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Notations

M: Group of Mobius Transformations

C̃: Extended complex plane C ∪ {∞}

tr(A): trace of A

[f, g]: commutator fgf−1g−1

q(z1, z2): chordal distance between z1, z2

j: (0,0,1)

H̃: upper half-space

f̃ : Poincare extension of f in H̃

A∗: Hermitian transpose of A
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Abstract

The aim is to study the Möbius transformations and the various norms related to

it. These norms are defined by using three parameters which are invariant under

conjugation. Using these parameters we define a two generator group. We then derive

analogous results when this group is an arbitrary discrete subgroup of M. Lastly,

continued fractions is studied by examining action of Möbius maps in hyperbolic

space as continued fractions can be regarded as sequence of Möbius maps.
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Chapter 1

Introduction

We associate with each Möbius transformation

f =
az + b

cz + d
∈M, ad− bc = 1, (1.1)

the matrix

A =

a b

c d

 ∈ SL(2,C) (1.2)

and set tr(f)=tr(A).Now ∀ f,g∈ M, we define three complex numbers as

β(f) = tr2(f)− 4, β(g) = tr2(g)− 4, γ(f, g) = tr([f, g])− 2 (1.3)

β(f),β(g) and γ(f, g) are called the parameters of the two generator subgroup < f, g >

and we write

par(< f, g >) = (γ(f, g), β(f), β(g))

∀ f ∈ M, we can have two representation matrices say A and B. Then tr2(A) =

tr2(B). If A and B are representation matrices for Möbius transformations f and

g then they are determined to within a factor of -1 and so trace of commutator is

uniquely determined. Thus the parameters are uniquely defined and are independent

of the choice of representations for f and g. Thus < f, g > is uniquely determined

upto conjugacy whenever γ(f, g) is non-zero.
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We define chordal distance between z1, z2 ∈ C̃ as

q(z1, z2) =
2|z1 − z2|

(|z1|2 + 1)1/2(|z2|2 + 1)1/2
(1.4)

and

q(z1,∞) =
2

(|z1|2 + 1)1/2

z1 and z2 are antipodal if q(z1, z2) = 2. We define a Mobius tranformation f as a

chordal isometry if

q(f(z1), f(z2)) = q(z1, z2) ∀z1, z2 ∈ C̃

Define

d(f, g) = sup{q(f(z), g(z)) : z ∈ C̃} (1.5)

This is a metric on M.

Theorem 1.0.1. Let G be a subgroup of M. Then G is discrete if ∃ a constant

d=d(G)>0 st

d(f, g) ≥ d (1.6)

for every distinct f and g in G. G is nonelementary if its limit set L(G) has cardinality

≥ 2, G is Fuchsian if some disk or half plane D is preserved by each element of G

and G is purely elliptic if each element of G is elliptic or the identity.

Theorem 1.0.2. If < f, g > is nonelementary and discrete, then

|γ(f, g)|+ |β(f)| ≥ 1, |γ(f, g)|+ |β(g)| ≥ 1 (1.7)

For f,g∈M, if f or g is close to id, β(f) or β(g) will be small along with γ(f, g). (1.7)

will then imply that < f, g > is nonelementary and discrete.

Now we define the three norms for the given Möbius Transformastion f :

(i) Matrix norm: If f is represented by the A as given in (1.2), we define matrix norm

as follows,

m(f) = ||A− A−1|| = (2|a− d|2 + 4|b|2 + 4|c|2)
1
2 (1.8)
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where ||A|| = tr(AA∗)
1
2 denotes the Euclidean norm of matrix A∈ GL(2,C) and A∗

is Hermitian transpose of A.

(ii) Chordal norm: Chordal norm is defined in terms of the metric given in (1.5) as

d(f) = d(f, id) = sup{q(f(z), z) : z ∈ C̃} (1.9)

(iii) Hyperbolic norm: Hyperbolic norm for f is given as

%(f) = %H̃(f̃(j), j) (1.10)

where %H̃ is the hyperbolic distance in upper half-space with curvature -1.

These norms remain invariant wrt conjugation by chordal isometries.

In its action on C̃, a Möbius transformation g has exactly one fixed point, exactly two

fixed points or is the identity. This classification is invariant under conjugation.

Certain normalized Möbius transformations are:

For every non-zero k in C we define

mk(z) = kz (k 6= 1) (1.11)

and

m1(z) = z + 1; (1.12)

These are called the standard forms. ∀ k,

tr2(mk) = k +
1

k
+ 2 (1.13)

If g(6= I) is any Möbius transformation then either g has exactly two fixed points α

and β in C̃ or g has a unique fixed point α in C̃. We choose β to be a distinct point

other than α. Let h be a Möbius transformation st

h(α) =∞, h(β) = 0, h(g(β)) = 1 ifg(β) 6= β, (1.14)

9



Then,

hgh−1(∞) =∞, hgh−1(0) = 0 if g(β) = β, hgh−1(0) = 1 ifg(β) 6= β

(1.15)

If g fixes both α and β, then hgh−1 fixes 0 and ∞ and for some k 6= 1, we have

hgh−1 = mk. If g fixes α only then hgh−1 fixes ∞ only and we have hgh−1(0) = 1;

and hence hgh−1 = m1. This proves that any Möbius transformation g(6= I) is

conjugate to one of the standard forms mk.

10



Chapter 2

Traces and the various norms

2.1 Matrix Norm

The following lemma checks how far A and B commute:

Lemma 2.1.1. For A,B∈ SL(2,C), we have

‖AB −BA‖2 5 1

8

∥∥A− A−1∥∥2 ∥∥B −B−1∥∥2 (2.1)

This is sharp inequality.

Proof. Let A =

 a b

c d

 and B =

 α β

γ δ

. Then

‖AB −BA‖2 = 2|bγ − cβ|2 + |b(α− δ)− β(a− d)|2 + |c(α− δ)− γ(a− d)|2

= (|b|2 + |c|2) |α− δ|2 + (|β|2 + |γ|2) |a− d|2 + u

where we can look u as

u = 2|bγ − cβ|2 − 2 Re((ā− d̄)(α− δ)(bβ̄ + cγ̄))

and further, 1
8
‖A− A−1‖2 ‖B −B−1‖2 = 2

(
1
2
|a− d|2 + |b|2 + |c|2

) (
1
2
|α− δ|2 + |β|2 + |γ|2

)
= (|b|2 + |c|2) |α− δ|2 + (|β|2 + |γ|2) |a− d|2 + v

where v can be, v = 1
2
|a− d|2|α− δ|2 + 2 (|b|2 + |c|2) (|β|2 + |γ|2)

= 1
2
|a− d|2|α− δ|2 + 2|bβ̄ + cγ̄|2 + 2|bγ − cβ|2

11



So,

v − u =
1

2
|a− d|2|α− δ|2 + 2 Re((ā− d̄)(α− δ)(bβ̄ + cγ̄)) + 2|bβ̄ + cγ̄|2 (2.2)

therefore,
1
8
‖A− A−1‖2 ‖B −B−1‖2 − ‖AB −BA‖2

= 2
∣∣1
2
(ā− d̄)(α− δ) + (b̄β + c̄γ)

∣∣2 = 0
(2.3)

For b=c=0 and α = δ, the right hand sides of above eqaution vanishes and we obtain

equality.

Lemma 2.1.2. If C is in GL(2,C), then we can write,

| det(C)| 5 1

2
‖C‖2 (2.4)

For C ∈ SL(2,C), we have

det(C − I) = 2− tr(C) (2.5)

Lemma 2.1.3. For f and g belonging to M,we have:

|β(f)| 5 1

2
m(f)2 (2.6)

and,

|γ(f, g)| 5 1

16
m(f)2m(g)2 (2.7)

Both of above inequalities are sharp.

Proof. If f and g are represented by matrices A and B in SL(2,C), then by setting

C = A2 in 2.5, we get

|β(f)| =
∣∣tr2(A)− 4

∣∣ =
∣∣tr (A2

)
− 2
∣∣ =

∣∣det
(
A2 − I

)∣∣
=
∣∣det

(
A− A−1

)∣∣ 5 1

2

∥∥A− A−1∥∥2 =
1

2
m(f)2

(2.8)
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Now considering C matrix as commutator of A and B, we get

|γ(f, g)| = | tr([A,B])− 2| =
∣∣det

(
(AB)(BA)−1 − I

)∣∣ = | det(AB −BA)|

5
1

2
‖AB −BA‖2 5 1

16

∥∥A− A−1∥∥2 ∥∥B −B−1∥∥2 =
1

16
m(f)2m(g)2

(2.9)

So if

f = a2z and g =
bz + c

cz + b

then the equality holds.

Lemma 2.1.4. If f ∈M with fix (f) = {z1, z2} ,

|β(f)| = 1

2

q (z1, z2)
2

8− q (z1, z2)
2m(f)2 (2.10)

Proof. For z1 = −r and z2 = r. f can be represented by,

A =

 a br

br−1 a

 , b2 = a2 − 1

β(f) = tr(A)2 − 4 = 4b2, q(−r, r) =
4r

r2 + 1
(2.11)

and so,

m(f)2 =
∥∥A− A−1∥∥2 =

(
r2 + r−2

)
|2b|2 = 2

8− q(−r, r)2

q(−r, r)2
|β(f)| (2.12)

Lemma 2.1.5. If f and g are in M with fix(f) = {z1, z2} and fix (g) = {w1, w2} ,

then

γ(f, g) = β(f)β(g)R (2.13)

where
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R =
(z1 − w1) (z2 − w1) (z1 − w2) (z2 − w2)

(z1 − z2)2 (w1 − w2)
2 (2.14)

Proof. Since

A =

 a b

b a

 , B =

 α β

γ δ

 , γ 6= 0

so for

z1 = −1, z2 = 1, w1 6=∞, w2 6=∞

and γ(f, g) can be expressed as,

γ(f, g) = b2
(
(γ − β)2 − (α− δ)2

)
= b2γ2

(
(1 + w1w2)

2 − (w1 + w2)
2)

= b2γ2 (z1 − w1) (z2 − w1) (z1 − w2) (z2 − w2) = β(f)β(g)R
(2.15)

Also,

|R| = q (z1, w1) q (z2, w1) q (z1, w2) q (z2, w2)

q (z1, z2)
2 q (w1, w2)

2 (2.16)

Lemma 2.1.6. If f1 and f2 are in M with fix (f1)∩ fix (f2) 6= ∅, so

|β (f1)− β (f2)| 5
1

2
m (f1f2)m

(
f1f

−1
2

)
(2.17)

If f1, f2 and g are in M with fix (f1) = fix (f2) , then

|γ (f1, g)− γ (f2, g)| 5 1

16
m (f1f2)m

(
f1f

−1
2

)
m(g)2 (2.18)

both of above two inequalities hold sharp.

Proof. Since

tr ([A1, A2])− 2 = γ (f1, f2) = 0

14



(tr (A1)− tr (A2))
2 = (tr (A1A2)− 2)

(
tr
(
A1A

−1
2

)
− 2
)

replacing A2 by −A2, we get

(tr (A1) + tr (A2))
2 = (tr (A1A2) + 2)

(
tr
(
A1A

−1
2

)
+ 2
)

therefore,


(β (f1)− β (f2))

2 =
(
tr2 (A1)− tr2 (A2)

)2
=
(
tr2 (A1A2)− 4

) (
tr2
(
A1A

−1
2

)
− 4
)

= β (f1f2) β
(
f1f

−1
2

) (2.19)

Thus our first required inequality follows. Now

γ (f1, g)− γ (f2, g) = (β (f1)− β (f2)) β(g)R

Thus,

|γ (f1, g)− γ (f2, g)| = |β (f1f2)|1/2
∣∣β (f1f−12

)∣∣1/2 |β(g)||R|

=
1

4
Sm (f1f2)m

(
f1f

−1
2

)
m(g)2

5
1

16
m (f1f2)m

(
f1f

−1
2

)
m(g)2

(2.20)

For

f1 = a2z, f2 = b2z and g =
cz + d

dz + c

the above equality holds.

Lemma 2.1.7. For z and w in H, we have

cosh2 (%H(z, w)) 5
8− q(z, z̄)2

q(z, z̄)2
8− q(w, w̄)2

q(w, w̄)2
(2.21)

where eH denotes the hyperbolic distance in H of curvature −1. So the equality can

15



hold, if |z| = |w| = 1 and Re(z) + Re(w) = 0

Lemma 2.1.8. Let f, g ∈M and f(H)=g(H)=H.If γ(f, g) < 0 and both the transfor-

mations are hyperbolic, then ∃h ∈M st h(H)=H and

β (f1) =
1

2
m (f1)

2 , β (g1) =
1

2
m (g1)

2 (2.22)

where f1 = hfh−1 and g1 = hgh−1. If f is hyperbolic and g is elliptic, then

|γ (f2, g2)| =
1

16
m (f2)

2m (g2)
2 (2.23)

where f2 = hfh−1 and g2 = hgh−1.

Proof. Let z1, z2 be the fixed points of f and w1, w2 be the fixed points of g.

Case1: Both f and g are hyperbolic. Then z1, z2, w1, w2 ∈ R and 6= 0 st

(z1 − w1) (z2 − w2)

(z1 − w2) (z2 − w1)
=

γ(f, g)

β(f)β(g)

(z1 − z2)2 (w1 − w2)
2

(z1 − w2)
2 (z2 − w1)

2 = −t2 (2.24)

For mapping z1, z2, w1, w2 onto 0,∞, t,−t−1 and H onto itself, we can obtain h ∈ M

by replacing t with -t, if necessary. And thus we get fix(f1) = {0,∞} and fix(g1) =

{t,−t−1},

q(0,∞) = q
(
t,−t−1

)
= 2

and thus first two equalities of lemma follow.

Case2: f is hyperbolic and g is elliptic and w2 ∈ H. z1, z2 ∈ R and w1 = w̄2, choose

t ∈ (0,∞ so that

(z1 − w1) (z2 − w2)

(z1 − w2) (z2 − w1)
=

(−t+ it−1) (t− it−1)
(−t− it−1) (t+ it−1)

(2.25)

Thus an h ∈ M maps z1, z2, w1, w2 onto −t, t,−it−1, it−1 and H onto itself. Thus

fix(f2) = {−t, t} and fix(g2) = {−it−1, it−1},

2q
(
±t,±it−1

)2
= 8− q(−t, t)2 = 8− q

(
−it−1, it−1

)2
(2.26)

and our third equality of lemma follows.

16



2.2 The chordal and hyperbolic norm

Lemma 2.2.1. Suppose that f in M has fixed points −r, r and multiplier a2 where

0 < r 5 1 and Re(a) = 0. Then

d(f) =

 4
(
r
∣∣a+1
a−1

∣∣+ 1
r

∣∣a−1
a+1

∣∣)−1 if r
∣∣a+1
a−1

∣∣ ≥ 1

2 if r
∣∣a+1
a−1

∣∣ < 1
(2.27)

Lemma 2.2.2. For f in M having a fixed point,

d(f) =

 4
(

4
m(f)

+ m(f)
4

)−1
if 4

m(f)
= 1

2 if 4
m(f)

< 1
(2.28)

Theorem 2.2.3. If f is in M\{ id } with d(f) < 2. and f has one fixed point,

m(f) =
4d(f)

2 + (4− d(f)2)1/2
(2.29)

Corollary 2.2.3.1. If f is in M, then

m(f)2 5
8d(f)2

4− d(f)2

with equality if and only if f is either the identity or hyperbolic with antipodal fixed

points.

2.3 Lower bounds for the chordal and matrix norms

Lemma 2.3.1. Suppose that D is a disk or half plane in C Then there exists h in M

such that h(D) = H or h(D) = B and such that for each f in M with f(D) = D,

m(f) = m (f1) , d(f) = d (f1) , e(f) = e (f1)

where f1 = hfh−1

Proof. We need only consider the case where h(D)=B as we have the chordal isometry

g = z−i
z+i

mapping H onto B. Now let Seth(z) = z
r
. Then f1(B) = B, f and f1 are
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represented by

A =

 a br

br−1 ā

 , A1 =

 a b

b ā

 , |a|2 − |b|2 = 1

and

m(f)2 −m (f1)
2 = 4|b|2

(
r − r−1

)2
= 0

and our first and third inequalities follow. The second part follows from equation,

when f has one fixed point. If f has two fixed points z1 and z2, then |z1| |z2| = r2

q (z1, z2) 5 q (h (z1) , h (z2))

and again second inequality follows since d(f) is nonincreasing function of q = q(z1, z2).

[Remarks] There exists no positive universal lower bound for the chordal norms of

both generators of a nonelementary discrete subgroup < f, g > of M. for if

f = a2z, g =
(b2 + 1)z + 2b

2bz + (b2 + 1)
,

where 1 < b < a <∞, then < f, g > is a nonelementary discrete Fuchsian group and

d(f) = 2
a2 − 1

a2 + 1
−→ 0, d(g) =

4b

b2 + 1
−→ 2

as a−→ 1 and hence b−→ 1.
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Chapter 3

Lower Bounds for Hyperbolic

norms

If < f, g > is nonelementary and discrete ∃ an absolute constant % st

max(%(f), %(g)) ≥ % (3.1)

Lemma 3.0.1. For f,g∈M, we have

%(fg) ≤ %(f) + %(g), %(f−1) = %(f) (3.2)

Proof. The above result comes from using the triangle inequality and the facts that

f̃ is a hyperbolic isometry and that f̃ g=f̃ g̃

Lemma 3.0.2. Suppose that < f, g > is a discrete subgroup of M and that f and g

have no common fixed points and are not both of order 2. If

%(f) + %(g) < 0.1145, (3.3)

then fg and fg−1 are elliptic.

Proof. Suppose that fg is not elliptic. Then gf is also not elliptic, < fg, gf > is a

19



discrete subgroup of M and

max(%(fg), %(gf)) ≤ %(f) + %(g) < 0.1145

Thus < fg, gf > is elementary and as fg and gf are both parabolic or both loxodromic,

we have

fix(fg) = fix(gf) (3.4)

Since f and g have no common fixed points, there exists a φ of order 2 in M, the Lie

product of f and g, st f = φf−1φ−1 and g = φg−1φ−1. Then

gf = φg−1f−1φ−1 = φ(fg)−1φ−1 (3.5)

Thus

fix(fg) = fix(gf) = φ(fix(fg)) (3.6)

By conjugation we may assume that {∞} ⊂ fix(fg) ⊂ {0,∞}. If fix(fg) = {∞},

then φ(∞) = ∞ by 3.6, fg=z+a and φ = −z + b where a,b ∈ (C) and thus by using

3.5 we have

gf = φ(fg)−1φ−1 = −((−z + b)− a) + b = z + a = fg

Hence f and g commute and

fix(f) = fix(g) (3.7)

contradicting the hypothesis that f and g have no common fixed points. If fix(fg) =

{0,∞}, then 3.6 implies that φ interchanges or fixes 0 and∞. In the first case, fg=az

and φ = bz−1 where a, b ∈ C {0},

gf = φ(fg)−1φ−1 = b(a−1(bz−1))−1 = az = fg

and 3.7 follows. In the second case (fg)−1 and φ commute,

gf = φ(fg)−1φ−1 = (fg)−1, f 2 = g−2 6= id
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and we again obtain 3.7. Thus fg must be elliptic.

If we replace g by g−1, we obtain fg−1 is elliptic.

Lemma 3.0.3. Suppose that f and g in M have no common fixed points, that tr(f),

tr(fg), tr(fg−1) are real and that either f is not of order 2 or tr(g) is also real. Then

< f, g > is a Fuchsian or a purely elliptic group.

Proof. Suppose that f has two fixed points. By means of preliminary conjugation

assume that

f = α2z, g =
az + b

cz + d
(3.8)

where α2 6= 1, ad-bc=1 and bc 6= 0. If f is hyperbolic, then the hypothesis that

tr(fg) = αa+
d

α
, tr(fg−1) =

a

α
+ αd

are real implies that a and d are real. Hence bc is real,

Im(cg(z)) =
Im((acz + bc)(c̄z + d))

|cz + d|2
=

Im(cz)

|cz + d|2

and f and g map D = {z ∈ C : Im(cz) > 0} onto itself. If f is elliptic, then |α| = 1,

tr(fg) = αa+ ᾱd, tr(fg−1) = ᾱa+ αd

are real and the hypothesis that α2 6= −1 or a+d is real implies that a = d̄ whence

α2 − 1 = bc 6= 0. when |a| > 1, we can choose r > 0 so that r2|c|2 = |a|2 − 1; then

g =
az + r2c̄

cz + ā

and hence f and g map D = {z : |z| < r} onto itself. When |a| < 1, g is elliptic with

fixed points given by

z =
i

c
(Im(a)± (1− (Re(a))2)

1
2 )

and the segment joining these points contains the origin. Hence the axes of f and g

intersect in H̃ and < f, g > is purely elliptic.
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Suppose that f has one fixed point. By conjugation assume that

f = z + α, g =
az

cz + d
(3.9)

where αc 6= 0 since fix(f) ∩ fix(g) = ∅. Then

tr(fg) = a+ d+ αc, tr(fg−1) = a+ d− αc,

and tr(g) and αc are real. If g is hyperbolic or elliptic, the desired conclusion follows

by interchanging f and g. If g is parabolic, then a=d and f and g both map D = {z ∈

C : Im(ᾱz) > 0} onto itself.

Lemma 3.0.4. Suppose that < f, g > is a nonelementary discrete subgroup of M.

Then

%(f) + %(g) ≥ 0.1145 (3.10)

Proof. Suppose that the above inequality doesn’t hold. Then f or g, say f, is elliptic.

Suppose that f is not of order 2. Then fg and fg−1 are elliptic and thus tr(f), tr(fg),

tr(fg−1) are real. Hence < f, g > is Fuchsian and

%(f) + %(g) ≥ max(%(f), %(g)) ≥ 0.262

, which is a contradiction.

Now suppose that f is of order 2, let δ denote the hyperbolic distance from j to the

axis of f and choose x on axis(f) so that δ = %H̃(j, x). Next choose h in M so that

h̃(H̃) = H̃ and h̃(x) = j, and set f1 = hfh−1 and g1 = hgh−1. Then f̃1(j) = j whence

%(f1) = 0,

sinh(
%(f)

2
) = sinhδ = sinh(δ(h))

and thus

%(g1f1) + %(f1) = %(g1) ≤ 2%(h) + %(g) = %(f) + %(g) < 0.1145

Since < g1f1, f1 > is nonelementary and discrete, g1f1 is not of order 2 and also g1 is
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elliptic. Hence g is elliptic with ord(g) > 2 and the above argument interchanging f

and g results in contradiction.
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Chapter 4

Continued fractions

4.1 Introduction

Definition. An infinite continued fraction is defined as an expression of the form

K(an | bn) =
a1

b1 + a2
b2+

a3
b3+···

, (4.1)

where the ai and bj are infinite sequences of complex numbers with each ai 6= 0.

The continued fraction 4.1 is said to converge to, or to have value, K if the sequence

of truncated continued fractions

a1
b1
,

a1
b1 + a2

b2

,
a1

b1 + a2
b2+

a3
b3

· · · (4.2)

converges to K.

We can consider the continued fraction 4.1 as simply the pair of complex sequences

an and bn in which no ai is zero. Given two such sequences we can form the sequence

sn of Möbius maps defined by

sn(z) =
an

bn + z
, (4.3)

and sn(∞) = 0. Conversely, as any Möbius map s with s(∞) = 0 can be expressed

uniquely in the form s(z) = a/(b+ z), we can identify the class of continued fractions

with the class of sequences sn of Möbius maps with sn(∞) = 0 for all n. With this
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identification the truncated continued fractions in 4.2 are s1(0), s1s2(0), . . . , where,

in general, fg denotes the map z → f(g(z)), so that the convergence of the continued

fraction is equivalent to the convergence of the complex sequence s1 · · · sn(0).

4.2 Continued fractions

Continued fraction 4.1 can be viewed as the sequence of Möbius maps sn in 4.3. We

shall refer to this continued fraction as the continued fraction generated by sn and

use the notation [s1, s2, · · · ] for the continued fraction 4.1. We write Sn = s1 · · · sn
and say sj generates Sj.

In general, given a sequence of maps fj of a set into itself, we can construct inner and

outer composition sequences as Fn = f1 · · · fn and Gn = fn · · · f1, respectively.

Theorem 4.2.1 (The Stern-Stolz Theorem). If
∑

n |bn| converges then K(1|bn) di-

verges.

For eg., if s(z)=1/z, then the continued fraction [s, s, · · · ] has approximants∞, 0,∞, 0, · · ·

and so diverges. In the Stern-Stolz theorem, sn(z) = 1/(bn + z) and bn −→ 0, so that

sn −→ s, and we might expect that [s1, s2, · · · ] diverges at least if bn −→ 0 sufficiently

quickly.

Remark. (i) To measure the rate of convergence one uses the quantities equivalent to

using the norms. For eg., if one intends to measure the rate in terms of coefficients,

then matrix norm is geometrically significant.

(ii) If sn(z) = 1/(bn + z) then |bn| shows the distance that sn moves the distinguished

point in our model of hyperbolic 3-space. The proof of the Stern-Stolz Theorem is

then nothing more than an application of the triangle inequality between hyperbolic

distances.
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4.3 Complex Möbius maps

Let ϕ be the map from C̃ onto the unit sphere in R3 by stereographic projection. This

map provides us with the chordal metric on C̃, namely

q(z1, z2) =
2|z1 − z2|

(|z1|2 + 1)1/2(|z2|2 + 1)1/2
= |ϕ(z1)− ϕ(z2)| (4.4)

(C̃, q) is a compact metric space.

A complex Möbius map is a map g of the form

g(z) =
az + b

cz + d
, ad− bc 6= 0

Each complex Möbius map g is a homeomorphism of C̃ onto itself. Every chordal

isometry is a Möbius map ( of z or z̄ ).Note that z 7→ 1/z is a chordal isometry as

q(1/z1, 1/z2) = q(z1, z2).

Each Möbius map is a Lipschitz map wrt chordal metric. Indeed, if g(z)=(az+b)/(cz+d),

where ad-bc=1, then

q(g(z), g(w))

q(z, w)
=

(
|g(z)− g(w)|
|z − w|

)√
(1 + |z|2)(1 + |w|2)

(1 + |g(z)|2)(1 + |g(w)|2)

=
1

|(cz + d)(cw + d)|

√
(1 + |z|2)(1 + |w|2)

(1 + |g(z)|2)(1 + |g(w)|2)

=

√
1 + |z|2

√
1 + |w|2√

|az + b|2 + |cz + d|2
√
|aw + b|2 + |cw + d|2

Now applying the Cauchy-Schwarz inequality to each term, we get

|az + b|2 + |cz + d|2 ≤ (|a|2 + |b|2 + |c|2 + |d|2)(|z|2 + 1)
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and define the norm ||g||2 of g as

||g||2 = |a|2 + |b|2 + |c|2 + |d|2

Thus
q(g(z), g(w))

q(z, w)
≥ 1

||g||2

Since ad-bc=1, ||g|| = ||g−1||. After putting u=g(z) and v=g(w), we get

q(g−1(u), g−1(v))

q(u, v)
=

q(z, w)

q(g(z), g(w))
≤ ||g||2 = ||g−1||2

As this is true for all u,v and g−1, after again interchanging the variables we get ∀

z,w and g that
q(g(z), g(w))

q(z, w)
≤ ||g||2

The best Lipschitz constant of a Möius map g is given as

L(g) = sup
z 6=w

q(g(z), g(w))

q(z, w)
;

Thus

L(g) = ||g||2 (4.5)

The vector space of all 2 × 2 matrices is equipped with the norm

||A||2 = |a|2 + |b|2 + |c|2 + |d|2, A =

a b

c d


and ||AB|| ≤ ||A|| ||B|| for all A and B. Consider the following homomorphism

φ : A 7→ gA, A =

a b

c d

 , gA(z) =
az + b

cz + d
(4.6)

from the group GL(2,C) onto the group M.

Theorem 4.3.1. Let φ : SL(2,C) −→ M be the map given in 4.6, where these

spaces have the norm ||.|| and metric q0, respectively. Then φ is an open, continuous,
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surjective map and the restriction of φ to any open ball of radius
√

2 is injective ( and

hence a homeomorphism).

Theorem 4.3.2. Suppose that a Möbius map g is represented by a unimodular matrix

G. Then q0(g, I) ≤
√

6||G− I||.

Theorem 4.3.3. Any Möbius map g can be represented by a unimodular matrix G st

||G− I||2 ≤ 4q0(g, I)2

4− q0(g, I)2

Theorem 4.3.4. For a 2 × 2 unitary matrix A, conjugation X 7→ AXA−1 is an

isometry of vector space of 2 × 2 complex matrices wrt the metric ||X − Y ||. If f

is the Möbius transformation φ(A); then f is the chordal isometry. In other words,

∀ g,h ∈ M, q0(fgf
−1, fhf−1) = q0(g, h), so that the conjugation g 7→ fgf−1 is an

isometry of (M, q0). Hence, every chordal isometry is of the form φ(A) for some

unitary matrix A.

Theorem 4.3.5. If a sequence gn of Möbius maps converges at three distinct points

of C̃ to three distinct values, then the sequence gn converges uniformly on C̃ to some

Möbius map g.

Definition. Let g( 6= I) be any Möbius transformation. Then

(i) g is parabolic iff g has a unique fixed point in C̃;

(ii) g is loxodromic iff g has exactly two fixed points in R̃3;

(iii) g is elliptic iff g has infinitely many fixed points in R̃3.

Definition. Let g be a loxodromic transformation. We say that g is hyperbolic if

g(D)=D for some open disc( or half-plane) D in C̃; otherwise g is said to be strictly

loxodromic.

Theorem 4.3.6. A möbius map g is

(1) parabolic if it is conjugate to z 7→ z + 1;

(2) elliptic if it is conjugate to z 7→ kz for some k with |k| = 1, k 6= 1;

(3) hyperbolic if it is conjugate to z 7→ kz for some k > 0 and k 6= 1

Proof. We know that any Möbius transformation is conjugate to any one of the stan-

dard forms. Let us observe the fixed points of the standard forms. The action of mk
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in R̃3 is given as

mk(z + tj) = kz + |k|tj (k 6= 1); (4.7)

m1(z + tj) = z + 1 + tj, (4.8)

These equations enable us to find the fixed points of each mk. And we have:

(i) m1 fixes ∞ but no other point in R̃3 ;

(ii) if |k| 6= 1, then mk fixes 0 and ∞ but no other points in R̃3 ;

(iii) if |k| = 1, k 6= 1, then the set of fixed points of mk is given by

{tj : t ∈ R}
⋃
{∞} (4.9)

Using the above definition we get our required result.

Theorem 4.3.7. For a given Möbius g we have

(1) g is parabolic iff tr2(g) = 4;

(2) g is elliptic iff tr2(g) ∈ [0, 4);

(3) g is hyperbolic iff tr2(g) ∈ (4,+∞);

(4) g is strictly loxodromic iff tr2 /∈ [0,∞).

Proof. Suppose that g is conjugate to the standard form mp so that we have

tr2(g) = p+
1

p
+ 2 (4.10)

We have g conjugate to mp and m 1
p

and to no other mq.

If g is parabolic, then g is conjugate to m1 only: so p=1 and we get tr2(g) = 4.

Conversely, let tr2(g) = 4. This implies p=1 and we get g is parabolic. This proves

(1).

Now suppose that g is elliptic, then p = eiθ where θ is real and cosθ 6= 1. Then

tr2(g) = 2 + 2cosθ (4.11)

And we get tr2(g) ∈ [0, 4). Now, suppose that tr2(g) ∈ [0, 4). Then we can write

tr2(g) in the form 4.11 with cosθ 6= 1 and then we get p = eiθ, e−iθ. Thus |p| = 1, p 6= 1

and we deduce that g is elliptic. Hence, this proves (2).
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Now let tr2(g) ∈ (4,+∞). Then we have solutions p = k, 1
k

say, where k > 0. As

both solutions are positive; mp necessarily preserves upper half plane and is thus

hyperbolic. Thus g is also hyperbolic. Conversely suppose that g and hence mp is

hyperbolic and let D be a disc invariant under mp. ∀z ∈ D, the images of z under the

iterates of mp are in D and so

{pn(z) : n ∈ Z} ⊂ D (4.12)

Because |p| 6= 1, this shows that 0 and∞ are in the closure of D. The same argument,

but with z chosen in the exterior of D, leads to the conclusion that 0 and ∞ lie on

the boundary of D. Thus D is a half-plane and in order to preserve D, it is important

that mp leaves invariant each of the half-lines from 0 to ∞ on the boundary of D.

Thus p > 0 and hence tr2(g) > 4. This proves (3).

Obviously, M is the disjoint union of {I} and the three classes of parabolic, elliptic

and loxodromic maps.

Theorem 4.3.8. Let f and g be two Möbius maps neither of which is the identity.

Then f and g are conjugate in M iff tr2(f) = tr2(g).

Proof. We know that if f and g are conjugate then tr2(f) = tr2(g).

Now suppose that tr2(f) = tr2(g). Also for some p and q, f and g are conjugate to

the standard forms mp and mq respectively. Hence

tr2(mp) = tr2(f) = tr2(g) = tr2(mq) (4.13)

From 1.13, we get p=q or p = 1
q
. Now we claim that mp is conjugate to m 1

p
, which is

obvious for p=1. Now for p 6= 1 we have

hmph
−1 = m 1

p
, h(z) = −1

z
(4.14)

Thus we have f is conjugate to mp, g is conjugate to mq and mp is conjugate to mq as

p=q or p = 1
q
. Since conjugacy is an equivalence relation, we come to the conclusion

that f is conjugate to g.
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Class of loxodromic mpas is hyperbolic iff tr2 ∈ (4,+∞), else it is called strictly

loxodromic. A loxodromic map is hyperbolic iff it has an invariant disc and also if

it can be written as the composition of exactly two inversions whereas most Möbius

maps require four inversions.

Theorem 4.3.9. The periodic continued fraction generated by s(z) = a/(b+ z) con-

verges iff −b2/a /∈ [0, 4).

4.4 Möbius maps and hyperbolic geometry

We take upper-half plane H (given by y > 0, where z=x+iy) to be the hyperbolic

plane. The hyperbolic metric ρ on H is derived from the line element ds = |dz|/Im[z],

and the Möbius maps that map H onto itself are the conformal isometries of H. The

geodesics are the semi-circles in H whose centres lie in R, together with the ’vertical’

half-lines whose initial point lies in R.

Theorem 4.4.1. The Möbius group M is the group of all conformal orientation-

preserving isometries of H3.

Theorem 4.4.2. Let g be any complex Möbius map, and let I be the identity map.

Then

||g||2 = ||I||2 + 4sinh2
1

2
ρ(j, g(j)) (4.15)

As ||I||2 = 2 we can also write 4.15 in the form ||g||2 = 2coshρ(j, g(j)).

Theorem 4.4.3. For all g in M, we have

||g||2 = 2coshρ(j, g(j)) (4.16)

Proof. We have

g(z) =
az + b

cz + d
, ad− bc = 1; (4.17)
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Poincare extension of g is given by

g(z + tj) =
(az + b)(cz + d) + ac̄t2 + |ad− bc|tj

|cz + d|2 + |c|2t2
(4.18)

Putting z=0 and t=1, we get

g(j) =
(bd̄+ ac̄) + j

|c|2 + |d|2
(4.19)

For ζ1 = z1 + t1j and ζ2 = z2 + t2j, we have

coshρ(ζ1, ζ2) = 1 +
|z1 − z2|2 + (t1 − t2)2

2t1t2
(4.20)

We have

|bd̄+ ac̄|2 + 1 = |bd̄+ ac̄|2 + |ad− bc|2 = (|a|2 + |b|2)(|c|2 + |d|2) (4.21)

Using the identity 4.21 and substituting z1 = 0, t1 = 0 (so ζ1 = j, ζ2 = g(j)) in 4.20,

we get our required result.

Theorem 4.4.4. Let g be any complex Möbius map. Then the best Lipschitz constant

(relative the chordal metric) for g is given by

L(g) = exp[ρ(j, g(j))] (4.22)

From 4.15 and 4.22, we get

L(g) =
1

2
(||g||2 +

√
||g||4 − 4) (4.23)

Thus,
1

2
||g||2 ≤ L(g) ≤ ||g||2 (4.24)

and L(g) −→ ||g||2 as ||g|| −→ +∞. Now, since g−1 is an isometry, ρ(j, g(j)) =

ρ(g−1(j), j), we have from 4.22 that ∀ g,

L(g−1) = L(g) ≥ 1 (4.25)
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Theorem 4.4.5. For any Möbius g represented by A the following are equivalent:

(a) A ∈ SU(2,C);

(b) ||g||2 = 2;

(c) L(g)=1;

(d) ρ(j, g(j)) = 0;

(e) g is a chordal isometry.

Proof. (b) directly follows from (a) as A is unitary.

Putting ||g||2 = 2 in 4.23, we get L(g)=1. Hence (b)⇒(c).

Now (d) follows from (c) by putting L(g)=1 in 4.22.

Now we prove equivalence of (a) and (e). Observe that g will be isometry iff ∀ z,

|g(1)(z)|
1 + |g(z)|2

=
1

1 + |z|2
(4.26)

Thus (e) holds iff ∀ z,

1 + |z|2 = |az + b|2 + |cz + d|2 (4.27)

or equivalenttly,

1 + |z|2 = (|a|2 + |c|2)|z|2 + (|b|2 + |d|2) + 2Re(ab̄+ cd̄)z (4.28)

This is equivalent to

|a|2 + |c|2 = |b|2 + |d|2 = 1 (4.29)

and

ab̄+ cd̄ = 0 (4.30)

which in turn is equivalent to ĀtA = I and this is (a).

Theorem 4.4.6. Suppose that the Möbius maps f and g satisfy q0(f, g) <
√

2. Then

L(g) ≤ 18L(f).

34



4.5 Convergence

Definition. The continued fraction 4.1 is said to converge strongly to a value α in C

if

(i) there are distinct u and v in C̃ st Sn(u)→ α and Sn(v)→ α as n→∞, and

(ii) the set {S−1n (∞) : n = 1, 2, 3, · · · } is not dense in C̃.

Definition. The continued fraction 4.1 converges generally, or is generally convergent,

to a value α in C̃ if ∃ sequences un and vn in C̃ st

lim
n→∞

Sn(un) = lim
n→∞

Sn(vn) = α, lim
n→∞

q(un, vn) > 0

Definition. A sequence gn of Möbius maps converges generally, or is generally con-

vergent, to a value α in C̃ if ∃ sequences un and vn st

lim
n→∞

gn(un) = lim
n→∞

gn(vn) = α, lim
n→∞

q(un, vn) > 0 (4.31)

Theorem 4.5.1. A sequence gn of Möius maps converges generally to α in C̃ iff

gn −→ α on H3.

We know that a sequence of Möius maps converges pointwise on H3 to a point α in

C̃ iff it converges to α uniformly on compact subsets of H3. This comes out of the

facts that Each Moöbius map is an isometry of H3 and that the Euclidean length of a

’ruler’ of fixed hyperbolic length shrinks to zero as the ruler approaches the boundary

of hyperbolic space (as demonstrated by Escher’s tesselations of unit disc in two-

dimensions). The proof of the above theorem makes use of the following geometric

lemma.

Lemma 4.5.2. Let γ be a geodesic in H3 whose endpoints u and v in C̃ are at a

chordal distance δ apart. Then γ passes within a hyperbolic distance cosh−1(2/δ) of

the point j.
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4.6 Strong divergence

While convergence (whether classical or general) includes convergence to ∞, the di-

vergence of a sequence of Möbius maps implies an oscillatory behaviour. Stronger

notion of divergence can only be understood by considering the action of Möbius

maps on H3. An extreme case in which notion of general convergence fails is when

the sequence gn(j) does not even escape to the boundary of hyperbolic space.

Definition. A sequence gn of complex Möbius maps is strongly divergent if for one

(and hence all) x in H3, the sequence gn(x) lies in a compact subset of H3. A strongly

divergent sequence cannot converge generally.

We have

||gn||2 = ||I||2 + 4sinh2
1

2
ρ(j, gn(j)) (4.32)

Theorem 4.6.1. A sequence gn of complex Möbius maps is strongly divergent iff the

sequence ||gn|| is bounded.

Theorem 4.6.2. Let g1, g2, · · · be Möbius maps. If
∑

n(||gn||2 − 2)2 converges, then

the sequence g1 · · · gn is strongly divergent.

Proof. As x −→ 0 , sinh x −→ x and also from 4.32, we know that the following three

series ∑
n

(||gn||2 − 2)2,
∑
n

sinh
1

2
ρ(j, gn(j)),

∑
n

ρ(j, gn(j))

converge or diverge together. Assume that ρ(j, gn(j)) = M , say where M < ∞. Let

G0 = I, and Gn = g1 · · · gn. g′js being the isometries of H3, we have

ρ(j, Gn(j)) ≤
n−1∑
m=0

ρ(Gm(j), Gm+1(j) =
n−1∑
m=0

ρ(j, gm+1(j)) ≤M

Thus Gn(j) lie in some compact subset of H3 and hence the sequence Gn diverges

strongly.

Unitary maps fix j; that is, g(j) = j iff ||g||2 = 2. Thus Theorem 4.6.1 says that the

inner composition sequence g1 · · · gn is strongly divergent iff (in some sense) the gn

approach the subgroup of unitary maps sufficiently rapidly. Thus, in this result we
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do not require that gn converge, but merely that each gn looks increasingly like some

unitary map.

The following two results make use of matrix norms.

Theorem 4.6.3. Suppose that s(z)=a/(b+z) is elliptic, sn(z) = an/(bn + z) and∑
n ||sn− s|| converges. Then K(an|bn) diverges. Also, if z0 is a fixed point of s, then

Sn(z0) converges to some limit, say w, and then S−1n (w) −→ z0.

Theorem 4.6.4. Suppose that tn −→ t, where each tn and t is elliptic. If
∑

n ||tn−t||

converges then t1 · · · tn converges to distinct values at the two fixed points of t, and

diverges elsewhere.
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