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Abstract

An interesting question that can be asked of a quantum system is whether it can
produce a classical effect. We can loosely phrase this as asking whether quantum
evolution can produce a “tennis ball”.

To study this question, we need to explore transition probabilities between an
initial state and a final state which is chosen to model the classical effect. In text-
book quantum mechanics, examples of such classical states are the “coherent states”.
These have the property that the associated probability is tightly peaked on the cor-
responding classical trajectory in position space.

A classical particle has energies and momenta that are expressed in Joules. In
particular, since the quantum energies are usually proportional to h̄, this implies the
coherent states we are interested in have high occupation numbers N ∼ 1

h̄
.

The technical problem we face now is to calculate the transition amplitude be-
tween an initial state with small occupation numbers to a final state with very large
occupation numbers N ∼ 1

h̄
. In our work, these transitions are driven by either ex-

ternal sources, which we model as operator insertions at time t = 0, or by additional
interaction terms in the Hamiltonian.

Such transitions have been considered in the literature. For instance, the review
[3] describes a procedure to calculate the transition amplitude for the process few −→
many particle production having high energy and large number of particles in the
final state. The key aspect is the saddle point approximation to the path integral
which describes this amplitude.

We therefore adapt the methods in that review to a final state having a single
particle with high energy. Subsequently, this idea can be extended to quantum field
theory. In this case, the final state will be chosen to be a suitable coherent state of
the field theory.
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Chapter 1

Introduction

In this thesis, we try to explore questions regarding transition amplitudes from generic
initial quantum states to final states that have a classical interpretation. We take
these final states to be coherent states whose parameters are such that the energy
and momenta of these states are classical (i.e, without explicit factors of h̄).

This latter requirement means that these are very highly excited states of the
quantum system and hence the transition amplitudes cannot be calculated in pertur-
bation theory. Further, the source operator which triggers the transition itself must
be capable of exciting the quantum state with required amount of energy.

In this thesis, we studied the review [3] [5] by Khoze and D.T.Son, which describes
a path integral approach to calculating transition amplitudes between coherent states.
In this review, the author uses the saddle point approximation to evaluate these
amplitudes and explains how the parameters labelling the coherent states are fixed
by the properties of the initial and final states.

We will begin this thesis by briefly discussing about coherent state and how it
describes a classical state and then we will move forward with a summary of the
article [3], outlining the important steps leading to the calculation of the transition
amplitude. Subsequently, we describe our calculations which adapt the methods of
the review to calculate transitions to final classical states.

We first study these transition probabilities for the simple harmonic oscillator for a
few source operators. In this case, the exact answer is easily determined. However, our
focus will be on the validity of the saddle point approximation for these amplitudes.

Next, we will apply this idea to the anharmonic oscillator. In this case, we will take
the final state to be a coherent state of the SHO - with the idea that the anharmonicity
adiabatically turns off in the far future (mimicking the ideas that go into the S-matrix
in the quantum field theory).

Finally, we propose to apply these ideas to quantum field theory. Here the question
of interest is if it is possible to produce a QFT transition which results in a final state
which can have a classical effect. In this case, since we have a field theory, the state
needs to chosen so that it is localized in position space

This thesis is divided into two parts. In the first part, we describe how to use a
coherent state based approach to calculating S-matrix elements. Since the technique
is relatively novel, we collect all details together in the first sections.

However, in actual calculations, one has to resort to approximate methods. In the
review [3], the authors explain how to evaluate these S-matrix elements using saddle
point techniques. We explain the salient steps in section [3].

1



2 CHAPTER 1. INTRODUCTION

We then describe how to modify the previous technique and evaluate transition
amplitudes to final coherent states and apply it to systems of our interest.

In the appendix, we collect together various classical solutions of the λφ4 theory
which could be useful in evaluating these amplitudes in the QFT.



Chapter 2

Coherent States in Quantum
Mechanics

In quantum mechanics of a single particle, we have the Heisenberg algebra,

[x, p] = ih̄ [a−, a+] = 1 (2.1)

where we have also rewritten the algebra in terms of the ladder operators a− =
(x + ip)/

√
2 (in h̄ = 1 units). The coherent state is defined as the eigenstate of

annihilation operator.

a− |α〉 = α |α〉 (2.2)

where |α〉 is the coherent state, which is the superposition of ”Number states” of
LHO.
Equation (1) can be written as √

mω

2h̄
(x̂+ ι

p̂

mω
) |α〉 = α |α〉 (2.3)√

mω

2h̄

(
〈x| x̂ |α〉+

h̄

mω
〈x| ∂

∂x
|α〉
)

= α 〈x|α〉 (2.4)

using

〈x| p̂ |β〉 = −ιh̄ ∂
∂x
〈x|β〉 (2.5)

〈x|α〉 = ψα(x) (2.6)√
h̄

mω
= x0 (2.7)

Solving the differential equation (4), and normalizing the state we will get,

ψα(x) =
( 1

πx2
0

) 1
4

exp
[
− (x−

√
2αx0)2

2x2
0

]
(2.8)

Since we have not specified any Hamiltonian, this state can be thought of as a
state in the Hilbert space of any 1D quantum system.

3



4 CHAPTER 2. COHERENT STATES IN QUANTUM MECHANICS

2.1 Coherent states as superposition of ”Number

states” of LHO

By using the definition we can write

|α〉 =
∞∑
n=0

Cn |n〉 (2.9)

Cn = 〈n|α〉 (2.10)

|n〉 =
(a+)n√
n!
|0〉 (2.11)

therefore, we can write

Cn = 〈0| (a)n√
n!
|α〉 (2.12)

Cn =
αn√
n!
C0 (2.13)

after normalizing ,we will get

|α〉 =
∞∑
n=0

αn√
n!
e−
|α|2

2 |n〉 (2.14)

We can get time dependent state by operating e
−ιĤt
h̄ , where we now choose the Hamil-

tonian to be that of the simple harmonic oscillator. We then get,

|α, t〉 = e
−ιωt

2

∞∑
n=0

(αe−ιωt)n√
n!

e−
|α|2

2 |n〉 (2.15)

now we will find the time dependent coherent wave-function

〈x|α, t〉 = e
−ιωt

2 e−
|α|2

2

∞∑
n=0

αn√
n!
e−ιnωt 〈x| (a+)n |0〉 (2.16)

where

a± =
1√
2x0

[
x̂± x2

0

∂

∂x

]
(2.17)

where x0 is defined in eq.(6)
so by using eq.(4)

〈x| a+ |0〉 =
1√
2x0

[
x− x2

0

∂

∂x

]
ψ0 (2.18)

ψ0 =
( 1

π1/4
√
x0

)
e
− 1

2
( x
x0

)2

(2.19)

by putting eq.(16)(17)(18) in eq.(15), we get

ψα(x, t) = e
−ιwt

2 e−
|α|2

2

∞∑
n=0

[
αe−ιwt√

2x0
(x− x2

0
∂
∂x

)
]n

n!

1

π1/4
√
x0

e
− 1

2
( x
x0

)2

(2.20)
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Now after expanding the series and solving up to second order term (A detailed
solution is given in Appendix-1), we will get

ψα(x, t) =
1

π1/4
√
x0

e
−ιwt

2 e−
|α|2

2 e
(
√

2α x
x0
e−ιwt−α

2

2
e−2ιwt)

e
− 1

2
( x
x0

)2

(2.21)

Since

α = |α|eισ (2.22)

equation (20) can be written as

ψα(x, t) =
1

π1/4
√
x0

e
−ιωt

2 e−
|α|2

2 e
(
√

2|α| x
x0
e−ι(ωt−σ)− |α|

2

2
e−2ι(ωt−σ))

e
− 1

2
( x
x0

)2

(2.23)

by using eq.(20), we can also find

|ψα(x, t)|2 =
1√
πx0

e
− (x−

√
2|α|x0 cos(ωt−σ)2

x2
0 (2.24)

We observe that the probability is peaked above the the trajectory

x =
√

2|α|x0 cos(ωt− σ) (2.25)

which is a solution of the classical equation of motion. The energy of the quantum
state is E = (|α|2 + 1

2
)h̄ω which can be compared with energy of the classical solution

E = mω2x2
0|α|2. For the state to have a classical meaning, the energy should be

classical - that is to say, explicit factors of the Planck’s constant present in x0 must
be cancelled by choosing αx0 = A where A is a classical amplitude of the order of
centimeters, say.

We pause to remark that had we chosen a different Hamiltonian, the time evolved
state will not remain Gaussian in general, and there may be no correspondence with
a classical trajectory.

2.2 Coherent State using the Displacement opera-

tor

In this case, we will first define displacement operator and then we will give definition
of coherent state using displacement operator then we will get that the coherent states
are eigenstates of lowering operator as a byproduct.

Definition : Displacement operator is defined as

D(α) = eαâ+−α∗â− (2.26)

α = |α|eισ (2.27)

properties of displacement operator :

D†(α) = D−1(α) = D(−α) (2.28)

D†(α)â−D(α) = â− + α (2.29)

D†(α)â+D(α) = â+ + α∗ (2.30)

D(α + β) = D(α)D(β)e−ιIm(αβ∗) (2.31)
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Definition of coherent state : A coherent state can also be generated from the
ground state of the SHO by using displacement operator as

|α〉 = D(α) |0〉 (2.32)

lemma :
â− |α〉 = D(α)D†(α)â−D(α) |0〉

= D(α)(â− + α) |0〉 = αD(α) |0〉

= α |α〉

Coherent state in number basis

|α〉 =
∑
|n〉 〈n|α〉 (2.33)

Now let us find 〈n|α〉 using

〈n| â− |α〉 = α 〈n|α〉 (2.34)

â+ |n〉 =
√
n+ 1 |n+ 1〉 (2.35)

we can write equation (35) as

√
n+ 1 〈n+ 1|α〉 = α 〈n|α〉 (2.36)

Now iterating this equation, we get

〈n|α〉 =
αn√
n!
〈0|α〉 (2.37)

This equation is similar to equation (12).
After normalozation we get

|α〉 =
∞∑
n=0

αn√
n!
e−
|α|2

2 |n〉 (2.38)

and time dependent state are given by operating e
−ιĤt
h̄

|α, t〉 = e
−ιwt

2

∞∑
n=0

(αe−ιwt)n√
n!

e−
|α|2

2 |n〉 (2.39)

Now apply 〈x| to last two equation, we will get

ψα(t, x) = ψ(x)α(t)e
−ιωt (2.40)

α(t) = αe−ιωt = |α|e−ι(ωt−σ) (2.41)

Co-ordinate Space Representation

ψα(x) = 〈x|α〉 = 〈x|D(α) |0〉 = 〈x| eαâ+−α∗â− |0〉 (2.42)
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We can write

â− =
1√
2

(
y +

d

dy

)
â+ =

1√
2

(
y +

d

dy

)
(2.43)

y =
x

x0

x0 =

√
h̄

mω
(2.44)

Therefore we can write

ψα(x) = e
√

2ιIm(α)y−
√

2Re(α) d
dyψ0(y) (2.45)

using equation (39)

ψα(t, x) = e−ιωt/2e
√

2ιIm(α(t))y−
√

2Re(α(t)) d
dyψ0(y) (2.46)

A similar type of calculation which is given in Appendix-1.
After solving last equation, we will get

ψα(t, x) =
1

√
x0π1/4

e−ιωte
√

2α(t)y− y
2

2
−Re(α(t))α(t) (2.47)

ψα(t, x) =
1

√
x0π1/4

e
√

2|α|e−ι(ωt−σ) x
x0
− 1

2
( x
x0

)2−|α|2 cos(ωt−σ)e−ι(ωt−σ)

(2.48)

Using this wave-function we can get same results as in equation (23)(24)(25)

2.3 Semi-Classical States in QM and Graph be-

tween |ψα(x, t)|2 and < x(t) >

If we study the time development of the harmonic oscillator, we will get Heisenberg
equation of motion as

x(t) = x(0) cosωt+
[p(0)

mω
sinwt

]
(2.49)

p(t) = −mωx(0) sinωt+ p(0) cosωt (2.50)

From these equations one may think that < x > and < p > always oscillate with
angular frequency ω.
But this is not correct.
If we try to calculate < x > and < p > in any energy eigenstate, we will get zero.
which means we do not have classical interpretation.
That is why we define a most generalised state i.e superposition of all energy eigen-
states (coherent state).
Now if we try to calculate < x >, we will have get an oscillating function as same as
we get in classical harmonic oscillator. so in this sense, coherent states can be thought
of as the quantum analogs of classical states.

We can see in eq.(23) that, energy depends on h̄.In order to make energy indepen-
dent of h̄ we need to choose |α|2 inversely proportional to h̄. (1

2
h̄w can be shifted.)

So let us choose.

|α|2 =
Ecl
h̄ω

(2.51)
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therefore we need to plot

< x >=

√
2Ecl
mω2

cos(ωt− σ) (2.52)

|ψα(x, t)|2 =
1√
πx0

e
− 1

x2
0

(x−
√

2Ecl
mω2 cos(ωt−σ))2

=
1√
πx0

e
− (x−<x>cl)

2

x2
0 (2.53)

Now for w = 1, σ = 0, 2Ecl
m

= 1 and for different values of t we will find different values
of < x > represented on x-axis in the graph below (figure 1).
For the same values of w, t we will have |ψ(x)|2 (Gaussian wave-function) as a function
of x, which is plotted on y-axis (figure 1).
we will find that the blue line (classical trajectory) and the maximum of the Gaus-
sian coincide that is why we say that the coherent state actually represent a classical
partical behaviour.

Figure 2.3.1



Chapter 3

Saddle Point methods for High
Multiplicity Events

In this section we summarise the review article of Khoze which describes a saddle
point approximation method to calculate transition amplitudes in QFT to final states
which have a high particle number. The article can be divided into three parts which
describe, respectively,

• How SHO Coherent states provide an easy way to get at S-matrix amplitudes ?

• How this technique also allows one to use saddle point approximation effectively
?

• Finally, the transition amplitude to final states with large number of particles
is determined together with an estimate of quantum corrections.

As mentioned in the introduction, the review details a procedure which was suc-
cessfully used to calculate the transition amplitude to a final state which had a large
number of particles which the authors termed “Higgsplosion”.

We propose to adapt the procedure to calculate transitions to final states which
have large energies but are also localized in position as befits a classical particle.

3.1 Review of LHO

Note: that the reason to review SHO again in this section is because we will use
different operator (other than the displacement operator defined above) to define co-
herent state.

Consider the Hamiltonian and Note that in this section we will use α̂ symbol for

9
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lowering and raising operators.

Ĥ0 =
p̂2

2m
+

1

2
ω2q̂2 (3.1)

α̂ =

√
ω

2

(
q̂ + ι

p̂

ω

)
(3.2)

α̂† =

√
ω

2

(
q̂ − ι p̂

ω

)
(3.3)

[α̂, α̂†] = 1 (3.4)

|n〉 =
(α̂†)n√
n!
|0〉 (3.5)

3.2 Coherent states

They are eigenstates of lowering operator.
since |n〉 forms complete set,any state |ψ〉 can be written as,

|ψ〉 =
∞∑
n=0

ψn |n〉 (3.6)

|ψ〉 = ψ0

∞∑
n=0

(aα̂†)n

n!
|0〉 = ψ0e

aα† |0〉 (3.7)

we will set ψ0 = 1.
Now We can define coherent state as

|a〉 = eaα̂
† |0〉 (3.8)

α̂ |a〉 = a |a〉 (3.9)

〈a| = 〈0| ea∗α̂ (3.10)

〈a| α̂† = a∗ 〈a| (3.11)

where a is the complex number, which is the eigenvalue of operator α when acted on
state |a〉, and a∗ which is the complex conjugate of a.
keeping this in mind, we can introduce any number of coherent states |b〉 , |c〉, whose

eigenvalues will be b, c under the same single set of operators α̂ and α̂†. Example

|b〉 = ebα̂
† |0〉 (3.12)

α† |b〉 = b |b〉 (3.13)

Therefore we can established a one-to-one correspondence between a complex number
z and a coherent state |z〉, defined via,

|z〉 = ezα̂
† |0〉 (3.14)

Definition: The set of coherent states {|z〉} obtained by the complex number z
spanning the entire complex plane is known to be an over-complete set. Mathe-
matically,

1 =

∫
dz∗dz

2πι
e−z

∗z |z〉 〈z| (3.15)

In this equation we have two real dimentional integral over complex plane z.
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3.3 Properties of coherent states in quantum me-

chanics

From the definition of coherent states, we can get

α† |a〉 =
∂

∂a
|a〉 (3.16)

〈b|a〉 = eb
∗a (3.17)

The last equation shows the inner product of two coherent states and we can see that
they are Not-Orthogonal.
The analogue of the completeness relation for coherent states is,

1 =

∫
da∗da

2πι
e−a

∗a |a〉 〈a| =
∫
d(a∗, a)e−a

∗a |a〉 〈a| (3.18)

This identity is called the over-completeness relation due to the non-trivial expo-
nential factor (e−a

∗a) in the integral.
Now, Let us define the coherent state representation of the state |ψ〉 as

〈a|ψ〉 = ψ(a∗) (3.19)

From this we can find the inner product of two states as,

〈ψA|ψB〉 =

∫
d(a∗, a)e−a

∗aψ∗A(a)ψB(a∗) (3.20)

ψ∗A(a) = [ψA(a∗)]∗ (3.21)

Now in the same way, we define the matrix element of an operator Â

〈b| Â |a〉 = A(b∗, a) (3.22)

and the of the operator Â on |ψ〉 can be written as,

(Âψ)(b∗) =

∫
d(a∗, a)e−a

∗aA(b∗, a)ψ(a∗) (3.23)

and we can write the matrix element of the product of two operators as

(AB)(b∗, a) =

∫
d(c∗, c)e−c

∗cA(b∗, c)B(c∗, a) (3.24)

Now, let us try to find the coherent state representation of position eigenstate

〈q|a〉 = ea
√

ω
2

(q− 1
ω
d
dq

) 〈q|0〉 (3.25)

〈q|0〉 = Ne
−ωq2

2
(3.26)

〈q|a〉 = Nexp(−1

2
a2 − 1

2
ωq2 +

√
2ωaq) (3.27)

A detailed calculation of equation (80) is given [3] and we can also find the action of
a time evolution operator on the coherent state |a〉 as,

Û0(t) |a〉 = e−ιĤt |a〉 =
∣∣ae−ιωt〉 (3.28)

Here we should Note that the time evolution operator shift the phase of coherent
state variable i.e, Now if we apply the lowering operator on |ae−ιwt〉 we will get an
eigenvalue ae−ιwt.
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3.4 Coherent state formalism in QFT and the S-

matrix

Consider a free real scalar QFT in d+1 dimensions.
Quantum SHO and real scalar field has so much similarities, that is why we are
discussing free real scalar fields (It can also be thought as superposition of LHO as
show in Appendix 3 ).
Consider the hamiltonian of free real scalar field theory

H0 =
1

2
π2 +

1

2
|∇φ|2 +

1

2
m2φ2 (3.29)

The normal ordered hamiltonian can be written as

Ĥ0 =

∫
ddkωkâ

†
kâk (3.30)

ω2
k = m2 + k2 (3.31)

where â†k and âk are the creation (raising) and annihilation (lowering) operators of
QFT.
It has commution relation

[âk, â
†
p] = (2π)d/2δ(k − p) (3.32)

We can write scalar field operator in terms of Fourier modes as,

φ̂(x) =

∫
ddk

(2π)d/2
1√
2wk

(âe−ιk.x + â†eιk.x) (3.33)

Definition : In analogy with Quantum Mechanics, a coherent state in QFT is a
common eigenstate of all annihilation operators.
We label the coherent state as |{a}〉, and denoting its eigenvalue under operator âk
as ak,

âk |{a}〉 = ak |{a}〉 (3.34)

we have added an index k because we have infinite set of harmonic oscillator in QFT.
Now, the coherent state in QFT can be written as,

|{a}〉 = e
∫
dkakâ

†
k |0〉 (3.35)

The fourier transformation of the field operator is defined as,

¯̂
φ(k) =

¯̂
φ(t, k) =

∫
ddx

(2π)d/2
e−ιk.xφ̂(t, x) (3.36)

So the fourier transform of our free real scalar field can be written as,

¯̂
φ(k) =

1√
2ωk

(âke
−ιωkt + â†−ke

ιωkt) (3.37)
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Now, with the same analogy we can define the Fourier transforms of the complex-
valued scalar field as,

φ̄(k) =
1√
2ωk

(ake
−ιωkt + a∗−ke

ιωkt) (3.38)

where ak and a∗k are complex-valued eigenfunction as per equation (87).
As in QM, we have inner product of coherent states in QFT as,

〈{b}|{a}〉 = e
∫
dkb∗kak (3.39)

(3.40)

and over-completeness relation is given as,

1 =

∫
d({a∗}, {a})e

∫
dkb∗kak |{a}〉 〈{a}| (3.41)

and with the same analogy of QM case, we can also find the coherent state represen-
tation of field φ̄k as, (a detailed calculation is shown in [3])

〈φ|{a}〉 = N exp
(
− 1

2

∫
dkak a−k −

1

2

∫
dkωkφ̃(k)φ̃(−k) +

∫
dk
√

2ωkakφ(k)
)

(3.42)

3.5 Application to path integrals and amplitude

calculation

If we have a initial state |φi(ti)〉 then, the S-matrix defines the probability amplitude
to arrive at final state, |φf (tf )〉.
Consider the interaction picture, in which we split the Hamiltonian into the free part
H0, and the interacting part V ,

Ĥ = Ĥ0 + V̂ (3.43)

and the S-matrix is defined as,

Sfi = 〈φf | Ŝ |φi〉 = lim
tf ,ti→±∞

〈φf | eιĤ0tf Û(tf , ti)e
−ιĤ0ti |φi〉 (3.44)

where |φf〉 and |φi〉 are free states and prepared at times tf and ti respectively.

Ŝ can be thought of as a time evolution operator in interaction picture.
The U(tf , ti) is the time-evolution operator for Heisenberg fields.

Û(tf , ti) = T exp
(
− ι
∫ tf

ti

Ĥdt
)

(3.45)

where T is the time ordered product.
Generally, we write S-matrix as,

Ŝ = 1 + ιT̂ (3.46)
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are we define matrix element M as,

〈φf | ιT̂ |φi〉 = (2π)4δd+1
(∑

kf −
∑

ki

)
ιM (3.47)

We now express the S-matrix in the coherent states basis.
This is the kernel of the S-matrix,

S(b∗, a) = lim
tf ,ti→±∞

〈{b}| eιĤ0tf Û(tf , ti)e
−ιĤ0ti |{a}〉 (3.48)

Since we know from equation (81) that the time evolution operator shift the phase of
coherent state variable, we can write

S(b∗, a) = lim
tf ,ti→±∞

〈
{be−ιwtf}

∣∣ Û(tf , ti)
∣∣{ae−ιwti}〉 (3.49)

by using completness relation , we will get

S(b∗, a) = lim
tf ,ti→±∞

∫
dφfdφi

〈
{be−ιwtf}

∣∣φf〉 〈φf | Û(tf , ti) |φi〉
〈
φi
∣∣{ae−ιwti}〉 (3.50)

We find that 〈φf | Û(tf , ti) |φi〉 as the Feynman path integral

〈φf | Û(tf , ti) |φi〉 =

∫
DφeιS[φ]

tf
ti (3.51)

φ(ti) = φi (3.52)

φ(ti) = φi (3.53)

S[φ]
tf
ti =

∫ tf

ti

dt

∫
ddxL(φ) (3.54)

Therefore we finally arrive at,

S(b∗, a) = lim
tf ,ti→±∞

∫
dφfdφie

Bi(φi;a)+(φf ;b∗)

∫
DφeιS[φ]

tf
ti (3.55)

where

Bi(φi; a) = 〈φi|{ae−ιwti}〉 = −1
2

∫
dkaka−ke

−2ιwkti

−1
2

∫
dkwkφ̃i(k)φ̃i(−k) +

∫
dk
√

2wkakφ̃i(k)e−ιwkti
(3.56)

Bf (φf ; b
∗) = −1

2

∫
dkb∗kb

∗
−ke

2ιwktf − 1
2

∫
dkwkφ̃f (k)φ̃f (−k)

+
∫
dk
√

2wkb∗kφ̃f (−k)eιwktf
(3.57)

In last two expresssions, φ̃i(k) and φ̃f (k) are the Fourier transforms of the boundary
fields φi(x) = φ(ti, x) and φf (x) = φ(tf , x)

φi(x) =

∫
ddxe−ιk.xφ(ti, x) (3.58)

φf (x) =

∫
ddxe−ιk.xφ(tf , x) (3.59)
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There is useful property of the coherent state basis for scattering theory by which
we can avoid the LSZ reduction formulae.
Definition : The kernel, A(b∗; a) = 〈b| Â |a〉, of any operator Â in the coherent state
representation is the generating functional for the same operator in the Fock space,

〈q1...qm| Â |p1...pn〉 =
∂

∂b∗q1
...

∂

∂b∗qm

∂

∂ap1

...
∂

∂apn
A(b∗, a)|a=b∗=0 (3.60)

last equation can be obtained from the definition of coherent state

∂

∂ap1

...
∂

∂apn
e
∫
dkakâ

†
k |0〉 |a=0 = |p1...pn〉 (3.61)

Simillarly, for S-matrix

〈q1...qm| Ŝ |p1...pn〉 =
∂

∂b∗q1
...

∂

∂b∗qm

∂

∂ap1

...
∂

∂apn
S(b∗, a)|a=b∗=0 (3.62)

Hence, just differentiating with respect to coherent state variables, we can calculate
any scattering amplitudes directly from the kernel of the S-matrix.

3.6 The semiclassical method for multi-particle pro-

duction

In this section we review the semiclassical method for calculating probabilistic rates
or cross sections for processes few −→ many particle production processes.
In this article we are interested in a process

Resonance decay :
∣∣X(
√
s)
〉

= |1∗〉 −→ |n〉 =⇒ partial width Γn(s) (3.63)

where |1∗〉 denotes a highly virtual particle. The authors show that the saddle point
approximation is valid in the regime of high multiplicity (n >> 1) in a weakly coupled
theory (λ << 1) and we will keep λn to a fixed and large value.

3.6.1 Setting up the problem

Consider a real scalar field φ(x) in d+1 dimensions with

L(φ) =
1

2
(∂µφ)2 − 1

2
m2φ2 − Lint (3.64)

The two simplest examples are the φ4 model in the unbroken phase, with Lint = λ
4
φ4

and the theory with the spontaneously broken Z2 symmetry

L =
1

2
∂µh∂µh−

λ

4
(h2 − v2)2 (3.65)

The theory has a non-zero vacuum expectation value < h >= v and we introduce the
shifted field of mass m =

√
2λv,

φ(x) = h(x)− v (3.66)
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Our main goal is to derive the probability rate for the process in which we have a
single highly virtual off-shell particle which is produced as an intermediate state in a
high energy collision, or we can think of a few energetic on-shell particles in the initial
state φi, which produces an n-particle final state with n >> 1.
We want to write this probability rate in a suitable form for a semi-classical treatment.

Let us begin by specifying the initial state. we assume that the initial state is
prepared by acting a local operator Ô(x) on the vacuum,

|φi〉 = Ô(x) |0〉 (3.67)

We will see that the operator Ô(x) will act as a local injection of energy into the
vacuum state at space-time point x. we will tale this x=0 for further discussion.
For deep and clear understanding of how we get an highly excited state by apply-
ing some operator ? one has to understand about ”operator-smearing”given in
references [4].

Og(x) =

∫
d4x′g(x′ − x)O(x′) (3.68)

|φi〉 = Og(0) |0〉 =

∫
d4x′g(x′)O(x′) |0〉 (3.69)

For our case, the averages taken in above equation is not important.
That should be done in order to get a well defined state in Hilbert space.
The probability rate Rn(E) is given by the square of the matrix element of the S-
matrix with the projection operators PE and Pn,

〈φf | P̂EP̂nŜ |φi〉 = 〈φf | P̂EP̂nŜO |0〉 (3.70)

integrated over the final states phase space i.e to sum over all such final states which
has energy E and and particle number n.

Rn(E) =

∫
dφf 〈0| Ô†Ŝ†P̂EP̂nŜ |φf〉 〈φf | P̂EP̂nŜO |0〉 (3.71)

= 〈0| Ô†Ŝ†P̂EP̂nŜO |0〉 (3.72)

Let us choose the operator of the form

Ô = j−1ejφ(0) (3.73)

Now, to determine Rn(E) we need P̂E and P̂n.

PE(b∗, a) = 〈{b}| P̂E |{a}〉 =

∫
dξ

2π
exp
[
− ιEξ +

∫
dkb∗kake

ιwkξ
]

(3.74)

Pn(b∗, a) = 〈{b}| P̂n |{a}〉 =
dη

2π
exp
[
− ιEη +

∫
dkb∗kake

ιη
]

(3.75)

Now using equation (), we can write

PEPn(b∗, a) =

∫
d({c∗}, {c})e−

∫
dkc∗kckPE(b∗, c)Pn(c∗, a) (3.76)

=

∫
dη

2π

dξ

2π
exp
[
− ιEξ − ιnη +

∫
dkb∗kake

ιwkξ+ιη
]

(3.77)
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Now by using overcompleteness relation, we can write

Rn(E) =

∫
d({b∗}, {b})e

∫
dkb∗kbk × SO[(b∗, 0)]∗× PEPnSO(b∗, 0) (3.78)

given that Ô = Ô[φ̂(0)]

SO(b∗, a) = lim
tf ,ti→±∞

∫
dφfdφie

Bi(φi;a)+(φf ;b)

∫
DφO[φ]eιS[φ]

tf
ti (3.79)

Now again using equation (3.24)

PEPnSO(b∗, a) =

∫
d({c∗}, {c})e−

∫
dkc∗kckPEPn(b∗, c)SO(c∗, a) (3.80)

=

∫
dη

2π

dξ

2π
exp
[
− ιEξ − ιnη

]
× SO(b∗eιwkξ+ιη, a) (3.81)

So now by combining last equation and equation (3.78), we can write

Rn(E) =
∫

dη
2π

dξ
2π
d({b∗}, {b})exp

[
− ιEξ − ιnη −

∫
dkb∗kbk

]
×[SO]∗(b, 0) × SO(b∗eιwkξ+ιη, 0)

(3.82)

Making changes of variable,

b∗ −→ b∗e−ιwkξ−ιη, η −→ −η ξ −→ −ξ (3.83)

Rn(E) =
∫

dη
2π

dξ
2π
d({b∗}, {b})exp

[
ιEξ + ιnη −

∫
dkb∗kbke

ιwkξ+ιη
]

×[SO]∗(b, 0) × SO(b∗, 0)
(3.84)

by combining all the ingrediants we will finally arrive at,

Rn(E) = limtf ,ti→±∞
∫
dηdξdb∗kdbkdφi(x)dφf (x)Dφ(x, t)dϕi(x)dϕf (x)Dϕ(x, t)

×exp
[
ιEξ + ιnη −

∫
dkb∗kbke

ιwkξ+ιη + Ξ
]

(3.85)

Ξ = Bi(φi; 0) +Bf (φi; b
∗) + [Bi(ϕi, 0)]∗ + [Bf (ϕf , b)]

∗+

ιS[φ]
tf
ti − ιS[ϕ]

tf
ti + jφ(0) + jϕ(0)

(3.86)

3.6.2 Finding the saddle-point and Probability Amplitude

Note that the saddle-point in the steepest descent method allows φ(x) to be com-
plex.
We now apply steepest descent approach in the last expression and search for ex-
tremum of,

W = ιEξ + ιnη −
∫
dkb∗kbke

ιωkξ+ιη + Ξ(φi, φf , φ, ϕi.ϕf , ϕ, b
∗
k, bk) (3.87)



18CHAPTER 3. SADDLE POINTMETHODS FOR HIGHMULTIPLICITY EVENTS

We will select those extrema which will give maximum contribution to

Rn(E) ∝ eW (3.88)

So we will get the stationary point, therefore the saddle points are solutions of

δχW = 0 (3.89)

where χ denotes all integration variables.
Now following D.T. Son [5] we will find those for a saddle-point for which ξ and η are
purely imaginary.
Now we change the variables,

ξ = −ιT, η = ιθ (3.90)

where T and θ are real variables.
Let us now vary W,

W = ET − nθ −
∫
dkb∗kbke

ωkT−θ + Ξ(φi, φf , φ, ϕi.ϕf , ϕ, b
∗
k, bk) (3.91)

Now we will vary W with respect to integration variables. we will get,

δW

δT
= 0 −→ E =

∫
dkωkb

∗
kbke

ωkT−θ (3.92)

δW

δθ
= 0 −→ n =

∫
dkb∗kbke

ωkT−θ (3.93)

we have obtained equations for the T and θ variables.
Now let us obtain the saddle-point equations for φ, φ̃i, φ̃f , b

∗
k

δW

δφ(x)
= 0 −→ ∂S

∂φ(x)
= ιjδd+1(x) (3.94)

δW

δφ̃i(−k)
= 0 −→ ι∂tiφ̃i(k) + ωkφ̃i(k) = 0 (3.95)

δW

δφ̃f (−k)
= 0 −→ ι∂tf φ̃f (k)− ωkφ̃f (k) +

√
2ωkb

∗
−ke

ιωktf = 0 (3.96)

δW

δb∗k
= 0 −→ −bkeωkT−θ − b∗−ke2ιωktf +

√
2ωkφ̃f (k)eιωktf = 0 (3.97)

These equation are solved in detail in [3].
We have analogous equation to last four equations as,
Note there is no need for bk and b∗k to be complex conjugate, but Nevertheless, there
exists a saddle-point for which (bk)

∗ = b∗k and we will focus on this scenario as Son
did.

δW

δϕ(x)
= 0 −→ ∂S

∂ϕ(x)
= ιjδd+1(x) (3.98)

δW

δϕ̃i(−k)
= 0 −→ −ι∂tiϕ̃i(k) + ωkϕ̃i(k) = 0 (3.99)

δW

δϕ̃f (−k)
= 0 −→ −ι∂tf ϕ̃f (k)− ωkϕ̃f (k) +

√
2ωkb

∗
−ke

−ιωktf = 0 (3.100)

δW

δbk
= 0 −→ −b∗keωkT−θ − b−ke−2ιωktf +

√
2ωkϕ̃f (−k)e−ιωktf = 0 (3.101)
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Now let us understand the interpretation of the equation which we have obtained.
Equation gives the classical field equations but, with a singular point-like source at
the origin x = 0.
We are searching for classical solutions that become free fields at t −→ ±∞ and
therefore the classical field in these limits must be a superposition of plane waves.
solving (3.99), gives,

φ̃i(k) =
1√
2ωk

a∗−ke
ιωti ti −→ −∞ (3.102)

and by solving (3.100), we will get

φ̃f (k) =
1√
2ωk

(bke
ωkT−θ−ιωtf+b∗−ke

ιωtf
) ti −→ +∞ (3.103)

These two equations provide the boundary conditions at ti and tf for the solution φ
of (3.98).
We can now compute the energy and the particle number on the saddle-point solution
from its t −→ ±∞ asymptotics (3.102)(3.103). At t −→ −∞ the energy and the
particle number are vanishing since the corresponding solution contains only the eωkt
harmonics.
On the other hand at t −→ +∞, using the solution(3.103), we will get,

E =

∫
dkωkb

∗
kbke

ωkT−θ n =

∫
dkb∗kbke

ωkT−θ (3.104)

Note that energy is conserved in both t < 0 and t > 0 the regions. However, at t =
0, the point source will give a discontinuous jump in energy.

δE = ιjφ̇(0) (3.105)

3.6.3 The j → 0 Limit

As describe in [3] we need to take j −→ 0.
We got energy in t > 0 region as E = ιjφ̇(0). We want E to be fixed and non-
vanishing, so for that we need to take,

φ̇(0)|x=0 −→∞ (3.106)

3.6.4 Evaluation of integrand at saddle-point

We have found all the saddle point equations, so now we can solve for W as,

W = ET − nθ − 2ImS[φ] (3.107)

where ιS[ϕ] = ιS[φ]∗ on the saddle point solution.
It has been further calculated in [3],

W (E, n) = n
(
log

λn

4
+

3

2
log

ε

3π
+

1

2

)
− 2nmτ∞ − 2ReS

(1,2)
E (τ0) (3.108)
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where

W (E, n)tree = n
(
log

λn

4
− 1
)

+
3n

2
(log

ε

3π
+ 1) (3.109)

and the other term is the quantum fluctuation term.
The tree level amplitude is also verified by D.T. Son [5].
Finally, we get

Rn(E) = eW (E,n), W = n
(
log

λn

4
− 1
)

+
3n

2
(log

ε

3π
+ 1) + 0.854n

√
λn (3.110)

in the limit

λ −→ 0, n −→∞, with λn = fixed >> 1, ε = fixed << 1 (3.111)

Now let us come back to our aim and apply the techniques which we have learnt
from Khoze’s paper to Simple Harmonic Oscillator.



Chapter 4

Tennis Ball transitions

In this section, we try to explore questions regarding transition amplitudes from
generic initial quantum states to final states that have a classical interpretation. We
take these final states to be coherent states whose parameters are such that the energy
and momenta of these states are classical (i.e, without explicit factors of h̄).
We first study these transition probabilities for the simple harmonic oscillator for a
few source operators. In this case, the exact answer is easily determined. However, our
focus will be on the validity of the saddle point approximation for these amplitudes.

Next, we will apply this idea to the anharmonic oscillator. In this case, we will take
the final state to be a coherent state of the SHO - with the idea that the anharmonicity
adiabatically turns off in the far future (mimicking the ideas that go into the S-matrix
in the quantum field theory).

4.1 SHO

The transition amplitude for a source operator O to produce a coherent state |α〉 can
be written

〈α|e−iHTOe−iHT |0〉 (4.1)

This amplitude can be calculated directly by the operator formalism for simple
cases

4.1.1 Simple operator calculations

For O = ejx̂

〈α|e−iHTOe−iHT |0〉 = e−
|α|2

2 e
j2h̄
4mw eα

∗j
√

h̄
2mw

e−ιωT e−ιwT (4.2)

The probability from this amplitude can exceed unity if j is sufficiently large. So, this
cannot be interpreted as a transition amplitude. While the initial and final states are
normalized, the operator produces, at time t = 0, the state

Oe−iHT |0〉 (4.3)

which is not normalized. This is the reason for the problem. So, we must normalize
properly to get a probability interpretation.

We hope to avoid this problem by smearing the source operator in time. That is,
we let the operator act for a time ∆ - but keep j ∼ O(1). Thus, the source pumps in

21
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energy over a duration t0, and we will explore the conditions on t0 which will lead to
a finite transition amplitude.

Thus, let us turn on the operator as a part of the Hamiltonian for a range of time
i.e., take our Hamiltonian to be

H = h̄ωa†a+ f(t)(a+ a†) (4.4)

where f(t) is nonzero in a ”small” region around t = 0.
This is not quite equivalent to the insertion of the operator O - but will probably

lead to the same effect.

4.1.2 Path Integral methods

Our goal is to calculate this transition amplitude using the coherent state and path
integrals following the method described by Khoze. The reason for examining the SHO
calculation itself is to understand how well the saddle point approximation reproduces
the exact answer - and, if possible, to understand the validity of the saddle point
approximation.

Inserting various position eigenstates, we can write∫
dq1dq2dq3〈αe−iωT |q1〉〈q1|O|q2〉〈q2|e−iHT |q3〉〈q3|0〉 (4.5)

Using

ψαe−iωT (x) = 〈x|α, t〉 =
1

√
x0π1/4

e−
1
2
ιwte

√
2α(t) x

x0
− x2

2x2
0
−Re(α(t))α(t)

(4.6)

=
1

√
x0π1/4

e−
1
2
ιwte

√
2|α|e−ι(wt−σ) x

x0
− x2

2x2
0
−|α|2cos(wt−σ)e−ι(wt−σ)

(4.7)

where

x0 =

√
h̄

mw
(4.8)

and the ground state wavefunction is

〈q3|0〉 =
1

√
x0π1/4

e
− q23

2x2
0 (4.9)

The final transition amplitude is written∫
dq1 dq3 ψ

∗
α(q1) O(q1)

∫ x(0)=q1

x(−T )=q3

Dx ei/h̄S[x]e−
mω
2h̄
q2
3

1
√
x0π1/4

(4.10)

Here, I have assumed that O is a position operator, and integrated over q2. At this
stage, we can combine the various exponential terms to get∫

dq1 dq3 ψ
∗
αe−iωT (q1) O(q1)

∫ x(0)=q1

x(−T )=q3

Dx ei/h̄S[x]−mω
2h
q2
3

1
√
x0π1/4

(4.11)
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We know the answer for the path integral of the SHO∫ x(0)=q1

x(−T )=q3

Dx eiS[x] =

√
mω

2πih̄ sinωT
e

imω
2h̄ sinωT

((q2
3+q2

1) cosωT−2q3q1) (4.12)

As we can see the integral over q1, q3 is not complicated - basically Gaussian integrals.
So, it can be done directly.
Proceeding equation (14) and using equation (9)∫

dq1dq3
1√

x0π1/4

√
mω

2πih̄ sinωT
e

1
2
ιwte

√
2|α|eι(wt−σ) x

x0
− x2

2x2
0
−|α|2cos(wt−σ)eι(wt−σ)

×ejq1e
−

q23
2x2

0 e
imω

2h̄ sinωT
((q2

3+q2
1) cosωT−2q3q1)

(4.13)

Now comparing this with∫
dNxe−

1
2
xTAx+bT x =

(2π)N/2

(detA)1/2
e

1
2
bTA−1b (4.14)

we will get

=

√
πx0√

x0π1/4eιωT/2
e

1
2
ιωT e−|α|

2[cos2(ωT−σ)+ ι
2
sin(2ωT−2σ)]e

x2
0
4

[j+ 1
x0

√
2|α|eι(ωT−σ)]2

(4.15)

after solving this we will get( h̄π
mω

)1/4

e−|α|
2/2e

j2h̄
4mω ejα

∗
√

h̄
2mω

eιωT (4.16)

We see that the path integral reproduces the same amplitude as it must.

4.1.3 Saddle Point Method

We will now collect the terms in the exponential
by using equation

W =
1

2
ιωT +

√
2

x0

|α|eι(ωT−σ)q1 −
q2

1

2x2
0

− |α|2 cos(ωT − σ)eι(ωT−σ) (4.17)

+ logO(q1) +
ι

h̄
S[x]− q2

3

2x2
0

(4.18)

where we have not used the known answer for the path integral.
We will approximate the integral over q1, q3 by a saddle point value. To do that,

we need to first collect the h̄ factors - this is needed to estimate the contributions from
quantum fluctuations - which will tell us the validity of the saddle point method.

We then vary the above W with respect to q1, q3 to obtain equations of motion.
The solutions of this equation of motion will give us values for q1, q3 in terms of T, α
and will depend on the operator O.

The equations determining the saddle point are
√

2

x0

|α|eι(ωT−σ) − q1

x2
0

+ j +
ι

h̄

δS[x]

δq1

= 0 (4.19)

i

h̄

∂S[x]

∂q3

− mω

h̄
q3 = 0 (4.20)

ẍ + ω2x = 0 (4.21)
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The correct boundary condition for the last equation whose general solution is x(t) =
A sin(ωt+ φ), are also obtained from the stationarity condition determining the saddle
point

x(t) = A sin(ωt+ φ) (4.22)

x(0) = q1 x(−T ) = q3 (4.23)

which will fix A and φ. These turn out to be

tanφ =
sinωT

cosωT − q3
q1

(4.24)

A =

√
q2

1 + q2
3 − 2q1q3 cosωT

sinωT
(4.25)

Using this, we determine the values of p1,3

p1,−p3 = mω
q1,3 cosωT − q3,1

sinωT
(4.26)

Substituting these, we find that

q3 = q1e
−iωT q1 =

(jx2
0 +
√

2x0|α|ei(ωT−σ))

2
(4.27)

Note that the solution for q3 is not real if q1 is real. Using the solution, we can obtain
the saddle point approximation to the transition amplitude.

The on-shell action for the SHO part in W is

S =
1

4
mωA2 (sin(2φ)− sin (−2ωT + 2φ)) =

mω

2sinωT

(
(q2

1 + q2
3)cosωT − 2q1q3

)
(4.28)

If we substitute for q3, we get

S = −mωq2
1 sinωTe−ιωT (4.29)

and finally get

W =
1

2
ιωT − |α|

2

2
+

j2h̄

4mω
+ α∗j

√
h̄

2mω
eιωT (4.30)

Therefore, the transition amplitude is

A = eW = e
1
2
ιωT− |α|

2

2
+ j2h̄

4mω
+α∗j
√

h̄
2mω

eιωT (4.31)

compare this equation with the amplitude calculated using the operator methods,

〈α|e−iHTOe−iHT |0〉 = e−
|α|2

2 e
j2h̄
4mw eα

∗j
√

h̄
2mw

e−ιωT e−ιwT (4.32)

Note: We are getting exact answer except the sign in the exponential term. Which
we need to fix.

It is a little surprising that the saddle point gives the correct answer, since we
have not computed the quantum fluctuation contribution. Therefore, the quantum
fluctuation must be absent in this case. It remains to be checked that this is indeed
the case.
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4.1.4 Other Choice of Operators

We can repeat this with other choices for the operator O and a couple of obvious
choices are Take O = ejx̂

2
and O = e−jp̂.

Note:
For the latter O = ejx̂

2
,

q1 =
|α|x0e

ι(ωt−σ)

√
2[1− jx2

o]
(4.33)

and the final expression for W which determines the transition amplitude is

W =
1

2
ιωT +

|α|2e2ι(ωt−σ)

2[1− jx2
0]
− |α|2cos(ωt− σ)eι(ωT−σ) (4.34)

The exact answer (obtained by using wavefunction methods) also involves a quantum
fluctuation prefactor

√
1− jx2

0 - and so after combining terms, we will get

1√
1− jx2

0

e
1
2
ιωT+

|α|2e2ι(ωt−σ)

2[1−jx2
0]
−|α|2cos(ωt−σ)eι(ωT−σ)

(4.35)

and thus in the limit we get a δ−function. There are two unresolved puzzles here
- firstly, the physical reason for the restriction 1 > jx2

0 is not clear - even in the
operator formalism. And secondly, we need to understand the quantum fluctuations
in the saddle point approximation which will contribute the sqrt prefactor.

For O = e−jp̂,
from equation (4.5)∫

dq1dq2dq3dp2〈αe−iωT |q1〉〈q1|O|p2〉〈p2|q2〉〈q2|e−iHT |q3〉〈q3|0〉 (4.36)

This can be further solved to,∫
dq1 dq2 dq3 ψ

∗
αeιωt(q1)

[ ∫
dp2

1
2π
e−ι(q1−q2).p2O(p2)

]
∫ x(0)=q1
x(−T )=q3

Dx eiS[x]e−
mω
2h̄
q2
3 1√

x0π1/4

(4.37)

for O = e−jp last equation can be solved, and we get,

∫
dq1 dq3 ψ

∗
αeιωt(q1)

∫ x(0)=q1−ιj

x(−T )=q3

Dx eiS[x]e−
mω
2h̄
q2
3

1
√
x0π1/4

(4.38)

4.1.5 Modified Hamiltonian

As noted in the previous section, the operator needs to be large for a finite transition
probability to a classical state. While this may not be a problem in the calculations
for the SHO and possibly other systems, injection of a large amount of energy will
typically lead to exciting the anharmonic modes which are always present in any
physical system. This will of course modify the Hamiltonian drastically and hence
make all the above calculations moot.
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Thus, we try to excite the system in a different manner by addition a perturbation
to the Hamiltonian which is turned on for a large time t0 in quantum units (or a finite
classical amount of time). In the case of the field theory, we could also smear the
operator over position. We hope that this smearing of the operators over classical
ranges obviate the difficulties arising from the h̄ factors in a different way.

Thus, we take our Hamiltonian to be

H = h̄ωa†a+ f(t)(a+ a†) or H = h̄ωa†a+ ιf(t)(a− a†) (4.39)

where f(t) is nonzero in a ”small” region around t = 0 i.e.,

f(t) = 1 for − t0 < t < t0, f(t) = 0 otherwise. (4.40)

The question we will focus on is how does the transition amplitude to a final coherent
state depend on t0.

We will approximate the answer using the saddle point approximation.

4.1.6 Special Case

In the particular case of the harmonic oscillator, there is a simpler way to get at the
answer. ∫

dq1dq2〈αe−iωT |q1〉〈q1|O|q2〉〈q2|e−iHT |0〉 (4.41)

which is easily evaluated to be∫
dq1ψα(q1)O(q1)e−iωT/2e−

mω
2h̄
q2
1

1
√
x0π1/4

(4.42)

which is obtained without using the path integral. This is not possible in the more
general situation involving anharmonic oscillators etc, so we did not try this route
earlier.

All the integrals above can be done, and we should get the same answer as we got
from the Hamiltonian formulation.
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Appendix

In the appendix, we detail a few calculations and also collect various classical solutions
of the φ4 theory. We also discuss a few of the properties of these classical solutions,
which we hope will be relevant in the quantum field theory questions to be addressed
in the future.

5.1 Appendix-1

We can write (19) as

ψα(x, t) = e
−ιwt

2 e−
|α|2

2 e

[
αe−ιwt√

2x0
(x−x2

0
∂
∂x

)

]
1

π1/4
√
x0

e
− 1

2
( x
x0

)2

(5.1)

writing

D =
αe−ιwt√

2x0

(x− x2
0

∂

∂x
) (5.2)

De
− 1

2
( x
x0

)2

=

√
2αe−ιwt

x0

(xe
− 1

2
( x
x0

)2

) (5.3)

D2e
− 1

2
( x
x0

)2

=
1

2!

α2e−2ιwt

x2
0

[2x2 − x2
o](e

− 1
2

( x
x0

)2

) (5.4)

Now combining all the terms, we will get[
1 +

√
2αe−ιwt

x0

x− α2e−2ιwt

2
+

1

2!

2α2e−2ιwt

x2
0

x2 + ....
]
e
− 1

2
( x
x0

)2

(5.5)

Hence we finally arrive at equation (19).

5.2 Appendix 2: Classical solutions

In this appendix, we collect various classical solutions of φ4 type theories.

5.2.1 Frasca’s Solution

consider the equation [2]

− φ+ µ2
0φ+ λφ3 = 0 (5.6)

27
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where, = −∂2
t + ∆2, µ0 the mass of the field and λ the coupling.

The solution is given by

φ(x) = ±
√

2µ2

µ2
0 +

√
µ2

0 + 2λµ2
sn
(
p.x+ θ,

√
−µ2

0 +
√
µ2

0 + 2λµ2

−µ2
0 −

√
µ2

0 + 2λµ2

)
(5.7)

p2 = µ2
0 +

λµ4

µ2
0 +

√
µ4

0 + 2λµ4
(5.8)

Let us verify this
Let the solution can be written as

φ(x) = Asn(Et− ~p.~x+ θ, k) (5.9)

A = ±
√

2µ2

µ2
0 +

√
µ2

0 + 2λµ2
(5.10)

k =

√
−µ2

0 +
√
µ2

0 + 2λµ2

−µ2
0 −

√
µ2

0 + 2λµ2
(5.11)

∂tφ = A.cn.dn.E (5.12)

∂2
t φ = AE2[−k2cn2sn− sndn2] (5.13)

∂xφ = Acndn(−~p) (5.14)

∂2
xφ = A(~p)2[−k2cn2sn− sndn2] (5.15)

(5.16)

Now, form equation (58)

p2[−K2 − 1] + µ2
0 + [2p2k2 + λA2]sn2 = 0 (5.17)

So we get

p2 = −λA
2

2k2
(5.18)

1 + k2 =
µ2

0

p2
(5.19)

NOTE= equation (70) and (71) does not satisfy relation (60).

5.2.2 Khoze Solution

consider a real scalar field φ(x) in (d + 1)-dimensional space-time

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − Lint (5.20)

where Lint is the interaction term.The two simplest examples are the φ4(x) model in
the unbroken phase, with Lint = λ

4
φ4 , and the model with

the spontaneously broken Z2 symmetry

L =
1

2
∂µh∂µh−

λ

4
(h2 − v2)2 (5.21)
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The classical equation for the model (73) is the familiar Euler-Lagrange equation

L = ∂µ∂µh+
λ

4
h(h2 − v2) = 0 (5.22)

The classical solution, which provides the generating function of tree-level amplitudes
on multi-particle mass thresholds

h0(z0; t) = v
(1 + z0

eimt

2v

1− z0
eimt

2v

)
(5.23)

m =
√

2λv (5.24)

where z0 is an auxiliary variable. It is easy to check by direct substitution that the
expression in (75) satisfies the the time-dependent ODE,

∂2
t h+

λ

4
h(h2 − v2) = 0 (5.25)

for any value of the parameter z0. Let us verify this solution

∂th = z0im
eimt

[1− z−0eimt

2v
]2

(5.26)

∂t2h = z0(−m2)eimt
1 + z0eimt

2v

[1− z0eimt

2v
]3

(5.27)

puting these two relation in equation (77). we will find that it safifies equation (77)
If and only if

m =

√
λ

2
v (5.28)

5.2.3 Castell’s EOM

Frasca’s solution for massless scalar field [1]

φ(x) = ±µ
(2

λ

)4

sn(p.x+ θ, ι) (5.29)

and Castell’s EOM is

∂2φ

∂x2
− ∂2φ

∂t2
− λφ∗φφ = 0 (5.30)

So we get,

λφ∗φφ = λ
[
µ
(2

λ

)1/4]3

sn(p.x+ θ,−ι)sn2(p.x+ θ, ι) (5.31)

∂xφ = µ
(2

λ

)1/4

cn.dn.(~p) (5.32)

∂2
xφ = µ

(2

λ

)1/4

(|~p|2)sn[cn2 − dn2] (5.33)

∂2
t φ = E2µ

(2

λ

)1/4

sn[cn2 − dn2] (5.34)

After putting these relations in equation (82) and using the relation (70) and (71).
We will find that, it satisfies the solution If

sn = sn∗ (5.35)
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5.3 Appendix 3: Scalar field as Oscillators

We describe how a scalar field can be viewed as a superposition of oscillators. For
real scalar field

L =
1

2
φ̇2 − 1

2
(∇)2 − 1

2
m2φ2 (5.36)

Π = φ̇ (5.37)

H =

∫
d3x
[1

2
Π2 +

1

2
(∇φ)2 +

1

2
m2φ2

]
(5.38)

φ(~x, t) =
1

(2π)3

∫
d3peι~p.~xφ(~p, t) (5.39)

therefore

H =

∫
d3p

1

2

[dφ(~p, t)

dt

dφ( ~−p, t)
dt

+ p2φ(~p, t)φ( ~−p, t) +m2φ(~p, t)φ( ~−p, t)
]

(5.40)

Since φ(~x, t) is real scalar field

φ∗(x) = φ(x) (5.41)

Now, from eq.(31)

1

(2π)3

∫
d3pe−ι~p.~xφ(~p, t) =

1

(2π)3

∫
d3peι

~−p.~xφ( ~−p, t) (5.42)

implies

φ(~p, t) = φ( ~−p, t) (5.43)

therefore

H =

∫
d3p

1

2

[(dφ
dt

)2

+ p2φ2 +m2φ2
]

(5.44)

H =

∫
d3p

1

2

[(dφ
dt

)2

+ w2
pφ

2
]

(5.45)

w2
p = p2 +m2 (5.46)

eq.(37) shows that scalar field is sum of infinite number of LHO.

5.4 Appendix 4: Jacobi Elliptic functions

They are defined as

t =

∫ φ

0

dφ√
1− k2 sin2 φ

, (k2 < 1) (5.47)
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The parameter k is known as the modulus of the elliptic integral.
The various Jacobian elliptic functions are defined as

sn(t, k) = sinφ (5.48)

cn(t, k) = cosφ (5.49)

dn(t, k) =

√
1− k2 sin2 φ (5.50)

Some of the important relationships between the Jacobian elliptic functions

sn2 + cn2 = 1 (5.51)

dn2 − k2cn2 = 1− k2 (5.52)

k2sn2 + dn2 = 1 (5.53)

d

dt
sn(t, k) = cn.dn (5.54)

d

dt
cn = −sn.dn (5.55)

d

dt
dn = −k2sn.cn (5.56)
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