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Abstract

The aim of this THESIS is to highlight the major developments in the

arithmetic-geometric aspects of the modular group. After covering geomet-

ric aspects of Fuchsian groups, we study various variants of the Poincaré

polygon theorem. Arithmetic methods like Farey Symbols have been used

to describe the subgroups of PSL(2,Z). Graph-theoretical approach has

been used to study algorithm for generating all trivalent diagrams. Finally,

we conclude by describing algorithms for testing membership of matrices in

PSL(2,Z) by using the concept of Farey Symbols.

v



Chapter 1

Hyperbolic Geometry

Hyperbolic geometry was created in the first half of the 18th century because the

main criticism of Euclid’s fifth postulate was that unlike other postulates, it is not

self-evident to be accepted without proof.

Euclid’s Postulates

1. A straight line may be drawn from any point to any other point.

2. A finite straight line may be extended continuously in a straight line.

3. A circle may be drawn with any centre and any radius.

4. All right-angles are equal.

5. (Parallel Postulate) If a straight line falling on two straight lines makes the

interior angles on the same side less than two right-angles, then the two straight

lines, if extended indefinitely, meet on the side on which the angles are less than

two right-angles.

The plane geometry can be developed without parallel postulate and hence suggesting

that the parallel postulate is not necessary. A number of geometers like Proclus, Ibn

al-Haytham, Nasir al-Din al-Tusi, Witelo, Gersonides, Alfonso, Saccheri, John Wallis,

Lambert and Legendre made attempts to prove the parallel postulate by trying to de-

rive a contradiction. Johann Heinrich Lambert introduced the concept of hyperbolic

functions and computed area of a hyperbolic triangle in the 18th century.

In 1824, Gauss found that the assumption that the sum of the three sides (of a tri-

angle) is smaller than 180 degrees leads to a geometry which is quite different from

our (Euclidean) geometry which is completely consistent within itself. This was the
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first example of a non-Euclidean geometry. It was discovered again by Lobachevsky

in 1829 in a paper entitled on the principles of geometry and by Bolyai in 1832 in a

paper entitled the absolute science in space. we call non-Euclidean geometry of Gauss,

Lobachevsky and Bolyai as hyperbolic geometry and any geometry which is not Eu-

clidean is called non-Euclidean geometry. Although Gauss, Boyali and Lobachevsky

developed non-Euclidean geometry, they didn’t prove the consistency of the geom-

etry. During the investigation of curved surfaces Euler, Gauss and Monge laid the

Analytic study of hyperbolic non-Euclidean geometry. The term hyperbolic geometry

was coined by Felix Klein in 1871.

There are several ways of modelling hyperbolic geometry. In this section we have dis-

cussed two models. The first one is the upper half model and the second is Poincaré

Disc model. Material for studying this topic has been taken mainly from [CW12],

[JA05] and [SK92].

1.1 Upper Half Plane

1.1.1 Hyperbolic Metric

Definition 1.1.1. The upper half-plane is the set of complex numbers z with positive

imaginary part

H2 = {z ∈ C | Im(z) > 0}.

Definition 1.1.2. The boundary of H2 or the circle at infinity is defined to be the set

∂H2 = {z ∈ C | Im(z) = 0} ∪ {∞}.

Definition 1.1.3. Let C be the complex plane. Using the notations Re(z) = x and

Im(z) = y. The upper half plane model of hyperbolic plane is defined to be H2 equipped

with the metric

∂s =

√
∂x2 + ∂y2

y
.

1.1.2 Path Integrals

By a path σ in C we mean the image of differentiable function σ : [x, y] → C where

[x, y] ⊂ R is an interval.

If f : C→ R is a continuous function, then the integral f along the path σ is defined

2



as ∫
σ

f =

∫ y

x

f(σ(t))|σ′(t)|dt.

In this equation |.| signifies modulus of a complex number i.e.

|σ′(t)| =
√

(Re σ′(t))2 + (Im σ′(t))2).

Definition 1.1.4. A path σ with parametrisation σ : [x, y]→ C is piecewise differen-

tiable if σ is continuous and differentiable except at finitely many points.

1.1.3 Distances

Definition 1.1.5. Let σ : [x, y] → H2 be a path in upper half-plane, then the hyper-

bolic length of σ is defined as

LengthH2(σ) =

∫
σ

1

Im(z)
=

∫ y

x

|σ′(t)|
Im(σ(t))

dt.

Example In the path σ(t) = x1 + t(x2 − x1) + ιy, 0 ≤ t ≤ 1, the length is given

by

LengthH2(σ) =

∫ 1

0

|x2 − x1|
y

dt =
|x2 − x1|

y
.

Definition 1.1.6. Let m1,m2 ∈ Z. The hyperbolic distance dH2(m1,m2) between 2

points m1 and m2 is defined to be equal to inf LengthH2(σ), where σ is a piecewise

differentiable path which has end points at m1 and m2.

1.1.4 Lines and Circles

Euclidean line has the form ax + by + c = 0 for a, b, c ∈ R. Writing z = x + ιy and

z = x− ιy we can write

x =
1

2
(z + z), y =

1

2
(z − z).

If we put back the values of x and y in the equation of the line we will get

1

2
(a− ιb)z +

1

2
(a+ ιb)z + c = 0.

3



Putting α = (a−ιb)
2

, the equation of the line becomes

αz + αz + c = 0. (1.1)

Equation of the circle with centre (x0, y0) and radius r in the Euclidean plane is

(x− x0)2 + (y − y0)2 = r2. We can rewrite this equation as

(z − z0)(z − z0) = r2 where z = x+ ιy.

On expanding we get

zz − z0z − z0z + z0z0 − r2 = 0.

Now taking α = −z0 and β = z0z0 − r2, the equation of line becomes

zz + αz + αz + β = 0. (1.2)

From the Equation 1.1 and Equation 1.2 the following result follows.

Proposition 1.1.7. Let M be either circle or a straight line in C. Then the equation

of M is

γzz + αz + αz + β = 0. (1.3)

where β, γ ∈ R and α ∈ C. We will denote all such paths by κ.

Proposition 1.1.8. Let M be either circle or a straight line in C satisfying the equa-

tion γzz + αz + αz + β = 0 with α, β, γ ∈ R, then M is either

1. circle with centre on Real-axis or ;

2. vertical straight line.

Proposition 1.1.8. is the consequence of Proposition 1.1.7.

1.1.5 Möbius Transformation

Definition 1.1.9. Let p, q, r, s ∈ R such that ps− qr > 0 and defines a map

γ(z) =
pz + q

rz + s

Transformations of H2 of this form are called Möbius Transformations of H2.

Notation Möb(H2) denotes the set of all Möbius Transformations of H2.

Properties of Möbius Transformation

4



1. Möbius Transformation is a group under composition.

2. Dilations z 7→ mz (m > 0), Translations z 7→ z + a and Inversion z 7→ −1
z

are

Möbius Transformations.

3. Möbius Transformations maps H2 to itself bijectively.

4. dH2(γ(z1), γ(z2)) = dH2(z1, z2).

5. Let H ∈ κ. Then there exists γ ∈ Möb(H2) such that γ maps H bijectively to

the imaginary axis.

Proposition 1.1.10. If M is either a semi-circle orthogonal to the real-axis or a

vertical straight line and γ be a Möbius Transformation of H2, then γ(M) is also a

semi-circle orthogonal to the real-axis or a vertical straight line.

Proof. Since, Möbius Transformations maps H2 to itself bijectively. Hence we show

that γ maps vertical straight lines in C and the circles in C with real centres to vertical

straight lines and circles with real centres.

w = γ(z) =
pz + q

rz + s
,

then

z =
sw − q
−rw + p

.

Substituting this in Equation 1.3 we have (βs2 − 2γrs + αr2)ww + (−βqs + γps +

γqr − αpr)w + (−βqs + γps + γqr − αpr)w + (βq2 − 2γpq + αp2) = 0 which is the

equation of either a vertical line or a circle with real-axis.

Definition 1.1.11. We define the shortest path between any 2 points in the space as

geodesic.

Proposition 1.1.12. Let p ≤ q. The hyperbolic distance between ιp and ιq is log q
p

and the vertical line joining these points is the geodesic.

Proof. Let σ(z) = ιz, p ≤ z ≤ q. Here ‖σ′(z)‖ = 1. Then σ is a path from ιp to ιq.

So

LengthH2(σ) =

∫ q

p

1

z
dz = log

q

p

5



Now let σ(z) = x(z) + ιy(z) : [0; 1]→ H be any path from ιp to ιq. Then

LengthH2(σ) =

∫ 1

0

√
x′2(z) + y′2(z)

y(z)
dz ≥ |y

′(z)|
y(z)

= log
q

p

Hence, the path joining ιp and ιq has minimum hyperbolic length log q
p

with equality

when x′(z) = 0 i.e. only when σ is a vertical line.

Theorem 1.1.13. The geodesics in H2 are the semi-circles orthogonal to the real axis

and the vertical straight lines. Also given any 2 points, there exists a unique geodesic

passing through them.

Proof. Apply Proposition 1.1.12 and Property 5 of the Möbius transformation we can

prove the first part of the theorem. By applying γ−1 we see that H2 is a unique

geodesic passing through the two given points.

1.1.6 Area and Angles

Definition 1.1.14. Suppose we have 2 paths σ1 and σ2 which intersects at point

m ∈ H2. By choosing a suitable parametrisation of paths, we assume that m =

σ1(0) = σ2(0). The angles between σ1 and σ2 is defined as the angle between their

tangent vectors at the point of intersection.

Möbius transformation preserves the angles. The transformation which preserves an-

gles is called conformal.

Definition 1.1.15. Let M ⊂ H2 be subset of the upper-half plane. Then the hyperbolic

area is defined as

AreaH2(M) =

∫ ∫
M

1

y2
∂x∂y =

∫ ∫
M

1

Im(z)2
dz.

Hyperbolic area is invariant under Möbius Transformation.

Proposition 1.1.16. Let γ be a Möbius Transformation. Then

1. γ is conformal.

2. AreaH2(γ(M)) = AreaH2(M).

Proof. We get the proof using the concepts of Cauchy-Riemann Equations, Inner

Product, Cauchy-Schwartz Inequality as given in [CW12] Chapter 5, Section 9.
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1.2 Poincaré Disc Model

Definition 1.2.1. The disc D2 = {z ∈ C | |z| < 1} is called Poincaré Disc. The

circle ∂D2 = {z ∈ C | |z| = 1} is called the circle at ∞ or boundary of D2.

1.2.1 Distance and Möbius Transformations on D2

Consider the map

h(z) =
z − ι
ιz − 1

h maps the upper-half plane H2 to Poincaré Disc D2. Also h maps ∂H2 to ∂D2

bijectively.

Let g(z) = h−1(z), then g maps D2 to H2 and is defined by

g(z) =
−z + ι

−ιz + 1
.

Let σ : [x, y] → D2 be a path in D2, then g ◦ σ : [x, y] → D2 be a path in H2. The

length of g ◦ σ is defined as

LengthH2(g ◦ σ) =

∫ y

x

|(g ◦ σ)′(t)|
Im(g ◦ σ(t))

dt.

Using the chain rule, we calculate the values of g′(z) and Im(g(z)), we can calculate

the value of LengthH2(g ◦ σ) and hence the value of LengthD2(σ) which is found to

be equal to

LengthD2(σ) =

∫ y

x

2

1− |σ(t)|2
|σ′(t)|dt.

The difference between calculating distances in Upper half model and Poincaré disc

model is that in upper-half model we integrate 1
Im(z)

along the path to obtain the

length whereas in Poincaré Disc we integrate 2
1−|z|2 along the path.

Definition 1.2.2. We call a map of the form

γ(z) =
αz + β

βz + α
, α, β ∈ C, |α|2 − |β|2 > 0

as Möbius Transformation of D2.

For any γ ∈ Möb(H2) and u, v ∈ D2. We obtain an isometry of D2 by using the map

hγh−1.

7



Definition 1.2.3. Using the h(z) and transferring this to definition of D2 we can

define the area of M ⊂ D2 as

AreaH2(D2) =

∫ ∫
M

4

(1− |z|2)
dz.

1.3 Trigonometry

Figure 1.1: Right Angled Triangle

Theorem 1.3.1 (Pythagoras theorem for hyperbolic triangles). Let 4 be a right-

angled triangle in H2 with internal angles α, β, π/2 and opposing sides with lengths

a, b, c. Then

cosh c = cosh a cosh b.

Proof. Let4 be a triangle which satisfies the given hypothesis. By applying a Möbius

Transformation of H2, we assume that the vertex with internal angle π/2 is at ι and

side of length b lies along the imaginary axis. So the side of length a lies along the

geodesic which is given by the semi-circle centred at the origin and radii 1. (See Figure

1.1)

Other vertices of 4 can be taken to be kι for some k > 0 and at s + ιt. s + ιt lies on

the circle which is centred at the origin and has radii 1. Using the formula that for

any z, w ∈ H2

cosh dH2(z, w) = 1 +
| z − w |2

2Im(z)Im(w)
.

We can apply this formula to calculate the the three sides of 4
cosh a = 1

t

cosh b = 1+k2

2k

cosh c = 1+k2

2tk

8



Combining the above equations we see that

cosh c = cosh a cosh b.

1.3.1 Gauss Bonnet Theorem

Theorem 1.3.2 (Gauss Bonnet theorem for hyperbolic triangle). Let 4 be a hyper-

bolic triangle with internal angles α, β and γ. Then

Area(4) = π − (α + β + γ).

Proof. Case 1 Triangle is ideal.

In this case all the vertices are at the boundary of the hyperbolic plane and we know

that hyperbolic area of any A ⊂ H2 is given by

Area(4) =

∫ ∫
T

dxdy

y2

=

∫ 1

−1

∫ ∞
√

(1−x2)

dy

y2
dx

=

∫ 1

−1

[−1

y
]∞√

1−x2dx

=

∫ 1

−1

dx√
1− x2

= [Sin−1x]1−1

= π.

Case 2 Two vertices of a triangle are at infinity and α be an angle of the triangle at

the finite vertex. This can be done by a suitable transformation in PSL(2,R). So the

9



finite vertex will be eι(π−α). The area of the triangle will be

Area(4) =

∫ ∫
T

dxdy

y2

=

∫ 1

Cos(π−α)

∫ ∞
√

(1−x2)

dy

y2
dx

=

∫ 1

Cos(π−α)

[−1

y
]∞√

(1−x2)
dx

=

∫ 1

Cos(π−α)

dx√
(1− x2)

= π − α.

Case 3 Two vertices are finite. Let v1 and v2 be the finite vertices and l be a geodesic

joining them and α and β are the angles at the vertices. By a suitable transformation

in PSL(2, R) we can map the infinite vertex at ∞ and v1 and v2 on the unit circle.

Now we say v1 = eι(π−α) and v2 = eιβ. Therefore,

Area(4) =

∫ ∫
T

dxdy

y2

=

∫ Cosβ

Cos(π−α)

∫ ∞
√

1−x2

dy

y2
dx

=

∫ Cosβ

Cos(π−α)

[− 1

y2
]∞√

(1−x2)
dx

=

∫ Cosβ

Cos(π−α)

dx√
(1− x2)

= π − (α + β).

Case 4 All vertices are finite. We can express this as difference of 2 hyperbolic

triangles each with 1 vertex at infinity and solve this as in Case 2 and Case 3. We get

Area(4) = π − (α + β + γ).

Theorem 1.3.3 (Gauss Bonnet Theorem for a hyperbolic Polygon). Let Z be n-sided

polygon with vertices v1, v2, · · · , vn and internal angles α1, α2, · · · , αn. Then

AreaH2(Z) = (n− 2)π − (α1 + α2 + · · ·+ αn).

10



Theorem 1.3.4. There exists a tessellation of the hyperbolic plane by regular hyper-

bolic n-gons with m polygons meeting at each vertex if

1
n

+ 1
m
< 1

2
.

Proof. Let β denote the internal angle of a regular n-gon Z . Since m such polygons

meet at each vertex so we must have β = 2π/m. Since the area of the polygon is

positive hence on substituting β = 2π/m into the area we have

1
n

+ 1
m
< 1

2
.

1.3.2 Relation between angles and sides

Proposition 1.3.5. Let 4 be a right-angled triangle in H2 with internal angles α, β

and π/2 and opposing sides of lengths a, b, c. Then

1. sinα = sinh a/ sinh c;

2. cosα = tanh b/ tanh c;

3. tanα = tanh c/ sinh b.

Proof. See [SK92] Chapter 1.

1.3.3 Angle of Parallelism

We will consider a special case of a right-angled triangle with one ideal vertex. The

internal angles of the triangle are α, π/2 and 0. The only side with finite length is

between the vertices which have internal angles α and π/2. The angle of parallelism

is a term for this angle expressed in terms of the side of finite length.

Proposition 1.3.6. Let 4 be a hyperbolic triangle with angles α, 0 and π/2. Let m

denote the length of the only finite side. Then

1. sinα = 1
coshm

;

2. cosα = 1
cothm

;

3. tanα = 1
sinhm

.

Proof. See [JA05] Chapter 5.
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1.3.4 Non-right-angled triangles

1. Sine Rule

Let 4 be a hyperbolic triangle with internal angles α, β and γ and side lengths

x, y and z. Then
sinα

sinhx
=

sin β

sinh y
=

sin γ

sinh z
.

2. Cosine Rule

Let 4 be a hyperbolic triangle with internal angles α, β and γ and side lengths

a, b, c. Then

cosh c = cosh a cosh b− sinh a sinh b cos γ.

Proof. See [JA05] Chapter 5.

1.4 Classification of Möbius Transformation

Note that it follows that every Möbius Transformation has atleast one fixed point in

Ĉ = C ∪ {∞}. This is because the equation

az + b

cz + d
= z

is a qudratic equation and it must have a root in C ∪ {∞}. One of them must be in

H2 ∪ ∂H2.

From the above equation there are 2 possibilities

1. 1 or 2 real solutions.

2. 2 complex conjugates (But only 1 of them lies in upper-half plane).

Definition 1.4.1. Let γ be a Möbius Transformation of H2. Then

1. γ is hyperbolic if it has two fixed points in ∂H2 and none in H2.

2. γ is parabolic if it has one fixed point in ∂H2 and none in H2.

3. γ is elliptic if it has one fixed point in H2 and none in ∂H2.

Definition 1.4.2. Let γ1, γ2 ∈ Möb(H2) . We say that γ1 and γ2 are conjugates if

there exists another Möbius Transformations g ∈ Möb(H2) such that γ1 = g−1 ◦γ2 ◦g.

We define Trace of a Möbius Transformation with γ(z) = az+b
cz+d

to be τ(γ) = (a+ d)2.

12



Proposition 1.4.3. Let γ be a Möbius Transformation of H2 and suppose that γ is

not an identity. Then

1. γ is parabolic if and only if τ(γ) = 4.

2. γ is elliptic if and only if τ(γ) ∈ [0, 4).

3. γ is hyperbolic if and only if τ(γ) ∈ (4,∞).

Proposition 1.4.4. Let γ be a Möbius Transformation of H2 and suppose that γ is

not an identity. Then the following are equivalent

1. γ is parabolic.

2. τ(γ) = 4.

3. γ is conjugate to a translation.

Proof. We only need to prove that 1 =⇒ 3.

We suppose that γ has a unique fixed point at α ∈ ∂H2. Let h be a Möbius Transfor-

mation which maps α to ∞, then hγh−1 is a translation. As discussed above hγh−1

will have a fixed point at b/(d−a). As hγh−1 has only 1 fixed point so we have d = a.

Thus, hγh−1 = z +m for some m ∈ Z. Hence 1 =⇒ 3.

Proposition 1.4.5. Let γ be a Möbius Transformation of H2 and suppose that γ is

not an identity. Then the following are equivalent

1. γ is hyperbolic.

2. τ(γ) > 4.

3. γ is conjugate to a dilation i.e. γ is conjugate to a Möbius transformation of

H2 of the form z → kz, for some k > 0.

Proof. We only need to prove that 1 =⇒ 3.

Since γ is hyperbolic transformation, so it has 2 fixed points say α1 and α2. We have

2 cases.

1. Suppose α2 = ∞ and α1 ∈ R. Let h(z) = z − α1. Then the Möbius Transfor-

mation hγh−1 is conjugate to γ and has fixed points at 0 and ∞.
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2. Suppose that α1 ∈ R and α2 ∈ R. We assume that α1 > α2. Let h be a

transformation then

h(z) =
z − α1

z − α2

As h(α2) =∞ and h(α1) = 0 we see that hγh−1 has fixed points at 0 and ∞.

Hence 1 =⇒ 3.

Proposition 1.4.6. Let γ be a Möbius Transformation of H2 and suppose that γ is

not an identity. Then the following are equivalent

1. γ is elliptic.

2. τ(γ) ∈ [0, 4).

3. γ is conjugate to rotation z 7→ eιθz.

Proof. We only need to prove that 1 =⇒ 3.

Suppose that γ is elliptic and has a unique fixed point at α ∈ D2. Let h be a Möbius

Transformation of D2 that maps α to origin 0. Then hγh−1 has a unique fixed point

at 0. Suppose that

hγh−1(z) =
αz + β

βz + α
, |α|2 − |β|2 > 0.

As 0 is fixed point, we must have β = 0. Writing α in polar coordinate form we have

α = reιθ. Then

hγh−1(z) =
α

α
z = e2ιθz.

Hence 1 =⇒ 3.
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Chapter 2

Fuchsian groups

General Fuchsian groups were studied for the first time by Poincaré in 1882, who

was inspired by Ueber eine Klasse von Funktionen mehrerer Variablen, welche durch

Umkehrung der Integrale von Lsungen der linearen Differentialgleichungen mit ratio-

nalen Coeffizienten entstehen (On a class of functions of several variables, which are

produced by inverting the integrals of solutions of linear differential equations with

rational coefficients) by Lazarus Fuchs in 1880 and therefore named the theory after

Lazarus Fuchs’s name. In this section we have studied properties of Fuchsian Group

and various variants of Poincaré Theorem. [SK92], [CW12] and [AB07] have been

used as the main references for studying this chapter.

Discrete subgroup of PSL(2,R) is known as Fuchsian group.

PSL(2,R) = {γ(z) = az+b
cz+d
|a, b, c, d ∈R, ad− bc = 1}.

Examples

1. Any finite subgroup of Möb(H).

2. The subgroup Γ = {γn(z) = 2nz | n ∈ Z} is a Fuchsian group.

3. PSL(2,Z).

Generators of SL(2,Z) We will prove that any matrix in SL(2, Z) can be written

as product of positive powers of T and S where T and S are given by the following

T =

(
1 1

0 1

)
, S =

(
0 −1

1 0

)
.

We will use the fact that all elements of SL(2, Z) are invertible and hence can be

brought down to the I (identity element) by a series of row and column operations.

Also we know that Z is Euclidean.
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Proof. If a matrix B−1 ∈ SL(2, Z) is written as a product of some powers of S and T

and since each A ∈ SL(2, Z) is the inverse of A−1 ∈ SL(2, Z) so all A can be expressed

in a similar way. We will denote the required matrix by B and its inverse by A. The

set of elementary operations namely interchanging rows, multiplying by a non-zero

scalar or multiplying a row and adding it to another cannot be used as in the two first

cases, the relevant elementary matrices will not be in SL(2, Z). Hence we must allow

only the third kind of operation along with multiplication by powers of S. For this

task we require the matrix Tz =

(
1 z

0 1

)
where z ∈ Z and its transpose. On checking

we get

S−1 = S3

T−1 = S3TSTS

ST−1 = S2STS

Tt = TST

Let A =

(
a b

c d

)
and since det(A) = ad− bc = 1 and we know that gcd (a, b) = gcd

(a, c) = gcd (b, c) = gcd (c, d) = 1 (because if x|a and x|b, then x|(ad− bc) = 1 and

hence x = ±1).

Case 1 Suppose that c = 0, then A=

(
±1 b

0 ±1

)
. Then

(
1 ∓b
0 1

)
×

(
±1 b

0 ±1

)
=

±1. We are done since S2 = −I.

Case 2 Suppose c 6= 0. Since Z is Euclidean and gcd(a,c) = 1, we have a list of

integers [p1, · · · , pn, pn+1] which gives us the above equations with last remainder rn

= 1. This procedure is actually the division algorithm carried out on a column of A.

T−p1A =

(
r1 b1

c d1

)
where r1 = a − p1c is the first remainder. Also b1 and d1 are the new entries. The

rows remain relatively prime. Then

T−p
t
2A =

(
r1 b2

r2 d2

)
where r2 = c− p2r1. Since gcd (a, c) = 1 so this process must terminate with (1, 0)t

or (0, 1)t in first column of A. In the last case, multiplication on the left by S3 brings

A to A’ =

(
±1 b′n

0 ±1

)
(because det(A′) = 1.) It is clear that multiplication by S2, and

then T−bn gives I.
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2.1 Fundamental Domains

When a group acts on a set, it divides it in orbits. If there exists an element of

the group which takes one element to another then those two points are in the same

equivalence class. If H is a subgroup of Γ then we say that the two points m1, m2 ∈
H2 are H-equivalent if there exists g ∈ H such that m2 = gm1 i.e. they are in the

same orbit class.

Definition 2.1.1. Let Γ be a Fuchsian group. A fundamental domain F for Γ is an

open subset of H2 such that

1. ∪γ∈Γ γ(cl(F )) = H2.

2. The images γ(F ) are pairwise disjoint i.e. γ1(F ) ∩ γ2(F ) = φ if γ1(F ), γ2(F ) ∈
Γ, γ1 6= γ2.

Figure 2.1: Fundamental Domain of PSL(2,Z)

Theorem 2.1.2. The region F defined by

F = {z ∈ H2 | −1
2
≤ Re z ≤ 1

2
and | z |≥ 1}

is a fundamental domain for PSL(2,Z).

Idea of the proof

We will first prove that every z ∈ H2 is PSL(2,Z)-equivalent to a point in F. We

will first use the translation T j1 to move point inside the strip −1
2
≤ Rez ≤ 1

2
. If the

point goes outside the circle then it is inside the Fundamental Domain, else we move

the point outside the unit circle using S and we will then use the translation T j2 to

bring it back to the strip. We will continue this process till we get the point inside F.

Notation for S and T are same as stated above.
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Proof. Let z ∈ H2 be fixed. If g =

(
a b

c d

)
∈ PSL(2,Z). Then we will have Im g(z) =

Im z
|cz+d|2 . If |cz+d| ≥ 1 then Im g(z) ≤ Im z. Now since, c and d vary through integers

so the complex numbers cz + d run through lattices which are generated by 1 and

z whereas inside the unit circle there are finitely many lattice points. As a result,

there are finitely many complex numbers y which are of the form y = g (z) with

Im y ≥ Im z. Hence, there is some g =

(
a b

c d

)
∈ PSL(2,Z) such that Im g(z) is

maximal. We will now replace g by T jg for some suitable j and assume that g(z) is

inside −1
2
≤ Rez ≤ 1

2
. Then if g(z) /∈ F then we would have Im S(g(z)) = Im g(z)

|g(z)|2 >

Im g(z), which will contradict the maximality of Im g(z). Hence, there is atleast one

g ∈ PSL(2,Z) such that g(z) ∈ F.

It remains to prove that no two points in the interior of F are PSL(2,Z)-equivalent.

Let z1 and z2 ∈ F be PSL(2,Z)-equivalent and g =

(
a b

c d

)
∈ PSL(2,Z) be a matrix

with z2 = g(z1). Next we will assume that Im z2 = Im g(z1) ≥ Im z1. Since Im z2 =

Im g(z1) = Im z1
|cz+d|2 ≥ Im z1 so we have | cz1 +d | ≤ 1. If z1 = a1 + b1ι, then | cz1 +d |

≤ 1 implies | ca1 + d + cb1ι | ≤ 1 or (ca1 + d)2 + (cb1)2 ≤ 1. Thus, | cb1 | ≤ 1 and

since b1 = Im z1 ≥
√

3
2

we have | c | ≤ 1
b1
≤ 2√

3
< 2 that is | c | ≤ 1. If we add d to

cz1 it will translate cz1 to left or right by | d |. Hence we need |d| ≤ 1 for cz1 + d to

be inside circle. Thus, we are left with 4 cases.

Case 1

d = ±1, c = 0.

Here g is a translation g = T j, where j ≥ 0. g will take a point in F to another point

only if it is identity or if j = ± 1 and the points are on the two boundary lines Re(z)

= ± 1
2
.

Case 2

d = 0, c = ±1 with z1 on the circle.

Here g must be of the form g = TmS with m = 0. Also z1 and z2 lie on the unit

circle located evenly with respect to the imaginary axis or m = ±1 and z1 = z2 = ±
−1
2

+
√

3
2
ι.

Case 3

c = d = ±1 and z1 = −1
2

+
√

3ι
2

.

Here we have | z1 + 1 | = | cz1 + d | ≤ 1. Since on adding 1 will translate a point in

F to the right so the lone possibility for z1 is z1 = −1
2

+
√

3
2
ι.

Case 4
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c = −d = ±1 and z1 = 1
2
+
√

3ι
2

.

Here we must have | z1−1 | = | cz1 +d | ≤ 1. The only possibility is that z1 = 1
2

+
√

3
2
ι.

So we have z1 and z2 in the interior of F if and only if g = I and z1 = z2.

Proposition 2.1.3. Let F1 and F2 be two fundamental domains for a Fuchsian group

Γ with AreaH2(F1) <∞. Then AreaH2(F1) = AreaH2(F2).

2.2 Dirichlet Polygon

Definition 2.2.1. Geodesics divide H2 into 2 compartments and we call those formed

compartments as half planes.

A convex hyperbolic polygon is the intersection of a finite number of half planes.

Dirichlet region is defined as

D(p) = {z ∈ H2 | dH2(z, p) < dH2(z, γ(p))}.

The fundamental domain that we construct for a given Fuchsian group is known as

Dirichlet polygon.

2.2.1 Construction of Dirichlet Polygon

For constructing Dirichlet Polygon we follow the following procedure

1. Choose p ∈ H2 such that γ(p) 6= p for all γ ∈ Γ \ {Id}.

2. For a given γ ∈ Γ \ {Id} construct the geodesic segment [p, γ(p)].

3. Take Lp(γ) to be the perpendicular bisector of [p, γ(p)].

4. Let Hp(γ) be the half-plane determined by Lp(γ) that contains p.

5. D(p) = ∩γ∈Γ\{Id} Hp(γ).

Example Dirichlet polygon for Fuchsian group Γ = {γn(z) | γn(z) = 2nz, n ∈ Z} is

given by

D(p) = {z ∈ H2 | 1/
√

2 < |z| <
√

2}.
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Let Γ = {γn(z)|γn(z) = 2nz}. Let p = ι and also γn(p) = 2nι 6= p unless n = 0. For

each n, [p, γn(p)] is an arc of imaginary axis from ι to 2nι. Suppose that n > 0. We

know by Proposition 1.1.12 that 2n/2ι is the midpoint. Hence Lp(γn) is the semicircle

of radius 2n/2 centred at origin and

Hp(γn) = {z ∈ H2 | |z| < 2n/2}.

For n < 0 we see

Hp(γn) = {z ∈ H2 | |z| > 2n/2}.

Hence

D(p) = ∩γn∈Γ\{Id}Hp(γn) = {z ∈ H2 | 1/
√

2 < |z| <
√

2}.

2.3 Side Pairing Transformation

Let D be a hyperbolic polygon and the side s ⊂H2 of D is an edge of D in H2 equipped

with an orientation namely, a side of D is an edge starting at one vertex and ending

at another vertex.

Let Γ be a Fuchsian group and let D(p) be a Dirichlet polygon for Γ, which has finitely

many sides. Suppose that for some γ ∈ Γ \ {Id}, we have γ(s) as side of D(p).

Definition 2.3.1. The sides s and γ(s) are paired and γ is called as side-pairing

transformation.

2.3.1 Construction of Elliptic Cycles

We know that each vertex v of D is mapped to another vertex under the side-pairing

transformation associated to a side with end point at v. Each vertex v of D has two

sides say s and ∗s of D which has end points at v.

Notation We denote the pair (v, s) as vertex v of D and a side s of D with an endpoint

at v.

We construct elliptic cycles by the following procedure

1. Let v = v0 be a vertex of D and let s0 be a side with an endpoint at v0. Let γ1

be the side-pairing transformation associated to the side s0. Thus γ1 maps s0

to another side s1 of D.

2. Let s1 = γ1(s0) and let v1 = γ1(v0). This gives a new pair (v1,s1).
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3. Now consider the pair ∗(v1,s1). This is the pair consisting of the vertex v1 and

the side ∗s1.

4. Let γ2 be the side-pairing transformation associated to the side ∗s1. Then

γ2(∗s1) is a side s2 of D and γ2(v1) = v1, a vertex of D.

5. Repeat this process inductively.

Definition 2.3.2. The sequence of vertices ε = v0 −→ v1 −→ v2 −→ · · · −→ vn−1

is called an elliptic cycle and the transformation γnγn−1 · · · γ2γ1 is called an elliptic

cycle transformation.

Definition 2.3.3. Let ∠v denote the internal angle of D at the vertex v. Considering

the elliptic cycle as defined above i.e. ε = v0 −→ v1 −→ v2 −→ · · · −→ vn−1 of the

vertex v = v0. The angle sum is defined as

sum(ε) = ∠v0 + ∠v1 + · · ·+ ∠vn−1.

Proposition 2.3.4. Let Γ be a Fuchsian group with Dirichlet polygon D with all

vertices in H2 and let ε be an elliptic cycle. Then there exists an integer mε ≥ 1 such

that mεsum(ε) = 2π.

Definition 2.3.5. Elliptic cycle is said to be accidental if the elliptic curve transfor-

mation is equal to identity, i.e. we have mε = 1 and hence sum(ε) = 2π.

2.4 Signature of Fuchsian Groups

Definition 2.4.1. Let ε be an elliptic cycle and suppose that sum(ε) 6= 2π. On gluing

together the vertices on this elliptic cycle gives a point on H2/Γ with total angle less

than 2π. This point is called a marked point.

Definition 2.4.2. Let X be a 2-dimensional surface. Then the genus g of X is given

by

χ(X) = 2− 2g.

2.4.1 Existence of Cocompact group with signatures

Definition 2.4.3. Let Γ be a Fuchsian group. We say that Γ is cocompact if it has a

finite-sided Dirichlet polygon D(p) with all vertices in H2 and none in ∂H2 .

21



Definition 2.4.4. Let Γ be a cocompact Fuchsian group. Let g be the genus of H2/Γ.

Suppose that there are k elliptic cycles ε1, ε2, · · · , εk. and if εj has order mεj = mj so

that mjεj = 2π. Also if ε1, ε2, · · · , εr are non-accidental cycles and εr+1, εr+2, · · · , εk
are accidental cycles. The signature of Γ is defined to be

sig(Γ) = (g;m1, · · ·mr).

Let v = v0 be a boundary vertex of D and let s = s0 be a side with an end-point

at v0. We can then repeat the procedure described (as in Section 2.3) starting at the

pair (v0,s0) to obtain a finite sequence of boundary vertices P = v0 −→ v1 −→ v2 −→
· · · −→ vn−1 and an associated Möbius transformation γv,s = γnγn−1 · · · γ2γ1.

We say that P = v0 −→ v1 −→ v2 −→ · · · −→ vn−1 is a parabolic cycle with associated

parabolic cycle transformation γv,s = γnγn−1 · · · γ2γ1.

Poincaré’s Theorem : The case of no boundary vertices

Theorem 2.4.5. Let D be a convex hyperbolic polygon with finitely many sides. Sup-

pose that all vertices lie inside H2 and D is equipped with a collection G of side-pairing

Möbius transformations and no side of D is paired with itself. Let the elliptic cycles

be ε1, ε2, · · · , εr. Suppose that each elliptic cycle εj of D satisfies the elliptic cycle

condition that for each εj there exists and integer mj ≥ 1 such that

mjsum(εj) = 2 π.

Then

1. The subgroup Γ = 〈G〉 generated by G is a Fuchsian group.

2. The Fuchsian group Γ has D as a fundamental domain.

3. The Fuchsian group Γ can be written in terms of generators and relations as

follows. For each elliptic cycle εj, choose a corresponding elliptic cycle trans-

formation γj = γv,s. Then Γ is isomorphic to the group with generators γs ∈ G

and relations γ
mj
j

Γ = 〈γs ∈ G|γm1
1 = γm2

2 = · · · γmrr = e〉.
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Poincaré’s Theorem : The case of boundary vertices

Theorem 2.4.6. Let D be a convex hyperbolic polygon with finitely many sides, and

boundary vertices (but with no free edge). Suppose D is equipped with a collection G

of side-pairing Möbius transformations and no side of D is paired with itself.

Let the elliptic cycles be ε1, ε2, · · · , εr and the parabolic cycles be P1, P2, · · · , Ps. Sup-

pose that

1. each elliptic cycle εj of D satisfies the elliptic cycle condition.

2. each parabolic cycle Pj of D satisfies the parabolic cycle condition.

Then

1. The subgroup Γ = 〈G〉 generated by G is a Fuchsian group.

2. The Fuchsian group Γ has D as a fundamental domain.

3. The Fuchsian group Γ can be written in terms of generators and relations as

follows.

For each elliptic cycle εj, choose a corresponding elliptic cycle transformation γj

= γv,s. Then Γ is isomorphic to the group with generators γs ∈ G and relations

γ
mj
j where mjsum(εj) = 2 π

Γ = 〈γs ∈ G|γm1
1 = γm2

2 = · · · γmrr = e〉.

2.4.2 Area of a Dirichlet polygon

Let Γ be a cocompact Fuchsian group with signature sig(Γ) = (g; m1, · · · ,mr). Let

D be a fundamental domain for Γ. Then

AreaH2(D) = 2π((2g − 2) +
∑r

j=1(1− 1
mj

)).

Proof. We first suppose that there are s accidental cycles. The internal angle sum

along an accidental cycle is 2π. Hence the internal angle sum along all accidental

cycles is 2πs. Suppose that we have n non-accidental cycles. As each vertex belongs

to some elliptic cycle so the sum of all internal angles of D is given by

2π(
r∑
j=1

1

mj

+ s).
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By Gauss Bonnet Theorem for hyperbolic polygons (Theorem 1.3.2) we have

AreaH2(D) = (n− 2)π − 2π(
r∑
j=1

1

mj

+ s).

Now considering the space H2/Γ which is formed by taking D and gluing together

paired sides. Since the vertices along each elliptic cycle are glued together hence each

elliptic cycle in D gives one vertex in the triangulation of H2/Γ. Since all paired sides

are glued together so there are E = n/2 edges. Moreover F = 1 as we need the single

polygon D.

2− 2g = χ(H/Γ) = V − E + F = r + s− n/2 + v + 1.

Substituting this value in the above equation we get

AreaH2(D) = 2π((2g − 2) +
r∑
j=1

(1− 1

mj

)).

Now we will calculate the lower bound of this area.

Proposition 2.4.7. Let Γ be a cocompact Fuchsian group. Then

AreaH2(D) ≥ π

21
.

Proof. Taking above theorem into consideration it remains to prove that

(2g − 2) +
r∑
j=1

(1− 1

mj

) ≥ 1

42
.

Firstly we see that 1− 1
mj

> 0.

If g > 1 then 2g − 2 > 1. Hence the above result holds.

If g = 1 then 2g − 2 = 0 and since m1 > 2 so that 1 − 1
m1
≥ 1/2. Hence this result

holds.

If g = 0 then 2g − 2 = −2, we have the following cases

Case 1 When r > 5.

As mi > 2 so that 1− 1
mi

> 1/2. Hence the result holds.

Case 2 When r = 4.

24



The area is positive if and only if (m1,m2,m3,m4) 6= (2, 2, 2, 2). Now the area is

minimised when (m1,m2,m3,m4) = (2, 2, 2, 3). Hence on computing we see that the

above result holds.

Case 3 When r = 3.

For the L.H.S to be positive we need

1

m1

+
1

m2

+
1

m3

< 1.

This means that the minimal triplets (m1,m2,m3) are (2,3,7), (2,4,5) or (3,3,3) and

on computing we see that above condition holds.

Case 4 When r ≤ 2.

Then there is no hyperbolic orbifold.

The above cases completes our proof.

Proposition 2.4.8. Suppose H2/Γ has genus g and r marked points of the order

m1, · · · ,mr and c cusps. Then signature is defined as sig(Γ) = (g; m1, · · ·mr;c) and

the area is defined as

AreaH2(D) = 2π((2g − 2) +
r∑
j=1

(1− 1

mj

) + c).

Theorem 2.4.9. Let g ≥ 0 and mj ≥ 2, 1 ≤ j ≤ r be integers. Suppose that

(2g − 2) +
∑r

j=1(1− 1
mj

) > 0.

Then there exists a cocompact Fuchsian group Γ with signature

sig(Γ) = (g;m1, · · · ,mr).

Proof. We will work in the Poincaré disc D. We consider the origin 0 ∈ D. Let us

denote the angle by θ where

θ = 2π
4g+r

.

Next we draw 4g + r radius each of which is separated by angle θ. We fix the value

of t between 0 and 1. On each radius we choose a point at an Euclidean distance t

from the origin. We join successive points with a hyperbolic geodesic and by doing

this we get a regular hyperbolic polygon say P(t) with 4g + r vertices. We start at

an arbitrary point and label the vertices clockwise direction as

v1, v2, · · · vr, v1,1, v1,2v1,3, v1,4, v2,1 · · · vg,1, · · · vg,4
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On first r sides of P(t) we construct isosceles triangles which are external to P(t). We

now label the vertex at the tip of the jth isosceles triangle by wj and construct triangle

in such a way that the internal angle at wj is 2π/mj. Let us denote this polygon by

N(t). Now we will consider the vertices vj,wj,vj+1 (1 ≤ j ≤ r). We now pair the

Figure 2.2: Illustrating N(t) in the case of g=2, n=4

sides and call the side-pairing transformation γj(γj is a rotation about wj through an

angle 2π/mj) (as shown in Fig 2.3). For each l = 1,2, · · · , g we consider the vertices

vl,1, vl,2vl,3, vl,4 and pair these sides and call them as side pairing transformation of

γl,1, γl,2. We label the sides of N(t) by s(vj), s(vl,j), s(wj) where s(v) is immediately

clockwise of vertex v. We now apply Poincaré’s Theorem to the polygon N(t).

First task is to calculate elliptic cycles. For each j = 1,2, · · · , r consider the pair

(wj,s(vj)). Then (
wj

s(vj)

)
γj−→

(
wj

s(wj)

)
∗−→

(
wj

s(vj)

)
.

Hence we have an elliptic cycle wj with corresponding elliptic cycle transformation

γj. Sum(wj) = 2π/mj gives us angle sum. So that the elliptic cycle condition holds.

Consider the pair (vl,1,s(vl,1)). We get the following elliptic cycle

· · · → vl,1 → vl,4 → vl,3 → vl,2 → vl+1,1 → · · ·

with corresponding elliptic cycle transformation

Figure 2.3: Pairing the sides between vertices vj, wj, vj+1
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Figure 2.4: Labelling the angles α(t), βj(t) in the polygon N(t)

· · · γ−1
l,2 γ

−1
l,1 γl,2γl,1 · · ·

which we will denote by [γl,1γl,2]. Now consider the pair (vj, (s(vj))). The elliptic

cycle through this pair contains

· · · →

(
vj

s(vj)

)
γj−→

(
vj+1

s(wj)

)
∗−→

(
vj+1

s(vj+1)

)
→ · · · .

Starting at the pair v1,1, s(v1,1)), we have the elliptic cycle ε

v1,1 → v1,4 → v1,3 → v1,2 → · · · → vg−1,2 → vg,1 → vg,4 → vg,3 · · · → v1 → · · · → vr

with corresponding elliptic cycle transformation

γrγr−1 · · · γ1[γg,1, γg,2] · · · [γ1,1, γ2,2]

Now lets denote the internal angle of each vertex in the polygon P(t) by 2α(t). Lets

denote βj(t) the internal angle at each vertex at the base of the jth isosceles triangle

which is added to the polygon P(t) and results in formation of polygon N(t). Then

the angle sum along the elliptic cycle ε is given by

sum(ε) = 8gα(t) + 2Σr
j=1(α(t) + βj(t)).

It remains to show that t can be chosen so that sum(ε) = 2π. In this situation the

elliptic cycle condition holds, and we can apply Poincaré’s Theorem.

Using hyperbolic trigonometry we know that

limt→1 α(t) = 0,

limt→1 β(t) = 0,

limt→0 α(t) = π
2

- 2π
2(4g+r)

,

limt→0 β(t) = π
2

- π
mj

.
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Now

limt→18gα(t) + 2Σr
j=1(α(t) + βj(t)) = 0.

and after rearrangement we get

limt→08gα(t) + 2Σr
j=1(α(t) + βj(t)) = 2π((2g − 2) +

r∑
j=1

(1− 1

mj

) + 2π.

Since the first term in the right-hand side is positive, hence

limt→0 8gα(t) + 2Σr
j=1(α(t) + βj(t)) > 2π.

So there exists t0 ∈ (0,1) such that sum(ε) = 2π.

Hence the elliptic cycle condition holds for N(t0). By Poincaré’s Theorem, the side-

pairing transformations generates Fuchsian group Γ.

It remains to show that the group Γ has the required signature. Corresponding to each

of the wj group Γ has r elliptic cycles . The elliptic cycle transformation associated

to the elliptic cycle wj has order mj. Consider the space H2 /Γ which is formed by

taking N(t0) and gluing together the paired sides. Thus H2/Γ has a triangulation

using a single polygon (so F = 1) with V = r + 1 vertices (as there are r + 1 elliptic

cycles) and E = 2g + r edges. Let h denote the genus of H2/Γ. Then by the Euler

formula,

2− 2h = V − E + F = (r + 1)− (2g + r) + 1 = 2− 2g.

Hence h = g. Hence Γ has signature sig(Γ) = (g; mj, · · · ,mr).

2.5 Limit set of Fuchsian groups

Definition 2.5.1. Let Γ be a Fuchsian group acting on the Poincaré disc D2 and let

z ∈ D2. ∧(Γ)(z) denote the set of limit points in D2 ∪ ∂D2 of the orbit Γ(z).

The point ζ ∈ ∂D2 is an element of ∧(Γ)(z) if there exists γn ∈ Γ such that γn(z)→ ζ

as n→∞.

Proposition 2.5.2. Let Γ be a Fuchsian group and let z1, z2 ∈ D2. Then

∧(Γ)(z1) = ∧(Γ)(z2)

Proposition 2.5.3. Let Γ be Fuchsian group . Then limit set ∧(Γ) of Γ is a closed

subset of ∂D2. The limit set of a Fuchsian group is compact.
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Proposition 2.5.4. The limit set ∧(Γ) is invariant under Γ, namely γ(∧(Γ)) = ∧(Γ).

Proof. Let α ∈ ∧(Γ), then there exists γn ∈ Γ such that γn(z)→ α. Now since Γ is a

group we have γγn ∈ γ(α). Hence γ(α) ∈ ∧(Γ). Thus γ(∧(Γ)) ⊂ ∧(Γ). Replacing γ

by γ−1 we conclude that ∧(Γ) ⊂ γ(∧(Γ)) and hence γ(∧(Γ)) = ∧(Γ).

Proposition 2.5.5. Let Γ be a Fuchsian group.

1. Suppose that γ ∈ Γ is a parabolic Möbius transformation of D2 . Then the fixed

point ζ ∈ ∂D2 of γ is an element of ∧(Γ).

2. Suppose that γ ∈ Γ is a hyperbolic Möbius transformation of D2 the two fixed

point ζ1, ζ1 ∈ ∂D2 of γ are elements of ∧(Γ).

Proposition 2.5.6. Let γ be a Fuchsian group and let ∧(Γ) be its limit set. Then

∧(Γ) has either 0,1,2 or infinitely many elements.

Proof. We prove this by contradiction. Lets assume that ∧(Γ) is finite but has atleast

3 elements. Let κ be finite collection of geodesics which have end points in ∧(Γ).

Since ∧(Γ) is Γ invariant and so is κ. Let κ(M) denotes all the set of points which are

within the distance M (M > 0) of every geodesic in κ

κ(M) = {d ∈ D2|dD2(d, x) ≤M}.

Since κ is Γ invariant, so is κ(M). We choose M to be sufficiently large and choose a

point d0 ∈ κ(M). As ∧(Γ) has atleast 3 elements for any α ∈ κ(M)∩ D2 there exists

an geodesic L ∈ κ which does not have α as the end point. Let d→ α, then we have

dD2(z, L) = infx∈LdD2(d, x) → ∞. Hence d /∈ κ(M) if d is sufficiently close to α.

Hence κ(M) is a bounded set. Now we have orbit Γ(d0) of d0 lying in κ(M) which

is bounded away from ∂D2. So the orbit cannot have limit points on the boundary,

hence contradicting the fact that ∧(Γ) has atleast 3 points.

Definition 2.5.7. A Fuchsian group Γ is called elementary if ∧(Γ) has finitely many

elements. It is called non-elementary if ∧(Γ) has infinitely many elements.

Case 1: When ∧(Γ) has 0 elements.

Proposition 2.5.8. Let Γ be a Fuchsian group. Suppose that all elements of Γ, other

than the identity are elliptic. Then all the elliptic transformations have a common

fixed point and the limit set ∧(Γ) is empty.
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Case 2: When ∧(Γ) has 1 element.

Proposition 2.5.9. Let Γ be a Fuchsian group and suppose that ∧(Γ) = {ζ}. Then

Γ is of the form

{Γ = γn | n ∈ Z},

for some parabolic γ ∈ Γ, i.e. Γ is an infinite cyclic group generated by a parabolic

transformation.

Case 3: When ∧(γ) has 2 elements.

Proposition 2.5.10. Let Γ be a Fuchsian group and suppose that ∧(Γ) has 2 points.

Then either

1. Γ is an infinite cyclic group generated by a hyperbolic transformation or ;

2. Γ is conjugate to a Fuchsian group generated by

z 7→ kz , z 7→ -1
z

for some k > 1.

Case 4: When limit set contains infinitely many elements.

Proposition 2.5.11. Let Γ be a Fuchsian group and suppose that |∧ (γ)| =∞. Then

1. ∧(γ) = ∂D2 or,

2. ∧(γ) is a perfect, nowhere dense subset of ∂D2.

Fuchsian groups can also be classified into 2 categories namely

1. Fuchsian groups of the first kind.

2. Fuchsian groups of the second kind.

Fuchsian group is of first kind if ∧(Γ) = ∂D2. Otherwise it is of second kind.

There are 2 possibilities in case of Fuchsian group of second kind. These are

1. ∧(Γ) is a finite set.

2. ∧(Γ) is a Cantor set, namely a perfect set.

The following theorem given below gives a method for calculating limit sets and also

helps us to distinguish between Fuchsian groups of first kind and second kind.

Theorem 2.5.12. Let Γ be a Fuchsian group. Γ is a Fuchsian group of first kind if

and only if there exists a fundamental domain with finite hyperbolic area.
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Chapter 3

Subgroups of A Modular Group

Some finite subgroups of the modular group that can be described by congruence

relations are called congruence subgroups of a modular group. Computational meth-

ods for working with modular form mostly work for congruence subgroup. The tool

that is used for working with non-congruence subgroup is the method of Farey sym-

bols which was in given by Ravi Kulkarni in [RK91]. Later, Kurth and Ling Long

computed finite index subgroups using the methods used by Kulkarni in their paper

[KL05]. and Lang, Lim and Tan gave algorithm for determining the membership of a

matrix to a subgroup Γ using the concepts of Farey Symbols in their paper [LLT95].

All the above mentioned references have been discussed in this chapter.

3.1 Special Polygon

Here we will study by taking the case of upper-half plane model. We let D be a

hyperbolic triangle with vertices at ι, ρ = exp(πι
3

) and ∞. The group generated by

reflections on the edges of hyperbolic triangle is called extended modular group Γ.

The Γ-translate of D defines the extended modular tessellation τ of H2.

The elements in the Γ-orbit of ι are called even vertices of τ .

The elements in the Γ-orbit of ρ are called odd vertices of τ .

The Γ-orbit of ∞ consists of rational numbers which are called cusps of τ .

The complete geodesics which are unions of two even edges are called even lines.

The complete geodesics which are unions of two odd edges and two f-edges are called

odd lines.

Theorem 3.1.1. [RK91] The following properties hold
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1. The even edges come in pairs, each pair forming a complete hyperbolic geodesic.

These geodesics are precisely the ones with end-points a
c
, b
d

satisfying | ad−bc |=
1. Each of these geodesics contains an even vertex. Γ acts transitively on these

geodesics and the stabilizer subgroup of Γ preserving any one of these geodesics

is isomorphic to Z2 which fixes the even vertex.

2. A pair of odd edges and a pair of f-edges form a complete hyperbolic geodesic.

The geodesics obtained in this way are precisely the ones which have end-points
a
c
, b
d

satisfying | ad− bc |= 2. Each of these geodesics contains an even vertex Γ

and a pair of odd vertices. Again Γ acts transitively on these geodesics and the

stabilizer subgroup of Γ preserving any one of these geodesics is isomorphic to

Z2 which fixes the even vertex.

Proof. 1. We will first consider the geodesic which joins ∞ to 0 which has two even

edges (∞, ι) and (ι, 0) and an even vertex ι. It satisfies | a0d0 − b0c0 |= 1, where

a0
c0

= ∞ = 1
0

and b0
d0

= 0 = 0
1
. If g =

(
a b

c d

)
∈ Γ or Γ∗ then the geodesic (a

c
, b
d
) is

translate of the geodesic (∞, 0), so (a
c
, b
d
) retains all properties of (∞, 0). Also S =(

0 −1

1 0

)
sends the edge (∞, ι) to (0, ι) and also fixes even vertex ι. But S2 = I in

Γ∗ so < S > ' Z2. Same is the case for translated edge (a
c
, b
d
) for which we find that

the stabilizer is isomorphic to Z2.

2. We will consider the geodesic joining −1 to 1. This geodesic is basically an odd

line since it consists of paired odd edges (1,ρ) and (−1, ρ2) and paired f-edges (ι,ρ)

and (ι, ρ2). The side pairing matrix is B =

(
−1 0

0 1

)
. Since B fixes ι and A2 = I in

Γ∗, we have < B > ' Z2. Any Γ or Γ∗-translate of (−1, 1) has the same property.

Let P be a convex hyperbolic polygon with boundary ∂P which is a union of even

and odd edges. The following is assumed.

Definition 3.1.2. 1. The even edges in ∂P come in pairs, each pair forming an

even line.

2. The odd edges in ∂P come in pairs. The edges in each pair meet at an odd

vertex making an internal angle of 2π
3

.

3. An odd edge a is paired to the odd edge b which makes an internal angle of 2π
3

with a.
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4. Let e, f be two even edges in ∂P forming an even line. Then either e is paired

to f, or e and f form a free side of P and this free side is paired to another free

side of P.

5. 0 and 1 are two of the vertices of P.

A convex hyperbolic polygon P satisfying all the above conditions is called a special

polygon.

Notation Let P be a special polygon which has canonical orientation on each

of its side. Then there exists a unique element of Γ which carries one paired side

to another. We denote the subgroup of Γ which is generated by these side pairing

transformations by ΦP .

Definition 3.1.3. Fundamental domain whose side pairing transformations form an

independent set of generators is called admissible fundamental domain

Theorem 3.1.4. Let P be a special polygon and ΦP be an associated subgroup of Γ.

Then P is an admissible fundamental domain for ΦP . Also ΦP is free if and only if

P has only free sides.

Proof. P is fundamental domain of ΦP . Space obtained by identifying sides of P by

side-pairing transformations associated to P has a complete hyperbolic metric. Also

we know that the singularities corresponds to the branch points. So the condition of

Poincaré theorem on fundamental polygons is fulfilled. This allows us to see a complete

set of relation among the generators which are given by side pairing transformation

x3 = 1 corresponding to the side-pairing of type 3 (as in the definition of special

polygons) and x2 = 1 corresponding to first alternative in the side pairing of type 4.

These relations appear if and only if P has a non free side.

Theorem 3.1.5. Every subgroup Φ of a finite index admits an admissible domain

which is a special polygon P, so that Φ = ΦP .

The interesting property of an admissible domain is that in counting the sides of

a fundamental domain we follow the convention that if an even line is contained in

the boundary of the fundamental domain and the even edges contained in this even

line are paired then this line counts as two sides of the fundamental domain.

Proposition 3.1.6. Let Φ be a subgroup of finite index in Γ. Among all the funda-

mental polygons for Φ whose Φ-translates form a locally finite tessellation of H2 an

admissible fundamental domain has the least number of sides. If Φ is isomorphic to a
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free product of p copies of Z2, q copies of Z3 and r copies of Z then this least number

is 2(r + p+ q).

Proof. If P is a fundamental polygon for Φ whose Φ-translates form a locally finite

tessellation of H2 then the side pairing transformation generates Φ (Theorem 3.1.8).

If Φ is a free product decomposition then by Grushko’s Theorem (Theorem 3.1.7.) the

least number of generators for Φ is (r + p + q). So P has atleast twice the number of

sides. Also if P is admissible then its side pairing transformation are independent so

it has exactly 2(r + p + q) sides.

Theorem 3.1.7 (Grushko’s Theorem). Let X and Y be finitely generated groups and

let X ∗ Y be free product of X and Y. Then

Rank(X ∗ Y ) = Rank X +Rank Y.

Theorem 3.1.8. Let P be any locally finite Fundamental Domain for a Fuchsian

group Φ then

Φ0 = {g ∈ Φ : g(P̃ ) ∩ P̃ 6= Φ} generates Φ.

Poincaré Theorem on Fundamental Polygons

Let U be the unit disk in Complex plane and D a polygon in U bounded by finite

sides. We assume that to each side s there is a side s’ and an isometry A = A(s, s’)

of U such that A(s) = s’ and the following conditions are satisfied i.e. to each s there

is a neighbourhood V of s such that A(V ∩ D) does not meet D. The isometries A

are called identifying generators and we D is a polygon with identification. To each

such D there is an identified polygon D∗ = π(D) obtained by identifying the sides of

D. We set ρ∗(x, y) = inf
∑n

i=1 ρ(zi, z
′
i) where the inf being taken over all n and all

2n-tuples of points of D where π(z1) = x, π(z′i) = π(zi+1) and π(z′n) = y. D is said

to be complete if for x ∈ D∗, π−1(x) is a finite set (then ρ∗ is a metric) and if D∗ is

complete in this metric. To each vertex in U there corresponds a cycle of equivalent

vertices in D and is assumed that the sum of the angles at the vertices of the cycle is

a sub-multiple of 2π. If D is a complete polygon with an identification and satisfies

the cycle condition then we say that D is a Poincaré polygon.

Theorem 3.1.9. [BM71] Let D be a Poincaré polygon and G the group generated by

the identifying generators then G is discontinuous, D is a fundamental polygon for G,

and the cycle relations together with the reflection relations form a complete system

of relations for G.
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3.2 Farey Symbols

We introduce this concept as it is a useful way to represent special polygons and also a

very important way of representation of subgroup of a modular group. The nth Farey

Sequence (which will be denoted by Fn) is a finite sequence of all rational numbers

between 0 and 1 placed in an increasing order in a way that the denominators have

maximum value n.

Definition 3.2.1. A generalised Farey Sequence (g.F.S.) is an expression of the form

{−∞, x1, x2, · · · , xn,∞} (3.1)

where

1. x1 and xn are integers, and some xj = 0.

2. xj =
aj
bj

are rational numbers in their reduced form and ordered in increasing

order, such that

|aj+1bj − ajbi+1| = 1, j = 1, 2, 3, · · · , n− 1.

Note First and Last term are basically the same.

Lemma 3.2.2. If γ ∈ PSL(2,Z) and p1
q1

, p2
q2

,
p′1
q′1

,
p′2
q′2

are rational numbers in simplest

form such that

γ(
p1

q1

) =
p′1
q′1

, and γ(p2
q2

) =
p′2
q′2

then

p2q1 − p1q2 = p′2q
′
1 − p′1q′2.

Proof. If γ =

(
P Q

R S

)
then

γ(
p1

q1

) =
Pp1 +Qq1

Rr1 + Ss1

=
p′1
q′1

and γ(
p2

q2

) =
Pp2 +Qq2

Rr2 + Ss2

=
p′2
q′2

p′1q
′
2 − p′2q′1 = (Pp1 +Qq1)(Rr2 + Ss2)− (Pp2 +Qq2)(Rr1 + Ss1)

= (PS −QR)(p1q2 − p2q1)

= (p1q2 − p2q1).
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Proposition 3.2.3. [RK91] The set of Farey symbols are in natural 1-1 correspon-

dence between the set of special polygons. In particular a Farey Symbol determines

a subgroup of finite index in Γ and every subgroup of finite index in Γ arises in this

way. The map

{Farey Symbols} → {Subgroups of finite index in Γ }

is finite-to-one.

Proof. Special polygon to g.F.S.

We suppose that P is a special polygon and the Equation 3.1 is the g.F.S. formed

by its vertices in R ∪ {∞}. If a complete hyperbolic geodesic which joins xj to xj+1

consists of two paired even edges then we denote this by

xj
︷︸︸︷
◦ xj+1

We will call the above notation as the even interval of g.F.S.

If xj and xj+1 are the end points of two paired odd edges then we denote this by

xj
︷︸︸︷
• xj+1

We will call the above notation as the odd interval of g.F.S.

If xj and xj+1 are the end points of a free side s of P which paired to free side t which

has end points xk and xk+1 then we denote this by

xj
︷︸︸︷
m xj+1 xk

︷︸︸︷
m xk+1

Here m is a numerical symbol (It has no significance). We will call each pair of the

above notation as a free interval of g.F.S.

A g.F.S. with an extra structure on each pair of consecutive terms of above 3 types

is called Farey Symbols.

g.F.S. to Special polygons

Let P0 be a convex hull of the xj’s, Now we assume that we have an odd interval.

Then, the complete geodesic which joins xj to xj+1 together with the odd edges which

are situated inside the hyperbolic convex hull form a hyperbolic triangle with angles

0, 2π
3

and 0. If we adjoin all such triangles for each odd interval in the Farey symbol

we obtain convex hyperbolic polygons. The side pairing transformation is defined by

reversing the above process.
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There are several restrictions on the elements in the g.F.S.

Example In a g.F.S. the first and the last finite element on a real axis are integers.

The other restrictions are the two propositions which are given below.

Proposition 3.2.4. Let F be a g.F.S. Let m be an integer and q′is be the denominators

of those x′is which lie in [m,m+ 1). Then q′is determine x′is uniquely.

Proof. We will use the concept of Diophantine equations.

Considering the equation uqi − vqi+1 = 1, to be solved for u and v in the integers.

From the definition of Farey Sequence we can easily see that one of the solution will be

of the form u = pi+1 and v = pi, where pi’s are numerators of the xi’s. Other solutions

will be of the form u = pi+1 + zqi+1 and v = pi + zqi where z ∈ Z. It is clear that for

any z 6= 0 the corresponding u
qi+1

, v
qi

lie outside the given interval [m,m+ 1).

Proposition 3.2.5. Let x be a non integer element of g.F.S. and m be an integer

such that m < x < m+ 1. Let y < x < z be the three consecutive terms in the g.F.S.

then m ≤ y < x < z ≤ m + 1. Also if y = t
u

, x = q
s

and z = p
r

with u, s, r positive,

then p+ t = λq, r + u = λs where λ = pu− rt is a positive integer.

Proof. Since distinct even lines do not intersect and as we know that m, m+1 are

end points of an even line so y, z lie in the interval [m, m+1). Now, since u, s, r are

positive integers so ps − qr, uq − ts, pu − rt are also positive integers and since x, z

and y, z are end points of an even line we have ps − qr = 1 and uq − st = 1. In the

matrix form these equations are(
p −r
−t u

)(
s

q

)
=

(
1

1

)
or (

s

q

)
= λ

(
u r

t p

)(
1

1

)
.

This gives p+ t = λq, r + u = λs where λ = pu− rt is a positive integer.

Geometrical Interpretation of λ

If P is a convex hull of the g.F.S. in H2 then λ is the number of tiles which are

contained in P and incident with x.
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3.3 Side Pairing Matrices

Here we find the matrices associated to the side-pairings of a special polygon.

Theorem 3.3.1. [RK91] Let F be a Farey symbol and let Φ ⊆ Γ. Let xi = ai
bi

(reduced

forms) with bi positive. Then

1. For each even interval xi
︷︸︸︷
◦ xi+1, i= i1, i2, · · · ia in F the side pairing matrices

are given by

Ai =

(
ai+1bi+1 + aibi −a2

i − a2
i+1

b2
i + b2

i+1 −ai+1bi+1 − aibi

)
.

2. For each odd interval xj
︷︸︸︷
• xj+1, j = j1, j2, · · · , jb in F the side pairing matrices

are given by

Bj =

(
aj+1bj+1 + ajbj −a2

j − a2
j+1 − ajaj+1

b2
j + b2

i+1 + bjbj+1 −aj+1bj+1 − aj+1bj+1 − ajbj

)
.

3. For each pair of free intervals xk
︷︸︸︷
a xk+1, x′k

︷︸︸︷
a xk′+1, k = k1, k2, · · · kr in F

the side pairing matrices are given by

Ck =

(
ak′+1bk+1 + ak′bk −ak′ak − ak′+1ak+1

bk′bk + bk+1bk′+1 −ak+1bk′+1 − akbk′

)
.

Proof. If (xi, xi+1) is an even line, then the even line (∞, 0) is paired to (xi, xi+1) in

an orientation-reversing manner which is given by the matrix

A(xi, xi+1) =

(
ai+1 ai

bi+1 bi

)

which sends ∞ to xi+1 = ai+1

bi+1
and 0 to xi = ai

bi
. Now the matrix S =

(
0 −1

1 0

)
just

reverses the orientation of (∞, 0). For the cases 1 and 3, the side pairing transfor-

mations can be obtained by sending the first side to (0, ∞) and then reversing the

orientation by S. Finally, we send (∞,0) to the second side.

Case 1 For an even interval we obtain the side-pairing matrix given by

Ai = A(xi, xi+1)SA(xi, xi+1)−1 =

(
ai+1 ai

bi+1 bi

)(
0 −1

1 0

) (
ai+1 ai

bi+1 bi

)−1

.
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Hence on calculation we get

Ai =

(
ai+1bi+1 + aibi −a2

i − a2
i+1

b2
i + b2

i+1 −ai+1bi+1 − aibi

)
.

The only task that is done by reversing orientation is that the side pairing matrices

switches the end points i.e. it sends xi to xi+1.

Case 3 For pair of two free sides (xk, xk+1) and (xk′ , xk′+1) we get side-pairing matrix

given by

Ck = A(xk′ , xk′+1)SA(xk, xk+1)−1 =

(
ak′+1 ak′

bk′+1 bk′

)(
0 −1

1 0

) (
ak+1 ak

bk+1 bk

)−1

.

Hence on calculation we get

Ck =

(
ak′+1bk+1 + ak′bk −ak′ak − ak′+1ak+1

bk′bk + bk+1bk′+1 −ak+1bk′+1 − akbk′

)
.

The only task that is done by reversing orientation is that the side pairing matrices

switch the end points i.e. it sends xk to xk′+1 and xk′ to xk+1.

Case 2 This case is slightly different and complicated then the above 2 cases. Here

we will use matrix of order 3 in Γ that will fix ρ = exp
ιπ
3 and also it will pair the odd

edges (∞, ρ) and (ρ, 0). So our matrix will be Z =

(
0 1

−1 1

)
.

The side pairing matrix corresponding to the odd edge is given by

Bj = A(xi, xi+1)ZA(xi, xi+1)−1 =

(
ai+1 ai

bi+1 bi

)(
0 1

−1 1

) (
ai+1 ai

bi+1 bi

)−1

.

Hence on calculation we get

Bj =

(
aj+1bj+1 + ajbj −a2

j − a2
j+1 − ajaj+1

b2
j + b2

i+1 + bjbj+1 −aj+1bj+1 − aj+1bj+1 − ajbj

)
.
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3.4 Geometric Interpretation of Continued frac-

tions And Their Properties

Let x be a rational number and let

x = a0 +
1

a1 +
1

a2 +
1

. . . +
1

am

be its continued fraction expansion.

We can see that a0 =[x0], a1 =[ 1
x−a0 ] etc.

The other way of writing the above equation is [a0; a1, a2, a3, · · · , ak]. We can see that

if x is an integer then all ai (i ≥ 1) are zero.

Definition 3.4.1. Depth, denoted by 4(x) of any rational number is given by a1 +

a2 + a3 + · · · + ak. Hence the depth is defined to be zero if x is an integer. It can be

easily seen that 4(x) depends only on congruence class of x (mod 1).

Notation The even lines tile H2 into ideal triangles. We denote this by λ.

The vertices of any hyperbolic polygon forms a General Farey Structures of the form

{∞, 0 = x1, · · · , xn = 1, ∞}. (3.2)

Among the given values, xi is one of the value x. We know that two even lines do not

intersect and intersection of any polygons of such kind is also a polygon of same kind

and hence we can conclude that there will exist a unique polygon say Z0(x) of same

kind which will be intersection of all such polygons. In terms of the General Farey

Structure it implies that among all the g.F.S. listed in the above equation containing

x, there is a unique minimal one and will consist of vertices of Z0(x).

Proposition 3.4.2. Let x be a rational number in (0, 1). Then there exists a hyperbolic

polygon which is a union of finitely many tiles of λ whose boundary contains 0 and ∞
as vertices and which is contained in the vertical strip bounded by the geodesic joining

0 to ∞ and 1 to ∞.

Proposition 3.4.3. Let x0 be a rational number in (0, 1). Then there exists uniquely

determined rationals a0 and b0 in [0, 1], a0 < x0 < b0 with the following properties

1. a0, x0, b0 form the vertices of a tile of λ, say µ0(x0).
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2. Any even line incident with x0 has its other point lying either in [a0, x0) or in

(x0, b0].

3. The tile µ0(x0) is contained in Z0(x0).

Proof. Proof of Part 2

We will first consider the point ∞. The even lines which are incident to ∞ are the

vertical half lines i.e. x = m and y > 0, where m is an integer. The end point of

these lines are Z ∪ {∞} and these have ∞ as their limit point. Since we know that

distinct even lines do not intersect and if we translate this situation at x0 we will see

that the end points of even lines incident at x0 have x0 as their limit point and they

are contained in [0, 1]. Let a0 and b0 be respectively the smallest and largest of these

end points. Hence we can conclude that even line incident with x0 has its other point

lying either in [a0, x0) or in (x0, b0].

Proof of Part 1

Lets assume that p0 and q0 are any endpoints of some even line which is incident to

x0 such that p0 < x0 < q0. Then there exists a convex hyperbolic M which satisfies

1. It is union of finitely many tiles.

2. It has even lines joining p0 to x0 and q0 to x0 as sides.

Let S be an element of Γ which carries x0 to ∞. Then Sp0 = β and Sq0 = α must be

integers. Also since S preserves the orientation of the circle R∪{∞} we see that α < l.

If M’ is the convex hull of {∞, α, α+ 1, · · · , β,∞} in H2 then M = S−1M ′ fulfils our

requirements. Since S is determined upto left multiplication of the elements of the

form ϕm : q 7→ q + m, where m is an integer it is clear that M’ is determined upto a

translation by ϕm. In these cases M is determined uniquely. Among the hyperbolic

polygons M” satisfying the above 2 conditions, our construction produces the smallest

one which is contained in all such M”. Also every vertex of M is an endpoint of some

even line incident to x0. Let a′0 and b′0 be respectively the smallest and the largest

vertices of M. Then clearly a′0 ≤ p0 < x0 < q0 ≤ b′0 and a′0, x0, b
′
0 form the vertices of

a tile of λ. If we apply this construction specially to p0 = a0 and q0 = b0, we observe

that b′0 = b0 and a′0 = a0.

Proof of Part 3

Let Z be a polygon containing x0 as a vertex. Let p0 and q0 be the vertices of Z

adjacent to x0 such that p0 < x0 < q0 and Z be the corresponding polygon. Then M

is contained in Z. So the tile λ(x0) which has vertices a0, x0, v0 is also contained in Z.

Since Z is arbitrary we see that this tile is contained Z0(x0).
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Let x = [0; a1, a2, · · · , ak] be a rational number in (0, 1). Set

yi = [0; a1, a2, · · · , ai], 1 ≤ i ≤ k

be the convergent of x. So yk = x. It is easy to put

p−1 = 1, q−1 = 0, p0 = 0, q0 = 1,

pi = aipi−1 + pi−2, qi = aiqi−1 + qi−2, 1 ≤ i ≤ k.

y−1 =∞, y0 = 0.

Some of the properties are

1. piqi−1 − qipi−1 = (−1)i−1.

2. piqi−2 − qipi−2 = (−1)iai.

3. 0 < y2 < y4 < · · · < x < · · · < y3 < y1.

Proof. 1. Substituting the values of pi and qi in the above equation we have

piqi−1 − qipi−1 = (aipi−1 + pi−2)qi−1 − (aiqi−1 + qi−2)pi−1

= −(pi−1qi−2 − pi−2qi−1).

Now we repeat this argument with i−1, i−2, · · · , 2 in place of i and hence obtain

piqi−1 − qipi−1 = (−1)i(p1q0 − q1p0)

= (−1)i−1.

2. Again substituting the values of pi and qi in the above equation we have

piqi−2 − qipi−2 = (aipi−1 + pi−2)qi−2 − pi−2(aiqi−1 + qi−2)

= ai(pi−1qi−2 − pi−2qi−1)

= (−1)nai.

3. See [HW].

Proposition 3.4.4. With the above notation all yi’s are among the vertices of Z0(x).
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Proof. We write x = a
b
, and let u0 = q

s
and v0 = p

r
be the rationals in (0, 1) which

satisfies the properties given in the above proposition. We take b, s, r to be positive

integers. Now taking x = yk = pk
qk

and yk and yk−1 are the end vertices of an even

line. Lets suppose that yk−1 ∈ (x, vo] . Our claim is that yk−1 = v0. So we have

|x− v0| =
1

br
≥ |x− yk−1| =

1

bqk−1

.

So r ≤ qk−1 < qk. Also {p, r} and {pk−1, qk−1} are solutions of {α, β} of the equation

bα − aβ = 1. Since r and qk−1 lie in (0, qk) therefore they must be equal. Hence

v0 = yk−1 is the vertex of Z0(x). It follows that Z0(yk−1) ⊂ Z0(x). So yk−2 is a

vertex of Zo(x). Continuing this process we see that all yi’s, i ≥ 1, are the vertices of

Z0(x).

Proposition 3.4.5. Between yi−2 and yi, i ≥ 1 there are ai − 1 vertices of Z0(x).

Proof. By the property piqi−1− qipi−1 = (−1)i−1, we know that yi−1 is joined to both

yi and yi−2 by the even lines, say t1 and t2. If n is the number of tiles of λ which are

incident with yi−1 and lie in the circular sector made by t1 and t2, then there are n−1

vertices of Z0(x) lying between yi−2 and yi. We know that there are 2|piqi−2 − qipi−2|
tiles of λ∗ which come into this circular sector. Since at each vertex of a tile there are

2 tiles of λ∗ it follows that there are |piqi−2− qipi−2| tiles of λ in this sector which are

incident with yi−1 and since piqi−2 − qipi−2 = (−1)iai, this number is equal to ai.

Corollary 3.4.6. The number of vertices of Z0(x) is precisely 4(x) + 2, and so the

number of tiles of λ of Z0(x) is 4(x).

Proof. The y′is are k + 2 vertices of Z0(x) and from above we have

∞, y0 = 0, y2, y4, · · · , yk = x, · · · , y3, y1 =∞

in the cyclic order. These form k + 2 intervals of which k have end-points of the form

{yi, yi−2}. By the above proposition, these k intervals contain Σk
i=1(ai − 1) vertices.

The remaining 2 intervals are {∞, 0} and {yk, yk−1}. These end points of each of

these 2 intervals are also end-points of an even line, so these intervals contains no

other vertex of Z0(x). So Z0(x) has

k + 2 + Σk
i=1(ai + 1) = 4(x) + 2

vertices. The last assertion follows by induction on the number of vertices.
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Example Let x = 4
11

= [0; 2,1,3]. A g.F.S. containing 4
11

must contain 6 + 2 = 8

terms. These includes ∞, 0 and the convergents 1
2
, 1

3
and 4

11
. The interval 4

11
and 1

2

contains two extra vertices. The interval 1
2

and ∞ contains one extra vertex.

Proposition 3.4.7. Let x be a rational number in (0, 1). The shortest path in the

cubic tree of f-edge from ρ = exp
πι
3 leading into the tile of λ incident with x has length

4(x)− 1.

Proof. We first built Z0(x). We have y1 = 1
a1

. The convex hull of 0, 1
a1

, 1
a1−1

, 1
a1−2

,

· · · , 1
2
, 1, ∞ consists of a1 tiles of λ and is contained in Z0(x). To this region there is

attached along the even line connecting y0 to y1, the convex hull of y0, y1, y2 and the

a2 vertices lying in the (y0, y2). This region contains a2 tiles of λ. The path in the

tree of f-edges starting from ρ and leading into a tile of λ incident with x is the one

which successively connects the barycentres of these a1 + a2 + · · · + ak tiles and has

length

Σk
i=1ai − 1 = 4(x)− 1.

Application of the above Proposition

The x1 must be of the form 1
m

for some m ∈ N. If we choose x1 = 1
k

then we choose

between 1
k

and∞ the k−1 terms 1
k−1

, 1
k−2

, · · · , 1. Similarly xn−1 must be of the form
l−1
l

for some natural number l. If we choose xn−1 = l−1
l

= [0; 1, l − 1] then we have

y1 = 1 and y2 = l−1
l

and y0 = 0 the following l − 2 terms l−2
l−1
, l−3
l−2
, · · · 1

2
.

Definition 3.4.8. Let Φ be a subgroup of finite index in Γ and P be a special polygon

of Φ then the Φ orbits of the free vertices (cusps) of P are called inequivalent cusps of

P.

Definition 3.4.9. If α is the cusp of Φ and given γ ∈ PSL(2,Z) such that γ(∞) =

α. The smallest positive integer r such that

(
1 r

0 1

)
∈ γ−1Φγ is called width of the

cusp.

Geometrical Interpretation

It corresponds to the number of ideal triangles which meet at α.

Definition 3.4.10. We define width of an inequivalent cusp to be the sum of width

of the cusps in a given Φ-orbit and half the number of special triangles which intersect

the cusps in Φ-orbit.
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Geometrical Interpretation

It corresponds to the number of even lines which meet at x in Φ \H.

Application in Farey Symbols

Width of a cup can be calculated by using the Farey Symbols. Let

F = {−∞, x1, x2, · · · , xn,∞}

be a Farey symbol for Φ and P be its associated Special Polygon. We suppose that

xi = ai
bi

be in reduced form i.e. g.c.d (ai, bi) = 1. We consider xi, i = 0, 1, 2, · · · , n+1

that the xi’s are in cyclic order and x0 = −∞ = −1
0

and xn+1 =∞ = 1
0

are identified.

Let

d(xi) = |ai−1bi+1 − ai+1bi−1| for i = 1, 2, · · · , n.

and

d(x0) = d(−∞) = |a1bn − anb1|.

We define w(xi) of xi to be d(xi), d(xi)+ 1
2

and d(xi)+1 respectively if x′is are incident

to 0, 1 and 2 odd intervals, respectively. If C denotes inequivalent cusp of Φ, then the

width of the cusp is given by w(C) =
∑
w(xi) (where xi runs over the cusp vertices

in the equivalence class of C).

Definition 3.4.11. The geometric level of Φ is the lcm of the inequivalent cusp.

3.5 Bipartite Cuboid Graphs and Tree Diagrams

The purpose of this section is to describe a graph theoretical approach to find all the

subgroups of a given index. I will provide algorithm for obtaining the Farey symbols

which corresponds to a marked trivalent diagram. We will first see the correspondence

between the special polygons, bipartite graphs and the tree diagrams. We will also

find subgroups corresponding to the bipartite cuboid graph.

Definition 3.5.1. A bipartite cuboid graph (also called trivalent diagram) is a finite

connected graph whose vertex set is partitioned into two disjoint subsets V0 and V1

such that

1. Every vertex in V0 has degree (valence) 1 or 2.

2. Every vertex in V1 has degree (valence) 1 or 3.
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3. Every edge joins a vertex in V0 with a vertex in V1.

4. There is a prescribed cyclic order on the edges incident at each vertex of degree

3 in V1.

The trivalent diagrams may have multiple edges between the two vertices so it

need not to be simple. We will assume the cyclic orientation around the bipartite

cuboid graph to be anticlockwise orientation of the plane.

Definition 3.5.2. A marked trivalent diagram is a trivalent diagram with a distin-

guished edge called the marked edge.

Definition 3.5.3. A cuboid tree diagram or a tree diagram is a finite tree T which

contains atleast one edge and which satisfies the following

1. All internal vertices have degree 3.

2. There is a prescribed cyclic order on the edges incident at each internal vertex.

3. The terminal vertices are partitioned into two possible empty subsets W and B

where the vertices in W are called white vertices and those in B are called black

vertices.

4. There is an involution Ω on W.

The tree T can be embedded in the plane in such a way that the cyclic order on

the edges at each internal vertex coincides with the cyclic order which is induced by

orientation of the plane.

Notation We will represent the black vertices as • and white vertices as ◦.
The distinct white vertices which are related by Ω are given the same numerical labels

and different pairs of distinct white vertices which are related by Ω carry different

labels. The unlabelled white vertices are actually those which are fixed by Ω.

Correspondence between tree diagrams and the bipartite cuboid graphs

Tree diagram to Bipartite cuboid graph

Let T be a tree diagram. To convert it into trivalent diagram, say G, we identify all

the white vertices v by Ω(v). Now on all the edges which joins two internal vertices

or the edges joining an internal vertex to a black vertex we introduce a new vertex of

degree 2. Now, these newly formed vertices along with the white vertices constitutes

V0 while the black vertices and the vertices of degree 3 constitutes V1. The cyclic
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orders of the trivalent vertices in V1 comes from the cyclic orders on the edges which

are incident at each internal vertex of T . This turns tree into a bipartite graph.

Bipartite cuboid graph to Tree diagram

Let G be a bipartite cuboid graph. If its cycle rank is r then we can choose r vertices

of degree 2 in V0 such that if we cut G along these vertices we obtain a tree T . These

r cuts corresponds to 2r terminal vertices in T . The terminal vertices of degree 1 in

V0 and the 2r terminal vertices obtained above corresponds to white vertices of T .

We will not count the remaining vertices of degree 2 as vertices of T . Now we set

involution Ω as fixing the terminal vertices of degree 1 in V0 and interchanging the

two vertices obtained at all the r cuts. The vertices of degree 1 in the V1 corresponds

to the black vertices. The cyclic order on the edges incident to the vertices of valency

3 in T corresponds directly to the cyclic order in G.

From this we conclude that the tree diagram T depends on the choice of r cuts.

Thus we have a well defined, finite-to-one map from the isomorphism class of T onto

G.

Correspondence between special polygons and the tree diagrams

Special polygon to Tree diagram

Let P be a special polygon and T be union of all f edges in P. We do not count

the even vertices in int P as vertices. The white vertices are the even vertices on

the boundary and similarly the black vertices are the odd vertices on the boundary,

say ∂P. The cyclic order on the edges incident to vertices of degree 3 is induced by

orientation of ∂P and the involution(Ω) on the white vertices is given by side-pairings

of ∂P. This process turns T into a tree diagram.

Tree diagram to Special Polygon

Let T be a tree diagram. On all the edges which join two internal vertices or an

internal vertex with a black vertex we introduce a new vertex of degree 2. Now the

tree T must have atleast one vertex(black or white). Let us suppose that it has a

white vertex v. We first identify the edge which is incident to v with the f-edge joining

ι to ρ identifying v with ι. Then T can be developed into a tree of f-edge so that the

cyclic orders on the edges incident at vertices of degree 3 in T matches with the ones

induced by the orientation of H2. In case we have a black vertex we identify that

with ρ. Now at the image of the white vertex v we assign the even line which passes

through v. The even edges are paired if v is fixed by the involution Ω. Otherwise we

will consider this complete geodesic as a free side and it will be paired with other free

side constructed at Ω(v). Similarly, at the black image of a black vertex of degree 1
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incident to unique edge say f, we assign those 2 edges which make angle π
3

with the

image of f. These odd edges are paired. It is clear that these even sides, odd sides

and free sides together with their pairing define a special polygon.

From this we conclude that special polygon P associated to a tree diagram T depends

on initial choice of the vertex.

Thus we have a well defined, finite-to-one map between P onto isomorphism classes

of T .

Method for finding out trivalent diagrams of size m

We assume that all the diagrams of size 1 to m−1 are given. We have two operations

to apply to the diagrams.

1. Connect a new edge say ne to an edge say ee of the diagram of size m−1. Since

the connection is made at the white vertex of degree 1 so ee must be of this

kind. We apply the above procedure to all possible ee and to all the diagrams

of size m− 1.

2. We can add 3 adjacent edges to diagrams of size m − 3. For that we have 2

choices

(a) add an edge joined to a 2−cycle,

(b) add a tripod(bt).

In the former case, there is only one possibility for the connection points that is

a white vertex of degree 1. So for each white vertex of degree 1 of each diagram

of the given size we get a new diagram of size m.

In the latter case, we have multiple choices for the connection points.

(a) Only 1 connection point i.e. a white vertex of degree 1. We will connect

the tripod(bt) to v and applying this to all vertices of degree 1 and all

diagrams of size m− 3.

(b) 2 connection points say v1 and v2 both of which are white vertices of degree

1. We will connect two white vertices of the tripod say t1 and t2 with v1

and v2 in any order and not joining the third vertex of the tripod. Since

black vertex of the bt has cyclic orientation around it, we have 2 diagrams.

i. Cyclic around bt as (bt, t1), (bt, t3), (bt, t2) or

ii. Cyclic around bt as (bt, t1), (bt, t2), (bt, t3).
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We apply these connections for all possible pairs (v1, v2) and for all dia-

grams of size m− 3.

(c) 3 connection points say v1, v2, v3 all three white vertices of degree 1. We

have 2 diagrams which are same as that in Case(b) with the only. difference

that t3 is also connected to vertex v3. Apply this to all possible triplets

(v1, v2, v3) and to all diagrams of size 3 .

For constructing diagrams of size m we will start with diagrams of size 1, 2 and 3.

Constructing the diagrams of size 4 can be done by adding an edge to diagrams of size

3 and adding 3 edges of diagram of size 1. If we get isomorphic diagrams (duplicate)

we keep one representation from each class and removes all duplicates. By this process

we get all diagrams of size 4.

To construct the diagrams of size 5, we will add edge to the diagram of size 4 and 3

edges to diagrams of size 2. Finally we will remove duplicates to get all diagrams of

size 5.

Continuing this process we get all diagrams of size m.

Theorem 3.5.4 (Vidal’s Theorem). 1. There is a bijective correspondence between

isomorphism classes of bipartite cuboid graphs and conjugacy classes of sub-

groups of Γ.

2. There is a bijective correspondence between the marked trivalent diagrams and

subgroups of Γ.

I will give an example by showing that subgroup of PSL(2,Z) produces a bipartite

cuboid group and bipartite group gives rise to conjugacy class of subgroup of Γ. We

need to find special polygon and its correspondence tree diagram and we will then

convert it to a bipartite cuboid graph. We have already proved that the Farey Symbol

corresponds to bipartite cuboid graph. We take the following example

Example Let Φ⊆ Γ be a subgroup with Farey Symbols given by g.F.S. {∞, 0, 1
3
, 1

2
, 1,∞}

and the labels {1, •, 2, 2, 1}. For constructing the special polygons of Φ we use Γ-

translates of the triangle which has vertices 0, ρ and ∞. We can also take the even

edges between any cusp xi = ai
bi

and xj =
aj
bj

which satisfies the definition of Farey

symbols |aibj − ajbi| = 1 and odd edges inside the ideal triangle with vertices 0, 1,

∞. Our notation is the same that is even vertices are represented by ◦, odd by •
and we mark one of the edge joining ι to ρ by edge say e1 (As shown in the Figure

3.1 [CC09]). To see the tree diagram we just ignore all the cusps. After rotating this
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Figure 3.1: Tessellation inside a polygon.

Figure 3.2: Tree diagram

tree diagram we obtain Figure 3.3 [CC09]. Now to obtain the corresponding bipartite

cuboid graph, we identify vertices with same numerical labels and will make cycles.

Now lets denote the bipartite cuboid graph by TΦ (We do not consider the marked

edge). Now by Vidal’s Theorem TΦ corresponds to the conjugacy class, say Γc of

subgroups of Γ containing Φ. The index [Γ : Φ] is given by the size of TΦ. In this case

[Γ : Φ] = 10. We know that marking a different edge of graph will produce another

subgroup of Γc. If we mark a different edge of TΦ and identify it with the edge joining

ι to ρ, then by reversing the above process we get a subgroup Φ′ conjugate to Φ. If

we cut these cycles at different points then we get same subgroup but different Farey

symbols. This is because despite the cut at different place, the bipartite cuboid graph

Figure 3.3: Rotated-tree diagram
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Figure 3.4: Trivalent diagram

Figure 3.5: f-edge and its cusp

remains the same and for the farey graphs we start counting or reading the labels

from the marked point.

Hence to find the conjugacy classes of subgroups of Γ which has index d, it is suf-

ficient to find all bipartite cuboid graphs of size d. By reversing the process given

above we can obtain a special polygon of the corresponding subgroup. We just need

to find out the Farey Symbols of the corresponding subgroup. For finding it we need

labels of degree 1 vertices. We start with this vertex of marked edge and then read

the labels in anti-clockwise direction. Looking at Figure 3.3 and reading the labels in

anti-clockwise direction we retrieve the sequence which is {1, •, 2, 2, 1}.
Our next task is to find cusps corresponding to each vertex of degree 1 so that we are

able to get the Farey Sequence. This is based on the fact that any f-edge e is image

of the edge e1 = (ι, ρ): e = ge1 for some g =

(
a b

c d

)
∈ PSL(2,Z).

We start with a triangle with 0, ∞, ρ as vertices. Edge edge has cusps b
d

and a
c

and

these must be added to an even vertex. Foe e.g. the edge e1= (ι, ρ) has cusps 0 and

∞. Now our task is to find the cusp at even vertex since on knowing that we can

easily compute the cusps at nearby even vertices. Now let us suppose that cusps of

edge e are a
b

and c
d

with a
b
< c

d
. then around the edge e we can have three types of

configurations

1. Adding a cusp between two given cusps.

2. Adding a cusp to the right.
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Figure 3.6: Adding cusp between 2 given cusps

Figure 3.7: Adding cusp to right and left

3. Adding a cusp to the left.

Case 2 and 3 are same only since a−c
b−d = c−a

d−b and hence these 2 will have same cusps.

Hence for calculating the cusps of nearby vertices the we have

1. If a
b
< c

d
then the cusp of vertices are as shown in Figure 3.6 [CC09].

2. If a
b
> c

d
then the cusp of vertices are as shown in Figure 3.7 [CC09].

Now we will use the above method to determine the Farey sequence.

Now we see that the Farey Label is {1, 1, •, 2, 2}. Using the above 2 ways of calculating

the cusps we will start evaluating the cusp from the edge e1 (as shown in Figure 3.8

[CC09]). First we calculate the cusps adjacent to cusp B followed by A and C. Now

D is black vertex of degree 1, so we copy the cusps of adjacent white vertex and the

result is that we get Figure 3.9 [CC09]. We start reading the cusps in anti-clockwise

direction starting from the marked edge. We do not count the repeated entries and

Figure 3.8: Finding the cusp
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Figure 3.9: All the cusps

hence we get Farey Sequence {∞, 0
1
, 1

2
, 1

1
, 2

1
,∞} which is same as {∞, 0, 1

2
, 1, 2,∞}.

Farey symbol is just the combination of Farey Sequence and Farey labels.

{∞
︷︸︸︷

1 0
︷︸︸︷

1 1

2

︷︸︸︷
• 1

︷︸︸︷
2 2

︷︸︸︷
2 ∞}

We use the Theorem 3.3.1 to find out the generators of the Farey symbols, one corre-

sponding to free sides labelled 1 free side labelled 2 and labelled •.
For the sides labelled 1 we have xj = −1

0
, xj+1 = 0

1
, xk = 0

1
, xk+1 = 1

2
we get

g1 =

(
1 0

2 1

)
.

For the sides labelled 2 we have xj′ = 1
1
, xj′+1 = 2

1
, xk′ = 2

1
, xk′+1 = 1

0
we get

g2 =

(
3 −4

1 −1

)
.

For the odd side between 1
2

and 1
1

we have

g3 =

(
4 −3

7 −5

)
.

So the generators of the corresponding trivalent diagram are g1, g2 and g3.

3.6 General Algorithms for finding special poly-

gons and Farey Symbols

These algorithms have been studied in [CL05]. Before studying these algorithm we

will give the definition of adjoinable.

Definition 3.6.1. A T-tile is adjoinable to P(Polygon) if T is adjacent to a tile of P

and if P ∪ T is contained in some fundamental domain of Γ
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Figure 3.10: Special Polygon

Algorithm for calculating special polygon

1. If Γ = PSL(2,Z). Let P be a special polygon with the given Farey symbol

−∞
︷︸︸︷
◦ 0

︷︸︸︷
• ∞

In that case return P and terminate.

2. If

(
−1 1

−1 0

)
/∈ Γ, then let P be a hyperbolic polygon with 0, 1 and∞ as vertices.

Else, let P be the hyperbolic polygon with edges −1, 0 and ∞.

3. If any of the three sides of P map to each other by some γ ∈ Γ then we assign

that pairing to the side.

4. Now P is a polygon in which every side is either

(a) even and unpaired,

(b) even and already paired,

(c) odd and already paired.

5. We now pick an unpaired even side say e (As shown in the Figure 3.10). All

cases are similar as everything can be translated by some γ ∈ PSL(2,Z). Now

since e is unpaired so T1 and T2 are adjoinable. If now o1 and o2 are the new

edges of P after we add T1 and T2 to P. Then either γo1 = o2 for some γ ∈ Γ or

no such pair exists. If there exists such a γ then pair the edges. Go to Step 3.

54



6. If o1 and o2 doesn’t pair with each other, then it doesn’t pair with any other

side as other unpaired sides are odd. So tiles T3 and T4 are adjoinable. Each of

these tiles has a free edge and these free edges cannot pair with each other, so

T5 and T6 are adjoinable.

7. We have now added 6 T-tiles to P. If either of the new even edges pair with any

of the old unpaired even edges then assign that pairing.

8. If all the sides of P are paired then our algorithm is complete, otherwise we will

go to Step 4.

The output is a special polygon.

Algorithm for calculating Farey Symbol

1. If

(
1 1

0 1

)
and

(
0 −1

1 0

)
are Γ then Γ = PSL(2,Z), so return

−∞
︷︸︸︷
◦ 0

︷︸︸︷
• ∞

and terminate. If

(
0 1

−1 −1

)
and

(
−1 1

−1 0

)
are in Γ then Γ = Γ2 so return

−∞
︷︸︸︷
• 0

︷︸︸︷
• ∞

and terminate.

2. If

(
−1 1

−1 0

)
/∈ Γ then let F be the (partial) Farey symbol

−1

0

︷︸︸︷
0

1

︷︸︸︷
1

1

︷︸︸︷
1

0

Otherwise F would be

−1

0

︷︸︸︷−1

1

︷︸︸︷
0

1

︷︸︸︷
1

0

3. For each i with 0 ≤ i ≤ n+ 1, if the pairing between xi−1 and xi is not fulfilled

in then check whether it can be paired with itself (even or odd pairing), or if

it can be paired with another unpaired edge. Whenever pairing is possible we

assign that pairing.

55



4. If all the edges are paired then return F and terminate.

5. If there still exists an unpaired edge, say between pi
qi

and pi+1

qi+1
make a new vertex

pi+pi+1

qi+qi+1
with no pairing transformation on the edges adjacent to it then go back

to Step 3.

The output is the Farey Symbol for Γ.

3.7 Membership Test for Matrices in PSL(2,Z)

In this section we will study the Lang, Lim, Tan algorithm for determining whether

a given matrix is member of subgroup Φ ⊆ Γ. The basic concept that is used in

this algorithm is that we use the line (0, ∞) and its image under matrices to check

whether the given matrix belongs to the subgroup or not.

Proposition 3.7.1. [LLT95] If P is a special polygon in H2 and l is an even line

then either l ∩ P = ∅ or l ⊆ P .

Proof. Let A (elliptic point of order 2) be the even vertex of l. In the tessellation of

H2, A is a point of degree 2. If l ∩ P = ∅, then A ∈ P and then A belongs to even

line l′ ⊆ P . Hence the end points of l must coincide with end points of l′. These

are actually the vertices which are adjacent to A in the tessellation of H2. Hence

l = l′ ⊆ P .

Definition 3.7.2. Let l be an even line, P a special polygon and T the Z-tree of all

f-edges in H2. We define the distance d(l, P ) between P and l to be the distance along

the tree T between the sub-tree P ∩T and the vertex l ∩T.

Algorithm[LLT95] Let Ak =

(
ak bk

ck dk

)
∈ Γ and Φ ⊆ Γ with special polygon P

such that the even line lk = ( bk
dk

, ak
ck

) ⊆ P. Then Ak ∈ Φ if and only if exactly one of

the following holds

1.

(
ak bk

ck dk

)
= ± I,

2. ( bk
dk

, ak
ck

) is a free side of P paired to (0, ∞),

3.

(
ak bk

ck dk

)
=±

(
0 −1

1 0

)
and (0,∞) consists of two even edges which are paired.
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Proof. Let Φ ⊆ Γ be a subgroup of the modular group and P be a special polygon of

Φ with Farey symbol which have g.F.S. {x0, x1, x2, · · · , xn} where x0 = −∞, xn+1 =

∞ and xt = 0 for some 1 ≤ t ≤ n. Let {gi}i∈I be the set of generators of Φ

which corresponds to the side pairings of P and let g =

(
a0 b0

c0 d0

)
∈ PSL(2,Z).

The algorithm decides whether g belongs to the subgroup or not and how it gives

decomposition of g as a reduced word in g′is. g actually sends even line (0,∞) to even

line l0 = ( b0
d0
, a0
c0

). If d(l0, P ) > 0 then we find an element gi1 ∈ {gi}i∈I such that

gp1i1 .g =

(
a1 b1

c1 d1

)
(where p = ±1)

and the even line l1 = ( b1
d1
, a1
c1

) has the property

d(l1, P ) < d(l0, P ).

Continuing this for finite number of steps, we get an even line lk such that d(lk, P)

= 0 and we can determine whether corresponding element gpkik · · · g
pk
ik
.g is in Φ or not.

Now we see how to choose the matrices gptit , t = 1, · · · , k. Suppose

d(l0, P ) > 0 and lo = (
b0

d0

,
a0

c0

)

is such that l0 ∩ P = ∅. We now assume that b0
d0
< a0

c0
, then we must have

xi ≤ b0
d0
< a0

c0
≤ xi+1

for some xi and xi+1 of the g.F.S. of P. We have 3 cases

1. (xi, xi+1) is a free side paired to free side (xj, xj+1),

2. (xi, xi+1) is an even side,

3. (xi, xi+1) is an odd side.

Case 1 Let gi1(given by the Theorem 3.3.1) be a side pairing matrix which sends the

free sides (xi, xi+1) to its paired sides (xj, xj+1). Then g ∈ Φ ⇐⇒ gi1 .g ∈ Φ. So we

can have the matrix

gi1 .g =

(
a1 b1

c1 d1

)
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and the even line

l1 = (
b1

d1

,
a1

c1

), where l1 = gi1 .l0.

To obtain the shortest path from l0 to P, one has to go through g−1
i1
P . Hence d(l0, P ) >

d(l0, g
−1
i1
P ). But d(l0, g

−1
i1
P ) = d(l1, P ). Thus d(l0, P ) > d(l1, P ). Hence we get an

even line with a shorter distance to P. We proceed this inductively using gi.g instead

of g and l1 instead of lo.

Case 2 This case is same as Case 1, with the only difference that gi1 is given by the

Theorem 3.3.1.

Case 3 In this case we take xi = ai
bi

and xi+1 = ai+1

bi+1
to be those points which are

paired and let y = a1+ai+1

bi+bi+1
and let z be the common end point of two paired odd sides.

Now let gi1 given by Theorem 3.3.1 be the side pairing transformation taking (xi, z)

to (z, xi+1). We have the even lines (xi, y), (y, xi+1) and ( b0
d0

, ao
co

). Then either

xi ≤
b0

d0

<
ao
co
≤ y or y ≤ b0

d0

<
ao
co
≤ xi+1.

In the 1st case gi1 .g =

(
a1 b1

c1 d1

)
satisfies d(lo, P ) > d(l1, P ).

In the 2nd case g−1
i1
.g =

(
a1 b1

c1 d1

)
satisfies d(lo, P ) > d(l1, P ).

We can proceed inductively.

Thus there are finite number of generators git , t = 1, 2, · · · , k of Φ such that

gpkik .g
pk−1

ik−1
. · · · .gp1i1 .g =

(
ak bk

ck dk

)
, (pt = ±1)

has a property of d(lk, P ) = 0 where lk = ( bk
dk

, ak
ck

). This means that lk ⊆ P .

The matrix

(
ak bk

ck dk

)
maps even lines (0, ∞) to the even line lk = ( bk

dk
, ak
ck

) and

both these even lines are contained in P. Then

(
ak bk

ck dk

)
is either identity or one of

the side-pairing transformations g±1
i of the special polygon.

Example We will test whether the matrix g =

(
1 −1

9 −8

)
belongs to the subgroup
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Figure 3.11: Fundamental Domain of Γ0(9)

Φ = Γ0(9) with the special polygon given by Figure 3.11

Using Theorem 3.3.1 or see Appendix we will first find the generators corresponding

to free sides.

1. g1 =

(
1 1

0 1

)
sends the edge (0, ∞) to (1, ∞).

2. g2 =

(
−4 1

−9 2

)
sends the edge (0, 1

3
) to the edge (1

3
, 1

2
).

3. g3 =

(
−7 4

−9 5

)
sends the edge (1

2
, 2

3
) to the edge (2

3
,1)

Now for g =

(
1 −1

9 −8

)
we have first l1 = g.(0, ∞) = (1

8
, 1

9
). Since this edge lies

inside(under) (0, 1
3
) we multiply g by g2. Hence we obtain

g2.g =

(
−4 1

−9 2

)(
1 −1

9 −8

)
=

(
5 −4

9 −7

)

The even line corresponds to this matrix is l2 = (5
9
, 4

7
). Now this l2 is under the edge

(1
2
,1
3
). Hence we will multiply this with g3. Hence we obtain

g3.g2.g =

(
−7 4

−9 5

)(
5 −4

9 −7

)
=

(
1 0

0 1

)
= I

This corresponds to even line l3 = (0, ∞). Hence the conclusion is that g ∈ Φ and

since g3.g2.g = I, we have

g′ = g2
−1.g−1

3 .
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Now, we will study a variant of the algorithm previously discussed. Algorithm will

be to use the entire fundamental domain P as it is based on the way with which a

fundamental domain and its Γ-translates tile the plane. Before giving the algorithm

we prove a proposition which will be useful for the algorithm.

Proposition 3.7.3. [CC09] Let F be a special polygon with side-pairing matrices Gl

= {g1, g2, · · · , gn} and m1, m2 be elements in Γ

1. If m1F = m2F, then m1 = m2,

2. m1F is adjacent to m2F ⇐⇒ m1 = m2gi, for some 1 ≤ i ≤ n.

Proof. 1. Suppose m1F = m2F and k ∈ m1F1. We assume that k is in the interior

of m1F. Since k ∈ m1F, we have k = m1z1 for some z1 ∈ F . Likewise, k = m2z2

for some z2 ∈ F . So, m1z1 = m1z2 or z1 = m−1
1 m2z2. Since there is a unique point

z ∈ F with z1 = gz for some g ∈ Γ, and we have z1 = Iz1, so we must have z1=z2

and hence m−1
1 m2 must fix z1. Points which are in the upper half plane are fixed by

non-trivial matrix in SL(2, Z) only if they are elliptic of order 2 or 3, but these are

isolated points. Since F is open, we can choose k to be some point in m1F which is

not elliptic and so z1 is not elliptic. Then z1 is fixed only by identity, so m−1
1 m2 i.e.

m1 = m2.

2. Since F is a fundamental domain, so either m1F = m2F or these regions have no

intersection points. Now lets suppose that these are adjacent. It implies that there

exists a point x in the intersections of closure of these regions that is on the boundary

of these 2 regions. Now we apply map m−1
1 to these domains. This is a continuous

map on H, so F = m−1
1 m1F and m−1

1 m2F meet at a boundary point y = m−1
1 x. Now

we suppose that y is a point on the edge say e2(boundary edge) which is not included

in the domain F. Then for some gi and edge e1, we have gi which maps a point t to

the edge e1 to y which implies that git = y. But y is also an edge in m−1
1 m2F . Now

we know that y must be contained in some image and since its not in F so it must be

contained in m−1
1 m2F because the the space between these domains along the edge

where they can not meet is another domain. By uniqueness argument and not taking

y as an elliptic point we have t = p and m−1
1 m2 = gi so m2 = m1gi. Now supposing

that the two domains have the form mF and mgF with g a side-pairing matrix, if we

join edge e1 with e2 by g, then the region F has an adjoining region gF and these 2

regions join at e2. The regions F and g−1F meet each other along the edge e1. Now

taking any arbitrary matrix m we apply this matrix to both these regions. Since F

and gF join along e2 hence mF and mgF join along me2.
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Figure 3.12: Fundamental domain of Φ = Γ0(6)

Algorithm This algorithm is based on existence of such a side pairing matrix ge

which enlarges the domain of mF at each step. We have a matrix and a subgroup

Φ ⊆ Γ with special polygon F. We start the process by finding mF. We find the largest

edge of mF, say me2. Let e2 be the preimage of me2 in F. Then ge = g1 is the side

pairing matrix which has destination e2 i.e. ge is a matrix that pairs e1 with the edge

e2. We proceed by induction by taking mgeF and mg1 instead of mF and m. At each

step we widen the domain. We have the following 2 cases

1. If we get overlapping at some stage then m /∈ Φ

2. If we get F exactly then m.g1.g2 · · · .gkF = F for some side pairing matrices

g1, g2, · · · , gk.

From the above proposition we get m.g1.g2 · · · .gk = I so m = g−1
k g−1

k−1 · · · g
−1
2 g−1

1 ,

which gives decomposition of m in terms of generators of Φ.

Example We consider the subgroup Φ = Γ0(6) with a special polygon F (as shown

in the Figure 3.12). Let the matrix be m =

(
1 0

−12 1

)
Using Theorem 3.3.1 we will first find generators of the corresponding sides.

The generators which corresponds to the free sides are

g1 =

(
1 1

0 1

)

which sends the edge (0, ∞) to (1, ∞)

g2 =

(
−5 1

−6 1

)

61



which sends the edge (0, 1
3
) to (2

3
, 1)

g3 =

(
−7 3

−12 5

)

which sends the edge (1
3
, 1

2
) to (1

2
, 2

3
).

Now we use the algorithm to check whether the given matrix m is in Φ or not.

The domain mF has vertices

{m.∞, m.0, m.1
3
, m.1

2
, m.2

3
, m.1}

or

{−1
12
, 0, −1

9
, −1

10
, −2

21
, −1

11
}.

Now the largest edge of mF is (−1
9

,0). The preimage of (−1
9

, 0) is the edge (0, 1
3
). We

will first find which side-pairing matrix has the edge (0, 1
3
) as destination. Now we

know that g−1
2 sends (2

3
, 1) to (0, 1

3
). The new matrix is mg−1

2 =

(
1 −1

−6 7

)
and the

domain mg−1
2 F whose vertices can be found in the same way as above. On calculation

they are found to be

{−1

6
,
−1

7
,
−2

15
,
−1

8
,
−1

9
,

0

1
}.

Now the largest edge of mg−1
2 F is (−1

6
,0). The preimage of (−1

6
, 0) is the edge (∞,

1). We know that g1 has destination (∞, 1). Then we apply g1 to mg−1
2 F to get the

domain mg−1
2 g1F . The new matrix is mg−1

2 g1 =

(
1 0

−6 1

)
. Vertices of the domain

mg−1
2 g1 are found to be

{−1

6
, 0,

−1

3
,
−1

4
,
−2

9
,
−1

5
}.

The largest edge of mg−1
2 g1F is −1

3
and it has an preimage edge (0, 1

3
). We know that

g2 has destination (0, 1
3
). Then we apply g2 to mg−1

2 g1F to get the domain mg−1
2 g1g2F .

The new matrix is mg−1
2 g1g2 =

(
1 −1

0 1

)
. Vertices of the domain mg−1

2 g1g2 are found

to be

{∞, −1,
−2

3
,
−1

2
,
−1

3
, 0}.

The largest edge of mg−1
2 g1g2 is (0, ∞) which has preimage edge (1, ∞). So we will
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Figure 3.13: mg−1
2 g1g2F and F

now apply the matrix g−1
1 =

(
1 1

0 1

)
. We get mg−1

2 g1g2g
−1
1 F = F and hence m ∈ Φ

and the decomposition is

m = g1g
−1
2 g−1

1 g2.

Lastly, we will prove that the algorithm ends in finite steps.

Suppose F be a fundamental domain and m be the initial matrix. If mF has an

infinite edge, then algorithm stops. We assume that largest edge of mF, say (x1, y1)

has a finite length. We will prove that there are infinitely many lengths of the form

|g(x1)− g(y1)| > |x1 − y1| where g =

(
p q

r s

)
∈ Γ.

But g(x1)− g(y1) = x1−y1
(rx1+s)(ry1+s)

So, |g(x1)− g(y1)| > |x1 − y1| implies that

1

|rx1 + s||ry1 + s|
> 1.

Since x1 and y1 are fixed we will show that there are finitely many r and only finitely

many s such that above equation is true. Since there are only finitely many lattice

points of the form ry1 + s inside the circle. So, we deduce that

My1 = max
r,s∈Z{

1

|ry1 + s|
, 1}

is a finite number. Then, there are only finitely many lattices of the form rx1 + s

which have the property |rx1 + s| < My1 . This means that |rx1 + s||ry1 + s| < 1 only

for finitely many r and s. Hence the algorithm ends in finite number of steps.
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Appendix
In Sage, one can compute Farey symbols using computer directly. We have given

some examples.

Our inputs are the Arithmetic Subgroups of PSL(2,Z).

EXAMPLES

1. To find generators of Γ0(2).

INPUT: sage: FareySymbol(Gamma0(2)).generators()

OUTPUT :

(
1 −1

2 −1

)
,

(
1 1

0 1

)
.

2. To find the cusps of Γ0(9).

INPUT : sage: FareySymbol(Gamma0(9)).cusps()

OUTPUT: [0, 1/3, 1/2, 2/3, 1].

3. To calculate cusp width of Γ0(9).

INPUT: sage: FareySymbol(Gamma0(6)).cusp widths()

OUTPUT: [6, 2, 3, 1]

4. To calculate fraction of a farey symbol

INPUT: sage: FareySymbol(Gamma0(9)).fractions()

OUTPUT: [0, 1/3, 1/2, 2/3, 1]

5. To calculate the paired sides

INPUT: sage: FareySymbol(Gamma0(9)).paired sides()

OUTPUT : [(0, 5), (1, 2), (3, 4)]

6. To calculate the side pairing matrices of fundamental domain.

INPUT: FareySymbol(Gamma0(6)).pairing matrices()

OUTPUT:

(
1 1

0 1

)
,

(
−5 1

−6 1

)
,

(
−7 3

−12 5

)
,

(
5 −3

12 −7

)
,

(
1 −1

6 −5

)
,

(
1 −1

0 1

)
.

7. To find the pairing sides in a fundamental domain.(Convention : We denote the

even pairing by −2, the odd pairing by −3 while the free pairing by positive

integer number)

INPUT: sage: FareySymbol(Gamma0(13)).pairings()

OUTPUT: [1,−3,−2,−2,−3, 1]
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