclei

(nuclear-force), and in addition, it was found that protons and neutron are not elementary

particles. They are composite system of more fundamental particles, quarks and gluons,

which are bounded together by more fundamental force (color-force). Since quarks are

fermions and according to Pauli-Exclusion Principle no two or more identical fermionic

particles can share same quantum state within a system. The notion of color-charge (a

quantum number) was introduced so they can co-exists inside the hadrons without violat-

ing the principle. There are three types of color charge labelled red, blue and green along

with their complimentary anti-colors. Gluons are also colored, they are the mixture of color

and anti-color3. The quarks interacts through color exchange and the color carrier is gluon.

Quantum Chromo-dynamics (QCD) is the quantum field theory within the Standard Model

framework that describes color-force and its residue, the strong nuclear force.

Weak interaction: It is an interaction between sub-atomic particles which is responsible for

radio-active decay of nucleus. It is the only interaction through which quarks can change

their flavours. For example, during β+ decay(happens inside the nucleus), an up-quark

within a proton is changed into a down-quark, thus converting the proton to a neutron and

resulting in the emission of an positron and an electron-neutrino. It plays a vital role in the

energy generating processes of stars(including our Sun), in fusion of hydrogen into helium.

Gravitation: It is an interaction at a distance that is present between any two bodies having

mass or energy. At atomic scale, it is the weakest of all the interactions. Before Einstein’s

General Theory of Relativity (GTR), Gravitation was well explained by Newton’s Laws of

Gravitation, which considers gravitation as an attractive force between two bodies possess-

ing mass and the strength of which is proportional to the product of masses and inversely

proportional to square of distance between them. In GTR, the relativistic version of grav-

itation which describes gravity as a consequence of curvature of space-time caused by the

sources of Energy-Stress Tensor. It describes the macro-scale bulk interaction in matter,

quantizing it for micro-scale matter is the current area of research.

In Table:1.1, We have listed the relative strength of these known interaction along with their

3This color charge of quarks and gluons is completely unrelated to everyday meaning of color i.e. unre-

lated to the wavelength of light.
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mediators and range.

Interaction Relative strength Theory Interaction range Mediated by

Strong 1038 QCD 10−15 Gluons(8)

Weak 1025 Electro-weak 10−18 W+,W−, Z

Electromagnetic 1036 QED infinite Photons

Gravitational 1 General Relativity infinite Graviton

Table 1.1: Fundamental Interactions of nature

Even Standard Model being the current best description for understanding sub-atomic world,

it doesn’t tell us the full story, there are many questions like What is causing universe expan-

sion to faster? What is dark matter? What made big bang to happen? How did the universe

come into existence? Why neutrinos have non-zero mass and the observed neutrinos are

left-handed? Is there a theory of everything?, which are not answered in the framework of

Standard Model and many more unsolved mysteries.

Curious people, Physicists are searching to find answers to above questions and several deep

incites in increasing the understanding of the universe. One of very interesting question is

how we came into existence. It was explain using Big Bang Theory which explains exis-

tence of almost all matter present till now. According to it, in early microseconds universe

began with extremely high temperature and energy density of fireball which cooled and

expanded into blizzard of ordinary matter. At early time the temperature was high enough

that constituents of matter we see today, were in their most elementary form. The fire-

ball, hot and dense formed, consisted of asymptotically free color-charge particles, quarks

and gluons(collectively called partons). At such high temperature these “strongly interact-

ing” particles are quasi-free and fairly weakly interacting. This nature of partons is called

Asymptotic Freedom.

1.1 Asymptotic freedom

Can we get an isolated color-charged particle (quark or gluon)? No, Quarks/Gluons cannot

be find in free(isolated) state due to color confinement. When two color-charges(quarks)

are tried to separate, in order to increase the separation between two quarks, large amount

4



of energy is required and as the separation is further increased, at some point eventually

it becomes energetically favourable for quark-antiquark pair to form from the surrounding

virtual sea-quark, turning the pair of quarks into hadrons. This phenomenon is named

color-confinement.

It is phenomenologically said to explain the increase of interaction with separation distance,

that QCD potential is given by,

V (r) =
αs

r
+ σr

comparison to QED,

V (r) ≈ −e2

r

The strength of interaction between quarks mediated by gluons in QCD is given by coupling

constant, as analogous of coupling constant in QED, αe =
e2

4π(�0)�c , in QCD, αs =
g2s
4π

how-

ever, essential difference between both theories is, αe is a constant whereas αs decreases

with increase in momentum transfer(E) between quarks or momentum carried by gluons.

Due to this asymptotic freedom at high energies, many experiments can be successfully

described by perturbative QCD. The relation between coupling constant with exchange

momentum between interacting partons(E) up-to a QCD scale(Λ ≈ 300 MeV calculated

from experimental data),

αs(E
2) =

12π

(11Nc − 2nf )ln(
E2

Λ2 )
(1.1)

where, Nc is the number of color charge(3) and nf is the number of quarks flavour(6).

Figure 1.2: Running Coupling Constant[ Nobelprize.org]
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This asymptotic freedom was discovered by David Gross and Frank Wilczek and inde-

pendently by David Politzer , back in 1973 which rewarded them Nobel prize in Physics in

2004. To explore this behaviour and study the system formed in early universe, one promis-

ing technique to form QGP is by having high energy density and number density in very

small volume, which can be created in relativistic heavy-ion collisions.

1.2 Heavy-ion Collision

The main aim of Ultra-relativistic heavy-ion collision is to study the basic building blocks

of matter and to probe and dive further in-search of new physics or understanding the struc-

ture of these building blocks. When bunches of nuclei collides at ultra-relativistic energy,

that results in high temperature and high energy density creating a hot dense state. This state

created is thought to consist of quasi-free quarks and gluons, which are the basic building

blocks of hadronic matter. This state of matter is called ‘Quark Gluon Plasma’ (QGP)[6].

The collision energies that are available at the Large Hadron Collider(LHC)[7] at CERN

and Relativistic Heavy-Ion Collide(RHIC)[8] at BNL have illuminated new challenges in

understanding the possible formation of droplets of this deconfined matter of partonic de-

grees of freedom in hadronic collisions. When a large fraction of energy is deposited in

very small volume of space in very short period of time it produces high energy density and

hence Temperature. The theoretically understanding of this new state of matter is given by

Lattice QCD. Before QGP was detected in LHC(2000), Lattice-QCD predicted the exis-

tence of this new state at sufficient high temperature.

1.3 QGP

It was proposed that after the Big-Bang, in its early stages, the universe was filled with an

extremely hot and dense soup of quarks and gluons. At extremely high temperature and

energy density, even the strongly interacting particles, quarks and gluons, would interact

very weakly due to asymptotic freedom. Such high energy density can be mimicked in

laboratories by colliding heavy ions at Ultra-relativistic energies (doing little bangs).

Since proton and neutron, constituents of atomic nuclei which are binded by strong(nuclear)

interaction, are themselves confined of more elementary particles, quarks which interact
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with each other via color interaction. Our best theoretical understanding of this strong

interaction which is responsible for confinement of quarks into hadrons is ‘QCD’[2]. It

is non-abelian SU(3) guage theory with color charge as the generator of the theory. QCD

deals with interaction between quarks mediated by spin-1 particles named gluons. One of

the most interesting property of QCD is that its fundamental degrees of freedom, quarks

and gluons combined named partons, carries ‘colour’ charge, such charged objects have

never been observed directly, partons are always found in composite colour-neutral objects

called hadrons. Quarks are spin-1/2 particles, which carry electric charge as well as color

charge. There are six flavours of quarks: up, down, charm, strange, top, and bottom, see

Fig: 1.1. Gluons are spin-1, mass-less particles which are also colored charge. There are 8

independent types of gluons, based on color combination. Quarks change their color state

by exchanging gluon.

QGP is a (locally) thermally equilibrated state of matter in which quarks and gluons are

deconfined from hadrons, so that they propagate over nuclear, rather than merely nucleonic

volume. Composite hadrons appears to lose its identity at sufficiently high energy density

(≈ 1 GeV fm−3)[9]. At low densities, the particular quark inside its parent hadron knows its

sibling quarks. At high densities, when the hadrons starts to interpenetrate into each other

i.e. the quarks no longer confined inside the hadron boundary, particular quark will not

be able to identify the partner quark which was there at lower densities. Nucleus–nucleus

collisions are used to study nuclear matter. With increasing collision energy, nuclear matter

is probed at finer and finer resolution and several facts of nuclear matter are revealed.

1.3.1 Space-Time Evolution of QGP

As mentioned we do not detect quarks or gluons directly due to colour confinement, what

we detect are the final state hadrons, photons and other kind of particles that survived to

reach the detectors. Most of these particles are formed during the expansion of hot and

dense fireball, QGP.

A phenomenological scheme of various stages in ultra-relativistic collision of heavy-ions

is shown in Fig: 1.3, Two lorentz contracted nuclei approach each other with speed nearly

equal to the speed of light in t-z plane, and collide at the origin (t=0,z=0), there is an enor-

mous amount of energy density generated which results in diffusion of hadronic boundary

(deconfinement) of protons and neutrons[10]. Initially the system is out-of-equilibrium,
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its constituents collide repeatedly to establish local equilibrium, as system starts expand-

ing due to inertia and internal pressure created,as the result energy density decreases and

hence temperature,as the energy density(temperature) becomes smaller then the critical en-

ergy density(temperature) there is deconfinement-to-confinement phase transition occurs,

and hadrons are formed which after freeze-out fly towards detectors. As one cannot mea-

sure the QGP directly,however one can measure these final-state particle spectra to extract

thermal and other characteristics of the system formed and give a judgment on properties

of it.

Figure 1.3: Space-Time Evolution[1]

One can Classify Stages of the collision in the following way [9]:

Pre-equilibrium stage: The lorentz contracted nucleus having pancake-like structure col-

lides at ultra-relativistic energies, at nucleonic level as they collide, due to high energy den-

sity and number density there is high compression due to which nucleon boundary becomes

irrelevant, and we get a fireball of quarks and gluons which is in highly non-equilibrium

stage. The quarks and gluons formed looses memory of there parent hadrons. By multi-

scattering between its constituents, system achieves local momentum-isotropy, hence local

thermal-equilibrium.

Expansion of QGP: The constituents of the fireball(QGP) collide frequently to establish

a local thermal equilibrium state named ‘thermalized state’. The system has high internal

thermal-pressure and temperature due to which it expands and the system evolves. The fire-

ball undergoes collective expansion. This expansion can be well described by hydrodynam-
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ics, where the expansion and cooling of system is governed on bases of conservation laws

of energy and momentum along with conserved current density like charge density, baryon

density. As the system expands, the energy density and temperature decreases below critical

energy density(≈ 1GeV/fm3) or critical Temperature(≈200 MeV), the deconfinement-to-

confinement phase-transition occurs and partons get confined in hadrons. This stage is

named hadronizaiton.

Freeze-out: Even after the hadronization, the matter continues expansion/evolution. Af-

ter this stage, hadrons can collide in-elastically or can decay and change their identities.

Local equilibrium is still maintain and system expands and cools, when this inelastic col-

lision become too small, the hadron abundances will become fixed we named this stage

‘chemical freeze-out’. Hadrons then collide elastically which can change the final mo-

mentum distribution of the particles. Hadrons then collide elastically which can change

the final momentum distribution of the particles. But with further expansion, a stage will

arrive where average distance between hadrons become large, even the elastic collisions

will become very infrequent and a ‘local’ equilibrium could no longer be maintained. The

hadrons decouple and stop interecting with each other. This stage where no more collision

and interaction prevails is called ‘kinetic freeze-out’. Hadrons from this kinetic freeze-out

surface then subsequently free-stream to the detectors.

These stages of evolution can be nicely summarized in Fig: 1.4.

Figure 1.4: Evolution[IEBE-VISHNU]
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Chapter 2

Tools to study QGP

As the formation and expansion of QGP is in very very small scale (in femto-secs), probing

and analysing this state of matter is near to impossible by todays technology. Like after

explosion, we can scan back to initial condition by observing the after-effects of the explo-

sion, similarly we study the spectrum of final state particles to extract the properties and

characteristics of Quark Gluon Plasma. Some of the tools to study the fingerprint of QGP

are: ‘pT ’ (Transverse momentum) spectra, ‘y’ Rapidity spectra,‘η’ Pseudo-rapidity spectra

etc. Our focus will be on ‘pT spectra’, which provides information about the equilibrium

dynamics as well as the anisotropy of the system produced in heavy-ion collision and fit-

ting it with thermodynamical distribution functions provides insights to thermodynamical

quantities.

Transverse momentum (pT ) spectra is an important observable, it is the transverse com-

ponent of total momentum to the beam direction. As being energy dependent,it provides

information of thermal properties of system formed in high energy collisions. Also trans-

verse momentum is Lorentz invariant for boosts along the beam direction, experimentally

once kinetic freeze-out is reached, the kinetic freeze-out properties of the system freezes

and so does pT spectra.

2.1 Kinematics Variables

There are some kinematic variable when studying high-energy collisions, these variables

are used frequently in experiments also [11]. We will discuss some of those variables

which have significant role in the thesis.
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2.1.1 Centrality

In ultra-relativistic nucleus collision performed in LHC or RHIC, stream of bunches of

nucleus are collided from opposite direction. When a nuclei scatters with nuclei of other

beam this is named as an ‘event’. Scattering between nuclei-nuclei depends on the impact

parameter(b) between them, so we classify the event-by-event collisions by ‘b’. Most cen-

tral collisions have b≈0, and peripheral collisions have b around 2R (R,mean nuclei radii).

As impact parameter of an event cannot be measured experimentally, so we define central-

ity class. Centrality is an important concept which characterizes the amount of overlap or

size of the fireball in the collision region in heavy-ion collisions. It can also be defined by

the number of nucleons NPart (participants nucleons) in the overlap region of the colliding

nucleus[12].Centrality and impact parameter have one-to-one correspondence. For most

central collisions, (0-5)% centrality for Pb-Pb collision at 2.76 TeV have impact-parameter

range from 0 to 3.50 fm. Using the % centrality in collisions, the initial geometric configu-

ration can be estimated using Glauber model.

2.1.2 Rapidity

Choose some direction (usually the beam direction) for the z-axis named longitudnal di-

rection, the velocity of nuclei can be written in terms of dimensionless quatity, rapidity as

tanh y = vz
c
= βL, and the lorentz factor(γ) can also be written as cosh y = γ. One can

see as the relativistic addition of velocity is non-linear, but rapidity which is the function of

velocity itself, is an additive quantity.The advantage of introducing this rapidity variable is

that as its additive, the shape of its distribution remains invariant under longitudinal Lorentz

boost. Also rapidity in natural units can be expressed as,

y = tanh−1 βL = tanh−1 pz
E

=
1

2
ln

E + pz
E − pz

(2.1)

Rapidity can be expressed in terms of polar angle(θ), angle made by particle emitted with

respect to beam axis,

y =
1

2
ln

E + pzc

E − pzc
=

1

2
ln

�
m2 + p2 + pcosθ�
m2 + p2 − pcosθ

(2.2)

When emitting particle have high pz value one can neglect mass term, so, E ≈ p and this

approximated rapidity is called pseudorapidity (η).

η =
1

2
ln

p+ pcosθ

p− pcosθ
= − ln tan

θ

2
(2.3)
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It is a convenient parameter, to study when particle emitted have high longitudinal momen-

tum and we know the polar angle of it even without knowing its mass. More properties of

rapidity and pseudo-rapidity can be studied from [13].

2.1.3 Transverse Momentum

The component of momentum transverse (perpendicular) to the beam direction is called

Transverse momentum. As in collisions the beams are along longitudinal direction, so the

nuclei colliding have only longitudinal momentum. However, after the collision the final-

state particles coming out of the collision region will have non-zero transverse momentum.

Thus a study of the transverse momentum distribution of outgoing particles can give a

significant insight into the physics involved in the collision. Thus the transverse momentum

distributions of the out-coming particles is the first observations done in the high-energy

experiments. Also pT is Lorentz invariant along longitudinal direction. We can write energy

and total momentum in the form of pT ,

pT =
�
p2x + p2y,

E =
�
p2 +m2 =

�
p2T + p2z +m2 =

�
p2z +m2

T

where, mT =
�

p2T +m2 (2.4)

here, mT is transverse mass, we can write eq: 2.4 in terms of rapidity,

E = mT cosh y, pz = pT sinh y (2.5)

2.2 Invariant Yield

Thermodynamical behaviour of the system formed can be extrapolate from pT spectra as it

carries the kinetic freeze-out properties of the system. The invariant yield when plotted as

a function of pT is called pT spectrum. Experimentally at kinetic freeze-out the pT spectra

is frozen, as particle number becomes constant.

The Differential-Yield,

E
d3N

dp3
= E

d3N

(dpxdpy)dpz
=

d3N

(|pT |dpTdφ)dy
=

d2N

2π|pT |dpTdy
(2.6)

is lorentz invariant, here we have used dpz = Edy and dpxdpy = |pT |dpTdφ, φ is the

azimuthal angle and considering azimuthal symmetry. To show eq: 2.6 is lorentz invariant,
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firstly we have to show d3p
E

is lorentz invariant, The change in longitudinal momentum(pz)

due to boost in longitudinal direction(beam direction) is given by,

dp
�
z =γ(dpz − βdE) = γ(dpz − β

pzdpz
E

),

=
dpz
E

γ(E − βpz) =
dpz
E

E
�

(2.7)

where, we have used E2 = p2T+p2z+m2, and we know pT is lorentz invariant to longitudinal

boost, so EdE = pzdpz. d3p
E

is lorentz invariant, hence the yield is invariant. To measure

the yield eq: 2.6 is used experimentally. We can derive the form of yield from standard

statistical mechanics[14], Number of particles(N) in a grand-canonical ensemble is given

by,

N =
gV

(2π)3

�
d3p

exp(E(p)−µ
kBT

) + η
(2.8)

where,

η =





0 for Boltzmann-Gibbs statistics,

+1 Fermion,

−1 Boson.

(2.9)

Let’s denote f(E,T) as the integrand, So,

N =
gV

(2π)3

�
d3pf(E, T ), (2.10)

or, in differential form,

d3N

dp3
=

gV

(2π)3
f(E, T ) (2.11)

here, g is the degeneracy factor, T is the temperature of the system, V is the volume of the

system of particles. So Yield have the form,

d2N

2π|pT |dpTdy
=

EgV

(2π)3
f(E, T ) (2.12)

In our analysis, we will work in mid-rapidity regime, y ∈ (-0.5,0.5), so, average value of

cosh y ≈ 1, and expressing yield in form of pT using eq: 2.5,

d2N

2π|pT |dpTdy
=

gV (mT cosh y)

(2π)3
1

exp( (mT cosh y)−µ
kBT

) + η
,

d2N

2π|pT |dpTdy
���
y=0

=
gV (mT )

(2π)3
1

exp(mT−µ
kBT

) + η

(2.13)
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We will generalize this Yield form to Tsallis statistics (4.2) for our analysis.

Till now we have studied the physics behind QGP and its expansion. And also the exper-

imental tools for its detection. Event generators are used widely to mimic the real experi-

ment happening in colliders. These Monte-Carlo generators based on underline physics are

the powerful tools to gain detailed and realistic theory behind the real experiment. Differ-

ent models are made to simulate different stages of heavy-ion collision. “The theoretical

tools that are the usual workhorses of quantum field theories, such as perturbative methods

and lattice calculations, can only describe very specific features of relativistic heavy-ion

collisions. As such, a first principles description of the complex-dynamics of heavy-ion

collisions is not yet possible. On the other hand, very successful multi-stage models of

heavy-ion collisions have been built by combining lattice and perturbative calculations with

effective models such as hydrodynamics”[15].

In the thesis we have used UrQMD (Ultra-Relativistic Quantum Molecular Dynamics)

model. It is microscopic transport theory based on propagation of all hadrons on classical

trajectories in combination of stochastic binary scattering, color string formation, resonance

decay[16]. We have used data generated by UrQMD in hydro mode, in which the target and

projectile are treated as ideal fluids but the collision interaction is calculated using kinetic

theory[17]. We have calculated ‘Pressure’ with time in scope of it, and also pressure of

final state particles like charged pions.
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Chapter 3

Hydrodynamics

Ideally, one may want to describe the experimental data or dynamical knowledge of QGP

from its underline theory i.e. QCD. The QCD Lagrangian density is given by:

L = ψ̄i(iγµD
µ
ij −mδij)ψj −

1

4
FµναF

µνα (3.1)

where ψi is a quark field, i(1,2,3) is a color index for quarks, Dµ is a contra-variant deriva-

tive, m is a quark mass, F µν
α is a field strength of gluons, and α (= 1, 2 . . , 8) is a color

index for gluons. This simple-looking lagrangian is mathematically complex, it is difficult

to make prediction directly due to its internal complexity. One of the promising techniques

used now to connect the first principle with phenomena is to introduce hydrodynamical

models to describe the complex-dynamics of heavy-ion collision [18].

3.1 Introduction

Thermodynamics deals with the system in global thermal equilibrium with Pressure, Tem-

perature, Volume as globally static variables. As in statistical thermodynamics ensemble

average is equivalent to the time average for a system, this is ergodicity theorem. Hydrody-

namics deals with study of flow of fluid (continuous medium) having implicit assumption

of local thermal equilibrium of fluid. It is a dynamical study of macroscopically average

value of densities, which give information of collective-flow of the system using conser-

vation laws with taking statistical inputs [19]. Relativistic hydrodynamics is an important

theoretical tool in astrophysics, cosmology, heavy ion-collision etc. The use of relativistic

hydrodynamics in high-energy physics started back by Landau in 1953[20], long before
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QCD was formulated, as the system is at high temperature and partons are asymptotically

free. It is applicable when the mean-free-path of the partons is much smaller than typical

scale of the fireball on which its properties are changing. If the macroscopic properties of

the fluid e.g. local energy density, pressure, the fluid velocity etc. are known at an ini-

tial time, we can use hydrodynamic equations to obtain the space–time evolution of the

hot dense fireball formed in heavy ion collision until the freeze-out.The concept of local

equilibrium may still apply provided that the expansion rate is much slower than the micro-

scopic interaction rate.

By, ADF/CFT calculations it was found that η
s
= 1

4π
(specific-viscosity is very low) for

QGP system ,which leads to paradigm that the fireball behave as nearly ‘Perfect Fluid’

which makes the system formed, to study using hydrodynamical framework[21]. In this

chapter we’ll first discuss in-viscid(ideal) hydrodynamcis.

3.2 Ideal Hydrodynamics

Ideal hydrodynamic models are largely successful, in explaining a variety of experimen-

tal data e.g. transverse momentum spectra and elliptic flow of final state particles in high

energy collisons [9]. Like Classical Electromagnetism, most of the information about dy-

namics of field can be predicted using Maxwell relations, similarly in hydrodynamics we

have conservation equations. Energy and momentum in a relativistic theory are encoded in

the energy-momentum tensor( T µν
o ),

T µν
o =




e 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P




(3.2)

T 00
o tells the energy density

T 0i
o is the density of the ith component of momentum with i= 1,2,3

T i0
o is the energy flux along the axis i

T ij
o is the flux along axis i of the jth component of momentum

Stress-energy tensor in a symmetric second-rank-tensor form can be easily derivable.

T µν
o = c1au

µuν + c2ag
µν (3.3)
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where,c1, c2 are pure constant, a is lorentz scalar, uν is the flow velocity which is Lorentz

vector, gµν is a space-time matric of second-rank-tensor.

Using properties of stress-energy Tensor, Trace (T µν
o ) = 0, transformation of T µν

o back to

local rest frame, we get,

T µν
o = euµuν − PΔµν (3.4)

Nµ = nuµ, (3.5)

∂µT
µν
o = 0, ∂µN

µ = 0

uµu
µ = 1

(3.6)

where,

Δµν = gµν − uµuν gµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




(3.7)

here, e and P are Energy density and Pressure respectively. One can easily check uµ is an

eigen-vector of T µν
o .

Note in eq: 3.6 we have 7 variables(e, P, n, uµ) and 6 eq’s., we have to supply one more eq.

to close our system of equations, that equation is the equation of state P = P (e, n). Here

the notion of equation of state is in complete thermodynamic sense. Such an equation of

state allows (by definition) to determine thermodynamical variables. Once the equation of

state is known along the initial conditions, the equations of motion uniquely determine the

dynamics of the collision. Also, for ideal case,

∂µS
µ = 0, (3.8)

where Sµ = suµ,it can be derived using uµ(nbaru
µ) = 0 and contracting uµ with eq. 3.6,

µc here is chemical potential corresponding to conserved number density.

uν∂µT
µν
o = uν [∂µ((e+ p)uµuν − gµνp)],

= uν [∂µ((Ts+ µn)uµuν − gµνp)],

= uν [∂µ(Ts+ µn)uµuν − gµν∂µp)]

Using e+ p = Ts+ µn, dp = sdT + ndµ, Further simplifying,

uν∂µT
µν
o = T (uµ∂µs+ s∂µu

µ) + µ(n∂µu
µ + uµ∂µn),

0 = ∂µ(su
u) = ∂µ(S

u)
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We can also write thermodynamical quantities in form of Stress-Energy Tensor,

e = uµT
µν
o uν (3.9)

p =
−1

3
T µν
o Δµν (3.10)

3.2.1 Bjorken approximation

In 1982, ‘Bjorken’ modified Landau description of relativistic hydrodynamics[22]. He used

boost invariant velocity flow, in longitudinal direction of high energy collision. He used

uniform motion along longitudinal direction(z) so that vz = z/t, all particles at a given z

have the same vz , hence the fluid velocity. The region of highly excited matter is supposed

to rapidly equilibrate locally within a time τ .

uµ
BJ =

x̃µ

τ
=

(t, 0, 0, z)

τ
= (coshηs, 0, 0, sinhηs) (3.11)

where we introduced Milne coordinates,

rapidity(ηs) =
1

2
log

t+ z

t− z
(3.12)

proper time(τ) =
√
t2 − z2 (3.13)

Expanding eq: 3.6,

[(∂µu
µ)uν + uµ(∂µu

ν)](e+ P ) + uµuν∂µ(e+ P )− gµν∂µP = 0

Contracting this eq. with uν and using uµ∂νu
µ = 0, we get,

(e+ P )∂µu
µ + uµ∂µe = 0 (3.14)

Similarly multiplying eq: 3.6 with Δµν we get,

(e+ P )uµ∂µuν − ∂νP + uνu
µ∂µP = 0 (3.15)

Now transforming to Milne co-ordinate’s and using eqs: 3.14, 3.15 and assuming initial

densities are to depend on t and z only through the longitudinal proper time τ , not on ηs we

get,

de

dτ
= −[

e+ P

τ
],
ds

dτ
=

−s

τ
(3.16)

Using eq. of state, Ps = e
3

(ideal-relativistic case), we can plot variation of pressure with

time of elapse, as it is differential eq. it needs initial conditions. Phenomenologically,
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Bjorken estimated initial condition on Energy density[22] in terms of rapidity distribution

(dN
dy

),

e =
E

V
≈ 1

πR2
T

dET

dz
≈ 1

πR2
T τ

dET

dy
(3.17)

eBJ
0 (τ) =

< mT >

πR2τ

dN

dy
(3.18)

Taking τ =1 fsec, nucleus radii(R) of Au = 6.98fm, as taking most central collisions for 200

GeV, calculated using eq. of state Ps =
e
3
, we get PBJ

0 = 0.0086GeV fm−3.

Figure 3.1: Bjorken Approximation for variation of pressure with proper time.

But Reality is not that simple. There are shortcomings of ideal fluid dynamics. As said

being ‘Ideal’, which is never the case behaved by nature[9][23]. It is thus important to study

the effects to viscosity (dissipation) on space-time evolution of fluid like QGP (viscosity

could be small, η
s
≥ 1

4π
, but nevertheless, it is non-zero).

3.3 Viscous hydrodynamics

The theory of viscous relativistic fluid was formulated in 1821 by Navier [24]. The original

viscous (dissipative) relativistic-fluid equations were formulated by Landau and Lifshitz[20],

Eckart[25] and named it the first-order viscous theories. The eq. of motion are derived

keeping in mind the second law of thermodynamics, ∂µSµ ≥ 0, i.e entropy is not de-

creasing. Formally, in relativistic dissipative hydrodynamics, we add orders in terms of
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the dissipative fluxes(perturbations), in the expansion of entropy current. When addition of

terms linear in dissipative quantities is done in entropy four-current we obtain first order

viscous theory.

Sµ = suµ +O(δT µν) +O((δT µν)2) + ...

Relativistic viscous hydrodynamics describes non-equilibrium processes of the system in

consideration. When effects of dissipation is included into relativistic hydrodynamics, one

is confronted with complicated situations. Bjorken’s equation in First-Order Theory can be

derived [18],

de

dτ
= −e+ P

τ
(1− 4

3τT

η

s
− 1

τT

ζ

s
) (3.19)

The eq: 3.19 describes time evolution of energy density as function of other macroscopic

quantities. η is the shear viscosity and ζ is the bulk viscosity.

First order theory approaches Navier-Stokes eq. in non-relativistic limit. It suffers from ac-

tuality due to parabolic equations[26](first order in time and second order in space it is not

Lorentz-covarient theory). When second order dissipative terms are included the acasualty

is removed by introducing relaxation times along with quadratic viscous terms. In 1970’s

Israel and Stewart gave description of second-order viscous hydrodynamics[27].

We are talking about dissipation in flow, but flow of what?

In Ideal-Hydrodynamics the flow is determined uniquely, as it is in direction of eigen-

vectors of stress-energy tensor, T µν
o uµ = euν . In literature, in case of viscous-hydrodynamics

there are two theories which describe the flow in local rest frame,

1) Landau flow: Flow of energy, the flow is taken in direction of total energy flux so dissi-

pation of energy does not appear.

uµ
L =

T µ
ν u

ν
L

uα
LT

β
αTβγu

γ
L

=
1

e
T µ
ν u

ν
L (3.20)

2) Eckart flow : Flow of conserved charges(particle),here flow is chosen such that total

conserved charge flux is diffution independent.

uµ
E =

Nµ

√
NνN ν

(3.21)

In high energy heavy-ion collisions, mostly Landau’s definition is preferred as small num-

ber of baryon charges are expected in central collisions[18].
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We have used simulators to solve these hydrodynamic equations. We have used UrQMD,

model based on a hybrid approach based on intermediate hydrodynamic evolution with

transport model. In it the partial differential equations are solved on 3-D grid using SHASTA

algorithm. It uses SU(3) parity duality model based equation of state [28] to close the sys-

tem for solving ideal-hydrodynamics equation. The hydro-dynamical evolution is stopped

if the energy density drops below five times the initial nuclear energy density in all the cells

in the grid, the hydrodynamic cells are mapped to hadrons using Cooper-Frye criteria[17].

These hadrons information is put back in UrQMD for re-scattering and resonance decay

and final state particle are recorded.
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Chapter 4

Approach by Statistical Mechanics

The main concern to high-energy physics is in studying the properties to QGP. Due to the

asymptotic freedom and very nature of QCD coupling, the coupling strength is extremely

strong at low energies making it almost impossible to apply perturbative calculations in this

region. Thus,we rely on more fundamental techniques. Studying statistical Thermal models

to explain experimental high energy was first proposed by Koppe in 1948[29]. Two years

later, Fermi introduced a statistical framework to study the energy distribution of particles

coming out of small volume formed when ions are collided at high energies[30].We rely

on Relativistic kinetic theory to study our system under consideration. In this chapter we’ll

first discuss phenomenological Statistical Thermodynamical Models which agree with ex-

periments and lattice QCD upto some limits[31]. Then we’ll formulate Tsallis statistics[32]

to study the thermodynamical quantities of our system.

4.1 Thermodynamical Models

4.1.1 MIT Model

A phenomenological description of patrons in hadrons is provided by the MIT Bag Model,

which describes quarks being confined inside a hadron. Non-interacting massless partons

are forced to move inside a Bag having external pressure ‘B’, which behaves as a confine-

ment for the partons. The basic motivation behind it is that if quarks are placed in the QCD

vacuum, the vacuum will expel the color field of the quarks isolating them into a bag.

Using statistical mechanics for particles at ultra high-relativistic energies, if we use Boltzmann-
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statistics in high temperature regime taking m = 0, µ = 0 and expressing in natural units

(Appendix: A),

Pressure of QGP is given by,

PQGP = Pq + Pg − B (4.1)

And,

Pressure of Quarks : Pq =
7
8
π2

90
gqT

4,

Pressure of Gluons: Pg =
π2

90
ggT

4

So,

PQGP =
π2

90
T 4[

7

8
gq + gg]− B

=
π2

90
T 4gQGP − B

(4.2)

here, gg is degeneracy of gluons, gq is degeneracy of quarks, considering 3 flavour of quarks,

each flavour have 2 spin-state, 3 colour-state and 2 charge-state, so gq=2×2×3×3 = 36 and

there are 8 types of gluons and their 2 helicity states, so gg = 8×2 = 16.

When considering Fermi-Dirac and Boson Statistics for quarks and gluons respectively, in

high temperature regime and m = 0, µ �= 0 ,

Pressure of gluons: Pg =
ggπ2

90
T 4,

Pressure of quarks: Pq =
gq
3
T 4
�
7π2

120
+ 1

4
( µ
T
)2 + 1

8π2 (
µ
T
)4
�

So,

PQGP =
ggπ

2

90
T 4 +

gq
3
T 4
�7π2

120
+

1

4

�µ
T

�2
+

1

8π2

�µ
T

�4�− B (4.3)

4.1.2 Hadron Gas Model

HRG Model assume all the particles are non-interacting point-like particles. According to

ideal HRG model total thermodynamical pressure is the sum of pressure of constituent gas

of different particle. It gives statistical description of hadrons in the grand canonical (G.C.)

ensemble. The Partition function (Z) in G.C. ensemble follows,

lnZ =
1

η

�

i

ln
�
1 + η exp

�
− (Ei − µi)

T

��
,

=
gV

η(2π)3

�
dp3 ln

�
1 + η exp

�
− (Ei − µi)

T

�� (4.4)
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where, Ei =
�

p2 +m2
i , and we have used,

�
i →

�
gV d3p
(2π)3

Pressure formula,

Pj = T
lnZj

V

=
gj
2π2

� ∞

0

p4dp

3Ej

�
exp[(Ej − µj)/T ] + η

�
(4.5)

Once pressure of single kind of particle is known, according to HRG we’ll have Total

pressure as sum over all kinds of particle in the system.

P =
�

boson

Pb +
�

fermion

Pf (4.6)

We can simplify this integral in terms of modified Bessel Function of Second kind see
Appendix:B.

PHRG =
�

b

gb
2π2

m2
b

T 2

∞�

n=1

1

n2
K2(

nmb

T
)exp(

nµb

T
) +

�

f

gf
2π2

m2
f

T 2

∞�

n=1

(−1)n−1

n2
K2(

nmf

T
)exp(

nµf

T
)

(4.7)

‘Fig: 4.1’ shows the variation of pressure with temperature for MIT Bag Model with

taking B=2204MeV 4 [33][34](calculated by QCD calculation) and Ideal HRG model, plot

is made using hadrons: pions, kaons, protons and neutrons with µb = µf = 0 (considering

equal number of particles and anti-particles). One can see a change in pressure as one scans

the plot Fig: 4.1b from lower temperature to higher value i.e. when one follows black line

for hadrons and blue or green for quarks. Initially we have hadrons at low temperature and

as the temperature is increased beyond hadronization temperature, TH (PHRG= PQGP here,

TH ≈ 120-150 MeV), there is an abrupt change in value of pressure (‘black to blue’ or

‘black to green’), which tells the hint of occurrence of phase transition.
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Figure 4.1: Thermodynamical Models
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4.2 Tsallis Framework

Boltzmann-Gibbs statistics is mainly used in approximation to study the systems where

constituents are independent or weakly correlated. It fails to explain the strongly correlated

systems where long-range correlations and interactions are significant. On the other hand,

the memory effects and long-range color interactions may give rise to non-Markovian pro-

cesses which in turn affect the dynamical evolution of the fireball produced in heavy-ion

collision as described in[35]. Further, in a strongly correlated system, there might exist the

case when entropy is non-extensive or non-additive. In ‘1988’ Tsallis proposed general-

ization of Boltzmann entropy which gave birth to non-extensive statistical mechanics[32].

He introduce an extra parameter in entropy function the ‘q-parameter’ which under cer-

tain condition gives back standard entropy. There are systems which involve interactions

and long term memory effects. This statistics takes into account long-range-interactions

and complex microscopic dynamics. It is widely used in hydrodynamics turbulence, astro-

physics, condense matter systems, Particle Physics (high-energy collisions). This statistics

is appropriate for the study of complex systems with a certain degree of non-equilibrium

as can be the case, with these nuclear collisions[36][37]. We will introduce the concept

and will try derive the relevant formula used in the thesis. Tsallis tried attempt to modified

standard statistical mechanics entropy formula, i.e. ( Sb) = −�
i kBpiln(pi) to,

Sq = kB
1−�

i p
q
i

q − 1
= −kB

�

i

pqi lnq(pi) (4.8)

where,

lnq(pi) =
p1−q
i − 1

1− q

is named q-logarithmic. We, can define q-exponential,

expq(x) =




[1 + (1− q)x]

1
1−q = [1− (q − 1)x]

−1
q−1 if, x ≤ 0,

[1 + (q − 1)x]
1

q−1 if, x > 0

(4.9)

Note, with
q→1−−→ we get back B-G entropy,

Sq
q→1−−→ Sb, expq(x)

q→1−−→ exp(x), logq(x)
q→1−−→ log(x), (4.10)

Non-extensive parameter ‘q’ is related to temperature fluctuation by[38][39]

q = 1 +
V ar(T )

< T 2 >
(4.11)
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We can drive back all the formulas in standard statistical mechanics using, fq
q→1−−→ fb.

One can see non-extensive nature of Tsallis statistics, Consider two probabilistically inde-

pendent systems A and B, this means

pij(A+ B) = pi(A)× pj(B) (4.12)

Now, using eq: 4.8,

Sq(A+ B) = kB
(1−�

k p
q
AB,k)

q − 1
,

= kB
(1−�

i

�
j p

q
A,ip

q
B,j)

q − 1
,

= kB
2−�

i p
q
A,i −

�
j p

q
B,j − (1−�

i p
q
A,i)(1−

�
j p

q
B,j)

q − 1
,

= kB
(1−�

i p
q
A,i)

q − 1
+ kB

(1−�
j p

q
B,j)

q − 1
− kB(q − 1)

(1−�
i p

q
A,i)

q − 1

(1−�
j p

q
B,j)

q − 1
,

= Sq(A) + Sq(B)− (q − 1)

kB
Sq(A)Sq(B)

(4.13)

Note the third term which is giving birth to non-extensive nature to entropy. In standard

statistical mechanics, using Grand-Canonical ensemble, we drive occupation number us-

ing Partition function (Z) which itself is derived by maximising the entropy and following

constraints, �

i

pi = 1, N =
�

i

piNi,

E =
�

i

piEi, S = −kB
�

i

pi ln pi

(4.14)

Using these constrains and Lagrange multipliers for pi solving eq: 4.14, we get,

pi =
eβ(µNi−Ei)

Z
,

Z =
�

i

eβ(µNi−Ei)
(4.15)

here, pi is the probability that the ‘system’ has Ni particles and Ei energy, This Z can be

written in different form, in terms of single partition function(ξ),

Z =
�

a

ξa, ξa =
�

ν

eβν(µ−ea) (4.16)

Occupation number(fa) i.e. average number of particles in an orbital ‘a’ of energy e, is

given by,

fa =< ν(ea) >=
1

β
(
∂

∂µ
ln ξa)
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For different types of particles we have different ξa, hence Z and fa, we can summarize

Partition function in generalised(Gen.) form as,

lnZGen. =
1

η

�

a

ln(1 + ηeβ(µ−e))

η =





+1 for Fermions,

−1 for Boson,

0 for Boltzmann-Gibbs.

(4.17)

Using Thermo-statistical relations, we can write entropy in the form of occupation number,

SB.G. = −kB
�

a

�
fa ln fa − fa

�

SF.D. = −kB
�

a

�
fa ln fa + (1− fa) ln(1− fa)

�

SB.E. = −kB
�

a

�
fa ln fa − (1 + fa) ln(1 + fa)

�

SGen. = −kB
�

a

�
fa ln fa +

(1− ηfa)

η
ln(1− ηfa)

�

(4.18)

Note also, we can drive the form of occupation number using eq: 4.18, and the constrains,

δS = 0, N =
�

a

fa, E =
�

a

faea,

δS = 0,
�

a

δfa = 0,
�

a

δfaea = 0
(4.19)

Now, We generalize eq’s: 4.19, to Tsallis- statistics, maintaining Thermodynamical con-

sistency [37][40],

δSq = 0, N =
�

a

f q
a , E =

�

a

f q
aea,

δSq = 0,
�

a

δf q
a = 0,

�

a

δf q
aea = 0

(4.20)

And the generalized form of Tsallis-entropy in form of new fi is given as,

SB.G.
q = −kB

�

a

�
f q
a lnq fa − fa

�

SF.D.
q = −kB

�

a

�
f q
a lnq fa + (1− fa)

q lnq(1− fa)
�

SB.E.
q = −kB

�

a

�
f q
a lnq fa − (1 + fa)

q lnq(1 + fa)
�

SGen.
q = −kB

�

a

�
f q
a lnq fa +

(1− ηfa)
q

η
lnq(1− ηfa)

�

(4.21)
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We can solve eq: 4.20 and 4.21 for fa using method of Lagrange multipliers,

δ[Sq(fa) + γ(E −
�

a

f q
aea) + α(N −

�

a

f q
a)] = 0 (4.22)

Solving individual differentiation,

δ(N −
�

a

f q
a) = −δ

��

a

f q
a

�
= −

�

a

�
qf q−1

a

�
δfa,

δ(E −
�

a

f q
aea) = −δ

��

a

f q
aea

�
= −

�

a

�
qf q−1

a ea

�
δfa

(4.23)

and For B-G,

δ
�
SB.G.
q

�
= −kB

�

a

∂

∂fa

�
f q
a lnq fa − fa

�
δfa,

= −kB
�

a

�
qf q−1

a lnq fa + f q
a

∂

∂fa
(lnq fa)− 1

�
δfa,

= −kB
�

a

�
q(lnq fa)f

q−1
a

�
δfa

= −kB
�

a

� q

q − 1
(f q−1

a − 1)
�
δfa

(4.24)

For Boson,

δ
�
SB.E.
q

�
= −kB

�

a

∂

∂fa

�
f q
a lnq fa − (1 + fa)

q lnq(1 + fa)
�
δfa,

= −kB
�

a

�
qf q−1

a lnq fa + 1− q(1 + fa)
q−1 lnq(1 + fa)− 1

�
δfa,

= −kB
�

a

�
q
�1− f q−1

a

1− q

�
− q

�1− (1 + fa)
q−1

1− q

��
δfa,

= −kB
�

a

�� q

1− q

�
f q−1
a

�(1 + fa)
q−1

f q−1
a

− 1
��

δfa

(4.25)

For Fermion,

δ
�
SF.D.
q

�
= −kB

�

a

∂

∂fa

�
f q
a lnq fa + (1− fa)

q lnq(1− fa)
�
δfa,

= −kB
�

a

�
qf q−1

a lnq fa + 1− q(1− fa)
q−1 lnq(1− fa)− 1

�
δfa,

= −kB
�

a

�
q
�1− f q−1

a

1− q

�
− q

�1− (1− fa)
q−1

1− q

��
δfa,

= −kB
�

a

�� q

1− q

�
f q−1
a

�(1− fa)
q−1

f q−1
a

− 1
��

δfa

(4.26)
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Solving by taking eq: 4.24 or eq: 4.25 or eq: 4.26 and eq: 4.23 and substituting in eq:

4.22, also here all δfa can be treated as independent so the coefficients of each δfa must

vanish.This gives result,

fB.G.
a,q = [1 + (q − 1)(α + γea)]

−1
q−1 ,

fB.E.
a,q =

1

[1 + (q − 1)(α + γea)]
1

q−1 − 1
,

fF.D.
a,q =

1

[1 + (q − 1)(α + γea)]
1

q−1 + 1

(4.27)

Values of Lagrange multiplier(α, γ) are calculated by equating it to B-G limit (q → 1), we

get α = −βµ , γ = β, where β = 1
kBT

, Eq: 4.26 can be written in terms of q-exponential,

Tsallis-Boltzmann: fB.G.
i = expq

�
− ei − µ

kBT

�
,

Tsallis-Boson: fB.E.
i =

1

expq(
ei−µ
kBT

)− 1
,

Tsallis-Fermion: fF.D.
i =

1

expq(
ei−µ
kBT

) + 1
,

Tsallis-Gen.: fGen.
i =

1

expq(
ei−µ
kBT

) + η

(4.28)

4.2.1 Thermodynamics Consistency

Since we have derived the formula for occupation number and hence entropy, we have to

prove that the statistics build from these derived formulas is thermodynamically consistent.

So in this section we’ll verify the thermodynamical relations, which characterises classical

thermodynamics using our statistics. In proving the relations we’ll keep volume to be

constant and use natural units-system (Appendix: A). The relations are:

∂P

∂µ

���
T
=
N

V
= n, (4.29)

∂P

∂T

���
µ
=
S

V
= s, (4.30)

∂E

∂N

���
S
=
∂�

∂n

���
s
= µ, (4.31)

∂E

∂S

���
N
=
∂�

∂s

���
n
= T (4.32)

We’ll use following thermodynamical equality in proving the above relations for Tsallis

distributions.

S =
E − µN + PV

T
, (4.33)
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or in terms of densities,

s =
�− µn+ P

T
,

P =sT + µn− �

(4.34)

We will prove for Tsallis-Bolt and Tsallis-Boson, Tsallis-Fermion can be done similarly.

Relation: 4.29

Differentiating eq: 4.34, w.r.t µ keeping T constant,

V
∂P

∂µ

���
T
= T

∂S

∂µ

���
T
+N + µ

∂N

∂µ

���
T
− ∂E

∂µ

���
T

(4.35)

We’ll first proof for Tsallis-Bolt, so from eq: 4.24,

∂S

∂µ

���
T
= −

�

a

� q

q − 1
(f q−1

a − 1)
�∂fa
∂µ

,

= −
�

a

� q

q − 1
(f q−1

a − 1)
�f q

a

T

(4.36)

∂N

∂µ

���
T
=
�

a

∂f q
a

∂µ
=
�

a

qf q−1
a

∂fa
∂µ

=
�

a

q
f 2q−1
a

T
, (4.37)

∂E

∂µ

���
T
=
�

a

qea
f 2q−1
a

T
(4.38)

Substituting these differentials in eq: 4.35,

V
∂P

∂µ

���
T
=
�

a

�
−
� q

q − 1
(f q−1

a − 1)
�
f q
a + f q

a + µq
f 2q−1
a

T
− qea

f 2q−1
a

T

�
,

=
�

a

�
− q

q − 1
f 2q−1
a +

q

q − 1
f q
a + f q

a + µq
f 2q−1
a

T
− qea

f 2q−1
a

T

�
,

=
�

a

�
− q

q − 1

�
1 + (q − 1)

ea − µ

T

�
f 2q−1
a +

q

q − 1
f q
a + f q

a

�
,

=
�

a

�
− q

q − 1

�
f 1−q
a

�
f 2q−1
a +

q

q − 1
f q
a + f q

a

�
,

=
�

a

f q
a = N

(4.39)

For Tsallis-Boson, so from eq: 4.25,

∂S

∂µ

���
T
=−

�

a

�� q

1− q

�
f q−1
a

�(1 + fa)
q−1

f q−1
a

− 1
��

(
∂fa
∂µ

),

=−
�

a

�� q

1− q

�
f q−1
a

�(1 + fa)
q−1

f q−1
a

− 1
���f 2

a

T

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

�

(4.40)

33



∂N

∂µ

���
T
=
�

a

∂f q
a

∂µ
=
�

a

qf q−1
a

∂fa
∂µ

,

=
�

a

�
qf q−1

a

�f 2
a

T

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

��
,

=
�

a

�
q
f q+1
a

T

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

�
(4.41)

∂E

∂µ

���
T
=
�

a

�
eaq

f q+1
a

T

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

�
(4.42)

Using these differentials and supplying to eq: 4.35,

V
∂P

∂µ

���
T
=
�

a

�
− T

�� q

1− q

�
f q−1
a

�(1 + fa)
q−1

f q−1
a

− 1
���f 2

a

T

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

�
+ f q

a

+ µq
f q+1
a

T

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1 − eaq

f q+1
a

T

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

�
,

=
�

a

�
− q

1− q
(1 + fa)

q−1
�
f 2
a

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

�

+
q

1− q
f q−1
a

�
f 2
a

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

�
+ f q

a

+
�µ− ea

T

�
qf q+1

a

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

�

(4.43)

Using,
�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

=
�1 + fa

fa

�2−q

(4.44)

V
∂P

∂µ

���
T
=
�

a

�
− q

1− q
(1 + fa)

q−1
�
f 2
a

�1 + fa
fa

�2−q�
+

q

1− q
f q−1
a

�
f 2
a

�1 + fa
fa

�2−q�

+ f q
a +

�µ− ea
T

�
qf q+1

a

�1 + fa
fa

�2−q
�
,

=
�

a

�
− q

1− q
(1 + fa)f

q
a +

q

1− q
f q+1
a

�1 + fa
fa

�2−q

+ f q
a +

�µ− ea
T

�
qf q+1

a

�1 + fa
fa

�2−q
�
,

=
�

a

�
− q

1− q
(1 + fa)f

q
a +

q

1− q
[1 + (1− q)

µ− ea
T

]f q+1
a

�1 + fa
fa

�2−q

+ f q
a

�
,

=
�

a

�
− q

1− q
(1 + fa)f

q
a +

q

1− q
(1 + fa)f

q
a + f q

a

�
,

=
�

a

f q
a = N

(4.45)
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Relation: 4.30

Differentiating eq: 4.34 w.r.t T keeping µ constant,

V
∂P

∂T

���
µ
= S + T

∂S

∂T

���
µ
+ µ

∂N

∂T

���
µ
− ∂E

∂T

���
µ

(4.46)

We’ll first proof for Tsallis-Bolt, so from eq: 4.24,

∂S

∂T

���
µ
= −

�

a

� q

q − 1
(f q−1

a − 1)
�∂fa
∂T

,

= −
�

a

� q

q − 1
(f q−1

a − 1)
��ea − µ

T 2

�
f q
a

(4.47)

∂N

∂T

���
µ
=
�

a

qf q−1
a

∂fa
∂T

=
�

a

qf 2q−1
a [

ea − µ

T 2
], (4.48)

∂E

∂T

���
µ
=
�

a

qeaf
2q−1
a [

ea − µ

T 2
] (4.49)

Substituting these differentials in eq: 4.46,

V
∂P

∂T

���
µ
− S = T

∂S

∂T

���
µ
+ µ

∂N

∂T

���
µ
− ∂E

∂T

���
µ
,

=
�

a

�
− q

q − 1
(f q−1

a − 1)
�ea − µ

T

�
f q
a + µ

q

T 2
f 2q−1
a (ea − µ)− q

ea(ea − µ)

T 2
f 2q−1
a

�
,

=
�

a

� q

q − 1
(f q−1

a − 1)
�µ− ea

T

�
f q
a + q

(µ− ea)

T 2
f 2q−1
a (ea − µ)

�
(4.50)

Using,

(ea − µ) = T
�f 1−q

a − 1

q − 1

�
(4.51)

Simplifying eq: 4.50,

V
∂P

∂T

���
µ
− S =

�

a

� q

q − 1
(f q−1

a − 1)
�µ− ea

T

�
f q
a + q

(µ− ea)

T
f 2q−1
a

�f 1−q
a − 1

q − 1

��
,

=
�

a

� q

q − 1
(f q−1

a − 1)
�µ− ea

T

�
f q
a +

q

q − 1

(µ− ea)

T
f 2q−1
a (f 1−q

a − 1)
�
,

=
�

a

� q

q − 1
(f q−1

a − 1)
�µ− ea

T

�
f q
a +

q

q − 1

(µ− ea)

T
(f q

a − f 2q−1)
�
,

=0 (4.52)
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For Tsallis-Boson, So from eq: 4.25,

∂S

∂T

���
µ
=−

�

a

�� q

1− q

�
f q−1
a

�(1 + fa)
q−1

f q−1
a

− 1
���∂fa

∂T

�
,

=−
�

a

�� q

1− q

�
f q−1
a

�(1 + fa)
q−1

f q−1
a

− 1
���f 2

a (ea − µ)

T 2

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

�

(4.53)

∂N

∂T

���
µ
=
�

a

∂f q
a

∂T
=
�

a

qf q−1
a

∂fa
∂T

,

=
�

a

�
qf q−1

a

�f 2
a (ea − µ)

T 2

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

��
,

=
�

a

�
q
f q+1
a (ea − µ)

T 2

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

�
(4.54)

∂E

∂T

���
µ
=
�

a

�
qea(ea − µ)

f q+1
a

T 2

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

�
(4.55)

Using these differentials and supplying to eq: 4.46,

V
∂P

∂T

���
µ
−S = T

∂S

∂T

���
µ
+ µ

∂N

∂T

���
µ
− ∂E

∂T

���
µ
,

=
�

a

�
− T

�� q

1− q

�
f q−1
a

�(1 + fa)
q−1

f q−1
a

− 1
���f 2

a (ea − µ)

T 2

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

�
+

µ

�
q
f q+1
a (ea − µ)

T 2

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

�
−
�
qea(ea − µ)

f q+1
a

T 2

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

��
,

=
�

a

�
−
�� q

1− q

�
f q+1
a

�(1 + fa)
q−1

f q−1
a

− 1
���(ea − µ)

T

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

�

+ (µ− ea)

�
q
f q+1
a (ea − µ)

T 2

�
1 + (q − 1)

ea − µ

T

� 2−q
q−1

��

(4.56)

Using, eq: 4.44,

V
∂P

∂T

���
µ
− S =

�

a

�
−
�� q

1− q

�
f q+1
a

�(1 + fa)
q−1

f q−1
a

− 1
���(ea − µ)

T

�1 + fa
fa

�2−q
�

+ (µ− ea)

�
q
f q+1
a (ea − µ)

T 2

�1 + fa
fa

�2−q
��

,
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=
�

a

��� q

q − 1

�
f 2q−1
a

�(1 + fa)
q−1

f q−1
a

− 1
���(ea − µ)

T

�
1 + fa

�2−q
�

+ (µ− ea)

�
q
f 2q−1
a (ea − µ)

T 2

�
1 + fa

�2−q
��

,

=
�

a

� q

q − 1

�
f 2q−1
a

(ea − µ)

T

�
1 + fa

�2−q
��(1 + fa)

q−1

f q−1
a

− 1
�
+ (q − 1)

�
µ− ea
T

��
,

=
�

a

� q

q − 1

�
f 2q−1
a

(ea − µ)

T

�
1 + fa

�2−q
�
(1 + fa)

q−1

f q−1
a

−
�
1 + (q − 1)

ea − µ

T

��
,

=
�

a

� q

q − 1

�
f 2q−1
a

(ea − µ)

T

�
1 + fa

�2−q
�
(1 + fa)

q−1

f q−1
a

−
�
(1 + fa)

q−1

f q−1
a

��
,

= 0

(4.57)

Relation: 4.31

∂E

∂N

���
S
=

∂E
∂T

��
µ
dT + ∂E

∂µ

��
T
dµ

∂N
∂T

��
µ
dT + ∂N

∂µ

��
T
dµ

,

=

∂E
∂T

��
µ
+ ∂E

∂µ

��
T

dµ
dT

∂N
∂T

��
µ
+ ∂N

∂µ

��
T

dµ
dT

(4.58)

Further, since S is kept constant so, dS = 0,

dS =
∂S

∂T

���
µ
dT +

∂S

∂µ

���
T
dµ = 0,

so,
dµ

dT
= −

� ∂S
∂T

��
µ

∂S
∂µ

��
T

� (4.59)

∂E

∂N

���
S
=

∂E
∂T

��
µ
− ∂E

∂µ

��
T

� ∂S
∂T

|µ
∂S
∂µ

|T

�

∂N
∂T

��
µ
− ∂N

∂µ

��
T

� ∂S
∂T

|µ
∂S
∂µ

|T

� (4.60)

We can explicitly solve this eq. by substituting the corresponding derivatives. For Tsallis-

Bolt, using eqs: 4.36, 4.37, 4.38, 4.47, 4.48, 4.49, we can write the numerator (N �) as,

N
�
=
�

a

qeaf
2q−1
a [

ea − µ

T 2
]−

��

a

qea
f 2q−1
a

T

��−�
b

�
q

q−1
(f q−1

b − 1)
�
[ eb−µ

T 2 ]f q
b

−�
b

�
q

q−1
(f q−1

b − 1)
�
fq
b

T

�
,
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=
�

a

qeaf
2q−1
a [

ea − µ

T 2
]−

��

a

qea
f 2q−1
a

T

���
b(f

q−1
b − 1)[ eb−µ

T
]f q

b�
b(f

q−1
b − 1)f q

b

�
,

=

���
a qeaf

2q−1
a [ ea−µ

T 2 ]
���

b(f
q−1
b − 1)f q

b

�
−
��

a qea
f2q−1
a

T

���
b(f

q−1
b − 1)[ eb−µ

T
]f q

b

��

�
b(f

q−1
b − 1)f q

b

,

=

�
a

�
b

�
q
T 2f

2q−1
a (f q−1

b − 1)f q
b

��
ea
�
ea − µ

�
− ea

�
eb − µ

��

�
b(f

q−1
b − 1)f q

b

,

=

�
a

�
b

�
q
T 2f

2q−1
a (f q−1

b − 1)f q
b

��
e2a − eaeb

�

�
b(f

q−1
b − 1)f q

b

(4.61)

Using,

(f q−1
b − 1) = −f q−1

b

�
(q − 1)

eb − µ

T

�
(4.62)

Substituting in eq: 4.61,

N
�
=

�
a

�
b

�
−q
T 2 f

2q−1
a (f 2q−1

b

�
(q − 1) eb−µ

T

�
)
��

e2a − eaeb

�

�
b(f

q−1
b − 1)f q

b

,

=

�
a

�
b

�
−q
T 3 (q − 1)f 2q−1

a f 2q−1
b

��
(eb − µ)(e2a − eaeb)

�

�
b(f

q−1
b − 1)f q

b

,

=

�
a

�
b

�
−q
T 3 (q − 1)f 2q−1

a f 2q−1
b

��
ebe

2
a − eae

2
b

�
− µ

�
a

�
b

�
−q
T 3 (q − 1)f 2q−1

a f 2q−1
b

��
e2a − eaeb

�

�
b(f

q−1
b − 1)f q

b

(4.63)

Similarly, we can write denominator (D�) of 4.60 as,

D
�
=

�
a

�
b

�
−q
T 3 (q − 1)f 2q−1

a f 2q−1
b

��
ebea − e2b

�
− µ

�
a

�
b

�
−q
T 3 (q − 1)f 2q−1

a f 2q−1
b

��
ea − eb

�

�
b(f

q−1
b − 1)f q

b

(4.64)

Note, the first term in the numerator (4.63) and second term in denominator (4.64) are

‘zero’, So,

∂E

∂N

���
S
=

−µ
�

a

�
b

�
−q
T 3 (q − 1)f 2q−1

a f 2q−1
b

��
e2a − eaeb

�

�
a

�
b

�
−q
T 3 (q − 1)f 2q−1

a f 2q−1
b

��
ebea − e2b

� (4.65)

Since exchanging labels a,b won’t affect the terms, so the numerator is equal to µ times the

denominator,

∂E

∂N

���
S
= µ (4.66)
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For Tsallis-Boson, using eq: 4.40, 4.41, 4.42, 4.53, 4.54, 4.55 and 4.44 in eq: 4.60, we can

write the numerator (N �) as,

N
�
=
�

a

qeaf
q+1
a

�ea − µ

T 2

��1 + fa
fa

�2−q −
���

a

qea
f q+1
a

T

�1 + fa
fa

�2−q
�

×
�−�

b

�
q

1−q
f q+1
b

��
eb−µ
T 2

��
(1+fb

fb
)q−1 − 1

��
1+fb
fb

�2−q

−�
b

�
q

1−q

fq+1
b

T

��
(1+fb

fb
)q−1 − 1

��
1+fb
fb

�2−q

��
,

=
�

a

qeaf
q+1
a

�ea − µ

T 2

��1 + fa
fa

�2−q −
���

a

qea
f q+1
a

T

�1 + fa
fa

�2−q
�

×
��

b f
q+1
b

�
eb−µ
T

��
(1+fb

fb
)q−1 − 1

��
1+fb
fb

�2−q

�
b f

q+1
b

�
(1+fb

fb
)q−1 − 1

��
1+fb
fb

�2−q

��
,

=

�
a qeaf

q+1
a

�
ea−µ
T 2

��
1+fa
fa

�2−q
[
�

b f
q+1
b

�
(1+fb

fb
)q−1 − 1

��
1+fb
fb

�2−q
]

�
b f

q+1
b

�
(1+fb

fb
)q−1 − 1

��
1+fb
fb

�2−q

−

��
a qea

fq+1
a

T

�
1+fa
fa

�2−q
���

b f
q+1
b

�
eb−µ
T

��
(1+fb

fb
)q−1 − 1

��
1+fb
fb

�2−q
�

�
b f

q+1
b

�
(1+fb

fb
)q−1 − 1

��
1+fb
fb

�2−q ,

=

�
a

�
b

�
q
T 2f

q+1
a f q+1

b

�
1+fa
fa

�2−q�1+fb
fb

�2−q�
(1+fb

fb
)q−1 − 1

���
ea(ea − µ)− ea(eb − µ)

�

�
b f

q+1
b

�
(1+fb

fb
)q−1 − 1

��
1+fb
fb

�2−q ,

=

�
a

�
b

�
q
T 2 (fafb)

q+1
��

1+fa
fa

��
1+fb
fb

��2−q�
(1+fb

fb
)q−1 − 1

���
e2a − eaeb

�

�
b f

q+1
b

�
(1+fb

fb
)q−1 − 1

��
1+fb
fb

�2−q

(4.67)

Using,

��1 + fb
fb

�q−1 − 1
�
=
�
(q − 1)

eb − µ

T

�
(4.68)

Simplifying eq: 4.67,

N
�
=

�
a

�
b

�
q
T 2 (fafb)

q+1
��

1+fa
fa

��
1+fb
fb

��2−q�
(q − 1) eb−µ

T

���
e2a − eaeb

�

�
b f

q+1
b

�
(1+fb

fb
)q−1 − 1

��
1+fb
fb

�2−q ,

=

�
a

�
b

�
q(q−1)
T 3 (fafb)

q+1
��

1+fa
fa

��
1+fb
fb

��2−q
��

(eb − µ)(e2a − eaeb)
�

�
b f

q+1
b

�
(1+fb

fb
)q−1 − 1

��
1+fb
fb

�2−q ,
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=

�
a

�
b

�
q(q−1)
T 3 (fafb)

q+1
��

1+fa
fa

��
1+fb
fb

��2−q
��

eb(e
2
a − eaeb)

�

�
b f

q+1
b

�
(1+fb

fb
)q−1 − 1

��
1+fb
fb

�2−q

−

�
a

�
b

�
q(q−1)
T 3 (fafb)

q+1
��

1+fa
fa

��
1+fb
fb

��2−q�
µ(e2a − eaeb)

��

�
b f

q+1
b

�
(1+fb

fb
)q−1 − 1

��
1+fb
fb

�2−q

(4.69)

Similarly, we can write denominator (D�) of eq: 4.60 as,

D
�
=

�
a

�
b

�
q(q−1)
T 3 (fafb)

q+1
��

1+fa
fa

��
1+fb
fb

��2−q
��

eb(ea − eb)
�

�
b f

q+1
b

�
(1+fb

fb
)q−1 − 1

��
1+fb
fb

�2−q

−

�
a

�
b

�
q(q−1)
T 3 (fafb)

q+1
��

1+fa
fa

��
1+fb
fb

��2−q�
µ(ea − eb)

��

�
b f

q+1
b

�
(1+fb

fb
)q−1 − 1

��
1+fb
fb

�2−q

(4.70)

Note, the first term in the numerator (4.69) and second term in denominator (4.70) are

‘zero’, So,

∂E

∂N

���
S
=

−�
a

�
b

�
q(q−1)
T 3 (fafb)

q+1
��

1+fa
fa

��
1+fb
fb

��2−q
��

µ(e2a − eaeb)
�

�
a

�
b

�
q(q−1)
T 3 (fafb)q+1

��
1+fa
fa

��
1+fb
fb

��2−q
��

eb(ea − eb)
� (4.71)

It can be noticed that numerator is equal to µ multiplied by the denominator,

∂E

∂N

���
S
= µ (4.72)

Relation: 4.32

∂E

∂S

���
N
=

∂E
∂T

��
µ
dT + ∂E

∂µ

��
T
dµ

∂S
∂T

��
µ
dT + ∂S

∂µ

��
T
dµ

,

=

∂E
∂T

��
µ
+ ∂E

∂µ

��
T

dµ
dT

∂S
∂T

��
µ
+ ∂S

∂µ

��
T

dµ
dT

(4.73)

Further, since N is kept constant so, dN = 0,

dN =
∂N

∂T

���
µ
dT +

∂N

∂µ

���
T
dµ = 0,

so,
dµ

dT
= −

� ∂N
∂T

��
µ

∂N
∂µ

��
T

� (4.74)

40



∂E

∂S

���
N
=

∂E
∂T

��
µ
− ∂E

∂µ

��
T

� ∂N
∂T

|µ
∂N
∂µ

|T

�

∂S
∂T

��
µ
− ∂S

∂µ

��
T

� ∂N
∂T

|µ
∂N
∂µ

|T

� (4.75)

For Tsallis-Bolt, using eqs: 4.36, 4.37, 4.38, 4.47, 4.48, 4.49, we can write the numerator

(N �) as,

N
�
=
�

a

qeaf
2q−1
a

�ea − µ

T 2

�
−
��

a

qea
f 2q−1
a

T

���
b qf

2q−1
b [ eb−µ

T 2 ]
�

b q
f2q−1
b

T

�
,

=

��
a qeaf

2q−1
a [ ea−µ

T 2 ]
��

b f
2q−1
b −

��
a qea

f2q−1
a

T

��
b f

2q−1
b [ eb−µ

T
]

�
b f

2q−1
b

,

=

��
a

�
b qea

f2q−1
a

T 2 f 2q−1
b [ea − µ]

�
−
��

a

�
b qea

f2q−1
a

T 2 f 2q−1
b [eb − µ]

�

�
b f

2q−1
b

,

=

�
a

�
b

�
qea

f2q−1
a

T 2 f 2q−1
b [ea − µ− (eb − µ)]

�

�
b f

2q−1
b

,

=

�
a

�
b

�
qea

f2q−1
a

T 2 f 2q−1
b (ea − eb)

�

�
b f

2q−1
b

(4.76)

Similarly, we can write denominator (D�) of eq: 4.75 as,

D
�
=

�
a

�
b

�
q

q−1
(f q−1

a − 1)f q
a

�
f2q−1
b

T 2 (−ea + eb)
�

b f
2q−1
b

(4.77)

Using eq: 4.62,

(f q−1
a − 1)f q

a = −f 2q−1
a

�
(q − 1)

ea − µ

T

�
(4.78)

Substituting this in eq: 4.77,

D
�
=

�
a

�
b

�
q

q−1

�
− f 2q−1

a (q − 1) ea−µ
T

��f2q−1
b

T 2 (−ea + eb)
�

b f
2q−1
b

,

=

�
a

�
b

�
q
�
f 2q−1
a

ea
T

��f2q−1
b

T 2 (ea − eb)−
�

a

�
b

�
q
�
f 2q−1
b

µ
T

��f2q−1
b

T 2 (ea − eb)
�

b f
2q−1
b

(4.79)

Note that second term in D
� is zero as its just the matter of labels, hence denominator is 1

T

times that of numerator, so

∂E

∂S

���
N
= T (4.80)
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For Tsallis-Boson, using eq: 4.40, 4.41, 4.42, 4.53, 4.54, 4.55 and 4.44 in eq: 4.75, we can
write the numerator (N �) as,

N
�
=
�

a

qeaf
q+1
a

�ea − µ

T 2

��1 + fa
fa

�2−q −
��

a

qea
fq+1
a

T

�1 + fa
fa

�2−q
���

b qf
q+1
b

�
eb−µ
T 2

�
( 1+fb

fb
)2−q

�
b q

fq+1
b

T ( 1+fb
fb

)2−q

�
,

=

�
a qeaf

q+1
a

�
ea−µ
T 2

��
1+fa
fa

�2−q
��

b f
q+1
b

�
( 1+fb

fb
)2−q

��
−
��

a qea
fq+1
a

T

�
1+fa
fa

�2−q
���

b f
q+1
b

�
eb−µ
T

�
( 1+fb

fb
)2−q

�

�
b f

q+1
b ( 1+fb

fb
)2−q

,

=

�
a

�
b

�
q
T 2 f

q+1
a fq+1

b

�
1+fa
fa

�2−q
( 1+fb

fb
)2−q

�
ea(ea − µ)− ea(eb − µ)

��

�
b f

q+1
b ( 1+fb

fb
)2−q

,

=

�
a

�
b

�
q
T 2 f

q+1
a fq+1

b

�
1+fa
fa

�2−q
( 1+fb

fb
)2−q

�
ea(ea − eb)

��

�
b f

q+1
b ( 1+fb

fb
)2−q

(4.81)

Similarly, we can write denominator (D�) of eq: 4.75 as,

D
�
=

�
a

�
b

��
q

1−q

�
fq+1
a

T 2

��
1+fa
fa

�q−1 − 1
��

1+fa
fa

�2−q
�
f q+1
b

�
1+fa
fb

�2−q

(−ea + eb)

�
b f

q+1
b (1+fb

fb
)2−q

(4.82)

From eq: 4.44,
��1 + fa

fa

�q−1 − 1
�
= (q − 1)

ea − µ

T
(4.83)

Simplifying eq: 4.82,

D
�
=

�
a

�
b

��
q

1−q

�
fq+1
a

T 2

�
(q − 1) ea−µ

T

��
1+fa
fa

�2−q
�
f q+1
b

�
1+fa
fb

�2−q

(−ea + eb)

�
b f

q+1
b (1+fb

fb
)2−q

,

=

�
a

�
b

�
q
T 2f

q+1
a f q+1

b

�
1+fa
fa

�2−q�
1+fa
fb

�2−q
��

ea−µ
T

�
(ea − eb)

�
b f

q+1
b

�
(1+fb

fb
)2−q

,

=

�
a

�
b

�
q
T 2f

q+1
a f q+1

b

�
1+fa
fa

�2−q�
1+fa
fb

�2−q
��

ea
T

�
(ea − eb)

�
b f

q+1
b (1+fb

fb
)2−q

−

�
a

�
b

�
q
T 2f

q+1
a f q+1

b

�
1+fa
fa

�2−q�
1+fa
fb

�2−q
��

µ
T

�
(ea − eb)

�
b f

q+1
b (1+fb

fb
)2−q

(4.84)

It can be easily observe that the second term in above equation is zero and the first term is
1
T

times the eq: 4.81, So

∂E

∂S

���
N
= T (4.85)
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Since, we have proved all the thermodynamical relations, so our new form of statistics

based on Tsallis formalism is thermodynamically consistent. In next section we will be

using multiplicity formula based on this statistics for fitting pT spectra and will drive the

formula for Pressure.

4.2.2 pT Spectra

In Experiments we record pT spectra for particles detected, formula of pT can be derived

from multiplicity formula as shown in section: 2.2, The modified form of multiplicity dis-

tribution in Tsallis statistics is given by eq: 4.20,

NB.G.
q =

gV

(2π)3

�
d3p

�
1 + (q − 1)

(E(p)− µ)

T

� −q
q−1

,

NB.E/F.D
q =

gV

(2π)3

�
d3p

�
1

�
1 + (q − 1) (E(p)−µ)

T

� 1
q−1 + η

�q (4.86)

One can note, under limit q → 1, we get back our standard statistical form (2.8),

NB.G.
q

q→1−−→ gV

(2π)3

�
d3p exp

�
−(E(p)− µ)

T

�
= NB.G.,

NB.E/F.D
q

q→1−−→ gV

(2π)3

�
d3p

1

exp
�
E(p)−µ

T

�
+ η

= NB.E/F.D
(4.87)

corresponding Yield’s formula from eq: 2.13, in mid-rapidity (y ≈ 0) is given by,

d2N

2πpTdpTdy

����
y=0

=





gV mT

(2π)3

�
1 + (q − 1) (mT−µ)

T

� −q
q−1

for Tsallis-Boltzmann,

gV mT

(2π)3

�
1

[1+(q−1)
mT−µ

T
]

1
q−1+η

�q
for Tsallis-(B.E/F.D)

(4.88)

In Fig: 4.2 we have shown the goodness of fitting, data used is of 2.76 TeV Pb-Pb collision[41].

In the plots, small circles represent the experimental data of yield for charged pions and

charged kaons and solid lines represents fitting by B-G, Boson, their Tsallis-variant distri-

bution functions. We used chi-square test, to determine the goodness of fit note in Table 4.1.

Chi-square goodness of fit is used to find out how the observed value of given phenomena

significantly different from the expected value and to compare the observed sample distri-

bution with expected/theoretical probability distribution. Lower the value of Chi-sq/NDF

better is the fit.
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Figure 4.2: Comparison between different Distributions by fitting to Experimental data

Particle Statistics Chi-sq/NDF

π+ + π− Tsallis-Boson 26.6022/33 = 0.806128

Tsallis-Boltz 43.6842/33 = 1.332376

Boson 587.804/34 = 17.2883

Boltz 751.133/34 = 22.0921

k+ + k− Tsallis-Boson 4.69683/33 = 0.142328

Tsallis-Boltz 5.70484/33 = 0.172874

Boson 155.242/34 = 4.56594

Boltz 196.348/34 = 5.77494

Table 4.1: Chi-Sq values

By fitting eq: 4.88 to pT spectra for particular system of particles one can get Temperature,

q, Volume of the system. These latent variables that we get by fitting are the kinetic-

freezeout Temperature, non-extensive parameter and volume of the system. These fitting

parameters can be used to extract further thermodynamical properties of system. Since

we are dealing in LHC energies we took chemical potential µ = 0 in our analysis, as at

LHC energies there is particle-antiparticle symmetry (approximately equal production of

particles and anti-particles4).

4It is found even at LHC energies, particle to antiparticle ratio not equal to 1, so µ may not be taken to be

zero[42].
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4.2.3 Pressure Formulation

We know Tsallis statistics is themodynamically consistent. Formula of pressure can be

easily derivable using thermodynamical relations,

P =
ST − E + µN

V
(4.89)

Since we know the form of S, E, N we can derive the corresponding formula for Pressure,

For Tsallis-Boltz,

P =
T
�
−�

a[f
q
a lnq fa − fa]

�
−�

a f
q
aea + µ

�
a f

q
a

V
,

=
�

a

�−Tf q
a lnq fa + Tfa − f q

aea + µf q
a

V

�
,

=
�

a

�−T [1 + (q − 1) (−µ+ea)
T

]
−q
q−1

�
[1+(q−1)

(−µ+ea)
T

]
−(1−q)
q−1 −1

1−q

�
+ Tfa + f q

a(−ea + µ)

V

�
,

=
�

a

�
f q
a(ea − µ) + Tfa + f q

a(−ea + µ)

V

�
,

=
�

a

�T [1 + (q − 1) (ea−µ)
T

]
−1
q−1

V

�
(4.90)

For Tsallis-Boson,

P =
T
�
−�

a

�
f q
a lnq fa − (1 + fa)

q lnq(1 + fa)
��
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a f

q
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�
a f
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V
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=
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a f
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�
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�
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V
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T
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a
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Similarly we can derive the formula of pressure for Tsallis-Fermion. Now expressing

Pressure in terms of Transverse momentum (pT ) and rapidity (y) and we take following

limit,

�

a

→
�

gV d3p

(2π)3
, and e = mT cosh y,

dpz
e

= dy (4.92)

Expression of Pressure in differential form,

d3P

dp3
=

d3P

(dpxdpy)(dpz)
=

d2P

2πpTdpT (edy)
(4.93)

For eq: 4.90 i.e. for Tsallis-Boltz,
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�
(4.94)

Similarly for eq: 4.91 i.e. for Tsallis-Boson,

d2P

2πpTdpT (edy)
=

g
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�
T (1 + fa)

q−1 lnq(1 + fa)
�
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gpT e
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, (4.95)

P =

��
dpTdy

g(pT )mT cosh y

(2π)2

�
T (1 + fa)

q−1 lnq(1 + fa)
�

(4.96)

In the next chapter we have calculated Pressure using these relation for different system of

particles formed in heavy-ion collision. We have done analysis on pions(π0, π+, π−) and

kaons(k+, k−), and taking chemical potential, µ =0 for all the particles and considering the

value of g(degeneracy factor) for π0 to be 2, π+ + π− to be 2 and for k+ + k− to be 2. We

have used the limits of integration, for pT from 0 to the maximum value of pT considered,

and for y from -0.5 to 0.5.
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Chapter 5

Analysis

In this chapter we will discuss the analysis and calculation done using the synthetic data

made using UrQMD[16] for Pb-Pb collision at 2.76 TeV for different centralities and for

experimental data for Au-Au collision at 200 GeV by PHENIX collaboration [43],Au-Au

collision at 200 GeV by STAR collaboration [44], Pb-Pb collision at 2.76 TeV[41] and 5.02

TeV [45]. The invariant yields of various partiles are fitted using Tsallis distributions and

the extracted parameters are used to calculate Pressure. We have used ROOT, CERN data

analysis framework for fitting [46]. In Fig. 5.1 we have shown that production of charged

pions yield is relatively higher than other hadrons particles. This multiplicity analysis is

done on final state particles for 52k events generated using UrQMD in hydro mode[47][48]

for Pb-Pb collision at 2.76 TeV. So in our analysis we have used system of charged pions

(π++ π−) and neutral pions (π0) for calculating thermodynamical quantities.
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Figure 5.1: Number of Particles in (0-5)% centrality for Pb-Pb collision at 2.76 TeV
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5.1 Hydrodynamics evolution

Hydrodynamics gives dynamical evolution of various thermodynamical quantities with one

important assumption of local thermal equillibrium. It stands on pillar of conservation laws.

Given the initial input parameter along with the equation of state to be used for the system

in considration, we can extract space-time evolution of thermodynamical quantities. We

have used UrQMD for solving hydrodynamic equations. UrQMD uses ideal hydrodynam-

ics along with SU(3) parity duality model based equation of state[28]. We have plotted

variation of thermodynamical quantities with time, calculated by fitting pT spectra using

Tsallis-Boson statistics for pions, in different centralities at 2.76 TeV for Pb-Pb collision

generated by UrQMD in hydro mode. Data is generated for time-steps 10 fmsec to 150

fmsec with freezeout at time 150 fmsec.

In Fig 5.2 and Fig 5.3 we have calculated dynamical variation of Pressure, Temperature,

non-extensive parameter(q) and the normalizing constant,Volume for charged pions and

neutral pions formed in different centrality for Pb-Pb collision at 2.76 TeV. As one can note

that Pressure for charged pions is more than that of neutral pions due to more abundance

of charged pions formed. Also with time, volume of either particles, is increasing and the

Temperature is decreasing, this is due to expansion and cooling of system with increase

in number of particles in the system with time. Note that non-extensive parameter(q) is

almost constant with time. One can quantify from value of q, how much system deviates

from its equilibrium. when q value approach unity it is close to equilibrium. The geometric

information i.e. centrality dependence is also important to understand. Also with centrality

the value of Pressure, Temperature, Volume is decreasing as expected, as centrality decides

the overlap region of two nucleus colliding, less centrality, more is the overlap and more

volume of the system formed. There is decrease in Temperature, it indicates the energy

deposition is more in central then peripheral collisions.
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Figure 5.2: Thermodynamical quantities for π++ π− in Pb-Pb collision at 2.76 TeV
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Figure 5.3: Thermodynamical quantities for π0 in Pb-Pb collision at 2.76 TeV

49



5.1.1 Final state particles

In this section comparison of different distribution function used to fit the pT spectra for

final state particles formed after freeze-out from UrQMD data i.e. at 150 fmsec. pT spectra

of pions is fitted with B-G, Boson, Tsallis-Boltz and Tsallis-Boson. In the following ta-

ble, goodness of fit, Chi-sq/NDF and Thermodynamical quantities are listed for system of

charge pions and system of neutral pions. One can see from value of Chi-sq/NDF, measure

of goodness of fit, that Tsallis-Boson fits better than other used distributions. Fig 5.4 shows

the visualization of fitting for system of charge pions.
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Figure 5.4: pT spectra for π+ + π− for (0-5)% centrality Pb-Pb 2.76 TeV

Particle Statistics Chi-sq/NDF T (MeV) q V (fm3) P (MeVfm−3)

π+ + π− Boltz 1051.53/38= 27.6720 193.862 - 4898.954 -

Boson 879.346/38= 23.1407 193.978 - 4882.749 -

Tsallis-Boltz 98.5430/37=2.66332 109.249 1.06600 47312.825 0.753839

Tsallis-Boson 66.9183/37=1.80860 115.710 1.06118 36701.636 0.960561

π0 Boltz 1064.03/38= 28.0007 194.590 - 2469.730 -

Boson 888.353/38= 23.3777 194.679 - 2464.414 -

Tsallis-Boltz 101.977/37=2.75614 109.519 1.06633 23896.530 0.384938

Tsallis-Boson 69.5178/37=1.87886 116.171 1.06138 18421.526 0.493278
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5.2 Experimental data

In previous section we studied the system generated using event generator,UrQMD. In real

experiment we don’t have time-wise information of whats happening inside the collider,

we get information of final stage particles free-streaming to detectors after from the freeze-

out surface. We have used pT of these particles as our kinematic observable for probing

thermodynamical properties of the system produced. We have used Au-Au collision at 200

GeV by PHENIX collaboration [43], Au-Au collision at 200 GeV by STAR collaboration

[44] and Pb-Pb collision at 2.76 TeV [41] and 5.02 TeV [45] for the analysis.
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Figure 5.5: pT spectra fit with Tsallis-Boson for different Centralities and Beam-energies
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Figure 5.6: pT spectra fit with Tsallis-Boson for Au-Au collision at 200 GeV

Fig. 5.5 shows the pT fit of charged pions and charged kaons for different centralities and

energies for low pT value i.e. upto 3-GeV, as for large pT values hard process are domi-

nated. Fitting is done for Au-Au collision at 200 GeV by PHENIX collaboration [43] and

Pb-Pb collision at 2.76 TeV [41] and 5.02 TeV [45]. Fig. 5.6 is for Au-Au collision at 200

GeV by STAR collaboration [44]. Systematic errors are used for the error bars and for com-

posite system the errors of individual particle kind are added in quadrature. By Chi-square

goodness of fit method, being a good fit to the spectra [4.2.2], we have used Tsallis-Boson

for fitting the pT spectra with constrain chemical potential µ = 0.

Fig. 5.7 shows the variation of thermodynamical quantities for charged kaons with NPart or

centrality at different energies, where NPart is the average number of participating nucleons

in the collision. More the value of NPart more central is the collision. Centrality table is

shown in Table: 5.1 for Pb-Pb coliision at 2.76 TeV and 5.02 TeV.

It is observed that value of Volume, Temperature and Pressure decreases when going from

central to peripheral collisions i.e towards lower value of NPart. Also the values of these

thermodynamical quantities decreases with collision energy. Similarly in Fig. 5.8, system

of charged pions is studied for Au-Au collision at 200 GeV (STAR), Pb-Pb at 2.76 TeV and

5.02 TeV. It can be noted that Temperature of system of charged kaons is more then that of

charged pions, this can be attributed due to earlier freezing-out of heavier particles. Also

massive the particles is, smaller the kinetic freeze-out volume, suggesting freeze-out sur-

faces are different for different mass hadrons. The non-extensive parameter ‘q’ approaches

to 1 for large value of NPart i.e. it moves towards equilibrium for most-central collisions.
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Centrality(%) NPart

2.76 TeV 5.02 TeV

0 to 5 381.184 383.852

5 to 10 327.837 331.695

10 to 20 258.549 262.698

20 to 30 182.308 188.181

30 to 40 127.181 130.501

40 to 50 83.8042 86.5005

50 to 60 51.7977 53.8448

60 to 70 29.364 30.7842

70 to 80 15.1838 16.0166

80 to 90 7.81635 8.2189

Table 5.1: Centrality Table
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Figure 5.7: Thermodynamical Parameters for k+ + k−
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In Table 5.2, thermodynamical parameters are listed, which are extracted using Tsallis-

Boltz and Tsallis-Boson for different beam energies in most central collision.
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Figure 5.8: Thermodynamical Parameters for π+ + π−

Particle Statistics Energy T(MeV) V(fm3) q P(MeV fm−3)

k+ + k− Tsallis-Boltz 2.76 TeV 241.175 1437.65 1.04445 36.8885

5.02 TeV 245.078 1646.63 1.05193 42.5081

Tsallis-Boson 2.76 TeV 258.217 1120.53 1.03384 47.303

5.02 TeV 259.158 1334.92 1.04372 52.3702

π+ + π− Tsallis-Boltz 200.0 GeV 114.154 20652.8 1.09598 2.55433

2.76 TeV 129.404 33401.3 1.10688 6.54471

5.02 TeV 121.792 48000.6 1.12272 5.8307

Tsallis-Boson 200.0 GeV 123,59 15567.0 1.08597 3.38964

2.76 TeV 138.881 25675.4 1.09945 8.55601

5.02 TeV 139.678 30118.8 1.10765 9.36845

Table 5.2: Thermodynamical quantities for most-central collision at different energies
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Appendix A

Natural Units

They are simple and have practical advantage for making equations less bulky.It is easy to

convert cgs/MKS to natural units or vice-versa.They are natural in sense they provide scales

appropriate in quantum or relativistic physics. One have to follow dimensional analysis for

making sense of quantities in the eqs.

1Kg = 5.610× 1026 GeV

1GeV = 1.160× 1013 K

1fm = 5.068 GeV −1

1�c = 197.32MeV fm

Pressure =8.878× 10−9MeV fm−3 = 1.400× 1018 atm

Comparison between familiar values in both the unit systems,

• Temperature in the center of Sun, is around 1.571× 107K or 1.354× 10−3 MeV ,

• Pressure in central region of sun is around 2.447×1011 atm or 1.552×10−15MeV fm−3,

• Pressure in central region of Neutron star is around 1.579×1029 atm or 10.01×102MeV fm−3.
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Appendix B

Modified Bessel Function of Second kind

Defination of Kn(z):

Kn(z) =
2nn!

(2n)!

1

zn

� ∞

z

dx(x2 − z2)n−
1
2 exp(−x) (B.1)

According to standard thermodynamics,

N

V
= n =

g

(2π)3

�
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) (B.2)
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g

(2π)3
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exp(
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T
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These formulas can be written in form of Kn, Let,

z =
m

T
, x =

E

T
=

�
|p|2 +m2

T

|p| = T
√
x2 − z2, |p|d|p| = T 2xdx

|p|2d|p| = T 3x
√
x2 − z2dx
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