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Abstract

The evolution of spatial patterns is a central issue in developmental biology. Turing’s

chemical theory of morphogenesis was a seminal contribution. We describe briefly

some of the interesting mathematical aspects of Turing’s Reaction-Diffusion (RD)

mechanism and give an overview of a few of the popular reaction models incorpo-

rated into it. The conditions on kinetic and diffusion parameter values under which

pattern formation takes place are derived. We utilize our understanding of Turing’s

RD mechanism to study pattern formation in Passiflora Incarnata (Passion Flower),

which has a pattern of alternate bands of white and violet colours on each of its fibrils

with a unique feature of non-uniform widths of the bands. We study systematically

the effect of various kinetic and diffusion parameters on the generated patterns using

the two different reaction models.
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Chapter 1

Introduction

In a glance around oneself, one comes across several beautiful patterns in nature.

It may be a living organism or a non-living object. Most of the naturally occurring

things seem to have some pattern or another - simple or complex, due to colour,

shapes or several other variations one can think of. Spatial and spatio-temporal pat-

terns occur widely in chemistry too. The best known oscillatory reaction is perhaps

the Belousov-Zhabotinskii reaction,4 in which bromate ions oxidise malonic acid in

a reaction catalysed by cerium (Ce3+/Ce4+). Sustained periodic oscillations are ob-

served in the concentration of cerium ions. If, instead, one uses the catalyst Fe2+/Fe3+

and phenanthroline, the periodic oscillations are visualised as colour changes between

reddish-orange and blue.5 This system can also exhibit a number of different types of

wave structures such as propagating fronts, spiral waves, target patterns and toroidal

scrolls.6–11 It is quite natural to ask the question how these patterns are formed in

nature.

One of the major issues in developmental biology is understanding morphogenesis,

i.e., the emergence of structure and form from an almost uniform mass of dividing

cells that constitutes the early embryo. Although genes play a key role, genetics says

nothing about the actual mechanism that is responsible for the pattern formation.

What exactly happens during embryogenesis which leads to an organism’s shape?

How do living organisms convert the detailed one-dimensional genetic information

into a three-dimensional map, the shape of the living organism?

Many models of how different processes can come together to produce patterns

have been proposed and analysed. They range from gradient-type models involving

1



(a) Sand dunes (b) Waves in water

(c) Butterfly wings (d) Symmertry in flower

Figure 1.1: Exemplary patterns in nature; Source: Internet

a simple source-sink mechanism12 to cellular automata models in which the tissue is

discretised and rules are introduced as to how different elements interact with each

other13 to more complicated models which incorporate more sophisticated chemistry

and biology. Here we shall focus on the model from the latter category.

Flowing liquids, for instance in a river, can generate spatial forms that remain

constant over time. They owe their existence to the shape of the river bottom, but

their expressed form cannot be explained without considering also the dynamics of

the flow. In the laboratory, very orderly patterns can be generated in dishes of liquid

undergoing convective flow. For biological development, the kinetic paradigm is that

the form of living pattern is often generated by the flow of material through numerous

biochemical reacting systems of life. This kinetic preconception was put on a firm

mathematical basis by Alan Turing in 1952, in a paper entitled ‘The chemical basis

of morphogenesis’.14

2



(a) Target patterns (b) Spiral patterns

Figure 1.2: Spatio-temporal patterns in the Belousov-Zhabotinskii reaction1

Turing proposed a mathematical model for the mechanism of morphogenesis from

a mixture of chemicals (morphogens) which react together and diffuse through the

tissues. A spatial pattern in these chemicals may be set up which in turn deter-

mines cell differentiation. Thus the pattern or structure that we observe is due to the

underlying pre-pattern in morphogens. This model is named Reaction-Diffusion. Tur-

ing demonstrated theoretically that a homogeneous mixture of such chemicals could

lead to spatial patterns of their concentrations triggered by random disturbances. He

showed that diffusion could drive a chemical system to instability, leading to spatial

patterns where no prior patterns existed. More specifically, he considered a system

of an activator and an inhibitor. The activator stimulated and enhanced the pro-

duction of the inhibitor, while the inhibitor depleted or inhibited the formation of

the activator. He showed that if the diffusion of the inhibitor was greater than that

of the activator, then diffusion-driven instability could result. It is worth mention-

ing here that mixtures of small molecules and ions in aqueous solution may generate

travelling waves (a well-known example is Belousov-Zhabotinskii reaction6–11), but

do not produce stationary patterns, because all the solutes have similar diffusivities.

Experimental success in producing undoubted Turing patterns in non-living chemical

systems has arisen from the use of polymeric substances which can differentially slow

down some of the diffusing reactants.

A more general and refined form of the reaction diffusion equation, derived from its

original form proposed by Turing is

3



∂u

∂t
= D∇2u + f(u, p), (1.1)

where u is a vector of chemical concentrations, D is the matrix of diffusion coef-

ficients and f represents chemical coupling with kinetic parameters p.

In late 1960s, Prigogine and co-workers15–17 pointed out clearly that the direct

spontaneous transition from a uniform state to a stationary patterned state (the Tur-

ing bifurcation) requires that the system involves at least one positive (e.g. auto-

catalysis) and one negative feedback (inhibition) process, includes chemical species

with appropriately different diffusion coefficients and, last but not the least, operates

far from thermodynamic equilibrium. Zhabotinskii et al. and Winfree published their

experimental observations of long-lasting wave trains in batch solutions of BZ reac-

tion.6,7,18,19 Turing’s approach to pattern formation was theoretically further extended

in the 1970s and 1980s by various people, of which the works of Hans Meinhardt20

and James Murray2,21,22 are particularly very popular. Several reviews on the subject

have been published already.23–25 The first indisputable demonstration of Turing’s

prediction in chemical systems was provided by the ‘Non-Linear Dynamic Systems’

group in Bordeaux, at the end of 1989, nearly forty years after it was proposed.26

This breakthrough was made possible by operating a newly discovered reaction - the

chlorite-iodide-malonic acid (CIMA) reaction27 - in newly invented open spatial reac-

tors of different geometries. Soon after the observation of these stationary patterns,

static and spatio-temporal patterns were observed in the ferrocyanide-iodate-sulphite

(FIS) reaction.28 Thereafter many experimental instances have been found for the RD

theory of pattern formation.29

A careful look at eq. (1.1) tells us that the general RD equation is basically a

set of coupled partial differential equations with first order temporal derivatives on

the left hand side and second order spatial derivatives on the right hand side. This

general form of RD equation may have any number of concentration variables. Many

researchers confine themselves to just two concentration variables, as originally pro-

posed by Turing, out of which one is the activator and the other is the inhibitor.

Therefore, hereafter, we will refer to the following equation for RD theory, which

4



(a) Stationary chemical patterns in the CIMA
reaction (bars represent 1mm)30

(b) Time asymptotic pattern for the FIS re-
action31

Figure 1.3: Experimentally observed Turing patterns in chemical reactions

contains just two variables u = u1 and v = u2:

∂u

∂t
= Du∇2u+ f(u, v) (1.2a)

∂v

∂t
= Dv∇2v + g(u, v) (1.2b)

where Du = D1, Dv = D2, f1(u1, u2) = f(u, v) and f2(u1, u2) = g(u, v).

The reaction part of eq. (1.2) is the most amenable for modification and debate,

as is evident from the history of RD theory. Turing proposed a linear form of kinet-

ics. Several non-linear forms have been proposed subsequently. Following are a few

exemplary non-linear versions of reaction kinetics used in RD equations:

Schnakenberg kinetics:32

f(u, v) = k1 − k2u+ k3u
2v (1.3a)

g(u, v) = k4 − k3u2v (1.3b)

5



Thomas kinetics (adopted by Murray):33

f(u, v) = k1 − k2u− h(u, v) (1.4a)

g(u, v) = k3 − k4v − h(u, v) (1.4b)

h(u, v) =
k5uv

k6 + k7u+ k8u2
(1.4c)

Meinhardt kinetics:34

f(u, v) = k1 − k2u+
k3u

2

v
(1.5a)

g(u, v) = k4u
2 − k5v (1.5b)

The above equations are three different sets of kinetic equations employed in the RD

theory for biological pattern generation. Out of these, kinetics (1.4) and (1.5) are very

popular and extensively applied to generate well-known biological shapes and patterns

numerically. Both these versions of kinetic equations have been used successfully to

understand the mechanism at the molecular level, of various biological phenomena

and patterns such as, cartilage formation in vertebrate limbs, coloured patterns of

butterfly wings, alligator teeth, head regeneration in Hydra, spots of Cheetah, stripes

of Zebra and many more.2,20,21 By their enormous contribution to the development

of the RD theory, Murray and Meinhardt have popularized this field very much and

widened the domain of its application.

For a researcher who is trying to understand the mechanism of biological pattern

formation using the RD theory, the prime goal is to solve the above set of partial

differential equations (1.2) and hence see the evolution of the desired concentrations

(of morphogens) with time and space, finally leading to the desired pattern. Here the

kinetic terms f(u, v) and g(u, v) are basically the coupling terms of PDEs. With the

non-linear coupling terms such as the ones mentioned above (equations (1.3), (1.4)

and (1.5)), the set of PDEs (eq. (1.2)) is not analytically solvable. In the absence of

an analytic solution, we try to solve them numerically. It is worth mentioning here

that the RD equation is analogous to the TDSE, except for the imaginary part in the

latter.

The general procedure to generate patterns using RD eq. (1.2) is the following. First

of all, a uniform steady state is found. It is the solution of f(u, v) = 0 and g(u, v) = 0

6



(a) Computed patterns and those observed on
the Tiger back

(b) Observed patterns on tails of various or-
ganisms, and computed pattern in rectangu-
lar domain

(c) Typical examples of stripes on the foreleg of zebra, and expected
mathematical pattern for intersecting striped domains

Figure 1.4: Some of the biological patterns computed by Murray using Thomas ki-
netics in RD equations2

yielding u0 and v0, which are constant in space and time. Under certain conditions of

kinetic parameters and diffusion coefficients, such a steady state, which is stable in the

absence of diffusion, could be made unstable in the presence of diffusion and evolve

to a spatially patterned state. Turing was interested in morphogenesis. Therefore, he

proposed that this chemical pattern could serve as a pre-pattern to which cells would

respond in such a way that a spatial structure would be formed. For example, if one

of the chemicals was a plant growth hormone, then the pre-pattern could result in a

patterned growth. More generally, these chemicals (termed morphogens) could trigger

a genetic switch causing cell differentiation.

Passion flower (Passiflora incarnata) exhibits a beautiful pattern on its “fibrils”

formed by alternate bands of violet and white colours. Each fibril has such a pattern

of colours that collectively all the fibrils give rise to concentric circles of colour bands

due to their radially symmetric position on the flower. In this project we focus on

understanding the mechanism of the occurrence of this pattern using RD theory. We

7



Figure 1.5: Example of computed patterns by Gierer-Meinhardt kinetics in RD equa-
tions : (A-E) Experimental gene expression for tentacle formation in Hydra; (F-I)
Computed patterns of the same gene expression (brown).3

have started with a one-dimensional domain of cells/tissues of a single fibril. The idea

is to increase the complexity in steps and increase the number of dimensions. The

RD equations have been solved numerically for both Murray and Meinhardt kinetics

to generate the desired patterns. Finite difference methods have been employed to

obtain numerical solutions of the equations.

8



Chapter 2

Fluid dynamics: Introduction to

the diffusion equation

The problem of flowing fluid is a standard one and applicable to various real life cases.

A spatial non-uniformity in concentration of a fluid drives it to flow. In other words, a

non uniform distribution of the constituent particles of fluid make them diffuse. The

constituent particles may also interact with each other (via. some chemical reactions

for example). The mathematical equation which is used to handle such a process is

derived below.35,36

Let Rn with n > 1 be the nth dimensional real space. In particular, we are interested

in the cases of n = 2 and 3. We assume that Ω is small region in this space. Let

P(t, r) be the density function of the constituent particles, where t is the time, and

r ∈ Ω is a point in the nth dimensional space. The dimension of density is number of

particles per unit area (if n = 2) or unit volume (if n = 3).

We need to study the change in function P(t, r) with time t and location r. It can

happen in two ways: one being diffusion, that is the individual particles move, and

the second is production of new particles and/or consumption of existing particles.

This may happen due to several reasons, for example, chemical reaction. We model

both of these possibilities separately.

We first deal with diffusion. The amount of a substance which passes through a

point in space per unit area per unit time is called its flux at that point. According

to Fick’s law of diffusion,37 the flux of density function P(t, r) is a vector pointing

9



from high density region to low density region and with its magnitude proportional

to density gradient. Mathematically it can be represented as below:

J(t, r) = −D(r)∇rP (t, r), (2.1)

where J is the flux of P, D(r) is the diffusion constant at r, ∇r is the gradient

operator ∇rf(r) =

(
∂f

∂r1
,
∂f

∂r2
, ...,

∂f

∂rn

)
.

The production and/or consumption of constituent particles at any point per unit

time, that is the rate of change of the density function, which may occur due to

reasons like physical transformation or chemical reactions, is assumed to be given by

f(t, r, P), which is called the reaction rate. Let O be region in space, then the

total number of constituent particles in O is
∫
O
P (t, r)dr, where dr is the infinitesimal

volume element. Thus, the rate of change of the total number of particles is

d

dt

∫
O

P (t, r)dr. (2.2)

Now we apply the law of mass conservation on this system to derive the Reaction-

Diffusion equation. The net production of particles inside the region O is∫
O

f(t, r, P (t, r))dr (2.3)

and the total out-flux is ∫
δO

J(t, r).n(r)dS, (2.4)

where δO is the boundary of O and n(r) is the outer normal direction at r.

Therefore on conserving the total number of particles we get

d

dt

∫
O

P (t, r)dr = −
∫
δO

J(t, r).n(r)dS +

∫
O

f(t, r, P (t, r))dr. (2.5)

From the Divergence Theorem in multi-variable calculus we have∫
δO

J(t, r).n(r)dS =

∫
O

∇.(J(t, r))dr. (2.6)

Combining eq. (2.1), (2.5) and (2.6), and interchanging the order of differentiation

10



and integration we obtain∫
O

∂P (t, r)

∂t
dr =

∫
0

[∇.(D(r)∇rP (t, r)) + f(t, r, P (t, r))]dr (2.7)

Since the choice of region O is arbitrary, the differential equation

∂P (t, r)

∂t
= ∇.(D(r)∇rP (t, r)) + f(t, r, P (t, r)) (2.8)

holds for any (t, r). The equation (2.8) is called a reaction diffusion equation.

Here, ∇.(D(r)∇rP (t, r) is the diffusion term, which describes the movement of the

particles under their density gradient and f(t, r, P (t, r)) is the reaction term which

describes the reaction occurring in the domain.

The diffusion coefficient D(r) may not be a constant always as many systems are

heterogeneous. But when the region of the diffusion is approximately homogeneous,

we can assume that D(r) ≡ D, then eq. (2.8) can be simplified to

∂P

∂t
= D4 P + f(t, r, P ), (2.9)

where 4P = ∇.(∇rP ) =
n∑
i=1

∂2P

∂r2i
is the Laplacian operator. When there is no

reaction, the equation is the diffusion equation, as follows

∂P

∂t
= D4 P. (2.10)

In classical mathematical physics, the equation Tt = 4T is called the heat equa-

tion, where T is the temperature function. Conduction of heat can be considered as

a form of diffusion of heat.
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Chapter 3

Reaction-Diffusion theory for

biological pattern formation

3.1 Basic theory from origin

In this chapter we will discuss briefly the theory of Reaction-Diffusion of morphogen-

esis/pattern formation in living organisms. This theory was first proposed by Turing

in 1952 in his seminal paper “The Chemical basis of Morphogenesis”.14 He addressed

the issue how an embryo from its blastula stage, when it is a spherically symmetric

mass of cells, gives rise to an organism such as horse which is not spherically symmet-

ric. He proposed that the chemicals, called morphogens, react and diffuse through

the cells/tissues. The key idea is that these reacting and diffusing set of chemicals

within the uniform homogeneous mass of cells set up a chemical pre-pattern, and the

cells then differentiate following this pre-pattern, leading to the patterns/forms in the

initial uniform mass of cells. A similar explanation is valid for any kind of biological

patterns observed in nature. Turing gave a mathematical form to this idea. Following

are the equations he used in his original paper for studying RD of two morphogens X

and Y in a linear array of N cells:

dxr
dt

= axr + byr + µ(xr+1 − 2xr + xr−1) (3.1a)

dyr
dt

= cxr + dyr + ν(yr+1 − 2yr + yr−1) (3.1b)

where xr and yr are perturbations in the steady state concentrations of X and Y in

the rth cell, a, b, c, d are ‘marginal reaction rates’, µ and ν are cell to cell diffusion

constants for X and Y, respectively, r = 1 to N.
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Using the above set of equations, he demonstrated that, under certain conditions

of parameters, an initially homogeneous distribution of concentrations of X and Y

at their steady state could lead to spatially heterogeneous patterns of concentrations

stable with time, in response to random perturbations about the steady state. In

the absence of diffusion, the system would be resistant to such random perturbations

about the steady state. Therefore, basically it was the counter intuitive concept

of diffusion driven instability, introduced by Turing. A careful analysis of the

conditions of parameters leading to such an instability suggests that it is a system

of two chemicals, an activator and an inhibitor, and that the inhibitor has a higher

diffusion rate than the activator.

To make the problem mathematically tractable, Turing assumed that the system

never deviated far from the original homogeneous condition. This assumption was

called linearity assumption because it permitted the replacement of the general

reaction rate functions by linear ones. He believed that the chemical pre-pattern is

formed during the early stages of embryogenesis when such an assumption is valid.

He mentioned in his paper, “Its justification lies in the fact that the patterns pro-

duced in the early stages when it is valid may be expected to have strong qualitative

similarity to those prevailing in the later stages when it is not.” (Turing, 1952, p.66)

But this linearization led to some stability problems. The equations with non-linear

reaction parts are not analytically solvable. Turing had also mentioned the possibility

of numerically solving non-linear equations using digital computers.

We have derived the general form of the RD eq. (2.9) in the previous chapter. In

our approach we have morphogens flowing through the cells/tissues and produced or

consumed due to reaction with each other. We employ eq. (2.9) with the concen-

trations of morphogens as the variables in our RD theory. The diffusion part is the

same and the reaction part is the reaction of morphogens. There are various forms

of the reaction terms which have been proposed. Each has its own advantage as well

as disadvantage, and yields different results. We will discuss a few of them in the

following chapter.

3.2 Different non-linear kinetics

As was mentioned earlier, Turing had assumed linear kinetic terms in RD equations

as they are analytically solvable. Since the publication of Turing’s paper, several RD
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models have been considered with non-linear kinetics terms. These models are more

realistic in that their solutions evolve to bounded values (unlike linear ones where

solutions tend to exponentially grow in time as we will see later), and are derived

essentially in three different ways: (i) empirically, (ii) phenomenologically and (iii)

through a hypothetical reaction. An example of (i) is the Thomas model which is

based on a specific reaction. The model of Geirer and Meinhardt is an example of (ii)

type, while the Schnakenberg model belongs to the (iii) category. We will now discuss

each of them one by one.

3.2.1 Thomas kinetics

In empirical models, the kinetics are fitted to experimental data. The immobilized-

enzyme substrate-inhibition mechanism of Thomas33 involves the reaction of uric

acid (concentration u) with oxygen (concentration v). Both reactants diffuse from

a reservoir maintained at constant concentrations u0 and v0, respectively, on to a

membrane containing the immobilized enzyme uricase. They react in the presence of

the enzyme at the empirical rate
k5uv

k6 + k7u+ k8u2
so that

f(u, v) = α(u0 − u)− k5uv

k6 + k7u+ k8u2
(3.2a)

g(u, v) = β(v0 − v)− k5uv

k6 + k7u+ k8u2
, (3.2b)

where k2 = α, k4 = β, k1 = αu0, k3 = βv0, k5, k6, k7 and k8 are positive constants.

3.2.2 Meinhardt kinetics

In phenomenological models, the kinetics is chosen such that one of the chemicals is an

activator and the other an inhibitor. In the Gierer-Meinhardt model34 as shown below,

u is the activator; it is produced by autocatalysis and it activates the production of

v, which is the inhibitor, inhibiting the production of u:

f(u, v) = k1︸︷︷︸
source

− k2u︸︷︷︸
linear degradation

+
k3u

2

v︸︷︷︸
autocatalysis in u/inhibition from v

(3.3a)

g(u, v) = k4u
2︸︷︷︸

activation by v

− k5v︸︷︷︸
linear degradation

(3.3b)
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3.2.3 Schnakenberg kinetics

Schnakenberg (1979)32 proposed a series of trimolecular autocatalytic reactions in-

volving two chemicals as follows:

X
k2−⇀↽−
α1

A, B
β1−→ Y, 2X + Y

k3−→ 3X

Using the Law of Mass Action, which states that the rate of a reaction is directly

proportional to the product of the active concentrations of the reactants, and denoting

the concentrations of X, Y, A and B by u, v, α and β, respectively, we have

f(u, v) = α1α− k2u+ k3u
2v (3.4a)

g(u, v) = β1β − k3u2v, (3.4b)

where α1, β1, k2 and k3 are (positive) rate constants, k1 = α1α and k4 = β1β.

Assuming that there is an abundance of A and B, α and β can be considered to be

approximately constant, and so are k1 and k4.

Remark: To verify Turing structures, a variation in diffusion coefficients is essen-

tially required. For a general two-species RD system as shown below, the ratio may

be changed as follows:38

∂u

∂t
= Du∇2u+ f(u, v)

∂v

∂t
= Dv∇2v + g(u, v).

We additionally assume that the activator is involved in a reaction of the form:

U + S
r1−⇀↽−
r2
C·

Assuming that both S and C are immobile, the RD system is now modified to:

∂u

∂t
= Du∇2u+ f(u, v)− r1us+ r2c

∂v

∂t
= Dv∇2v + g(u, v)

∂c

∂t
= r1us− r2c,

where s and c are the concentrations of S and C, respectively, and r1, r2 are rate
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constants. If r1 and r2 are large, then using a singular perturbation, c can be ap-

proximated in terms of u by c ≡ ru, where r =
s0r1
r2

and we have assumed that the

concentration of S remains close to its initial value, s0.

c = ru ⇒ ∂c

∂t
= r

∂u

∂t
.

On the addition of the first and fourth equations above, we obtain the following

equation for the activator:

(1 + r)
∂u

∂t
= Du∇2u+ f(u, v).

Thus when r >> 1 the diffusion of the activator is greatly reduced.

This demonstrates one way of reducing the effective diffusion rate of the chemical

activator by the formation of an immobile complex. This approach was used by

Lengyel and Epstein39,40 to demonstrate Turing structures in the CIMA reaction. In

this case, starch forms a stable complex with triiodide ions via the reaction

S + I− + I2 −⇀↽− SI−3

and the high molecular weight of the complex reduces the rate of diffusion.

3.3 Dimensionless RD system

To reduce the number of parameters in a model, appropriate dimensionless quantities

may be used. On introducing L as a typical length scale in the Schnakenberg model

(3.4) and setting,

x∗ =
x

L
, t∗ =

Dut

L2
, u∗ = u

√
k4
k1
, v∗ = v

√
k4
k1
,

a = α
k2
k1

√
k4
k1
, b = β

k3
k1

√
k4
k1
, d =

Dv

Du

, γ =
L2k1
Du
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The dimensionless RD system becomes (dropping * for notational convenience),

∂u

∂t
= γ(a− u+ u2v) +∇2u (3.5a)

∂v

∂t
= γ(b− u2v) + d∇2v. (3.5b)

The number of parameters has been reduced from eight to four in this case. Of

course, the choice of dimensionless variables is not unique. An alternate version is to

set γ = 1; that is, L =

√
Du

k1
. This is equivalent to setting x∗ = γ1/2x and t∗ = γt

so as to incorporate γ into new length and time scales. This reduces the number of

parameters to three. But we retain the former dimensionless form of the RD equations

due to its advantages, which will become clear in the following text.

An appropriate dimensionless kinetics in eq. (3.2) yields,

f(u, v) = a− u− h(u, v)

g(u, v) = α(b− v)− h(u, v)

h(u, v) =
ρuv

1 + u+Ku2

and that of the kinetics in eq. (3.3) yields

f(u, v) = a− bu+
u2

v

g(u, v) = u2 − v

In general, any such RD system can be dimensionless and scaled to take the general

form21

∂u

∂t
= γf(u, v) +∇2u (3.6a)

∂v

∂t
= γg(u, v) + d∇2v, (3.6b)

where d is the ratio of diffusion coefficients. Based on its definition and appearance

in the dimensionless equations, γ can have any of the following interpretations.21

1. γ1/2 is proportional to the linear size of the spatial domain in one dimension.

In two dimensions γ is proportional to the area. That is, it can be used as a

handle to increase or decrease the size/volume of the domain.
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2. γ represents the relative strength of the reaction terms. This means, for example,

that an increase in γ may represent an increase in the activity of some rate-

limiting step in the reaction sequence.

3.4 Conditions for Diffusion-Driven Instability: Lin-

ear Stability Analysis

Definition: A uniform steady state is a state (u, v) = (u0, v0) where u0 and v0 are

constants in time and space, satisfying eq. (3.6) and the boundary conditions. We

take zero flux boundary conditions.

Zero flux boundary conditions are satisfied by any (u0, v0), and eq. (3.6) are satisfied

by

f(u0, v0) = g(u0, v0) = 0.

As u and v represent chemical concentrations, we consider only non-negative so-

lutions to these equations.

Definition: Diffusion-driven instability (DDI), sometimes called Turing instability,

occurs when a uniform steady state is stable to small perturbations in the absence

of diffusion, but becomes unstable to small spatial perturbations when diffusion is

present.

For any steady state to exhibit DDI, there are certain conditions which must be

satisfied. We now carry out a linear stability analysis to derive the conditions under

which a DDI can arise.21

We first determine the conditions for the uniform steady state to be linearly stable

in the absence of any spatial variation. The equations in this case become as follows:

∂u

∂t
= γf(u, v) (3.7a)

∂v

∂t
= γg(u, v) (3.7b)

19



Linearising about the steady state (u0, v0), we set

w =

(
u− u0
v − v0

)
(3.8)

and for small |w|, eq. (3.7) becomes

∂w

∂t
= γAw, A =

(
fu fv

gu gv

)
u0,v0

, (3.9)

where A is the stability matrix and xi =
∂x

∂i
for x =f , g and i = u, v. Hereafter we

assume that the partial derivatives of f and g are evaluated at the steady state unless

stated otherwise. We take the solutions as follows

w ∝ eλt, (3.10)

where λ is the eigenvalue. If Reλ < 0 then w → 0 as t → ∞ and the steady state

w = 0 is linearly stable. We determine the eigenvalues λ as the solutions of the

equation formed by substitution of eq. (3.10) into eq. (3.9) as follows

|γA− λI| =

∣∣∣∣∣γfu − λ γfv

γgu γgv − λ

∣∣∣∣∣ = 0

⇒ λ2 − γ(fu + gv)λ+ γ2(fugv − fvgu) = 0.

(3.11)

Therefore,

λ1, λ2 =
1

2
γ
[
(fu + gv)±

{
(fu + gv)

2 − 4(fugv − fvgu)
}1/2
]

(3.12)

The condition of linear stability, that is, Reλ < 0, is surely fulfilled if

trA = fu + gv < 0, |A| = fugv − fvgu > 0. (3.13)

Since (u0, v0) are functions of the parameters of the kinetics, these inequalities

impose certain constraints on the parameters.
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Now let us consider the full RD system given in eq. (3.6). Once again we linearize

about the steady state, w = 0, to get

∂w

∂t
= γAw +D∇2w, A =

(
fu fv

gu gv

)
u0,v0

, D =

(
1 0

0 d

)
. (3.14)

To solve this system of equations subject to the zero flux boundary conditions

we define W (r) to be time-independent solution of the spatial eigenvalue problem

defined as follows

∇2W + k2W = 0, (n · ∇)W = 0 for r on boundary, (3.15)

where k is the eigenvalue and Wk(r) is the eigenfunction corresponding to the wave

number k. Each Wk satisfies zero flux boundary conditions. We now assume solutions

w(r, t) of eq. (3.14) of the following form

w(r, t) =
∑
k

cke
λtWk(r), (3.16)

where the constants ck can be determined by a Fourier expansion of the initial con-

ditions in terms of Wk(r). λ is the eigenvalue which determines temporal growth.

Substituting this form into eq. (3.14) with eq. (3.15) and cancelling eλt, we get, for

each k,

λWk = γAWk +D∇2Wk

= γAWk −Dk2Wk

For nontrivial solutions for Wk, the λ values are determined by the roots of the

characteristic polynomial

∣∣λI − γA+Dk2
∣∣ = 0.

On evaluating the above determinant with A and D taken from eq. (3.14), we get

the eigenvalues λ(k) as functions of the wave number k as the roots of

λ2 + λ
[
k2(1 + d)− γ(fu + gv)

]
+ h(k2) = 0,

h(k2) = dk4 − γ(dfu + gv)k
2 + γ2|A|.

(3.17)

21



We had earlier imposed the constraints that the steady state is stable in the absence

of any spatial effects; that is, Reλ(k2 = 0) < 0, and found the required conditions

(3.13). Now, in the presence of diffusion, the steady state would be unstable to spatial

disturbances when additionally Reλ(k) > 0 for some k 6= 0. For this to happen either

the coefficient of λ in eq. (3.17) should be negative, or h(k2) should be less than 0

for some k 6= 0. Since (fu + gv) < 0 from conditions (3.13) and k2(1 + d) > 0 for all

k 6= 0 the coefficient of λ, namely,[
k2(1 + d)− γ(fu + gv)

]
> 0,

The only way Re λ(k2) can be positive is if h(k2) < 0 for some k. This becomes

clear immediately from the solutions of eq. (3.17), namely,

λ = −1

2

[
k2(1 + d)− γ(fu + gv)

]
±
{[
k2(1 + d)− γ(fu + gv)

]2 − 4h(k2)
}1/2

.

Since we required the determinant |A| > 0 from eq. (3.13), the only possibility for

h(k2) in eq. (3.17) to be negative is if (dfu + gv) > 0. Since (fu + gv) < 0 from eq.

(3.13), this implies that d 6= 1 and fu and gv must have opposite signs. So, a further

requirement to those in eq. (3.13) is

dfu + gv > 0 ⇒ d 6= 1. (3.18)

For the reaction kinetics mentioned in the previous chapter we can show that

fu > 0 and gv < 0, so the first condition in eq. (3.13) and the last inequality in eq.

(3.18) require that the diffusion coefficient ratio d > 1.

The inequality (3.18) is necessary but not sufficient for Reλ > 0. For h(k2) to be

negative for some nonzero k, the minimum hmin must be negative. Differentiating

(3.17) with respect to k2 shows that

hmin = γ2

[
|A| − (dfu + gv)

2

4d

]
, k2 = k2min = γ

dfu + gv
2d

. (3.19)

Thus the condition that h(k2) < 0 for some k2 6= 0 is

(dfu + gv)
2

4d
> |A|. (3.20)
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We recollect below all the four required conditions for the DDI to occur. It is to

be noted that all the derivatives are evaluated at the steady state (u0, v0).

fu + gv < 0, fugv − fvgu > 0,

dfu + gv > 0, (dfu + gv)
2 − 4d(fugv − fvgu) > 0.

(3.21)

Figure 3.1: (a) Plot of h(k2) defined by eq. (32) for typical kinetics. When d > dc,
h(k2) < 0 for a finite range of k2 > 0. (b) Plot of the largest of the eigenvalues
λ(k2) using eq. (32) as a function of k2. When d > dc, there is a range of wave
numbers k21 < k2 < k22 which are linearly unstable. Reproduced from Murray, J. D.
Mathematical Biology 2002; Vol. II.

Remark: The onset of instability is called bifurcation point, when hmin = 0. h(k2)

is a quadratic function of k2 (a parabola). At this point, the discriminant is zero,

that is, we have |A| = (dfu + gv)
2/4d and so for fixed kinetic parameters this defines

a critical coefficient ratio dc(> 1) as the appropriate root of

d2cf
2
u + 2(2fvgu − fugv)dc + g2v = 0.

The critical wave number kc is then given by

k2c = γ
dfu + gv

2d
= γ

[
|A|
dc

]1/2

= γ

[
fugv − fvgu

dc

]1/2
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For d > dc there are values of k for which h(k2) < 0 and hence for which Reλ > 0.

Figure 3.1 shows the variation of h(k2) and Reλ with k2 for various values of d.

3.5 The range of unstable modes

Whenever h(k2) < 0 for a range of wave numbers k, eq. (3.17) has a positive solution

λ for the same range of k. From eq. (3.17) for d > dc the range of unstable wave

numbers, given by k21 < k2 < k22, is obtained from the zeros k21 and k22 of h(k2) = 0 as

k21 =
γ

2d

[
(dfu + gv)−

{
(dfu + gv)

2 − 4d|A|
}1/2
]
< k2

<
γ

2d

[
(dfu + gv) +

{
(dfu + gv)

2 − 4d|A|
}1/2
]

= k22.
(3.22)

The expression λ = λ(k2) is called a dispersion relation.

Let us now examine the effect of γ on the whole process. Rewriting eq. (3.22),

when d > dc, as follows

k21 = γL < k2 < γM = k22,

L =
(dfu + gv)−

{
(dfu + gv)

2 − 4d|A|
}1/2

2d
,

M =
(dfu + gv) +

{
(dfu + gv)

2 − 4d|A|
}1/2

2d
.

We can easily see that if we increase or decrease γ, we shift the range of possible

unstable wave numbers. In finite domain there is a discrete set of wave numbers.

For a fixed set of kinetic and diffusion parameters (a, b, d) lying within the Turing

space, if γ is sufficiently small, then there may be no wave number k which lies in

the unstable range and hence no eigenfunction will be driven unstable. On the other

hand, if γ is large enough, several wave numbers may fall into the unstable range.

If we consider the solution w given by eq. (3.16), the dominant contributions as t

increases are those modes for which Reλ(k2) > 0 since all other modes tend to zero

exponentially. We determine the range of unstable modes k21 < k2 < k22 as shown
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above, and so from eq. (3.16)

w(r, t) ∼
k2∑
k1

cke
λ(k2)tWk(r) for large t (3.23)

The fastest growing mode in this summation will be for a wave number km where

Reλ(k2m) takes the largest possible value. This wave number can be located by first

finding the value of k where Reλ(k2) attains its maximum (or equivalently, where h(k2)

attains its minimum), and then finding the wave number km closest to this value of k.

Although these eigenfunctions, or spatial patterns, in eq. (3.23) are linearly unstable

and grow exponentially with time (which is biologically unrealistic!!), what actually

happens is that these eigenfunctions are eventually bounded by the nonlinear terms in

the RD system found in the kinetics, given by the functions f and g. Hence a steady

state spatially non-uniform solution (i.e. a spatial pattern) emerges. We expect the

fastest growing mode to dominate and hence give the realized spatial pattern.

Remark: The conditions eq. (3.21) for DDI yield that fu > 0 and gv < 0. This

further implies that there are two possible cases for fv and gu since the only restriction

on these terms is that fvgu < 0. So, we can either have fv < 0 and gu > 0 or the other

way round. These correspond to qualitatively different reactions. In the former case,

u is the activator, and is also self-activating, while v is inhibitor, which inhibits both

u and itself. In the latter case, u is the inhibitor, but is self-activating, while, v is the

activator, and self-inhibiting. In both cases, v diffuses more quickly. Another notable

point is that in the former case, concentrations of the two species are in phase, that

is, both are at high or low density in the same region as the pattern grows, while in

the latter case, they are out of phase, that is, u is at a high density where v is low and

vice-versa. Figure 3.2 below illustrates these features. An example of the first case is

the Geirer-Meinhardt kinetics.

3.6 An illustration of pattern generation

To illustrate the pattern formation here,21 we take the simplest RD mechanism (3.5).

The uniform positive steady state (u0, v0) is found to be

u0 = a+ b, v0 =
b

(a+ b)2
, b > 0, a+ b > 0 (3.24)
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Figure 3.2: Schematic illustration of the two qualitatively different cases of diffu-
sion driven instability. (a) self-activating u also activates v, which inhibits both the
reactants. The resulting initially growing pattern is shown in (c). (b) Here the self-
activating u inhibits v but is itself activated by v with the resulting pattern illustrated
in (d). The matrices give the signs of fu , fv , gu , gv evaluated at the steady state.
(e) and (f) The reaction phase planes near the steady state. The arrows indicate the
direction of change due to reaction (in the absence of diffusion). Case (e) corresponds
to the interactions illustrated in (a) and (c), while that in (f) corresponds to the in-
teractions illustrated in (b) and (d). Reproduced from Murray, J. D. Mathematical
Biology 2002; Vol. II.

and at the steady state,

fu =
b− a
a+ b

, fv = (a+ b)2, gu =
−2b

a+ b
< 0,

gv = −(a+ b)2 < 0, fugv − fvgu = (a+ b)2 > 0.

(3.25)

The condition that fu and gv have opposite signs implies that b > a. With these
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expressions, conditions (3.21) require

fu + gv < 0 ⇒ 0 < b− a < (a+ b)3,

fugv − fvgu > 0 ⇒ (a+ b)2 > 0,

dfu + gv > 0 ⇒ d(a− b) > (a+ b)3,

(dfu + gv)
2 − 4d(fugv − fvgu) > 0

⇒
[
d(b− a)− (a+ b)3

]2
> 4d(a+ b)4.

(3.26)

The above inequalities define a domain in (a, b, d) parameter space, within which

some of the spatial modes of this mechanism are unstable to spatial disturbances. It

is called the pattern formation space (or Turing space). We will now determine the

range of wave numbers k for unstable modes.

Figure 3.3: Typical two-dimensional spatial patterns indicated by the linearly unstable
solution (45) when various wave numbers are in the unstable range. The shaded
regions are where u > u0, the uniform steady state. Reproduced from Murray, J. D.
Mathematical Biology 2002; Vol. II.

Let us consider a two-dimensional domain defined by 0 < x < p, 0 < y < q. The

spatial eigenvalue problem is

∇2W + k2W = 0, (n · ∇)W = 0 for (x, y) on δB (3.27)

where δB is the boundary of the above rectangular domain.
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The eigenfunctions of the above problem are

W p,q(x, y) = Cn,m cos
nπx

p
cos

mπy

q
, k2 = π2

(n2

p2
+
m2

q2

)
, (3.28)

where n and m are integers. Whenever conditions (3.26) are satisfied and a range

of wave numbers k2 (as defined in eq. (3.28)) lie within the bounds defined by eq.

(3.22), then the corresponding eigenfunctions Wp,q are linearly unstable and they

grow exponentially with time. The range of unstable wave numbers in this case is

calculated from eq. (3.22), with eq. (3.25), and gives

γL(a, b, d) = k21 < k2 = π2
(n2

p2
+
m2

q2

)
< k22 = γM(a, b, d)

L =
[d(b− a)− (a+ b)3]−

{
[d(b− a)− (a+ b)3]2 − 4d(a+ b)4

}1/2

2d(a+ b)
,

M =
[d(b− a)− (a+ b)3] +

{
[d(b− a)− (a+ b)3]2 − 4d(a+ b)4

}1/2

2d(a+ b)
.

(3.29)

Now the unstable spatially patterned solution is given by eq. (3.23) with eq. (3.28)

as

w(x, y, t) ∼
∑
n,m

Cn,me
λ(k2)t cos

nπx

p
cos

mπy

q
, (3.30)

where (n,m) are all those pairs which satisfy the inequality (3.29) and λ(k2) is the

positive solution of eq. (3.17) along with eq. (3.25). A spatial pattern, initially made

up of the modes in (3.30), evolves with time. Typical patterns are shown in Figure

3.3.
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Chapter 4

Measured colour pattern of Passion

flower

In this project we have employed RD theory, as discussed above, to understand the

mechanism of pattern formation in Passiflora incarnata, commonly known as Passion

flower. This flower, as shown in Figure 4.1 (top view), has a large number of beautiful

coloured fibrils. Each fibril has alternate white and violet bands. From the top view,

it can be seen that all the fibrils collectively generate concentric circles of alternate

colours. But we limit ourselves to the pattern of colour bands on a single fibril.

Figure 4.1: Picture of the Passion flower (top view)
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Table 4.1: Measured pattern in Passion flower; W: White, V: Violet

Tip of the colour band Distance from the centre (cm) Width of the band (cm)

Red 1.0 1.0
W1 1.6 0.6
V1 1.8 0.2
W2 1.9 0.1
V2 2.1 0.2
W3 2.3 0.2
V3 2.6 0.3
W4 2.9 0.3
V4 3.2 0.3
W5 3.6 0.4
V5 4.1 0.5
W6 4.4 0.3
V6 5.0 0.6
W7 5.4 0.4
V7 8.8 3.4

We took a high resolution picture of a Passion flower in IISER Mohali campus (see

Figure 4.1). From the coloured print out of this picture we measured the width of

each successive colour band in the pattern until the tip of the fibril, using a centimeter

ruler (least count = 0.1 cm), for 21 fibrils. The average width of each colour band was

plotted to get the pattern shown in Figure 4.2. We also measured the actual length

of 10 fibrils and calculated the average length of the fibrils so as to know the scaling

factor of the measured pattern. The average actual length of a fibril is 3.1 cm. The

measured average length of a fibril in the printout is 8.8 cm. Measured data are listed

in Table 4.1 and a plot of the measured data is given in Figure 4.2.

Scaling factor =
Actual length

Measured length
=

3.1

8.8
= 0.35

The measured length should be multiplied by 0.35 to get the actual length of the

pattern/width of bands.

An important feature of this pattern is that it is non-uniform. The width of the

violet band keeps on increasing on moving towards the tip of the fibril. The width

of the white bands increases initially, then decreases and eventually becomes zero on

moving towards the tip of the fibril. Beyond a point, only the violet colour sustains

on the fibril. It is worth mentioning here that the pattern has been measured only
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Figure 4.2: Alternation of white and violet colour bands in a Passion flower

along one dimension as it varies only along the length of the fibril. It is uniform along

the angular direction.
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Chapter 5

Methods and Tools

We approached our problem of understanding the mechanism of colour pattern in

Passion flower, as detailed in the previous chapter, using two models: Meinhardt’s

model and Murray’s model. We will describe both of them below one by one.

5.1 Meinhardt’s model

We consider a linear array of N cells (along x-direction) in a single fibril of the Passion

flower. This array of cells is assumed to be a part of its embryo, during some stage of

its embryogenesis, when the chemical pre-pattern responsible for the colour bands of

the fibril is to be set up through interactions (reaction and diffusion) of morphogens.

We assume that there are two morphogens which diffuse through this array of cells and

react with each other. It is assumed that they react according to the Gierer-Meinhardt

kinetics (3.3). Thus one of them is the activator and the other is the inhibitor and

their concentrations are denoted by u and v respectively. As per the RD theory, we

need to evolve these concentrations with time along this array of cells, starting from a

uniform steady state, and find out the conditions under which the measured pattern

could be produced. Therefore, we need to solve the following set of coupled partial

differential equations in one-dimension for sufficiently long time:20

∂u(x, t)

∂t
=
ρu2(x, t)

v(x, t)
− µu(x, t) +Du

∂2u(x, t)

∂x2
+ ρ0 (5.1a)

∂v(x, t)

∂t
= ρu2(x, t)− νv(x, t) +Dv

∂2v(x, t)

∂x2
(5.1b)
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where µ = k2, ν = k5, Du, Dv, ρ0 = k1 and ρ = k3 = k4 are positive constants. ρ is

called the source density. We determine the uniform steady state concentrations for

(5.1) by analytically solving its reaction part as follows:

ρu2

v
− µu+ ρ0 = 0 = ρu2 − νv ⇒ u =

ν

µ
+
ρ0
µ
, v =

ρu2

ν
. (5.2)

We can infer from eq. (5.1) that if the concentrations of morphogens remain

constant throughout the space in all the cells, then the change in concentrations with

time, due to diffusion would be zero. Moreover, if that constant value of concentration

is the steady state value, then there will be no change due to reaction part also. Thus

the concentrations would not change with time.

We solve eq. (5.1) using zero flux (Neumann) boundary conditions and the initial

values of concentrations u(x, 0) and v(x, 0) taken to be either set to steady state values

given by (5.2) except for a local small perturbation about it for any one of the two

morphogens at any one of the cells in the array, or as small random fluctuations about

the steady state value for all the cells in the array. In both the cases a similar spatially

heterogeneous pattern of concentrations is generated with time. In the former case,

the pattern starts from the point of perturbation and keeps on spreading in space

with time. In the latter case, a similar pattern emerges with time. However it is to be

noted that the time required to get the pattern in the latter case is relatively less than

in the former case. The details and the effect of various parameters on the pattern

are discussed in the next chapter.

The term ρ in eq. (5.1), called source density, indicates the sensitivity towards

activation and production of the activator or the inhibitor in response to their existing

concentrations. In biological terms, it may be seen as certain prerequisites necessary

for the synthesis of the activator and inhibitor, for instance, particular messengers or

enzymes, ribosomes, ATP, or the presence of certain cell type to which the synthesis

is possibly restricted. As all these properties can be non-uniform or graded in an

organism giving rise to “polarity” in it, we can take source density to be spatially

non-uniform or graded. If we set the initial values of concentrations u(x, 0) and

v(x, 0) equal to the steady state value uniformly in space and choose a graded source

density, spatially heterogeneous concentration pattern, similar to the previous cases,

emerges. Graded source density can also be taken as random fluctuation about a

constant positive value ρ.
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5.2 Murray’s model

We assume that two morphogens react according to the Thomas kinetics (3.2) (see also

the nondimensional form in chapter 3.3). Following the RD theory, we evolve these

concentrations in space with time, starting from a uniform steady state, and try to

find out the values of parameters for which the measured pattern could be produced.

We solve the following set of coupled partial differential equations in two-dimensions

for sufficiently long time:2,21

∂u

∂t
= γ

(
a− u− ρuv

1 + u+Ku2

)
+∇2u (5.3a)

∂v

∂t
= γ

(
α(b− v)− ρuv

1 + u+Ku2

)
+ d∇2v (5.3b)

where γ, d, α, a, b, ρ and K are positive constants. The steady state solution of the

above equation, which is obtained by equating the reaction part of the equation to

zero, cannot be found analytically. So we determine it numerically using Mathematica

9.

We solve eq. (5.3) using zero flux (Neumann) boundary conditions and the ini-

tial values of concentrations u(x, 0) and v(x, 0) taken as small random fluctuations

about the steady state value throughout the array of cells. Spatially heterogeneous

concentration patterns are generated by this procedure. Varying various parameters

affects the patterns. The effect of varying different parameters on the pattern and

other details are discussed in the following chapter.

5.3 Numerical solution of the heat equation

As mentioned above, we have to solve eq. (5.1) and eq. (5.3) to generate the desired

pattern. These equations are same as the heat equation, mentioned as eq. (2.10) in

chapter 2, except for the additional coupling terms. The standard heat equation is

analytically solvable with known solutions for Dirichlet, Neumann as well as mixed

boundary conditions. But due to the non-linear coupling terms in our equations, they

are not analytically solvable. So we resort to numerical methods for solving the equa-

tions. Out of several methods available for numerically solving the heat or diffusion

eq. (2.10) we chose the Finite Difference method. A description of FD methods is pro-
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vided in appendix A. We used FTCS method to solve eq. (5.1) (Meinhardt’s model)

and ADI method to solve eq. (5.3) (Murray’s model). We wrote our own C-programs

for the purpose. Refer to appendix B for C-programs.
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Chapter 6

Results and Discussion

6.1 Meinhardt’s model

We started with reproducing a known pattern from Meinhardt’s book,20 Pg-182. We

plugged in exactly the same values of parameters in our program as given there. The

values of step sizes in time and space were set to 1, that is, 4x = 1 = 4t. The total

number of timesteps is 3600. The number of cells is 9. The resultant pattern is shown

in Figure 6.1, which is exactly the same as given there. We did this exercise to validate

our program for further calculations. In this case, random fluctuations in the source

densities along the position axis lead to heterogeneous pattern of concentrations from

the initial uniform steady state.

We then studied the effect of various parameters one by one on the produced con-

centration pattern. We used 9 cells in the above case. When we increase the length

of our array of cells to 100 keeping all other parameters same, we get the pattern

shown in Figure 6.2. As we can see, on increasing the size of our domain, we get

a pattern repeating along the position axis with a period of 16 cells. Thus we have

a periodic pattern with a definite wavelength. On comparing it with the previous

case, where all the parameters were the same except the number of cells, we conclude

that the number of cells does not affect the wavelength. Even in the former case the

wavelength is the same with half of its cycle being completed in about 8 cells. We

can say that the range of unstable spatial modes is not affected by the number of

cells. Nevertheless pattern can be varied by varying the number of cells with a larger

number of concentration peaks appearing in the case of increased number of cells.
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(a) Evolution of the activator (b) Evolution of the inhibitor

(c) Final concentrations

Figure 6.1: Reproduction of the known pattern

An essential condition of pattern formation proposed by Turing14 is that the in-

hibitor should diffuse faster than the activator, that is, the ratio of diffusion coefficients

of inhibitor to activator should be greater than 1. The effect of this ratio on the pat-

tern generated is worth studying. In the Meinhardt’s theory of local activation and

long range inhibition, a small local increase in activator concentration in a homo-

geneous mixture of such substances, due to random fluctuations, gets amplified by

activator autocatalysis, leading to increased concentrations of both the activator and

the inhibitor. Due to a quick diffusion of the inhibitor, it suppresses the activator

production outside the activation centre. Thus the activator concentration increases

at the activation centre upto a maximum (until stabilized by a limiting factor) and

is limited to the normal level outside the activated centre, leading to stable concen-

tration pattern in space. In the case shown in Figure 6.1, this ratio is taken to be

20. From the theory described above we expect that the higher the value of this

ratio, sharper and more localized would be the peaks of activator and inhibitor con-

centrations. Final concentration patterns for the diffusion ratio values 40 and 80 are
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(a) Evolution of the activator (b) Evolution of the inhibitor

(c) Final concentrations

Figure 6.2: Concentration pattern in extended array of cells

shown in Figure 6.3. On comparing them with those of Figure 6.1 we find that higher

diffusion ratios lead to sharper and more localized concentration peaks.

In all the cases discussed until now, the initiation of pattern from the uniform

steady state occurred by random fluctuations in source densities along the position.

We now discuss other ways in which the pattern formation can be initiated from

uniform steady state. We take source density to be uniform all over the space and

then manually increase its value at one end of the array of cells. In this present

case, we set source density to 0.0102 in all the cells and then increase it by 0.0020 in

cell number 100. The computed patterns are shown in Figure 6.4. We see that the

pattern gets initiated by the local small increment in the source density and spreads

from there towards other cells with time. Figure 6.5 shows the final concentrations

after different number of time steps. We can see that the pattern keeps on spreading

with time.
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(a) Dv/Du=40 (b) Dv/Du=80

Figure 6.3: Effect of varying the ratio of diffusion coefficients of v to u

(a) Evolution of the activator (b) Evolution of the inhibitor

Figure 6.4: Concentration pattern with locally increased source density at one end
while otherwise uniform; concentrations u and v are taken to be uniform everywhere

Another way of initiating pattern formation from the uniform steady state concen-

trations is to locally increase one of the concentrations in one of the cells. If we take

both the activator and inhibitor concentrations as uniform all over the space and then

locally increase one of them by a small amount, the pattern formation gets initiated

and the pattern spreads from the point of disturbance with time. In the case shown in

Figure 6.6, we have taken the source density and inhibitor concentration to be uniform

all over the space, set equal to 0.0102 and 2.02005 (steady state value) respectively.

The activator concentration is set to 2.01 (steady state value) except at cell number

100 where it is increased by 0.02. We see that the pattern originates at the site of

local perturbation in concentration and spreads in space from that point with time.

Figure 6.7 shows the time evolution of final concentration patterns in this case. We
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(a) Timesteps=1600 (b) Timesteps=3600 (c) Timesteps=5600

Figure 6.5: Evolution of final pattern initiated by local small increment in source
density at one end.

(a) Evolution of the activator (b) Evolution of the inhibitor

Figure 6.6: Pattern initiated by local perturbation in activator concentration at one
end in space from otherwise uniform steady state

observe that if the activator concentration is perturbed at the middle point in the

array of cells instead of at the end point, then the pattern spreads in both directions

as shown in Figure 6.8a. When it is perturbed at both ends then the pattern changes

from both sides towards the center and finally overlaps as shown in Figure 6.8b.

6.2 Murray’s model

Using this model, we first of all reproduced the known pattern published by Murray,2

Pg-172, so as to validate our program for further analysis. We chose a rectangular

domain with x varying from 0 to 3 and y from 0 to 1. Grid size along both the

directions was taken to be 0.01, that is 4x = 0.01 = 4y. Timestep 4t was taken to

be 0.001. All other parameters were exactly the same as chosen by Murray. Steady

state concentrations were found numerically using Mathematica 9. Initial conditions
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(a) Timesteps=3600 (b) Timesteps=5600

Figure 6.7: Evolution of final pattern initiated by local small increment in activator
concentration at one end.

(a) Perturbation at cell number 50 (b) Perturbation at cell number 1 and 100

Figure 6.8: Patterns by initially perturbing activator concentration at different points
in space and their combinations.

of concentrations were taken to be random perturbations (±0.5) about the steady

state values for both u and v. Figure 6.9 shows the pattern produced by our program

for these conditions, which match the published patterns.

The effect of the parameter γ on pattern formation is illustrated here. Keeping

all other parameters constant, we vary γ. Figure 6.10 shows the computed patterns

for different values of γ. As we increase γ the range of unstable modes increases as

dictated by eq. (3.22). Therefore, more and more modes become unstable and the

final concentration pattern is a result of their combination as is evident in Figure 6.10.
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(a) Pattern of u when γ = 1 (b) Pattern of v when γ = 1

(c) Pattern of u when γ = 4 (d) Pattern of v when γ = 4

Figure 6.9: Known patterns reproduced

6.3 Fourier Analysis of the measured pattern

We performed Fourier Analysis of the measured pattern as shown in Figure 4.2 to

get an idea of the frequencies which have major contribution in our pattern. Due to

zero flux boundary conditions used to solve the equations, our solutions are always of

the form of cosine functions or their linear combinations. So we found the Discrete

Cosine Transform of the measured pattern. The average length of a fibril is 8.8 cm.

We discretised this dimension with 4x = 0.01 cm. Thus xj = j 4 x, where j = 1 to

N (N=880). We assign the function f(xj) defining the pattern as follows:

fviolet/white(xj) =

{
1 : colour of petal is violet/white at xj

0 : otherwise
(6.1)

For the above discrete pattern f(xj), the coefficients of various frequencies are
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(a) Pattern of u when γ = 10 (b) Pattern of v when γ = 10

(c) Pattern of u when γ = 50 (d) Pattern of v when γ = 50

Figure 6.10: Effect of parameter γ on the pattern formation

calculated as follows:

Fk = 4x
N∑
j=1

f(xj) cos
(π(j − 1

2
)k

N

)
(6.2)

for k = 0 to N-1. Fk is the coefficient of frequency ωk =
πk

N 4 x
=
πk

8.8
.

The C-program used to find the DCT is given in appendix B. Following are the DCTs

of both white and violet patterns:

The frequencies are obtained by multiplying x-coordinates in Figure 6.11 by
π

8.8
cm−1.

We can see that the zero frequency in both the DCTs above have the largest contri-

butions. There are 19 frequencies in case of violet pattern and 23 frequencies in that

of white pattern, with k in the range 0 ≤ k ≤ 43 and |Fk| ≥ 0.3. We now need to find

a set of parameter values such that the range of unstable modes given by eq. (3.22)

encompasses the above set of frequencies.
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(a) DCT of measured violet pattern (b) DCT of measured white pattern

(c) Zoomed out DCT of violet pattern (d) Zoomed out DCT of white pattern

Figure 6.11: Fourier Analysis of the measured pattern

45



46



Chapter 7

Conclusions and Outlook

We discussed in detail two different models of reaction kinetics to be employed in the

RD equations. Both the models have been successfully applied to generate patterns

observed in nature. We also applied both the models on our system to get some

patterns. We have not yet been able to generate our measured pattern as it is not a

trivial one. It consists of stripes of two different colours but with non-uniform widths,

which is a feature not encountered in the literature so far. We performed Fourier

analysis on our measured pattern and as expected it turned out to be a combination

of a large number of cosine functions with closely spaced frequencies. Since it is a

non-trivial pattern, we must think of a non-trivial way to address the problem.

We have not yet dealt with time/space varying kinetic and diffusion parameters.

Based on our experience so far this is one of the possible solutions to generate striped

patterns of non-uniform width. For instance, we saw in the previous chapter that

on increasing the value of the ratio of diffusion coefficients the concentration peaks

become more localized and sharp. So if we vary this parameter, then the widths

of concentration peaks are expected to vary in space. Similarly we can try varying

some kinetic parameters like the relative strengths of activation and inhibition or the

source density. In the previous chapter, we saw in Murray’s case that on increasing γ

the computed pattern was a combination of several modes, the reason being that the

range of unstable frequencies was expanded to an extent that several normal modes

fell into it. Thus another possibility to generate non-uniform pattern is to choose the

parameter values such that the range of unstable frequencies is sufficiently wide to

encompass the required normal modes. We saw earlier that γ can be interpreted as a

measure of the size of the domain. Thus we can study the patterns in growing domain
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by taking γ varying with time. This is another method which could yield non-uniform

pattern.

We plan to continue our work to explore the above mentioned possibilities and

unravel the untouched part of RD theory. We first need to properly analyse their

effects and come up with a mathematical framework for the same. Then using it we

hope to be able to logically choose the parameter values and vary them accordingly

with time and/or space so as to arrive at our desired pattern.
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Appendix A

Finite Difference methods

Consider a rectangular domain D: 0 ≤ x ≤ a and 0 ≤ y ≤ b. Draw straight lines

parallel to x-axis and y-axis as shown in the figure A.1 such that xi = i ∗ 4x for i =

1, 2, 3, · · · n-1 and yj = j ∗ 4y for j = 1, 2, 3, · · · m-1 where 4x and 4y are small

positive steplengths obtained by 4x =
a

n
and 4y =

b

m
.

Figure A.1: Discretised rectangular domain

Let Pi,j = P (xi, yj) be any point in the region D then the co-ordinates xi and yj

can be obtained by

xi = x0 + i ∗ 4x

yj = y0 + j ∗ 4y,
(A.1)
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where (x0, y0) are the coordinates of the left bottom most point of the rectangle, that

is (0,0) in the present case. If u(x, y) is any continuous function with all necessary

derivatives existing in D then

ui±1,j = u(xi ±4x, yj) = ui,j ±4x
∂ui,j
∂x

+
4x2

2!

∂2ui,j
∂x2

± · · · · · · (A.2a)

ui,j±1 = u(xi, yj ±4y) = ui,j ±4y
∂ui,j
∂y

+
4y2

2!

∂2ui,j
∂y2

± · · · · · · (A.2b)

From eq. (A.2), partial derivatives can be approximated as follows:

∂ui,j
∂x

=
ui+1,j − ui−1,j

24 x
+O(4x2), (Central difference)

=
ui+1,j − ui,j
4x

+O(4x), (Forward difference)

=
ui,j − ui−1,j
4x

+O(4x). (Backward difference)

∂ui,j
∂y

=
ui,j+1 − ui,j−1

24 y
+O(4y2), (Central difference)

=
ui,j+1 − ui,j
4y

+O(4y), (Forward difference)

=
ui,j − ui,j−1
4y

+O(4y). (Backward difference)

∂2ui,j
∂x2

=
ui+1,j − 2ui,j + ui−1,j

4x2
+O(4x4).

∂2ui,j
∂y2

=
ui,j+1 − 2ui,j + ui,j−1

4y2
+O(4y4).

(A.3)

Making use of these approximations to replace partial derivatives, the partial dif-

ferential equations are converted into difference equations and the resultant system

of algebraic equations are solved using any direct or iterative methods. Since the

analytical methods for finding solution of second order partial differential equations

depend on the type of PDE, the numerical schemes also depend on the type of PDE.

The one dimensional heat equation as shown below is an example of a parabolic PDE.

∂u

∂t
= C

∂2u

∂x2
(A.4)
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A.1 Forward Time and Central Space (FTCS) Scheme

In this method the time derivative term in the one-dimensional heat eq. (A.4) is

approximated with forward difference and space derivatives are approximated with

second order central differences. This gives

un+1
i − uni
4t

= C
uni−1 − 2uni + uni+1

4x2
(A.5)

where xi = i4 x (i = 0, 1, 2, 3, · · · N) and tn = n4 t (n = 0, 1, 2, 3, · · · · · · ). To

distinguish between space and time coordinates superscript index n is used for the

time coordinate whereas a subscript i is used to represent the space position along x

direction. N is the number of points along the x-direction excluding zeroth point.

At any typical node (i, n), the finite difference eq. (A.5) can be rearranged as

un+1
i = uni + r(uni−1 − 2uni + uni+1) (A.6)

where r =
c4 t

4x2
. It gives a formula to compute the unknown concentrations in

the domain at various positions at various times. For n=1, the unknown u is first

calculated using the initial conditions at t=0 and boundary values at x=0 and x=L

(where L is the length of the domain). Once the solution at time step 1 is obtained,

the solution at n=2 is calculated in the same manner by making use of the solution at

n=1 and the boundary conditions at x=0 and x=L. The same procedure is repeated

until the solution reaches a steady state or until the desired time step.

Since eq. (A.6) has only one unknown for any i and n, it is called an explicit scheme.

The FTCS scheme is illustrated in Figure A.2.

This method is known to be numerically stable and convergent only when r ≤ 0.5.

The numerical errors are proportional to the size of the time step and the square of

the space step: 4u = O(4t) + O(4x2). Thus it is said to be first order accurate in

time and second order accurate in space.
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Figure A.2: Sketch for the FTCS scheme

A.2 Backward Time Central Space (BTCS) scheme

If the forward difference approximation for time derivative in the one dimensional

heat eq. (A.4) is replaced with the backward difference and the central difference

approximation for space derivative is used, then eq. (A.4) can be written as

uni − un−1i

4t
= C

uni−1 − 2uni + uni+1

4x2
(A.7)

where i = 1, 2, 3, · · · N and n = 1, 2, 3, · · · · · ·
Alternatively,

un+1
i − uni
4t

= C
un+1
i−1 − 2un+1

i + un+1
i+1

4x2
(A.8)

for i = 1, 2, 3, · · · N and n = 0, 1, 2, · · · · · ·
Rearranging the above equation, we obtain

un+1
i − uni = r(un+1

i−1 − 2un+1
i + un+1

i+1 )

⇒ −run+1
i−1 + (1 + 2r)un+1

i − run+1
i+1 = uni

(A.9)

for i = 1, 2, 3, · · · N and n = 0, 1, 2, · · · · · ·

Since there are three unknown terms in eq. (A.9), the scheme so obtained is referred

to as an implicit method. The main drawback of having more than one unknown

coefficient in any equation, unlike FTCS method, is that the value of the dependent
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variable at any typical node say (i, n) cannot be obtained from a single finite difference

equation of the node (i, n), and one has to generate a system of equations for each

time step separately by varying i. Then for each time step there will be a system

of equations equivalent to the number of unknowns in that time step (say N in the

present case). This linear system of algebraic equations in N unknowns has to be

solved to obtain the solution for each time step . This process has to be repeated

until the desired time step is reached. The scheme (A.9) is called the fully implicit

method.

This scheme is unconditionally numerically stable and convergent. The errors are

linear in the time step size and quadratic in space step: 4u = O(4t) + O(4x2).
Therefore, it is first order accurate in time and second order accurate in space.

A.3 Crank-Nicholson

Schemes (A.5) and (A.8) are two different methods to solve the one dimensional heat

equation (A.4). Crank-Nicholson scheme is obtained by taking an average of these

two schemes, that is

un+1
i − uni
4t

=
C

2

[
un+1
i−1 − 2un+1

i + un+1
i+1

4x2
+
uni−1 − 2uni + uni+1

4x2

]

for i = 1, 2, 3, · · · N and n = 0, 1, 2, · · · · · ·

⇒ −r
2
un+1
i−1 + (1 + r)un+1

i − r

2
un+1
i+1 =

r

2
uni−1 + (1− r)uni +

r

2
uni+1 (A.10)

Since more than one unknown is involved for each i in eq. (A.10) Crank-Nicholson

scheme is also an implicit scheme. Therefore, one has to solve a system of linear

algebraic equations for every time step to get the field variable u. The Crank-Nicholson

scheme is illustrated in Figure A.3.

The linear algebraic system of equations generated by the Crank-Nicholson method

for the time step tn+1 are sparse because the finite difference equation obtained at any

space node, say i and at time step tn+1 has only three unknown coefficients involving

space nodes i-1 , i and i+1 at tn+1. In matrix notation, these equations can be written

as AU=B , where U is the unknown vector of order N at any time level tn+1 , B

59



Figure A.3: Sketch for the Crank-Nicholson scheme

is the known vector of order N , which involves the values of U at the nth time step

and A is the coefficient square matrix of order N × N with a tri-diagonal structure

as follows:

A =



b1 c1 0 0 · · · 0 0

a2 b2 c2 0 · · · 0 0

0 a3 b3 c3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 · · · 0 aN−1 bN−1 cN−1

0 0 · · · 0 0 aN bN


Such a matrix is called a tri-diagonal matrix and the system of equations with

tridiagonal coefficient matrix is called tridiagonal system. Though direct solvers like

Gauss elimination and LU decomposition can be used to solve these systems there are

some special schemes available to solve tridiagonal systems. One of them is Thomas

algorithm which exploits the tridiagonal nature of the coefficient matrix. Thomas

algorithm is similar to Gauss elimination. However, the novelty in the method is that

the forward elimination and back substitution parts of Gauss elimination are used

only for the non-zero positions of the system AU=B.

This scheme is unconditionally numerically stable and convergent. The errors are

quadratic over both the time step and the space step: 4u = O(4t2) +O(4x2). Thus

it is second order accurate in both time and space.
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A.4 Thomas algorithm for tridiagonal system of

equations

Let us call the three non-zero diagonals of the above coefficient matrix A as a, b and

c, where b is the element of the principal diagonal, a is the element of the diagonal

before the principal diagonal with zero as the first element and c is the element of the

diagonal that lies after the principal diagonal with a zero as the last element. Then

the order of a, b and c is equal to the number of unknowns for any time step with the

known vector B (with elements di). Then the Thomas algorithm can be written as:

Do i = 2 to N (if N is the number of unknowns)

bi = bi − ai
ci−1
bi−1

di = di − ai
di−1
bi−1

end Do

uN =
dN
bN

Do i = N-1 to 1

ui =
di − ciui+1

bi

end Do

A.5 Alternate Direction Implicit method

The heat equation in two dimensions is as follows:

∂u

∂t
= C

(
∂2u

∂x2
+
∂2u

∂y2

)
(A.11)
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Applying Crank-Nicholson scheme to the above equation we get:

un+1
i,j − uni,j
4t

=
C

2

[
un+1
i−1,j − 2un+1

i,j + un+1
i+1,j

4x2
+
uni−1,j − 2uni,j + uni+1,j

4x2

]

+
C

2

[
un+1
i,j−1 − 2un+1

i,j + un+1
i,j+1

4y2
+
uni,j−1 − 2uni,j + uni,j+1

4y2

]
⇒ − r1

2

(
un+1
i−1,j + un+1

i+1,j

)
+ (1 + r1 + r2)u

n+1
i,j −

r2
2

(
un+1
i,j−1 + un+1

i,j+1

)
=
r1
2

(
uni−1,j + uni+1,j

)
+ (1 + r1 + r2)u

n
i,j −

r2
2

(
uni,j−1 + uni,j+1

)
where r1 =

C 4 t

4x2
and r2 =

C 4 t

4y2
,

for i = 1, 2, 3, · · · N , j = 1, 2, 3, · · · M and n = 0, 1, 2, · · · · · ·

This is certainly a viable scheme; the problem arises in solving the coupled linear

equations. Whereas in one dimension the system was tridiagonal, that is no longer

true, though the matrix is still very sparse.

Alternate Direction Implicit (ADI) provides a slightly different way of generalizing

the Crank-Nicholson algorithm. It is still second-order accurate in time and space,

and unconditionally stable, but the equations are easier to solve than in the above

case. Here, the idea is to divide each timestep into two steps of size
4t
2

. In each

substep, a different dimension is treated implicitly. The equations can be written as

follows:

First half time step: implicit along x direction

u
n+ 1

2
i,j − uni,j
4 t/2

= C

[
u
n+ 1

2
i−1,j − 2u

n+ 1
2

i,j + u
n+ 1

2
i+1,j

4x2
+
uni,j−1 − 2uni,j + uni,j+1

4y2

]
(A.12)

Second half time step: implicit along y direction

un+1
i,j − u

n+ 1
2

i,j

4 t/2
= C

[
u
n+ 1

2
i−1,j − 2u

n+ 1
2

i,j + u
n+ 1

2
i+1,j

4x2
+
un+1
i,j−1 − 2un+1

i,j + un+1
i,j+1

4y2

]
(A.13)
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for i = 1, 2, 3, · · · N , j = 1, 2, 3, · · · M and n = 0, 1, 2, · · · · · ·
Rewriting eq. (A.12):

−r1
2
u
n+ 1

2
i−1,j + (1 + r1)u

n+ 1
2

i,j −
r1
2
u
n+ 1

2
i+1,j =

r2
2
uni,j−1 + (1− r2)uni,j +

r2
2
uni,j+1 (A.14)

This is a tridiagonal system which can be solved using Thomas algorithm for the

unknown ui,j at the time step n+ 1
2
. Similarly eq. (A.13) can be rewritten as:

−r2
2
un+1
i,j−1 + (1 + r2)u

n+1
i,j −

r2
2
un+1
i,j+1 =

r1
2
u
n+ 1

2
i−1,j + (1− r1)u

n+ 1
2

i,j +
r1
2
u
n+ 1

2
i+1,j (A.15)

Since u terms on the right hand side of eq. (A.15) have already been calculated by

solving eq. (A.14), eq. (A.15) is again a tridiagonal system which can also be solved

using Thomas algorithm for ui,j at time step n+1. This completes one iteration in

time direction and the same is repeated until the desired time step is reached. The

advantage of this method is that each substep requires only the solution of a simple

tridiagonal system.
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Appendix B

C-programs

In this chapter we list our C-programs used for solving the RD equation numerically.

B.1 ADI program benchmarked

To benchmark our program of ADI method for Neumann boundary conditions we

first solved the standard 2D diffusion equation (as shown below) numerically and

then compared our numerical results with the analytical solution of the equation.

∂u

∂t
= α

(
∂2u

∂x2
+
∂2u

∂y2

)
for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

with Neumann boundary conditions

∂u

∂x
= 0 on x = 0,1

∂u

∂y
= 0 on y = 0,1

We compared the L2 norm of the analytical and numerical solutions over time. To

the find analytical solution, we consider separation of variables:

u(t, x, y) = T (t)φ(x, y)

T ′φ = αT∇2φ

T ′

T
= α
∇2φ

φ
= −λ
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This yields two separate equations,

T ′ + λT = 0

α∇2φ+ λφ = 0

Applying the separation of variables again to the second equation above:

φ(x, y) = X(x)Y (y)

αX ′′Y + αXY ′′ + λXY = 0

αX ′′

X
+
αY ′′

Y
+ λ = 0

−αY ′′ − λY
Y

=
αX ′′

X
= −k

This gives two separate equations,

αX ′′ + kX = 0

αY ′′ + (λ− k)Y = 0

For the sake of simplicity, we take α = 1. The solution of the first equation above

can be written as:

X(x) = a cos(x
√
k) + b sin(x

√
k)

Applying the boundary conditions, we find:

b = 0

k = (nπ)2, n = 1, 2, · · ·

Similarly, the solution of the second equation can be written as:

Y (y) = p cos(y
√
λ− k) + q sin(y

√
λ− k)

66



Applying the boundary conditions we find:

p = 0

λ− k = (mπ)2, m = 1, 2, · · ·

λ = (nπ)2 + (mπ)2

Therefore, the solution of the 2D heat equation is:

u(t, x, y) = Ae−((nπ)
2+(mπ)2)t cos(nπx) cos(mπy)

Setting α to 1 and given the initial conditions u(x, y, 0) = cos(2πx) cos(πy), the

L2 norm of the analytical solution is

|u(t, x, y)| =

√∫ 1

0

∫ 1

0

u2(t, x, y)dxdy =
1

2
e−5π

2t

Figure B.1 shows a comparison of the analytical solution and the numerical solution

obtained using ADI. The fact that the dots lie on the solid line suggests that the

numerical and analytical solutions are in good agreement with each other.

Figure B.1: Comparison of the analytical (solid line) and the numerical solution (*)
of the 2D heat equation.

Following is the program for numerical solution of 2D heat equation using the ADI
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method:

ADI neumann.C

1 #include <stdio.h>
2 #include <math.h>
3 #include <stdlib.h>
4 #define nx 100
5 #define ny 100
6 #define pi 3.14159265358979
7 #define dx 0.01
8 #define dy 0.01
9 void tridag(double a[], double b[], double c[], double d[], double ←↩

u[], int n);
10 void neumannbc(double a[nx+2][ny+2]);
11 double norm2(double a[nx+2][ny+2]);
12 int main(void)
13 {
14 /* defining required parameters and variables */
15 int i, j;
16 double d, unorm , analyticalnorm , error;
17 double u[nx+2][ny+2], temp[nx][ny];
18 double a1[nx],b1[nx],c1[nx], d1[nx],temp1[nx]; // Tridiagonal ←↩

coefficients along x
19 double a2[ny],b2[ny],c2[ny], d2[ny],temp2[ny]; // Tridiagonal ←↩

coefficients along y
20 double t, dt, tfin , r1, r2 , r3 , r4 , x, y;
21 FILE *fp, *fpo;
22 /* initializing the parameters and variables */
23 d = 1.0;
24 t = 0.0;
25 dt = 0.01;
26 tfin = 1.0;
27 r1 = d*dt/(dx*dx); r2 = d*dt/(dy*dy);
28 r3 = d*dt/(dx*dx); r4 = d*dt/(dy*dy);
29 /* Initialize concentration arrays and coupling terms*/
30 for(i=1; i<nx+1; i++)
31 {
32 for(j=1; j<ny+1; j++)
33 {
34 u[i][j] = cos(2*pi*i*dx)*cos(pi*j*dy);
35 temp[i-1][j-1] = 0.0;
36 }
37 }
38 /* initializing boundary values of concentrations using boundary ←↩

conditions */
39 neumannbc(u);
40 fpo=fopen("norm.dat","w");
41 if(fpo==NULL)
42 {
43 puts("cannot open file");
44 exit (1);
45 }
46 /* Begin time loop*/
47 while(t < tfin)
48 {
49 unorm = sqrt(norm2(u));
50 analyticalnorm = 0.5* exp(-5*pi*pi*t);
51 error = fabs(unorm -analyticalnorm);
52 fprintf(fpo ,"%lf\t%lf\t%lf\t%lf\n",t,unorm ,analyticalnorm ,error);
53 /* First half time step: implicit along x*/
54 /* Thomas algorithm to update concentration values */
55 for(j=1; j<ny+1; j++)
56 {
57 /* Initializing tridiagonal coefficients */
58 for(i=0; i<nx; i++)
59 {
60 a1[i] = (-r1/2.);
61 b1[i] = 1. + r1;
62 c1[i] = (-r1/2.);
63 d1[i] = 0.5*r2*u[i+1][j-1] + (1-r2)*u[i+1][j] + ←↩

0.5*r2*u[i+1][j+1];
64 }
65 /* Update coefficients as per Neumann boundary conditions */
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66 c1[0] = -r1;
67 a1[nx -1] = -r1;
68 tridag(a1 ,b1 ,c1 ,d1 ,temp1 ,nx); // Solving for concentrations ←↩

using Thomas algorithm
69 if(temp1 [4] >=1000.0)
70 {
71 printf("Error 4\n");
72 exit (1);
73 }
74 for(i=0;i<nx;i++)
75 temp[i][j-1] = temp1[i];
76 }
77 /*End of first half time step*/
78 /* Update concentrations and boundary values */
79 for(i=1; i<nx+1; i++)
80 for(j=1; j<ny+1; j++)
81 u[i][j] = temp[i-1][j-1];
82 neumannbc(u);
83 /* Second half time step: implicit along y*/
84 /* Thomas algorithm to update concentration values */
85 for(i=1; i<nx+1; i++)
86 {
87 /* Initializing tridiagonal coefficients */
88 for(j=0; j<ny; j++)
89 {
90 a2[j] = (-r2/2.);
91 b2[j] = 1. + r2;
92 c2[j] = (-r2/2);
93 d2[j] = 0.5*r1*u[i-1][j+1] + (1. - r1)*u[i][j+1] + ←↩

0.5*r1*u[i+1][j+1];
94 }
95 /* update boundary coefficients as per neumann bc*/
96 c2[0] = -r2;
97 a2[ny -1] = -r2;
98 tridag(a2 ,b2 ,c2 ,d2 ,temp2 ,ny); // Solving for concentrations ←↩

using Thomas algorithm
99 if(temp2 [4] >=1000.0)

100 printf("Error 5\n");
101 for(j=0; j<ny; j++)
102 temp[i-1][j] = temp2[j];
103 }
104 /*End of second half time step*/
105 /* Update concentrations and boundary values */
106 for(i=1; i<nx+1; i++)
107 for(j=1; j<ny+1; j++)
108 u[i][j] = temp[i-1][j-1];
109 neumannbc(u);
110 t +=dt;
111 /*End of one complete time step*/
112 }
113 fclose(fpo);
114 fpo=fopen("final.dat","w");
115 if(fpo==NULL)
116 {
117 puts("cannot open file");
118 exit (1);
119 }
120 fprintf(fpo ,"Final concentration of u\n\n");
121 x=0.0;
122 for(i=1; i<nx+1; i++)
123 {
124 y=0.0;
125 for(j=1; j<ny+1; j++)
126 {
127 fprintf(fpo ,"%lf\t%lf\t%lf\n",x,y,u[i][j]);
128 y += dy;
129 }
130 x += dx;
131 }
132 fclose(fpo);
133 return 0;
134 }
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135
136 /* Function for solving tridiagonal system using Thomas algorithm */
137 void tridag(double a[], double b[], double c[], double d[], double ←↩

u[], int n)
138 {
139 int j;
140 double bet , gam[n];
141 if (b[0] == 0.0) printf("Error 1 in tridag\n");
142 u[0]=d[0]/( bet=b[0]);
143 for (j=1;j<n;j++) {
144 gam[j]=c[j-1]/ bet;
145 bet=b[j]-a[j]*gam[j];
146 if (bet <= 1.0) printf("Error 2 in tridag\n");
147 u[j]=(d[j]-a[j]*u[j-1])/bet;
148 }
149 for (j=(n-2);j>=0;j--)
150 u[j] -= gam[j+1]*u[j+1];
151 }
152 /* Function for applying neumann boundary conditions */
153 void neumannbc(double a[nx+2][ny+2])
154 {
155 int i;
156 for(i=1; i<nx+1; i++)
157 {
158 a[i][0]=a[i][2];
159 a[i][ny+1]=a[i][ny -1];
160 }
161 for(i=1; i<ny+1; i++)
162 {
163 a[0][i]=a[2][i];
164 a[nx+1][i]=a[nx -1][i];
165 }
166 a[0][0]=a[2][2];
167 a[nx +1][0]=a[nx -1][2];
168 a[0][ny+1]=a[2][ny -1];
169 a[nx+1][ny+1]=a[nx -1][ny -1];
170 }
171 /* Function for double integration over 2d space using trapeziod ←↩

rule*/
172 double norm2(double a[nx+2][ny+2])
173 {
174 int i,j;
175 double f[nx], F;
176 F=0.0;
177 for(i=1; i<nx+1; i++)
178 {
179 f[i -1]=0.0;
180 for(j=1; j<ny; j++)
181 f[i-1] += 0.5*(a[i][j+1]*a[i][j+1] + a[i][j]*a[i][j])*dy;
182 }
183 for(i=0; i<nx -1; i++)
184 F += 0.5*(f[i+1] + f[i])*dx;
185 return (F);
186 }

B.2 FTCS scheme on Meinhardt’s model-1d

Following is the program for numerical solution of one-dimensional Meinhardt’s model

using Forward Time Central Space scheme.

explicit 1d.C

1 #include <stdio.h>
2 #include <math.h>
3 #include <stdlib.h>
4 #define Da 0.0200
5 #define Db 0.4000
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6 #define nx 100
7 #define timeSteps 3600
8 void fprintmatrix (double p[nx+2], FILE *f);
9 int main(void)

10 {
11 /* defining required parameters and variables */
12 int i, n;
13 double ba, bb, ra, rb, a0 , b0 , qc , qb , q;// gamma , a, b, alpha , ←↩

u0, v0;
14 double a[nx+2], b[nx+2], dela[nx], delb[nx], s[nx];
15 FILE *fp, *fpo;
16 /* initializing the parameters and variables */
17 ba = 0.0001; //rho0 in equation 46
18 bb = 0.0000;
19 ra = 0.0100; //mu in equation 46
20 rb = 0.0200; //nu in equation 46
21 qc = 0.0200; // magnitude of random fluctuations about rho in ←↩

source density
22 qb = 1.0000; //100 times rho
23 a0 = rb/ra + ba/ra;
24 b0 = (a0*a0 *0.01)/rb;
25 /* Initialize concentration arrays and coupling terms*/
26 for(i=1; i<nx+1; i++)
27 {
28 s[i-1] = 0.01*( qb + qc*(( double) rand()/RAND_MAX)); ←↩

// source density
29 a[i] = a0;
30 b[i] = b0;
31 }
32 /* initializing boundary values of concentrations using neumann ←↩

boundary conditions */
33 a[0] = a[1]; b[0] = b[1];
34 a[nx+1] = a[nx]; b[nx+1] = b[nx];
35 fp=fopen("evolve_a.dat","w");
36 if(fp==NULL)
37 {
38 puts("cannot open file");
39 exit (1);
40 }
41 fpo=fopen("evolve_b.dat","w");
42 if(fpo==NULL)
43 {
44 puts("cannot open file");
45 exit (1);
46 }
47 /* Begin time loop*/
48 for (n=1; n<= timeSteps; n++)
49 {
50 /* Printing concentrations at intermediate times*/
51 if(n%200==0)
52 {
53 for(i=1; i<nx+1; i++)
54 fprintf(fp ,"%d\t%d\t%lf\n",i,n,a[i]);
55 fprintf(fp ,"\n");
56 for(i=1; i<nx+1; i++)
57 fprintf(fpo ,"%d\t%d\t%lf\n",i,n,b[i]);
58 fprintf(fpo ,"\n");
59 }
60 /* Calculating changes in concentrations explicitly */
61 for(i=1; i<nx+1; i++)
62 {
63 q = s[i-1]*a[i]*a[i];
64 dela[i-1] = q/b[i] - ra*a[i] + ba + Da*(a[i-1] - 2*a[i] + ←↩

a[i+1]);
65 delb[i-1] = q - rb*b[i] + bb + Db*(b[i-1] - 2*b[i] + ←↩

b[i+1]);
66 }
67 /* Updating concentrations by adding the changes */
68 for(i=1; i<nx+1; i++)
69 {
70 a[i] += dela[i-1];
71 b[i] += delb[i-1];
72 }
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73 /* Update boundary values */
74 a[0] = a[1]; b[0] = b[1];
75 a[nx+1] = a[nx]; b[nx+1] = b[nx];
76 }
77 fclose(fp);
78 fclose(fpo);
79 fpo=fopen("finala.dat","w");
80 if(fpo==NULL)
81 {
82 puts("cannot open file");
83 exit (1);
84 }
85 fp=fopen("finalb.dat","w");
86 if(fp==NULL)
87 {
88 puts("cannot open file");
89 exit (1);
90 }
91 // Printing final concentrations
92 fprintmatrix(a,fpo);
93 fprintmatrix(b,fp);
94 fprintf(fp ,"\n\n");
95 for(i=0; i<nx; i++)
96 fprintf(fp ,"%d\t%lf\n",i,s[i]);
97 fclose(fpo);
98 fclose(fp);
99 return 0;

100 }
101 /* Function for printing matrix into file*/
102 void fprintmatrix (double p[nx+2], FILE *f)
103 {
104 int i;
105 for(i=1; i<nx+1; i++)
106 fprintf(f,"%d\t%lf\n",i,p[i]);
107 }

B.3 ADI scheme on Murray’s model-2d

Following is the program for numerical solution of two-dimensional Murray’s model

using Alternate Direction Implicit scheme.

ADI thomas.C

1 #include <stdio.h>
2 #include <math.h>
3 #include <stdlib.h>
4 #define d 5.0
5 #define nx 300
6 #define ny 100
7 #define dx 0.01
8 #define dy 0.01
9 #define dt 0.001

10 #define timeSteps 500
11 void fprintmatrix (double p[nx+2][ny+2], FILE *f);
12 void tridag(double a[], double b[], double c[], double r[], double ←↩

u[], int n);
13 void neumannbc(double a[nx+2][ny+2]);
14 double r1, r2, r3, r4;
15 int main(void)
16 {
17 /* defining required parameters and variables */
18 int i, j, n;
19 double K, rho , gamma , a, b, alpha , u0 , v0; //usual notations as ←↩

in equation 48
20 double u[nx+2][ny+2], v[nx+2][ny+2], tempu[nx][ny], ←↩

tempv[nx][ny], f[nx][ny], g[nx][ny], h[nx][ny];
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21 double a1[nx], b1[nx], c1[nx], d1[nx], t1[nx]; // Tridiagonal ←↩
coefficients along x

22 double a2[ny], b2[ny], c2[ny], d2[ny], t2[ny]; // Tridiagonal ←↩
coefficients along y

23 double x, y, t;
24 FILE *fp, *fpo;
25 /* initializing the parameters and variables */
26 K = 0.1;
27 rho = 13.0;
28 gamma = 4.0;
29 a = 102.0;
30 b = 77.0;
31 alpha = 1.5;
32 u0 = 6.17455;
33 v0 = 13.1144;
34 r1 = dt/(dx*dx); r2 = dt/(dy*dy);
35 r3 = d*dt/(dx*dx); r4 = d*dt/(dy*dy);
36 /* Initialize concentration arrays and coupling terms*/
37 for(i=1; i<nx+1; i++)
38 {
39 for(j=1; j<ny+1; j++)
40 {
41 u[i][j] = u0 + 0.5*(( double) rand()/( RAND_MAX /2) - 1.0);
42 v[i][j] = v0 + 0.5*(( double) rand()/( RAND_MAX /2) - 1.0);
43 h[i-1][j-1] = ←↩

rho*u[i][j]*v[i][j]/(1+u[i][j]+K*u[i][j]*u[i][j]);
44 f[i-1][j-1] = gamma *(a - u[i][j] - h[i-1][j-1]);
45 g[i-1][j-1] = gamma *(alpha *(b - v[i][j]) - h[i-1][j-1]);
46 tempu[i-1][j-1] = 0.0;
47 tempv[i-1][j-1] = 0.0;
48 }
49 }
50 /* initializing boundary values of concentrations using neumann ←↩

boundary conditions */
51 neumannbc(u);
52 neumannbc(v);
53 /*Begin time loop*/
54 for (n=1; n<= timeSteps; n++)
55 {
56 t = n*dt;
57 /* First half time step: implicit along x*/
58 /* Thomas algorithm to update concentration values */
59 for(j=1; j<ny+1; j++)
60 {
61 /* Initializing tridiagonal coefficients */
62 for(i=0; i<nx; i++)
63 {
64 a1[i] = -0.5*r1;
65 b1[i] = 1 + r1;
66 c1[i] = -0.5*r1;
67 d1[i] = 0.5*r2*u[i+1][j-1] + (1-r2)*u[i+1][j] + ←↩

0.5*r2*u[i+1][j+1] + 0.5*dt*f[i][j-1];
68 }
69 /* update boundary coefficients for neumann bc*/
70 c1[0] = -r1;
71 a1[nx -1] = -r1;
72 /* Solving the tridiagonal matrix equations */
73 tridag(a1 ,b1 ,c1 ,d1 ,t1 ,nx);
74 /*Back substitution into temporary matrix */
75 for(i=0; i<nx; i++)
76 tempu[i][j-1] = t1[i];
77 /* repeating the above procedure for concentration v*/
78 for(i=0; i<nx; i++)
79 {
80 a1[i] = -0.5*r3;
81 b1[i] = 1 + r3;
82 c1[i] = -0.5*r3;
83 d1[i] = 0.5*r4*v[i+1][j-1] + (1-r4)*v[i+1][j] + ←↩

0.5*r4*v[i+1][j+1] + 0.5*dt*g[i][j-1];
84 }
85 c1[0] = -r3;
86 a1[nx -1] = -r3;
87 tridag(a1 ,b1 ,c1 ,d1 ,t1 ,nx);
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88 /*Back substitution: Updating concentrations u*/
89 for(i=0; i<nx; i++)
90 tempv[i][j-1] = t1[i];
91 }
92 /*End of first half time step*/
93 /* Update concentrations and boundary values */
94 for(i=1; i<nx+1; i++)
95 for(j=1; j<ny+1; j++)
96 {
97 u[i][j] = tempu[i-1][j-1];
98 v[i][j] = tempv[i-1][j-1];
99 }

100 neumannbc(u);
101 neumannbc(v);
102 /* Update coupling terms*/
103 for(i=1; i<nx+1; i++)
104 {
105 for(j=1; j<ny+1; j++)
106 {
107 h[i-1][j-1] = ←↩

rho*u[i][j]*v[i][j]/(1+u[i][j]+K*u[i][j]*u[i][j]);
108 f[i-1][j-1] = gamma *(a - u[i][j] - h[i-1][j-1]);
109 g[i-1][j-1] = gamma *(alpha *(b - v[i][j]) - h[i-1][j-1]);
110 }
111 }
112 /* Second half time step: implicit along y*/
113 /* Thomas algorithm to update concentration values */
114 for(i=1; i<nx+1; i++)
115 {
116 /* Initializing tridiagonal coefficients */
117 for(j=0; j<ny; j++)
118 {
119 a2[j] = -0.5*r2;
120 b2[j] = 1 + r2;
121 c2[j] = -0.5*r2;
122 d2[j] = 0.5*r1*u[i-1][j+1] + (1-r1)*u[i][j+1] + ←↩

0.5*r1*u[i+1][j+1] + 0.5*dt*f[i-1][j];
123 }
124 /* update boundary coefficients for neumann bc*/
125 c2[0] = -r2;
126 a2[ny -1] = -r2;
127 /* Solving tridiagonal matrix equation */
128 tridag(a2 ,b2 ,c2 ,d2 ,t2 ,ny);
129 /*Back substitution into temporary matrix */
130 for(j=0; j<ny; j++)
131 tempu[i-1][j] = t2[j];
132 /* repeating the above procedure for concentration v*/
133 for(j=0; j<ny; j++)
134 {
135 a2[j] = -0.5*r4;
136 b2[j] = 1 + r4;
137 c2[j] = -0.5*r4;
138 d2[j] = 0.5*r3*v[i-1][j+1] + (1-r3)*v[i][j+1] + ←↩

0.5*r3*v[i+1][j+1] + 0.5*dt*g[i-1][j];
139 }
140 c2[0] = -r4;
141 a2[ny -1] = -r4;
142 tridag(a2 ,b2 ,c2 ,d2 ,t2 ,ny);
143 for(j=0; j<ny; j++)
144 tempv[i-1][j] = t2[j];
145 }
146 /*End of second half time step*/
147 /* Update concentrations and boundary values */
148 for(i=1; i<nx+1; i++)
149 for(j=1; j<ny+1; j++)
150 {
151 u[i][j] = tempu[i-1][j-1];
152 v[i][j] = tempv[i-1][j-1];
153 }
154 neumannbc(u);
155 neumannbc(v);
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156 /* Update coupling terms*/
157 for(i=1; i<nx+1; i++)
158 {
159 for(j=1; j<ny+1; j++)
160 {
161 h[i-1][j-1] = ←↩

rho*u[i][j]*v[i][j]/(1+u[i][j]+K*u[i][j]*u[i][j]);
162 f[i-1][j-1] = gamma *(a - u[i][j] - h[i-1][j-1]);
163 g[i-1][j-1] = gamma *(alpha *(b - v[i][j]) - h[i-1][j-1]);
164 }
165 }
166 /*End of one complete time step*/
167 }
168 fpo=fopen("finalu.dat","w");
169 if(fpo==NULL)
170 {
171 puts("cannot open file");
172 exit (1);
173 }
174 fp=fopen("finalv.dat","w");
175 if(fp==NULL)
176 {
177 puts("cannot open file");
178 exit (1);
179 }
180 fprintmatrix(u,fpo);
181 fprintmatrix(v,fp);
182 fclose(fpo);
183 fclose(fp);
184 return 0;
185 }
186 /* Function for printing concentrations along with their spatial ←↩

coordinates */
187 void fprintmatrix (double p[nx+2][ny+2], FILE *f)
188 {
189 int i,j;
190 double x, y;
191 x = 0.0;
192 for(i=1; i<nx+1; i++)
193 {
194 y=0.0;
195 for(j=1; j<ny+1; j++)
196 {
197 fprintf(f,"%lf\t%lf\t%lf\n",x,y,p[i][j]);
198 y += dy;
199 }
200 x += dx;
201 }
202 }
203 /* Function for solving tridiagonal system using Thomas algorithm */
204 void tridag(double a[], double b[], double c[], double r[], double ←↩

u[], int n)
205 {
206 int j;
207 double bet , gam[n];
208 if (b[0] == 0.0) printf("Error 1 in tridag\n");
209 u[0]=r[0]/( bet=b[0]);
210 for (j=1;j<n;j++) {
211 gam[j]=c[j-1]/ bet;
212 bet=b[j]-a[j]*gam[j];
213 if (bet == 0.0) printf("Error 2 in tridag\n");
214 u[j]=(r[j]-a[j]*u[j-1])/bet;
215 }
216 for (j=(n-2);j>=0;j--)
217 u[j] -= gam[j+1]*u[j+1];
218 }
219 /* FUnction for applying Neumann boundary conditions */
220 void neumannbc(double a[nx+2][ny+2])
221 {
222 int i;
223 for(i=1; i<nx+1; i++)
224 {
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225 a[i][0]=a[i][2];
226 a[i][ny+1]=a[i][ny -1];
227 }
228 for(i=1; i<ny+1; i++)
229 {
230 a[0][i]=a[2][i];
231 a[nx+1][i]=a[nx -1][i];
232 }
233 a[0][0]=a[2][2];
234 a[nx +1][0]=a[nx -1][2];
235 a[0][ny+1]=a[2][ny -1];
236 a[nx+1][ny+1]=a[nx -1][ny -1];
237 }

B.4 Discrete Cosine Transform

Following is the program used to find the Discrete Cosine Transform of the measured

patterns.

DCT.C

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <math.h>
4 #define pi 3.14159265358979
5 #define N 880
6 #define dx 0.01
7 double DCT (double a[], int k);
8 int main()
9 {

10 int k;
11 double x[N], f[N];
12 FILE *fp;
13 fp=fopen("white.txt","r");
14 if(fp==NULL)
15 {
16 puts("cannot open file");
17 exit (1);
18 }
19 for(k=0; k<N; k++)
20 fscanf(fp ,"%lf",&x[k]);
21 fclose(fp);
22 fp=fopen("whiteDCT.dat","w");
23 if(fp==NULL)
24 {
25 puts("cannot open file");
26 exit (1);
27 }
28 for(k=0; k<N; k++)
29 {
30 f[k] = DCT(x,k);
31 fprintf(fp ,"%d\t%lf\n",k,f[k]);
32 }
33 fclose(fp);
34 fp=fopen("violet.txt","r");
35 if(fp==NULL)
36 {
37 puts("cannot open file");
38 exit (1);
39 }
40 for(k=0; k<N; k++)
41 fscanf(fp ,"%lf",&x[k]);
42 fclose(fp);
43 fp=fopen("violetDCT.dat","w");
44 if(fp==NULL)
45 {
46 puts("cannot open file");
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47 exit (1);
48 }
49 for(k=0; k<N; k++)
50 {
51 f[k] = DCT(x,k);
52 fprintf(fp ,"%d\t%lf\n",k,f[k]);
53 }
54 fclose(fp);
55 for(k=0; k<N; k++)
56 x[k] = cos (200.0*k*dx);
57 fp = fopen("benchmark.dat", "w");
58 if(fp==NULL)
59 {
60 puts("cannot open file");
61 exit (1);
62 }
63 for(k=0; k<N; k++)
64 {
65 f[k] = DCT(x,k);
66 fprintf(fp ,"%d\t%lf\n",k,f[k]);
67 }
68 fclose(fp);
69 return 0;
70 }
71 double DCT (double a[], int k)
72 {
73 int j;
74 double y =0;
75 for(j=0; j<N; j++)
76 y += a[j]*cos(pi*(j+0.5)*k/N);
77 return y*dx;
78 }
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