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Abstract

In this thesis we have studied the way to determine if the hyperbolic structure on 3-

manifold is complete. These tools can be to used to find complete hyperbolic structure

on 3-manifolds using ideal triangulation. We will look at how to decompose the 8-knot

complement. The algorithm thus developed can be applied to find ideal triangulation of

knot. We study the relation between developing maps and completeness of the (G,X)

structure on a manifold.
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Chapter 1

Figure 8-knot

1.1 Preliminaries

[5]In this section we will give some definitions which will help us through-

out.

Definition 1.1.1. A knot K is a subset of S3 such that it is PL homeo-

morphic to S1. Alternatively, we can think of a knot as a PL embedding

K : S1 → S3, using the symbol K to refer to both the map K and K(S1).

It will be clear from the context which one we are using.

Note: Under a PL homeomorphism S1 is mapped to a finite number of

line segments.

An advantage of using a PL homeomorphism is that it allows us to assume

that the knot, K ⇥ S3 has a regular tubular neighborhood. That is, it

allows us to assume that there is an embedding of a solid torus S1
◊ D2

into S3 such that S1
◊ {0} is mapped to K ⇥ S3.
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Remark 1.1.1. A knot which cannot be embedded piecewise linearly into

S3 is called a wild knot.

Definition 1.1.2. Two knots K1 and K2 are said to be ambient isotopic if

there is (PL or smooth) homotopy H : S3
◊ [0, 1] → S3 such that each

H(., t) = Ht : S3 → S3 is a homeomorphism for each t and,

H(K1, 0) = H0(K1) = K1

and

H(K2, 1) = H1(K1) = K2

Such a map is called an ambient isotopy.

Note that ambient isotopy is an equivalence relation.

Definition 1.1.3. For a knot K, N(K) denotes an open regular neighbor-

hood of K in S3 of knot K in S3. The exterior of the knot is S3 \ N(K).

Note: The knot complement S3 \ K is a compact 3-manifold with bound-

ary, whose boundary is homeomorphic to a torus.

Definition 1.1.4. A knot invariant is a function which maps the set of

knots to some set whose value depends on the equivalence class of knots,

i.e. the value of the function for two knots is the same if the knots are

equivalent (i.e. ambient isotopic).
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Definition 1.1.5. A link L : ⇤S1 → S3 is a PL embedding of a disjoint

union of circles into the sphere. Once again we use L to refer to either the

map or the image L(⇤S1).

Theorem 1.1.1 (Gordon-Luecke Theorem). . If there are two knots K1andK2

such that the complement of their images in S3 are homeomorphic to each

other by an orientation preserving homeomorphism, then the knots are

equivalent.

From the above theorem we conclude that in variants of knots that are able

to distinguish between their complements must be able to distinguish be-

tween the knots We get a counterexample when we consider links instead

of knot in the hypothesis of Gordon-Luecke theorem.

Figure 1.1.1: Two non-homeomorphic links whith homeomorphic exte-

rior

Example 1.1.1. [4]Consider two links L1 and L2 as shown, now we see

that these two links are not homeomorphic, since removing one compo-

nent from L1 gives us unknot whereas, removing unknot from L2 gives
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us trefoil knot. Consider regular neighborhood N(U) of unknot U in L1.

Now, consider S3\N(U), we get a 3-manifold. We cut this 3-manifold

along the seiffert surface that is disc of unknot U, then we make a 2π

twist in the cut manifold. This twist is called Rolfsen twist. We glue back

the manifold along the cut. Thus we obtain a homeomorphism between

the exteriors of two links. This is a counterexample of the above theorem.

1.2 Overview

[2][7][5]In this Section. we will try to understand how to obtain a poly-

hedral decomposition of the figure 8 knot. Thurston was the first to give

such a decomposition for the figure 8-knot.

Figure 1.2.1: In the diagram on left we see that there’s monogon on the

top vertex and in right figure we have bigon.

By the term polyhedron we mean a 3-ball with finite number of vertices

and edges labeled on its boundary by a finite graph such that the vertices
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and edges demarcate the faces which are simply connected and have dis-

joint interiors. This definition of polyhedra permits polyhedra to contain

monogons and bigons. An ideal polyhedra is polyhedra with all the ver-

tices removed. You can observe, how in the above diagram, the 3-ball

is divided by the finite vertices and edges and all the region obtained are

simply connected.

We will decompose the knot complement into two ideal tetrahedrons. We

consider our knot to be embedded into S3 which is identified as R3 ⌅

∞ and lying on the XY-plane. Wherever there is over-crossing our knot

is slightly displaced above and wherever our knot has under-crossing it

is slightly displaced below the XY-plane. Insert an ideal edge at each

crossing. Here by an ideal edge, we mean that it have no end points.

We consider two balloons being expanded from the ∞, one below the

XY-plane and other above the XY-plane. As they keep on expanding they

bump into each other at the XY-plane. This divide the surface of balloons

into faces and edges. These faces correspond to the region cut out by the

graph of diagram. We label these faces as A,B, C, D, E and F. These

faces meet in edges which correspond to the the edge at each crossing.

These two balls will give us the knot complement when pair of edges are

identified to each other in certain way.
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1.3 At crossings

[7][5]We see that when balloons starts expanding from above the plane

and below the plane, it divide it into different regions. When the balloons

hit an isolated strand as shown in the figure in wraps itself around the

strand. It seems like that strand is passing through the tunnel. This hap-

pens because knot itself is not a part of knot complement. Now we insert

Figure 1.3.1: Balloon at an isolated arc

an ideal edge at every crossing in the knot complement, such that it goes

from overstrand to understrand. Now we split this edge into two parts (it

lies in the knot complement and thus on the surface of the balloon), later

on we will be identifying them. Because to the crossing, the surface of

balloon is divided into four parts. The faces S and V are adjacent to each
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other and, U and V are adjacent to each other. As you can see in the figure

how this one edge is being separated into two parts. This figure gives us

a clear picture of how adding strand divides the surface into four parts.

When we repeat this process from the bottom, our understrands become

overstrands and overstrands becomes understrands. Earlier, the edge we

inserted went from overstrand to understrand, now it will go the other way

round. Our strand will be split from understrand to overstrand this time

and again we have four faces, This time, S is adjacent to V and T is adja-

cent to U. We note here that we have four copies for each edge we have

inserted, two copies comes form the top and two comes from the bottom.

We repeat this procedure at each crossing, and we shrink the isolated arcs

of the knots to ideal vertices. Retracting the edge to a single point can

seem confusing at first, as the arc of the knot is not homeomorphic to

the point. Here we do not consider the arc but complement of it. The

complement of the arc on the surface of the balloon is homeomorphic to

the complement of a point on it, and hence we are able to replace these

edges by the ideal vertices. This gives rise to two polyhedra in the knot

complement, and we identify the faces and edges appropriately to get the

knot complement. In the top polyhedra we shrink each overstrand and in

bottom polyhedra we shrink the understrand to the ideal vertex.

Note that we can choose the orientation for the edge inserted to be either
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from overstrand to understrand or vice versa, as long as it remains same

throughout the whole process at a crossing.

1.4 Figure 8-knot complement

[7][5]In this section we will apply the procedure discussed above to ob-

tain the figure 8-knot complement. We will firstly discuss how we can

obtain the top polyhedra and then work on the similar lines to get bottom

polyhedra. We expand the balloon from ∞ from top. This divides our

plain into 6 parts, and balloon into 6 regions namely, A,B,C,D,E and F.

D is basically originating from the ∞. Now we insert an ideal edge at

each crossing and split it into two which will be identified later on. One

interesting, thing which can be done to visualize these regions in a better

manner is to make a knot with a wire and dip it int the soap solution. You

will be distinctively able to see the faces.

Now, visualize that our surface is stretching, since the arcs of knots does

knot belong the knot complete, surface stretch in such a way that these

arcs become shorter and shorter and collapse to an ideal vertex. We ex-

tend each edge which we inserted at crossing so that they meet at these

ideal vertices. At the end of this procedure we will get the top polyhedra.
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(a) top polyhedron (b) bottom polyhedron

Figure 1.4.1: Knot diagrams for the top and bottom polyhedron

We will repeat this process by expanding balloon from the bottom of the

plane. When we see our knot from the bottom the overstrands becomes

understands and vice-versa. Again the surface of balloon is divided into

A,B,C,D,E and F, where D originates from the ∞. The inserted edge

now splits in the other way as can be seen in the diagram. Like above

we shrink the edges of the knot to the ideal vertices as mentioned in the

previous section and thus we get the bottom polyhedron.

In the end we identify the face A labeled on the top polyhedra with face

labeled A on the bottom making sure that the corresponding edges are

matched. We do it for each face. Using this process of gluing th faces and

edges gives us the knot complement.
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Chapter 2

Hyperbolic Geometry

In the later sections we will need to manipulate objects in 2 and 3-dimension

hyperbolic space. This section provides a brief introduction to the tools

which will be required. In this chapter we will be focusing mainly on

isometries of the upper half-plane.

2.1 Hyperbolic geometry in two space

[5]We have various models for hyperbolic space in dimension two, like

upper half space model and disk model . The one which we will be using

is upper half space model. In this model, hyperbolic 2 space H is defined

as the set of points in the upper half plane as:

H
2 = {x + iy ⇧ C|y > 0}
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equipped with the following riemannian metric:

ds2 =
dx2 + dy2

y2

or in complex co-ordinate z as

ds =
|dz|

Imz

We define length of the curve ⇥ in H2 as:

|⇥| =
� b

a

⇥

( dx
dt )

2 + (dy
dt )

2

y
dt. (2.1)

Definition 2.1.1. R2 ⌅ {∞} is the boundary at infinity for H2

Definition 2.1.2. For every z ⌃= 0, we have z
0 = ∞ and z

∞
= 0

2.2 Möbius Transformation

[3][5][1]Consider hyperbolic plane H2, fix a point in the plane say i. With

the above metric we can observe that for any point z, distance between i

and z becomes larger and it tends to ∞ as imaginary part of z tends to 0,

or z becomes closer to ∞ in H2. Along vertical line y = a, we observe

that distance between any two points on this line is same as Euclidean
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distance divided by a.

With above observations in mind, some isometries of H2 are :

1. Translation : ta(z) = z + a, where a is a real number.

2. Dilation : dp(z) = pz, where p is a positive real number.

3. Reflection about y axis : r(z) = ⌥z

We will now show that translation is an isometry. Clearly, ta maps, H2 to

H2 and its inverse is t⌥a = z ⌥ a again maps H2 to H2. Translation ta is

ta(z) = u = z + a where z = x + ⇤y. Then as dz = du, we have

|dz|

y
=

|du|

y

We have dialation, dp(z) = u = pz where z = x + ⇤y and p is positive

real number is a bijective map H2 to H2. Then as dz = du/p, we have

|du|

Imu
=

|pdz|

py

=
|dz|

y
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We have reflection, r(z) = u = ⌥z where z = x + ⇤y is a bijective map

from H2 to H2. Then as du = ⌥dz, we have,

(
|du|

Imu
)

2

= (
|⌥ dz|

⌥y
)

2

= (
|dz|

y
)

2

By above calculations we see that, ta, dp, r are isometries of H2

We have another model for hyperbolic space in dimension 2 which is the

disk model D2, D2 = {z ⇧ C2||z| < 1}.

The metric on D2 is :

ds =
|2dw|

1 ⌥ |w2|
, w ⇧ D

2 (2.2)

From the above metric we can observe that as we move away from the

origin the hyperbolic distance becomes larger and larger. This distance

tends to infinity as we approach boundary of disk ⌅D2, where ⌅D2 =

{z ⇧ C2||z| = 1}.
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We can interchangeably use the upper half plane model or the disk model.

We can go from the upper half plane model to the disk model using the

transformation T : H2 ⌥→ D2, defined by

w = T(z) =
iz + 1

z + ⇤
(2.3)

Let f be an isometry of H2, then we can get isometry of D2 as follows:

H2 H2

D2 D2

f

TT⌥1

g

Here, g = T⌥1 f T. We observe isometries of D2 are basically T⌥conjugate

of isometries of H2.

Some natural isometries of disk model are :

1. r�(z) = ei⇧z, which is a rotation and ⌃ is any real number. r� corre-

sponds to rotation. Consider,

f (z) =
(cos⇧)z + (sin⇧)z

(⌥sin⇧)z + (cos⇧)z
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, which is a rotation in upper half-plane. When we calculate, T  f  

T⌥1 we get,

T  f  T⌥1 = exp ⇤
⇧

2

2. i(w) = w, in upper half plane this corresponds to inversion about

unit circle as

T⌥1iT(z) =
1

z

Now as in H2, inversion in unit circle is an isometry. We observe that

inversion about any circle with center on real axis is an isometry as any

such circle can be brought to unit circle using translation and dilation.

Theorem 2.2.1. Any (euclidean) vertical line in H2 is a geodesic.

Proof. consider y-axis, we will show that its a geodesic. Let a=(0,a) and

b=(0,b) be two points on y=0. We will need to parametrize the curve to

find the length of it.consider,

X(t) = (0, t), t ⇧ [a, b]. (2.4)

Then the arclength will be,

|⇥| =
� b

a

⇥

( dx
dt )

2 + (dy
dt )

2

y
dt =

� b

a

1

y
dt = ln(a)⌥ ln(b) =

ln(a)

ln(b)

(2.5)
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Now consider any other piecewise smooth curve,

Y(t) = (x(t), y(t)) (2.6)

passing through a and b such that y(t) is an increasing function, as if

we consider y to be any function then we can divide the the domain of y

in two parts, one where y is increasing and other where y is decreasing.

Using that we will get same result.

Then we have,

|Y| =
� b

a

⇥

( dx
dt )

2 + ( dy
dt )

2

y
dt

⌦

� b

a

⇥

( dy
dt )

2

y
dt

⌦

� y(b)

y(a)

dy

y

⌦ ln(y(a))⌥ ln(y(b))

(2.7)

We see that length of |Y| is greater than or equal to our segment of vertical

line. Thus the shortest path that joins a and b is the segment of y-axis.

Before we proceed further we will see how inversion map takes vertical

lines to circles or vertical lines.
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Theorem 2.2.2 (Inversions). 1. They take vertical lines passing through

the origin to itself.

2. They take vertical lines not passing through origin to circles passing

through the origin.

3. They take circles passing through the origin to vertical lines not

through the origin.

4. Circles which do not pass through the origin gets mapped to the

circles not through the origin.

Proof. Let r(z) = 1
z .

1. We note that vertical lines passing through the origin will be of the

form z = x⇤ with x ⇧ R. Then,

r(x⇤) =
1

x⇤
=

⌥⇤

x

We have for each x ⇧ R,⌥1/x ⇧ R, x ⌃= 0. If x = 0, r(x⇤) =

∞, r(∞) = 0. Thus, vertical lines through origin are mapped to

vertical lines through origin.

2. A line which does not pass through the origin have form z = x +

⇤y, x, y ⇧ R such that ax + by = c, a, b, c ⇧ R. Let r(z) = u + ⇤v.

Then,

r(x + ⇤y) = u + ⇤v =
1

x + ⇤y
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i.e.,

x + ⇤y =
u ⌥ ⇤v

u2 + v2

Thus,

x =
u

u2 + v2
, y =

u ⌥ ⇤v

u2 + v2

as ax + by = c we have

au

u2 + v2
⌥

bv

u2 + v2
= c

au ⌥ bv = c(u2 + v2)

u2 + v2 ⌥
au

c
+

bv

c
= 0

Thus lines not passing through origin are mapped to circles through

origin.

3. Since r(z) = 1
z is its own inverse, we observe that circle not passing

through origin maps to lines not through origin by above.

4. Consider, z = x + ⇤y, x, y ⇧ R. Then, circle not through origin have

equation, x2 + y2 + ax + by = c where a, b, c ⇧ R are fixed real

numbers and c ⌃= 0. Then let r(z) = u + ⇤v We have,

x =
u

u2 + v2
, y =

⌥v

u2 + y2
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We get,

(
u

u2 + v2
) + (

⌥v

u2 + v2
) =

au

u2 + v2
⌥

bv

u2 + v2
= c

Thus,

u2 + v2

(u2 + v2)2
+

au ⌥ bv

u2 + v2
= c

So,

1 + au ⌥ bv = cu2 + cv2

and,

u2 + v2 ⌥
au

c
+

bv

c
=

1

c

which is the equation of circle not passing through origin.

Theorem 2.2.3. Vertical lines and circles having centre on real line are

lines in upper half plane model.

Proof. Let a and b be two points in H2. Let C be the circle passing

through a and b such that its centre lies on R and it intersects the real

line at P and Q. Then translate the circle by -P on the x-axis, So that P lies

on the origin. Now compose this translation with the inversion through

the unit circle. We see that after the inversion P is sent to the ∞. As the

above translation and inversion are isometries, their composition is also
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an isometry and we know that isometries preserves angles. As C inter-

sects with R at right angles, we see that the image of C is a vertical line.

We have already shown that, vertical lines are geodesics. Since isometries

preserves the arclength, C is a line in H2

2.3 Hyperbolic geometry in three dimension

[5]In the last section we dealt with hyperbolic geometry in 2-dimension.

In this section we will give some results for hyperbolic geometry in di-

mension 3. Hyperbolic 3-space H3 is defined as:

H
3 = {(x + ⇤y, t) ⇧ C ◊ R|t > 0}

with the metric:

ds2 =
dx2 + dy2 + dz2

t2

. Here we will mention few results without proof in H3.

Theorem 2.3.1. Vertical lines and semi-circles in H3 with their centre

on the boundary ⌅H3 = C ⌅ ∞ are the geodesics in H3. hemispheres

centered on C and vertical planes are the geodesic planes.
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2.3.1 Isometries in H3

Theorem 2.3.2. Reflection in geodesic planes in H3 generate the group

of isometries of H3.

2.4 Triangles and horocycles

[5]

Lemma 2.4.1. Given any three distinct points z1, z2, z3, in the boundary

of upper half plane, there exists an orientation preserving isometry which

take them to 0, 1, ∞ respectively, i.e. there exist an orientation preserving

isometry such that any three points in the boundary of H2 can be taken to

any three points of the boundary.

Definition 2.4.1. An ideal triangle in H is a triangle with three geodesic

edges and the three vertices as the points on boundary at infinity.

Definition 2.4.2. An ideal tetrahedron in H3 is a tetrahedron with ideal

vertices that is it’s vertices lies on the boundary of H3.

Definition 2.4.3. A horocycle is curve whose centre p, is an ideal point on

the boundary of H2 such that it is perpendicular to the geodesics which

pass through p. If p lies on R then the horocycle is the euclidean circle

tangent to R at p. When p is ∞ the horocycle is a horizontal euclidean

line. A horoball is the region enclosed by the horocycle.
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Definition 2.4.4. A horosphere about ∞ ⇧ ⌅H3 is a plane {(x + ⇤y, a) ⇧

C ◊ R} where a > 0 is constant. For p ⇧ C the euclidean sphere tangent

to p is also a horosphere.
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Chapter 3

Geometric structure on Manifolds

We want to study knots by studying the geometric properties of the knot

complement. Till now we have studied an outline of algorithm how to

do polyhedral decomposition of knot complement and some properties

of hyperbolic plane. In this chapter we will be studying how to endow

manifold with geometric structure and under which conditions it will be

complete.

3.1 Geometric structure on manifolds and examples

[5]We will begin by giving some definitions.

Definition 3.1.1. Let M be a 2-manifold, then topological polygonal de-

composition of M is defined to be a combinatorial way of gluing the poly-

gons together so that the result manifold is homeomorphic to M.
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Definition 3.1.2. A geometric polygonal decomposition is topological de-

composition such that each polygon has metric on them, gluing is done by

isometrics and the resulting manifold is smooth with a complete metric

Definition 3.1.3. Let X be a manifold and G be the group acting on it. We

say that manifold M have a (G,X) structure if for every point x⇧M, there

is a chart (U, ⌥) : U → ⌥(U) ⇥ X, such that U is an open neighborhood

of x and ⌥ maps U onto its image ⌥(U) ⇥ X. It should satisfy the

following condition: If (U, ⌥) and (V, ψ) are two charts such that U ↵ V

is non-empty, then the transition map ψ  ⌥⌥1 : ⌥(U ↵ V → ψ(U ↵ V)

is given by the restriction of elements of G on each connected component

of U ↵ V.

We will be considering X to be simply connected, X and M to be real an-

alytic manifolds and G to be the group of real analytic diffeomorphisms

acting on X. As real analytic diffeomorphisms are uniquely determined

by their restriction on any connected open set, we will get that transition

maps on each connected components of U ↵ V will be given by the re-

striction of some element of G.

Also here our manifold X will generally have a metric, and G will be

group of isometrics of X. M will inherit metric from X. Under such con-

ditions we will say that M has geometric structure.

Here we will describe a geometric structure on torus. Let T be the torus
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and X = R2 and G be the group of isometries of Euclidean space. Now

we know that R2 is universal cover of T and covering transformations of

R2 are Euclidean transformations. The tiling of square of length 1 gives

us R2.

Now consider the basic square with corners (0, 0), (0, 1),(1, 0) and (1, 1).

Let P be any point on torus. Then when we lift P under the covering map,

the set of points obtained is infinite in R2 which will give an integer lat-

tice on R2. Each point lifted belongs to a copy of unit square. Let there

be an open disc of radius less than 1/2, in general we can take radius as

1/4. Now when we project this neighbourhood under covering map in T,

we get neighbourhood U of P. Thus, we obtain a chart (U, ⌥) around P

where ⌥ map U to a disk of radius 1/4, to any disc around lift of P.

And if there’s another chart say (U,  ) such tha  maps U to another

disc of radius 1/4 around P to another lift of P in some other square, we

can see that the transition map from  (U) to ⌥(U) is given by Euclidean

translation. Thus ⌥   ⌥1 is a Euclidean isometry. The torus obtained

by giving opposite edges of basic square can be given (Iso(E2), E2) by

above process. A manifold with (Iso(E2), E2) is said to have Euclidean

structure.

Example 3.1.1 (Torus). Now the above process gives us a metric on T
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induced by the euclidean metric. The induced metric obtained by the

pullback on T is complete. Below we will give another geometric struc-

ture on T. We will observe that the structure we will obtain will not have

a complete metric. Let X = R2, G = Isom(R2). Any affine transforma-

tion is of the form x �→ Ax + b.Any manifold with this (G,X) structure

is said to have an affine structure. This time we not only consider trans-

lations, but rotation and scaling. Take any quadrilateral. Then we can

glue the sides of quadrilateral using these affine transformation. When

we glue the copies of this quadrilateral to obtain an universal cover, we

have to rotate, shrink and expand the quadrilateral and such a tiling is not

a plane. Rather its a plane which is missing a point. By above gluing of

quadrilateral we obtain an affine structure on T.

As we have missed a point in the plane the metric thus obtained by the

pullback won’t be complete. As we have seen above it is a tiresome pro-

cess to work with charts to obtain geometric structure on manifolds. It

can be more easily obtained by working with the qoutient spaces.

3.2 Hyperbolic structure

[5]Our main focus throughout will be to study hyperbolic structure on the

manifolds. In this section we define hyperbolic structure on manifolds.
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Definition 3.2.1. Let X = H2 and G = Isom(H2). If M is a manifold

such that it has (G, X) structure it is said to admit hyperbolic structure.

In general any manifold with (Isom(Hn, Hn)-structure have hyperbolic

structure.

Hyperbolic structure on manifolds will useful to study knot complements.

Consider a hyperbolic 2-manifold, which is obtained from the geomet-

ric polygonal decomposition. Let the polygons be hyperbolic triangles,

vertices either be finite (inside hyperbolic plane) or ideal(on the bound-

ary of hyperbolic plane) and the edges to be the segments of hyperbolic

geodesics. Under certain nice conditions such as when one edge of a poly-

gon is identified with exactly one edge of the edge of other polygon and

edges are identified with edges and vertices are identified with vertices we

get a manifold. (Massey, Algebraic Topology) So we know that gluing of

polygons with these nice conditions will be a manifold. But under what

conditions gluing of hyperbolic polygons will result in manifold with hy-

perbolic structure? In the following lemma we will try to understand the

conditions to answer this question.

Note: In the following lemma by gluing of polyhedra we will mean a

collection of polyhedra with geodesic edges, with faces being identified

by the isometries of Hn.

Lemma 3.2.1. A gluing of hyperbolic polygons gives us a 2-manifold with
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hyperbolic structure that agrees with the structure inside polygons if and

only if, for every point in the gluing, that is quotient manifold M we have

(in the manifold obtained) a neighborhood of the point isometric to the

hyperbolic disk in H2.

Proof. By gluing here we mean that, the quotient space which is obtained

by identifying on faces of hyperbolic polyhedras under consideration us-

ing isometry or gluing maps. Each face is identified to some other using

these gluing maps. Also, by hyperbolic structure agreeing with the struc-

ture inside polygon we mean that for every point inside the interior of

polygon there a neighborhood U of that point such that, there is a map

from U to U ⇥ H, and this map provides chart for the point.

Suppose the gluing of polygon has yielded manifold M, such that hyper-

bolic structure on it agrees with the structure inside the polygon. Then, p

in M have a chart (U, ⌥) such that ⌥ : U → ⌥(U), ⌥(U) ⇥ H2. Con-

sider U ↵ P, where P is polygon. Then composing ⌥ with the identity

map on U ↵ P gives us a transition map from U ↵ P to ⌥(U ↵ P), which

is an isometry in the interior of P. Since U is made up by gluing these

polygons, we can think of U ↵ P as the intersection of open in H2 with P.

Let each point in M have neighborhood isometric to a ball in H2 by

using the isometry ⌥. Then these isometries gives us the charts on M



3.2. Hyperbolic structure 31

(U, ⌥), (V, ψ). Let (U, ⌥) and (V, ψ) such that their interaction is non-

empty. Then we get that the transitions maps ⌥  ψ⌥1. These transitions

maps are isometries. Thus they will give an isometry of H2. Hence, the

manifold thus obtained will have a hyperbolic structure.

Lemma 3.2.2. The gluing of hyperbolic polygons gives us a manifold

such that every point have a neighborhood isometric to hyperbolic disk if

and only if the interior angle sum at each finite vertex is 2π

Proof. Consider a gluing of hyperbolic polygons, then if at each point we

have neighborhood isometric to hyperbolic disk. Since isometries pre-

serve the angle, we will get that at each finite vertex interior angle sum is

2π.

Let the gluing be done in such manner that for a finite vertex the interior

angle sum is 2π. From the above lemma, we know that for any point

which is in the interior of the polygon or is on the edge of the polygon

will have a neighborhood isometric to a disk in H2. Now, we can use

isometries to map the vertex under consideration to ⇤. Now we place the

polygons adjacent to each other in a cyclic order, while gluing the edge

of one polygon to the other till we reach the last polygon. Notice that the

edge of the last polygon gets glued to the edge of first polygon (as the
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interior angle sum around vertex is 2π. Hence, the finite vertex will have

neighborhood which is isometric to a disk in H2.

3.3 Developing Map

[5][6]We saw in the above section conditions under which gluing of hy-

perbolic polygons gives us a manifold with hyperbolic structure. But un-

der what conditions will this hyperbolic structure be complete? In the

following section we will discuss developing map and holonomy which

will help us understand this.

Let M be a real analytic manifold having (G, X)- structure where X is a

connected real analytic diffeomorphisms acting transitively on X. Let p ⇧

M and (U, P) be a chart of P. Then (U, ⌥) map U homeomorphically

onto ⌥(U) in X. Now we know that if P have two charts say (U, ⌥) and

(V,  ) such that the intersection is non empty, then the transition map ⌥  

 ⌥1 is uniquely determined by the restriction of g(p) in neighbourhood

of p on each connected component of U ↵ V where p ⇧ U ⇧ V and

g = ⌥   
⌥1 :  (U ↵ V) ⌥→ ⌥(U ↵ V)

Let y ⇧ U ↵ V. Consider a map y ⌥→ g, we observe that this map is
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locally constant. Let g(y) denotes the element of G and we define a map

⇥ : U ⌅ V ⌥→ X as following :

⇥(x) =

⇤

⌅

⇧

⌅

⌃

⌥(x) if x ⇧ U

g(y) (x) if x ⇧ V

Then ⇥(x) is a well defined map if U ↵ V is connected. If x ⇧ U ↵ V,

⌥(x) = g(y) (x)

= ⌥ ⌥1 (x)

= ⌥(x)

⇥ can be seen as extension of ⌥.

Example 3.3.1. Consider the torus T obtained by gluing opposite edges

of unit square in R2. Consider Euclidean structure on T. Consider two

open sets U and V along the longitude of T as shown in the figure. Then

we see that U ↵ V have connected components. Let x, y ⇧ T such that

x lies in one connected component and y lies in other component. Then,

there are two charts (U, ⌥), (V,  ) which maps y in the basic square. We

observe that transitions map g(y) = ⌥   ⌥1 is the identity map. Now we

define ⇥ : U ⌅ V ⌥→ X as above.

We see that ⇥ is not well defined in this case since g(y) (x) lies in

square bounded by (1, 0), (1, 1), (2, 0) and (1, 2). Thus, we arrive at a

problem. To overcome this we will use universal cover of M. We fix a
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basepoint x0. We will be developing charts along the path through x0.

Also, if M is not simply connected, then we have a non-trivial loop. We

will face a problem here as well as when we will be developing the charts

along this loop and when we will circle back to initial point we will have

two different definitions of map at that point. Using universal cover helps

tackling this problem as well.

To define developing map, we will use universal cover M̃ of M, in M̃

each point can be thought of as homotopy class of paths in M with a fixed

base point x0. We will define a function from M̃ to X. To do this we will

extend the chart along the path in M corresponding to a point in M̃.

Let ⇧ : [0, 1] → M be a path in M representing a point [⇧] ⇧ M with

a fixed basepoint x0. Let U0, ⌥0 be a chart around x0. Now we can sub-

divide the interval [0, 1] in [ti, ti+1] (where i = 0, 1, ...., n ⌥ 1) such that

each ⇧[ti, ti+1] is contained in Ui for every i. Thus, we will get finitely

many charts (Ui, ⌥i)covering the path. Note that each ⇧(ti) ⇧ Ui ↵ Ui⌥1,

let xi denote ⇧(ti) for each i. Here each xi is contained in a connected

component of Ui ↵ Ui⌥1.

We know that transition map ⌥i⌥1  ⌥⌥1
i is well defined on the connected

component and is uniquely determined by an element of G in a neigh-

bourhood of xi ⇧ Ui ↵ Ui⌥1. Let us denote it by gi.
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Now, we will extend (U0, ⌥0) to a map from [0, t2] to X. Note that

⌥0(⇧(t)) gives us a map from [0, tn] to X. We extend on [0, t2] by defining

⇥ : [0, t2] ⌥→ X as :-

⇥1(t) =

⇤

⌅

⇧

⌅

⌃

⌥0(⇧(t)) if t ⇧ [0, t1]

g1⌥1(⇧(t)) if t ⇧ [t1, t2]

⇥1(t) is well defined on [0, t2] as ⌥0(⇧(t1)) = g1⌥1(⇧(t1)), g1 = ⌥0  

⌥⌥1
1 on the connected component. We can develop the chart further by

inductively expanding ⇥i : [0, ti+1] ⌥→ X by defining :-

⇥1(t) =

⇤

⌅

⇧

⌅

⌃

⌥i⌥1(t) if t ⇧ [0, t1]

g1g2....gi⌥i(⇧(t)) if t ⇧ [ti, ti+1]

Let ⇥k are well defined for all k = 1, .., i. For k = i + 1, we can have

⇥i+1 well defined as

⇥i+1(ti+1) = g1g2....gigi+1⌥i+1(⇧(ti+1)

= g1g2....gi⌥i(⇧(ti+1)

= ⇥(ti+1)

Hence, we get that ⇥i+1 is well defined. By induction, ⇥i is defined for

i = 1, 2..., n⌥ 1. Thus we get ⇥n⌥1 : [0, 1] ⌥→ X, which is well defined.

This map provides us another map in the small neighbourhood U of ⇧(1),
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⇥[⇧] : U ⌥→ X defined as :-

⇥⇧(x) = g1g2...gn⌥1⌥n⌥1(x)

⇥[⇧] can be thought of as chart around ⇧(1).

Definition 3.3.1. The developing map D : M̃ ⌥→ X is defined as:

D[⇧] = ⇥n⌥1(1) = g1g2...gn⌥1⌥n⌥1(⇧(1))

Now we will show that D is well defined and independent of arbitrary

choices we made while defining it.

Theorem 3.3.1. The developing map D : M̃ → X satisfies the following

properties:

1. For a fixed basepoint x0 and chart (U0, ⌥0, such that x0 ⇧ U0 the

definition of developing map does not depend on the holonomy class

[⇧], on the choice of charts and points chosen in the intersection of

charts. The developing map is thus well-defined.

2. D is a local diffeomorphism.

3. If we begin with a different base point and develop a map along the

path say D� then the developing map D’ will be D composed with an

unique element of G.
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Proof. 1. Firstly we will begin by showing that the definition of de-

veloping map does not depend on the choice of charts. Consider

a chart (U, ⌥) between (Ui⌥1, ⌥i⌥1) and (Ui, ⌥i), the we will have

two transitions maps ⌥  ⌥⌥1
i and ⌥i⌥1  ⌥⌥1. These will correspond

to unique group elements f and k. Then our new developing map

would be:

D�([⇧]) = g1g2...gi⌥1k f gi+1...gn⌥1⌥n⌥1(⇧(t))

Now as xi belongs to U, Ui⌥1, Ui we have:

gi = ⌥i⌥1  ⌥⌥1
i = ⌥i⌥1  ⌥⌥1

 ⌥  ⌥⌥1
i = k f

Thus we have,

D�([⇧]) = g1g2...gi⌥1gigi+1...gn⌥1⌥n⌥1(⇧(t))

= D([⇧])

In general, when we have two sets of charts, we can take the union

of charts and we can use those charts to develop the map along the

path. As from above we will see that we will get the same develop-

ing map with the refining.

Now we will show that developing map is independent of the choice
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of the path in the holonomy class [⇧]. Let ⇧, ⌦ ⇧ [⇧]. Then there’s

a path homotopy H(t, y) from ⇧ to ⌦ such that H(t, 0) = ⇧(t) and

H(t, 1) = ⌦(t). Now we can divide the homotopy into smaller

homotopies Hi such that (ti, y) lies in a single chart for y ⇧ [0, 1].

We notice that, throughout the process, ⇧(ti) remains in the same

the same connected component of xi.As the group elements gi are

uniquely determined by xi, they will be same if we develop the map

along the path ⌦. Thus we will get the same developing map if we

develop along the paths that are homotopic to each other.

Now, we will show that the definition of developing map is inde-

pendent of the points we choose in the intersection of charts. Let

x1, x2, ....., xn⌥1, xn be the point in the intersection of the charts.

Then the group element gi is uniquely determined on each connected

component. If we choose different xi in the connected component

we will get the same gi. Thus, we will get the same developing map

developing along that path.

2. We know that the covering map from M̃ to M is a local diffeomor-

phism. The charts from M to X are local diffeomorphisms and all

the gi’s are real analytic diffeomorphism. Thus, their composition is

also a local diffeomorphism.
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3. Let us start with a different basepoint say y0, Let ⌦ be the path join-

ing y0 to x0. Then, we develop our map along the path ⌦ ∗ ⇧. Now

along the path ⌦ we will have some charts and corresponding to them

we will get group elements h11, ....., hm, giving us a new developing

map D� where:

D�([⌦ ∗ ⇧]) = h1h2...hmg1g2...gn⌥n⌥1([⌦ ∗ ⇧])

Then,

D�([⇧]) = h1h2...hmg1g2...gn⌥n⌥1([⇧])

= h1h2...hmD([⇧])

Let, h1h2....hm = h then,

D�([⇧]) = hD([⇧])

. As hj’s are uniquely determined, there composition will also be

unique and we get our desired result.

Consider [⇧] ⇧ M̃ such that [⇧] ⇧ π(M). As we saw before this theorem

we get a map ⇥[⇧] which gives us a chart around small neighbourhood of

⇧(1). Let [⇧] ⇧ M̃ such that [⇧] ⇧ π1(M) at basepoint x0. Then ⇥[⇧]
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gives us a chart around the basepoint. Thus, ⌥0 and ⇥[⇧] will differ by

unique element of G. Let us call it g[⇧], then

⇥[⇧] = g[⇧]⌥0

By using previous theorem we can choose initial chart (U0, ⌥0) around ⇧

to be same (Un⌥1, ⌥n⌥1). We observe that g[⇧] gives us the difference be-

tween original chart and chart obtained by analytic continuation around

the loop and g[⇧] will be same as g1g2...gn⌥1 as group element is unaf-

fected by the choice of charts.

Definition 3.3.2. The g[⇧] is called holonomy of [⇧].

Let T[⇧] be covering transformation of M̃ corresponding to [⇧] ⇧ π1(M).

Then as covering transformation T[⇧] acts on M̃ we will have :-

T[⇧]([⌦]) = [⇧] ∗ [⌦], [⌦] ⇧ M̃

Let D be a developing map along ⇧. Then,

D  T[⇧]([⌦]) = D([⇧] ∗ [⌦])

= D[⇧ ∗ ⌦]

= g1g2...gnh1..hm⌥1⌥(⌦(1))

= g[⇧]D([⌦])]

As when we develop our chart along [⇧ ∗ ⌦], we will first develop along
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[⇧] and [⌦]. Let g1g2...gn⌥1 and h1, , , , hm⌥1 be product of group elements

corresponding to them respectively. Then as we saw above g1g2...gn⌥1

will correspond to g[⇧]. The g[⇧] we have defined is unique as if g[⇧]  

D = g  D, then g[⇧] and g agree on some open set in X. As group

element of G is uniquely determined on open set of X, g will be unique.

Let [⇧], [⌦] ⇧ M̃, then

D  T[⇧]  T[⌦]) = g[⇧]  D  T[⌦])

= g[⇧]  g[⌦]  D

Thus, the map ↵ : π1(M) ⌥→ G defined by ↵([⇧]) = g[⇧] is a group

homomorphism.

Definition 3.3.3. The group homomorphism defined as the holonomy of

M and image of ↵ is called holonomy group of M.

Consider D� to be another developing map along ⇧, then we know that

D� = gD for some g ⇧ G. Corresponding to D�, we will have ↵�, from

above discussion we can conclude that ↵� = g↵.

3.4 Completeness of gluing of polygons

[5]As we have seen in section 3.2 the two theorems told us that in a gluing

when at each finite vertex the angle sum is 2π we will get a hyperbolic
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structure on the 2-manifold thus obtained. When we gluing ideal polyhe-

dra, as they do not have any vertices those conditions do not give us the

desired results. In this section we will explore how these polygons will be

glued to give us complete hyperbolic structure on the resulting manifold.

Let M be an oriented manifold we get by the gluing of ideal hyperbolic

polygons. In M we will get an equivalence class of ideal vertices based

on the gluing of ideal edges of polygons. Consider an ideal vertex v in

M (it is an equivalence class of ideal vertices identified with some vertex

of polygons in gluing). Let P0, P1, ......Pn⌥1 be the polygons sharing this

common vertex. Let these polygons be set out in counter-clockwise man-

ner. Let h0 be the hoorocycle around v0 in P0 counter-clockwise. Now it

will meet an edge of P1 which is glued to edge e0 of P0.

We notice that h0 meet P1 at right angle because,h0 meets e0 at right an-

gle as horocycles meet geodesics emanating from centre at right angle.

Now there exists an unique horocycle h1 with centre as v1 identified with

v extending h0 in P1. We continue this process and keep extending the

horocycles h1, h2, ....., hn⌥1 at every edge. Now as we have finite number

of polygons with finite number of vertices vertices, we reach our initial

polygon P0. As we extend hn⌥1 in P0 hn, it may not coincide with h0. The

hyperbolic distance between h0 and hn is denoted d(v), d(v) > 0 if hn is

near v0 and d(v) < 0 if hn away form v0. Now we will show that d(v) is
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Figure 3.4.1: Extending a horocycle

well defined.

Lemma 3.4.1. The parameter d(v) does not dependent on the initial choice

of vertex and horocycle. It is well defined.

Proof. Let us choose a different horocycle h�
0 in P0. Then h�

0 will be at a

constant distance from h0. As we extend h�
1 in P1 the distance between

h1 and h�
1 will be x as P0 and P1 are identified at the common edge iso-

metrically. Similarly the distance between h�
i and hi will be x. As h�

n⌥1 is

extended into P0 the distance between hn and h�
n will be x. As a result the

distance d(v)� between h�
0 and h�

n will be same as d(v).
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Now let us choose any other polygon Pi with some other horocycle h�
i

and let the constant distance between hi and h�
i be y. Then as we keep

on extending it as the previous case the distance between hn and h�
n will

also be y. Then again as keep extending that horocycle further in Pi, the

distance between hn+i and h�
n+i will be y. As hn+i is at a distance d(v)

from hi, the distance between h�
i from h�

i+n will also be d(v). Thus d(v)

is well defined.

3.5 Developing map and completeness

[5]In this section we will discuss state two theorems which will tell us

conditions for the gluing pof polyhedron to be a complete manifold and

how it is linked with developing map.

Theorem 3.5.1. Let M be the two manifold obtained by gluing hyperbolic

polygons, then M has complete if and if d(v) = 0 for each ideal vertex.

Proof. Let M be the 2-manifold obtained by the gluing of hyperbolic

polygons. Let d(v) > 0. As d(v) > 0 we will get a sequence of points

obtained by the intersection of horocycle with edges of polygons about

v. We will show that above sequence is cauchy sequence and it doesn’t

converge. Let v be ∞. The the polygons lie in H2 and the horocycle
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would be horizontal line passing through them. We develop the polygons

in H2 taking the path as horocycle. Then when the gluing of polygons

is extended, we observe that second circuit, the horocycle moves up, and

is at a distance d from first. We continue doing this process and each

horocycle in the next circuit would be at a distance of d from the previ-

ous one. We also note that the length of horocycle in the first circuit is

finite and the second circuit the length of horocycle is smaller than first

by a constant factor. Similarly length of each horocycle in circuit is less

that the length of previous horocycle by a constant factor. The length of

these horocycles keeps on reducing by a factor of 1/d2. Then the sum

of length of these horocycles converge and we get that the sequence of

length is cauchy sequence. Thus the length of horocycle in a circuit will

tend to 0. From here we infer that the distance of points also tend to zero,

thus the sequence of points is also a cauchy sequence in M. But it doesn’t

converge as for any small neighborhood in the tail of sequence, there are

infinitely many points that lie outside.

Let d(v) = 0 for every ideal vertex v. Then, there is some horocycle

around each ideal vertex v which closes up around it. Now we remove

the horoball contain in the interior of horocycle in each polygon. After

removing the horoball we get a compact manifold with boundary. Let t >

0, St be be the compact manifold obtained by removing the the interior of

horocycle at a distance t from the original horocycle towards v. Then,
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M = ⌅t⇧R+St. We have St+δ as compact neighborhood of St. Then,

any cauchy sequence in in M would be contained in St for t sufficiently

large enough. Hence, our cauchy sequence will converge and M will be

complete.

Figure 3.5.1: The length of horocycle keeps on reducing

Theorem 3.5.2. Let M be a manifold with (G, X) structure, where G acts

transitively on X and X is a complete Riemanian manifold. Then, M is

complete with respect to the metric inherited from X iff developing map

D : M̃ → X is a covering map.

3.6 Conclusion

In the first chapter we saw how the complement of figure-8 knot can be

decomposed into polyhedrons, we can use the same procedure to to de-

compose the complement of a knot. In the chapter 2, we studied some
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isometries of upper half plane. In chapter 3, we defined geometric struc-

ture on manifolds and studied the conditions under which when we glue

the hyperbolic polygons we will get a complete manifold with hyperbolic

structure. All these tools can be further used to study gluing equations

and Thurstons’s consistency equations. These gluing and consistency

equations can be used to determine the complete structure on 3-manifolds

with torus boundaries. Further these can be used to study the hyperbolic

volume of 3-manifolds. Using Mostow-Rigidity and Gorden-Luecke the-

orem one can hyperbolic volume is a knot invariant.
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