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Abstract

Prediction of RNA secondary structures is a problem of considerable importance to bi-

ologists. A sequence of RNA folds onto itself to attain the most stable thermodynamic

structure. The prediction of secondary structure is beneficial in predicting the tertiary

structure and the biological functions RNA performs in living beings. Research in dy-

namic programming algorithms has led to the prediction of the most stable RNA sec-

ondary structures. Nussinov’s and Zuker’s algorithm predict RNA secondary structure

without pseudoknots.

This thesis deals with a review of these two RNA folding algorithms which do not in-

volve pseudoknots. I have implemented these algorithms in python and tried to visualize

the obtained structures. I have tried some variations in the code resulting in different

structures. I have drawn comparisons in these algorithms based on the results obtained.

Nussinov’s algorithm deals with maximization of the base pairs for the given sequence

whereas Zuker’s algorithm incorporates information regarding the neighbouring loops.

The results suggest that a better knowledge of the chemical and biological aspects of

RNA needs to be incorporated in these algorithms to attain the most stable structures.
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Chapter 1

RNA Secondary Structure Prediction

1.1 RNA Structure

In an RNA molecule, ribonucleotides are connected together by covalent chemical bonds

and every ribonuceotide comprises of the four bases: adenine (A), cytosine (C), guanine

(G), uracil (U). The RNA structure is hierarchical in the sense that:

1. the first level of organization is the primary structure which is the sequence of the

bases

2. the second level of organization is the set of the base pairs which is known as the

secondary structure of the RNA molecule

3. the third level of organization is the three dimensional orientation of the various

atoms which is called the tertiary structure

The complementary bases (A-U, G-C) which lie in close to each other form hydrogen

bonds. Other base pairs such as G-U (wobble pair having 1 hydrogen bond) are also pos-

sible but they have low probability of pairing since they are energetically less favourable.

The RNA strand comprises of alternating phosphates and ribose sugars. A nucleotide is

a combination of single phosphate, ribose and base. The phosphate group gets attached

to the 5’ end of the ribose sugar and the base is attached to the 1’ carbon atom. Chain
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formation occurs when the OH group attached to the 3’ end and the OH group attached

to the neighbouring nucleotide form a bond. When a large number of nucleotides con-

nect in this way, an RNA polymer is formed. The RNA sequence is numbered from

the 5’ end (carbon with the phosphate group) to the 3’ end (carbon atom attached to the

ribose). Since adenine and guanine are the derivatives of purine, hence they are called

purine bases. Cytosine and uracil are the derivatives of pyrimidine, therefore they are

called pyrimidine bases. A purine base pairs up with a pyrimidine base. This is because

pyrimidines are smaller compared to purines, therefore combination of two pyrimidines

is energetically unfavourable as the bonding atoms would end up being far from each

other. Similarly two purines would end up being too close to each other and would

repel.

Figure 1.1.1: Basic RNA structure

1.2 Importance of structure prediction

Knowledge of the secondary structure helps in the determining the tertiary structure

which thereby permits the biological function of the RNA molecule. Since RNAs are

involved in many biological processes such as acting like catalytic molecules, protein

synthesis etc the problem of RNA secondary structure prediction is of huge biological

importance. The experimental techniques used to determine the tertiary structure are ex-

tremely expensive and time consuming and are usually unable to determine the structure
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Figure 1.1.2: Example of folded structure of RNA5S1, drawn in Forna

completely. Therefore to understand the roles of RNA, it is important to investigate RNA

structures with the use of computation. Apart from this, structures of many sequences

have not yet been successfully determined by experimental techniques, hence it is essen-

tial to predict the secondary structures. It has been observed that the secondary structure

contacts are stronger than tertiary structure contacts and the bond formation is faster in

case of secondary structures.

1.3 Dynamic Programming

Computational methods help in searching secondary structures for RNA sequences to

get the minimum free energy structures. For this purpose many dynamic algorithms

have been designed and implemented to obtain the possible secondary structures. The

simplest way of finding the minimum free energy structure is to generate all the possible

structures and from them, find the most optimal structure. It is a cumbersome job as it

has been found that the total possible structures for a given sequence of length, N grows

exponentially as 1.8N. Even for small sequences, the possible structures would be large
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and it would not be possible for present day computers to handle such a computation.

Dynamic programming algorithms search all possible structures without actually gener-

ating them. I will be discussing two such algorithms, Nussinov’s algorithm and Zuker’s

algorithm in great detail. The procedure is basically a two steps process. The first step

also known as the fill stage involves finding minimum free energy for subsequences of

shorter lengths and then moving towards longer fragments. The first step ends when the

minimum free energy of the complete sequence is obtained recursively. At this stage the

lowest conformational energy is known but the structure remains unknown. The next

step leads to identification of the structure, known as the trace back stage. The trace

back loop runs to find the exact structure corresponding to the energy obtained in the

first step. The execution time corresponding to these algorithms scales as O(N3). These

algorithms are unable to predict structures with pseudoknots.
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Chapter 2

Nussinov’s Algorithm

2.1 Introduction

The algorithm[11] is based on a simple method of estimation of free energy of loops

present in the single stranded structure of RNA sequence.This method helps in finding

the the most stable structure by comparing the stability of all the possible structures for

a given sequence. This approach worked quite well for small nucleotide sequences but

for longer sequences it was cumbersome to find all the possible structures and compare

all of them to get the most probable structure.

All the earlier suggested algorithms followed a similar basic approach to tackle the prob-

lem.

1. Identification of perfectly matched helices in the given sequence.

2. Creation of an assembly of consistent sets of these helices.

3. Calculation of the overall free energy of each assembled structure.

This approach was not feasible for long chains of nucleotide since the time required to

calculate the energies of each structure was extremely long.

Nussinov’s algorithm tackles the problem by constructing two-half matrices by follow-

ing a procedure that considers the energy of all the individual base pairs. The most stable
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loop structure having the lowest free energy is found from the second matrix. The algo-

rithm was initially devised to maximize the base-pairs along a polynucleotide chain. It

was considered that the formation of base-pairs reduces the free energy of the structure,

hence maximizing the base-pairs leads to most stable free energy structure.

2.2 Basic principle behind the algorithm

The algorithm evaluates the contribution of the individual base pairs to the secondary

structure of the RNA chain. The basic principle behind the algorithm can be understood

by considering a chain of n nucleotides lying on the circumference of a circle. To visu-

alize the base pairs, non-interrupting arcs can be drawn linking the specific bases. This

kind of linking leads to planar secondary structures which do not support knots/ pseudo-

knots.

To find the most optimal structure of n nucleotides long RNA chain, the following crite-

ria is considered:

Whether the base-pair Ap Aq (Ap and Aq are the pth and qth bases in the sequence) is

present or absent from the structure.

The bond formation not just affects the free energy of the local region where it is present

but has a way more important contribution to the free energy of the overall structure.

Since knots are not allowed in the secondary structure, therefore Ap Aq bond divides

the the primary sequence into two sections. Further base-pairs are allowed either within

this bond or outside the bond. The various bonds so formed contribute to the total free

energy of the folded structure. The best folded structure is obtained by minimizing the

free energy of three parameters:

• Energy of the inner section.

• Energy of the outer section.
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• The local contribution of Ap Aq bond.

2.3 Maximizing the number of base-pairs

There are certain rules following which the most stable folded structure of the polynu-

cleotide chain is obtained:

• The bond stability/strength of C-G and A-U pairs are given same preference.

• Stacking contributions are not considered.

• Destabilizing consequences of single stranded loops are ignored.

The algorithm tackles the problem by dividing it into sub-problems. It begins with a sub-

section of the given nucleotide sequence and proceeds to sections of increasing lengths.

Optimal folding of the entire sequence is obtained by finding the optimal folding of the

sub-sequences.

Algorithm can be understood by considering a sequence of length n from A1 to An.

Let’s assume that the sequence contains a sub-sequence of length l from Ap to Aq.

Let u 2 [p, q � 1]. Now the algorithm checks 8u whether Au can base-pair with Aq.

To determine the number of base-pairs in the section [p, q], the algorithm finds the total

number of base-pairs in the sub-sections [p, u � 1] and [u + 1, q � 1].

A matrix M is created. The purpose of the matrix is to store the best value after all k

positions have been tested. If none of the Ak’s pair with Aq, then:

M[p, q] = M[p, q � 1] (2.1)

This process repeats for other sections of length l by incrementing the values of p and

q in succession. The search for maximum number of base pairs is repeated for sections

of increasing lengths by successively incrementing the value of l. The values of M[p, q]
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with the sequence are given implementing the following conditions:

M[p, q] = max

8
>><

>>:

M[p, u � 1] + M[u + 1, q � 1] + 1

M[p, q � 1], p  u < q = p + l
(2.2)

The 1 in the equation (2) refers to the base pair Au Aq. The matrix M gets filled up

subsequently by following the above mentioned process and the last value in the matrix

is obtained which is given as M[1, n]. This value signifies the maximum number of base

pairs possible for the given sequence of length n.

2.4 Trace back stage

The structure in which the given polynucleotide folds is obtained by the identification

of the individual base pairs in the sequence. The process of identification of all the base

pairs contributing to the maximum score is called back-tracing. This is the final step

of the algorithm to determine the secondary structure in which the given polynucleotide

chain folds. The algorithm constructs another n ⇥ n matrix U[p, q] containing the posi-

tion of the base Au allowing maximum base pairing within the section [Ap, Aq]. U[1, n]

stores the position of u which on pairing with An gives best folding of the sequence.

This pair gives rise to two sub-sections of the sequence. In the same manner, optimal

folding is obtained by reading the values U[p, q] for every subsection. This process re-

peats in the order of decreasing lengths of the sub-sections. All the subsections formed

in this manner are a result of the chosen base pairs generated to obtain the structure with

maximal number of base pairs. The matrices M and U are half filled.
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2.5 Minimal free energy structure

The previous algorithm finds the most optimal secondary structure of the given sequence

by maximizing the number of base pairs but does not take into account any energy con-

siderations. Another algorithm which follows similar search mechanism but obtains the

structure having minimum free energy. The above algorithm can modified to get an

estimate of free energy of the loop structures based on sequence data. The energy con-

tributions from helices, single-stranded loops and bulges have been considered. Just like

the previous algorithm, now the energy of each section of the sequence is given in the

following manner:

E[p, q] = min

8
>><

>>:

E[p, u � 1] + E[u + 1, q � 1] + Euq

E[p, q � 1], p  u < q � lmin

(2.3)

For every sub-section (from Ap to Aq), energy is estimated by examination of each

possible base pair (Au Aq) lying in that sub-section and the lowest energy obtained by

this method is stored in matrix element M[p, q]. Position of Au is stored in U[p, q]. Here

lmin refers to the minimal allowed loop length. Different values of lmin leads to different

optimal structures. The energy of the substructures depend on the kind of structure

formed by the pairs, i.e., adjacent base pairs, single stranded bulge, internal loops or

branched structures. Similar back tracing is followed here as well resulting in the most

optimal folded structure from the U matrix. The structure adjacent to the base pair Au Aq

is obtained in the following way by assuming the values of u1 as:

• u1 = u + 1 =) the base pair Au Aq lies adjacent to the pair Au+1Aq�1

• u1 > u + 1 =) a single stranded region (bulge or internal loop) occurs on the

left of Au Aq, e.g. u1 = 3, Au Aq lies next to a bulge comprising of two bases on

its left as Au+3 pairs with Aq�1.



10 Chapter 2. Nussinov’s Algorithm

• Base at position u1 pairing with a base at position q < q � 1 results in a bulge at

the right of Au Aq, e.g. u1 = 1 and Au+1 pairs with Aq�3 resulting in Au Aq lying

next to a bulge consisting of two bases on the right.

• base at the position u1 > u+ 1 pairing with base at q < q� 1 gives rise to several

independent hairpin loops lying within Au Aq

2.6 Summary

An RNA sequence comprises of a string of bases 2 { A, U, G, C } of length l. A

secondary structure is obtained as a list of ordered base pairs { A, U }, {G, C } and

{U, G }. No pseudoknots are allowed and the bases are paired such that no two bases

are paired lying next to each other. The most stable secondary structure is obtained via

maximal base pairing. This is done as a scoring system. A square matrix of l ⇥ l is

initialised such that the first two diagonals are set to zero:

• M[i, i] = 0 for i 2 [1, l]

• M[i, i � 1] = 0 for i 2 [2, l]

• every base pair is assigned a score of 1

• every base which is left unpaired is assigned a score of 0

To maximize the score (maximum base pairs), algorithm states the following 4 rules to

fill the matrix M thereby getting the best possible structure:

• If the best structure for sub sequence {p + 1, q} is obtained, an unpaired base at

position p can be added to its left

• After having obtained the best structure for the sub sequence {p + 1, q}, an un-

paired base q + 1 can be added to the right of it
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• A base pair p � 1, q + 1 can be added to the best structure obtained for the sub

sequence {p, q}

• Structures for two sub sequences can be combined, also known as bifurcation (

{p, u} combined with {u + 1, q} ), P and q are paired but not to each other

The final score is assigned by examining the maximum of the four rules:

M[p, q] = max

8
>>>>>>>>>><

>>>>>>>>>>:

M[p + 1, q]

M[p, q � 1]

M[p + 1, q � 1] + 1

max
⇢

M[p, u] + M[u + 1, q] u 2 [p, q]

(2.4)

Pairs which lead to the maximum score for the given sequence form the most optimal

structure. Once the matrix M gets completely filled, the trace-back loop begins to find

the contributing base pairs. The trace back algorithm is as follows:

• x = length of the RNA sequence

• if p < x:

– if:

M[p, x] = M[p + 1, x] =) traceback to pair the (p + 1, x)

– else if:

M[p, x] = M[p, x � 1] =) traceback to pair the (p, x � 1)

– else if:

M[p, x] = M[p + 1, x] + M[p + 1, x � 1] =) traceback to pair the (p +

1, x � 1)

– else:

for u 2 [p + 1, x � 1]
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if M[p, x] = M[p, u] + M[u + 1, x] =) traceback to the pair (p, u) =)

trace back to the pair (u + 1, x)

2.7 Implementation of the algorithm

I have implemented the Nussinov’s algorithm in python for different RNA sequences and

tried to visualize their secondary structures. I have varied certain parameters to obtain

different structures for the same sequence. This is done by varying the minimum allowed

loop length and allowing non canonical (U, G) base pairs to couple.

1. I have tried to find the optimal structure of an RNA sequence = ’CUCCGGUUG-

CAAUGUC’ of 16 nucleotides. The minimal loop length is kept as 2 and only

canonical pairs are allowed. This resulted in a total of 5 base-pairs. The dot

bracket notation for the structure is obtained as (.(.))..(((.)).) and the time taken for

the code to run is 0.03889 seconds. Figure 2.7.1 refers to the structure. Now the

minimal loop length is set as 3 and the structure is obtained as (.(..)((..)).).. with

4 possible base-pairs. Figure 2.7.2 represents the structure for the same sequence

with minimal loop length set as 3. On setting the minimal loop length as 4, Fig-

ure 2.7.3 is obtained as the optimal structure with 3 possible base pairs. Minimal

loop length = 0 is avoided since structures with sharp turns do not exist. Similar

structures can be obtained by allowing non canonical base pairs. For minimum

loop length = 2 and allowing (U, G) to pair, Figure 2.7.4 is obtained as the optimal

structure with a total of 5 base pairs. Keeping the minimal loop length = 3 and

allowing non canonical base pairs yields Figure 2.7.5 as the optimal structure with

a maximum of 4 base pairs and with minimal loop length = 4 yields Figure 2.7.6

as the most stable structure with 4 base pairs. Similar structures can be obtained

by changing these parameters.
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Figure 2.7.1: Optimal structure for ’CUCCGGUUGCAAUGUC’ with
minimal loop length = 2

Figure 2.7.2: Optimal structure for ’CUCCGGUUGCAAUGUC’ with
minimal loop length = 3

Figure 2.7.3: Optimal structure for ’CUCCGGUUGCAAUGUC’ with
minimal loop length = 4
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Figure 2.7.4: Optimal structure for ’CUCCGGUUGCAAUGUC’ with
minimal loop length = 2 and non canonical base pairs allowed

Figure 2.7.5: Optimal structure for ’CUCCGGUUGCAAUGUC’ with
minimal loop length = 3 and non canonical base pairs allowed

2. To find out the dependence of time taken by the algorithm to render the most opti-

mal structure on the length of the RNA sequence, I executed the code for different

lengths of RNA sequences and plotted it with the time elapsed. The minimum

loop length for this analysis was kept as 5 and only the canonical base pairs were

allowed. Figure 2.7.7 shows execution time v/s length of RNA sequence. I tried to

fit the data and obtained 2.74 as the exponential dependence. Logarithmic fitting

resulted in 2.64 power law dependence.

3. I have also tried to see how the number of base pairs corresponding to the optimal

structure varies with length of the RNA sequence for Nussinov’s algorithm. For
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Figure 2.7.6: Optimal structure for ’CUCCGGUUGCAAUGUC’ with
minimal loop length = 4 and non canonical base pairs allowed

Figure 2.7.7: Dependence of run time on the length of the sequence
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Figure 2.7.8: Dependence of run time on the length of the sequence

this analysis as well, the minimal loop length is kept as 5 and no non canonical

base pairs are allowed. Figure 2.7.9 depicts the variation of total base pairs with

the length of the sequence.
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Figure 2.7.9: Dependence of total base pairs on the length of the sequence
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Chapter 3

Zuker’s Algorithm

3.1 Introduction

Various algorithms had been suggested earlier to determine the secondary structures of

RNA molecules to attain a sketch of their organization in three dimensions. Earlier

structure prediction was based on topological and thermodynamic rules for searching

energetically most favourable structures for RNA sequences. Earlier algorithms were

able to predict secondary structures of RNA sequences of limited lengths. Structures

predicted by Nussinov’s algorithm does not incorporate stacking and destabilizing ener-

gies.

Zuker’s algorithm[16] follows dynamic programming and incorporates additional in-

formation such as reactivity of certain nucleotides to chemical modification to predict

optimal structures of RNA sequences. It is based on a model proposed by Roger’s et

al, to calculate the stability of folded RNA molecules by the addition of independent

contributions from base-pair stacking and loop destabilizing terms from the secondary

structure. The algorithm determines all the base pairs that can participate in structures

with a free energy within a specified range from the optimal.

The folding rules given by the Zuker’s algorithm are similar to the rules given by Studnicka

et al. allowing some impossible structures as well. These invalid structures are discarded

by assigning high energy values to them.
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3.2 Notation and Definitions

The RNA sequence is denoted with S and the ith nucleotide in the sequence is denoted

as Si and Sij represents the sub sequence from ith nucleotide to jth nucleotide. The num-

bering of the bases begins from the 5’ end of the RNA molecule by convention. The

admissible structures include the base pairs: G-C, A-U or U-G. Each nucleotide are al-

lowed to base pair with at most one other nucleotide. No pseudoknots are allowed in the

final structures.

The free energy associated with a structure is related to the regions between the bonds,

i.e., it depends on the various internal loops in the structure. According to the graphical

representation of the structure, the energy depends on the faces of the graph. A face is

defined as a planar region bounded by edges on all the sides. The different types of faces

are:

1. Hairpin loop- face with a single interior edge.

2. Faces having two inner edges are classified into three groups:

• Stacking region- face whose interior edges are separated by single interior

edges on both sides.

• Bulge loop- face whose interior edges are separated by a single exterior edge

on one side and more than one exterior edges on the other side.

• Interior loop- faces other than stacking region and bulge loop.

3. Bifurcation loop- face having three or more than three interior edges.

Hairpin loop is a consequence of consecutive stacking regions, bulge loops, internal

loops. Different energies are associated with the above mentioned substructures. The

energy of the complete structure is a sum of the energies of its substructures. The energy

function can be modified in such a manner to eliminate the undesired structures, e.g.,
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a hairpin loop comprising of less than four edges can assigned infinite energy thereby

discarding stearically impossible structures. Similar modifications can be done in the

energy function to favour certain types of structures. There are two versions of the

algorithm:

1. Bifurcation loops are assigned zero energy.

2. Bifurcation loops are treated as interior loops.

3.3 Algorithm

The algorithm finds the most optimal secondary structure with minimum free energy

from a large number of possible structures even for a molecule that is as small as the 5S

ribosomal RNA.

The algorithm computes two different energies for each subsequence of the given RNA

sequence. These energies are stored in two matrices W and V. For a subsequence Sij,

W(i, j) is considered as the minimum free energy of all the admissible structures which

can be formed from Sij and V(i, j) is considered as the minimum free energy of all the

admissible structures which can be formed from Sij when Si and Sj pair with one another.

V(i, j) is given value infinity if Si and Sj do not base pair with each other. Both these

energies are computed in a recursive manner for the subsequent larger subsequences of

S.

If j � i = 4:

• W(i, j) = 0

• For a three nucleotide hairpin loop comprising of A-U or G-C pairs, V(i, j) =

+8.4 or +8.0 Kcal/mol

If j � i = q > 4:
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• V(i0, j0) and W(i0, j0) for j0 � i0 < q are already computed and are used to compute

V(i, j) and W(i, j)

Let’s consider an admissible structure Sij having energy V(i, j) in which Si and Sj base

pair. V(i, j) is computed as the minimum of the three possible energies. These energies

arise from three possible structures.

Figure 3.3.1: Hairpin loop

Figure 3.3.2: Stacking region, bulge loop and the interior loop

1. Figure 3.3.1 represents the hairpin loop structure which contains the interior edge

between Si and Sj. For this case V(i, j) = E(FH(i, j))and let it be called E1.
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Figure 3.3.3: Bifurcation loop

2. Figure 3.3.2 represents the three possible types of the face adjacent to the edge

between Si and Sj. For this case V(i, j) = E(FL(i, j, i0, j0)) + V(i0, j0) and let it

be called E2 such that i < i0 < j0 < j.

3. Figure 3.3.3 represents the bifurcation of two substructures. The energy is the ad-

dition of the energies of the two substructures whose mathematical representation

is, V(i, j) = W(i + 1, i0) + W(i + 1, j � 1) where i + 1 < i0 < j � 2 and let this

be called E3.

V(i, j) = min

8
>>>>>>><

>>>>>>>:

E1

E2 = min
i<i0<j0<j

⇢
E(FL(i, j, i0, j0)) + V(i0, j0)

E3 = min
i+1<i0<j�2

⇢
W(i + 1, i0) + W(i + 1, j � 1)

(3.1)

Another structure Sij can be considered with energy W(i, j). This structure also com-

prises of three possibilities.

1. Figure 3.3.4 represents the possible structures when Si and Sj do not participate

in base pairing. This leads to at least one dangling end. For this case, W(i, j) =

W(i + 1, j) or W(i, j) = W(i, j � 1)

2. Figure 3.3.5 represents the trivial structure in which Si and Sj base pair with each

other. For this case, W(i, j) = V(i, j) (previously computed).
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Figure 3.3.4: Structures corresponding to W(i,j) when Si and Sj do not
participate in base pairing

Figure 3.3.5: Structure corresponding to W(i,j) when Si and Sj base pair
with each other

Figure 3.3.6: Structure corresponding to W(i,j) when Si and Sj participate
in base pairing but not with each other
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3. Figure 3.3.6 refers to the bifurcation structure where Si and Sj base pair with some

other bases. For this case W(i, j) = W(i, i0) + W(i0 + 1, j) = W(i, j0 � 1) +

W(j0, j) where i < i0 < j0 < j

The minimum energy W(i, j) is computed as:

W(i, j) = min

8
>>>>>>>>>><

>>>>>>>>>>:

W(i + 1, j)

W(i, j � 1)

V(i, j)

E4 = min
i<i0<j�1

⇢
W(i, i0) + W(i0 + 1, j)

(3.2)

The algorithm adds one base at a time to the sequence and observes the optimal struc-

ture at every step and finally computes the value of W(1, n) which corresponds to the

minimum free energy structure obtained for the given sequence. To obtain meaningful

structures for a given sequence, the energy function can be tailored accordingly by sup-

plying additional information. This can be achieved by getting data on the reactivity of

some bases to a specific chemical reagent and thereby preventing these nucleotides from

participating in based pairing.

3.4 Implementation

A simplified version of the Zuker’s algorithm has been implemented in python which

gives a scoring scheme for bonds and hairpins. I have tried to find the secondary structure

of RNA5S1 RNA, 5S ribosomal 1 [ Homo sapiens (human) ], also known as RN5S1.

It is a 121 nucleotides long sequence. The sequence has folded in a total of 37 base

pairs. The time taken to execute the code is 15.458 seconds. The same sequence results

in Figure 3.4.2 when implemented using Nussinov’s algorithm (minimal loop length =

5). This resulted in a total of 40 base pairs and time taken to execute the code was
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0.9616 seconds. Another RNA sequence 206 nucleotides long has been folded following

both the algorithms. Figure 3.4.3 shows the folded structure using Zuker’s algorithm

with a total of 65 base pairs and time taken to execute the code was 112.50 seconds

whereas Nussinov’s algorithm results in Figure 3.4.4 with 72 base pairs and time taken

for execution was 2.43 seconds. Hence, it has been observed that Nussinov’s algorithm

favours larger number of base pairs.

Figure 3.4.1: Folded structure for RNA5S1 using Zuker’s Algorithm

To understand the dependence of execution time on the length of the RNA sequence,

I implemented the code for sequences of different length and plotted the graph between

the two. Execution time is observed to depend on the length of the RNA sequence as

O(L3.86). Logarithmic fitting results in O(L3.56) dependence.

3.4.1 Comparison of structures

Figure 3.4.7 represents the predicted the structure of Bordetella bronchiseptica signal

recognition particle RNA. The RNA sequence is 111 nucleotides long. The predicted

structure has 34 base pairs and the execution time was 11.01 seconds. Figure 3.4.8

represents the secondary structure predicted using Nussinov’s algorithm. For this case,

the minimum loop length was set as 4 and only canonical base pairs were allowed to pair.



3.4. Implementation 27

Figure 3.4.2: Folded structure for RNA5S1 using Nussinov’s Algorithm

Figure 3.4.3: Folded structure for RNA sequence of length 206 using
Zuker’s algorithm

The structure resulted in a total of 37 base pairs and the execution time was 0.25 seconds.

Figure 3.4.9 is the structure predicted by the RNAfold WebServer. The minimum free

energy of the predicted structure is -40.80 kcal/mol.
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Figure 3.4.4: Folded structure for RNA sequence of length 206 using
Nussinov’s algorithm

Figure 3.4.5: Dependence of execution time on the length of the sequence
for Zuker’s algorithm
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Figure 3.4.6: Dependence of execution time on the length of the sequence
for Zuker’s algorithm

Figure 3.4.7: Secondary structure of Bordetella bronchiseptica signal
recognition particle RNA predicted using Zuker’s algorithm
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Figure 3.4.8: Secondary structure of Bordetella bronchiseptica signal
recognition particle RNA predicted using Nussinov’s algorithm

Figure 3.4.9: Secondary structure of Bordetella bronchiseptica signal
recognition particle RNA predicted using RNAfold WebServer
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Chapter 4

Additional Methods for RNA Structure

Prediction

4.1 McCaskill’s Approach

In 1990 J.S. McCaskill introduced an algorithm[9] that made use of partition function

to determine the RNA secondary structure. The probability of occurrence of a proposed

secondary structure can be calculated using the partition function. The complete struc-

ture partition function is given as:

Q = Â
structures

e�DG(structure)/RT (4.1)

The partition function is obtained by summing over all the possible secondary structures

for a given RNA sequence. The corresponding probability for a probable secondary

structure is given as:

P =
e�DG(structure)/RT

Âstructures e�DG(structure)/RT (4.2)

Although the probability of a secondary structure is not very useful as there are a large

number of possible low free energy structures within the range RT. Hence the proba-

bility of any structure is very small. The algorithm makes use of dynamic programming

for implicitly considering all the possible structures. The partition function is calculated
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starting from the subsequence of shortest length and subsequently moving to subse-

quences of larger lengths and thereby determining for all the subsequences. Calculation

of partition function is attributed to the fill stage of the algorithm. Every subsequence

contributing to the partition function is counted once only. The dynamic programming

trace back stage can be used to determine the probability of the possible base pairs. The

base pairing probability is extremely large compared to the probability of free energy

structures.

This algorithm is similar to previous algorithms as it follows similar dynamic program-

ming approach (fill stage and trace back stage). It is useful in determining the statistics

of the secondary structures for a given RNA sequence.The program execution time based

on the algorithm which do not allow pseudo-knots scales as O(N3).

4.2 Statistical Sampling Algorithm

This is also an example of dynamic programming algorithms which was introduced by

Ding and Lawrence[2] that uses sampling of sub-optimal secondary structures for a given

RNA sequence from Boltzmann ensemble of structures. This algorithm also follows the

fill stage process followed by the trace back stage to determine the most optimal sec-

ondary structure. The fill stage follows similar process as in the partition function algo-

rithm. The trace back stage comprises of probabilistic generation of base pairs according

to the partition functions for all possible sub sequences. The sampling probability of any

given substructure is equal to its probability of occurrence in the thermodynamic en-

semble. The precision of calculation of occurrence probabilities depends on the size of

the sample. The study [3] has shown that the sampling statistics are reproducible from

sample to sample. The predicted base pair probabilities for two Boltzmann samples of

an RNA of given length are nearly indistinguishable. Even if the number of possible

secondary secondary structures for a given RNA sequence is large, the folding statistics
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can be completely determined by the small sample size e.g., 1000 structures for a 1187

nucleotides long mRNA with total possible secondary structures being 10303.

4.3 Kinetic Folding Algorithms

The dynamic programming algorithms are based on the equilibrium thermodynamics

i.e., the RNAs are considered to be in equilibrium and the search algorithm finds the sec-

ondary structure with the minimum free energy. The kinetic folding algorithms on the

other hand take into consideration the kinetics involved in the folding of the molecule.

These algorithms are based on the assumption that the real molecules would rather fold

in structures which are easy to obtain than folding in structures with minimum free ener-

gies. These algorithms comprise of adding RNA helices to the obtained structure thereby

lowering the free energy of the structure at each step. Addition of any further helix stops

when energy cannot be lowered any more. This process works in such a way that next

helix is added to the structure such that it reduces the free energy by the largest amount.

Studies have been done which make use of Monte Carlo simulations to simulate the real

time formation and breakage of helices.

Pair Kinetics program assigns rate of formation to every base pair that can be formed

with regard to the existing secondary structure along with the rate of removal. The prob-

ability of a reaction is proportional to its rate therefore the reactions with higher rate

have higher probability of occurrence. The folded structure gets updated with the addi-

tion or removal of the base pair. The free energies are calculated using similar dynamic

programming techniques.

Similar to this is the Helix Kinetics program which deals with the addition/removal of

complete helix in place of a single base pair. A partially formed helix acts as an inter-

mediate that provides activation energy for the formation of helix. The estimation of

the reaction rates can be done using Monte Carlo methods and differential equations can
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be solved numerically to obtain different structural probabilities for the given molecule.

But this method would involve a pre-selection of the desired configurations from an

exponentially large number of possible structures.

4.4 Comparative Methods

Comparative sequence analysis is a technique which is used find the secondary when

sequences are known for a molecule for a number of different species. The basic prin-

ciple behind this technique is that molecules which perform same functions in different

species should have same structure, therefore it is crucial to find a structure that gives

a base-pairing pattern for every sequence. Multiple alignment for all the sequences is

implemented. The method searches for sites having changes which are correlated with

changes on some other sites. Compensatory mutations often occur in RNAs. These mu-

tations are such that a change which has occurred on one side of the helix is accompanied

by a mutation on the other side. This is a good method for structure prediction if large

number of sequences are available. This method has been instrumental in obtaining the

structures of small and large sub-unit rRNAs. This method of finding RNA secondary

structures has been considered more reliable than the existing thermodynamic methods.

There are certain limitations associated with this method such as:

• Unable to work on a single sequence

• Unable to provide information about alternative structures of a sequence

• Method does not provide the folding pathway and thermodynamic stability
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4.5 Genetic Algorithms

Genetic algorithms have been useful in solving complex optimization problems which

imitate biological evolution. These algorithm are much useful in kinetic folding pro-

cesses. These algorithms work by storing large number of alternative structures for a

given sequence. The series of structures which form during a genetic algorithm simu-

lation are used to predict the folding pathways. Thermodynamics is incorporated in the

selection stage of the algorithm in a qualitative manner but there is no assurance that the

population of alternative structures will end up in any meaningful equilibrium state. Fit-

ness is related to the free energies of the structures such as structures with low free energy

tend to have higher fitness and reproduce with a larger frequency compared to structures

with high free energy. Genetic algorithms incorporate mutations and crossovers in de-

termining fitness of any given structure. These algorithms have proven to be useful in

analysing the folding pathways in combination with biological aspects of the molecule

in the problem.
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Appendix A

Computational Code for Zuker’s

Algorithm

import numpy as np

import math

import t ime

def i n i t I n f i n i t e A r r a y ( n ) :

a r r a y = np . z e r o s ( ( n , n ) )

rows , c o l s = a r r a y . shape

f o r i in range ( rows ) :

f o r j in range ( c o l s ) :

i f j + c o n s t _ d i s t > i :

a r r a y [ i , j ] = np . i n f

e l s e :

a r r a y [ i , j ] = np .NAN

re turn a r r a y

seq = ’CGGAAGAACUGGCAAAAAAGGACGGUGGGGAGUGCCCAGCU’

seq = seq . r e p l a c e ( "T" , "U" )

p r i n t ( seq )

c o n s t _ d i s t = 3

n = l e n ( seq )

b e g i n = t ime . t ime ( )
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W = i n i t I n f i n i t e A r r a y ( n )

V = i n i t I n f i n i t e A r r a y ( n )

Traceback = np . a r r a y ( [ s t r ( ’ ’ ) f o r x in range ( n*n * 4 ) ] )

. r e s h a p e ( n , n , 4 )

# p r i n t (W)

def compute_W ( i , j ) :

l e f t = W[ i −1 , j ]

bot tom = W[ i , j +1]

v_ t y pe = compute_V ( i , j )

min_k_va l = np . i n f

op t_k = −1

f o r k in range ( j +2 , i ) :

c u r r = W[ i , k ] + W[ k −1 , j ]

i f c u r r < min_k_val :

min_k_va l = c u r r

op t_k = k

W[ i , j ] = min ( l e f t , bot tom ,V[ i , j ] , min_k_val )

c = 0

i f W[ i , j ] == bot tom :

Traceback [ i , j , c ] = ’ \ downarrow ’

c+=1

i f W[ i , j ] == l e f t :

T raceback [ i , j , c ] = ’ \ l e f t a r r o w ’

c+=1

i f W[ i , j ] == V[ i , j ] :

T raceback [ i , j , c ] = v_ ty pe

c+=1

i f W[ i , j ] == min_k_val :

T raceback [ i , j , c ] = s t r ( op t_k )

def has_bond ( base1 , base2 , bond ) :

i f base1 + base2 == bond or base2 + base1 == bond :

re turn True
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e l s e :

re turn F a l s e

def s ( i , j ) :

base1 = seq [ i ]

base2 = seq [ j ]

WatsonCr ick = [ "GC" , "AU" ]

f o r bond in WatsonCr ick :

i f has_bond ( base1 , base2 , bond ) :

re turn −4

i f has_bond ( base1 , base2 , "GU" ) :

re turn 0

e l s e :

re turn 4

def h ( i , j ) :

i f i > j :

re turn i − j +3

e l s e :

re turn 0

def compute_V ( i , j ) :

h a i r p i n = s ( i , j ) + h ( i −1 , j +1)

match = s ( i , j ) + W[ i −1 , j +1]

V[ i , j ] = min ( h a i r p i n , match )

i f V[ i , j ] == h a i r p i n :

re turn ’H’

e l s e :

re turn ’ \ swarrow ’

whi le ( math . i s n a n (W[ n − 1 , 0 ] ) ) :

f o r i in range ( n ) :

f o r j in range ( n ) :

i f j + c o n s t _ d i s t <= i :

down = W[ i , j +1]

l e f t = W[ i −1 , j ]
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i f math . i s n a n ( down ) or math . i s n a n ( l e f t ) :

c o n t in u e

compute_W ( i , j )

def b a c k t r a c k ( i , j , ma tches ) :

f o r x in range ( 0 , 4 ) :

i n d e x = Traceback [ i , j , x ]

i f i n d e x == ’ ’ :

c o n t i nu e

e l i f i n d e x == ’ \ l e f t a r r o w ’ :

b a c k t r a c k ( i , j −1 , matches . copy ( ) )

e l i f i n d e x == ’ \ downarrow ’ :

b a c k t r a c k ( i +1 , j , ma tches . copy ( ) )

e l i f i n d e x == ’H’ :

p r i n t ( ’ \ n F o l d i n g Found ! ’ )

p r i n t ( ’ H a i r p i n ’ , ( i , j ) )

p r i n t _ f o l d i n g ( matches )

e l s e :

ma tches . append ( ( i , j ) )

b a c k t r a c k ( i +1 , j −1 , matches . copy ( ) )

re turn matches

def p r i n t _ f o l d i n g ( matches ) :

up = [ seq [ x [ 0 ] ] f o r x in matches ]

down = [ seq [ x [ 1 ] ] f o r x in matches ]

u p _ s t r = ’ ’

v e r t _ s t r = ’ ’

f o r x in up :

u p _ s t r += ( ’ ’+ s t r ( x ) + ’ ’ )

v e r t _ s t r += ’ | ’

down_s t r = ’ ’

f o r x in down :

down_s t r += ( ’ ’+ s t r ( x ) + ’ ’ )

p r i n t ( ’−−− Matches −−− ’ )
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p r i n t ( matches )

p r i n t ( u p _ s t r )

p r i n t ( v e r t _ s t r )

p r i n t ( down_s t r )

d o t = [ " . " f o r i in range ( l e n ( seq ) ) ]

f o r s in matches :

# p r i n t ( min ( s ) , max ( s ) )

d o t [ min ( s ) ] = " ( "

d o t [ max ( s ) ] = " ) "

s t r u c t u r e = " " . j o i n ( d o t )

p r i n t ( " \ n \ n−−−−−−−− S t r u c t u r e −−−−−−:\n \ n " , s t r u c t u r e )

p r i n t ( ’ \ n \ n t o t a l p a i r s ’ , l e n ( matches ) )

p r i n t ( ’ \ n==========\n========== W ===== ’ )

p r i n t (W. t r a n s p o s e ( 1 , 0 ) )

p r i n t ( ’ ’ )

p r i n t ( ’ \ n=========\n======== V ====== ’ )

p r i n t (V. t r a n s p o s e ( 1 , 0 ) )

p r i n t ( ’ ’ )

p r i n t ( ’ \ n======\n=======TRACEBACK======= ’ )

Traceback = Traceback . t r a n s p o s e ( 1 , 0 , 2 )

b a c k t r a c k ( 0 , n − 1 , [ ] . copy ( ) )

p r i n t ( ’ \ n \ n l e n g t h o f RNA’ , l e n ( seq ) )

end = t ime . t ime ( )

p r i n t ( ’ \ \ n E x e c u t i o n t ime ’ , end − b e g i n )
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Appendix B

Computational Code for Nussinov’s

Algorithm

import numpy as np

import t ime

# A s s i g n i n g a l l o w e d base p a i r s

def c o u p l e ( p a i r ) :

p a i r s = { "A" : "U" , "U" : "A" , "G" : "C" , "C" : "G"

, "U" : "G" , "G" : "U" }

# wobble base p a i r s can be removed

i f p a i r in p a i r s . i t e m s ( ) :

re turn True

re turn F a l s e

# I n i t i a l i z i n g t h e N u s s i no v m a t r i x w i t h d i a g o n a l s =0

def i n i t _ m a t r i x ( r n a ) :

M = l e n ( r n a )

nm = np . empty ( [M, M] )

nm [ : ] = np .NAN

nm[ range (M) , range (M) ] = 0

nm[ range ( 1 , l e n ( r n a ) ) , range ( l e n ( r n a ) − 1 ) ] = 0

re turn nm

# F i r s t s t a g e o f t h e a l g o r i t h m , t h e f i l l s t a g e f o l l o w i n g t h e 4 r u l e s

def f i l l (nm , r n a ) :
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# a l l o w e d minimum l e n g t h o f t h e loop

m i n i m a l _ l o o p _ l e n g t h = 5 ( 0 , 1 , 2 , 3 , . . . )

f o r k in range ( 1 , l e n ( r n a ) ) :

f o r i in range ( l e n ( r n a ) − k ) :

j = i + k

i f j − i >= m i n i m a l _ l o o p _ l e n g t h :

# 1 s t r u l e

down = nm[ i + 1 ] [ j ]

# 2nd r u l e

l e f t = nm[ i ] [ j − 1]

# 3 rd r u l e

d i a g = nm[ i + 1 ] [ j − 1] +

c o u p l e ( ( r n a [ i ] , r n a [ j ] ) )

# 4 t h r u l e

r c = max ( [ nm[ i ] [ t ] + nm[ t + 1 ] [ j ]

f o r t in range ( i , j ) ] )

#max o f a l l nm[ i ] [ j ] = max ( down , l e f t , d iag , rc )

e l s e :

nm[ i ] [ j ] = 0

re turn nm

# Second s t a g e o f t h e DPA,

t r a c e back s t a g e t o i d e n t i f y t h e most o p t i m a l s t r u c t u r e

def t r a c e b a c k (nm , rna , f o l d , i , L ) :

j = L

i f i < j :

i f nm[ i ] [ j ] == nm[ i + 1 ] [ j ] : # 1 s t r u l e

t r a c e b a c k (nm , rna , f o l d , i + 1 , j )

e l i f nm[ i ] [ j ] == nm[ i ] [ j − 1 ] : # 2nd r u l e

t r a c e b a c k (nm , rna , f o l d , i , j − 1)

e l i f nm[ i ] [ j ] == nm[ i + 1 ] [ j − 1] + c o u p l e ( ( r n a [ i ] ,

r n a [ j ] ) ) : # 3 rd r u l e

f o l d . append ( ( i , j ) )
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t r a c e b a c k (nm , rna , f o l d , i + 1 , j − 1)

e l s e :

f o r k in range ( i + 1 , j − 1 ) :

#4 t h r u l e

i f nm[ i ] [ j ] == nm[ i , k ] + nm[ k + 1 ] [ j ] :

t r a c e b a c k (nm , rna , f o l d , i , k )

t r a c e b a c k (nm , rna , f o l d , k + 1 , j )

break

return f o l d

# F u n c t i o n t o o b t a i n t h e d o t b r a c k e t n o t a t i o n f o r t h e g i v e n s e q u e n c e

def d o t _ w r i t e ( rna , f o l d ) :

d o t = [ " . " f o r i in range ( l e n ( r n a ) ) ]

f o r s in f o l d :

# p r i n t ( min ( s ) , max ( s ) )

d o t [ min ( s ) ] = " ( "

d o t [ max ( s ) ] = " ) "

re turn " " . j o i n ( d o t )

# S t a r t i n g t h e c l o c k t o n o t e t h e e x e c u t i o n t i m e

b e g i n = t ime . t ime ( )

# l i s t c o n t a i n i n g t h e t o t a l base p a i r s c o r r e s p o n d i n g

t o t h e most o p t i m a l s t r u c t u r e o b t a i n e d

f o l d = [ ]

# i n p u t

r n a = ’CGGAACTAAACTCGTGGTTCCTGTGGTTCACACCTGA’

# o u t p u t

nm = i n i t _ m a t r i x ( r n a )

nm= f i l l (nm , r n a )

s e c o n d a r y = t r a c e b a c k (nm , rna , f o l d , 0 , l e n ( r n a ) − 1)

r e s = d o t _ w r i t e ( rna , f o l d )

p r i n t ( ’ i n i t i a l m a t r i x \ n \ n ’ , i n i t _ m a t r i x ( r n a ) )

p r i n t ( ’ \ nNuss inov m a t r i x \ n \ n ’ , nm)

p r i n t ( ’ \ n p a i r s \ n \ n ’ , f o l d )
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p r i n t ( ’ T o t a l p a i r s = ’ , l e n ( f o l d ) )

p r i n t ( ’ \nRNA s t r u c t u r e ’ , r e s )

p r i n t ( ’RNA= ’ , r n a )

p r i n t ( ’ l e n g t h o f t h e r n a = ’ , l e n ( r n a ) )

end = t ime . t ime ( ) # s t o p p i n g t h e c l o c k

p r i n t ( " Time e l a p s e d : " , end − b e g i n )
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