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Abstract

The machinery of computing vacuum expectation values of a time-ordered se-
quence of position operators of the simple harmonic oscillator is already well
established. It rests on a Wick theorem, which enables one to decompose such
a quantity in terms of products of pairwise contractions, which are vacuum ex-
pectation values of a time-ordered sequence of position operators taken two at
a time. This result naturally leads to a diagrammatic approach of computing
such correlators, and is already well known in the form of Feynman diagrams.
We generalise this setup to encompass expectation values of a general ordered
sequence of position operators (Wightman sequences) in general density matri-
ces of the simple harmonic oscillator. A Wick theorem is first developed for this
situation and consequently a diagrammatics is laid down. Wightman correlators
in general density matrices of the anharmonic oscillator are also analysed and
a diagrammatic formalism is developed for them too.
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Chapter 1

Introduction

1.1 Background

Quantum field theory, or abbreviated QFT, has emerged as being one of the
most successful theories developed by mankind. In addition to being theoret-
ically very deep, it has also fared exceptionally well on experimental grounds.
The most glorified example of such a victory is how the QFT result of the
anomalous magnetic dipole moment of the electron matches with its experi-
mentally determined value to more than 10 significant digits! Courtesy to this
theory, the magnetic moment of the electron holds the accolade of being the
most accurately verified prediction in the history of Physics.

QFT has a lot of predictive power. As already mentioned, the magnetic
moment of the electron is one such observable one can calculate using this
theory. However, there are a bunch of many others which are computed using
the techniques of QFT, and indeed have been directly verified in laboratories.
Scattering cross-sections of a variety of high-energy processes and decay rates
of particles are some examples among many.

But how does one carry out such calculations?
To begin with, one has to realise that in order to model processes like scatter-

ing and decay as actually seen in Nature using QFT, the quantum fields under
consideration must be interacting. A typical example of such an interacting
QFT is φ4-theory, based on the Lagrangian:

L =
1

2
∂µφ ∂

µφ− 1

2
m2φ2 − λφ4

4!
, (1.1)

where φ ≡ φ(t,x) is a scalar field and the third term, namely:

λφ4

4!
, (1.2)

introduces interactions into the system. The parameter λ is termed the coupling.
It is precisely this interaction term which allows the particles corresponding
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to the scalar field to interact among themselves. If interactions were absent,
all the scattering processes described by the theory would have been trivial;
the particles corresponding to the field would have passed through each other
unaffected, a phenomenon rarely observed in Nature. On the other hand, decay
processes do not even make sense without introducing interactions.

Once interactions have been introduced into the theory, the doors of per-
turbation theory are knocked in most of the cases. As a part of this protocol,
one assumes the QFT being studied to be weakly coupled. And then, one ex-
pands the observable(s) under consideration in a power series in the coupling.
Ignoring the mathematical subtleties involved, one is then, in principle, in a
position to predict the value of the observable(s) being analysed to all orders in
the coupling.

A class of observables which make frequent appearances in QFT calculations
despite being of physical significance in their own right are time-ordered field
correlators in the vacuum. They are also called the Green’s functions of the
theory. They assume the form:

〈Ω|Tφ1φ2 . . . φn |Ω〉 , (1.3)

where φi = φ(xi) ≡ φ(ti,xi) are Heisenberg-picture field operators, T is the
time-ordering symbol and |Ω〉 is the vacuum state of the interacting field theory.

The quantities (1.3) are of utmost physical significance. As a simple example
demonstrating how physical they are, consider the object:

〈Ω|Tφ(x)φ(y) |Ω〉 . (1.4)

It represents the probability amplitude for a particle corresponding to the field
φ to propagate from the spacetime point y to the spacetime point x. This is
indeed very physical.

The objects (1.3) play a central role in the LSZ reduction formula [15]. To be
precise, the residues at the poles of the quantity (1.3) are scattering amplitudes.
The modulus squared of these amplitudes gives one the scattering cross section
of the high-energy process being considered. This result further supports the
strong physicality that these objects imbibe.

To analyse these objects, one first switches to the interaction picture, and
then makes use of the Gell-Mann and Low theorem to get the well-known for-
mula [23]:

〈Ω|Tφ(x1)φ(x2) . . . φ(xn) |Ω〉

= lim
T→∞(1−iε)

〈0|T
{
φI(x1)φI(x2) . . . φI(xn)e−i

∫ T
−T dt HI(t)

}
|0〉

〈0|
{
Te−i

∫ T
−T dt HI(t)

}
|0〉

.

(1.5)

Here, φI represents the interaction-picture field, which evolves in the same way
as the free field, and |0〉 is the vacuum state of the free theory. HI is the
interaction Hamiltonian in the interaction picture, which is given by:

HI =

∫
d3x

λφ4
I

4!
. (1.6)
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In fact, the true interaction picture of a QFT must also take into account the
concepts of counterterms and renormalization, but such subtleties are ignored
for the moment.

It is then that perturbation theory is invoked. The exponentials occurring
in (1.5) are expanded in powers of the coupling. During this process, one en-
counters correlators of the form:

〈0|Tφ4
I(z1)φ4

I(z2) . . . φ4
I(zk)φI(x1)φI(x2) . . . φI(xn) |0〉 . (1.7)

Complicated as these objects may seem, it turns out to be easy to compute
them owing to a result known as Wick’s theorem [27].

Wick’s theorem allows one to express such time-ordered products of field
operators in terms of normal-ordered products and analytic functions called
Feynman propagators. Feynman propagators, denoted DF (x − y), are the ob-
jects:

DF (x− y) = 〈0|TφI(x)φI(y) |0〉 . (1.8)

An additional simplification which occurs in the consideration of the quanti-
ties (1.3) arises from the fact that they are completely expressed in terms of
time-ordered correlators of the free field operators in the vacuum of the free
theory |0〉. Since the expectations of normal-ordered products of the free field
operators vanish in this state, the correlators (1.3) depend on only the Feynman
propagators (1.8) owing to Wick’s theorem.

Wick’s theorem and the fact that one looks at time-ordered correlators in a
special state, namely the vacuum state, thus imply that these correlators only
depend on Feynman propagators. This realisation leads to a very visual way of
looking at such correlators. The language of Feynman diagrams thus emerges.
The starting point for this formalism is the association:

Figure 1.1: Diagrammatic representation for the Feynman propagator.
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Further analysis brings in another component to the diagrams called ver-
tices, which stand for the analytic factor:

Figure 1.2: Diagrammatic representation of the interaction vertex.

An example of a result stated in the new parlance of Feynman diagrams is
as follows:

Figure 1.3: Diagrammatic expansion of 〈Ω|Tφ(x)φ(y) |Ω〉.

From an analytic point of view, the LHS of the above equation stands for the
Green’s function:

〈Ω|Tφ(x)φ(y) |Ω〉 , (1.9)

and the RHS is a perturbation expansion for it in terms of the coupling λ. A
clear advantage of this formalism is that one can literally see the contributions
to the LHS at different orders of the coupling. Since a vertex brings in a factor
of λ into the analytic expression, a diagram on the RHS with n vertices is a λn

contribution to the 2-point Green’s function (1.9) of the interacting theory.
Not only are the contributions at all orders of the coupling visible as a result

of Feynman diagrams, they are also easily calculable. After assigning a simple
set of rules called the Feynman rules of the theory, one can simply read off the
analytic expressions which these diagrams encode.

In the context of all these advantages, a diagrammatic formalism to compute
observables of a QFT seems rather beautiful and inviting.

Though not mentioned as yet, but the whole formalism outlined above also
holds true for the analysis of continuous order parameters in thermal states.
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The analogues of time-ordered correlators in this situation are Euclidean corre-
lators of the order parameter in thermal states. These are nothing but thermal
averages of products of the order parameter at different spatial positions. That
is, they take on the form:

G
(n)
β (x1,x2, . . . ,xn) = 〈φ(x1)φ(x2) . . . φ(xn)〉β , (1.10)

where φ(x) is the continuous order parameter and β the inverse temperature.

〈. . . 〉β denotes a thermal ensemble average. G
(n)
β is termed the n-point Euclidean

correlator of the order parameter φ(x).
These correlators too obey a Wick’s theorem and are consequently express-

ible in the language of Feynman diagrams [20].

1.2 Generalisations and Novel Directions

Every theoretical formalism, however beautiful it may seem, always has short-
comings of its own. And these are revealed once one attacks the assumptions
it makes. So is the case with the diagrammatic formalism for time-ordered cor-
relators in the vacuum state which was discussed in the previous section. We
will now relax the two assumptions made there one by one, and discuss whether
there is any physical significance of doing so. If there is, it would serve as a
genuine motivation for studying these new objects thus uncovered.

The first assumption made in the previous section was that the system
resided in the interacting vacuum |Ω〉. This is certainly very reasonable, since
the vacuum state is the state of lowest energy. But this is not always the case!
Systems in non-equilibrium occupy states different from the interacting vacuum.
Such systems are abundant in Nature and have also been studied from the lens of
theoretical physics. Examples of setups wherein one encounters such situations
include nuclear heavy-ion collisions [10, 2], ultracold gases [7] and optimal con-
trol theory [5]. As the vacuum state, or equivalently, the state of lowest energy
is not occupied by these systems, the traditional mechanism of Feynman dia-
grams does not extend to such cases. Wick’s theorem still holds, but due to the
fact that the state is not the vacuum, the expectations of normal-ordered prod-
ucts of the degrees of freedom do not vanish. Thus, for example, correlators
do not admit simple expressions which involve just propagators and vertices.
Some state-dependent diagrammatic elements must also be introduced. The
same holds true in the context of statistical field theory, wherein one analyses
continuous order parameters. If such a system is in a state which is not ther-
mal, then the whole formalism discussed in the previous section breaks down.
And such situations are readily seen in Nature. The transient behaviour of a
thermalising system is one such example.

This presents us with one of our motivations: Can a diagrammatic formalism
be developed for systems occupying general states?

Such a question has indeed been addressed previously. However, these earlier
pursuits have been nestled within the Schwinger-Keldysh formalism [18]. They
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have focused on developing a Wick’s theorem and consequent diagrammatics for
contour-ordered correlators [18] in general initial states [22, 21, 14, 26, 9, 17].

Let us now attack the second assumption made in the previous section.
There, the central objects of analysis were correlators which were time-ordered.
True, there is a natural bias for time-ordered correlators in QFT, for the mere
reason that experiments are bound to flow forward in time. But do general-
ordered correlators, namely Wightman functions, have any physical significance?

Recent developments have shown that they indeed do. What makes them
very interesting to study is that they seem to house physical aspects of the
system which are not encoded by its time-ordered correlators. For example, in
the case of a quantum Brownian particle, Wightman functions encode the noise
[13, 18, 3]. They have also been shown to be intricately related to chaos [24]
and entanglement [19] in quantum systems.

A possible counter-argument to studying Wightman correlators may be pro-
vided by an experimentalist. It has turned out to be quite tough to measure
these correlators in laboratories. Many proposals have been suggested, but it is
still unclear how such measurements can be carried out. So an experimentalist
would assert that if it is so tough to measure these quantities, why study them?

However, it is still important to explore these objects from a theoretical
point of view. For any experiment which is designed to measure some physical
quantity rests on solid theoretical foundations. Such a study not only suggests
methods through which physical quantities may be measured directly, but also
reveals other physical quantities which the object in consideration may affect.
These relationships may then be used to make measurements indirectly. Take
the example of entropy. It is very tough to measure it directly. But due to
theoretical explorations in the form of thermodynamics, it can be related to the
heat transferred to a system, which, in turn, is easily measurable.

On the other hand, there are some quantities in Physics which are not di-
rectly measurable. The entropy and the quantum mechanical wavefunction are
some such entities. But does this inability to measure them make them useless?
Absolutely not. Introducing objects like these has been extremely important
for the development of Physics. Though tough to measure directly, they may
eventually be connected to experiments. So may be the case with Wightman
correlators.

The initial step in studies of such objects is to develop tools to calculate
them. Such tools are indispensable for any theoretical endeavour which aims
to explore the Physics which they encode. Moreover, they also aid in designing
prospective experiments to measure them. This thesis plans to develop such
tools for Wightman correlators of the simple harmonic and anharmonic oscilla-
tors.
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1.3 Outline of the Thesis

We start by giving an introduction to the simple harmonic oscillator. The tra-
ditional Wick’s theorem which is used in computing time ordered correlators in
the vacuum state is presented in 2.4.1. The consequent diagrammatic formal-
ism which emerges, namely the technique of Feynman diagrams, is presented in
2.4.2. We then shift our attention towards developing a generalised Wick’s the-
orem, which would aid us in calculating Wightman correlators in general states
of the simple harmonic oscillator. This exploration leads us to novel objects
called cumulants. They are introduced in 2.5.3. A generalised Wick’s theorem,
which is based on this idea of cumulants, is presented in 2.5.4. The following
section 2.6 is then dedicated on how to actually compute the cumulants in a
given general state of the simple harmonic oscillator. Finally, a diagrammatic
formalism to compute Wightman correlators in general states of the simple har-
monic oscillator is laid down in 2.7. The following chapter 3 then delves into
developing a similar diagrammatic formalism to compute Wightman correlators
in general states of the anharmonic oscillator. The section 3.11 summarises the
entire procedure on how one should go about calculating Wightman correlators
in general states of the anharmonic oscillator diagramatically.

C
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Chapter 2

The Simple Harmonic
Oscillator

2.1 Overview

The quantum simple harmonic oscillator is a very effective toy model in theoret-
ical physics. One, it is easily solvable and thus, the spectrum of its Hamiltonian
is well determined. And two, the analyses for this system naturally extend to
those of more realistic systems like quantum fields. Driven by this motivation,
we intend to begin our endeavour with this system in mind.

What do we intend to do in this chapter?
We first introduce the simple harmonic oscillator formally. Established for-

malisms of Wick’s theorem and Feynman diagrams for time-ordered correlators
in the ground state of this system are briefly given a glimpse of. The objects
we would like to analyse in this thesis, namely Wightman correlators in general
states, are then brought into the picture.

We begin our investigations by making some guesses at how a similar Wick’s
theorem, the conventional form of which holds for time-ordered correlators in
the ground state, can be developed for Wightman correlators in general states.
This leads to the idea of cumulants. It turns out that the Wick’s theorem for
such correlators is best stated in terms of cumulants.

After this, cumulants are explored in detail. Mathematical mechanisms are
laid down which would allow the reader to calculate these cumulants for any
general state of the oscillator.

A natural diagrammatic formalism to represent Wightman correlators of the
oscillator in general states is seen to emerge once one introduces cumulants into
the discussion. Such a formalism is developed towards the end of this chapter,
followed by some examples.
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2.2 The System

The system we work on is the simple harmonic oscillator in one dimension.
This system has the Hamiltonian:

H =
p2

2
+

1

2
ω2x2 (m = 1). (2.1)

We take the mass of the oscillator to be unity in all our considerations.
The spectrum of this Hamiltonian is well determined:

H |n〉 =
(
n+

1

2

)
~ω |n〉 ; n = 0, 1, 2, . . . . (2.2)

Thus, the states {|n〉 : n = 0, 1, 2, . . . } are the energy eigenstates of this system
with energy eigenvalues {En = (n+ 1

2 )~ω}.
Theoretical considerations of this system become very elegant when ex-

pressed in terms of a pair of operators called the creation and annihilation
operators. They are denoted as a and a† respectively. Evidently, they are Her-
mitian conjugates of each other. Their explicit forms in terms of the position
and momentum operators of the oscillator are given as:

a =

√
ω

2~

(
x+

ip

ω

)
, (2.3)

a† =

√
ω

2~

(
x− ip

ω

)
. (2.4)

On the other hand, the Heisenberg picture position and momentum operators
of the oscillator are then given in terms of the above operators as:

x(ti) =

√
~

2ω
(ae−iωti + a†eiωti), (2.5)

p(ti) = −i
√
ω~
2

(ae−iωti − a†eiωti). (2.6)

The action of the creation and annihilation operators on the energy eigenstates
of the system are given by:

a† |n〉 =
√
n+ 1 |n+ 1〉 , (2.7)

a |n〉 =
√
n |n− 1〉 ; a |0〉 = 0. (2.8)

They are also defined to obey the commutation relation:

[a, a†] = I. (2.9)

2.3 Some Special States of the Oscillator

In this section, we introduce some special states of the oscillator, which would
be referred to frequently in the following discussions. These are the vacuum
state, the excited states, the coherent state and the thermal state.
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2.3.1 The Vacuum State

As already introduced in (2.2), the states {|n〉 : n = 0, 1, 2, . . . } are the energy
eigenstates of the oscillator.

Among these states, the state |0〉 is called the vacuum state of the oscillator.
It is so called because it is the energy eigenstate of lowest energy.

2.3.2 Excited States

Again, as already introduced in (2.2), the states {|n〉 : n = 0, 1, 2, . . . } are the
energy eigenstates of the oscillator.

Among these, the states {|n〉 : n = 1, 2, 3, . . . } are called the excited states
of the oscillator. That is, all the energy eigenstates apart from the vacuum are
termed excited states of the oscillator.

2.3.3 Coherent States

A coherent state |φ〉 of a harmonic oscillator is defined to be an eigenstate of
the annihilation operator:

a |φ〉 = φ |φ〉 . (2.10)

To find |φ〉, we first expand it in the |n〉 basis:

|φ〉 =

∞∑
n=0

cn |n〉 . (2.11)

Putting this into the eigenvalue equation, and comparing the coefficients of the
states on both the sides gives us:

c1 = φc0, (2.12)

√
2c2 = φc1 =⇒ c2 =

φ2

√
2
c0, (2.13)

√
3c3 = φc2 =⇒ c3 =

φ3

√
6
c0, (2.14)

... (2.15)

cn =
φn√
n!
c0. (2.16)

c0 is determined by imposing normalisation on the states |φ〉:

〈φ|φ〉 =

∞∑
n=0

|cn|2 = 1. (2.17)

Putting cn in terms of c0, and then assuming c0 to be real for simplicity, one
gets:

c0 = e−
|φ|2
2 . (2.18)
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This gives us:

cn =
φn√
n!
e−
|φ|2
2 . (2.19)

And thus, the coherent states are given as:

|φ〉 =

∞∑
n=0

φn√
n!
e−
|φ|2
2 |n〉 . (2.20)

2.3.4 Thermal State

There are two types of states one talks about in the context of quantum me-
chanics. They are pure states and mixed states. A pure state is one which can
be represented by a Dirac ket. As examples, the vacuum state |0〉, the excited
states |n〉 and coherent states |φ〉 are all pure states. However, another situation
which may arise is one in which the system under study may occupy a set of
pure states with certain probabilities. In such a case, the system is said to reside
in a mixed state. Let us make this notion a bit more precise.

Suppose a system occupies the set of states {|ψ(i)〉}, with the probability of
it being in the pure state |ψ(i)〉 being pi. This is then an example of a mixed
state. Mixed states are best represented through objects called density matrices.
The density matrix ρ corresponding to the situation we have just highlighted is
defined to be:

ρ ≡
∑
i

pi |ψ(i)〉 〈ψ(i)| . (2.21)

Representing the state of a quantum mechanical system through density ma-
trices is a more general approach. It clearly encompasses the possibility of the
system being in a pure state. This happens when one among the probabilities
{pi} is unity, while all the others vanish.

All physical density matrices must be normalised. A density matrix ρ is said
to be normalised if:

Tr ρ = 1. (2.22)

The expectation value of an observable O in a density matrix ρ, represented
as 〈O〉ρ, is given by the expression:

〈O〉ρ = Tr[ρO]. (2.23)

With this brief introduction to the concept of density matrices, we are ready to
state what we mean by a thermal state of a quantum mechanical system.

A thermal state of a quantum mechanical system is a state with the density
matrix:

ρβ =
e−βH

Z
. (2.24)

Here, H is the Hamiltonian of the system and β is the system’s inverse temper-
ature. Z is a quantity termed the partition function of the system, given by the
expression:

Z = Tr[e−βH ]. (2.25)
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The introduction of the partition function into the definition of the thermal
density matrix ensures its proper normalisation.

Since we have realised that density matrices present a more general way
through which we can represent the state of a quantum mechanical system, we
will work with only these objects hereon.

2.4 Time-Ordered Correlators of the Oscillator

Time-ordered correlators of the simple harmonic oscillator are objects of the
form:

〈Tx(t1)x(t2) . . . x(tn)〉ρ = Tr[ρTx(t1)x(t2) . . . x(tn)], (2.26)

where ρ is a general density matrix of the oscillator and x(ti) is the Heisenberg-
picture position operator of the oscillator at the time ti. T is the time-ordering
symbol, which orders the string of Heisenberg operators following it in such a
way that the later time operators are placed lefter.

A certain subset of the objects (2.26) have been extensively analysed in the
literature. These are time-ordered correlators in the vacuum state, that is:

〈0|Tx(t1)x(t2) . . . x(tn) |0〉 . (2.27)

Objects of the type (2.27) are easily computed using a result called Wick’s
theorem [27]. This result naturally leads to a diagrammatic formalism for com-
puting such correlators; the language of Feynman diagrams. Both these aspects
are briefly reviewed in the following sub-sections.

2.4.1 Wick’s Theorem

Wick’s theorem allows one to express a time-ordered string of Heisenberg oper-
ators in terms of normal-ordered strings.

A string of creation and annihilation operators is said to be normal-ordered if
all the creation operators are placed to the left of all the annihilation operators.

The formal statement of Wick’s theorem is:

Tx(t1)x(t2) . . . x(tn) = N
{
x(t1)x(t2) . . . x(tn) + all possible contractions

}
.

(2.28)
Here, N stands for the normal-ordering symbol. It normal-orders the string of
operators which follow it. Note that it is possible to normal-order a string of
position operators because each position operator can be expressed in terms of
the creation and annihilation operators owing to (2.5).

A contraction is defined as:

x(ti)x(tj) ≡ 〈0|Tx(ti)x(tj) |0〉 . (2.29)

So, for example, (2.28) dictates:

Tx(t1)x(t2)x(t3)x(t4) = N
{
x(t1)x(t2)x(t3)x(t4) + x(t1)x(t2)x(t3)x(t4)
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+ x(t1)x(t2)x(t3)x(t4) + x(t1)x(t2)x(t3)x(t4)

+ x(t1)x(t2)x(t3)x(t4) + x(t1)x(t2)x(t3)x(t4)

+ x(t1)x(t2)x(t3)x(t4) + x(t1)x(t2)x(t3)x(t4)

+ x(t1)x(t2)x(t3)x(t4) + x(t1)x(t2)x(t3)x(t4)
}
.

(2.30)

Since contractions are scalars, the normal-ordering instruction is blind to them,
leading to :

Tx(t1)x(t2)x(t3)x(t4) = N
{
x(t1)x(t2)x(t3)x(t4)

}
+ x(t1)x(t2)N

{
x(t3)x(t4)

}
+ x(t1)x(t3)N

{
x(t2)x(t4)

}
+ x(t1)x(t4)N

{
x(t2)x(t3)

}
+ x(t2)x(t3)N

{
x(t1)x(t4)

}
+ x(t2)x(t4)N

{
x(t1)x(t3)

}
+ x(t3)x(t4)N

{
x(t1)x(t2)

}
+ x(t1)x(t2)x(t3)x(t4)

+ x(t1)x(t2)x(t3)x(t4) + x(t1)x(t2)x(t3)x(t4).
(2.31)

Let us now take the expectation of (2.31) over the vacuum state. Again, since
contractions are scalars, they come out as plain numbers when we take their
expectations over states.

Since a |0〉 = 0 = 〈0| a†, expectations of normal-ordered strings in the vacuum
state vanish. This leads to:

〈0|Tx(t1)x(t2)x(t3)x(t4) |0〉 = x(t1)x(t2)x(t3)x(t4) + x(t1)x(t2)x(t3)x(t4)

+ x(t1)x(t2)x(t3)x(t4), (2.32)

which can be generalised as:

〈0|Tx(t1)x(t2) . . . x(tn) |0〉 =
∑{

All possible full contractions
}
, (2.33)

where a full contraction stands for a term in which every position operator is
part of a contraction.

A direct result which follows from 2.33 is that:

〈0|T
{

Odd Number of Position Operators
}
|0〉 = 0, (2.34)

since there are no possible full contractions possible in this case.

2.4.2 Feynman Diagrams

The relation (2.33) motivates a natural diagrammatic formalism to compute
time-ordered correlators of the oscillator in the vacuum state.

The starting point of such a formalism is the association:
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Figure 2.1: Diagrammatic representation of a Wick contraction.

This quantity is termed the Feynman propagator, and is denotedDF (t1−t2):

Figure 2.2: Diagrammatic Representation for the Feynman Propagator.

The Feynman propagator can be explicitly computed to be:

DF (t1 − t2) = lim
ε→0

∫ ∞
−∞

dE

2π

ie−iE(t1−t2)

E2 − ω2 + iε
. (2.35)

Diagrammatically, the result (2.33) translates to:

〈0|Tx(t1)x(t2) . . . x(tn) |0〉 =
∑{

All possible diagrams in which each point is connected
exactly to one other point through a Feynman propagator

}
.

(2.36)
For example:

Figure 2.3: Diagrammatic computation of the 4-point function.

This diagrammatic formalism can be extended to weakly interacting systems
like the anharmonic oscillator too. A perturbative analysis of such a system
brings in another component to the diagrams, namely vertices. For more details
on this approach, one can refer to [1].
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2.5 Towards a Generalised Wick’s Theorem

We now introduce the central objects of our following analyses. We would be
focusing on Wightman correlators in general states, objects which take the form:

〈x(t1)x(t2) . . . x(tn)〉ρ = Tr[ρx(t1)x(t2) . . . x(tn)], (2.37)

where ρ denotes a general density matrix of the oscillator. From now on, we
will drop the ρ from the subscript of the angular brackets in (2.37) to make the
notation less cumbersome:

〈. . . 〉 ≡ 〈. . . 〉ρ. (2.38)

Angular brackets without any subscript are to be understood as expectations
taken over a general density matrix.

Motivated by the Wick’s Theorem for time-ordered correlators in the vacuum
state, which was presented in 2.4.1, we aim to come up with a generalised Wick’s
theorem which would hold for the objects (2.37).

In this direction, to begin with, we make some naive guesses as to what form
this generalised Wick theorem may take. This process eventually leads us to
the idea of cumulants, and it turns out that the generalised Wick’s theorem is
best stated in terms of cumulants.

Let us first elaborate on the guesses which can be made about the form of
the generalised Wick’s theorem.

2.5.1 First Guess

As our first guess, let us naively impose (2.33) itself as being our generalised
Wick’s theorem. That is:

〈x(t1)x(t2) . . . x(tn)〉 ?
=
∑{

All possible full contractions
}
. (2.39)

The analytic expression corresponding to the contractions defined here may be
different from those of the contractions defined in 2.4.1, but this is a detail which
should be focused on after (2.39) is found out to be correct, if at all.

So is (2.39) correct in the first place?
A simple argument shows that it is not. For if it is, then all odd-point

Wightman correlators in a general state must vanish. But this is not the case!
Consider the simplest example, say that of the one-point function in a coherent
state. It evaluates to be:

〈φ|x(t) |φ〉 =

√
~

2ω
(φe−iωt + φ∗eiωt), (2.40)

which, in general, does not vanish. Thus, our guess (2.39) is wrong.
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2.5.2 Second Guess

The lesson to be learnt from the first guess 2.5.1 is that odd-point correlations
are, in general, non-zero and thus, must be carefully considered. A more ed-
ucated guess can now be made about the generalised Wick’s theorem, which
takes into account the point made above.

We now guess that the Wightman correlator 〈x(t1)x(t2) . . . x(tn)〉 is a sum
of products of all its constituting lower-point Wightman correlators.

For example, we would guess:

〈x(t1)x(t2)x(t3)〉 ?
= 〈x(t1)〉 · 〈x(t2)〉 · 〈x(t3)〉

+ 〈x(t1)〉 · 〈x(t2)x(t3)〉
+ 〈x(t2)〉 · 〈x(t1)x(t3)〉
+ 〈x(t3)〉 · 〈x(t1)x(t2)〉. (2.41)

But this guess too has a problem. To understand this shortcoming, we would
first need to acknowledge a result which we now state.

The result is that Wick’s theorem is found to hold true in its traditional
form for Wightman correlators in the vacuum state and in the thermal state.
That is, for example:

〈0|x(t1)x(t2)x(t3)x(t4) |0〉 = 〈0|x(t1)x(t2) |0〉 · 〈0|x(t3)x(t4) |0〉
+ 〈0|x(t1)x(t3) |0〉 · 〈0|x(t2)x(t4) |0〉
+ 〈0|x(t1)x(t4) |0〉 · 〈0|x(t2)x(t3) |0〉 , (2.42)

and similarly:

〈x(t1)x(t2)x(t3)x(t4)〉β = 〈x(t1)x(t2)〉β · 〈x(t3)x(t4)〉β
+ 〈x(t1)x(t3)〉β · 〈x(t2)x(t4)〉β
+ 〈x(t1)x(t4)〉β · 〈x(t2)x(t3)〉β , (2.43)

where 〈. . . 〉β denotes an expectation value in a thermal state with inverse tem-
perature β.

In the light of this result, let us reconsider this second guess of ours for the
case of a 6-point Wightman correlator in a general density matrix.

(Continued on next page)

22



Going by our guess:

〈x(t1)x(t2)x(t3)x(t4)x(t5)x(t6)〉 ?
=
{
〈x(t1)x(t2)〉 · 〈x(t3)x(t4)〉
· 〈x(t5)x(t6)〉+ Permutations

}
+
{
〈x(t1)x(t2)〉 · 〈x(t3)x(t4)x(t5)x(t6)〉
+ Permutations

}
...

+ 〈x(t1)〉 · 〈x(t2)〉 · 〈x(t3)〉
· 〈x(t4)〉 · 〈x(t5)〉 · 〈x(t6)〉. (2.44)

Let the general state being considered now be the vacuum state |0〉.
For this choice of the state, only the first two sets of terms listed on the RHS

of (2.44) survive, since odd-point position correlations vanish in the vacuum
state.

But due to the fact that Wick’s theorem holds in its traditional form for
Wightman correlators in the vacuum, the first set of terms on the RHS of (2.44)
are enough to meet the equality. The second set of terms violate it. Thus, our
second guess is also not true.

2.5.3 The Idea of Cumulants

Let us summarise the lessons we have learnt from our two guesses about the
form of a generalised Wick’s theorem.

One, that odd-point Wightman correlators must be considered seriously,
since they do not vanish in a general state.

Two, that simply decomposing a Wightman correlator in a general state as
a sum of products of its constituent lower-point Wightman correlators does not
work.

It turns out that cumulants are the best objects to introduce at this juncture.
Not only do they counter the problems faced by our two guesses, but also take
on nice values in the states where the traditional Wick’s theorem for Wightman
correlators holds!

The notion of cumulants has indeed been explored in previous investigations
of contour-ordered correlators in general states within the Schwinger-Keldysh
formalism [12, 11] and time-ordered correlators in general states [4].

Within the purview of our present analysis of Wightman correlators in gen-
eral states, how are these objects defined? In a general state, the first cumulant,
denoted C1, is defined as:

C1(t1) ≡ 〈x(t1)〉. (2.45)

As an example, consider the general state being considered to be a coherent
state |φ〉. In this case, the first cumulant C1 turns out to be:
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Cφ1 (t1) = 〈φ|x(t1) |φ〉

=

√
1

2ω
(φe−iωt1 + φ∗eiωt1). (2.46)

The second cumulant, denoted C2, is defined as:

C2(t1, t2) ≡〈x(t1)x(t2)〉
− C1(t1) · C1(t2). (2.47)

Again, for the case of the general state being a coherent state |φ〉, the second
cumulant C2 explicitly turns out to be:

Cφ2 (t1, t2) = 〈φ|x(t1)x(t2) |φ〉
− 〈φ|x(t1) |φ〉 · 〈φ|x(t2) |φ〉

=
~

2ω
e−iω(t1−t2). (2.48)

Similarly, the third cumulant, denoted C3, is defined as:

C3(t1, t2, t3) ≡〈x(t1)x(t2)x(t3)〉
− C1(t1) · C2(t2, t3)− C1(t2) · C2(t1, t3)

− C1(t3) · C2(t1, t2)

− C1(t1) · C1(t2) · C1(t3), (2.49)

and so on. For the sake of completeness, let us also evaluate the third cumulant
C3 for the case of the general state being a coherent state. It turns out that:

Cφ3 (t1, t2, t3) = 〈φ|x(t1)x(t2)x(t3) |φ〉

− Cφ1 (t1) · Cφ2 (t2, t3)− Cφ1 (t2) · Cφ2 (t1, t3)

− Cφ1 (t3) · Cφ2 (t1, t2)

− Cφ1 (t1) · Cφ1 (t2) · Cφ1 (t3)

= 0, (2.50)

after putting in the values of Cφ1 and Cφ2 as evaluated in (2.46) and (2.48).
How do cumulants fill up the gaps that were noticed in our initial guesses?
Firstly, it is evident that the cumulants take odd-point correlations into

account. This is clear, say, from the expression for the first cumulant as given
in (2.45).
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To appreciate how cumulants rectify the shortcoming with our second guess,
let us invert, for example, the relation (2.49):

〈x(t1)x(t2)x(t3)〉 ≡ C3(t1, t2, t3)

+ C1(t1) · C2(t2, t3) + C1(t2) · C2(t1, t3)

+ C1(t3) · C2(t1, t2)

+ C1(t1) · C1(t2) · C1(t3). (2.51)

It is clear from this that a n-point Wightman correlator in a general state is
now not expressed as a sum of products of its constituent lower-point Wightman
correlators, but instead as a sum of products of nth and lower cumulants. In
fact, (2.51) is precisely an example of the generalised Wick’s theorem at work.
We now state this theorem formally.

2.5.4 The Generalised Wick’s Theorem

The generalised Wick’s theorem is the following simple statement:

The n-point Wightman correlator in a general state is the sum of products of the
cumulants {Ci, Cj , . . . , Ck : i+ j + · · ·+ k = n and i, j, . . . , k ≥ 0} in that state.

For example, owing to this theorem, the 3-point Wightman correlator in a gen-
eral state reads:

〈x(t1)x(t2)x(t3)〉 ≡ C3(t1, t2, t3)

+ C1(t1) · C2(t2, t3) + C1(t2) · C2(t1, t3)

+ C1(t3) · C2(t1, t2)

+ C1(t1) · C1(t2) · C1(t3). (2.52)

As another example, this theorem dictates that the 4-point Wightman correlator
in a general state would be:

〈x(t1)x(t2)x(t3)x(t4)〉 ≡ C4(t1, t2, t3, t4)

+ C1(t1) · C3(t2, t3, t4) + C1(t2) · C3(t1, t3, t4)

+ C1(t3) · C3(t1, t2, t4) + C1(t4) · C3(t1, t2, t3)

+ C1(t1) · C1(t2) · C2(t3, t4) + C1(t1) · C1(t3) · C2(t2, t4)

+ C1(t1) · C1(t4) · C2(t2, t3) + C1(t2) · C1(t3) · C2(t1, t4)

+ C1(t2) · C1(t4) · C2(t1, t3) + C1(t3) · C1(t4) · C2(t1, t2)

+ C2(t1, t2) · C2(t3, t4) + C2(t1, t3) · C2(t2, t4) + C2(t1, t4) · C2(t2, t3)

+ C1(t1) · C1(t2) · C1(t3) · C1(t4). (2.53)

It is also easy to see that the traditional Wick’s theorem holding for the vacuum
and thermal states implies that the third and higher cumulants in these states
vanish.
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2.5.5 Cumulants and Connected Wightman Correlators

The equation (2.51) brings to light an important aspect. Looking at it, one
realises that the cumulants in a given general state are nothing but connected
Wightman correlators in the same state. To be precise, the nth cumulant Cn in
a general state is the connected n-point Wightman correlator in that state.

To appreciate this association, we must, for now, divert our attention to
another physical setup. Consider analysing time-ordered correlators of the an-
harmonic oscillator in the interacting vacuum state. The anharmonic oscillator
being talked about is assumed to have the Hamiltonian:

H =
p2

2
+

1

2
ω2x2 +

gx3

3!
+
λx4

4!
(m = 1). (2.54)

Let us denote the full n-point correlator of this system in the interacting vacuum
state:

〈Ω|Tx(t1)x(t2) . . . x(tn) |Ω〉 , (2.55)

as G(n)(t1, t2, . . . , tn). Moreover, we would write the connected n-point corre-

lator as G
(n)
c (t1, t2, . . . , tn). After a traditional generating functional analysis,

one gets the result:

G(3)(t1, t2, t3) = G(3)
c (t1, t2, t3)

+G(1)
c (t1) ·G(2)

c (t2, t3) +G(1)
c (t2) ·G(2)

c (t1, t3)

+G(1)
c (t3) ·G(2)

c (t1, t2)

+G(1)
c (t1) ·G(1)

c (t2) ·G(1)
c (t3). (2.56)

This equation matches exactly in structure with (2.51)! This similarity prompts
us to make the association that the cumulants in our consideration are, in fact,
connected Wightman correlators.

2.6 Cumulants In General States

We arrived at a generalised Wick’s theorem in the previous section. The key
objects in this theorem turned out to be cumulants. In this section, we shift our
focus onto how one can actually calculate these cumulants in a general state of
the oscillator.

2.6.1 The Coefficients {ξ}
We start our analysis in this direction by defining a set of coefficients for general
states of the free oscillator, which we denote as {ξ}. For a general state of the
free oscillator, the coefficients {ξ} associated to it are defined as:

ξmn ≡ 〈(a†)man〉. (2.57)
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As an example, the {ξ} for a coherent state |φ〉 of the oscillator read:

ξφmn = 〈φ| (a†)man |φ〉
= (φ∗)mφn. (2.58)

As outlined in one of the appendices 5, it is possible to express Wightman
correlators in general states of the free oscillator in terms of the coefficients {ξ}
associated to the state. To be specific, a Wightman correlator in a general state
of the free oscillator is a linear combination of certain functions of time. Each
function of time in this linear combination is weighted by the coefficients {ξ}
corresponding to the state.

For example, the 3-point Wightman correlator in a general state of the free
oscillator reads:

〈x(t1)x(t2)x(t3)〉 = ξ03f+++ + ξ30f−−−

+ ξ12(f+−+ + f++− + f−++)

+ ξ21(f−−+ + f−+− + f+−−)

+ ξ01(f+−+ + 2f++−) + ξ10(f−+− + 2f+−−), (2.59)

where:

fσ1σ2σ3
=
( ~

2ω

)3/2

exp
(
−iω [σ1t1 + σ2t2 + σ3t3]

)
. (2.60)

Owing to the definition of the cumulants as laid down in 2.5.3, it is sufficient to
know the Wightman correlators in a general state to compute the cumulants in
that state.

For example, as listed in 2.5.3, the third cumulant C3 has the definition:

C3(t1, t2, t3) ≡〈x(t1)x(t2)x(t3)〉
− C1(t1) · C2(t2, t3)− C1(t2) · C2(t1, t3)

− C1(t3) · C2(t1, t2)

− C1(t1) · C1(t2) · C1(t3). (2.61)

Now since the first cumulant C1 and the second cumulant C2 involved in this
definition are themselves obtainable in terms of Wightman correlators (2.5.3),
the whole of C3 can be expressed in terms of Wightman correlators.

As we have just seen, Wightman correlators in general states of the free
oscillator can be written as expressions involving the coefficients {ξ} of the
state. Thus, the cumulants in a general state too can be written in terms of the
coefficients {ξ} corresponding to that state.

For example, the third cumulant C3 in a general state, when written in terms
of the {ξ} associated to that state, adopts the form:

C3 = [2ξ3
01 − 3ξ02ξ01 + ξ03]f+++ + [2ξ3

10 − 3ξ20ξ10 + ξ30]f−−−

+ [2ξ10ξ
2
01 − 2ξ11ξ01 − ξ02ξ10 + ξ12](f−++ + f++− + f+−+)

+ [2ξ01ξ
2
10 − 2ξ11ξ10 − ξ01ξ20 + ξ21](f−−+ + f−+− + f+−−). (2.62)
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After expressing the cumulants in a general state in terms of the coefficients
{ξ} associated to that state, we are ready to introduce a new set of coefficients
associated to the state. These new coefficients are termed the {χ}, and they are
explained in detail through the following section.

2.6.2 The Coefficients {χ}
Before introducing the coefficients {χ}, it proves to be profitable to first intro-
duce a compact notation for the functions of time which appear in the expres-
sions for the cumulants in a general state.

Analogous to the functions of time fσ1σ2σ3
which make up the third cumulant

C3 (2.20), the nth cumulant Cn is observed to be made up of the functions
fσ1σ2...σn , where:

fσ1σ2...σn =
( ~

2ω

)n/2
exp

(
−iω [σ1t1 + σ2t2 + · · ·+ σntn]

)
. (2.63)

With this context, we define a new function Fnk(t1, t2, . . . , tn) as:

Fnk ≡
∑
πk

fσ1σ2...σn , (2.64)

where πk denotes a permutation of the list (σ1σ2 . . . σn) such that k of them are
(+) and the remaining n − k are (-). The definition (2.64) then directs us to
sum over all the

(
n
k

)
such possible permutations.

As examples:

F31 = f+−− + f−+− + f−−+,

F42 = f++−− + f+−+− + f+−−+ + f−++− + f−+−+ + f−−++. (2.65)

We are now in a position to introduce the coefficients {χ}.
Supported by explicit computations carried out in the appendix 5, the co-

efficients {χ} for a general state of the free oscillator are defined through the
equation:

Cn ≡
n∑

m=0

χm(n−m)Fn(n−m) + δn,2f+−. (2.66)

where Cn stands for the nth cumulant in the general state being considered.
For example, (2.66) dictates:

C3 =

3∑
m=0

χm(n−m)Fn(n−m)

= χ03F33 + χ12F32 + χ21F31 + χ30F30. (2.67)

Rather than analyse cumulants in their entirety, it proves to be more useful to
study the coefficients {χ} instead. There are two reasons for this.
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One, the {χ} are very nice objects. We say this because they attain very
simple numerical values in quite a few states of the free oscillator. For example,
in the vacuum state, all the {χ} apart from χ00 vanish. In the thermal state,
all the {χ} apart from χ00 and χ11 vanish. As another example, in coherent
states, all the {χ} apart from χ00, χ01 and χ10 vanish. This is explicitly shown
in the second appendix 6.

Two, it turns out that the {χ} occupy a very crucial role in the diagram-
matic representations of Wightman correlators in general states. This is not
very surprising once one realises that the cumulants are nothing but connected
Wightman correlators. And since developing such a diagrammatic formalism is
one of our aims, exploring these objects in detail proves to be very inviting.

2.6.3 Relations Between the {ξ} and {χ}
Having motivated the importance of the coefficients {χ}, our next task is to
figure out how to explicitly compute them for a general state of the free oscilla-
tor. A consideration which proves to be fruitful in this pursuit is to express the
coefficients {χ} in terms of the coefficients {ξ}.

The basic procedure which would be followed in doing so would be the fol-
lowing. We would first compute the nth cumulant Cn in a general state of the
oscillator in terms of the coefficients {ξ}. The fact that one can do so has already
been illustrated through the example (2.62). Once this is done, we would com-
pare the expression of the cumulant we thus get with its associated expression
arising from the definition (2.66). Doing this yields us mathematical expressions
for the coefficients {χ} in terms of the coefficients {ξ}.

Let us illustrate this procedure through an example.
As already pointed out through (2.62), the third cumulant C3 stated in terms

of the coefficients {ξ} reads:

C3 = [2ξ3
01 − 3ξ02ξ01 + ξ03]f+++ + [2ξ3

10 − 3ξ20ξ10 + ξ30]f−−−

+ [2ξ10ξ
2
01 − 2ξ11ξ01 − ξ02ξ10 + ξ12](f−++ + f++− + f+−+)

+ [2ξ01ξ
2
10 − 2ξ11ξ10 − ξ01ξ20 + ξ21](f−−+ + f−+− + f+−−). (2.68)

Using the new functions Fnk defined through (2.64), the above equation be-
comes:

C3 = [2ξ3
01 − 3ξ02ξ01 + ξ03]F33 + [2ξ3

10 − 3ξ20ξ10 + ξ30]F30

+ [2ξ10ξ
2
01 − 2ξ11ξ01 − ξ02ξ10 + ξ12]F32

+ [2ξ01ξ
2
10 − 2ξ11ξ10 − ξ01ξ20 + ξ21]F31. (2.69)

On the other hand, the definition (2.66) dictates:

C3 = χ03F33 + χ30F30 + χ12F32 + χ21F31. (2.70)

Comparing (2.69) with (2.70) yields:

χ03 = 2ξ3
01 − 3ξ02ξ01 + ξ03 (2.71)
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χ12 = 2ξ10ξ
2
01 − 2ξ11ξ01 − ξ02ξ10 + ξ12. (2.72)

Note that ξji = ξ∗ij . This is clear from the definition (2.57). As a consequence,
it also follows that χji = χ∗ij .

A similar procedure is then to be repeated for all order cumulants to get
the complete set of mathematical relationships expressing the coefficients {χ}
in terms of the coefficients {ξ}. This is explicitly carried out till the fourth
cumulant in the appendix 5.

Though this procedure is foolproof, it is certainly not convenient. The pro-
cess of computing cumulants of all orders is unending. It would be much better
if all the relationships between the coefficients {χ} and the coefficients {ξ} could
be condensed into one single equation. It turns out that this can indeed be done.
But before we can state that equation, we would need to introduce new objects
called generating functions for these sets of coefficients.

2.6.4 Generating Function for Cumulants

We begin this section by defining an object called the generating function for
the coefficients {ξ} in a general state of the free oscillator.

The generating function for the coefficients {ξ} in a general state of the free
oscillator is defined as:

ZP (λ, λ̄) ≡
∞∑

m,n=0

λm

m!

λ̄n

n!
ξmn (2.73)

The coefficients {ξ} corresponding to the general state are then obtained from
the generating function ZP through the formula:

ξmn =
∂m+n

∂mλ ∂nλ̄
ZP (λ, λ̄)

∣∣∣
λ,λ̄=0

. (2.74)

On similar grounds, we can define the generating function for the coefficients
{χ} in the general state of the free oscillator as:

Zχ(λ, λ̄) ≡
∞∑

m,n=0

λm

m!

λ̄n

n!
χmn (2.75)

The coefficients {χ} corresponding to the general state are then obtained from
the generating function Zχ through the formula:

χmn =
∂m+n

∂mλ ∂nλ̄
Zχ(λ, λ̄)

∣∣∣
λ,λ̄=0

. (2.76)

Apart from χ00 = ξ00 = 1, it turns out that the single equation which contains
all the relationships between the {ξ} and {χ} in it is:

Zχ = lnZP . (2.77)
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But what is Zχ exactly? The aim of this section will be achieved only if we can
somehow express the generating function Zχ explicitly in terms of the general
state which the system occupies. Can we do so? It turns out that we indeed
can.

As stated in (2.77), Zχ is given by:

Zχ = lnZP , (2.78)

where, according to (2.73):

ZP (λ, λ̄) ≡
∞∑

m,n=0

λm

m!

λ̄n

n!
ξmn, (2.79)

and by (2.57):

ξmn ≡ 〈(a†)man〉 = Tr[ρ(a†)man]. (2.80)

So now:

ZP (λ, λ̄) ≡
∞∑

m,n=0

λm

m!

λ̄n

n!
ξmn

=

∞∑
m,n=0

λm

m!

λ̄n

n!
Tr[ρ(a†)man]

= Tr
[
ρ

∞∑
m,n=0

λm

m!

λ̄n

n!
(a†)man

]
= Tr

[
ρ

∞∑
m=0

λm

m!
(a†)m

∞∑
n=0

λ̄n

n!
an
]

= Tr[ρeλa
†
eλ̄a]. (2.81)

It is important to make an observation at this juncture. The generating function
ZP is an already well studied object in the context of the quantum-classical
correspondence. To be precise, it is the Fourier transform of the Sudarshan-
Glauber P quasiprobability distribution. This is the reason for the subscript P
in the notation for it.

The quantum-classical correspondence allows one to calculate quantities rel-
evant to a quantum mechanical problem through methods of classical statistical
mechanics. A detailed introduction in this regard can be found in [6].

Zχ is thus given by:

Zχ(λ, λ̄) = ln Tr[ρeλa
†
eλ̄a]. (2.82)

Using (2.82) and (2.76), one can, in principle, compute all the {χ} for any
general state of the oscillator.

The {χ} for some special states of the oscillator, namely the vacuum, the
coherent state and the thermal state are calculated in the appendix 6 using the
procedure thus outlined.
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2.7 Diagrammatic Formalism

The stage is now set for developing a diagrammatic formalism to compute
Wightman correlators of the free harmonic oscillator in a general state.

As in the traditional case too, the starting point for building such a dia-
grammatic formalism is a Wick’s theorem. In our case, the generalised Wick’s
theorem 2.5.4 serves this purpose, as we will shortly see.

Another useful structure which one should establish before presenting dia-
grams are those of contractions. They would especially aid us while doing a
perturbative analysis of the anharmonic oscillator in 3.

In the traditional case, as outlined in (2.33), defining pairwise contractions
is enough. But in our considerations, it is not. A simple justification of this
statement is the fact that in a general state, odd-point Wightman correlators
do not vanish. If only pairwise contractions were enough, this would not have
been possible.

Thus, for the study of Wightman correlators in general states of the os-
cillator, we would need to define additional contraction structures apart from
just pairwise contractions. The inspiration for these definitions would be the
generalised Wick’s theorem, as we will now see.

2.7.1 Contraction Structures

So how does the generalised Wick’s theorem reveal the new contraction struc-
tures that we would have to define for studying Wightman correlators in general
states?

Just like the traditional case (2.33), we would like Wightman correlators in
general states to be expressed as a sum of all possible contractions. That is, it
would be good if:

〈x(t1)x(t2) . . . x(tn)〉 =
∑{

All possible full contractions
}
, (2.83)

where a full contraction pattern means a contraction pattern wherein no position
operator is left uncontracted.

Keeping this in mind, let us now look at the generalised Wick’s theorem.
The task is to somehow make the statement of the generalised Wick’s theorem
2.5.4 and (2.83) agree with each other. After a bit of thought, one realises that
this can indeed be done if one makes the following associations:

C1(ti) ≡ Contraction of x(ti) with itself,

C2(ti, tj) ≡ Contraction of x(ti) with x(tj),

C3(ti, tj , tk) ≡ Simultaneous Contraction of x(ti), x(tj) and x(tk), (2.84)

and so on.
The above makes it clear that for our considerations, apart from pairwise

contractions, we would need to define contractions of a position operator with
itself and simultaneous contractions of more than two position operators.
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Moreover, the above also dictates the analytic expressions which we must
associate with the different contraction structures. To be precise, a simultaneous
contraction of n position operators (n ≥ 1) will be assigned an analytic value of
Cn, where Cn is the nth cumulant.

We now formalise these notions. We define three types of contraction struc-
tures, namely uni-dentate, bi-dentate and poly-dentate contractions and explain
them one-by-one.

Uni-Dentate Contractions

A uni-dentate contraction is defined as a contraction of a position operator with
itself.

It would be represented as:

Figure 2.4: Uni-dentate contractions.

The analytic expression corresponding to a uni-dentate contraction is the first
cumulant C1. That is:

Figure 2.5: Analytic expression for uni-dentate contractions.

(Continued on next page)
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Bi-Dentate Contractions

A bi-dentate contraction is defined as a contraction of a position operator with
another position operator.

It would be represented as:

Figure 2.6: Bi-dentate contractions.

The analytic expression corresponding to a bi-dentate contraction is the second
cumulant C2. That is:

Figure 2.7: Analytic expression for bi-dentate contractions.

Poly-Dentate Contractions

A poly-dentate contraction is defined as a simultaneous contraction of more
than two position operators.

It would be represented as:

Figure 2.8: Poly-dentate contractions.

(Continued on next page)
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The analytic expression corresponding to a poly-dentate contraction which
connects k position operators together (k > 2) is the kth cumulant Ck. That is:

Figure 2.9: Analytic expression for poly-dentate contractions.

2.7.2 Generalised Wick’s Theorem in Contractions

For the sake of completeness, let us now state the generalised Wick’s theorem
2.5.4 in terms of the contraction structures just introduced.

In the language of contractions, the generalised Wick’s theorem reads:

〈x(t1)x(t2) . . . x(tn)〉 =
∑{

All possible full contractions
}
, (2.85)

where a full contraction pattern means a contraction pattern wherein no position
operator is left uncontracted.

For example, one computes the 3-point Wightman correlator in a general
state as:

Figure 2.10: The 3-Point Wightman correlator in a general state.
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2.7.3 The Advent of Diagrams

The only step which remains towards developing a diagrammatic formalism to
compute Wightman correlators of the free oscillator in a general state is to
associate the different contraction structures introduced in the previous section
with diagrams. We will now do so.

To begin with, we first lay down the different diagrammatic components
that would play a role in the diagrammatic formalism. Finally, we associate the
different contraction patterns to their diagrammatic counterparts.

Diagrammatic Components

Here, as the title suggests, we introduce the different components which are
involved in the diagrammatic formalism for Wightman correlators of the free
oscillator in general states.

• External Points
The Heisenberg position operator x(ti) is represented by a point labelled
ti:

Figure 2.11: External Points.

• Solid Lines:

Figure 2.12: Solid Lines.

• Dotted Lines:

Figure 2.13: Dotted Lines.
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• Cumulant Blobs:

Figure 2.14: Cumulant Blobs.

The {χij} mentioned above are obtained through (2.76). Note that dia-
gramatically, i is the number of solid lines attached to the blob and j is
the number of dotted lines attached to the blob.

• Red Propagators:

Figure 2.15: Red Propagators.

In the above diagram, the dots around the cumulant blob collectively refer
to the other propagators which may be attached to it.

A red propagator is like a diagrammatic operator which acts on a cumulant
blob. Its action is to first attach a dotted line, and then a solid line to the
blob and sum over these two configurations.

• Free Wightman Propagators:

Figure 2.16: Free Wightman Propagator.

This free Wightman propagator will be termed as going out from the
point ti into the point tj . Observe that the free Wightman propagator
is a derived diagrammatic component. It is made up of a solid line and
a dotted line. Consequently, its analytic expression can be arrived at
through those corresponding to solid and dotted lines.
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Association of Contractions with Diagrams

We now associate the different contraction structures introduced, namely uni-
dentate, bi-dentate and poly-dentate contractions, with their diagrammatic
counterparts.

Uni-Dentate Contractions

A uni-dentate contraction will have the following diagrammatic representation:

Figure 2.17: Diagrammatic representation for a uni-dentate contraction.

The LHS of figure 2.17 is, by definition, equal to the first cumulant C1(t1).
Using the rules laid down in the previous section, the diagram on the RHS of
figure 2.17 evaluates to:√

~
2ω
χ01e

−iωt1 +

√
~

2ω
χ10e

iωt1 , (2.86)

which equals the first cumulant C1(t1), as can be evaluated from the guiding
definition (2.66). Thus, this diagrammatic association is indeed true.

Bi-Dentate Contractions

A bi-dentate contraction will have the following diagrammatic representation:

Figure 2.18: Diagrammatic representation for a bi-dentate contraction.

A very important point to note here is that in the diagrammatic representation
of a bi-dentate contraction, the free Wightman propagator always goes out from
the time placed to the left in the given Wightman sequence into the time placed
to the right in the given Wightman sequence.

The LHS of figure 2.18 is, by definition, equal to the second cumulant
C2(t1, t2). Using the rules laid down in the previous section, the diagram on the
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RHS of figure 2.18 evaluates to:( ~
2ω

)[
χ02 e

−iω(t1+t2) + χ20 e
iω(t1+t2)

+ χ11

{
e−iω(−t1+t2) + e−iω(t1−t2)

}
+ e−iω(t1−t2)

]
. (2.87)

which equals the second cumulant C2(t1, t2), as can be evaluated from the guid-
ing definition (2.66). Thus, this diagrammatic association is indeed true.

Poly-Dentate Contractions

A poly-dentate contraction will have the following diagrammatic representation:

Figure 2.19: Diagrammatic representation for a poly-dentate contraction.

This definition makes it clear that any number of red propagators may branch
out from a cumulant blob. The LHS of figure 2.19 is, by definition, equal to
the kth cumulant Ck(t1, t2, . . . , tk). Let us check this diagrammatic association
for the simplest case of k = 3. For this case, the LHS of figure 2.19 is the third
cumulant C3(t1, t2, t3). The diagram on the RHS of figure 2.19 would reduce
to:

Figure 2.20: The diagrammatic representation of the third cumulant C3.

Using the rules laid down in the previous section, this diagram evaluates to:( ~
2ω

)3/2[
χ03 e

−iω(t1+t2+t3) + χ30 e
iω(t1+t2+t3)

+ χ12

{
e−iω(t1−t2+t3) + e−iω(t1+t2−t3) + eiω(t1−t2−t3)

}
+ (on next page)
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+ χ21

{
eiω(t1+t2−t3) + eiω(t1−t2+t3) + e−iω(t1−t2−t3)

}]
. (2.88)

which equals the third cumulant C3(t1, t2, t3), as can be evaluated through the
guiding definition (2.66).

2.7.4 Worked Out Examples
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2.7.5 Some Diagrammatic Observations

As a part of this section, we list a few crucial observations concerning the
diagrammatic formalism introduced through 2.7. We do this because they would
prove to be useful while studying Wightman correlators in general states of the
anharmonic oscillator in 3.

• Cumulant blobs are connected to points only through red propagators.

• Cumulant blobs are never connected to other cumulant blobs.

• Any number of red propagators may originate from a cumulant blob.

• A red propagator can never loop back into a cumulant blob.

With all this done, let us now delve into our explorations of the simple harmonic
oscillator’s elder cousin, the anharmonic oscillator.

C

41



Chapter 3

The Anharmonic Oscillator

3.1 Motivation

Before starting this chapter, it would be good to summarise what we have
achieved till now.

Motivated by quite a few concrete aspects, we delved into the study of Wight-
man correlators in general states of the simple harmonic oscillator. We were able
to develop a generalised Wick’s theorem for these correlators. This theorem then
led us to define novel Wick contraction structures which aided us in the compu-
tation of these correlators. Finally, these Wick contraction structures gave way
to a natural diagrammatic formalism to represent, and consequently calculate,
Wightman correlators in general states of the simple harmonic oscillator.

With all this done, why should we study the same in the anharmonic oscil-
lator at all?

This question actually has two questions nestled in it. One, why should we
study Wightman correlators in general states and two, why should we study
them in the anharmonic oscillator? The first has already been answered in the
introduction 1; the same motivations for the study of Wightman correlators in
general states of systems as mentioned there hold for the study of these types
of correlators in this new system too. As for the second question, there are two
reasons for extending our study to that of the anharmonic oscillator.

One, it is almost impossible to find a simple harmonic oscillator in Nature.
Let alone Nature, it is also very tough to setup one in a laboratory. On the
other hand, interacting oscillators are a relatively more realistic system one
could study. The anharmonic oscillator is a simplistic model of an interacting
oscillator. So if one wants to study Wightman correlators in general states of
an interacting oscillator, the anharmonic oscillator serves as an ideal starting
point. Methods developed in the study of such correlators of the anharmonic
oscillator may be extended to the analyses of these objects in more complicated
models of interacting oscillators.

The second motivation comes keeping quantum fields in mind. As already
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stated in the introduction 1, interacting quantum fields are much more prevalent
in Nature than free quantum fields. A very strong example in support of this is
that the Standard Model of particle physics, the framework which describes all
the fundamental forces of Nature apart from gravity, is an interacting quantum
field theory. Just as the study of a free harmonic oscillator easily generalises
to that of a free quantum field, the study of an interacting oscillator easily
generalises to that of an interacting quantum field. So if one wants to analyse
Wightman correlators of interacting quantum field theories in general states, it
would be best to study them first in an interacting oscillator.

A physical requirement which interacting quantum field theories must fulfill
is that they must be renormalizable. For self-interacting scalar quantum field
theories, this condition restricts the Lagrangian to be only of the following two
types:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − gφ3

3!
− λφ4

4!
, (3.1)

or

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λφ4

4!
, (3.2)

where φ ≡ φ(t,x) is a scalar field, m is its mass and g, λ are coupling constants.
The corresponding oscillator models which generalise to yield the theories

(3.1) and (3.2) are ones with the Hamiltonians:

H =
p2

2
+

1

2
ω2x2 +

gx3

3!
+
λx4

4!
(m = 1), (3.3)

and

H =
p2

2
+

1

2
ω2x2 +

λx4

4!
(m = 1), (3.4)

respectively.
Both of the models (3.3) and (3.4) are anharmonic oscillators. Thus, if

we aim to finally study Wightman correlators of self-interacting scalar fields
in general states, it would be a good idea to first analyse these objects in the
anharmonic oscillator. We, however, would only be studying the anharmonic
oscillator with the Hamiltonian (3.4). The extension of our investigations made
in this direction to the study of the anharmonic oscillator with the Hamiltonian
(3.3) is trivial.

3.2 Overview

In this chapter, we first give a formal introduction to the anharmonic oscillator.
The objects of analysis, namely Wightman correlators in general states, are
then brought into the picture. For studying these objects in the anharmonic
oscillator, it proves to be useful to switch to a formalism known as the interaction
picture. A brief introduction to this technique is then provided. Finally, without
going into any calculational details, it is briefly mentioned how one goes about
computing these objects using perturbation theory.

43



Three new diagrammatic concepts emerge while studying Wightman corre-
lators of anharmonic oscillators in general states which were not encountered
while investigating these objects in the free oscillator. These are:

• Interaction vertices

• Step function weights for internal propagators

• Symmetry factors

These three new aspects are then separately studied under different sections.
We motivate them all through examples. As a result, a set of rules which must
be abided by while carrying out such a diagrammatic computation of a general
n-point Wightman correlator in a general state of the anharmonic oscillator
are revealed. These rules, the Feynman rules for Wightman correlators of the
anharmonic oscillator in general states, are then collated under another section.
The chapter is put to an end with a section dedicated to a worked out example.

3.3 The System

The anharmonic oscillator on which we would be working in this chapter is
characterised by the Hamiltonian:

H =
p2

2
+

1

2
ω2x2 +

λx4

4!
. (3.5)

The mass of the oscillator has been set to unity. λ > 0 is a parameter called
the coupling constant or the interaction strength.

Note that it is the very presence of a non-zero (and positive) coupling con-
stant that makes the oscillator an interacting one.

3.4 Objects of Analysis

The objects of analysis would be the same as those studied in 2, namely Wight-
man correlators in general states.

They look like:

〈xH(t1)xH(t2) . . . xH(tn)〉 = Tr[ρxH(t1)xH(t2) . . . xH(tn)], (3.6)

where ρ is a general state of the anharmonic oscillator and xH(ti) is the Heisen-
berg position operator of the anharmonic oscillator at the time ti.

The Heisenberg position operators of the anharmonic oscillator evolve ac-
cording to the equation:

d2xH
dt2

+ ω2xH +
λx3

H

3!
= 0. (3.7)
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The solution of this equation turns out to be:

xH(t) = U†(t, t0)xH(t0)U(t, t0) (t ≥ t0), (3.8)

where U(t, t0) is the time evolution operator given by the expression:

U(t, t0) = e−iH(t−t0). (3.9)

Here, H is the total Hamiltonian of the system given by (3.5).

3.5 The Interaction Picture

Before beginning a perturbative analysis for Wightman correlators in general
states of an anharmonic oscillator, it proves to be helpful to switch to a new
representation of quantum mechanics, namely the interaction picture.

The benefit of doing so is that through this representation, one can express
Wightman correlators in general states of the anharmonic oscillator in terms of
Wightman correlators in general states of the free oscillator. Since the latter
has already been explored in the previous chapter 2, doing so opens the gates
for all the techniques developed therewith to be applied in the present analysis
of Wightman correlators in general states of the anharmonic oscillator.

We do not review the interaction picture completely in this chapter. We
would be directly using those results from it which would aid us in the analysis
of Wightman correlators in general states of the anharmonic oscillator. A good
introduction to the interaction picture can be found in [25].

Invoking the interaction picture, one expresses the Heisenberg position op-
erator of the anharmonic oscillator as:

xH(ti) = U†(ti, t0)xI(ti)U(ti, t0) (ti ≥ t0). (3.10)

Here, U(ti, t0) is the time evolution operator in the interaction picture. t0 is
the time when the interaction was switched on, and xI(ti) is the interaction
picture position operator of the anharmonic oscillator at the time ti. For all
practical purposes, it is the same as the Heisenberg position operator of the free
oscillator at the time ti. Keeping this in mind, we will, from now on, denote
the interaction picture position operator simply as x(ti) to match it with the
notation of the previous chapter 2. That is:

xI(ti) ≡ x(ti). (3.11)

The time evolution operator in the interaction picture has the explicit expres-
sion:

U(t1, t2) = Te−i
∫ t1
t2

dtHI (t1 ≥ t2). (3.12)

Here, T stands for the time-ordering symbol. HI is the interacting Hamiltonian
in the interaction picture, given by:

HI =
λxI

4

4!
=
λx4

4!
. (3.13)
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The last equality follows from the notation (3.11) adopted.
Moreover:

U†(t1, t2) = U(t2, t1) = T ∗ei
∫ t1
t2

dtHI (t1 ≥ t2), (3.14)

where T ∗ is the anti-time ordering symbol.
Using all the machinery established, the n-point Wightman correlator in a

general state of the anharmonic oscillator reads:

〈xH(t1)xH(t2) . . . xH(tn)〉 = 〈U†(t1, t0)x(t1)U(t1, t0)

U†(t2, t0)x(t2)U(t2, t0) . . .

U†(tn, t0)x(tn)U(tn, t0)〉. (3.15)

Here, it is important to realise the fact that one cannot combine the time evolu-
tion operators sandwiched in between the interaction picture position operators
into single time evolution operators. For example, referring to (3.15):

U(t1, t0)U†(t2, t0) = U(t1, t0)U(t0, t2)

6= U(t1, t2). (3.16)

This is because the composition property of time evolution operators holds only
for a particular ordering of the times involved. To be precise, the composition
property of time evolution operators dictates:

U(t1, t2)U(t2, t3) = U(t1, t3), where t1 ≥ t2 ≥ t3. (3.17)

Now since the times in the correlator (3.6) obey no particular ordering, we
cannot employ the above composition property to simplify (3.15) further.

3.6 Perturbative Analysis : A Glimpse

In this section, we introduce the formal procedure through which we would be
studying Wightman correlators in general states of the anharmonic oscillator
from now on. The starting point of all our analyses would be (3.15). How we
would be proceeding thereon is explained through the following example.

For the sake of illustration, consider (3.15) for the case of a 2-point Wightman
correlator in a general state of the anharmonic oscillator:

〈xH(t1)xH(t2)〉. (3.18)

Using the interaction picture, one re-expresses the above as:

〈xH(t1)xH(t2)〉 = 〈U†(t1, t0)x(t1)U(t1, t0)

U†(t2, t0)x(t2)U(t2, t0)〉. (3.19)

From (3.12), we already know the explicit expressions for the time evolution
operators involved in the above equation.
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For example, the time evolution operator U(t1, t0) involved in (3.19) reads:

U(t1, t0) = Te−i
∫ t1
t0

dtHI

= Te−
iλ
4!

∫ t1
t0

dt x4

. (3.20)

What we would now want to do is to expand (3.20) as a power series in the
interaction strength λ. This is the basic essence of a perturbative analysis. But
when can such a perturbative analysis be actually carried out?

A simple dimensional analysis exercise reveals that such a condition is met
if:

λ <<
ω3

~
. (3.21)

With this ensured, one is allowed to expand (3.20) as:

U(t1, t0) = I +
(−iλ

4!

)∫ t1

t0

dt
(1)
1− x

4(t
(1)
1−)

+
(−iλ

4!

)2
∫ t1

t0

dt
(1)
1−

∫ t1

t0

dt
(2)
1− {Tx4(t

(1)
1−)x4(t

(2)
1−)}

+O(λ3). (3.22)

Note that we have introduced a notation here for the internal point which has
been generated in the perturbation expansion (3.22). This notation would prove
to be very important in our consequent analyses. Let us explain it in detail here
itself.

Important Notation

Consider the 2-point Wightman correlator in a general state of the anharmonic
oscillator:

〈xH(t1)xH(t2)〉. (3.23)

As we have just seen, the above expression becomes:

〈xH(t1)xH(t2)〉 = 〈U†(t1, t0)x(t1)U(t1, t0)U†(t2, t0)x(t2)U(t2, t0)〉, (3.24)

when one invokes the interaction picture. Now, when one expands the operators
U and U† involved in the above expression in powers of the coupling λ, internal
points are ‘generated’.

For example, if one expands the operator U†(t1, t0) in (3.24) upto order λ2,
one gets:

〈x(t1)x(t2)〉+
( iλ

4!

)∫ t1

t0

dt〈
{
x(t)x(t)x(t)x(t)

}
x(t1)x(t2)〉

+
( iλ

4!

)2
∫ t1

t0

dt

∫ t1

t0

dt′〈
{
T ∗x(t)x(t)x(t)x(t)x(t′)x(t′)x(t′)x(t′)

}
x(t1)x(t2)〉.

(3.25)
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Clearly, the internal points t and t′ have emerged as a result. We now lay down
a labelling scheme for these internal points.

We will call an internal point t generated by the perturbation expansion of the
operator U†(tj , t0) as tj+.

For example, in (3.25), the internal point t would be called t
(1)
1+, and the internal

point t′ would be called t
(2)
1+. The superscripts have been added to distinguish

these two integration variables from each other.
On similar grounds:

We will call an internal point t generated by the perturbation expansion of the
operator U(tj , t0) as tj−.

To see this, consider some other terms in the perturbation expansion of (3.23):(−iλ
4!

)∫ t1

t0

dt〈x(t1)

{
x(t)x(t)x(t)x(t)

}
x(t2)〉

+
(−iλ

4!

)∫ t2

t0

dt′〈x(t1)x(t2)

{
x(t′)x(t′)x(t′)x(t′)

}
〉. (3.26)

Clearly, the internal point t arises due to the perturbation expansion of U(t1, t0).
Similarly, the internal point t′ arises due to the perturbation expansion of
U(t2, t0).

Thus, the internal point t would be called t1−, and the internal point t′

would be called t2−.

An expansion such as (3.22) is then simultaneously carried out for all the
time evolution operators present in (3.19). As a result, one gets a perturbative
expansion in the powers of the coupling λ for the 2-point Wightman correlator
(3.18) in a general state of the anharmonic oscillator. It is then trivial to extend
such a protocol for studying general n-point Wightman correlators in general
states of the anharmonic oscillator.

3.7 An Observation Regarding Cumulants in Ther-
mal States

Through 2, we have seen that objects called cumulants play a very important
role in the diagrammatic representation of Wightman correlators in general
states of the free oscillator. Now, if one views the anharmonic oscillator as
being a small perturbation to the free oscillator, which one is justified in doing
in the limit (3.21), cumulants are bound to play an equally important role in
the diagrammatic representation of Wightman correlators in general states of
the anharmonic oscillator too.

48



However, there is a subtle point involving the explicit computation of the
cumulants associated to the thermal state of an anharmonic oscillator. This
aspect deserves some discussion at this juncture.

To explain this point, let us focus on the 2-point Wightman correlator in
a general density matrix ρ of the anharmonic oscillator. The perturbation ex-
pansion for this object is to be derived from (3.19). The order λ0 term in this
expansion reads:

〈xH(t1)xH(t2)〉
∣∣
λ0= Tr[ρx(t1)x(t2)]. (3.27)

A reader who has gone through chapter 2 would realise that the diagrammatic
representation of the RHS of (3.27) would involve cumulants of the density
matrix ρ. These are objects of the form {χij}, which are generated by the
function:

Zχ(µ, µ̄) = ln Tr[ρeµa
†
eµ̄a] (3.28)

through the formula:

χmn =
∂m+n

∂mµ ∂nµ̄
Zχ(µ, µ̄)

∣∣∣
µ,µ̄=0

. (3.29)

The point we want to make is that in the anharmonic thermal state, the cumu-
lants themselves depend on the interaction strength λ. Stated figuratively:

χβ ∼ χβ(λ), (3.30)

where the β in the subscript indicates that we are looking at the cumulants of
the anharmonic thermal state.

This is easily justified. The thermal density matrix of the anharmonic oscil-
lator reads:

ρth =
e−β( p

2

2 + 1
2ω

2x2+λx4

4! )

Z
, (3.31)

where β is the inverse temperature and Z is the partition function given by:

Z = Tr[e−β( p
2

2 + 1
2ω

2x2+λx4

4! )]. (3.32)

The thermal density matrix (3.31) clearly depends on the interaction strength λ.
And since it enters the expression for the cumulant generating function (3.28)
too, the cumulants of the anharmonic thermal state {χβ} are also bound to
depend on it.

At the diagrammatic level, we may be blind to this subtlety by simply la-
belling the cumulant blobs (refer to 2.7.3) involved in the diagrammatics by
the {χβ}. But we cannot get away from it. This is because sooner or later,
we would have to evaluate the diagrams in their entirety. For this, we would
have to explicitly compute the {χβ}, which would involve the considerations
just discussed.

As already mentioned in 3.2, three new diagrammatic aspects emerge through
the analysis of the anharmonic oscillator which were absent in the free oscillator.
They are interaction vertices, step-function weights for internal propagators and
symmetry factors. Let us now explore them in detail.
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3.8 Interaction Vertices

The section 3.6 has outlined the procedure which one adopts to study Wight-
man correlators in general states of the anharmonic oscillator in the limit (3.21).
Moreover, the earlier chapter 2 has established a diagrammatic formalism to
represent Wightman correlators in general states of the free oscillator. The per-
turbative analysis introduced in 3.6 expresses the Heisenberg position operators
of the anharmonic oscillator in terms of the corresponding operators of the free
oscillator. This opens the gates for all the diagrammatic machinery developed
in 2 to be put to use in analysing Wightman correlators in general states of the
anharmonic oscillator too. When one actually goes through this procedure on
paper, three new diagrammatic concepts emerge. They are those of vertices,
step function weights for internal propagators and symmetry factors.

Among these three, the novel aspect of vertices is the one which requires a
relatively more detailed discussion, and the present section is dedicated to this
very purpose. Since this section would be a bit vast, it is better to first present
an overview of it, and then delve into individual explanations.

3.8.1 Overview

We first give the definition of a vertex in 3.8.2. Following this definition, we
give some examples of vertices that make an appearance in the consideration
of Wightman correlators in general states of the anharmonic oscillator. Some
explicit calculations are also displayed which lead to such vertices.

The next task is to list down the vertex factors, which are mathematical
expressions associated to the vertices. Motivated by examples, it is shown in
3.8.4 that a vertex in this theory, in general, has more than one vertex factors
associated to it.

Once this is realised, a new way to assign vertex factors is developed. The
most important step in this regard is labelling the vertices of a diagram. Once
all vertices of a diagram are labelled, the vertex factors of all these vertices can
be read off from these labels. The subsection 3.8.6 develops a hands-on protocol
for labelling the vertices of a diagram. Finally, we end this section with some
worked out examples wherein we implement this newly developed method to
label the vertices of a couple of diagrams and consequently, read off their vertex
factors.

3.8.2 What is a Vertex?

A vertex is defined as a point where four propagators meet. These four prop-
agators can either be free Wightman propagators or red propagators. Refer to
2.7.3 for an explanation of these diagrammatic components.

A convention to be adopted for the sake of making this definition universal
is that a loop of a free Wightman propagator is to be counted as two free
Wightman propagators.
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As a result, this definition dictates that vertices of the form:

Figure 3.1: Some vertices present in this theory.

would be present in this theory, which they are. If we had not adopted this
convention, then the above vertices would have been a meeting point of three
free Wightman propagators in the first case, and two red propagators with a
third free Wightman propagator in the second case. The definition of vertices
would then have ruled both of them out.

Another important point to note at this point is that a cumulant blob (2.7.3)
with four legs is not a vertex. As outlined through 2.7, it is just a diagrammatic
representation of the fourth cumulant C4. That is:

Figure 3.2: The fourth cumulant is not a vertex.

3.8.3 Types of Vertices

With the definition stated in 3.8.2 in place, one would naturally like to try his
hands at actually drawing the vertices which this theory presents. But certain
restrictions have to be abided by while drawing the vertices. They were already
observed in (2.7.5):

• Cumulant blobs are connected to points only through red propagators.

• Any number of red propagators may originate from a cumulant blob.

• Cumulant blobs are never connected to other cumulant blobs.

• A red propagator can never loop back into a cumulant blob.

Now, keeping the definition of a vertex and the above restrictions in mind, we
are ready to draw the vertices which appear in this theory.
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Some examples of the vertices present in this theory are drawn below:

Figure 3.3: Examples of some interaction vertices.

Let us now show how these vertices actually arise from the perturbative analysis
as outlined in 3.6.

For the sake of illustration, consider the second vertex in figure 3.3. The
claim is that it arises from an order λ term in the perturbation expansion for
the 2-point Wightman correlator in a general state of the anharmonic oscillator.

The starting point of such a perturbation expansion is (3.19):

〈xH(t1)xH(t2)〉 = 〈U†(t1, t0)x(t1)U(t1, t0)

U†(t2, t0)x(t2)U(t2, t0)〉. (3.33)

Consider expanding only the first anti-time evolution operator U†(t1, t0) to the
order λ:

〈xH(t1)xH(t2)〉|λ = 〈x(t1)x(t2)〉

+
( iλ

4!

)∫ t1

t0

dt1+〈
{
x(t1+)x(t1+)x(t1+)x(t1+)

}
x(t1)x(t2)〉.

(3.34)

If we ignore the numerical factors for the moment, the following contraction
pattern of the term listed above:

〈x(t1+)x(t1+)x(t1+)x(t1+)x(t1)x(t2)〉, (3.35)

gives rise to the diagram:

Figure 3.4: A diagram arising from (3.35).

Similarly, one may justify the emergence of all the other diagrams shown in
figure 3.3 from similar perturbative calculations.

This section has thus taught us how to draw the different types of vertices
which the analysis of Wightman correlators in general states of the anharmonic
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oscillator reveals. If one actually sits down to draw all the possible vertices
present in this theory, one would realise that there are very many of them. In
this context, if one adopts the traditional procedure of listing down the vertex
factor for each possible vertex, matters would surely become very messy.

In addition to their large number, there is another complexity associated
to the vertices which emerge. It turns out that a vertex, in general, has more
than one vertex factors associated to it. This point is made clear through the
following section.

3.8.4 The Many Vertex Factors of a Vertex

The aim of this section would be to motivate a novel way of assigning vertex
factors in the present analysis. Through some examples, we will show that a
general vertex in this theory has more than one vertex factors associated to it.

Consider the complete order λ term in the perturbative expansion of (3.19):

〈xH(t1)xH(t2)〉|λ = 〈x(t1)x(t2)〉

+
( iλ

4!

)∫ t1

t0

dt1+〈
{
x(t1+)x(t1+)x(t1+)x(t1+)

}
x(t1)x(t2)〉

+
(−iλ

4!

)∫ t1

t0

dt1−〈x(t1)

{
x(t1−)x(t1−)x(t1−)x(t1−)

}
x(t2)〉

+
( iλ

4!

)∫ t2

t0

dt2+〈x(t1)

{
x(t2+)x(t2+)x(t2+)x(t2+)

}
x(t2)〉

+
(−iλ

4!

)∫ t2

t0

dt2−〈x(t1)x(t2)

{
x(t2−)x(t2−)x(t2−)x(t2−)

}
〉.

(3.36)

When one draws the diagrams corresponding to all the terms involved in (3.36),
a diagram which consequently emerges is:

Figure 3.5: A diagram which emerges from (3.36).

It results from the following two contraction patterns:(−iλ
4!

)∫ t1

t0

dt1−〈x(t1)x(t1−)x(t1−)x(t1−)x(t1−)x(t2)〉

+
( iλ

4!

)∫ t2

t0

dt2+〈x(t1)x(t2+)x(t2+)x(t2+)x(t2+)x(t2)〉. (3.37)

53



Let us ignore the combinatoric factors coming from the number of ways in which
such contractions as the above can be carried out. Let us also not think about
the factor of 4! for the moment. They would all be incorporated into the
symmetry factors of the diagrams to be discussed in 3.10. With the numerical
factors suppressed, (3.37) clearly suggests that the vertex in the diagram 3.5
has two vertex factors.

The first vertex factor arises from the first contraction pattern shown in
(3.37), and it is:

− iλ
∫ t1

t0

dt1−. (3.38)

Similarly, the second vertex factor is also revealed through the second contrac-
tion pattern in (3.37). The second vertex factor for the vertex depicted in figure
3.5 is:

+ iλ

∫ t2

t0

dt2+. (3.39)

Summarising:

Figure 3.6: The two vertex factors of diagram 3.5.

Note that both of these vertex factors have a dependence on the other end
points of the legs which meet at it. This is reflected in the upper limits t1 and
t2 involved in the integrals of (3.38) and (3.39).

As another example, consider the complete order λ term in the perturba-
tive expansion for the 4-point Wightman correlator in a general state of the
anharmonic oscillator:

〈xH(t1)xH(t2)xH(t3)xH(t4)〉. (3.40)

It proves to be impractical to write down the complete order λ term of the
perturbation expansion of the above object, since it is very long. But considering
only three of these terms will fulfill our purpose here. Consider the terms:(−iλ

4!

)∫ t2

t0

dt2−〈x(t1)x(t2)

{
x(t2−)x(t2−)x(t2−)x(t2−)

}
x(t3)x(t4)〉

+
( iλ

4!

)∫ t3

t0

dt3+〈x(t1)x(t2)

{
x(t3+)x(t3+)x(t3+)x(t3+)

}
x(t3)x(t4)〉
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+
(−iλ

4!

)∫ t4

t0

dt4−〈x(t1)x(t2)x(t3)x(t4)

{
x(t4−)x(t4−)x(t4−)x(t4−)

}
〉. (3.41)

By explicit computation, which is not outlined here because of its length, it can
be shown that the above three terms indeed form a part of the perturbation
expansion of the 4-point Wightman correlator (3.40).

Now consider the following contraction patterns in evaluating the first and
second terms of (3.41):(−iλ

4!

)∫ t2

t0

dt2−〈x(t1)x(t2)x(t2−)x(t2−)x(t2−)x(t2−)x(t3)x(t4)〉

+
( iλ

4!

)∫ t3

t0

dt3+〈x(t1)x(t2)x(t3+)x(t3+)x(t3+)x(t3+)x(t3)x(t4)〉. (3.42)

Both of the contraction patterns above give rise to the diagram:

Figure 3.7: The diagram arising from (3.42).

It can be checked by explicit calculation that the above diagram is only gener-
ated by the contraction patterns (3.42).

Again ignoring the combinatoric factors related to the number of ways in
which the contractions (3.42) can be carried out and the factors of 4!, we con-
clude that the vertex depicted in the figure 3.7 has two vertex factors. One of
them arises from the first term of (3.42), it being:

− iλ
∫ t2

t0

dt2−. (3.43)

The other vertex factor associated to the vertex depicted in figure 3.7 is:

+ iλ

∫ t3

t0

dt3+, (3.44)

and it arises from the second term of (3.42).
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That is:

Figure 3.8: The two vertex factors of the diagram 3.7.

On the other hand, consider the following contraction pattern in evaluating the
last term of (3.41):(−iλ

4!

)∫ t4

t0

dt4−〈x(t1)x(t2)x(t3)x(t4)x(t4−)x(t4−)x(t4−)x(t4−)〉. (3.45)

This gives rise to the diagram:

Figure 3.9: The diagram arising from (3.45).

It can again be checked by explicit calculation that the above diagram is only
generated by the contraction pattern (3.45).

Again ignoring the combinatoric factors related to the number of ways in
which the contraction (3.45) can be carried out and the factor of 4!, we conclude
that the vertex factor of the diagram 3.9 is:

− iλ
∫ t4

t0

dt4−. (3.46)

(Continued on next page)
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Thus, the vertex depicted in figure 3.9 has only one vertex factor, it being
(3.46). That is:

Figure 3.10: The vertex factor of the diagram 3.9.

All these examples have made it clear that vertices in this theory can have more
than one vertex factors associated to them. And, as previously outlined, there
are already many types of vertices which the analysis of Wightman correlators
in general states of the anharmonic oscillator presents.

In such a situation, if one thinks of going by the usual procedure of list-
ing down the vertex factors of each possible vertex, it would certainly be very
impractical. The simplest way of assigning vertex factors in the present consid-
eration proceeds by way of first labelling the vertices of a diagram. The vertex
factors of the vertices are then simply read off from the labels they have been
assigned.

To begin with, we explain the origin of these labels in the next section.
Consequent sections will present the procedure which one must adopt to label
the vertices of a given diagram.

3.8.5 What Are Vertex Labels?

Simply put, the labels of a vertex are nothing but the time variables which are
integrated over in the corresponding analytic expression for the vertex. Let us
make this clear through an example.

Consider the case of the 2-point anharmonic Wightman correlator:

〈xH(t1)xH(t2)〉. (3.47)

A diagram which emerges at order λ in the perturbation expansion of the above
object is:

Figure 3.11: A diagram appearing at order λ of the perturbation expansion of
〈xH(t1)xH(t2)〉.
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Let us ask what the labels of the vertex appearing in the above diagram
should be. For that, we must go back to the contraction patterns which lead to
it.

As one can check, the diagram 3.11 is generated only by the following two
contraction patterns:(−iλ

4!

)∫ t1

t0

dt1−〈x(t1)x(t1−)x(t1−)x(t1−)x(t1−)x(t2)〉

+
( iλ

4!

)∫ t2

t0

dt2+〈x(t1)x(t2+)x(t2+)x(t2+)x(t2+)x(t2)〉. (3.48)

This is because the diagram 3.11 has a free Wightman propagator going out of
the external point t1 and a free Wightman propagator coming into the external
point t2. A situation like this can only be achieved when the external point t1
contracts with an internal point which is placed to its right in the correlator
and the external point t2 contracts with an internal point which is placed to its
left in the correlator.

With the expression (3.48) in hand, the labels to the vertex in diagram 3.11
are readily assigned. In the first contraction pattern of (3.48), the time variable
getting integrated over is t1−. So, t1− is said to be one of the labels of the
vertex depicted in diagram 3.11. Similarly, in the second contraction pattern of
(3.48), the time variable getting integrated over is t2+. As a result, t2+ is said
to be the second label of the vertex depicted in 3.11.

Thus, the set of labels associated to the vertex in 3.11 is {t1−, t2+}.
With this done, we can label the diagram 3.11 as:

Figure 3.12: The labels of the vertex in diagram 3.11.

Let us go through another example. This example would be a bit detailed, but
it is important because it would show us that labels for vertices cannot be as-
signed independently. The label for a vertex, in general, depends on the labels
of the other vertices in the diagram.

(Continued on next page)
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Consider a diagram which emerges at order λ2 in the perturbation expansion
of the 2-point anharmonic Wightman correlator:

Figure 3.13: A diagram appearing at order λ2 of the perturbation expansion of
〈xH(t1)xH(t2)〉.

How do we label the two vertices in the above diagram? As before, to do so,
we go into the contraction patterns which lead to the diagram 3.13. As one can
check, the diagram 3.13 results only from the terms:(−iλ
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(3.49)

The first and the last terms of the above expression involve time ordering and
anti-time ordering respectively. For making the further analysis clear, it proves
to be fruitful to expand them using step functions of time. The first term of
(3.49) can be expanded as:
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(3.50)
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Similarly, the last term of (3.49) can be expanded as:
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(3.51)

We will now assume that the vertex nearer the external point t1 in the diagram

3.13 corresponds to the internal point t
(1)
1− among t

(1)
1− and t

(2)
1−. Similarly, among

t
(1)
2+ and t

(2)
2+, it is assumed to correspond to t

(1)
2+. Note that these two choices

will not affect any of our results. This is because these two sets of times are
interchangeable dummy variables. This is clearly seen from the first and last
terms of (3.49). With this choice made, the diagram 3.13 is a result of the
contractions:(−iλ
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(3.52)

An important point to note here is that the following contraction pattern:(−iλ
4!

)( iλ
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(3.53)
does not contribute to the diagram 3.13. This is because owing to the definition
of a bi-dentate contraction as introduced in 2.7.3, the above contraction will
lead to a situation like:

Figure 3.14: The diagram resulting from (3.53).
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wherein the internal propagator is coming into the vertex nearer the external
point t1. Clearly, this is not the situation we are considering.

(3.52) will now tell us the labels we can assign the two vertices in the diagram

3.13. Consider the first term of (3.52). t
(1)
1− has already been assumed to be the

label of the vertex which is nearer t1. Thus, the second vertex automatically

gets the label t
(2)
1−. Also note that in this situation, there is an additional factor

of θ(t
(1)
1−− t

(2)
1−) to be taken care of. This is the basic essence of the step function

weights which must be assigned to the internal propagators in a diagram. This
aspect will be discussed separately under the section 3.9.

Now look at the second term of (3.52). The external time t1 is getting
contracted with the internal point t1−. This fixes the label of the vertex nearer
t1 to be t1−. And consequently, the second vertex gets labelled t2+.

Finally, let us look at the third term of (3.52). Again, t
(1)
2+ has already been

assumed to be the label of the vertex which is nearer t1. Thus, the second vertex

automatically gets the label t
(2)
2+.

Let us introduce a more concise notation at this juncture. Through this

example, we have seen labels like t
(1)
1− and t

(2)
1−. We have also realised that these

two are completely equivalent, since they are interchangeable dummy variables.
A need to differentiate between them only arises in writing the step function
factors which appear in terms like (3.50) and (3.51). This will be discussed

in 3.9. As far as labelling vertices is concerned, all labels of the form t
(i)
j+ are

equivalent, and would thus be collectively denoted as tj+. Similarly, all labels

of the form t
(i)
j− are equivalent, and would thus be collectively denoted as tj−.

The task of label assignments to the vertices is thus over. Let us summarise
the results in the form of a table:

Label of Vertex
1

Label of Vertex
2

t1− t1−

t1− t2+

t2+ t2+

Table 3.1: Labelling the vertices of diagram 3.13. Vertex 1 refers to the vertex
nearer the external point t1, and Vertex 2 refers to the other vertex.

The example just discussed has thus made the point clear that labels for vertices
cannot be assigned independently. They depend on the labels which the other
vertices have been assigned. This is visible from the table. For example, let
us say that the first vertex is assigned the label t2+. This corresponds to the
last row in the table. Once this is done, one can only assign the label t2+ to
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the second vertex. One cannot assign the label t1− to it, even though it is a
completely valid label for it in some other situation.

In this section, we have seen what vertex labels actually are, and how to
assign them to vertices from first principles. The procedure we have outlined
herein is certainly a very tedious one. It involves going back to all the contraction
patterns which give rise to a particular diagram. This process would certainly
be very impractical to carry out for bigger diagrams which may have many
external points and vertices. This motivates us to develop a more hands-on way
to assign labels to vertices in diagrams - a prescription through which one may
label vertices by just looking at them.

3.8.6 Labelling the Vertices of a Diagram

Let us first summarise our situation till now. In 3.8.2, we first defined what we
mean by an interaction vertex in the context of Wightman correlators in general
states of the anharmonic oscillator. This definition, though very simple, made
us realise that there are indeed many types of vertices present in this study.
To add to this, the section 3.8.4 revealed that a given vertex has more than
one vertex factor associated to it. Both these observations motivated a need for
organisation. They made it clear that the traditional route of listing the vertices
of a theory along with their vertex factors would prove to be very impractical
in this case.

The way out is to first assign labels to all the vertices present in a diagram.
The vertex factors can then be simply read off from these labels. In the section
3.8.5, we have made the notion of vertex labels more precise by stating that they
are simply the time variables which are integrated over in the corresponding
analytic expression for the vertex. In the same section, we also illustrated
how one must go about labelling the different vertices present in a diagram
through first principles. This method was found to be quite tedious. It would be
extremely tough to implement it for diagrams with many vertices and external
points.

In this section, we present a more hands-on way to label the vertices of a
diagram. The basic principle behind this method is very simple. The section
3.8.2 has already given us the definition of a vertex that it is a meeting point
of four propagators. We now say that among these propagators which meet at
a vertex, a certain type, namely free Wightman propagators coming from any
other point apart from that vertex itself, impose some constraints on the set of
labels which are permissible for that vertex. We then place the natural demand
that the final assignment of labels to the vertices in a diagram must be such
that all these constraints are fulfilled.

To begin with, we set up some notation in the next section. This would prove
to be very useful in our consequent analyses. Finally, in the section following it,
we state the constraints which free Wightman propagators coming from another
point impose on the set of labels which a particular vertex can acquire.
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Setting Up Notation

We now introduce some notation which would prove to be very useful in our
consequent analyses.

The Set Ln

Suppose we are to analyse the n-point anharmonic Wightman correlator:

〈xH(t1)xH(t2) . . . xH(tn)〉. (3.54)

Then, the set from which we would be picking labels to assign them to vertices
which would appear in the diagrammatics of the correlator (3.54) would be
called the set Ln. It is defined as:

Ln ≡ {t1+, t1, t1−, t2+, t2, t2−, . . . , tn+, tn, tn−}. (3.55)

For example, this set for the 3-point anharmonic Wightman correlator 〈xH(t1)xH(t2)xH(t3)〉
reads:

L3 = {t1+, t1, t1−, t2+, t2, t2−, t3+, t3, t3−}. (3.56)

It is important to mention why we have included the external points {t1, t2, . . . , tn}
also into this set despite knowing that they do not fall into the definition of a
label as introduced in 3.8.5. We have done so keeping in mind the constraints
that free Wightman propagators coming from another point and meeting at a
vertex would impose on the set of labels permissible for that vertex. As would
be realised in the next section, the mathematical statements of these constraints
becomes much simpler if we include the external points too in this set.

The Set Mn

Given the Wightman correlator 〈xH(t1)xH(t2) . . . xH(tn)〉, it proves to be con-
venient to define another set Mn as being the set Ln without the external points.
That is:

Mn ≡ Ln \ {t1, t2, . . . , tn}. (3.57)

Vertices will always be assigned labels from the set Mn. This is trivial to realise
if one knows what vertex labels actually are. The section 3.8.5 has explained
this in detail.

Continuing with the example of the 3-point Wightman correlator, we have:

M3 = {t1+, t1−, t2+, t2−, t3+, t3−}. (3.58)

The Ordering Structure ‘→’ on Ln

Given the set Ln, we define an ordering structure ‘→’ on it such that:

t1+ → t1 → t1− → t2+ → t2 → t2− → · · · → tn+ → tn → tn−. (3.59)
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It is also defined to be transitive. This means that:

ti → tj and tj → tk =⇒ ti → tk, (3.60)

where ti, tj , tk ∈ Ln.
As an example, on the set L3, we would have:

t1+ → t1 → t1− → t2+ → t2 → t2− → t3+ → t3 → t3−. (3.61)

And owing to the defined transitivity of this ordering structure, we would also
have relations like:

t1+ → t1−,

t1+ → t2+,

t1+ → t2,

t1+ → t3+, (3.62)

and so on.
With all this notation established, we are now ready to state the constraints

which free Wightman propagators coming from another point impose on the set
of permissible labels for a vertex at which they happen to meet.

Constraints on Vertex Labels

As already stated in 3.8.2, a vertex is the meeting point of four propagators.
Each free Wightman propagator meeting the vertex and which comes from any
other point apart from that vertex itself imposes a certain constraint on its
permissible labels. Now, each such free Wightman propagator can either be
coming from an external point or from another vertex itself. We will call these
two types of free Wightman propagators as external and internal free Wightman
propagators respectively. They impose constraints which are slightly different
from each other. We now proceed to state these constraints explicitly. We also
follow them up with their appropriate justifications. All through, we will be
assuming that we are working with the n-point anharmonic Wightman correlator
in a general state:

〈xH(t1)xH(t2) . . . xH(tn)〉. (3.63)

External Free Wightman Propagator

A free Wightman propagator coming into a vertex from an external point im-
poses the constraint:

(Continued on next page)
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Figure 3.15: Constraint imposed by an external free Wightman propagator
coming into a vertex.

The shaded region represents a vertex. ti is an external point and tk ∈ Mn

refers to a label assigned to the vertex. The notion of the set Mn and the
ordering structure ‘→’ used here has already been introduced in 3.8.6.

Justification

Suppose we are analysing the two point Wightman correlator in a general state
of the anharmonic oscillator, which is given by:

〈xH(t1)xH(t2)〉. (3.64)

We will now justify the constraint which a free Wightman propagator coming
out from the external point t1 into a vertex imposes on the allowed labels for
that vertex. That is:

Figure 3.16: Justifying the constraint imposed by external free Wightman prop-
agators.

Since only one vertex is involved in the rule we have to justify, it proves to be
sufficient to focus on the terms in the perturbation expansion of (3.64) which
are only first order in the coupling λ. Doing this, one gets:

〈xH(t1)xH(t2)〉|λ =
( iλ

4!
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dt2−〈x(t1)x(t2)x(t2−)x(t2−)x(t2−)x(t2−)〉.

(3.65)

To justify the rule, we will naturally have to look at vertices of the type:

Figure 3.17: Types of vertices one needs to look at for justifying the constraint
depicted in figure 3.16

Now, what types of contraction patterns lead to a situation as depicted above?
If one looks at the diagrammatic representation of a bi-dentate contraction as
listed in 2.7.3, one would realise that a situation as depicted above can only
arise if the external point t1 contracts with an internal point which is placed to
its right. This means that only the terms:(−iλ

4!
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can give rise to the depicted situation. And once one has realised this, it is easy
to see that the above terms can lead to the vertex depicted in diagram 3.16
only having the labels t1−, t2+ and t2−, which is precisely what the constraint
dictates.

(Continued on next page)
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A free Wightman propagator going out of a vertex into an external point
imposes the constraint:

Figure 3.18: Constraint imposed by an external free Wightman propagator going
out of a vertex.

Again, the shaded region represents a vertex. ti is an external point and tk ∈Mn

refers to a label assigned to the vertex. This constraint can be justified in an
exactly similar way as for the previous case.

Internal Free Wightman Propagator

An internal free Wightman propagator imposes the constraint:

Figure 3.19: Constraint imposed by an internal free Wightman propagator.

As before, shaded regions represent vertices. tj , tk ∈Mn refer to labels assigned
to the two vertices.

Justification

To justify this constraint, we again take help of the same example, which is of
the two point Wightman correlator:

〈xH(t1)xH(t2)〉. (3.67)

We will show that if a free Wightman propagator is coming into a vertex from
an internal point which has already been labelled t1+, then it indeed imposes
the constraint we have stated on the labels of the other vertex.
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That is, we will justify:

Figure 3.20: Justifying the constraint imposed by an internal free Wightman
propagator.

Since two vertices are involved in the rule we want to justify, we would have to
look at the terms in the perturbation expansion of (3.67) which are of second
order in the coupling λ. And since one of the vertices has to be t1+, the only
terms we need to focus on are:( iλ
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The first term of the above expression involves anti-time ordering. For making
the further analysis clear, let us expand it using step functions of time:
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The rule we want to justify, namely the situation as depicted by figure 3.20,
has a free Wightman propagator going into a vertex from the internal point
t1+. The diagrammatic representation of a bi-dentate contraction as presented
in 2.7.3 dictates that for such a situation, the internal point t1+ would have to
contract with another internal point which is placed to its right in the interaction
picture correlator. The only terms which can make this possible are any of the
two terms in (3.69) and all the terms apart from the first term in (3.68).

Let us first look at the terms apart from the first term in (3.68). In all these
terms, the label t1+ already corresponds to the internal point we are talking
about. Thus, the labels for the other vertex in 3.20 are given by t1−, t2+ and
t2− as far as these terms are concerned.
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Now focus on (3.69). As we have already discussed in 3.8.5, all labels of the

form t
(i)
j+ are equivalent and would be collectively denoted as tj+. Thus, (3.69)

dictates that the other vertex in figure 3.20 also gets a label of t1+.
Summing up, the set of possible labels for the other vertex in figure 3.20

is {t1+, t1−, t2+, t2−}, which is in agreement with the constraint we wanted to
justify.

A Summary of the Constraints

Let us collate all the constraints we have established through the previous sec-
tion into one place. This would facilitate future reference.

• Constraint imposed by an external free Wightman propagator coming into
a vertex:

• Constraint imposed by an external free Wightman propagator going out
of a vertex:

• Constraint imposed by an internal free Wightman propagator:
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The Final Demand

We have thus established precise mathematical forms of the constraints which
free Wightman propagators impose on the labels of a vertex they happen to
meet at. The final demand of this procedure of labelling the vertices of a dia-
gram is the most natural one. It states:

All the vertices of a given diagram must be labelled in such a way that all the
constraints imposed by the free Wightman propagators on their labels are simul-
taneously fulfilled.

The examples we work out in the next section will make the above statement
more clear.

Worked Out Examples

We now illustrate some examples wherein we label the vertices of a diagram
using the new procedure we have introduced. The free Wightman propagators
pose certain constraints on the allowed labels of the vertices and finally, they
are labelled in such a way that all these constraints are simultaneously fulfilled.

Example 1

Consider labelling the vertex of the following diagram which appears at order
λ of the perturbation expansion of 〈xH(t1)xH(t2)〉:

Figure 3.21: A diagram appearing at order λ of the perturbation expansion of
〈xH(t1)xH(t2)〉.

Let us call the label of this vertex as tk. That is:
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First of all, we must have:

tk ∈M2 = {t1+, t1−, t2+, t2−}, (3.70)

which is trivial to realise.
The free Wightman propagator coming from the external point t1 into this

vertex imposes the constraint:
t1 → tk. (3.71)

In addition to this, the other free Wightman propagator which is going out of
this vertex into the external point t2 imposes the constraint:

tk → t2. (3.72)

The only possible labels which fulfill both of these constraints are:

tk = t1−, t2+. (3.73)

This matches with what we had arrived at through first principles in 3.8.5.

Example 2

Consider labelling the vertices of the following diagram which appears at order
λ2 of the perturbation expansion of 〈xH(t1)xH(t2)〉:

Figure 3.22: A diagram appearing at order λ2 of the perturbation expansion of
〈xH(t1)xH(t2)〉.

To start with, let us label the two vertices as tk and tl. That is:

First of all, since we are looking at a diagram which arises in the perturbation
expansion of 〈xH(t1)xH(t2)〉, there is the trivial requirement that:

tk, tl ∈M2 = {t1+, t1−, t2+, t2−}. (3.74)

Now look at the free Wightman propagator which is coming into the vertex
labelled tk from the external point t1. This imposes the constraint:

t1 → tk. (3.75)
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The internal free Wightman propagator imposes the constraint:

tk → tl or tk = tl. (3.76)

Finally, the free Wightman propagator which is going out from the vertex la-
belled tl into the external point t2 imposes the constraint:

tl → t2. (3.77)

Summarising, the constraints (3.74),(3.75),(3.76),(3.77) which need to be ful-
filled in this situation are:

tk, tl ∈M2 = {t1+, t1−, t2+, t2−},
t1 → tk,

tk → tl or tk = tl,

tl → t2. (3.78)

The only combinations of labels which fulfill these constraints are:

(tk, tl) = (t1−, t1−) or (t1−, t2+) or (t2+, t2+), (3.79)

which matches with what we had found out through first principles in 3.8.5.

3.8.7 Reading Off Vertex Factors from Vertex Labels

The previous section has established a quick way to label the vertices of dia-
grams. Once this is done, reading off the vertex factors from these assigned
labels is a very trivial task. Specifically:

• Each label assigned to a vertex will correspond to a vertex factor of the
vertex. Specifically:

tj+ ∼ +iλ

∫ tj

t0

dtj+,

tj− ∼ −iλ
∫ tj

t0

dtj−, (3.80)

where the symbol ∼ is to be read as ‘corresponds to’.

• If a vertex has no possible label that can be assigned to it, then the vertex
factor of this vertex is 0.
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3.9 Step Function Weights for Internal Propa-
gators

Recall that in the section 3.2, we had outlined three diagrammatic concepts
which emerge through the analysis of Wightman correlators in general states
of the anharmonic oscillator. These are absent in the corresponding analysis of
the free oscillator. They are the concepts of interaction vertices, step function
weights for internal propagators and symmetry factors. In the previous sections,
we have studied interaction vertices in detail. We now move on to step function
weights for internal propagators. Before we do so, we mention two important
observations:

• Given two vertices. In a given diagram, free Wightman propagators join-
ing these two vertices will either all be going into one vertex from the
other, or all be going into the other from the first. Such a situation can
never happen where in a diagram, some of the free Wightman propagators
joining these two vertices are going into one from the other and some are
going the other way round. That is:

Figure 3.23: A crucial observation.

• Step function weights are only assigned to free Wightman propagators
joining vertices with the same labels.

It is easy to realise the truth of these claims once one delves into the perturbative
calculation of anharmonic Wightman correlators. We will not be justifying
them here. On the other hand, we will present what the step function weights
mentioned in the second point above must be, and justify them instead.

73



Let us study the two point anharmonic Wightman correlator:

〈xH(t1)xH(t2)〉. (3.81)

At the order λ2 in the perturbation expansion for the object (3.81), one encoun-
ters the following ‘sunset’ diagram:

Figure 3.24: The sunset diagram.

Pause a moment to realise that this diagram agrees with the first observation
pointed out at the beginning of this section.

The labels for the two vertices in this diagram are given as:

Label of Vertex
1

Label of Vertex
2

t1− t1−

t1− t2+

t2+ t2+

Table 3.2: Labelling the vertices of the sunset diagram. Vertex 1 refers to the
vertex nearer the external point t1, and Vertex 2 refers to the other vertex.

Going by the second observation pointed out at the beginning of this section,
we need only explore the first and third rows listed in the above table to know
what the forms of the step function weights are. This is because it is only in
these situations that both the vertices are assigned the same labels.

Consider the situation of the first row, wherein both the vertices are labelled
t1−. At the analytic level, this situation results from the term:(−iλ

4!

)2
∫ t1

t0

dt
(1)
1−

∫ t1

t0

dt
(2)
1−〈x(t1)

{
Tx4(t

(1)
1−)x4(t

(2)
1−)
}
x(t2)〉. (3.82)

Expanding the time ordered product using step functions of time yields:

〈x(t1)
{
Tx4(t

(1)
1−)x4(t

(2)
1−)
}
x(t2)〉 =θ(t

(1)
1− − t

(2)
1−)〈x(t1)

{
x4(t

(1)
1−)x4(t

(2)
1−)
}
x(t2)〉

+θ(t
(2)
1− − t

(1)
1−)〈x(t1)

{
x4(t

(2)
1−)x4(t

(1)
1−)
}
x(t2)〉.

(3.83)
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Let us now say that the vertex nearer t1 is labelled t
(1)
1− among t

(1)
1− and t

(2)
1−.

With this choice, the diagram 3.24 results only from the contraction pattern:

θ(t
(1)
1− − t

(2)
1−)〈x(t1)x(t

(1)
1−)x(t

(1)
1−)x(t

(1)
1−)x(t

(1)
1−)x(t

(2)
1−)x(t

(2)
1−)x(t

(2)
1−)x(t

(2)
1−)x(t2)〉.

(3.84)

The step function factor involved above is incorporated through the following
rule:

Rule 1

• A group of free Wightman propagators coming out of a vertex labelled t
(i)
j−

and going into another vertex labelled t
(k)
j− is associated with a step func-

tion weight θ(t
(i)
j− − t

(k)
j− ). That is:

Figure 3.25: Rule 1.

Now consider the situation of the second row, wherein both the vertices are
labelled t2+. At the analytic level, this situation results from the term:( iλ

4!

)2
∫ t2

t0

dt
(1)
2+

∫ t2

t0

dt
(2)
2+〈x(t1)

{
T ∗x4(t

(1)
2+)x4(t

(2)
2+)
}
x(t2)〉. (3.85)

Expanding the anti-time ordered product using step functions of time yields:

〈x(t1)
{
T ∗x4(t

(1)
2+)x4(t

(2)
2+)
}
x(t2)〉 =θ(t

(2)
2+ − t

(1)
2+)〈x(t1)

{
x4(t

(1)
2+)x4(t

(2)
2+)
}
x(t2)〉

+θ(t
(1)
2+ − t

(2)
2+)〈x(t1)

{
x4(t

(2)
2+)x4(t

(1)
2+)
}
x(t2)〉.

(3.86)

Let us now say that the vertex nearer t1 is labelled t
(1)
2+ among t

(1)
2+ and t

(2)
2+.

With this choice, the diagram 3.24 results only from the contraction pattern:

θ(t
(2)
2+ − t

(1)
2+)〈x(t1)x(t

(1)
2+)x(t

(1)
2+)x(t

(1)
2+)x(t

(1)
2+)x(t

(2)
2+)x(t

(2)
2+)x(t

(2)
2+)x(t

(2)
2+)x(t2)〉.

(3.87)
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The step function factor involved above is incorporated through the following
rule:

Rule 2

• A group of free Wightman propagators coming out of a vertex labelled t
(i)
j+

and going into another vertex labelled t
(k)
j+ is associated with a step func-

tion weight θ(t
(k)
j+ − t

(i)
j+). That is:

Figure 3.26: Rule 2.

Going through similar analyses, two more rules are revealed. We will not justify
them. They are a simple artefact of the result that the diagrammatic represen-
tation of a bi-dentate contraction between two points involves a free Wightman
propagator coming out of the point placed to the left and going into the point
placed to the right in the correlator. It does not involve a free Wightman prop-
agator coming the other way round. This was introduced in 2.7.3. These rules
are listed on the next page.
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Rule 3

• A group of free Wightman propagators coming out of a vertex labelled tj±
and going into another vertex labelled tk± where tj → tk is associated with
a step function weight of 1. That is:

Figure 3.27: Rule 3.

Rule 4

• A group of free Wightman propagators coming out of a vertex labelled tj±
and going into another vertex labelled ti± where ti → tj is associated with
a step function weight of 0. That is:

Figure 3.28: Rule 4.

In the above rules, the ordering structure ‘→’ being used is the same one which
has already been introduced in 3.8.6.
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3.9.1 Summary

We now summarise the rules for assigning step function weights to internal
propagators in diagrams.

Rule 1

• A group of free Wightman propagators coming out of a vertex labelled t
(i)
j−

and going into another vertex labelled t
(k)
j− is associated with a step function

weight θ(t
(i)
j− − t

(k)
j− ). That is:

Figure 3.29: Rule 1.

Rule 2

• A group of free Wightman propagators coming out of a vertex labelled t
(i)
j+

and going into another vertex labelled t
(k)
j+ is associated with a step function

weight θ(t
(k)
j+ − t

(i)
j+). That is:

Figure 3.30: Rule 2.
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Rule 3

• A group of free Wightman propagators coming out of a vertex labelled tj±
and going into another vertex labelled tk± where tj → tk is associated with
a step function weight of 1. That is:

Figure 3.31: Rule 3.

Rule 4

• A group of free Wightman propagators coming out of a vertex labelled tj±
and going into another vertex labelled ti± where ti → tj is associated with
a step function weight of 0. That is:

Figure 3.32: Rule 4.
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3.10 Symmetry Factors

We are finished discussing two of the three new diagrammatic aspects which
emerge in the analysis of anharmonic Wightman correlators. The only facet
remaining to be discussed is that of symmetry factors. Let us now shift our
attention there.

As is also the case with traditional diagrammatic analyses of time ordered
vacuum correlators, the symmetry factor of a diagram arises from the number of
contraction patterns which lead to that diagram. It eventually turns out that in
most cases, the symmetry factor of a diagram can be deduced by simply looking
at its geometry. The need to resort to the contraction patterns which lead to it
in order to find its symmetry factor is often not necessary.

In this section, we take some examples of diagrams and deduce their symme-
try factors by going back to the contraction patterns which lead to them. These
examples give a rough idea on how the geometry of a particular diagram may
be seen as contributing to this factor. We do not lay down solid and exact rules
to deduce the symmetry factor of a diagram, but just give an essence of how
one may do so by looking at the geometry of the diagram. Whenever in doubt,
one may always go back to the contraction patterns which lead to a diagram to
compute its symmetry factor.

As the first example, let us compute the symmetry factor of the diagram:

Figure 3.33: A diagram with symmetry factor S = 2.

Note that the vertex of the above diagram has already been labelled t1−. Thus,
one of the contraction patterns which leads to this diagram is:(−iλ

4!

)∫ t1

t0

dt1−〈x(t1)x(t1−)x(t1−)x(t1−)x(t1−)x(t2)〉. (3.88)

If one thinks a bit more, one would realise that to get the diagram 3.33, one
only needs to contract the external point t1 in (3.88) with any one of the t1−,
and the external point t2 with any one of the remaining t1−. This can be done
in 4× 3 = 12 ways. But there is also a factor of 4! in the denominator of (3.88).
Combining these two, one finally gets a factor of 2 in the denominator. This is
said to be the symmetry factor of the diagram 3.33. Geometrically, it can be
thought of as the two ways in which one can rotate the loop in diagram 3.33 by
180 degrees about an axis which cuts the loop in half.
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Similarly, the symmetry factor of the diagram:

Figure 3.34: Another diagram with symmetry factor S = 2.

is also found out to be 2. A similar geometric interpretation works for this
diagram too.

Consider now the following vacuum bubble arising in the analysis of the two
point anharmonic Wightman correlator 〈xH(t1)xH(t2)〉:

Figure 3.35: A vacuum bubble with symmetry factor S = 8.

Note that the vertex of the above vacuum bubble has already been labelled t1−.
Thus it arises only from the contraction patterns:(−iλ

4!

)∫ t1

t0

dt1−〈x(t1)x(t1−)x(t1−)x(t1−)x(t1−)x(t2)〉

+
(−iλ

4!

)∫ t1

t0

dt1−〈x(t1)x(t1−)x(t1−)x(t1−)x(t1−)x(t2)〉

+
(−iλ

4!

)∫ t1

t0

dt1−〈x(t1)x(t1−)x(t1−)x(t1−)x(t1−)x(t2)〉. (3.89)

As can be checked, each term in (3.89) gives rise to a single copy of the vacuum
bubble 3.35. Thus, the final numerical factor accompanying this vacuum bubble
would be 3/4! = 1/8. This reveals its symmetry factor being 8. Geometrically,
it can be thought of as resulting from the 2 ways in which each of the loops
can be rotated. This contributes a factor of 2× 2 = 4. The additional factor of
2 can be thought of as coming from the two ways in which the two loops can
interchange their positions.
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Another vacuum bubble which arises from the contraction patterns (3.89)
is:

Figure 3.36: A vacuum bubble with symmetry factor S = 4.

However, as one can readily check, each term of (3.89) now contributes two
copies of this vacuum bubble. The final numerical factor accompanying this
vacuum bubble would thus be (2×3)/4! = 1/4. Therefore, the symmetry factor
of this vacuum bubble is 4. Geometrically, it can be thought of as resulting from
the 2 ways in which each of the loops may be rotated. The factor arising from
interchanging the loops does not make an appearance here. One can justify this
by stating that only similar loops may be interchanged with each other. The
loops in the vacuum bubble we are analysing are not similar. One of them is a
free Wightman loop, whereas the other is a loop containing a cumulant blob.

Some other symmetry factors which may be found through similar analyses
are:

Figure 3.37: A diagram with symmetry factor S = 2× 2 = 4.

because each loop can be rotated by 180 degrees independently about axes which
cut them in half.

Figure 3.38: A diagram with symmetry factor S = 3! = 6.

because the internal propagators can be permuted among themselves in 3! ways.
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Figure 3.39: Another diagram with symmetry factor S = 3! = 6.

because the three red propagators emanating from the cumulant blob at the
end can be permuted among themselves in 3! ways.

3.11 The Feynman Rules

We are now ready to state the ‘Feynman rules’ for computing Wightman corre-
lators in general states of the anharmonic oscillator. Suppose we aim to compute
the object:

〈xH(t1)xH(t2) . . . xH(tn)〉, (3.90)

using diagrams. How do we proceed?
To do so, one must follow the steps:

• Draw all possible diagrams with the external points t1, t2, . . . , tn. The
components which have to be used to draw these diagrams are free Wight-
man propagators, red propagators and cumulant blobs. Refer to 2.7.3 for
their description. However, the following points must be kept in mind:

– A free Wightman propagator connecting an external point with an-
other must always be coming out of the external point which is placed
to the left and going into the external point which is placed to the
right in the correlator (3.90).

– Interaction vertices are intersection points of four propagators. These
propagators can either be free Wightman propagators or red prop-
agators. While applying this definition, a loop of a free Wightman
propagator must be counted as two free Wightman propagators.

– Cumulant blobs are connected to points only through red propaga-
tors.

– Any number of red propagators may originate from a cumulant blob.

– Cumulant blobs are never connected to other cumulant blobs.

– A red propagator can never loop back into a cumulant blob.

– A group of free Wightman propagators joining two vertices must be
either all going out from one of the vertices to the other or all coming
in from one of the vertices to the other.
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• Assign all the vertices in the diagram their labels through the procedure
outlined in 3.8.6.

• For a given combination of labels of the vertices:

– Associate each diagrammatic component with its corresponding an-
alytic expression. This has been listed in 2.7.3.

– Assign step function weights to all the groups of internal propagators
in the diagram. This has been explained in 3.9.1.

– Read off the vertex factors from the vertices’ labels as outlined in
3.8.7.

– Divide by the symmetry factor of the diagram.

• Repeat the above step for all possible combinations of vertex labels.

3.12 A Practical Guide for Calculations

Let us implement the procedure outlined in the previous section to compute
some contributions to the anharmonic 2-point Wightman correlator in a general
state diagrammatically. A notation we would use here is that we would denote
the free Wightman propagator coming into the time tj from the time ti as
Dw(ti − tj). That is:

~
2ω
e−iω(ti−tj) .

= Dw(ti − tj). (3.91)

We also introduce a new function C2(ti, tj) defined as:

C2(ti, tj) ≡ C2(ti, tj)−Dw(ti − tj). (3.92)

The benefit of introducing it is that it has a simple diagrammatic representa-
tion. As revealed through 2.7.3:

Figure 3.40: The diagrammatic representation of the function C2.

(Continued on next page)
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Let us now come to the point. A few diagrams which form a part of
〈xH(t1)xH(t2)〉 are:

Figure 3.41: Some diagrams which contribute to 〈xH(t1)xH(t2)〉.

The first two diagrams drawn above are also obtained in the study of the free
2-point Wightman correlator. They simply sum up to the second cumulant C2.
That is:

Figure 3.42: Sum of the first two diagrams in figure 3.41.

Consider evaluating the third diagram of figure 3.41:

Figure 3.43: A diagram which contributes to 〈xH(t1)xH(t2)〉.
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Let us now label its vertex. To start with, assume that its label is tk. That
is:

Since we are studying the 2-point Wightman correlator 〈xH(t1)xH(t2)〉, there
is the obvious requirement that:

tk ∈M2 = {t1+, t1−, t2+, t2−}. (3.93)

Moreover, the free Wightman propagator going out of the vertex into the exter-
nal point t2 imposes the constraint:

tk → t2. (3.94)

There is no other constraint apart from this one. Abiding by it, the set of
permissible labels for this vertex is:

tk = {t1+, t1−, t2+}. (3.95)

Let us first assign this vertex the label t1+. In this case, the vertex factor reads:

+ iλ

∫ t1

t0

dt1+, (3.96)

and the diagram evaluates to:

+
iλ

2

∫ t1

t0

dt1+{C2(t1, t1+)} · {C2(t1+, t1+)} · {Dw(t1+ − t2)}. (3.97)

Note that the factor of 2 in the denominator is the symmetry factor of the
diagram. Similarly, when this diagram is assigned the label t1−, the vertex
factor reads:

− iλ
∫ t1

t0

dt1−, (3.98)

and the diagram evaluates to:

− iλ

2

∫ t1

t0

dt1−{C2(t1, t1−)} · {C2(t1−, t1−)} · {Dw(t1− − t2)}. (3.99)

And when assigned the label t2+, the vertex factor reads:

+ iλ

∫ t2

t0

dt2+, (3.100)
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and the diagram evaluates to:

+
iλ

2

∫ t2

t0

dt2+{C2(t1, t2+)} · {C2(t2+, t2+)} · {Dw(t2+ − t2)}. (3.101)

Thus, the total value of the diagram 3.43 is the sum of (3.97), (3.99) and (3.101).
This is:

+
iλ

2

∫ t2

t0

dt2+{C2(t1, t2+)} · {C2(t2+, t2+)} · {Dw(t2+ − t2)}. (3.102)

Now consider the fourth diagram of the figure 3.41:

Figure 3.44: A diagram which contributes to 〈xH(t1)xH(t2)〉.

Let us now label its two vertices. To start with, let the label of the vertex nearer
t1 be tk and that of the other vertex be tl. That is:

Since this diagram arises in the perturbation expansion of the 2-point Wightman
correlator, we must have:

tk, tl ∈M2 = {t1+, t1−, t2+, t2−}. (3.103)

Now specifically look at the vertex nearer the external point t1. The free Wight-
man propagator going out of it into the external point t1 imposes the constraint:

tk → t1. (3.104)

In addition to this, all the three internal Wightman propagators coming into
this vertex from the other vertex impose the same constraint:

tl → tk or tl = tk. (3.105)
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The constraints (3.104) and (3.105) are easily solved to yield:

tk = tl = t1+. (3.106)

With all this done, we label this diagram as:

Figure 3.45: The diagram 3.44 with both its vertices labelled.

Note that we have tacked on different superscripts onto the two labels here.
This is a general procedure one needs to follow in cases where more than one
vertex gets assigned the same label. Since the labels are essentially integration
variables, one must distinguish them in some way before writing down the an-
alytic expression corresponding to the diagram. We prefer to achieve this task
using superscripts.

With the labelling done, the diagram evaluates to:

(iλ)2

6

∫ t1

t0

dt
(1)
1+

∫ t1

t0

dt
(2)
1+ θ(t

(1)
1+ − t

(2)
1+) · {Dw(t

(1)
1+ − t1)} · {Dw(t

(2)
1+ − t

(1)
1+)}3 · {C1(t

(2)
1+} · {C1(t2)}. (3.107)

Few things to note here. The factor of 6 in the denominator is the symmetry
factor of the diagram. Observe that the appropriate step function weight has
been assigned to this diagram going by Rule 2 of 3.9.1. The factor of C1(t2)
comes from the disconnected piece of the diagram.
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Chapter 4

Conclusion and Further
Aims

We have developed a diagrammatic formalism to compute Wightman correla-
tors in general states of the simple harmonic and anharmonic oscillators. We
began this journey by realising that any such diagrammatic formalism first re-
quires the establishment of a Wick’s theorem. The traditional form of Wick’s
theorem, which is widely used in the computation of time ordered correlators in
the vacuum state, was not found to hold once general states were brought into
the picture. However, we were successful in developing a generalised Wick’s the-
orem which allowed us to analytically compute Wightman correlators in general
states of the simple harmonic oscillator. This generalised Wick’s theorem was
based on the concept of cumulants. Cumulants are objects which harbour all
the information about the general state being considered. At the level of Wick
contractions, this generalised Wick’s theorem brought in concepts of contrac-
tions of a position operator with itself, as well as simultaneous contractions of
more than two position operators. This was novel, for the traditional form of
Wick’s theorem involves only pairwise contraction structures.

With a Wick’s theorem then in our hands, a diagrammatic formalism to
compute Wightman correlators in general states of the simple harmonic oscilla-
tor followed naturally. Two important aspects emerged at this juncture. Firstly,
it was observed that the diagrammatics involved directional propagators. Prop-
agators symmetric under the exchange of their end points like the Feynman
propagator were not observed. This was expected, since we were looking at
Wightman correlators. These correlators, by definition, do not obey any time
or anti-time ordering. As a result, no symmetry under the exchange of time
arguments is expected. Secondly, a novel diagrammatic component emerged.
These were cumulant blobs. These blobs were diagrammatic representations of
cumulants, and hence, contained all the information about the general state in
which Wightman correlators of the system were being computed.

Once a diagrammatic formalism was established for computing Wightman
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correlators in general states of the simple harmonic oscillator, we moved on
to doing the same for a more realistic case, namely that of a weakly coupled
anharmonic oscillator. While developing the diagrammatic formalism to com-
pute Wightman correlators in general states of the anharmonic oscillator, we
encountered three new aspects which were absent in similar considerations for
the simple harmonic oscillator. They were those of interaction vertices, step
function weights for internal propagators and symmetry factors. All these three
facets were developed and finally, a protocol to compute Wightman correlators
in general states of the anharmonic oscillator using diagrams was laid down.

We have accomplished all the above tasks using the operator formalism of
canonical quantization. One of the next steps we would like to take would be
to develop a path integral formulation of the same. What motivates us to think
in this direction? There are three reasons for it which immediately strike the
mind. One, it is easier to manifest symmetries which the system displays into its
path integral. This is because the symmetries of a system are best incorporated
through its Lagrangian and the Lagrangian is the main ingredient which goes
into the path integral of the system. The second motivation for developing a
path integral formulation is closely related to the first. It is that in practice, it is
easier to guess the correct form of the Lagrangian of a theory, and hence its path
integral too. Again, this is because the Lagrangian is the main component of the
path integral. Thirdly, the path integral allows one to easily change coordinates
between very different canonical descriptions of the same quantum system.

Some steps have already been taken in this direction. The Schwinger-
Keldysh formalism [18] is a well established technique to compute a special
type of Wightman correlators, namely contour ordered correlators. Develop-
ing on this, path integral techniques have also been set up to compute general
Wightman correlators [16]. Attempts have also been made to incorporate the
aspect of general initial states into the Schwinger-Keldysh formalism [8]. Our
aim in this regard would be a mix of all the above. We would like to incorpo-
rate information about the general initial state in the form of cumulants into
the path integral for a general Wightman correlator.

Once we develop a path integral formalism for Wightman correlators in gen-
eral states of the simple harmonic and anharmonic oscillators, we would like to
extend our results to their natural generalisations, namely free and interacting
quantum fields. This may prove to be fruitful since quantum fields are much
more prevalent in Nature than harmonic oscillators. Other rewarding avenues
which may be pursued hereon would be to develop a similar diagrammatic for-
malism for Wightman correlators in general states of fermionic systems and
open quantum systems. In addition to this, one may also use the techniques
developed here to set up a diagrammatics for computing out-of-time-order cor-
relators (OTOCs), objects which have received a lot of attention in recent years,
of all these systems in general states.
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Chapter 5

Appendix A

5.1 Overview

In this Appendix, we explain the origin of the coefficients {ξ} and {χ} used in
our analyses.

We start by giving the definition of the coefficients {ξ}. We then explicitly
compute cumulants till the fourth cumulant. The coefficients {χ} are introduced
consequently. Some mathematical relationships between the {ξ} and the {χ}
emerge as a result. Generating functions for these two sets of coefficients are
then defined, and are observed to obey a simple relationship among themselves.
Finally, it is shown how Wightman correlators of the free oscillator can be
expressed in terms of the {χ}. This is demonstrated till the 4-point Wightman
correlator.

5.2 The Coefficients {ξ}
Consider the free oscillator to be in a general density matrix ρ. The coefficients
{ξ} for this state are defined as:

ξmn ≡ 〈(a†)man〉, (5.1)

where we have used the notation:

〈. . . 〉 ≡ Tr[ρ . . . ]. (5.2)

Any general Wightman correlator of the system can then be expressed using
these coefficients.

We now list down Wightman correlators of the system in a general state ex-
plicitly upto the 4-point function. This would serve two purposes. One, it would
justify the statement made that any Wightman correlator can be expressed in
terms of the coefficients {ξ}. And two, it would be used as a future reference in
this Appendix.
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〈x(t1)〉 = ξ01f+ + ξ10f−,

〈x(t1)x(t2)〉 = ξ02f++ + ξ20f−−

+ ξ11(f−+ + f+−)

+ f+−,

〈x(t1)x(t2)x(t3)〉 = ξ03f+++ + ξ30f−−−

+ ξ12(f+−+ + f++− + f−++) + ξ21(f−−+ + f−+− + f+−−)

+ ξ01(f+−+ + 2f++−) + ξ10(f−+− + 2f+−−),

〈x(t1)x(t2)x(t3)x(t4)〉 = ξ04 f++++ + ξ40 f−−−−

+ ξ13(f+−++ + f++−+ + f+++− + f−+++)

+ ξ31(f−−−+ + f−−+− + f−+−− + f+−−−)

+ ξ22(f−+−+ + f−++− + f+−−+ + f+−+− + f++−− + f−−++)

+ ξ02(f+−++ + 2f++−+ + 3f+++−) + ξ20(f−−+− + 2f−+−− + 3f+−−−)

+ ξ11(f−+−+ + 2f−++− + 2f+−−+ + 3f+−+− + 4f++−−)

+ (f+−+− + 2f++−−), (5.3)

where:

fσ1σ2...σn =
( ~

2ω

)n/2
exp

(
iω [σ1t1 + σ2t2 + · · ·+ σntn]

)
. (5.4)

5.3 Computation of Cumulants

Recall the definitions of the cumulants as introduced in (2.5.3). The first four
cumulants are explicitly given by the expressions:

C1(t1) ≡ 〈x(t1)〉,
C2(t1, t2) ≡ 〈x(t1)x(t2)〉

− C1(t1) · C1(t2),

C3(t1, t2, t3) ≡ 〈x(t1)x(t2)x(t3)〉
− C1(t1) · C2(t2, t3)− C1(t2) · C2(t1, t3)− C1(t3) · C2(t1, t2)

− C1(t1) · C1(t2) · C1(t3),

C4(t1, t2, t3, t4) ≡ 〈x(t1)x(t2)x(t3)x(t4)〉
− C1(t1) · C3(t2, t3, t4)− C1(t2) · C3(t1, t3, t4)− C1(t3) · C3(t1, t2, t4)

− C1(t4) · C3(t1, t2, t3)

− C1(t1) · C1(t2) · C2(t3, t4)− C1(t1) · C1(t3) · C2(t2, t4)

− C1(t1) · C1(t4) · C2(t2, t3)− C1(t2) · C1(t3) · C2(t1, t4)

− C1(t2) · C1(t4) · C2(t1, t3)− C1(t3) · C1(t4) · C2(t1, t2)

− C1(t1) · C1(t2) · C1(t3) · C1(t4). (5.5)
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It is clear from the above that each cumulant is completely expressed in terms
of Wightman correlators in the general state. These correlators are, in their
turn, expressible in terms of the coefficients {ξ}. See (5.3) as an example.

Thus, we can express any cumulant in terms of the coefficients {ξ}. Doing
this for the first four cumulants yields:

C1 = ξ01f+ + ξ10f−,

C2 =
[
−ξ2

01 + ξ02

]
f++ +

[
ξ20 − ξ2

10

]
f−−

+
[
ξ11 − ξ01ξ10

]
(f−+ + f+−)

+ ξ00f+−,

C3 = [2ξ3
01 − 3ξ02ξ01 + ξ03]f+++ + [2ξ3

10 − 3ξ20ξ10 + ξ30]f−−−

+ [2ξ10ξ
2
01 − 2ξ11ξ01 − ξ02ξ10 + ξ12](f−++ + f++− + f+−+)

+ [2ξ01ξ
2
10 − 2ξ11ξ10 − ξ01ξ20 + ξ21](f−−+ + f−+− + f+−−),

C4 =
[
−6ξ4

01 + 12ξ02ξ
2
01 − 4ξ03ξ01 − 3ξ2

02 + ξ04

]
f++++ +

[
−6ξ4

10 + 12ξ20ξ
2
10 − 4ξ30ξ10 − 3ξ2

20 + ξ40

]
f−−−−

+
[
−6ξ10ξ

3
01 + 6ξ11ξ

2
01 + 6ξ02ξ10ξ01 − 3ξ12ξ01 − ξ03ξ10 − 3ξ02ξ11 + ξ13

]
(f+−++ + f++−+ + f+++−

+ f−+++)

+
[
−6ξ01ξ

3
10 + 6ξ11ξ

2
10 + 6ξ01ξ20ξ10 − 3ξ21ξ10 − 3ξ11ξ20 − ξ01ξ30 + ξ31

]
(f−−−+ + f−−+− + f−+−−

+ f+−−−)

+
[
−6ξ2

10ξ
2
01 + 2ξ20ξ

2
01 + 8ξ10ξ11ξ01 − 2ξ21ξ01 + 2ξ02ξ

2
10 − 2ξ2

11 − 2ξ10ξ12 − ξ02ξ20 + ξ22

]
(f−+−+

+ f−++− + f+−−+ + f+−+− + f++−− + f−−++). (5.6)

With all these calculations now in place, we are now ready to introduce the
coefficients {χ}.

5.4 The Coefficients {χ}
Before introducing the coefficients {χ}, it is fruitful to introduce the functions
Fnk as already defined in (2.64). Recall that the functions Fnk were defined as:

Fnk ≡
∑
πk

fσ1σ2...σn , (5.7)

where πk denotes a permutation of the list (σ1σ2 . . . σn) such that k of them
are (+) and the remaining n− k are (-). This definition then directs us to sum
over all the

(
n
k

)
such possible permutations. We are now equipped to define the

coefficients {χ} in general states of the free oscillator.
The coefficients {χ} associated to a general state of the free oscillator are

defined through the equation:

Cn ≡
n∑

m=0

χm(n−m)Fn(n−m) + δn,2f+−. (5.8)

where Cn stands for the nth cumulant in the general state being considered.
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What we now want to do is that we want to relate the coefficients {χ} thus
introduced to the already established coefficients {ξ} in a general state of the
free oscillator.

This is a very simple task. The set of equations (5.6) already present us
with the expressions for the cumulants upto the fourth cumulant in terms of the
coefficients {ξ}. On the other hand, the definition (5.8) gives us the expression
for a general cumulant in terms of the coefficients {χ}. By writing down the
expression for a particular cumulant first in terms of the coefficients {ξ}, then
in terms of the coefficients {χ}, and finally equating them, we would get the
desired relationships between the two sets of coefficients {ξ} and {χ}.

As an example, the third cumulant C3 in (5.6) can be rewritten invoking the
functions Fnk as:

C3 = [2ξ3
01 − 3ξ02ξ01 + ξ03]F33 + [2ξ3

10 − 3ξ20ξ10 + ξ30]F30

+ [2ξ10ξ
2
01 − 2ξ11ξ01 − ξ02ξ10 + ξ12]F32

+ [2ξ01ξ
2
10 − 2ξ11ξ10 − ξ01ξ20 + ξ21]F31. (5.9)

On the other hand, the definition (5.8) dictates:

C3 = χ03F33 + χ30F30 + χ12F32 + χ21F31. (5.10)

Comparing (5.9) with (5.10) yields:

χ03 = 2ξ3
01 − 3ξ02ξ01 + ξ03

χ12 = 2ξ10ξ
2
01 − 2ξ11ξ01 − ξ02ξ10 + ξ12. (5.11)

We list only these {χ} since χij = χ∗ji. Repeating a similar procedure for the
other cumulants C1, C2 and C4 yields the additional relations:

χ00 = ξ00 = 1

χ01 = ξ01

χ02 = −ξ2
01 + ξ02

χ11 = ξ11 − ξ01ξ10

χ04 = −6ξ4
01 + 12ξ02ξ

2
01 − 4ξ03ξ01 − 3ξ2

02 + ξ04

χ13 = −6ξ10ξ
3
01 + 6ξ11ξ

2
01 + 6ξ02ξ10ξ01 − 3ξ12ξ01 − ξ03ξ10 − 3ξ02ξ11 + ξ13

χ22 = −6ξ2
10ξ

2
01 + 2ξ20ξ

2
01 + 8ξ10ξ11ξ01 − 2ξ21ξ01 + 2ξ02ξ

2
10 − 2ξ2

11 − 2ξ10ξ12 − ξ02ξ20 + ξ22.
(5.12)
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5.4.1 Final Results

We now collate all the results that have been obtained through the previous
sections into one place.

Considering upto the fourth cumulant, the coefficients {χ} in terms of the
coefficients {ξ} are given as:

χ00 = ξ00 = 1

χ01 = ξ01

χ02 = −ξ2
01 + ξ02

χ11 = ξ11 − ξ01ξ10

χ03 = 2ξ3
01 − 3ξ02ξ01 + ξ03

χ12 = 2ξ10ξ
2
01 − 2ξ11ξ01 − ξ02ξ10 + ξ12

χ04 = −6ξ4
01 + 12ξ02ξ

2
01 − 4ξ03ξ01 − 3ξ2

02 + ξ04

χ13 = −6ξ10ξ
3
01 + 6ξ11ξ

2
01 + 6ξ02ξ10ξ01 − 3ξ12ξ01 − ξ03ξ10 − 3ξ02ξ11 + ξ13

χ22 = −6ξ2
10ξ

2
01 + 2ξ20ξ

2
01 + 8ξ10ξ11ξ01 − 2ξ21ξ01 + 2ξ02ξ

2
10 − 2ξ2

11 − 2ξ10ξ12 − ξ02ξ20 + ξ22,
(5.13)

with ξij = ξ∗ji and hence, χij = χ∗ji.

5.5 Generating Functions for the {ξ} and {χ}
We have now seen a concrete example of how one should proceed if one has to
establish mathematical relationships between the two sets of coefficients, namely
the {ξ} and the {χ}.

However, it would be good if we could write down a single equation which
would encompass all the relationships between the {ξ} and {χ} as witnessed
in (5.13), in addition to predicting similar relationships between the other {ξ}
and {χ} which will appear in the cumulants and correlators higher than their
4-point counterparts.

Before arriving at this prospective equation, let us first think what form it
should take. The most elegant way through which it can manifest would be
that it be an equality between two representative objects. One of these objects
would be a representative of all the {ξ}, and the other, of all the {χ}. This single
equation would then house all the relationships between the {ξ} and the {χ}.
Specific relations, like the ones listed in (5.13), may consequently be churned
out from this equation through a simple mathematical process.

So what should these representative objects be?
They are generating functions.
One defines the generating function for the {ξ} as:

ZP (λ, λ̄) ≡
∞∑

m,n=0

λm

m!

λ̄n

n!
ξmn. (5.14)
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The {ξ} are obtained from ZP as:

ξmn =
∂m+n

∂mλ ∂nλ̄
ZP (λ, λ̄)

∣∣∣
λ,λ̄=0

. (5.15)

Similarly, one defines the generating function Zχ(λ, λ̄) for the coefficients {χ}
as:

Zχ(λ, λ̄) ≡
∞∑

m,n=0

λm

m!

λ̄n

n!
χmn, (5.16)

and the {χ} are obtained from Zχ as:

χmn =
∂m+n

∂mλ ∂nλ̄
Zχ(λ, λ̄)

∣∣∣
λ,λ̄=0

. (5.17)

5.5.1 Relation between ZP and Zχ

It turns out that the single equation which contains all the relationships between
the {ξ} and {χ} in it is:

Zχ = lnZP (5.18)

5.6 Wightman Correlators in terms of {χ}
We now come to the final aim of this Appendix. We will show how Wightman
correlators in general states of the free harmonic oscillator can be re-expressed
in terms of the {χ} rather than the {ξ}.

We do this because it opens up the scope of developing a diagrammatic
formalism to represent Wightman correlators of the oscillator in general states.

Wightman correlators of the oscillator in a general state (upto the 4-point
correlator) have already been expressed in terms of the {ξ} in (5.3). We also
know the {χ} in terms of the {ξ} through (5.13). So all one needs to do in
order to express the Wightman correlators in terms of the {χ} is to invert the
relations (5.13) and plug back the result into (5.3).

The result of inversion is:

ξ00 = χ00 = 1

ξ01 = χ01

ξ02 = χ02 + χ2
01

ξ11 = χ11 + χ01χ10

ξ03 = χ3
01 + 3χ02χ01 + χ03

ξ12 = χ10χ
2
01 + 2χ11χ01 + χ02χ10 + χ12

ξ04 = χ4
01 + 6χ02χ

2
01 + 4χ03χ01 + 3χ2

02 + χ04

ξ13 = χ10χ
3
01 + 3χ11χ

2
01 + 3χ02χ10χ01 + 3χ12χ01 + χ03χ10 + 3χ02χ11 + χ13
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ξ22 = χ2
10χ

2
01 + χ20χ

2
01 + 4χ10χ11χ01 + 2χ21χ01 + χ02χ

2
10 + 2χ2

11 + 2χ10χ12 + χ02χ20 + χ22.
(5.19)

Plugging these relations into (5.3) yields our final result:

〈x(t1)〉 = χ01f+ + χ10f−

〈x(t1)x(t2)〉 = (χ02 + χ2
01)f++ + (χ20 + χ2

10)f−−

+ (χ11 + χ01χ10)(f−+ + f+−)

+ χ00f+−

〈x(t1)x(t2)x(t3)〉 = (χ3
01 + 3χ02χ01 + χ03)f+++ + (χ3

10 + 3χ20χ10 + χ30)f−−−

+ (χ10χ
2
01 + 2χ11χ01 + χ02χ10 + χ12)(f+−+ + f++− + f−++)

+ (χ01χ
2
10 + 2χ11χ10 + χ01χ20 + χ21)(f−−+ + f−+− + f+−−)

+ (χ01)(f+−+ + 2f++−) + (χ10)(f−+− + 2f+−−)

〈x(t1)x(t2)x(t3)x(t4)〉 = (χ4
01 + 6χ02χ

2
01 + 4χ03χ01 + 3χ2

02 + χ04) f++++

+ (χ4
10 + 6χ20χ

2
10 + 4χ30χ10 + 3χ2

20 + χ40) f−−−−

+ (χ10χ
3
01 + 3χ11χ

2
01 + 3χ02χ10χ01 + 3χ12χ01 + χ03χ10 + 3χ02χ11

+ χ13)(f+−++ + f++−+ + f+++− + f−+++)

+ (χ01χ
3
10 + 3χ11χ

2
10 + 3χ01χ20χ10 + 3χ21χ10 + 3χ11χ20 + χ01χ30

+ χ31)(f−−−+ + f−−+− + f−+−− + f+−−−)

+ (χ2
10χ

2
01 + χ20χ

2
01 + 4χ10χ11χ01 + 2χ21χ01 + χ02χ

2
10 + 2χ2

11

+ 2χ10χ12 + χ02χ20 + χ22)(f−+−+ + f−++− + f+−−+ + f+−+−

+ f++−− + f−−++)

+ (χ02 + χ2
01)(f+−++ + 2f++−+ + 3f+++−)

+ (χ2
10 + χ20)(f−−+− + 2f−+−− + 3f+−−−)

+ (χ11 + χ01χ10)(f−+−+ + 2f−++− + 2f+−−+ + 3f+−+− + 4f++−−)

+ χ00(f+−+− + 2f++−−). (5.20)

C
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Chapter 6

Appendix B

In this appendix, we explicitly compute the generating function for the cumu-
lants in some special states of the free oscillator. Consequently, we will also
compute the cumulants themselves in some of these states. The states which
would be considered thus would be the vacuum state, a coherent state and the
thermal state. Refer to 2.3 for an introduction to these states of the harmonic
oscillator.

6.1 Guiding Equation

The guiding equation for computing the generating function of the cumulants
in a general state of the harmonic oscillator is (2.82):

Zχ(λ, λ̄) = ln Tr[ρeλa
†
eλ̄a]. (6.1)

6.2 The Vacuum State

The generating function for the cumulants (6.1) in the vacuum state, denoted
Z0
χ, reads:

Z0
χ(λ, λ̄) = ln 〈0| eλa

†
eλ̄a |0〉 . (6.2)

Since a |0〉 = 0 = 〈0| a†, we have:

eλ̄a |0〉 = |0〉 . (6.3)

Similarly,

〈0| eλa
†

= 〈0| . (6.4)

Thus:
Z0
χ = 0. (6.5)

This tells us that apart from χ00, which is not obtainable from the generating
function, all the cumulants in the vacuum state vanish.
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The zeroth cumulant, χ00, equals the norm of the vacuum state, which is unity.

6.3 Coherent State

The generating function for the cumulants (6.1) in a coherent state |φ〉, denoted
Zφχ , reads:

Zφχ(λ, λ̄) = ln 〈φ| eλa
†
eλ̄a |φ〉 . (6.6)

Since a |φ〉 = φ |φ〉, one gets:

eλ̄a |φ〉 = eλ̄φ |φ〉 . (6.7)

Similarly:

〈φ| eλa
†

= 〈φ| eλφ
∗
. (6.8)

Thus:

Zφχ(λ, λ̄) = ln (eλφ
∗+λ̄φ)

= λφ∗ + λ̄φ. (6.9)

Using (2.76) now, the coefficients {χφ} for a coherent state |φ〉 are given as:

χφ01 = φ, χφ10 = φ∗, (6.10)

and, as usual:
χφ00 = 〈φ|φ〉 = 1. (6.11)

Apart from these, all the remaining {χφ} vanish.

6.4 Thermal State

A thermal state at inverse temperature β is one with the density matrix:

ρth =
e−β~ω(a†a+1/2)

Z
, (6.12)

where Z is the partition function given by:

Z = Tr[e−β~ω(a†a+1/2)] =
1

2 sinh (β~ω2 )
. (6.13)

In this case, the generating function for the {ξ} reads:

Zβξ = Tr[ρth e
λa†eλ̄a]

=
Tr[e−β~ω(a†a+1/2)eλa

†
eλ̄a]

Z
. (6.14)
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Evaluating the trace in the numerator of (6.14) in the coherent basis yields:

Tr[e−β~ω(a†a+1/2)eλa
†
eλ̄a] =

∫
d[φ1, φ̄1]e−|φ1|2 〈φ1| e−β~ω(a†a+1/2)eλa

†
eλ̄a |φ1〉 ,

(6.15)
where the measure of integration is:∫

d[φ1, φ̄1] =

∫
d(Reφ1) d(Imφ1)

π
. (6.16)

First of all, the factor of e−
β~ω
2 can be taken out from (6.15) giving:

Tr[e−β~ω(a†a+1/2)eλa
†
eλ̄a] = e−

β~ω
2

∫
d[φ1, φ̄1]e−|φ1|2 〈φ1| e−β~ωa

†aeλa
†
eλ̄a |φ1〉 .

(6.17)
We now insert coherent completeness relations of the form:∫

d[φk, φ̄k]e−|φk|
2

|φk〉 〈φk| = I (6.18)

between each exponential operator in (6.17) yielding:

Tr[e−β~ω(a†a+1/2)eλa
†
eλ̄a] = e−

β~ω
2

∫ 3∏
k=1

d[φk, φ̄k]e−|φk|
2

〈φ1| e−β~ωa
†a |φ2〉

〈φ2| eλa
†
|φ3〉 〈φ3| eλ̄a |φ1〉 . (6.19)

Using the identity:

〈φi|µa
†a |φj〉 = eµφ̄iφj , (6.20)

the first matrix element of (6.19) becomes:

〈φ1| e−β~ωa
†a |φ2〉 = eρ(ω)φ̄1φ2 , (6.21)

where:
ρ(ω) = e−β~ω. (6.22)

The second and third matrix elements of (6.19) are easily evaluated as:

〈φ2| eλa
†
|φ3〉 = eλφ̄2 〈φ2|φ3〉

= eλφ̄2+φ̄2φ3 , (6.23)

and similarly:

〈φ3| eλ̄a |φ1〉 = eλ̄φ1 〈φ3|φ1〉

= eλ̄φ1+φ̄3φ1 . (6.24)
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Putting (6.21), (6.23) and (6.24) into (6.19), one gets:

Tr[e−β~ω(a†a+1/2)eλa
†
eλ̄a] = e−

β~ω
2

∫ 3∏
k=1

d[φk, φ̄k]e−|φk|
2

eρ(ω)φ̄1φ2eλφ̄2+φ̄2φ3

· eλ̄φ1+φ̄3φ1 . (6.25)

The integral on the RHS of (6.25) is a trivial multivariable Gaussian integral
which is easily solved to give the answer:

1

1− ρ(ω)
exp
[ λλ̄ρ(ω)

1− ρ(ω)

]
. (6.26)

Thus:

Tr[e−β~ω(a†a+1/2)eλa
†
eλ̄a] =

e−
β~ω
2

1− ρ(ω)
exp
[ λλ̄ρ(ω)

1− ρ(ω)

]
, (6.27)

and finally, from (6.14):

Zβξ = exp
[ λλ̄ρ(ω)

1− ρ(ω)

]
. (6.28)

It is fruitful to bring in the Bose factor nB here, which is defined as:

nB =
1

eβ~ω − 1
=

ρ(ω)

1− ρ(ω)
. (6.29)

In terms of the Bose factor, the generating function for the {ξ} reads:

Zβξ = exp
[
λλ̄nB

]
, (6.30)

and the generating function of the cumulants:

Zβχ = lnZβξ = λλ̄nB . (6.31)

From this, we see that the only non-vanishing cumulant of the thermal state
(apart from χ00 = 1) is χ11, which is given by:

χ11 =
∂2Zβχ
∂λ ∂λ̄

∣∣∣∣
λ,λ̄=0

= nB . (6.32)

C
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