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1 Introduction

This thesis is divided into three parts. In the first part I start with the notion of divisors and

line bundles, where we work with codimension 1 subvarieties of a given scheme X. In the next

section I generalize the notion of divisors to work with varieties of arbitrary codimension.

I calculate various class groups, Chow groups which are important invariants of a scheme,

we define the intersection product and at the end of this section we introduce intersection

numbers on a surface. With the help of this we give an easy proof of the Bezout’s theorem,

prove the Riemann-Roch theorem on surfaces and calculate the intersection numbers of a

few general types of divisors (curves). The last part of this thesis is dedicated to the study of

Chow motives, in particular we are interested in various decompositions of the Chow motive

of a space. This ends with proving the Chow-Kunneth decomposition of the motive of an

Abelian variety. For this we give a brief overview of the theory of Abelian varieties in the

first part. With the help of the theorem of Cube and the Seesaw theorem, I study line

bundles on an abelian variety. We also give a sketch of the construction of the dual abelian

variety. While constructing the dual X̂ of an abelian variety X we define a line bundle on

X × X̂, which plays a significant role in the theory of Fourier-Mukai transforms in derived

categories. This is what the second part of this thesis is concerned with. In this part, I

study the derived categories of Coherent sheaves thoroughly and give a few applications. I

prove Serre duality in the derived category realm, study the derived category of a smooth

projective curve, give a set of generators of Db(Coh(P1)). Next I introduce Fourier-Mukai

transforms and as an application prove that the derived categories of an abelian variety and

its dual are equivalent. After this I define the Chow motives, give a few basic calculations

and study the motivic decompositions of a few simple spaces. The thesis ends with the proof

of the existence of Chow-Kunneth decomposition of an abelian variety.
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Part I: Results from Algebraic Geometry
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2 Divisors and Line bundles

In this section, I am going to give a quick review of the basics of

divisors. I will introduce Weil and Cartier divisors, and discuss

the correspondences between Weil divisors, Cartier divisors and

line bundles. At the end of this section I will compute the divisor

class groups of a few important schemes using some useful exact

sequences.

2.1 Weil and Cartier divisors

Weil divisors: Weil divisors are the easiest to explain. On a scheme X of dimension

n, a Weil divisor is just a formal sum of codimension 1 closed subvarieties of X. Thus the

group of Weil divisors, divX is the free abelian group generated by the codimension one

subvarieties of X over Z. A Weil divisor D ∈ divX has the form

D =
k∑

i=0

niVi,

where Vi are closed irreducible subsets of X. If ni ≥ 0, for all i = 0, . . . , k, we say the divisor

D is effective.

A prime divisor on X is a closed irreducible subset Y ⊂ X of codimension one. Equivalently,

a prime divisor is an integral closed subscheme of codimension one. Now we will associate a

divisor to a rational function over X. For this we need X to be a nice enough scheme.

What do we mean by ‘nice enough’? We will call X ‘nice’ if: X is Noetherian integral

separated scheme which is regular in codimension one.

We say a scheme X is regular in codimension one if every local ring OX,x of X of dimension

one is regular.

If Y is a prime divisor on X, let η ∈ Y be its generic point. Then dimOX,η = codim(Y,X) =

1, so OX,η is a discrete valuation ring. We call the corresponding discrete valuation vY on K

the valuation of Y . If f ∈ K∗ is a nonzero rational function on X then vY (f) is an integer.

If it is positive, we say that f has a zero along Y of that order; if it is negative, we say f

has a pole along Y , of order −vY (f).
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Proposition 1. Let X be a nice scheme, and let f ∈ K(X), the field of rational functions

on X. Then vY (f) = 0 for all but finitely many prime divisors Y.

Proof. (Sketch) Let U = SpecA be an affine open subset of X. If f |U = g
h
, where g, h ∈ A, we

see that f restricts to a unit on the complement of the closed subset Z = (X−U)∪V (g)∪V (h)

in X. Since X is Noetherian, Z contains only finitely many irreducible components, and all

of them of codimension ≥ 1. This tells us that there are only finitely many prime divisors of

X contained in Z. If Y is a prime divisor of X, and Y ∩ Z = ϕ, f restricts to a unit on D,

and thus vD(f) = 0. Hence the sum

(f) =
∑

Y ∈PD(X)

vY (f) · Y,

is well-defined. This is called the principal divisor associated to f. (Here PD(X) is the set

of all prime divisors of X.)

Note that if f, g ∈ K∗ then (f/g) = (f) − (g) because of the properties of valuations.

Therefore sending a function f to its divisor (f) gives a homomorphism of multiplicative

groupK∗ to the additive group divX, and the image, which consists of the principal divisors,

is a subgroup of divX.

Definition 2.1. Let X be a nice scheme. Two divisors D and D′ are said to be linearly

equivalent, written D ∼ D′, if D−D′ is a principal divisor. The group divX of all divisors

divided by the subgroup of principal divisors is called the divisor class group of X and is

denoted ClX.

The following two easy propositions will be helpful in calculating the valuation.

Proposition 2. Let A = k [x1, . . . , xn] for a field k and n ≥ 1. Let f be an irreducible

polynomial and p = (f). The discrete valuation on K with valuation ring Ap is defined for

nonzero g, h ∈ A by vp(g/h) = vf (g)− vf (h).

Proposition 3. Let S = k [x0, . . . , xn] for a field k and n ≥ 1. Let f be an irreducible

homogeneous polynomial and p = (f). The discrete valuation on the field S((0)) with valuation

ring S(p) is defined for nonzero homogeneous g, h ∈ S of the same degree by v(p)(g/h) =

vf (g)− vf (h).
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Example 2.1. Let k be a field. Let us compute div (x3/(x+ 1)) on A1
k. Using the previous

proposition to calculate the valuation at the prime ideal (x+ 1), we get that the valuation at

x = −1 is −1. Similarly at x = 0, the valuation is 3. In particular, the divisor is 3[0]− [−1].

Example 2.2. Now Let us compute the divisor of the rational section X2/(X + Y ) on P1
k.

There are two basic open sets D(X) and D(Y ). On the former, the trivialization is by

dividing by X, so we get X/(X + Y ) = 1/(1 + (X/Y )), that is when we restrict the rational

function on the affine pacth D(X), we get the function X/(X + Y ). Then again using the

previous proposition, we see that the valuation at X/Y = −1 is −1, in other words, it has a

simple pole at X/Y = −1. So at the point [−1 : 1], there is a simple pole of this divisor.

The second trivialization is by dividing by Y , in which case we get X2/((X + Y )Y ), which

has a zero of order 2 at X = 0. So the total divisor is

2[0 : 1]− [−1 : 1].

Cartier divisors: To define Cartier divisors on a scheme X, we will not be needing

X to be nice. That is, a Cartier divisor can be defined on any Scheme. Thus when X is

nice, we can define both Weil and Cartier divisor. One may ask, if there is some relationship

between them, if given one can we go to the other. As we will see Cartier divisors are just

locally principal Weil divisors. From any Cartier divisor we can define a Weil divisor, but

for the other way we need X to be locally factorial. We will give an example when this

correspondence fails.

Definition 2.2. Let X be a scheme. For each open affine subset U = SpecA, let S be the

set of elements of A which are not zero divisors, and let K(U) be the localization of A by

the multiplicative system S. We call K(U) the total quotient ring of A. For each open set

U , let S(U) denote the set of elements of Γ (U,OX) which are not zero divisors in each local

ring Ox for x ∈ U . Then the rings S(U)−1Γ (U,OX) form a presheaf, whose associated sheaf

of rings K we call the sheaf of total quotient rings of C. On an arbitrary scheme, the sheaf

K replaces the concept of function field of an integral scheme. We denote by K ∗ the sheaf

(of multiplicative groups) of invertible elements in the sheaf of rings K . Similarly O∗ is the

sheaf of invertible elements in OX .
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Definition 2.3. A Cartier dicisor on a scheme X is a global section of the sheaf K ∗/O∗.

Equivalently, we see that a Cartier divisor on X can be described by giving an open cover

{Ui} of X, and for each i an element fi ∈ Γ (Ui,K ∗), such that for each i, j, fi/fj ∈

Γ (Ui ∩ Uj,O∗). A Cartier divisor is principal if it is in the image of the natural map

Γ(X,K ∗) → Γ(X,K ∗/O∗), that is given by the cover {(U, f)}. Two Cartier divisors are

linearly equivalent if their difference is principal. The group of Cartier divisors modulo linear

equivalence is denoted CaCl(X).

We now describe the relationship between the two notions of divisors. We will merely

talk about the maps between divX and CaDivX, for the details see Proposition 6.11,[Hart].

Proposition 4. Let X be an integral, separated Noetherian scheme, all of whose local rings

are unique factorization domains (in which case we say X is locally factorial). Then the group

Div X of Weil divisors on X is isomorphic to the group of Cartier divisors Γ(X,K ∗/O∗),

and furthermore, the principal Weil divisors correspond to the principal Cartier divisors

under this isomorphism.

Proof. (Sketch) Since X is nice, we can talk about Weil divisors. Now let we have a Cartier

divisors {(Ui, fi)}. For a prime divisor Y ∈ PD(X), we take the coefficient of Y to be vY (fi),

where i is any index such that Y ∩Ui = ϕ. This is well-defined, because for some other such

j, fi/fj ∈ O∗(Ui ∩ Uj), thus vY (fi/fj) = vY (fi) − vY (fj) = 0. The sum is finite again the

same way as before, since X is Noetherian.

Conversely, for D ∈ divX, Dx is a Weil divisor of SpecOX , x for any point x ∈ X. Now

since X is locally factorial OX , x is a UFD, and hence Cl(SpecOX , x) = 0. This implies that

Dx = (fx), for some fx ∈ K(X). We get a Cartier divisor {(Ux, fx)} since such {Ux} cover

X.

This two constructions are inverses to each other and its clear from the construction that

the principal divisors correspond to each other. Hence we have got the following:

ClX ∼= CaCl(X).
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In the last section I will give examples of Weil divisors which are not Cartier. From

the proof we can say that for this to happen we need to find a scheme which is not locally

factorial, because only then we will be able to get a divisor that is not locally principal. In

the next section I will explain the correspondence between Cartier divisors and line bundles.

For Integral schemes we will get isomorphism between ClX and Pic(X). As a consequence

in the last section we will prove that the only line bundles over Pn are O(l) for some l ∈ Z.

2.2 Line bundles and PicX

The set of all line bundles L over a scheme X form a group under the tensor product oper-

ation. The group is called the Picard group of X, PicX.

Given a Cartier divisor D = {(Ui, fi)} we define a subsheaf L(D) of the sheaf of total

quotient rings K by taking L(D) to be the sub-OX module of K generated by f−1
i on Ui.

This is well-defined and L(D) is called the sheaf associated to D.

Proposition 5. Let X be a scheme. Then:

(a) for any Cartier divisor D,L (D) is an invertible sheaf on X. The map D 7→ L (D) gives

a 1-1 correspondence between Cartier divisors on X and invertible subsheaves of K ;

(b) L (D1 −D2) ∼= L (D1)⊗L (D2)
−1;

(c) D1 ∼ D2 if and only if L (D1) ∼= L (D2) as invertible sheaves.

Proof. (a) Clear.

(b) L (D1 −D2) is locally generated by f−1
i gi, so L (D1 −D2) ∼= L (D1)⊗L (D2)

−1.

(c) If D is principal, then L (D) is globally generated by f−1, and thus 1 7→ f−1 gives an

isomorphism OX
∼= L (D). Conversely, given such an isomorphism, we can take the image

of 1 to be the global generator of D. Using (b), we see that D = D1 −D2 is principal if and

only if L (D) ∼= OX .

Corollary 2.1. On any scheme X, the map D 7→ L (D) gives an injective homomorphism

of the group CaClX of Cartier ditisors modulo linear equivalence to Pic X.

Proposition 6. If X is an integral scheme, CaCl X ∼= PicX.
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Proof. Only surjectivity is remaining, that is we need to show that any invertible sheaf is

isomorphic to a subsheaf of K, which is the constant sheaf K in this case, where K = K(X)

is the function field of X. Let L ∈ Pic(X). Then there is an open covering {Ui} of X, such

that L|Ui
= OX . Then (L ⊗ K)|Ui

∼= K|Ui. Since X is irreducible, this shows that L ⊗ K is

isomorphic to the constant sheaf K, and via the map L → L⊗K ∼= K, we can view L as a

subsheaf of K.

Corollary 2.2. If X is a noetherian, integral, separated locally factorial scheme, then there

is a natural isomorphism

Cl(X) ∼= CaCl(X) ∼= Pic(X).

2.3 Computations

We shall now calculate a few class groups, and gives examples where the previously defined

correspondences fail.

Proposition 7. Let X be the projective space Pn
k over a field k(n ≥ 1). Let H be the

hyperplane x0 = 0. Then:

(a) If D is any divisor of degree d, then D ∼ dH;

(b) For any f ∈ K∗, deg(f) = 0;

(c) The degree function gives an isomorphism of abelian groups deg : Cl(X) −→ Z.

Proof. Let S = k [x0, . . . , xn] and K the function field OX,0 of X. If f ∈ K∗ then f

corresponds to a quotient g/h of two nonzero homogenous polynomials g, h ∈ S of the

same degree. If we factor g, h as g = upn1
1 · · · pnr

r and h = vpm1
1 · · · pmr

r for u, v ∈ k and

irreducible polynomials pi, then the pi must be homogenous (we allow some zero indices to

get the occurring pi the same in both cases) and by Proposition 11 the principal divisor (f)

is defined by

(f) =
r∑

i=1

(ni −mi) · Yi, Yi = V (pi)

Hence

deg(f) =
r∑

i=1

(ni −mi) deg (pi) =
r∑

i=1

ni deg (pi)−
r∑

i=1

mi deg (pi) = deg(g)− deg(h) = 0
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Which proves (b). To prove (a), let D =
∑r

i=1 ni · D (pi) be any nonzero effective divisor

of degree d with ni > 0 and the pi homogenous irreducibles. Then pn1
1 · · · pnr

r /xd
0 ∈ S((0))

and the corresponding principal divisor is D − dH, where H = V (x0), which shows that

D ∼ dH. It follows immediately that any divisor of degree zero is principal.

Taking degrees defines a morphism of abelian groups DivX −→ Z, and we have just

shown the kernel of this map consists of the principal divisors. Since deg(dH) = d for any

d ∈ Z we obtain the required isomorphism ClX −→ Z.

Proposition 8. Let X be a nice scheme and let U be a nonempty open subset of X, and let

Z = X\U. Then:

(a) There is a surjective morphism of groups Cl(X) −→ Cl(X) defined by
∑

i ni · Yi 7→∑
i ni · (Yi ∩ U) where we ignore those Yi ∩ U which are empty;

(b) If codim(Z,X) ≥ 2 then ClX −→ ClU is an isomorphism;

(c) If Z is an irreducible subset of codimension 1, then there is an exact sequence of abelian

groups

Z −→ Cl(X) −→ Cl(U) −→ 0

where the first map is defined by 1 7→ [Z].

Proof. (Sketch) (a) If X is nice, then so is U, so Cl(U) is defined. We have bijection between

the prime divisors of X meeting U and the prime divisors of U given by Y 7→ Y ∩ U, and

Z ← Z. Since Z is a proper closed subset of the noetherian spaceX, we can write it as a union

Z1∪ . . . Zn of irreducible components, so there is only a finite number of prime divisors of X

not meeting U . Hence the map φ : div(X)→ div(U) is well-defined and surjective, and also

sends principal divisors to principal divisors, thus extends to the surjection Cl(X)→ Cl(U).

(b) This is clear since this inequality ensures that every prime divisor of X must meet U ,

so there is a bijection between the prime divisors of U and X, which proves that Cl(X) −→

Cl(U) is an isomorphism.

(c) The surjectivity of the last map follows from (a). Since the map Cl(X) −→ Cl(U) is

given by Y 7→ Y ∩U, the composition is clearly zero, because Z restricts to the trivial divisor

on Cl(U). Conversely, suppose Y ∩ U = div(f), where f is a rational function on U, then f

is also a rational function on its closure Y, which shows that Y = n[Z] + div(f) in Cl(X).

11



This proves that Y is in the image of the first map, and hence the sequence is exact.

Example 2.3. Given an irreducible curve Y of degree d in P2, using the above propositions,

we have the following exact sequence

Z −→ Cl(X) ∼= Z −→ Cl(U) −→ 0,

where the first map is given by 1 7→ d, this is because by proposition 7, via the isomorphism

deg : Cl(P2)→ Z, Y corresponds to d in Z. This proves that Cl(P2 − Y ) ∼= Z/dZ.

Proposition 9. Any invertible sheaf on X = Pn is isomorphic to some O(l), where l ∈ Z.

Proof. We know that Cl(X) ∼= Pic(X) ∼= Z. By proposition 7, we see that the generator of

Cl(X) is the hyperplane H : x0 = 0 (there is nothing special about x0, as a matter of fact

this can be any xi). Via the isomorphism of proposition 6, this corresponds to O(1). Hence

Pic(X) is the free group generated by O(1), and thus any invertible sheaf on X is isomorphic

to some O(l), where l ∈ Z.

Proposition 10. Let A be a Noetherian domain. Then A is a UFD if and only if X = SpecA

is normal and Cl(X) = 0.

Proof. See [4, Proposition 6.2].

Example 2.4. Cl(An) = Pic(An) = 0.

Proposition 11. Let X be a nice scheme. Then Cl(X × An) ∼= Cl(X).

Proof. The map is just pull-back

π : Cl(X)→ Cl(X × An)

D =
∑

niYi 7→ pr∗1D =
∑

nipr
−1
1 (Yi).

See [4, Proposition 6.6] for details.

Example 2.5. Let Q be the nonsingular quadric surface xy = zw in P3
k. We will show that

Cl(Q) ∼= Z ⊕ Z. We use the fact that Q is isomorphic to P1 ×k P1. Let p1 and p2 be the

projections of Q onto the two factors.
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Then we have the pull-backs p∗1, p
∗
2 : ClP1 → Cl(Q). First we show that p∗1 and p∗2 are injective.

Let Y = {0} × P1. Then Q− Y = A1 ×P1, and the composition

Cl(P1)
p∗2−→ Cl(Q)→ Cl

(
A1 × P1

)
is isomorphism. Hence p∗2 (and similarly p∗1 ) is injective. Now consider the exact sequence

for Y :

Z→ ClQ→ Cl
(
A1 ×P1

)
→ 0.

1 7→ Y . But if we identify ClP1 with Z by letting 1 be the class of the point {0}, then this first

map is just p∗i , hence is injective. Since the image of p∗2 is isomorphic to Cl (A1 × P1) as we

have just seen, we conclude that this sequence splits and hence Cl(Q) ∼= Im p∗1⊕Im p∗2 = Z⊕Z.

If D is any divisor on Q, let (a, b) be the ordered pair of integers in Z⊕ Z corresponding to

the class of D under this isomorphism. Then we say D is of type (a, b) on Q.

A more visual proof goes like this: Suppose h1 = {0} × P1, and h2 = P1 × {0}, then

U = X − h1 − h2
∼= A2. Suppose D ∈ divX, then D|U = div(φ), where φ is a rational

function on A2. This shows that

D = div (φ) +m1h1 +m2h2 =⇒ D ∼ m1h1 +m2h2.

Thus h1, h2 generate Cl(X) and any divisor is of type (m,n). This shows that Cl(X) ∼= Z⊕Z.

Example 2.6. This gives us a proof of the fact that P1 × P1 ̸= P2, since Cl(P1 × P1) ∼= Z,

but by the previous proposition Cl(P2) ∼= Z⊕ Z.

2.3.1 Counterexamples

Example 2.7. Let X = {x1x2 = 0} ⊂ P2. X is the union of two projective lines that meet

in a point, X = X1 ∪X2. Any divisor on X is just sum of points. Since any two points on

X1 and X2 can be joined by a line, any two points on X can also be joined by a line, a line

through the intersecting point. This shows that given two points P1, P2 ∈ C, there exists a

rational function on f on X, such that [P1]− [P2] = div f, =⇒ [P1] = [P2]. Hence Cl(X) is

generated by any class of point [P ]. Thus Cl(X) ∼= Z.
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Now let P1 ∈ X1\X2 and P2 ∈ X2\X1 be two points. Note that the line bundles OX (P1)

and OX (P2) (defined in the obvious way: OX (Pi) is the sheaf of rational functions that

are regular away from Pi and have at most a simple pole at Pi ) are not isomorphic: if

i : X1 → X is the inclusion map of the first component, then i∗OX (P1) ∼= OP1(1), whereas

i∗OX (P2) ∼= Opi , (roughly) this is because X2 does not contain the pole P1. This shows that

the one-to-one correspondence between Cl(X) and Pic(X) no longer holds.

Example 2.8. (CaDiv(X) → div(X) is not injective) Take the previous example. Let

P ∈ X1 ∩ X2, Q ∈ X1 − X2. Define a Cartier divisor D = {(U, 1), (V, f)}, where U =

X − {Q}, V = X1 − {P}, f is a rational function on V that has a simple pole at Q. Since

quotients of these functions are regular on U ∩ V, D is well-defined. The associated Weil

divisor is just the point [Q].

By symmetry define another Cartier divisor D′ associated to the Weil divisor [Q′], where

Q′ ∈ X2 −X1.

Since D−D′ is not the divisor of a rational function, the two Cartier divisors are different.

But on the other hand we have shown that Cl(X) = Z, thus [Q] = [Q′].

Example 2.9. (CaDiv(X) → div(X) is not surjective) To construct a Weil divisor that is

not Cartier, we need to work in a space that is not locally factorial. In other words, a space

where codimension 1 subsets are not cut by single function, this tells us that the space should

not be smooth.

Consider the cone X = SpecA, where A = k[x, y, z]/(xy − z2). Take Z = {x = z = 0} to be

the closed subscheme of X.

Z is of codimension one. So we get the exact sequence

Z 1→[Z]−→ Cl(X)→ Cl(X − Z)→ 0.

Here X − Z is the locus where x ̸= 0 (if x = 0, then z = 0 ). So it is equivalently

Spec k
[
x, y, y−1, z

]
/
(
xy − z2

) ∼= k[y]y[t, u]/
(
t− u2

) ∼= k[y, u]y,

so it is a UFD. Thus its class group is zero. We find that [Z] generates Cl(X). We will now

show that Z is not principal at the origin, which will prove that Z is not Cartier.
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The local ring at the origin (k[x, y, z]/(xy − z2))(x,y,z) is not principal, which tells us that Z

is not a Cartier divisor.
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3 Intersection theory

In this section, we collect a few results from basic Intersection

theory, work through some examples, which will be necessary for

our last part ’Motives’.

In the last section we defined divisors as the formal sum of codimension 1 subarieties,

and then with an equivalence relation we defined the divisor class group. We now extend

this notion to higher codimension subvarieties.

Throughout this section we will be working with schemes over a field. Variety is a Noetherian,

integral, separated scheme of finite type over k, and a subvariety is a closed subscheme which

is a variety. We now define cycles of dimension k.

Definition 3.1. Let X be a scheme. For k ≥ 0 denote by Zk(X) the free Abelian group

generated by the k-dimensional subvarieties of X. In other words, the elements of Zk(X) are

finite formal sums
∑

i ni [Vi], where ni ∈ Z and the Vi are k-dimensional (closed) subvarieties

of X. The elements of Zk(X) are called cycles of dimension k.

To define Chow groups we need to define an equivalence relation on Zk(X). So what does

it mean for two cycles to be equivalent?

To answer this question, we define the order of a rational function,

Definition 3.2. (Order) Let X be a variety, and let V ⊂ X be a subvariety of codimension

1 , and set R = OX,V . For every non-zero f ∈ R ⊂ K(X) we define the order of f at V to

be the integer ord oV (f) := lR(R/(f)). If φ ∈ K(X) is a non-zero rational function we write

φ = f
g
with f, g ∈ R and define the order of φ at V to be

ordV (φ) := ordV (f)− ordV (g).

To show that this is well-defined, i. e. that ord V
f
g
= ordV

f ′

g′
whenever fg′ = gf ′, use the

exact sequence

0→ R/(a)
·b→ R/(ab)→ R/(b)→ 0

and the fact that the length of modules is additive on exact sequences. From this it also follows

that the order function is a homomorphism of groups ord ginV : K(X)∗ := K(X)\{0} → Z.
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(Divisor of a rational function) For any (k+1)-dimensional subvariety W of X and any

non-zero rational function φ on W we define a cycle of dimension k on X by

div(φ) =
∑
V

ordV (φ)[V ] ∈ Zk(X),

called the divisor of φ, where the sum is taken over all codimension-1 subvarieties V of W.

Since for any φ ∈ K(W )∗ we have div(φ−1) = − div(φ), cycles of the form div(φ) for all

k + 1 dimensional subvarieties W ⊂ X generate a subgroup Bk(X) ⊂ Zk(X).

Definition 3.3. (Chow groups) We define the Chow group of k-cycles to be Ak(X) =

Zk(X)/Bk(X). Two cycles in Zk(X) that determine the same element in Ak(X) are said

to be rationally equivalent. We set Z∗(X) =
⊕

k≥0 Zk(X) and A∗(X) =
⊕

k≥0Ak(X).

Example 3.1. Let X be a scheme of pure dimension n. Then Bn(X) is trivially zero, and

thus An(X) = Zn(X) is the free Abelian group generated by the irreducible components of

X. In particular, if X is an n-dimensional variety then An(X) ∼= Z with [X] as a generator.

In the same way, Zk(X) and Ak(X) are trivially zero if k > n.

Example 3.2. Let X = {x1x2 = 0} ⊂ P2 be the union of two projective lines X = X1 ∪X2

that meet in a point. Then A1(X) = Z [X1] ⊕ Z [X2] since X1 and X2 are the irreducible

components of the 1-dimensional variety X. Moreover, A0(X) ∼= Z is generated by the class

of any point in X. In fact, any two points on X1 are rationally equivalent since in this

case A0(X) ∼= Pic(X) ∼= Z, and the same is true for X2. As both X1 and X2 contain the

intersection point X1 ∩ X2 we conclude that all points in X are rationally equivalent. So

A0(X) ∼= Z.

Example 3.3. Let X = An. If P ∈ X is any point, pick a line W ∼= A1 ⊂ An through P

and a linear function φ on W that vanishes precisely at P . Then div(φ) = [P ]. It follows

that the class of any point is zero in A0(X). Therefore A0(X) = 0.

Example 3.4. Now we show that A0(Pn) ∼= Z. For any two points P,Q ∈ X = Pn, let

W ∼= P1 ⊂ Pn be the line through P and Q, and let φ be a rational function on W that has a

simple zero at P and a simple pole at Q.Then div(φ) = [P ]− [Q], i.e. the classes in A0(X)
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of any two points in X are the same. It follows that A0(X) is generated by the class [P ] of

any point in X.

On the other hand, if W ⊂ X = Pn is any curve and φ a rational function on W then the

degree of the divisor of φ is always zero (this follows from the fact that φ is of the form

f/g where degf = degg). This shows that n · [P ] ∈ A0(X) =⇒ n = 0. We conclude that

A0(X) ∼= Z with the class of any point as a generator.

Let f : X → Y be a morphism of schemes. Then it is important to study whether there

exits push-forward f∗ : A∗(X) → A∗(Y ) or pull-back F ∗ : A∗(Y ) → A∗(X). These do not

exist in general, take the following two examples:

(i) Let X be a scheme Y ⊂ X is a closed suscheme, the inclusion morphism i : Y → X.

Then there are canonical push-forward maps i∗ : Ak(Y ) → Ak(X) for any k, given by

[Z] 7→ [Z] for any k-dimensional subvariety Z ⊂ Y . But a subvariety of X is in general not

a subvariety of Y , so there is no pull-back morphism i∗ : A∗(X)→ A∗(Y ) sending [V ] to [V ]

for any subvariety V ⊂ X.

(ii) Now suppose U ⊂ X is an open subset, with i : U → X. Then there are no push-

forward maps i∗ : A∗(U)→ A∗(X) : if U = A1 and X = P1 then the class of a point is zero

in A∗(U) but non-zero in A∗ (P1).

3.1 Pull-back

Let us first recall a few basic properties.

Definition 3.4. A morphism of schemes f : X → Y is flat of relative dimension n if every

fiber Xy = X ⊗Y k(y) is of pure dimension n.

Proposition 12. If f : X → Y is a morphism of varieties over k. Then the following are

equivalent:

(I) Every irreducible component of X has dimension equal to dimY + n.

(II) For any point y ∈ Y, Xy is of pure dimension n.

Proof. See [4, Corollary 9.6].
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For a flat morphism (of relative dimension n) f : X → Y , and any subvariety V of Y ,

set

f ∗[V ] =
[
f−1(V )

]
Here f−1(V ) is the inverse image scheme, a subscheme of X of pure dimension dim(V ) + n,

and [f−1(V )] is its cycle. This extends by linearity to pull-back homomorphisms

f ∗ : ZkY → Zk+nX.

We now have the following theorem,

Theorem 3.1. Let f : X → Y be a flat morphism of relative dimension n, and α a k-cycle

on Y which is rationally equivalent to zero. Then f ∗α is rationally equivalent to zero in

Zk+nX.

Hence we have the induced homomorphisms, the flat pull-backs,

f ∗ : Ak(Y )→ Ak+n(X).

Now suppose X is a variety of pure dimension, then for a flat morphism f : X → Y (by the

previous proposition), we get the following flat pull-back,

f ∗ : Ak(Y )→ Ak+dim(X)−dim(Y )(X).

We now list some important flat morphisms (of relative dimension n), i.e. morphisms for

which pull-backs exist,

(I) an open imbedding (n = 0).

(II) the projection of a vector bundle or a projective bundle, to its base.

(III) the projection from a Cartesian product X = Y × Z to the first factor, where Z is a

purely n-dimensional scheme.

Proposition 13. (An important exact sequence) Let X be a scheme, let Y ⊂ X be a closed

subset, and let U = X\Y . Denote the inclusion maps by i : Y → X and j : U → X. Then

the sequence

Ak(Y )
is→ Ak(X)

j∗→ Ak(U)→ 0

is exact for all k ≥ 0. The homomorphism i∗ is in general not injective however.
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Proof. This follows more or less from the definitions. If Z ⊂ U is any k-dimensional subva-

riety then the closure Z of Z in X is a k-dimensional subvariety of X with j∗[Z] = [Z]. So

j∗ is surjective.

If Z ⊂ Y then Z ∩ U = 0, so j∗ ◦ i∗ = 0. Conversely, assume that we have a cycle∑
ar [Vr] ∈ Ak(X) whose image inAk(U) is zero. This means that there are rational functions

φs on (k + 1)-dimensional subvarieties Ws of U such that
∑

div (φs) =
∑

ar [Vr ∩ U ] on U .

Now the φs are also rational functions on the closures of Ws in X, and as such their divisors

can only differ from the old ones by subvarieties V ′
r that are contained in X\U = Y . We

conclude that
∑

div (φs) =
∑

ar [Vr]−
∑

br [V
′
r ] onX for some br. So

∑
ar [Vr] = i∗

∑
br [V

′
r ].

Now we will give an example where i∗ is not injective. Let Y be a smooth cubic curve

in X = P2. Then by the degree-genus formula we can see that Y is an elliptic curve. Then

we have a one-one correspondence P ↔ L(P − P0), where P0 is a fixed point (See Example

1.3.7, Hart). Thus if P and Q are two distinct points on Y then [P ]− [Q] ̸= 0 ∈ A0(Y ), but

[P ]− [Q] = 0 ∈ A0(X) ∼= Pic(X) ∼= Z. Thus i∗ is not injective.

Proposition 14. Let X be a scheme, and let π : E → X | be a vector bundle of rank r on

X. Then the flat pull-back π∗ : Ak(X) → Ak+r(E) given on cycles by π∗[V ] = [π−1(V )] is

surjective.

Proof. See [3, Proposition 1.9].

Corollary 3.1. The Chow groups of affine spaces are given by

Ak (An) =

Z for k = n

0 otherwise.

Proof. The statement for k ≥ n follows from example 2.1. For k < n note that the ho-

momorphism A0

(
An−k

)
→ Ak (An) is surjective by proposition 8, so the statement of the

corollary follows from the fact that A0(A1) ∼= Pic(A1) = 0.

Corollary 3.2. The Chow groups of projective spaces are Ak(Pn) ∼= Z for all 0 ≤ k ≤ n

with an isomorphism given by [V ] 7→ deg V for all k-dimensional subvarieties V ⊂ Pn.
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Proof. The statement for k ≥ n is trivial, so let us assume that k < n. We prove the

statement by induction on n. By proposition 14, there is an exact sequence

Ak

(
Pn−1

)
→ Ak (Pn)→ Ak (An)→ 0

We have Ak (An) = 0 by corollary 9.1.16, so we conclude that Ak (Pn−1) → Ak (Pn) is

surjective. By the induction hypothesis this means that Ak (Pn) is generated by the class of

a k-dimensional linear subspace. As the morphism Zk (Pn − 1)→ Zk (Pn) trivially preserves

degrees it only remains to be shown that any cycle
∑

ai [Vi] that is zero in Ak(Pn) must

satisfy
∑

ai deg Vi = 0. But this is clear as deg div(φ) = 0 for all rational functions on any

subvariety of Pn.

3.2 Push-forward

It turns out that the condition of properness of a morphism f : X → Y is enough to

guarantee the existence of well-defined push-forward maps f∗ : Ak(X)→ Ak(Y ).

Let f : X → Y be a proper morphism. For any subvariety V of X, the image W = f(V ) is

then a closed subvariety of Y . We define the degree as follows,

deg(V/W ) =

 [R(V ) : R(W )] if dim(W ) = dim(V )

0 if dim(W ) < dim(V )

where [R(V ) : R(W )] denotes the degree of the field extension induced by f . Define

f∗[V ] = deg(V/W )[W ].

This extends linearly to a homomorphism

f∗ : ZkX → ZkY.

By the multiplicativity of degrees of field extensions it follows that the push-forwards are

functorial, i.e. (g ◦ f)∗ = g∗f∗ for any two morphisms f : X → Y and g : Y → Z. Now

we want to show that these homomorphisms pass to the Chow groups, i.e. give rise to

well-defined homomorphisms f∗ : Ak(X) → Ak(Y ). For this we have to show by definition

that divisors of rational functions are pushed forward to divisors of rational functions. The

following theorem fulfills our purpose.
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Theorem 3.2. Let f : X → Y be a proper surjective morphism of varieties, and let φ ∈

K(X)∗ be a non-zero rational function on X. Then

f∗ div(φ) =

0 if dimY < dimX

div(N(φ)) if dimY = dimX

in Z∗(Y ), where N(φ) ∈ K(Y ) denotes the determinant of the endomorphism of the K(Y )

vector space K(X) given by multiplication by φ (this is usually called the norm of φ ).

Proof. See [3, Proposition 1.4].

Corollary 3.3. Let f : X → Y be a proper morphism of schemes. Then there are well-

defined push-forward maps f∗ : Ak(X)→ Ak(Y ) for all k ≥ 0 given on cycles by

f∗[Z] =

[K(Z) : K(f(Z))] · [f(Z)] if dim(f(Z)) = dimZ,

0 if dim(f(Z)) < dimZ.

3.3 Divisors

The goal of intersection theory is to describe intersections on the level of Chow groups. In

this section we will explain the easiest case, namely with the intersection of a variety with a

subset of codimension 1. Given a subvariety V ⊂ X of dimension k and a divisor D, that is a

subvariety of codimension 1, we want to construct an intersection cycle [V ] · [D] ∈ Ak−1(X).

Let us first recall the definition of Weil and Cartier divisors,

Definition 3.5. Let X be a scheme.

(I) If X has pure dimension n, a Weil divisor on X is an element of Zn− 1(X). Two Weil

divisors are called linearly equivalent if they define the same class in An−1(X). The quotient

group An−1(X) is called the group of Weil divisor classes.

(II) A Cartier divisor on X is a global section of K∗
X/O∗

X .

We now state some properties we already had proved in the section of divisors,

(I) Let X be a purely n-dimensional scheme. Then there is a homomorphism Div(X)→

Zn−1(X), which extends to Pic(X)→ An−1(X). In other words, every Cartier divisor (class)

determines a Weil divisor (class).

(II) Since smoothness implies locally factorial, we have the following theorem,
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Theorem 3.3. Let X be a smooth n-dimensional scheme. Then Div X ∼= Zn−1(X) and

PicX ∼= An−1(X).

(III) For a scheme X, we have the following correspondence (remember we needed X to

be integral for this),

{Cartier divisors on X} ←→ {Line bundles on X}.

3.3.1 Intersections with Cartier divisors

We will now define the intersection products of Chow cycles with Cartier divisors.

Definition 3.6. Let X be a scheme, let V ⊂ X be a k-dimensional subvariety with inclusion

morphism i : V → X, and let D be a Cartier divisor on X. We define the intersection

product D · V ∈ Ak−1(X) to be

D · V = i∗ [i
∗OX(D)] ,

where OX(D) is the line bundle on X associated to the Cartier divisor D.

Since for any two linearly equivalent Cartier divisors D,D′ on X OX(D) ∼= OX(D
′),

from the definition we can see that the intersection product depends only on the divisor

class of D, not on D itself. not on D itself. So using our definition we can construct bilinear

intersection products

PicX × Zk(X)→ Ak−1(X),
(
D,
∑

ai [Vi]
)
7→
∑

ai (D · Vi) .

If X is smooth and pure-dimensional, i.e. Weil and Cartier divisors agree, then for a

codimension-1 subvariety W ⊂ X, we denote by W · V ∈ Ak−1(X) the intersection product

D · V , where D is the Cartier divisor corresponding to the Weil divisor [W ].

We first state a few properties of this intersection product and after that we will work

through a few examples.

Proposition 15. , (Commutativity of the intersection product) Let X be an n-dimensional

variety, and let D1, D2 be Cartier divisors on X with associated Weil divisors [D1] , [D2].

Then D1 · [D2] = D2 · [D1] ∈ An−2(X).
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Proof. See [3, Theorem 2.4].

Corollary 3.4. The intersection product passes to rational equivalence, i. e. there are well-

defined bilinear intersection maps PicX×Ak(X)→ Ak−1(X) determined by D · [V ] = [D ·V ]

for all D ∈ PicX and all k-dimensional subvarieties V of X.

Proof. All that remains to be shown is that D · α = 0 for any Cartier divisor D if the cycle

α is zero in the Chow group Ak(X). But this follows from the previous proposition, as for

any rational function φ on a (k + 1)-dimensional subvariety W of X we have

D · [div(φ)] = div(φ) · [D] = 0

(note that div(φ) is a Cartier divisor on W that is linearly equivalent to zero).

We can continue this process for finitely Cartier divisors. Suppose D1, D2, . . . , Dm ∈

Div(X) for a scheme X, and α ∈ Ak(X) is a k-cycle, then

D1 ·D2 . . . Dm · α ∈ Ak−m(X).

For an n-dimensional variety X, we can take α = [X], and then

D1 ·D2 . . . Dm−1 ·Dm ∈ An−m(X).

If m = n, D1 ·D2 . . . Dm−1 ·Dm ∈ A0(X) is a 0-cycle.

3.4 Intersections on a surface

Here we will talk about the intersection product on a smooth pro-

jective surface over an algebraically closed field. We will also

get to see the Riemann-Roch theorem for surfaces and few of its

consequences. Although I have provided sketches of most of the

proofs, I have tried to include quite a few interesting applications

to make this section more illuminating.

Throughout this section we will talk about smooth projective surfaces over an alge-

braically closed field.

Given two smooth curves C,D ⊂ X, we first define the intersection multiplicity of C and D

at x ∈ C ∩D as follows,
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Definition 3.7. Let C,D be two distinct irreducible curves on a surface S, x ∈ C ∩ D,Ox

the local ring of S at x. If f (resp. g ) is an equation of C (resp. D ) in Ox, the intersection

multiplicity of C and D at x is defined to be

mx (C ∩D) = dimkOx/(f, g)

We see that mx (C ∩D) = 1 if and only if f and g generate the maximal ideal x, i.e.

form a system of local coordinates in a neighbourhood of x;C and D are then said to be

transverse at x.

Now we define the intersection number as follows,

Definition 3.8. If C,D are two distinct irreducible curves on S, the intersection number

(C ·D) is defined by:

(C.D) =
∑

x∈C∩D

mx (C ∩D) .

Recall that the ideal sheaf defining C (resp. C ′ ) is just the invertible sheaf OS(−C) (resp.

OS (−C ′) ); define

OC∩C′ = OS/ (OS(−C) +OS (−D)) .

Now suppose C,D are two curves who meet transversally. Then at each point x ∈ C∩D,

we have mx = dimkOx/(f, g) = dimk k = 1.

Also since C ∩D is a proper closed subset of C, it is a finite set of points. This shows that

the sheaf OC∩D is a skyscraper sheaf supported at the finite set C ∩D, and at each of these

points we have (OC∩D)x = Ox/(f, g). Thus we see that

(C ·D) = h0(S,OC∩D) = χ(OC∩D),

since OC∩D is a sky-scraper sheaf, hi(S,OC∩D) = 0, for i ≥ 1. We will now try to understand

this number with the help of the following short exact sequences

0 OC(−D) OC OC∩D 0

0 OX(−C) OX OC 0

0 OX(−C −D) OX(−D) OC(−D) 0
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Hence by the additivity of the Euler-characteristic we have

χ (OC∩D) = −χ (C,OC (−D)) + χ (C,OC)

= χ (OX(−C −D))− χ (OX(−D)) + χ (C,OC)

= χ (OX(−C −D))− χ (OX(−D))− χ (OX(−C)) + χ (OX)

This suggests the following definition for general divisors D1, D2,

Definition 3.9. (Intersection product) For divisors D1, D2, we define the intersection prod-

uct to be

D1 ·D2 = χ (OX) + χ (−D1 −D2)− χ (−D1)− χ (−D2)

Proposition 16. This number enjoys certain properties,

(i) The product D1 ·D2 depends only on the classes of D1, D2 in Pic(X).

(ii) D1 ·D2 = D2 ·D1.

(iii) D1 ·D2 = |D1 ∩D2| if D1 and D2 are curves intersecting transversely.

(iv) The intersection product is bilinear.

Proof. By the definition, (i)-(iii) are clear. Lets prove (iv). We will need the following

lemma,

Lemma 3.4. Let C be a non-singular irreducible curve on S. Then for any divisor D on S,

we have

(OS(C) · L) = deg
(
L|C
)

Proof. We have the following exact sequences

0 OS(−C) OS OC 0

0 L−1(−C) L−1 L−1 ⊗OC 0

give the following relations between Euler characteristics:

χ (OS)− χ (OS(−C)) = χ (OC)

χ
(
L−1

)
− χ

(
L−1(−C)

)
= χ

(
L−1

|C

)
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For L ∈ PicC, using the Riemann-Roch theorem on C we have,

χ(L) = h0(C,L)− h1(C,L) = degL − g + 1

= degL − h1(C,OC) + h0(C,OC)

= degL+ χ(OC)

=⇒ χ(OC)− χ(L) = − degL.

Hence we have the following,

(OS(C) · L) = χ (OC)− χ
(
L−1

|C

)
= − degL−1

|C by the Riemann-Roch theorem on C

= degL|C .

This proves the lemma.

Fact: Let D be a divisor on S, and H a hyperplane section of S (for a given embedding).

There exists n ≥ 0 such that D + nH is a hyperplane section (for another embedding). In

particular we can writeD ≡ A−B, where A and B are smooth curves on S, with A ≡ D+nH

and B ≡ nH.

Lets come back to our main proof. For L1,L2,L3 ∈ Pic S, consider the expression

s (L1,L2,L3) = (L1 · L2 ⊗ L3)− (L1 · L2)− (L1 · L3) .

Now let L,L′ be any two invertible sheaves. We can write L′ = OS(A−B), where A and B

are two smooth curves on S. Noting that s (L,L′,OS(B)) = 0, we get

(L,L′) = (L · OS(A))− (L · OS(B)) .

Example 3.5. (Bezout’s theorem) Let X = P2. C, C ′ are two curves of degree d, d′ respec-

tively. We know that PicX = Z, where the generator is any hyperplane. Then we have

C ∼ dL, and C ′ ∼ d′L′, where L,L′ are two distinct lines on X. Now since L,L′ meet at one
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point, we have (L · L′) = |L ∩ L′| = 1.

Then by bilinearity we have

(C · C ′) = (dL · d′L′) = dd′(L · L′) = dd′.

Example 3.6. Now let X = P1×P1. Then Pic(X) ∼= Z⊕Z, where we can take the generators

as l = P1 × {0},m = {0} × P1. Any divisor D ∈ PicX is of the form,

D ∼ al + bm.

We can see that (l ·m) = 1, and by taking l′ = P1 × {∞} ∼ l, we see that

(l · l) = (l · l′) = 0.

Similarly (m ·m′) = 0.

Thus for any two curves D1 ∼ a1l + b1m,D2 ∼ a1l + b2m, we have

(D1 ·D2) = a1b2 + a2b1.

Theorem 3.5. (Riemann-Roch) Let D ∈ div(X). Then

χ (X,OX(D)) =
D · (D −KX)

2
+ χ (OX) .

Proof. Write χ (X,OX(D)) = χ(D). Then let us compute −D · (D −K). By the definition

of the intersection product

−D · (D −K) = χ(OX)− χ(D)− χ(K −D) + χ(K).

By Serre duality we have hi(D) = h2−i(K −D). Hence

χ(K) = h2(X,ωX)− h1(X,ωX) + h0(X,ωX)

= h2(X,OX)− h1(X,OX) + h0(X,OX)

= χ(OX).

Similarly, χ(KD) = χ(D). Putting these two in the equation, we have

−D · (D −K) = 2(χ(OX)− χ(D))

=⇒ χ (X,OX(D)) =
D · (D −KX)

2
+ χ (OX) (using bilinearity).
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Corollary 3.5. (The genus formula) Let C be an irreducible curve on a surface X of genus

g.Then we have

g = 1 +
1

2

(
C2 + C ·K

)
.

Proof. Take the exact sequence

0→ OX(−C)→ OX → OC → 0

from this we get χ (OC) = 1− g = χ (OX)−χ (OX(−C)) . Taking D = −C in the Riemann-

Roch proves our statement.

Notice that we can write this formula as 2g − 2 = C · (C +K), hence alternatively this

says that for a genus g curve on a surface X, we have

KY = C · (C +KX).

Example 3.7. (The degree-genus formula) Let C be a curve of degree d in P2. Then since

degωP2 = degOP2(−3) = −3, we have (by applying Bezout’s theorem)

2g − 2 = d(d− 3) =⇒ g =
1

2
(d− 1)(d− 2).

Example 3.8. Let C be a curve on the quadric surface (∼= P1 × P1). Hence C ∼ al + bm,

thus C +K ∼ (a − 2)l + (b − 2)m. We call C a curve of type (a, b). Then as calculated in

example 2.7, we have

2g − 2 = C · (C +K) = a(b− 2) + (a− 2)b =⇒ g = (a− 1)(b− 1).

29



4 Abelian Varieties

In this section I will give a brief account of Abelian Varieties over an algebraically closed

field k.

Definition 4.1. An abelian variety X is a proper variety over k with a group law m :

X ×X → X such that m and the inverse map are both morphisms of varieties.

Here by a variety over we mean an integral, separated scheme of finite type over k.

First we note that Abelian varieties are smooth, in fact any group variety is smooth.

Indeed, suppose x0 is a smooth point of X, then for any x ∈ X we have the translation

morphism

Txx−1
0
(y) = xx−1

0 y,

x0 −→ x,

taking x0 to x, which is an automorphism of X. This shows that x is also a smooth point of

X.

From now on, we write the group law in X additively. Moreover, we will use the following

notations: for x ∈ X, we denote by Tx : X → X the translation morphism Tx(y) = x + y;

and the map x→ n · x will be denoted by nX .

Abelian varieties are commutative: To show that an abelian variety is

commutative, we will need an important lemma:

Lemma 4.1. (Rigidity lemma) Suppose X, Y, Z are varieties with X complete, and y0 ∈ Y

such that for the morphism f : X× Y → Z we have f (X × {y0}) = z0, where z0 ∈ Z. Then

there is a morphism g : Y → Z so that the following diagram

X × Y Y

Z

p

f
g

commutes, where p is projection onto the second factor.
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Proof. Define g : Y → Z by g(y) = f(x0, y), where x0 is a fixed point of X. To show

that f = g ◦ p2, we need to show that these two morphisms coincide on an open subset of

X × Y, because the subset where they are equal is a closed subset. Let U is an open affine

neighborhood of z0 ∈ Z, take F = Z − U and G = p2(f
−1(F )). Since X is complete and p2

is closed, G is a closed subset of Y.

Suppose y0 ∈ G, this would imply that y0 = p2(x
′, y0) ∈ p2(f

−1(F )) =⇒ f(x′, y0) ̸= z0,

which is a contradiction. Thus y0 /∈ G, and thus V = Y − G is a nonempty open subset of

Y. For each y ∈ V, the complete variety X × {y} gets mapped by f into the affine variety

U, and since X is complete, it must be sent to a point. This means for any x ∈ X, y ∈ V,

f(x, y) = f(x0, y) = g ◦ p2(x, y), and this proves our assertion.

Corollary 4.1. If X, Y are abelian varieties and f : X → Y is any morphism, then f(x) =

h(x) + a, where h is a group homomorphism of X into Y and a ∈ Y.

Proof. Replacing f by f − f(0) we may assume f(0) = 0. Now define φ : X × X → Y, by

φ(x1, x2) = f(x1 + x2) − f(x1) − f(x2). Then φ(X × {0}) = 0, and hence by the Rigidity

lemma we get φ = f ◦ p2 ≡ 0. This completes our proof.

Corollary 4.2. Abelian variety X is a commutative group.

Proof. Apply the previous corollary to the inverse morphism e : X → X, x 7→ x−1. Since

e(0) = 0, we get that e is a group homomorphism. This proves that X is a commutative

group.

4.1 Line bundles on Abelian Varieties

We will not prove the following two important theorems. For the proofs see [7, Pages 51,52].

Theorem 4.2. (Seesaw Theorem) Let X be a complete variety, T be any variety, and L a

line bundle on X × T. Then the set

T1 = {t ∈ T | L|X×{t} is trivial on X × {t}}

is closed in T, and if p2 : X × T1 → T1 is the projection, then L|X×T1
∼= p∗2M for some line

bundle M on T1.
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Theorem 4.3. (Theorem of the cube) Let X, Y are complete varieties, Z any variety and

x0, y0, z0 are base points on X, Y, Z resp. If L ∈ Pic(X × Y × Z) whose restrictions to each

{x0} × Y × Z,X × {y0} × Z,X × Y × {z0} are trivial, then L is trivial.

Corollary 4.3. (Corollary of the proof) Let X, Y are complete varieties, Z any variety.

Then any line bundle X × Y × Z is isomorphic to p∗12(L) ⊗ p∗13(M) ⊗ p∗23(N), where pij is

projection of X×Y ×Z onto the product of ith and jth factors, and L,M,N are line bundles

on X × Y,X × Z and Y × Z respectively.

Corollary 4.4. Let X be any variety, Y an Abelian Variety, and f, g, h : X → Y morphisms.

Then for all line bundles L ∈ Pic(Y ) we have: (f + g+h)∗L ∼= (f + g)∗L⊗ (f +h)∗L⊗ (g+

h)∗L⊗ f ∗L−1 ⊗ g∗L−1 ⊗ h∗L−1.

Proof. Let pi : Y × Y × Y → Y be the projection onto the i-th factor, put mij := pi + pj :

Y × Y × Y → Y and m := p1 + p2 + p3 : Y × Y × Y → Y . Consider the line bundle

M := m∗L⊗m∗
12L

−1 ⊗m∗
13L

−1 ⊗m∗
23L

−1 ⊗ p∗1L⊗ p∗2L⊗ p∗3L

on Y × Y × Y . If q : Y × Y → Y × Y × Y is the map given by q (y, y′) = (0, y, y′), we have

q∗M = (m ◦ q)∗L⊗ (m12 ◦ q)∗L−1 ⊗ (m13 ◦ q)∗L−1 ⊗ (m23 ◦ q)∗L−1 ⊗ (p1 ◦ q)∗L

⊗ (p2 ◦ q)∗L⊗ (p3 ◦ q)∗L

= n∗L⊗ q∗1L
−1 ⊗ q∗2L

−1 ⊗ n∗L−1 ⊗ 0∗L⊗ q∗1L⊗ q∗2L

where 0, q1, q2, n : Y × Y → Y are respectively the 0 map, the projections, and the addition.

Therefore q∗M is trivial. By symmetry, M is trivial on Y × {0} × Y and Y × Y × {0} too.

By Theorem of cube M must be trivial on Y × Y × Y . Now if we pull back M by the map

(f, g, h) : X → Y × Y × Y , we get our desired identity.

Corollary 4.5. (Theorem of the square) Let X be a Complex Abelian Variety. Then for all

line bundles L and x, y ∈ X we have: Therefore if we define the map

ϕL(x) := isom. class of T ∗
xL⊗ L−1 in Pic(X),

then ϕL is a homomorphism from X to Pic(X).
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Proof. We get the desired identity by applying the previous corollary with X = Y, f and g

constant maps with images x, y respectively, and h = identity.

We now show that ϕL is indeed a homomorphism X → Pic(X),

ϕL(x1 + x2) ∼= T ∗
x1+x2

L ⊗ L−1

∼= T ∗
x1
L⊗ T ∗

x2
L⊗ L−1 ⊗ L−1

∼= T ∗
x1
L⊗ L−1 ⊗ T ∗

x2
L⊗ L−1

∼= ϕL(x1)⊗ ϕL(x2).

We will see that the kernel of the map ϕL is going to give us a very efficient way to check

whether a divisor on an abelian variety is ample or not. Because of this, we are introducing

the following definition.

Definition 4.2. K(L) = ker(ϕL) = {x ∈ X | T ∗
xL
∼= L}.

Proposition 17. K(L) is a Zariski-closed subgroup of X.

Proof. Consider the line bundle line bundle m∗L⊗ p∗2L
−1 on X ×X, where m : X ×X → X

is the addition. Then applying the Seesaw theorem on this line bundle the following set

X1 = {x ∈ X | m∗L⊗ p∗2L
−1|{x}×X is trivial}

= {x ∈ X | T ∗
xL⊗ L−1|{x}×X is trivial}

= K(L)

is closed. Hence K(L) is closed.

Next we will prove that Abelian Varieties are projective. We go about finding an ample

line bundle on an abelian variety X. To find such a divisor is easy, but to prove that the

divisor is ample we need a theorem,

Theorem 4.4. Let X be a Complex Abelian Variety and let D be an effective divisor on X

and L = L(D) the associated line bundle. The following conditions are equivalent:

(i) The complete linear system |2D| has no base points, and defines a finite morphism ϕ|2D| :
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X → PN .

(ii) L is ample on X.

(iii) K(L) is finite.

(iv) The subgroup H := {x ∈ X | T ∗
x (D) = D} of X is finite (equality of divisors, not divisor

classes).

The proof is going to be a bit long, but as it is quite important we want to give a complete

detailed proof.

Proof. (i) =⇒ (ii) Clear.

(ii) =⇒ (iii) If K(L) is not finite, let Y be the connected component of K(L) containing

0 (clearly, 0 ∈ K(L)). We show that Y is an abelian variety of positive dimension.

Indeed, it is a group variety since X is a group variety by definition and it is closed by the

previous Proposition. Furthermore, for every variety Z the projection Y × Z → Z is closed

since it is the composition of the closed maps Y × Z ↪→ X × Z and X × Z → Z, where the

first map is the closed immersion of Y ×Z in X×Z and the second map is the projection of

X ×Z on Z, and the latter is a closed map since X is complete. Thus Y is complete, hence

it is an abelian variety.

Now, by assumption L is ample on X, then restricting to a closed subset L|Y = LY is also

ample on Y . Moreover, since Y ⊆ K(L) = ker (ϕL), we have T ∗
y (LY ) ∼= LY for all y ∈ Y .

Let mY : Y × Y → Y be the addition on Y and pi : Y × Y → Y be the projections for

i = 1, 2.

Lemma 4.5. The line bundle m∗
Y (LY )⊗ p∗1

(
L−1
Y

)
⊗ p∗2

(
L−1
Y

)
is trivial on Y × Y .

Proof. We apply the Seesaw Theorem. Consider the line bundle m∗
YLY⊗ p∗2L

−1
Y on Y × Y .

Clearly for every y ∈ Y we have:(
m∗

YLY ⊗ p∗2L
−1
Y

)
{y}×Y

∼= (p∗1LY ){y}×Y

since the first line bundle is isomorphic to T ∗
yLY ⊗L−1

Y , which is isomorphic by definition of

Y to LY ⊗ L−1
Y , hence trivial, and the second line bundle is obviously trivial. Hence by the

Seesaw Theorem we get some line bundle M on Y:

m∗
YLY ⊗ p∗2L

−1
Y
∼= p∗1M.
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To conclude we want to show that M = LY . Observe that:

(
m∗

YLY ⊗ p∗2L
−1
Y

)
|Y×{y}

∼= (p∗1LY )|Y×{y}

since both are isomorphic to LY , hence by the last part of Seesaw Theorem we have M = LY .

Now from m∗
YLY ⊗ p∗2L

−1
Y
∼= p∗1LY we have that m∗

YLY ⊗ p∗1L
−1
Y ⊗ p∗2L

−1
Y is trivial on

Y × Y .

Consider now the composition

Y
g:=(id,−id)−→ Y × Y

mY−→ Y.

By the lemma we have that m∗
YL

−1
Y ⊗ p∗1LY ⊗ p∗2LY is also trivial on Y × Y , hence

g∗OY×Y
∼= g∗

(
m∗

YL
−1
Y ⊗ p∗1LY ⊗ p∗2LY

)
∼= (mY ◦ g)∗ L−1

Y ⊗ (p1 ◦ g)∗ LY ⊗ (p2 ◦ g)∗ LY

∼= LY ⊗ (−id)∗LY .

and this is trivial on Y , because g∗ is a group homomorphism. But we have seen that LY is

ample on Y , and since (−id) is an automorphism of Y , LY ⊗(−id)∗ (LY ) ∼= g∗OY×Y is ample.

So LY ⊗ (−id)∗ (LY ) is both ample and trivial, and this is a contradiction since dimY > 0.

Hence K(L) must be finite.

(iii) =⇒ (iv) Clear, since H ⊂ K(L).

(iv) =⇒ (i) See [7, Application 1, Page 57].

Corollary 4.6. Abelian varieties are projective.

Proof. Let U be an open affine subset of X containing the point 0.

Fact: Let X be a Noetherian separated scheme. Let U ⊂ X be a dense affine open. If

OX,x is a UFD for all x ∈ X\U , then there exists an effective Cartier divisor D ⊂ X with

U = X\D.

Let D1, . . . , Dt be the irreducible components of X\U and let D =
∑

Di ∈ div(X). We will

show that D satisfies (iv) of the above theorem.
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Consider the set H = {x ∈ X | T ∗
xD = D}. Clearly, for any x ∈ H we have that Tx(U) =

U . Since 0 ∈ U , it follows that H ⊆ U . On the other hand, H is a closed set as it can be

seen as f−1(D) where f : K(L)→ |D| which is defined as f(x) = T ∗
xD. H is clearly proper

and being a closed subset of an affine scheme U , it is affine. Therefore H is finite. This

follows from the following,

Fact: For a morphism f : X → Y of schemes, the following assertions are equivalent:

(I) f is finite.

(II)f is quasi-finite and proper.

(III) f is affine and proper.

4.2 The dual abelian variety

First we recall that for a line bundle L ∈ PicX, we associated the map ϕL : X → PicX,

which sent an element x ∈ X to the isomorphism class of line bundles T ∗
x (L)⊗L−1 ∈ PicX.

We showed that this is a group homomorphism and we denoted the kernel of ϕL to be K(L).

Definition 4.3. We define the subgroup Pic0(X) of Pic(X) consisting of the line bundles L

for whom ϕL is identically zero.

Pic0(X) = {L ∈ Pic(X) | ϕL is identically zero}

= {L ∈ Pic(X) | K(L) = X}

= {L ∈ Pic(X) | T ∗
xL
∼= L, for all x ∈ X}.

The main purpose of this section is to show (in Char 0) that Pic0(X) is naturally isomor-

phic to another abelian variety X̂, called the dual of X. First we will collect some properties

of Pic0(X).

(I) Image of ϕL is contained in Pic0(X).
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Proof. Suppose x, y ∈ X. Then using the Seesaw theorem we get

T ∗
x (ϕL(y)) = T ∗

x (T
∗
y (L)⊗ L−1)

= T ∗
x+y(L)⊗ T ∗

x (L
−1)

= T ∗
x (L)⊗ T ∗

y (L)⊗ L−1 ⊗ T ∗
x (L

−1)

= T ∗
y (L)⊗ L−1

= ϕL(y).

Since this is true for any x, y ∈ X, it follows that Im(ϕL) ⊂ K(L).

(II) For any L ∈ Pic0(X), we get m∗L ∼= p∗1L⊗ p∗2L on X ×X.

Proof. Let x ∈ X(k). Then

(m∗L ⊗ p∗1L∨ ⊗ p∗2L∨)X×{x}
∼= t∗xL ⊗ L∨ ∼= OX

(m∗L ⊗ p∗1L∨ ⊗ p∗2L∨) |{0}×X
∼= L ⊗ L∨ ∼= OX

we can see this as the maps in question are given explicitly by

m, p1, p2 : X ∼= {x} ×X ↪→ X ×X → X, m(y) = x+ y, p1(y) = x, p2(y) = y,

m, p1, p2 : X ∼= X × {x} ↪→ X ×X → X, m(y) = x+ y, p1(y) = y, p2(y) = x.

Then by the seesaw principle, this implies m∗L ⊗ p∗1L∨ ⊗ p∗2L∨ ∼= OX×X =⇒ m∗L ∼=

p∗1L⊗ p∗2L.

(III) If L ∈ Pic0(X), then for all schemes S and all morphisms S → X, (f + g)∗L ∼=

f ∗L⊗ g∗L.

Proof. Consider the last isomorphism in (II) and pull it back to S by (f, g) : S → X ×X,

then clearly we have

m∗L ∼= p∗1L⊗ p∗2L

=⇒ (f, g)∗m∗L ∼= (f, g)∗p∗1L⊗ (f, g)∗p∗2L

=⇒ (f + g)∗L ∼= f ∗L⊗ g∗L.
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(IV) If L ∈ Pic0(X), then n∗
XL
∼= Ln.

Proof. We can use induction to (III).

(V) For all Pic0(X), n∗
XL
∼= Ln2 ⊗ {something in Pic0(X)}.

Proof. In the last section we proved that

n∗
XL
∼= L

(
n2+n

2

)
⊗ (−1X)∗L

(
n2−n

2

)

∼= Ln2 ⊗ L

(
n−n2

2

)
(−1X)∗L

(
n2−n

2

)

= Ln2 ⊗ [L⊗ (−1X)∗L−1]

(
n−n2

2

)
.

We will show that L⊗ (−1X)∗L−1 ∈ Pic0(X). Indeed for any x ∈ X, we have

T ∗
x (L⊗ (−1X)∗L−1) ∼= T ∗

xL⊗ (−1X)∗T ∗
−xL

−1, (since Tx ◦ −1X = −1X ◦ T−x)

∼= T ∗
xL⊗ (−1X)∗[L⊗ T ∗

−xL
−1]⊗ (−1X)∗L−1

Now for any x ∈ X, we have

T ∗
x (L⊗ T ∗

−xL
−1)⊗ (L⊗ T ∗

−xL
−1)−1 ∼= T ∗

xL⊗ L−1 ⊗ L−1 ⊗ T ∗
−xL

∼= L2 ⊗ L−2, (by the theorem of square)

∼= OX .

Hence L⊗ T ∗
−xL

−1 ∈ Pic0(X). Then using (IV) we have

T ∗
x (L⊗ (−1X)∗L−1) ∼= T ∗

xL⊗ (−1X)∗T ∗
−xL

−1, (since Tx ◦ −1X = −1X ◦ T−x)

∼= T ∗
xL⊗ (−1X)∗[L⊗ T ∗

−xL
−1]⊗ (−1X)∗L−1

∼= T ∗
xL⊗ L−1 ⊗ T ∗

−xL⊗ (−1X)∗L−1

∼= L⊗ (−1X)∗L−1, (by the theorem of square).

This completes the proof.

(VI) If L ∈ Pic0(X), and L is not trivial, then H i(X,L) = 0, for all i ≥ 0.
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Proof. If H0(L) ̸= 0, then L has a non-trivial section s, so (−1X)∗ L has the non-trivial

section (−1X)∗ s. But by (IV), (−1X)∗ L ∼= L−1, so both L and L−1 have a non-trivial

section. Hence L ∼= OX , contradiction.

Now let i > 0 be the smallest positive integer such that H i(X,L) ̸= 0. The maps

X
id×0→ X ×X

m→ X, x 7→ (x, 0) 7→ x

from this we have the following sequence

H i(X,L)→ H i (X ×X,m∗L)→ H i(X,L),

where the composition is the identity. Now we have m∗L ∼= p∗1L ⊗ p∗2L. Then using the

Künneth formula we get

H i (X ×X,m∗L) ∼= H i (X ×X, p∗1L⊗ p∗2L)
∼=

i⊕
j=0

Hj(X,L)⊗H i−j(X,L)

Since H0(L) = 0 by the first argument and H i−j(X,L) = 0 for j ≥ 1 by the choice of i,

this yields H i (X ×X,m∗L) = 0. So the identity of H i(X,L) factors through 0 and thus

H i(X,L) = 0.

4.2.1 Construction of the dual (Sketch)

We first state an important theorem

Theorem 4.6. Let L be ample, that is K(L) is finite and M ∈ Pic0(X). Then for some

x ∈ X,

M ∼= T ∗
xL ⊗ L−1,

i.e. the map ϕL : X −→ Pic0(X) is surjective.

Proof. See [7, Theorem 1, Page 73,].

On the level of abelian groups, this gives an isomorphism

X(k)/K(L)(k) ∼= Pic0(X),
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The aim is now to construct a variety K(L) so that the quotient X/K(L) becomes an abelian

variety, namely the dual abelian variety of X.

Mumford line bundle: On X ×X, define the Mumford line bundle

Λ(L) := m∗L ⊗ p∗1L∨ ⊗ p∗2L∨,

where m denotes the addition and p1, p2 are the natural projections. Put N := Λ(L)⊗p∗1M∨

and let x ∈ X. Then, we see that

N|{x}×X
∼= T ∗

xL ⊗ L∨ and N|X×{x}
∼= T ∗

xL ⊗ L∨ ⊗M∨.

Proposition 18. Let X be a complete variety, Y an arbitrary scheme, L a line bundle on

X×Y. Then there exists a unique closed subscheme Y1 ⊆ Y such that for every scheme Z, a

morphism f : Z → Y factors through Y1 if and only if the line bundle (id× f)∗L on X × Z

is the pullback of some line bundle on Z via the projection onto the second factor.

Proof. See [8, Proposition 9.3].

Let X be an abelian variety over k, and let L be a line bundle on X. Apply the previous

roposition to the Mumford line bundle Λ(L) on X × X. This yields a closed subscheme

X1 ⊆ X with the universal property as described above. For each x ∈ X(k), by definition

of the Mumford bundle, Λ(L)|X×{x}
∼= t∗xL ⊗ L∨. Thus K(L) =

{
x ∈ X(k)|Λ(L)|X×{x} is

trivial } = X1, and we can view K(L) as a closed subscheme of X.

Proposition 19. K(L) is a subgroup scheme of X.

Proof. Let f ′ : Z → K(L) be a morphism of schemes. Composing with K(L) ↪→ X gives

a morphism f : Z → X. By the previous Proposition, (id ×f)∗Λ(L) = q∗2M, where

q2 : X × Z → Z is the natural projection onto Z. Let LZ := q∗1L, where q1 : X × Z → X.

Let further

tf : X × Z → X × Z, (x, z) 7→ (x+ f(z), z)

be the translation by f . Then

t∗fLZ = (id× f)∗m∗L = (id× f)∗Λ(L)⊗ (id× f)∗p∗1L ⊗ (id× f)∗p∗2L

∼= q∗2M⊗ q∗1L ⊗ q∗2f
∗L

= q∗2 (M⊗ f ∗L)⊗ LZ .
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Conversely, if f : Z → X is any morphism such that t∗fLZ ⊗ L∨
Z is the pullback of a line

bundle on Z via q2, the previous Proposition states that f factors through K(L).

Now let f, g : Z → X be morphisms of schemes such that t∗fLZ ⊗L∨
Z and t∗gLZ ⊗L∨ are

pullbacks of line bundles on Z via q2. That is, f, g are points of X(Z) that lie in K(L)(Z).

By the theorem of the square,

t∗f+gLZ ⊗ L∨
Z
∼= t∗fLZ ⊗ L∨

Z ⊗ t∗gLZ ⊗ L∨
Z ,

so f + g lies in K(L)(Z) as well. As a consequence, K(L)(Z) is a subgroup of X(Z).

Theorem 4.7. Let X be an abelian variety over a field k,L an ample line bundle on X.

Then the quotient scheme X/K(L) exists and is an abelian variety over k with the same

dimension as X.

Proof. (Sketch) X is an (abelian) group scheme, K(L) a finite subgroup scheme. This

implies that X/K(L) is a group scheme of the same dimension as X. If char k = 0, then X

is automatically a variety, as group schemes in char 0 are smooth.

Definition 4.4. (Dual abelian variety) This quotient is called the Dual abelian variety X∨

of X.

Theorem 4.8. (Universal property of the dual abelian variety). Let X be an abelian variety

over k. Then there is a uniquely determined line bundle P on X ×X∨, called the Poincaré

bundle, such that

(a) P|X×{y} ∈ Pic0(X × {y}) for all y ∈ X∨,

(b) P|{0}×X∨ is trivial,

and if Z is a scheme with a line bundle R on X × Z such that R|X×{z} ∈ Pic0(X × {z})

for all z ∈ Z and R|{0}×Z is trivial, then there is a unique morphism f : Z → X∨ such that

(id× f)∗P = R.

In other words, (X∨,P) represents the functor

Z 7→
{
L ∈ Pic(X × Z)|L|X×{z} ∈ Pic0(X × {z}) for all z ∈ Z and L|{0}×Z is trivial

}
,

and the Poincaré bundle P corresponds to idXv .
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For proof see [7, Page 74-75].

Let f : X → Y be a homomorphism of abelian varieties. Denote by PX and PY the

Poincaré bundles on X × X∨ and Y × Y ∨, respectively. Consider the line bundle M :=

(f × idY ∨)∗PY on X × Y ∨. By the properties of the Poincaré bundle, M|X×{y} ∈ Pic0(X ×

{y}) and M|{0}×Y ∨ is trivial. Hence by the previous TheoremM defines a unique morphism

f∨ : Y ∨ → X∨ with the propery that (idX ×f∨)∗PX
∼= (f × idY v)∗PY .

Definition 4.5. If f : X → Y is a homomorphism of abelian varieties, then f∨ : Y ∨ → X∨

is called the dual morphism of f .

Remark. If a point in Y ∨ corresponds to a line bundle L ∈ Pic0(Y ), then its image under

f∨ is given by the pullback f ∗L.
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Part II: Derived Categories in Algebraic
Geometry
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5 Derived and Triangulated Categories

5.1 Triangulated Categories

Definition 5.1. (Additive Category) A category C is an additive category if for every

two objects A,B ∈ C the set Hom(A,B) is endowed with a structure of abelian group and

the following three conditions are satisfied:

1. The composition Hom(A,B)×Hom(B,C)→ Hom(A,C) is bilinear, i.e. we have (f+

g) ◦ h = f ◦ h+ g ◦ h and f ◦ (h+ l) = f ◦ h+ f ◦ l.

2. There exist an object 0 ∈ C which is both inital and terminal, i.e. for all objects A ∈ C,

we have 0 = Hom(A, 0) ≃ Hom(0, A).

3. For any two objects A1, A2 ∈ C, there exist an object B, called the biproduct of A1 and

A2, and arrows ji : Ai → B and pi : B → Ai, i = 1, 2, verifying the following properties:

(I) For every object D ∈ C and arrows li : Ai → D, there exist a unique arrow l : B → D

such that li = l ◦ ji.

(II) For every object D ∈ C and arrows qi : D → Ai, there exist a unique arrow q : D → B

such that qi = pi ◦ q.

Such an object is unique and is denoted A1 ⊕ A2.

Remark: Given a field k, one can define similarly a k-linear category asking the Hom

sets to be k-vector spaces and the composition to be k-bilinear.

Definition 5.2. (Additive functor) A functor F : C → D between additive categories

(resp. k-linear categories) is said to be additive if the induced maps Hom(A,B)→ Hom(F (A), F (B))

are group homomorphisms (resp. k-linear maps).

Definition 5.3. (Serre functor) Let C be a k-linear category. A Serre functor is a k-linear

equivalence S : C → C such that for any two objects A,B ∈ C there exists an isomorphism

44



of k-vector spaces

ηA,B : Hom(A,B)
≃−→ Hom(B, S(A))∗

which is functorial in A and B, where the ∗ denotes the dual vector space.

We will later use properties of this functor to extend the Serre duality to derived cate-

gories.

Definition 5.4. (Abelian category) Definition 1.6. An additive category A is called

abelian if every arrow f : A→ B in A admits a kernel and a cokernel and the natural arrow

Coim(f)→ Im(f) is an isomorphism.

we will now define the triangulated categories, the kind of categories we will be interested

throughout.

Definition 5.5. (Triangulated categories) Let A be an additive category. Then A can

be given the structure of a triangulated category by an additive equivalence T : A → A, the

shift functor, and a set of distinguished triangles

A→ B → C → T (A)

which satisfy four axioms TR1−TR4 described below.

Before describing the axioms TR, we will first introduce the notation A[1] := T (A) for any

object A in A and f [1] := T (f) ∈ HomA(A[1], B[1]) for any morphism f ∈ HomA(A,B).

Similarly, A[n] := T n(A) and f [n] := T n(f) for any n ∈ Z. Then using these notations, a

triangle can also be denoted by A→ B → C → A[1].

A morphism between two triangles is given by the following commutative diagram:

A B C A[1]

A′ B′ C ′ A′[1]

f g h f [1]

It is an isomorphism if f, g, h are isomorphisms.

Now we will explain the axioms for a triangulated category:

TR1: i) Any triangle of the form

A
id−→ A −→ 0 −→ A[1]
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is distinguished.

ii) Any triangle which is isomorphic to a distinguished triangle is distinguished.

(iii) Any morphism f : A→ B can be completed to a distinguished triangle

A
f−→ B −→ C −→ A[1]

TR2: The triangle

A
f−→ B

g−→ C
h−→ A[1]

is a distinguished triangle if and only if

B
g−→ C

h−→ A[1]
−f [1]−−−→ B[1]

is a distinguished triangle.

TR3: Assume that there exists a commutative diagram of distinguished triangles with vertical

arrows f and g as follows:

A B C A[1]

A′ B′ C ′ A′[1]

f g h f [1]

Then the above diagram can be completed to a commutative diagram, i.e. to a morphism of

triangles, by a morphism h : C → C ′. Note that, the morphism h may not be unique.

TR4: This is the axiom (octahedron axiom) that is most complicated to state, and we will

not need it throught this text, so we will omit it.

Remark : (I) Since T is an equivalence, any object A in T is isomorphic to the object

(A[−1])[1] (i.e. an object in the image of T ) and is also isomorphic to the object (A[1])[−1],

thus, using the axiom that any triangle isomorphic to a distinguished triangle is distinguished,

we can extend the axiom TR-2 to the following: a triangle

A
f−→ B

g−→ C
h−→ T (A)

is distinguished if and only if any triangle extracted from the sequence

· · · → B[−1] −g[−1]−→ C[−1] −h[−1]−→ A
f−→ B

g−→ C
h−→ A[1]

−f [1]−→ B[1] −→
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is distinguished.

(II) In the same vein, one can prove from the axiom TR-1 that the triangles

A
−Id−→ A −→ 0 −→ T (A)

and

0 −→ A
±Id−→ A −→ 0

are also distinguished.

Proposition 20. Let A → B → C → A[1] be a distinguished triangle in a triangulated

category D. Then for any object A0 ∈ D the following induced sequences are exact sequences

of abelian groups:

Hom (A0, A) −→ Hom (A0, B) −→ Hom (A0, C)

Hom (C,A0) −→ Hom (B,A0) −→ Hom (A,A0)

Proof. Let f : A0 → B composed with B → C is 0 : A0 → C. Then applying the axioms we

have the following diagram:

A0 A0 0

A B C

f

Id

we obtain a lift of f to an arrow A0 → A.

Proposition 21. Let A→ B → C → A[1] be a distinguished triangle.

1. A→ B is an isomorphism if and only if C ∼= 0.

2. If C → A[1] is trivial, then the triangle splits, i.e. is given by a decomposition

B ∼= A⊕ C.

3. Consider a morphism of distinguished triangles

A B C A[1]

A′ B′ C ′ A′[1]

f g h f [1]
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If two of the vertical arrows f, g, h are isomorphisms then so is the third.

Proof. 1. Consider the following sequence:

Hom (A0, A) −→ Hom (A0, B) −→ Hom (A0, C) −→ Hom (A0, A[1]) −→ Hom (A0, B[1]) .

Since the morphisms are functorial, the result follows from the Yoneda lemma.

2.
A B C A[1]

A A⊕ C C A[1]

A B C A[1]

id ∃g id id

idid∃fid

Maps f, g exists because of TR3, where we are actually using the triviality of C → A[1], for

the commutativity of the right most squares. Also, fg = id|B, hence we have

B
∼−→ A⊕ C.

3. This can be proved applying Hom(A0,−) on the diagram and using the five lemma.

Definition 5.6. An additive functor F : D → D′ between triangulated categories is called

exact if the following conditions are satisfied:

(I) There exist a natural isomorphism F ◦ TD ≃ TD′ ◦ F .

(II) Any distinguished triangle A → B → C → A[1] in D is mapped to a distinguished

triangle F (A)→ F (B)→ F (C)→ F (A)[1] ≃ F (A[1]) in D′.
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Proposition 22. Let F : D → D′ be an exact functor between triangulated categories. If

F ⊣ H, then H : D′ → D is exact.

Proof. See [6, Proposition 1.41].

Definition 5.7. (Triangulated subcategory) A subcategory D′ ⊆ D of a triangulated

category is a triangulated subcategory if D′ admits a structure of triangulated category such

that the inclusion is exact.

Proposition 23. If D′ ⊆ D is a full subcategory of a triangulated category D, then it is

a triangulated subcategory if and only if it is invariant by the shift functor and for any

distinguished triangle A→ B → C → A[1] in D with A,B ∈ D′, the object C is isomorphic

to an object in D′.

Proof. If D′ is a triangulated subcategory, then it is invariant by the shift functor, and

considering a distinguished triangle A → B → C → A[1] in D with A,B ∈ D′, the arrow

A → B can be completed to a distinguished triangle A → B → C0 → A[1] in D′ which is

also distinguished in D since the inclusion is exact. Thus we get the commutative diagram:

A B C A[1]

A B C0 A[1]

Using the axiom TR-3 one can complete the diagram to a morphism of distinguished

triangle, and since all vertical arrows are isomorphism, so is C → C0. Conversely, the second

hypothesis tells exactly that the third TR-1 axiom hold, and all other axioms follow from

the fact that D′ is full and invariant under the shift functor.

5.2 Derived Categories

In this section we will describe the construction of Derived categories and then state some

properties. We will see that the objects of the Derived category are easy to explain, the

tricky part is how to comprehend the morphisms in this category. In the end of this section

we will describe the idea of derived functors, and define Ext functor.
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For a category A, we define KomA to be the category whose objects are complexes, and

morphisms are morphisms of complexes.

Definition 5.8. Let A• ∈ Kom(A) be a given complex. Then A•[1] is the complex with

(A•[1])i := Ai+1 and differential diA[1] := −d
i+1
A .

The shift f [1] of a morphism of complexes f : A• −→ B• is the complex morphism

A•[1] −→ B•[1] given by f [1]i := f i+1.

Remark : (I) If A is an abelian category, then so is Kom(A).

(II) The shift functor T : Kom(A)→ Kom(A), A• → A•[1] defines an equivalence of abelian

categories.

We have

A• T−1

−−→ A•[−1],

also we have

A•[k]i = Ak+i, and diA[k] = (−1)kdi+k
A , for any k ∈ Z.

(III) However Kom(A) is endowed with the shift functor T does not define a triangulated

category. Indeed, we would also have to give the class of distinguished triangles, and the

canonical choices, like short exact sequences or mapping cones, do not work. More pre-

cisely,the short exact sequences 0→ A• → B• → C• → 0, which can be viewed as triangles

with trivial C• → A•[1], do not in general, satisfy the conditions imposed on distinguished

triangles in a triangulated category.

The central idea for the definition of the derived category is this: quasiisomorphic com-

plexes should become isomorphic objects in the derived category. We shall begin our discus-

sion with the following existence theorem. Details of the construction are provided by the

subsequent discussion.

Definition 5.9. Let A be an abelian category and let Kom(A) be its category of complexes.

Then there exists a category D(A), the derived category of A, and a functor

Q : Kom(A) −→ D(A)
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such that:

i) If f : A• −→ B• is a quasi-isomorphism, then Q(f) is an isomorphism in D(A).

ii) Any functor F : Kom(A) −→ D satisfying property i) factorizes uniquely over Q :

Kom(A) −→ D(A), i.e. there exists a unique functor (up to isomorphism) G : D(A) −→ D

with F ≃ G ◦Q :

Kom(A) D(A)

D
F G

Q

As stated, the theorem is a pure existence result. In order to be able to work with

the derived category, we have to understand which objects become isomorphic under Q :

KomA → D(A) and, more complicated, how to represent morphisms in the derived category.

Explaining this, will at the same time provide a proof for the above theorem. Moreover, we

shall observe the following facts

Corollary 5.1. (I) Under the functor Q : Kom(A) −→ D(A) the objects of the two categories

Kom(A) and D(A) are identified.

(II) The cohomology objects H i (A•) of an object A• ∈ D(A) are well-defined objects of the

abelian category A.

(III) Viewing any object in A as a complex concentrated in degree zero yields an equivalence

between A and the full subcategory of D(A) that consists of all complexes A• with H i (A•) = 0

for i ̸= 0.

Contrary to the category of complexes Kom(A), the derived category D(A) is in general

not abelian, but it is always triangulated. The shift functor indeed descends to D(A) and a

natural class of distinguished triangles can be found, as will be explained shortly.

Definition 5.10. A morphism of complexes f : A• → B• is a quasi-isomorphism (or qis for

short) if for all n ∈ Z the induced arrow Hn(f) : Hn (A•)→ Hn (B•) is an isomorphism.
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Definition 5.11. (I) Two morphisms of complexes

f, g : A• → B•

are called homotopically equivalent, denoted f ∼ g, if there exists a collection of homomor-

phisms hn : An → Bn−1 for all n ∈ Z such that

fn − gn = hn+1 ◦ dnA + dn−1
B ◦ hn.

Such a family (hn)n∈Z is called a homotopy between f and g. If f ∼ g then Hn(f) = Hn(g)

for all n ∈ Z.

(II) The homotopy category of complexes K(A) is the category whose objects are the objects

of Kom(A) and for all A•, B• ∈ K(A) we have

HomK(A) (A
•, B•) := HomKom(A) (A

•, B•) / ∼ .

We next formally give the definition of the derived category of A, we will see that the

objects are just complexes, but the morphisms here are different, they are called roofs. From

the definition it is not at all clear whether the roofs are well-defined or whether they form a

category. The checkings come after the definition.

Definition 5.12. Let A be an abelian category. Then we define the derived category of A,

denoted D(A) to be the category whose objects are the ones of Kom(A), i.e.

Ob(D(A)) = Ob(K(A)) = Ob(Kom(A)),

and arrows are defined as follows. Let A•, B• be two objects in D(A). The set of morphisms

HomD(A) (A
•, B•) is defined as the set of equivalent classes of diagrams (called roofs) of the

form

C•

A• B•

qis f

where C• is another object in Kom(A), s is a quasi-isomorphism and f is a morphism.

Two such diagrams are equivalent if they are dominated in K(A) by a third one of the same
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sort, i.e. if there exists a commutative diagram in K(A) of the form

D•

C• C ′•

A• B•

qis

The composition of two morphisms

C•
1 C•

2

A• B• B• C•

qis qis

is given by a commutative diagram in K(A) of the form

C•
0

C•
1 C•

2

A• B• C•

qis

qis

qis

Our goal now is to check that these definitions really define a category, in particular that

the composition exists and is unique up to equivalence. To do so, we need to introduce the

mapping cone which plays a central role in the definition of triangulated structures on K(A)

and D(A).

Definition 5.13. Let f : A• → B• be a morphism of complexes. Its mapping cone is the

complex C(f) defined by

C(f)n = An+1 ⊕Bn and dnC(f) :=

 −dn+1
A 0

fn+1 dnB


Remark : (I) The mapping cone C(f) is indeed a complex: dn+1

B ◦ fn+1 = fn+2 ◦ dn+1
A

since f is a morphism of complexes.

(II) We have natural morphisms of complexes

τ : B• → C(f) and π : C(f)→ A•[1]
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given by the natural injection Bn → An+1⊕Bn and the natural projection An+1⊕Bn → An+1.

(III) The composition A• → B• → C(f) is nullhomotopic (i.e. homotopic to the trivial

map), such an homotopy is given by (ιn : An → An ⊕Bn−1)n∈Z. Indeed, we have

. . . An−1 An An+1 . . .

. . . An ⊕Bn−1 An+1 ⊕Bn An+2 ⊕Bn+1 . . .

d

d′

ιn ιn+1

and we have ιn+1 ◦ d =
(
dn+1
A , 0

)
and d′ ◦ ιn =

(
−dn+1

A , fn
)
.

(IV) The sequence 0 → B• → C(f) → A•[1] → 0 is exact: it comes from the fact that

the composition M → M ⊕ N → N is 0 in any additive category. In particular, we have a

long exact sequence

· · · → Hn (A•)→ Hn (B•)→ Hn(C(f))→ Hn+1 (A•)→ . . .

(V) Using the previous long exact sequence, we obtain that f is a quasi-isomorphism if and

only if Hn(C(f)) = 0 for all n ∈ Z.

Proposition 24. Let f : A• → B• be a morphism of complexes and let C(f) be its mapping

cone with its natural arrows τ : B• → C(f) and π : C(f) → A•[1]. Then there exists a

morphism of complexes

g : A•[1]→ C(τ)

which is an isomorphism in K(A) and such that the following diagram commutes in K(A) :

B• C(f) A•[1] B•[1]

B• C(f) C(τ) B•[1]

∼=

τ π −f

∼=g∼=

τ ττ πτ

Proof. We construct g on degree n as the arrow

A•[1]n = An+1 −→ C(τ)n = Bn+1 ⊕ An+1 ⊕Bn

defined by (−fn+1 , Id, 0). It clearly define a morphism of complexes. The inverse g−1 in

K(A) can be given by the projection onto the middle factor (note that g◦g−1 is homotopic to
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identity, but not equal to identity in general). From here checking that the desired diagram

is indeed commutative up to homotopy is straightforward (the diagram does not commute

in Kom(A), but it comuutes up to homotopy).

Proposition 25. Let f : A• → B• be a quasi-isomorphism and g : C• → B• be an arbitrary

morphism. Then there exists a commutative diagram in K(A) :

C•
0 C•

A• B•

qis

g

qis

f

Proof. Consider the commutative diagram

C(τ ◦ g)[−1] C• C(f) C(τ ◦ g)

A• B• C(f) A•[1]

τ◦g

g ∼=

f τ π

By the previous proposition, we know that B• τ−→ C(f) −→ A•[1] is isomorphic (in K(A))

to B• τ−→ C(f) −→ C(τ), and thus it suffices to use the natural morphism C(τ ◦ g)→ C(τ)

given by the identity on the second factor of Cn+1 ⊕ C(f)n → Bn+1 ⊕ C(f)n.

Now define C•
0 := C(τ ◦ g)[−1]. Notice that C•

0 → C• is a quasi-isomorphism. Indeed,

since A• → B• is a quasi-isomorphism, we have that Hn(C(f)) = 0 for all n ∈ Z, and then

applying the long exact sequence in cohomology to τ ◦ g we get:

· · · −→ Hn (C•) −→ Hn(C(f)) −→ Hn(C(τ ◦ g)) −→ Hn+1 (C•) −→ . . . .

But since Hn(C(f)) = 0 we have that Hn(C(τ ◦ g)) ≃ Hn+1 (C•) for all n ∈ Z.

Remark : (I) By construction, if g is also a quasi-isomorphism, so is C•
0 → A•.

(II) dual statement holds: assume that we have a quasi-isomorphism f : B• → A• and

any morphism B• → C•. Then we can construct a commutative diagram:

B• A•

C• C•
0

qis

qis

f
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Corollary 5.2. The composition of arrows exists and is well-defined.

Proof. Applying the previous proposition to the following diagram gives us the result

C•
1 C•

2

B•

qis

Hence we can summarize construction of the derived category by the following diagram

and proposition

Kom(A) D(A)

K(A)

Proposition 26. The composition of the functors:

A → Kom(A)→ K(A)→ D(A)

is fully faithful.

Remark : Recall that the functor A → Kom(A) sends an object A to the complex with

A in degree zero and the zero object in all other degrees and the functorK(A)→ D(A) sends

a K(A)-morphism A → B represented by f ∈ homKom(A)(A,B) to the D(A)− morphism

represented by A
id←− A

f→ B.

Proof. Let A and B be objects of A. That A → Kom(A) is fully faithful is clear.

By definition hom Kom(A)(A,B) → HomK(A)(A,B) is surjective so consider a morphism

f ∈ HomKom(A)(A,B) homotopically equivalent to zero (with A and B still in the image

of A → Kom(A) ). That means there is a morphism s ∈ Hom Kom(A)(A[1], B) such that

ds − sd = f . But all differentials in the complexes A and B are zero and so f = 0.

Hence, homKom(A)(A,B) ∼= homK(A)(A,B). Now consider the morphism Hom A(A,B) →

HomD(A)(A,B). Surjectivity. Let A
s←− C

f→ B represent a morphism in hom D(A)(A,B).

So s is a quasi-isomorphism. Then

H i(C) =

0 i ̸= 0

A i = 0
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and so there exists a quasi-isomorphism A
t→ C. This means the composition A→ C → A

is also a quasi-isomorphism and since A is concentrated in degree zero st = idA. So the

diagram

C

A A B

A

s
t

∼=

∼= ft

ft
∼=

f

commutes and therefore, A
s← C

t→ B is equivalent to A
id← A

ft→ B which is in the image of

Hom K(A)(A,B)
∼→ HomKom(A)(A,B)→ HomD(A)(A,B).

Injectivity. A morphism f ∈ HomA(A,B) gets sent to zero if and only if there is a

commutative diagram:

A

A C B

A

∼= g

∼= 0

f

where the inside morphisms are quasi-equivalences. That is, if and only if there is a complex

C and a quasi-equivalence g : C → A such that fg = 0 in K(A). But this means that the

morphism H0C ∼= A→ B induced on zeroth homology groups is also zero. Hence A→ B is

zero.

Remark : (I) The natural functor QA : K(A)→ D(A) is identity on objects and sends

a (homotopy class of a) morphism f : A• → B• to the roof

A•

A• B•

id

If f is a quasi-isomorphism, then QA(f) is an isomorphism, which inverse is given by the

roof
A•

B• A•

f
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But, the converse is not true, i.e. there can be complexes A•, B• isomorphic in D(A), but

there does not exist a quasi-isomorphism A• → B•.

Let

Definition 5.14. We say that a triangle

A•
1 −→ A•

2 −→ A•
3 −→ A•

1[1]

in K(A) (resp. D(A) ) is distinguished if it is isomorphic in K(A) (resp. D(A) ) to a triangle

of the form

A• f−→ B· τ−→ C(f)
π−→ A•[1],

where f : A• → B• is a morphism of complexes.

Proposition 27. The natural shift functor A• → A•[1] and distinguished triangles given as

in Definition 1.14 make the homotopy category of complexes K(A) and the derived category

D(A) of an abelian category A into triangulated categories.

Proof. We are going to avoid this long and technical proof. See [2, Chapter I, 2].

5.3 Properties of the Derived category

In the following propositions we will list some of the useful properties of the derived category

Proposition 28. Let A,B,C ∈ A. We identify an object in A with its image under the

full embedding A → K(A), i.e. with the associated complex concentrated in degree 0 . If the

sequence

0 −→ A
f−→ B

g−→ C −→ 0

is exact in A then the triangle

A
f−→ B

g−→ C −→ A[1]

is distinguished in D(A).
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Proof. First, we need to define an arrow C → A[1]. Notice that C(f) can be identified in

this case with the complex · · · −→ 0 −→ A
f−→ B −→ 0 −→ · · · , with A in degree −1 and

B in degree 0 . Thus we can define the morphism of complexes C(f)→ C as :

. . . 0 A B 0 . . .

. . . 0 0 C 0 . . .

f

g

In particular, this morphism is a quasi-isomorphism by exactness of the initial short exact

sequence, and thus there is a inverse C → C(f) in D(A). Thus one can define the arrow

δ : C → A[1] by composing the arrows C → C(f) and the natural morphism C(f) → A[1].

We obtain the isomorphism of triangles (in D(A)) :

A B C A[1]

A B C(f) A[1]

f g

id

f

id id

Note that these arrows are in D(A) so they should be thought of as roofs.

Proposition 29. Suppose A• → B• → C• → A•[1] is a distinguished triangle in D(A).

Then there is a natural exact sequence

· · · → Hn (A•)→ Hn (B•)→ Hn (C•)→ Hn+1 (A•)→ · · ·

Proof. By definition of distinguished triangles, we have an isomorphism

A• B• C• A•[1]

A•
0 B•

0 C(f) A•
0[1]

f τ π

∼=∼=∼=

where f is a morphism of complexes, and the vertical arrows are isomorphisms in D(A), i.e.

quasi-isomorphisms. The sequence with the mapping cone induces a long exact sequence in

cohomology, and by the isomorphisms in cohomology we get:

. . . Hn(A•
0) Hn(B•

0) Hn(C(f)) Hn(A•
0[1]) . . .

Hn(A•) Hn(B•) Hn(C•) Hn+1(A•)

∼= ∼= ∼= ∼=

Since the first row is exact, up to composing with the isomorphisms, we get the desired

natural exact sequence.
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In the following, we will consider the full subcategory Kom∗(A), with ∗ = +,− or b,

consisting of complexes A• with An = 0 for n≪ 0, n≫ 0 or |n| ≫ 0 respectively. The same

construction we performed before can be applied again to obtain the categories K∗(A) and

D∗(A).

Proposition 30. The natural functors D∗(A) → D(A), where ∗ = +,− or b, define equiv-

alences of D∗(A) with the full triangulated subcategories of all complexes A• ∈ D(A) with

Hn (A•) = 0 for n≪ 0, n≫ 0 and |n| ≫ 0 respectively.

Proof. Suppose Hn (A•) = 0 for n > n0. Then we have a quasi-isomorphism

. . . An0−2 An0−1 ker(dn0) 0 . . .

. . . An0−2 An0−1 An0 An0+1 . . .

∼=∼=

Thus A• is isomorphic in D(A) to a complex bounded above, i.e. a complex in D−(A).

Similarly, if Hn (A•) = 0 for n < n0 one considers:

. . . An0−1 An0 An0+1 An0+2 . . .

. . . 0 coker(dn0−1) An0+1 An0+2 . . .

∼=∼=

In the case ∗ = b, one can use both sequences combined. These prove that the functors are

essentially surjective, and they are clearly fully faithful, so the proof is finished.

Before going to the next section, we need to define the notion of injective and projective

resolutions, which will be useful when we will need to extend functors F : A → B into

functors RF : D(A)→ D(B).

Definition 5.15. Let A be an abelian category.

(I) An object I ∈ A (resp. P ∈ A ) is said injective (resp. projective) if the functor Hom(, I)

is exact (resp. Hom(P, ) is exact).

(II) We say that the category A contains enough injective (resp. enough projectives) objects

if for any object A ∈ A there exists an injective morphism A → I with I injective (resp. a
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surjective morphism P → A with P projective).

(III) An injective resolution of an object A ∈ A is an exact sequence

0→ A→ I0 → I1 → · · ·

with all In injective. Similarly, a projective resolution of A consists in an exact sequence

· · · → P−1 → P 0 → A→ 0

with all P n projective.

Proposition 31. Suppose that A is a category with enough injectives. For any A• ∈ K+(A),

there exist a complex I• ∈ K+(A) with In ∈ A injective ∀n ∈ Z and a quasi-isomorphism

A• → I•.

Proof. See [6, Proposition 2.35].

Corollary 5.3. Let A be an abelian category with enough injectives. Any object A• ∈ D(A)

with Hn (A•) = 0 for n≪ 0 is isomorphic in D(A) to a complex I• of injective objects with

In = 0 for n≪ 0.

A dual statement of Proposition 12 is true in a category with enough projectives, con-

sidering K−(A) instead of K+(A) : for any A• ∈ K−(A) there exists a complex P • ∈ K−(A)

with P n ∈ A projective objects and a quasi-isomorphism P • → A•.

Proofs of the next two technical lemmas can be found in [6, Lemma 2.38] and [6, Lemma

2.39].

Lemma 5.1. Suppose A• → B• is a quasi-isomorphism between two complexes A•, B• ∈

K+(A). Then for any complex I• of injectives objects with In = 0 for n ≪ 0 the induced

map

HomK(A) (B
•, I•)

≃−→ HomK(A) (A
•, I•)

is bijective.

Lemma 5.2. Let A•, I• ∈ K+(A) such that all In are injective. Then

HomK(A) (A
•, I•) = HomD(A) (A

•, I•)
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This lemma says something very important, it tells us that any morphism between A•

and I• in the derived category can be lifted up to a morphism in the homotopoy category.

For the next proposition, consider the full additive subcategory I ⊂ A of all injectives of

an abelian category A : we can construct as before the homotopy category K∗(I) and the

functor QA induces a natural exact fundtor ι : K∗(I)→ D∗(A).

Proposition 32. Suppose that A contains enough injectives. Then the natural functor

ι : K+(I)→ D+(A)

is an equivalence.

Proof. The functor is fully faithful. Indeed, let I•, J• be two complexes in K+(I). Since I

is a full subcategory and by the previous lemma, we have

HomK+(I) (I
•, J•) ≃ HomK+(A) (I

•, J•) ≃ HomD+(A) (I
•, J•)

To see that the functor is also essentially surjective, one applies Proposition 12.

5.4 Derived functors

In this section, the main goal will be to lift functors between abelian categories (or homotopy

categories) to functors between the associated derived categories.

Lemma 5.3. Let A,B be abelian categories, let F : K∗(A)→ K∗(B) be an exact functor of

triangulated categories. Then F naturally induces a commutative diagram:

K∗(A) K∗(B)

D∗(A) D∗(B)

if one of the following equivalent conditions holds true:

1. A quasi-isomorphism is mapped by F to a quasi-isomorphism.

2. The image of an acyclic complex is acyclic.
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Proof. First we will show that these two conditions are equivalent. The step 1 ⇒ 2 is

obvious. To see 2⇒ 1, consider a morphism of complexes f : A• → B•, then the triangle

A• → B• → C(f)→ A•[1]

is distinguished, and C(f) is acyclic if and only if f is a quasi-isomorphism (using the long

exact sequence). Now since F is exact and additive, F (f) is a quasi-isomorphism if and only

if C(F (f)) = F (C(f)) is acyclic. Hence we’re done.

Assume that 1 is satisfied. The functor F can easily be lifted up to the derived categories:

an object A• is mapped to F (A•), viewed as objects in the derived categories, and a roof

C•

A• B•

qis

is mapped to the roof

F (C•)

F (A•) F (B•)

qis

This completes the proof.

Now let F : A → B be a left exact functor of abelian categories, and assume that A con-

tains enough injectives. The functor F induces a functor K(F ) : K+(A)→ K+(B) sending a

complex (An)n∈Z to (F (An))n∈Z, and a morphism of complexes (fn)n∈Z to (F (fn))n∈Z. The

latter makes sense in the homotopy categories: if h is a homotopy between to morphisms of

complexes f and g, then F (h) is a homotopy between F (f) and F (g) since F is additive.

We have the equivalence ι : K+ (IA)→ D+(A), so we can consider a quasi-inverse ι−1 of

ι by choosing a complex of injective objects quasi-isomorphic to any given complex that is

bounded below. We obtain the diagram:

K+(IA) K+(A) K+(B)

D+(A) D+(B)

K(F )

QA
ι QB

ι−1
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Definition 5.16. The right derived functor of F is the functor:

RF := QB ◦K(F ) ◦ ι−1 : D+(A) −→ D+(B).

In other words, the right derived functor consists in replacing a complex by a complex of

injectives, applying K(F ) and embedding it into the target derived category.

Proposition 33. 1. There exists a natural morphism of functors

QB ◦K(F ) −→ RF ◦ QA.

2. The right derived functor RF : D+(A) → D+(B) is an exact functor of triangulated

categories.

Proof. 1) Let A• ∈ D+(A) and I• := ι−1 (A•). The natural transformation Id→ ι◦ι−1 yields

a functorial morphism A• → I• in D+(A). This morphism is given by a roof A• ← C• → I•,

but since I• is injective it yields to a unique morphism A• → I• in K(A) by Lemma 1.1.

Notice that this morphism is independent on the choice of C• : assume we have two equivalent

roofs
C• and D•

A• I• A• I•
tD

then it means that we have the commutative diagram

E•

C• D•

A• I•

f g

tD

tC

We obtain the equalities g = tC ◦ f and g = tD ◦ f . But f is a quasi-isomorphism, so

again by Lemma 1.1 there is a unique map j : A• → I• such that g = j ◦ f . Thus we get

tC = tD. Finally, we obtain a functorial morphism

K (F (A•))→ K(F (I•)) = RF (A•)
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2) The category K+ (IA) is triangulated: if f : I• → J• is a morphism of complexes between

complexes of injective objects, then C(f) is also a complex of injective objects. The functor

ι : K+ (IA)→ D+(A) is clearly an exact functor (between triangulated categories), and thus

ι−1 is also exact (cf. Proposition 3). Moreover, K(F ) is exact: F is additive, so F preserves

mapping cones. Finally, since QB is exact, we obtain that RF is the composition of three

exact functors and, therefore, is itself exact.

Definition 5.17. Let RF : D+(A) → D+(B) be the right derived functor of a left exact

functor F : A → B. Then for any complex A• ∈ D+(A) we define:

RiF (A•) := H i (RF (A•)) ∈ B.

Remark : (I) If A is a complex concentrated in degree 0, then we can give a more

precise description of RiF (A). Indeed, consider an injective resolution I• of A, i.e. an exact

sequence

0→ A→ I0 → I1 → · · · .

We obtain that RiF (A) = H i (F (I•)), and in particular we have R0F (A) = F (A).

(II) Any short exact sequence

0→ A→ B → C → 0

in A gives rise to a long exact sequence

0→ F (A)→ F (B)→ F (C)→ · · · → RnF (B)→ RnF (C)→ Rn+1F (A)→ · · · .

Indeed, the exact sequence in A gives rise to a distinguished triangle RF (A) → RF (B) →

RF (C) → RF (A)[1] then looking at the long exact sequence from this we get our desired

sequence.

(III) All the constructions we made could have been performed in the dual way: if you

consider a functor F which is right exact, K(F ) : K−(A)→ K−(B) and then define the left

derived functor LF by applying K(F ) to a complex P • of projective objects quasi-isomorphic

to A•.

Now we will give a generalization of the construction of the right derived functor.
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Proposition 34. Let A,B be abelian categories, and F : K+(A)→ K(B) an exact functor.

Suppose there exists a triangulated subcategory KF ⊂ K+(A) which is adapted to F , i.e.

which satisfies the following two conditions:

1. If A• ∈ KF is acyclic, then F (A•) is acyclic.

2. Given any A• ∈ K+(A) there is an object TA ∈ KF and a quasi-isomorphism A• → TA•

Then there exists a right derived functor RF : D+(A) → D(B) satisfying the properties of

Proposition 14.

Proof. The functor RF is defined as follows:

• Let A• ∈ D+(A). There is a quasi-isomorphism A• → TA• for some TA• ∈ KF . Then

define RF (A•) := F (TA•).

• Let A•, B• ∈ D+(A). Consider an arrow A• → B• in D+(A) given by a roof A• ← C• →

B•. In K+(A) we have the diagram

C• TC•

TA•

qis

qis

and it can be completed in

C• TC•

TA• D•
A

qis

qis

qis

qis

K+(A) into the diagram Composing with the quasi-isomorphism D•
A → TDA

, and doing the

same with B•, we obtain a roof

TC•

TD•
A

TD•
B

qis

Since TD•
A
and TA· are quasi-isomorphic within KF , so are their images by the functor F

(proof of Lemma 1.3), and the same holds with B•. Thus they define isomorphic objects in
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D(B). We defined the image of our initial arrow A• → B• in D+(A) by RF as the arrow

given by the roof

F (TC•)

F (TA•) F (TB•)

qis

Corollary 5.4. Let F : A → B be a left exact functor (here A might not contain enough

injectives), and assume that there exists a subclass of objects IF ⊂ A which are F -adapted,

i.e. which is stable by finite sum and such that:

1. If A• ∈ K+(A) is acyclic with all A• ∈ IF , then F (A•) is acyclic.

2. Any object in A can be embedded into an object of IF . Then there exists a right derived

functor RF : D+(A)→ D(B) satisfying the properties of Proposition 14.

Proof. It suffices to check that the subcategory KF ⊂ K+(A) defined as the full subcategory

of complexes of objects in IF satisfies the hypothesis of Proposition 15.

First, since IF is stable by finite sum, KF contains all mapping cones of morphism between

any complexes in it. Then, by the Proposition 4,KF is indeed a triangulated subcategory of

K+(A). Now, we just need to check the two conditions of the theorem. The first condition

is obvious, and the second conditions can be proved by the same proof given for Proposition

12.

Definition 5.18. Let A ∈ A be an object in an abelian category containing enough injectives.

Then we defined

Extn(A, ) := Hn ◦RHom(A, ).

Proposition 35. Suppose A,B ∈ A are objects of an abelian category containing enough

injectives. Then for all n ∈ Z there is a natural isomorphism

Extn(A,B) ≃ HomD(A)(A,B[n]).

Proof. Notice that here we identify once again objects in A with complexes concentrated

in degree 0. Consider an injective resolution B → I0 → I1 → · · · , then R Hom (A,B) ≃
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(Hom (A, In))n∈N. Now f ∈ Hom (A, In) is the kernel of Hom (A, In)→ Hom (A, In+1) if and

only if it defines a morphism of complexes f : A→ I•[n]. Such a morphism is (homotopically)

trivial if and only if f is in the image of Hom (A, In−1) → Hom (A, In). These last claims

reads on the diagram

. . . 0 A 0 . . .

. . . In−1 In In+1 . . .

f

Then Extn(A,B) ≃ HomK(A) (A, I
•[n]) ≃ HomD(A) (A, I

•[n]) since I• is a complex of injec-

tives.

Definition 5.19. Let A• ∈ Kom(A) and B• ∈ K+(A). We defined the inner hom Hom• (A•, B•)

as the complex

Homn (A•, B•) :=
⊕
k∈Z

Hom
(
Ak, Bk+n

)
with differentials d

(
(fk)k∈Z

)
:= dB ◦ fk − (−1)nfk+1 ◦ dA.

Proposition 36. Let A• ∈ Kom(A) be a complex of objects in a abelian category containing

enough injectives. The the right derived functor

RHom• (A•, ) : D+(A)→ D(Ab)

exists, and if we set Extn (A•, B•) := Hn (RHom• (A•, B•)) we have

Extn (A•, B•) ≃ HomD(A) (A
•, B•[n]) .

Proof. To prove the existence of RHom• (A•, B•), one checks that the full triangulated

subcategory of K+(A) of complexes of injectives objects is adapted to this functor. The

second statement follows from arguments of the proof of Proposition 16 adapted to this

more general situation.

Proposition 37. Let F1 : A → B and F2 : B → C be two left exact functors between abelian

categories. Assume that there exist adapted classes IF1 ⊂ A and IF2 ⊂ B for F1 and F2

respectively such that F (IF1) ⊂ IF2.

Then the derived functor R (F2 ◦ F2) : D
+(A)→ D+(C) exists and there is a natural isomor-

phism

R (F2 ◦ F1) ≃ RF2 ◦RF1.
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Proof. The existence of RF1 and RF2 are provided by the assumptions, and since IF1 is

adapted to F2 ◦ F1, R (F2 ◦ F1) exists as well. The natural isomorphism is given by the

following remark. Let A• ∈ D+(A) be isomorphic to I• ∈ K+ (IF1), then

R (F2 ◦ F1) (A
•) ≃ K(F2 ◦ F1) (I

•)

≃ (K (F2) ◦K(F1)) (I
•)

≃ K(F2) (K (F1) (I
•))

≃ RF2 ( K (F1) (I
•))

≃ RF2 (RF1 (A
•))

69



6 Derived Categories of Coherent Sheaves

Purpose : In this section we introduce the derived category of coherent sheaves. We show

that it is indecomposable if and only if the scheme is connected. We then state a derived

version of Serre duality and using this we show that on a smooth curve objects in the

derived category can always be written as direct sums of shifted sheaves. In the end we

describe the two most common spanning classes in Db(X).

6.1 Derived Category of Coherent Sheaves

Definition 6.1. Let X be a scheme. Its derived category Db(X) is by definition the bounded

derived category of the abelian category Coh(X), i.e.

Db(X) = Db(Coh(X)

Definition 6.2. Two schemes X and Y defined over a field k are called derived equivalent

if there exists a k-linear exact equivalence D∗(X) ∼= D∗(Y ), where ∗ = b,+,−.

Before starting this section we need the following proposition. Consider a full abelian

subcategory A ⊂ B of an abelian category B. Then there are two derived categories D(A)

and D(B) with an obvious exact functor D(A) −→ D(B) between them.

One might wonder whether this functor defines an equivalence between D(A) and the full

subcategory of D(B) containing those complexes whose cohomology is in A. This does not

hold, as in general D(A) −→ D(B) is neither full nor faithful. Fortunately, in the geometric

situation, e.g. passing from Db(Sh(X)) to Db(Qcoh(X)), things are better behaved, as shown

by the next proposition. Recall that a thick subcategory A of an abelian category B is a full

abelian subcategory such that any extension in B of objects in A is again in A.

Proposition 38. Let A ⊂ B be a thick subcategory and suppose that any A ∈ A can be

embedded in an object A′ ∈ A which is injective as an object of B. Then the natural functor

D(A) −→ D(B) induces an equivalence

D+(A) ∼−→ D+
A(B)

of D+(A) and the full triangulated subcategory D+
A(B) ⊂ D+(B) of complexes with cohomology

in A. Analogously, one has Db(A) ≃ Db
A(B).
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Proof. See [1].

We will be primarily interested in Coh(X), but often we will need to leave the abelian cat-

egory of Coherent sheaves and work with the category of Quasi-Coherent sheaves Qcoh(X).

The reason is this : we want to replace coherent sheaves by their injective resolutions, but

there are almost no coherent injective sheaves.

Proposition 39. On a Noetherian scheme X any quasi-coherent sheaf F admits a resolution

0→ F → I0 → I1 → . . .

by quasi-coherent sheaves I i which are injective OX-modules.

Thus in our case, when X is a smooth projective variety over a field k, the result ap-

plies. Thus from the previous lemma we can think of D∗(Qcoh(X)) as the full triangulated

subcategory of D∗(Sh(X)) of bounded complexes with quasi-coherent cohomology. Thus for

any Noetherian schemes there are natural equivalences:

D∗(Qcoh(X)) ∼= D∗
qcoh(Sh(X))

with ∗ = b,+.

In particular, we obtain that Q coh(X) has enough injectives whenever X is at least

noetherian. In particular, it permits us to use the spectral sequences defined in Proposition

2.21. Thus for any F•,G• ∈ Qcoh(X) we have:

Ep,q
2 = Extp (F•,Hq (G•))⇒ Extp+q (F•,G•)

Ep,q
2 = Extp (Hq (F•) ,G•)⇒ Extp+q (F•,G•)

The following lemma will be helpful in proving the next important proposition

Lemma 6.1. If G → F is an OX-module homomorphism from a quasi-coherent sheaf G onto

a coherent sheaf F on a noetherian scheme X, then there exists a coherent subsheaf G ′ ⊂ G

such that the composition G ′ ⊂ G → F is still surjective.

Proof. This lemma is clear locally: for any surjection M → N of modules with N finitely

generated, there exists a finitely generated submodule M ′ ⊂ M such that the restriction

M ′ → N is still surjective. The step to the global case is not trivial and follows from the

following proposition :
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Proposition 40. [4, Proposition 5.15] Let S be a graded ring, which is finitely generated by

S1 as an S0-algebra. Let X = Proj S, and let F be a quasi-coherent sheaf on X. Then there

is a natural isomorphism β : Γ̃∗(F)→ F .

Now, apply this proposition to the surjections

dj : Gj −→ Im
(
dj
)

and ker
(
dj
)
−→ Hj

which yield subsheaves Gj1 ⊆ Gj and Gj2 ⊆ ker (dj) . Now define G̃j ⊆ Gj the coherent

subsheaf generated by Gj1 and G
j
2, and define Ĝj−1 as the pre-image of G̃j under the morphism

Gj−1 → Gj. We get the injective morphism of complexes:

. . . Gj−2 G̃j−2 G̃j Gj+1 . . .

. . . Gj−2 Gj−1 Gj Gj+1 . . .

d̃j−1

∼=ijij−1∼=

Notice that ij induces an isomorphism in cohomology by construction of Gj2, and the

(j + 1)th cohomology group of the first row is still Hj+1 by construction of Gj1. Finally, Ĝj−1

is constructed so that d̃j−1 is well defined. Thus this morphism of complexes is a quasi-

isomorphism and G̃j is coherent.

Although we cannot hope to find an injective resolution of a coherent sheaf by coherent

sheaves, we have the following result

Proposition 41. Let X be a Noetherian scheme. Then the natural functor

Db(X)→ Db(Qcoh(X))

defines an equivalence between the derived category Db(X) of X and the full triangulated

subcategory Db
Coh(Qcoh(X)) of bounded complexes of quasi-coherentsheaves with coherent co-

homology.

Proof. Let G• be a bounded complex of quasi-coherent sheaves

· · · −→ 0 −→ Gn −→ · · · −→ 0m −→ 0
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with coherent cohomology Hi. Suppose Gi is coherent for i > j. Then apply Lemma 2.1 to

the surjections

dj : Gj −→ Im
(
dj
)
⊂ Gj+1 and Ker

(
dj
)
−→ Hj

which yield subsheaves Gj1 ⊂ Gj and G
j
2 ⊂ Ker (dj) ⊂ Gj, respectively. We may now replace

Gj by the coherent sheaf generated by Gji , i = 1, 2, and Gj−1 by the pre-image of the new Gj

under Gj−1 → Gj. Clearly, the inclusion defines a quasi-isomorphism of the new complex to

the old one and now Gi is coherent for i ≥ j.

Remark : If X is a projective variety over a field k, for any coherent sheaf F the groups

Hn(X,F) are finite-dimensional (Serre, See [4, Theorem 5.19]).

This result can be used to show (by induction) that for any two coherent sheaves F ,G

the groups Extn(F ,G) are also finite-dimensional for all n ∈ Z. Indeed, the case n = 0 comes

from the identity Hom(F ,G) = H0(X,Hom(F ,G)). The case F =
⊕
Lj with Lj locally

free sheaves of finite rank comes from the equality

Extn
(⊕

Lj,G
)
≃
⊕

Extn (Lj,G) ,

≃
⊕

Extn (OX ,L∨ ⊗ G)

≃
⊕

Hn (X,L∨ ⊗ G)

Finally, one conclude using that any coherent sheaf can be placed in an exact sequence

0→ K →
⊕
Lj → F → 0

with Lj locally free (Theorem 3.1). Applying Hom(,G) we obtain a long exact sequence

· · · → Extn(K,G)→ Extn+1(F ,G)→ Extn+1
(⊕

Lj,G
)
· · ·

Now since the first term is finite-dimensional by induction and the last term is finite-

dimensional by the previous case, the middle one is also finite-dimensional.

Eventually, using both spectral sequences, we obtain that Extn (F•,G•) is finitedimen-

sional.

Definition 6.3. The support of a complex F• ∈ Db(X) is the union of the supports of all

its cohomology sheaves, i.e. it is the closed subset

supp (F•) :=
⋃

supp
(
Hi (F•)

)
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Lemma 6.2. Suppose F• ∈ Db(X) and supp(F•) = Z1 ⊔Z2, where Z1, Z2 ⊂ X are disjoint

closed subsets. Then F• ≃ Fi ⊕F•
2 with supp (Fj) ⊂ Zj for j = 1, 2.

Proof. See [6, 3.9].

Next using this lemma we will show that the derived category of a scheme is indecom-

posable if and only if the scheme is connected. For this we will first define what it means for

a triangulated category to be decomposed into two subcategories.

Definition 6.4. A triangulated category D is decomposed into triangulated subcategories

D1,D2 ⊂ D if the following three conditions are satisfied:

i) Both categories D1 and D2 contain objects non-isomorphic to 0.

ii) For all A ∈ D there exists a distinguished triangle

B1 −→ A −→ B2 −→ B1[1]

with Bi ∈ Di, i = 1, 2.

iii) Hom (B1, B2) = Hom (B2, B1) = 0 for all B1 ∈ D1 and B2 ∈ D2. A triangulated category

that cannot be decomposed is called indecomposable.

Theorem 6.3. Let X be a noetherian scheme and let Db(X) be its bounded derived category

of coherent sheaves. Then Db(X) is an indecomposable triangulated category if and only if

X is connected.

Proof. See [6, Proposition 3.10].

6.2 Extending Serre Duality

One of the fundamental facts that was known already to the Italian school is that, without

additional information, on a smooth variety X there are two distinguished line bundles: the

trivial bundle OX , and the canonical bundle ωX . It was Serre who made more precise the

role of ωX , through Serre duality: for a coherent sheaf F on a smooth projective variety we

have

H i(X,F)∨ ∼= Extn−i
X (F , ωX)
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for all i.

Remark : If F is locally free, we have

Exti (F , ωX) ≃ Ext (OX ,F∨ ⊗ ωX) ≃ H i (X,F∨ ⊗ ωX)

and then Serre duality gives

H i(X,F) ≃ Hn−i (X,F∨ ⊗ ωX)
∗

In this section we will first state the version of Serre duality given by Bondal and Orlov.

After that we will extend the Serre duality in a different way by going about finding the

right adjoint of a functor.

Theorem 6.4. (Serre duality) Let X be a smooth projective variety over a field k. Then

SX : Db(X)→ Db(X)

which sends F• to F• ⊗ ωX [n] is a Serre functor (see Definition 1.4), i.e. for any two

complexes E•,F• ∈ Db(X) there exists a functorial isomorphism

η : Exti (E•,F•)
∼−→ Extn−i (F•, E• ⊗ ωX)

∗

Proof. Recall that we have Exti (E•,F•) = H i (RHom• (E•,F•)). Now replacing E• by a

complex of locally free sheaves and F• by a complex of injective sheaves, we haveRHom (E•,F•) =

Hom (E•,F•). Moreover,

Homi (E•,F•) =
⊕

Hom
(
Ek,Fk+i

)
≃
⊕

Ext0
(
OX ,

(
Ek
)∨ ⊗Fk+i

)
,

≃
⊕

Extn
(
Fk+i, Ek ⊗ ωX

)∗
,

≃
⊕

Hom
(
Fk+i, Ek ⊗ ωX [n]

)∗
,

≃ Homn−i (F•, E• ⊗ ωX)
∗ ,

and thus the desired isomorphism is obtained by replacing E•⊗ωX by a complex of injective

objects and taking cohomology.
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Now using the Serre duality we will prove that every element of the derived category of

curves decomposes into direct sum of shifted cohomology sheaves. For that we will need a

few lemmas, and we will give sketches of their proofs below.

Lemma 6.5. Let A → B → C → A[1] be a distinguished in a triangulated category D.

Suppose C → A[1] is trivial. Then the triangle splits, i.e. B ∼= A⊕ C.

Lemma 6.6. Suppose H i(A•) = 0, for i < i0. Then there exists a distinguised triangle

H i(A•)[−i0]→ A• φ−→ B• → H i(A•)[1− i0]

in D(A), with H i(B•) = 0, for i ≤ i0 and φ inducing isomorphisms H i(A•) ∼= H i(B•) for

i > i0.

Proof. (Sketch): We will find a morphism in D(A) from H i(A•)[−i0] → A•. For that we

need to find a roof
C•

Hm(A•)[−m] A•

qis

For this we first have the following quasi-isomorphism C• qis−→ Hm(A•)[−m]

. . . Ak Ak+1 . . . Am−1 ker(dm) 0 . . .

. . . 0 0 . . . 0 Hm(A•) = ker(dm
im(dm−1)

0 . . .

Next consider the following morphism C• → A•

. . . Ak Ak+1 . . . Am−1 ker(dm) 0 . . .

. . . Ak Ak+1 . . . Am−1 Am Am+1 . . .

id id id

Since D(A) is a triangulated category, we can extend this morphism to a distinguished

triangle of the following form (using cone construction)

H i(A•)[−i0]→ A• φ−→ B• → H i(A•)[1− i0]

The result follows immediately from here.
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Lemma 6.7. Let X be a smooth projective variety. Then the cohomological dimension of

X, that is the cohomological dimension of Coh(X) is equal to dimX.

Proof. Let dimX = n, and F ,G ∈ Coh(X). Now by Serre duality we have

Exti(F ,G) ∼= Extn−i(F ,G ⊗ wX)
∗

Hence for i > n, we have n− i < 0, and thus

Exti(F ,G) ∼= Extn−i(F ,G ⊗ wX)
∗ ∼= 0

This proves that cd Coh(X) ≤ n. On the other hand,

Extn(OX , wX) ∼= Ext0(OX ,OX)
∗ ∼= H0(X,OX)

∗ ̸= 0

This shows that cd Coh(X) ≥ n. Hence, cd Coh(X) = n = dimX.

Theorem 6.8. Let C be a smooth projective curve. Then any object in Db(C) is isomorphic

to the direct sum of its shifted cohomology sheaves.

Proof. We will prove this via induction on the length of the complex.

Let A• ∈ Db(C), with length n, and H i(A•) = 0, for i < i0. Using Lemma 0.2 we have the

distinguished triangle

H i(A•)[−i0]→ A• → B• → H i(A•)[1− i0]

We will show that this triangle splits, i.e. A• ∼= H i(A•)[−i0] ⊕ B•, where H i(B•) = 0, for

i ≤ i0, and H i(B•) = H i(A•), for i > i0.

Using Lemma 0.1 if we show that Hom(B•, H i(A•)[1− i0]) = 0, it will be enough.

Hence via induction we would have

B• ∼= ⊕i>i0H
i(B•)[−i0] ∼= ⊕i>i0H

i(A•)[−i0], since H i(B•) = 0 for i ≤ i0

Thus

Hom(B•, H i(A•)[1− i0]) = Hom(⊕i>i0H
i(B•)[−i0], H i(A•)[1− i0])

= ⊕i>i0Hom(H i(B•)[−i0], H i(A•)[1− i0])

= ⊕i>i0Ext
1+i−i0(H i(B•), H i(A•))

= 0.
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The last equality comes from Lemma 0.3, since dimension of a curve is one, and i > i0 =⇒

1 + i− i0 > 1. This proves the theorem.

6.2.1 Finding the right adjoint

Next we explain Grothendieck’s approach to Serre duality, which was motivated by the search

for a right adjoint to the push-forward functor f∗ for a morphism f : X → Y of schemes.

Recall that two functors F : C → D, and G : D → C are said to be adjoint (written

as F ⊣ G, and then F is a left adjoint to G, and G is a right adjoint to F ) if there are

isomorphisms

HomD(FA,B) ∼= HomC(A,GB)

natural in both variables, for every A ∈ ObC, B ∈ ObD.

We know that for a projective morphism f : X → Y, the the push-forward functor

f∗ : Coh(X) → Coh(Y ), and the pullback functor f ∗ : Coh(Y ) → Coh(X) are adjoint,

f ∗ ⊣ f∗.

But finding the right adjoint to the functor f∗ is not easy. At first the search for a right

adjoint to f∗ seemed to be doomed for failure, as the following proposition proves:

Proposition 42. Assume that F ⊣ G, and that C,D are abelian categories. Then F must

be right exact, and G must be left exact.

Now f∗ is left exact, but not exact in general. Thus if f∗ had a right adjoint, from the

previous proposition we would have that f∗ is exact. Hence in the general case f∗ does not

have a right adjoint.

The problem, however, appears to be with the fact that we are dealing with abelian cate-

gories, which are a bit too restrictive. The point is that in passing to the derived categories,

we have replaced a left exact functor f∗ by its right derived version Rf∗ which is now exact.

So in principle there may be hope to find a right adjoint to Rf∗ : D
b(Coh(X))→ Db(Coh(Y )).
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Here we identify a point, pt with Spec k, where k is a field.

Let f : X → pt be the structure morphism of a smooth projective variety X. Suppose Rf∗

has a right adjoint, say g, then we would have

Hompt(Rf∗F•,G•) ∼= HomX(F•, gG•)

where F• ∈ Db(Coh(X)), and G• ∈ Db(Coh(pt)).

Any object in Db(Coh(pt)) decomposes into direct sums of shifts of k. (Explanation due)

So let G• = k. Also for simplicity let F• is a complex with one coherent sheaf F concentrated

at i, thus F• = F [i].

Now it is easy to see that

Hompt (Rf∗F [i], k) ∼= H i(X,F)v,

because f∗F = Γ(X,F).

Now Serre duality predicts

H i(X,F )∨ ∼= Extn−i
X (F , ωX) = HomDb

coh(X) (F [i], ωX [n]) ,

Thus, if we set gk = ωX [n], Serre duality yields

Hompt (Rf∗F [i], k) ∼= HomX (F [i], gk) ,

which is precisely the adjunction formula we want. Making gcommute with direct sums and

shifts we get a well defined g : Db(coh(pt)) → Db(coh(X)) which is a right adjoint (in the

derived sense) to Rf∗.

We will now generalize the above calculation to make it work for a much more general

class of maps f . Our final result will be:

Theorem 6.9. Let f : X → Y be a morphism of smooth projective schemes. Then a

right adjoint to Rf∗ : Db(coh(X)) → Db(coh(Y )) exists, and is given by g : Db(coh(Y )) →

Db(coh(X)),

g(−) = Lf ∗ (−⊗ ω−1
Y [− dimY ]

)
⊗ ωX [dimX].
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Note that the previous calculation that gk = ωX [dimX] for the structure morphism

f : X → pt of a smooth scheme X agrees with this theorem.

Remark : It is crucial to emphasize at this point that it is not true that an equivalence

of triangulated categories F : Db(Coh(X))→ Db(Coh(Y )) between the derived categories of

smooth varieties will satisfy

F (ωX [dimX]) ∼= ωY [dimY ]

The reason for this apparent mismatch is the fact that in general derived equivalences need

not take tensor products to tensor products; thus the peculiar fact that SX is given by

tensoring with ωX [dimX] will not translate to F mapping ωX to ωY . What is true is that

F will commute with the corresponding Serre functors.

To prove the theorem we will simply use a very nice property of Serre functors. The

great thing about Serre functors is that it allows one to convert from a left adjoint to a right

adjoint and vice versa. Specifically, we have

Theorem 6.10. Let F : C → D be a functor between the k-linear categories C,D that admit

Serre functors SC, SD. Assume that F has a left adjoint G : D → C, G ⊣ F . Then

H = SC ◦G ◦ S−1
D : D → C

is a right adjoint to F .

Proof.

HomD(Fx, y) ∼= HomD
(
S−1
D y, Fx

)∨ ∼= HomC
(
GS−1

D y, x
)∨

∼= HomC
(
x, SCGS−1

D y
)
= HomC(x,Hy)

This immediately yields the theorem.
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6.3 The structure of Db
Coh(X)

6.3.1 Coherent sheaves over X, a smooth projective curve

Purpose : In this section we will describe the structure of Coherent sheaves over a smooth

Projective Curve, we will prove that any Coherent sheaf over X is a direct sum of a locally

free sheaf and a sheaf supported at finitely many points. We will also prove that Every

locally free sheaf over P1 decomposes to a direct sum of line bundles.

Definition 6.5. For a scheme (X,OX) an OX module is called Quasi-coherent if for every

x ∈ X, there exists an open neighborhood U ⊂ X such that F|U ∼= M̃, for some Γ(U,OX)

module M. We call the sheaf of modules F Coherent if the modules M are finitely generated.

(Here M̃ is the OX module associated to the module M)

We give some equivalent conditions for an OX module to be quasi-coherent,

Proposition 43. Let X be a scheme and let F be an OX-module. Then the following

assertions are equivalent,

(i) The OX-module F is quasi-coherent.

(ii) For every open affine subset U = SpecA of X there exists an A-module M such that

F|U ∼= M̃.

(iii) There exists an open affine covering (Ui)i of X,Ui = SpecAi, and for each i an Ai-

module Mi such that F|Ui
∼= M̃i for all i.

(iv) For all x ∈ X, there exists an open neighborhood U of x and an exact sequence of OX |U
modules of the form

OJ
X |U → OJ

X |U → F|U → 0

where I and J are arbitrary index sets (depending on x).

(iv) For every open affine subset U = SpecA of X and every f ∈ A the homomorphism

Γ(U,F)f → Γ(D(f),F)

is an isomorphism.
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Next we define the torsion subsheaf T of an OX module F as follows

Γ(U, T ) = the torsion submodule of Γ(U, F )

= {a ∈ Γ(U, F ) | ∃ 0 ̸= r ∈ Γ(U,OX), such that ra = 0}

We will show that the Torsion sheaf is isomorphic to a finite direct sum of sky-scraper

sheaves.

For that we define the Support of a sheaf F as follows

Supp(F) = {x ∈ X | Fx ̸= 0}

We see that for a Coherent sheaf of modules F , Supp(F) is a closed subset of X. Indeed,

since F is coherent, Fx = 0 implies that F|U = 0, for an open subset U containing x. Hence

Supp(F) is a closed subset of X.

Now T is a torsion sheaf as defined above then the localization at the generic point η is zero.

This shows that Supp(T ) is a proper closed subset of X.

In the case when X is a curve, a proper closed subset means a collection finitely many

(closed) points. This shows that any torsion sheaf T is supported at finitely many points,

say {x1, x2, . . . , xn}. Define the sky-scraper sheaves G as follows

Γ(U,Gi) =

0 xi ∈ U

Txi
xi ∈ U

Checking on the stalk level we see that

T ∼=
n⊕

i=1

Gi

From here we see that for any Coherent sheaf of modules F the quotient sheaf S = F/T is

torsion-free.

Since X is a smooth curve the localization at a point OX,x is a DVR, and hence a PID. This

implies that SX,x = FX,x/TX,x is a torsion-free module over OX,x, a PID. Hence SX,x is free.

Thus S is a locally free OX module.

When X is a curve, and F a coherent OX module, we summarize our findings in the following

short exact sequence

0→ T → F → S → 0
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where T is a torsion sheaf of modules and S is locally free. For our purpose this statement

is enough, but we will go one step further and show that this sequence splits.

Theorem 6.11. Any Coherent sheaf over X is a direct sum of a locally free sheaf and a

sheaf supported at finitely many points.

Proof. (Sketch): From the previous discussion we have the following exact sequence

0→ T → F p−→ S → 0

where T is a torsion sheaf of modules and S is locally free. We need to show that this exact

sequence splits. We apply the functor Hom(S,−) followed by the sections functor to this

sequence to obtain the exact sequence

H0(X,Hom(S,F))→ H0(X,Hom(S,S))→ H1(X,Hom(S, T ))

The last entry vanishes since the sheaf Hom(S, T ) is only supported at finitely many points.

Hence we get that the map

Hom(S,F)→ Hom(S,S)

is surjective. Hence there exists a morphism φ : S → F such that p ◦ φ = id|S . Hence,

F ∼= S ⊕ T .

Next we are going to proof a theorem which will be very helpful in determining the

structure of Db(Coh(P1)).

Theorem 6.12. (Grothendieck) Every locally free sheaf (vector bundle) over OP1 decomposes

into a direct sum of line bundles OP1(d).

Proof. See [5]

6.3.2 The structure of Db(Coh(P1))

Purpose : Using the structure of Coherent sheaves over P1, as described in the previous

section we will give a proof of the fact that Db(Coh(P1)) = ⟨O,O(−1)⟩.

Our aim is to show that the category Db
Coh (P1) has a particularly simple structure, being

generated by just two objects. We first make precise the idea of a generator.
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Definition 6.6. Let A be an arbitrary abelian category and let S be a set of objects in

Db(A). The category generated by S, denoted ⟨S⟩, is the smallest full subcategory of Db(A)

that contains S and is closed under shifts and distinguished triangles.

Here, ”closed under shifts” means that if C• is an object of ⟨S⟩, then so is C[n]• for any

n ∈ Z, and ”closed under distinguished triangles” means that if

K• u−→ L• v−→M• w−→ K[1]•

is distinguished in Db(A) and two of K•, L•,M• are in ⟨S⟩, then so is the third.

Proof of the theorem : Denote the subcategory ⟨OX ,OX(−1)⟩ of Db(Coh(X)) by D . It is

enough to show that every coherent sheaf F , viewed as a single object complex in Db
Coh (X),

is in D . Indeed, an arbitrary object in Db
Coh (X) can be translated into the form

· · · −→ 0 −→ F0
d0−→ F1

d1−→ F2 −→ · · · −→ Fk −→ 0 −→ · · ·

where F0 is in degree 0 . Then because F0,F1 are in D , the map

. . . 0 F0 0 . . .

. . . 0 F1 0 . . .

d0

is in D , so that its cone

· · · −→ 0 −→ F0
d0−→ F1 −→ 0 −→ 0 −→ · · ·

is also an object of D (here, F0 is in degree −1 ). Then also F2 is in D , so taking the cone

of the map

. . . 0 F0 F1 0 . . .

. . . 0 0 F2 0 . . .

d0

d1

gives

· · · −→ 0 −→ F0
d0−→ F1

d1−→ F2 −→ 0 −→ 0 −→ · · ·
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Continuing this process, we see that every object in Db
Coh (X) can be constructed, up to

translation, from single object complexes; since D is closed under shifting, it follows that

D = Db
Coh(X).

We will now show that every coherent sheaf F can be constructed fromOX andOX(−1) in

a finite number of steps using short exact sequences. We know that if 0→ F → G → H → 0

is a short exact sequence of sheaves, and if any two of them belong to D , then so does the

third.

Now for any arbitrary coherent sheaf F , we have the following short exact sequence

0 −→ T −→ F −→ E −→ 0

where T is torsion and E is locally free. If we can show that these two types of sheaves are

in D , our proof will be finished.

Sky-scraper sheaf : We will show that any sky-scraper sheaf belongs to D . Let SP be

a sky-scraper sheaf supported at one point P, and D be the divisor defined by this point

(since X = P1). Then by [4, Proposition 6.18], we have that the ideal sheaf of the closed

subscheme i : {P} ↪→ X is isomorphic to O(−D) ∼= O(−1). Hence we have the following

short exact sequence

0→ O(−1)→ O → SP → 0

since O(−1),O are in D , we have that SP is also in D . Now since any sheaf supported at a

finitely many points is actually direct sum of sky-scraper sheaves supported at a point, we

have that any torsion sheaf belongs to D .

Locally-free sheaves : We saw that in the following short exact sequence

0→ OP1(−1)→ OP1 → F → 0

F is a sky-scraper sheaf, and thus tensoring with the locally free sheaf OP1(1) we get another

short exact sequence

0→ OP1 → OP1(1)→ F1 → 0
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here also F1 is a sky-scraper sheaf.

From the first sequence we have that F is in D , because OP1(−1), and OP1 are in D . And

from the second equation by the similar argument we have that OP1(1) is in D .

Going on like this, tensoring by OP1(1) we see that OP1(n) is in D , for all n ∈ Z.

Now by Grothendieck’s result we know that every locally free sheaf is a direct sum of

line bundles OP1(n), and thus can be placed in a short exact sequence with the other two

terms as line bundles. Hence we see that any locally free sheaf is in D . This completes our

proof.
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6.4 Fourier-Mukai transforms

I will now talk about Fourier-Mukai transforms and a few its

applications in Algebraic Geometry. As an application I will

prove that the derived categories of an abelian variety and its

dual are equivalent.

We will have the following conventions: Let X and Y be smooth projective varieties over a

field. We have the projections

p : X × Y → Y, q : X × Y → X.

We will not write the L′s and R′s in front of the functors but all functors we consider are in

fact derived functors.

Definition 6.7. Let P ∈ Db(X × Y ), the induced Fourier-Mukai transform is the functor

ΦP : Db(X)→ Db(Y )

E• 7→ p∗ (q
∗ (E•)⊗ P )

We say P is the Fourier-Mukai kernel of ΦP .

Remark 1. Note that since q is flat, the derived functor q∗ is just the usual pullback.

To be less ambiguous we could write ΦX→Y
P for the Fourier-Mukai transform defined

above. We also get a Fourier-Mukai transform ΦY→X
P : Db(Y ) → Db(X) by reversing the

roles of p and q in the definition. So one Fourier-Mukai kernel induces two Fourier-Mukai

transforms. Unless we specify otherwise we take ΦP to be the one from Db(X) to Db(Y ).

Remark 2. The Fourier-Mukai Transform is a composition of three exact (i.e. triangulated)

functors and is therefore itself exact (triangulated).

I will now give a few examples of Fourier-Mukai transforms. We will see that we have

already encountered many functors which are Fourier-Mukai transforms. Before that let me

mention the derived version of the projection formula. For a locally free sheaf E on Y and

an arbitrary sheaf F on X, the classical projection formula gives

f∗(F ⊗ f ∗E) ∼= f∗(F)⊗ E ,
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where f : X → Y is a proper morphism of schemes.

Now let f : X → Y be a proper morphism of projective schemes over a field k. For any

F• ∈ Db(X), E• ∈ Db(Y ) there exists a natural isomorphism (derived version):

Rf∗ (F•)⊗⊗LE• ∼−→ Rf∗
(
F• ⊗L Lf ∗ (E•)

)
.

Example 6.1. The identity

id : Db(X)→ Db(X)

is a Fourier-Mukai transform with kernel O∆, where ∆ is the diagonal in X ×X. When we

look at the diagonal embedding i : X
∼→ ∆ ⊂ X ×X we have i∗OX = O∆. We use this and

the projection formula to get

ΦO∆
(E•) = p∗ (q

∗E• ⊗ i∗OX)

= p∗ (i∗ (i
∗q∗E• ⊗OX))

= (p ◦ i)∗ ((q ◦ i)∗E• ⊗OX)

= E• (since p ◦ i = q ◦ i = id).

Example 6.2. For a function X → Y we have the graph X → X × Y where Γf = id × f .

We have Γf∗OX = OΓf
so similar to the identity case we get

ΦOΓf
(E•) = (p ◦ Γf )∗ ((q ◦ Γf )

∗ E• ⊗OX) = f∗E•

We can reverse the roles of p and q to get

ΦX→Y
OΓf

= f∗ , ΦY→X
OΓf

= f ∗.

Taking global sections can be seen as a special case of this since for f : X → Spec k we have

f∗ = Γ.

Example 6.3. Let L ∈ Pic(X). Then E• 7→ E• ⊗ L defines an autoequivalence Db(X) →

Db(X) which is isomorphis to the Fourier-Mukai transform with kernel i∗(L) where i : X
∼→

∆ ⊂ X ×X. Indeed we have,

Φi∗(L)(E•) = p∗(q
∗(E•)⊗ i∗(L))

= (p ◦ i)∗(L⊗ (i ◦ q)∗(E•))

= E• ⊗ L.
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In particular, the Serre functor, which is the exact equivalence

SX(·) = (·)⊗ ωX [dimX],

where ωX denotes the canonical line bundle of X, is of Fourier-Mukai type.

Fourier-Mukai transforms have many nice properties. We have already seen that Fourier-

Mukai transforms are exact. Now we will show that a Fourier-Mukai transform has a left

and a right adjoint, in fact both the adjoints are Fourier-Mukai transforms, for which the

kernels can be described explicitly.

Definition 6.8. For any object P ∈ Db(X × Y ) we let

PL := P∨ ⊗ p∗ωY [dim(Y )] and PR := P∨ ⊗ q∗ωX [dim(X)],

both objects in Db(X × Y ). Here P∨ is the derived dual [see [6, Page 78]].

Proposition 44. The Fourier-Mukai transforms ΦPL
,ΦPR

: Db(Y ) → Db(X) are left, re-

spectively right adjoint to ΦP .

Proof. For this we need Grothendieck-Verdier duality. Let f : X → Y , we define ωf :=

ωX ⊗ f ∗ω∨
Y and dim f := dimX − dimY .

Theorem 6.13. (Grothendieck-Verdier duality). Let F• ∈ Db(X) and E• ∈ Db(Y ), there is

a functorial isomorphism

f∗H om (F•, f ∗E• ⊗ ωf [dim f ]) ∼= H om (f∗F•, E•)

Keep in mind that (as everywhere) the operations here are all derived functors.

For this proof we are interested in the special case where f = q and we then take global

sections. We get ωf = ωX×Y ⊗ q∗ω∨
X = p∗ωY and

HomDb(X×Y ) (F•, q∗E• ⊗ p∗ωY [dimY ]) ∼= HomDb(Y ) (q∗F•, E•) .
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We now use this and the fact that pullback and pushforward are adjoint.

HomDb(X) (ΦPL
(F•) , E•) = HomDb(X) (q∗ (p

∗F• ⊗ PL) , E•)

= HomDb(X×Y ) (p
∗F• ⊗ PL, q

∗E• ⊗ p∗ωY [dimY ])

= HomDb(X×Y ) (p
∗F• ⊗ P∨, q∗E•)

= HomDb(X×Y ) (p
∗F•, q∗E• ⊗ P ) (see [6, Page84])

= HomDb(Y ) (F•, p∗ (q
∗E• ⊗ P ))

= HomDb(Y ) (F•,ΦPR
(E•))

Now the question arises: when does a given kernel defines a fully faithful or equivalent

Fourier-Mukai transform. For this we need to be able to work with composition. Next

we will show that the composition of two arbitrary Fourier–Mukai transforms is again a

Fourier–Mukai transform. We will give an explicit formula for the Fourier–Mukai kernel of

the composition.

Let X, Y , and Z be smooth projective varieties over k a field. Consider objects P ∈

Db(X × Y ) and Q ∈ Db(Y × Z). Then define the object R ∈ Db(X × Z) by the formula

R := πXZ∗ (π
∗
XYP ⊗ π∗

Y ZQ) ,

where πXZ , πXY , and πY Z are the projections from X×Y ×Z to X×Z,X×Y , respectively

Y × Z.

Proposition 45. The composition

Db(X)
ΦP→ Db(Y )

ΦQ→ Db(Z)

is isomorphic to the Fourier-Mukai transform

ΦR : Db(X)→ Db(Z).

Proof. See [6, Proposition 5.10].
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Theorem 6.14. (Orlov) Let X and Y be two smooth projective varieties and let

F : Db(X) −→ Db(Y )

be a fully faithful exact functor. If F admits right and left adjoint functors, then there exists

an object P ∈ Db(X × Y ) unique up to isomorphism such that F is isomorphic to ΦP :

F ≃ ΦP .

Proof. See [10].

Applying this to equivalences we have,

Corollary 6.1. Let F : Db(X)
∼−→ Db(Y ) be an equivalence between the derived categories

of two smooth projective varieties. Then F is isomorphic to a Fourier-Mukai transform ΦP

associated to a certain object P ∈ Db(X × Y ), which is unique up to isomorphism.

Equivalence of categories Db(A) ∼= Db(Â): Let A be an abelian variety of dimension

g and Â is its dual. Let P ∈ Pic(A× Â) be the Poincaré bundle.

Theorem 6.15. The natural adjunction morphism

idD(A∨) → ϕP ◦ ϕP−1[g]

is an isomorphism.

Db(Â)
ΦP−1[g]−→ Db(A)

ΦP−→ Db(Â)

Before this we need the following theorem

Theorem 6.16. Let A,A∨ and P as before and write p2 : A × A∨ → A∨ for the second

projection. Then we have

Rnp2∗P =

0 if n ̸= g

k (eA∨) if n = g

where k (eA∨) denotes the skyscraper sheaf at eA∨; and

Hn (A× A∨,P) =

0 if n ̸= g

k if n = g
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Proof. By example 7.3 it is enough to show that

ΦP−1[g] ◦ ΦP ∼= ΦR ∼= Φi∗OÂ
,

where i : Â→ ∆ ⊂ Â× Â. Define d : Â× Â→ Â, (a, b) 7→ a− b. Then we have

R = p13∗(p
∗
12(P−1[g])⊗ p∗23(P))

= p13∗(d× id)∗P [g]

= d∗p2∗P [g]

= d∗OÂ (by the last theorem)

= i∗OÂ.
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Part III: Motives
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7 Motives

In this section, I will introduce Motives, in particular the Chow

motives. After the definitions, we will calculate the Chow motive

in a few elementary cases using Manin’s principle. At the

end we will study the motive of an abelian variety and prove

the Chow-Kunneth decomposition of the motive of an abelian

variety.

We fix a base field k. Let Vk denote the category of smooth projective k-schemes. We

refer to the objects of Vk as varieties. For a morphism ϕ : X → Y, denote by Γϕ ⊂ X × Y

its graph.

For a variety X and an integer d, the cycle group Zd(X) is the free abelian group generated

by irreducible subvarieties of X of codimension d.

We write Ad(X) = Zd(X) ⊗ Q/ ∼, where ∼ is the rational equivalence relation. We are

aware that Ad(X) enjoys the following properties:

- For a morphism ϕ : X → Y there are pullback and push-forward maps ϕ∗ : A∗(Y ) →

A∗(X), ϕ∗ : A
∗(X)→ A∗+dimY−dimX(Y ).

- There is a product structure Ad(X)⊗Ae(X)→ Ad+e(X) given by intersection theory (See

Chapter 6, [3]).

There exists many other important adequate equivalence relations, but we will be con-

cerned about only rational equivalence here. The motives arising from this choice are called

the Chow motives.

Definition 7.1. (I) Let X, Y ∈ Vk. Define the group of correspondences of degree r, from X

to Y, Corrr(X, Y ) as follows. If X is purely d-dimensional, then

Corrr(X, Y ) = Ad+r(X × Y ).

In general, let X =
∐

Xi where each Xi is a connected variety, and set

Corrr(X, Y ) =
⊕
i

Corrr (Xi, Y ) ⊂ A∗(X × Y ).
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(II) Given correspondences f ∈ Corrr(X × Y ) and g ∈ Corrs(Y × Z), the composition of f

and g is given by the formula

g ◦ f := p13∗ (p
∗
12(f) · p∗23(g)) ∈ Corrr+s(X × Z),

where pi.j are the projections of X × Y × Z onto the products of i-th and j-th factors.

(III) If α ∈ Corrr(X, Y ) is a correspondence of degree r, it induces a homomorphism of

graded abelian groups

α∗ : A
∗(X)→ A∗+r(Y )

x 7→ (prY )∗ (α · pr
∗
X(x))

(IV) Given a correspondence α ∈ Corr∗(X, Y ), let σ : X × Y → Y ×X the natural isomor-

phism switching the two factors. We define the transpose of α as

tα = σ∗(α) ∈ A∗(Y ×X).

Fact: The composition of correspondences is associative.

Let us now give the definition of (Chow) motives right away.

Definition 7.2. The category Mk of k-motives is defined as follows: an object of Mk is

a triple (X, p,m) where X is a k-variety, m is an integer and p = p2 ∈ Corr0(X,X) is an

idempotent. If (X, p,m) and (Y, q, n) are motives, then

HomMk
((X, p,m), (Y, q, n)) = pCorrn−m(X, Y )q ⊂ Corr∗(X, Y )

and composition is given by composition of correspondences.

Remark 3. There is a functor h : Vopp
k →Mk which on objects is given by h(X) = (X, id,

0), and on morphisms ϕ : Y → X by

h(ϕ) = [Γϕ] ∈ Corr0(X, Y ) = Hom(h(X), h(Y ))

(usually one writes ϕ∗ for h(ϕ)).

Sketch of Grothendieck’s construction: Let me give a sketch of the usual definition

of motives found in the literature. The construction of the category of motives Mk with
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respect to an adequate equivalence relation, say rational equivalence, proceeds in several

steps

Vopp
k → Corr0(k)→Meff

k →Mk

where, Step I: We have our category of smooth projective schemes.

Step II: Corr0(k) has the same objects as Vk, but the morphisms are the degree zero corre-

spondences and the composition is the composition of correspondences. This generalizes the

morphism between varieties. Corr0(k) is an additive category.

Step III: (1) Meff
k is called the category of effective motives. The objects are pairs (X, p),

where as in our definition X ∈ Vk and p = p2 ∈ Corr0(X,X) is an idempotent. Here we

have the morphisms:

HomMeff
k
((X, p), (Y, q)) = q ◦ Corr0∼(X, Y ) ◦ p.

Composition comes from composition of correspondences. The categoryMeff
k is the pseudo-

abelian completion of the category Vk.

Step IV (Final step): We have our category of motives with a fully faithful embedding

Meff
k →Mk, (X, p) 7→ (X, p, 0).

The previous construction shows that every variety can be seen as a motive. Intuitively,

a motive (X, p, 0) should be seen as a “piece” of X that is “responsible” for a certain part

of the geometric and (or) arithmetic properties of X. To be precise, (X, p, 0) is a direct

summand of h(X).

7.1 Examples and Properties

(I) The unit motive or motive of a point

1 = (Spec k, id, 0) = h(point).

The Lefschetz motive

L = (Spec k, id,−1).

(Tensor product of motives) The tensor product inMk is defined as follows

(X, p,m)⊗ (Y, q, n) = (X × Y, p⊗ q,m+ n),
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and on morphisms

p1f1q1 ⊗ p2f2q2 =(p1 ⊗ p2) (f1 ⊗ f2) (q1 ⊗ q2) ∈ Corr∗ (X1 ×X2, Y1 × Y2)

if pifiqi : (X, p,m)→ (Y, q, n) .

First notice that

HomMk
(h(X), h(X)) = HomMk

((X, id, 0), (X, id, 0)) = Corr0(X,X).

Now suppose p ∈ Endh(X) = Corr0(X,X) is a projector, then ph(X) = p(X, id, 0) =

(X, p, 0). Hence we get the following

(X, p,m) = (X, p, 0)⊗ (Spec k, id,m)

= ph(X)⊗ L−m ⊂ h(X)⊗ L−m.

Here L−m = L⊗−m. The diagonal ∆ : X → X × X defines a product structure on h(X).

First notice that h(X) ⊗ h(X) = (X, id, 0) ⊗ (X, id, 0) = (X × X, id, 0) = h(X × X), and

∆∗ = [∆] ∈ Corr0(X ×X,X). This gives us the product structure,

mX : h(X)⊗ h(X)
∆∗
−→ h(X).

(II) (Transpose) Let ϕ : Y → X, and X, Y are purely d and e-dimensional, respectively.

Then the transpose [tΓϕ] ∈ Ad(Y ×X) = Ad−e+e(Y ×X) = Corrd−e(Y,X) is a correspondence

of degree d− e from Y to X.

We get more,

[tΓϕ] ∈ Corrd−e(Y ×X)

= id ◦ Corrd−e(Y,X) ◦ id

= HomMk
((Y, id, 0), (X, d− e, 0))

= HomMk
(h(Y ), h(X)⊗ Le−d).

Hence this defines a morphism

ϕ∗ : h(Y )→ h(X)⊗ Le−d.
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Suppose that d = e and that ϕ is generically finite, of degree r. Then the composite

ϕ∗◦ϕ∗ ∈ Endh(X) is multiplication by r. The following rough diagram may help understand

this (remember d = e),

h(X) h(Y ) h(X)

{(ϕ(y), y,X)} ∩ {(X, y, ϕ(y))} = (ϕ(y), y, ϕ(y)))

X × Y ×X

X × Y Y ×X

X ×X

(ϕ(y), ϕ(y))

ϕ∗ ϕ∗

p23

p13

p∗12([Γϕ]) p∗23([
tΓϕ])

Hence we have the following,

ϕ∗ ◦ ϕ∗ = p13∗
(
p∗12 [Γϕ] · p∗23

[
tΓϕ

])
= p13∗(ϕ, id, ϕ)∗[Y ] = r [∆X ]

where ∆X ⊂ X ×X is the diagonal.

(III) Now suppose X is a smooth projective variety of dimension d over an algebraically

closed field k. Let x ∈ X(k), then define the following,

p0(X) = {x} ×X, p2d(X) = X × {x}.

p0(X), p2d(X) ∈ Corr0(X) are projectors which are orthogonal to each other, i.e. p0
◦p2d =

p2d
◦p0 = 0. This then defines the two motives

h0(X) = (X, p0(X), 0) , h2d(X) = (X, p2d(X), 0) .

We then have the following important isomorphisms

h0(X) ≃ (X, {x} ×X, 0) ≃ 1

h2d(X) ≃ (X,X × {x}, 0) ≃ Ld.
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(Direct sum of motives) Let M = (X, p,m) and N = (Y, q,m). Then one can define

a motive M ⊕N . Let us only give the definition in case m = n :

M ⊕N = (X ⊔ Y, p⊕ q,m),

here ⊔ denotes the disjoint union.

As an application, for any smooth projective varietyX of dimension d, the correspondence

p+(X) := ∆X − p0(X) − p2d(X) is a projector (since p0 and p2d are orthogonal ) and if we

put h+(X) := (X, p+(X), 0) there is a direct sum decomposition

h(X) = h0(X)⊕ h+(X)⊕ h2d(X).

(Motive of the projective line) Applying the above decomposition to P1 we can see that

h(P1) = h0(P1)⊕ h+(P1)⊕ h2d(P1).

But now, ∆P1 ∼ P1×{x}+{x}×P1 ∼ p0(P1)+p2d(P1) =⇒ h(P1) = h0(P1)⊕h2d(P1) ∼= 1⊕L.

Similarly, we have ∆Pn ∼
∑n

i=0 Pi × Pn−i. The Pi × Pn−i are orthogonal idempotents so

h (Pn) = ⊕n
i=0

(
Pn,Pi × Pn−i

)
.

In fact (Pn,Pi × Pn−i) ∼= L⊗i so

h (Pn) ∼= ⊕n
i=0Li

7.2 Motives of Curves

Suppose C is a smooth projective curve over an algebraically closed field k. Then as above

let p1(C) = ∆C − p0(C)− p2(C). Then we have the decomposition,

h(C) = h0(C)⊕ h1(C)⊕ h2(C),

where hi(C) = (X, pi(C), 0).

In the last part of this section we will show that for an abelian variety A of dimension g,

there exists a unique decomposition inMk,

h(A) =

2g⊕
i=0

hi(A).
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As we are already aware of the structure of h0(C) and h2(C), we will investigate h1(C). We

will see that this motive is closely related to the Jacobian variety, J(C) of C. The following

important theorem fulfills the purpose:

Theorem 7.1. Let C,C ′ are smooth projective curves, then

HomMk
(h1(C), h1(C ′)) ∼= HomAV (J(C), J(C ′)).

Before the proof we need a definition and a few properties. See

Definition 7.3. (Degenerate divisors) Let X, Y are smooth projective varieties over an k.

The subgroup of degenerate divisors on X × Y is the subgroup generated by divisors D such

that prX(D) ̸= X or prY (D) ̸= Y. The subgroup of classes of degenerate divisors is denoted

by A1
≡(X × Y ).

Fact: A divisor D is degenerate if and only if D = D1 × Y + X × D2, where D1 ∈

divX,D2 ∈ div Y.

Theorem 7.2. (Weil) For any two smooth projective curves C,C ′ we have

HomAV(J(C), J(C ′)) ∼= A1(C × C ′)/A1
≡(C × C ′),

where J(C), J(C ′) are the Jacobians of C,C ′ respectively.

Proof. (Theorem 8.1) First we will work on motives with integer coefficients, denoted by

MZ
k . By the definition of a motive, we get the following homomorphism,

A1(C × C ′)→ HomMZ
k
(A1(C), A1(C ′)),

with the kernel A1
≡(C × C ′). Therefore we get the isomorphism

A1(C × C ′)/A1≡(C × C ′) ∼= HomMZ
k
(A1(C), A1(C ′)).

Consider the full subcategoryM′′
Z ofMZ

k of motives isomorphic to A1
Z(C) for some smooth

projective curve C, and let F : M′′
Z → {category of Jacobians of curves} be the functor

defined by F (A1
Z(C)) = J(C). Since F is clearly surjective, and by what we have just

proved, fully faithful, F is an equivalence of categories. Passing to rational coefficients in

the correspondences and taking Hom(J(C), J(C ′))⊗Q we have an equivalence

FQ :M′′
Q−→{category of Jacobians of curves} ⊗Q.
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7.3 Manin’s identity principle

As a consequence of the definition of motives, we can interpret the Chow groups of any

variety in terms of motives. Namely, we have the following isomorphisms:

Ai(X) ∼= Corri(Spec(k), X) ∼= HomMk
(1, h(X)⊗ L−i).

For any cycle ξ ∈ Ai(X) we will still denote the morphism 1 → h(X)L−i as ξ and, if X

is equi-dimensional, we will denote as tξ : h(X) ⊗ Ldim(X)−i → 1 its transpose. Taking

inspiration from this point of view, we define the i-th Chow group of a motive as

Ai(M) := HomM(k)(1,M ⊗ L−i)

which extends A∗ to a Z-graded, Q-linear tensor functor A∗ :Mk −→ sVecQ The following

result is a specialization of the Yoneda Lemma to our framework.

Lemma 7.3. The functor

ω :Mk −→ Fun( SmProj /k, Set )

is fully faithful where ωM is defined for any M ∈Mk as:

ωM : SmProj /k −→ Set

Y −→
⊕
r

HomMk
(h(Y ),M ⊗ L−r)

while ωf acts by composition with f .

Proof. The functor M 7−→ HomMk
(−,M) is fully faithful by Yoneda Lemma. Notice that,

for every M,N ∈Mk

HomMk
(N,M) = HomMk

(1,M ⊗N∨) = A0 (M ⊗N∨) ,

where for purely d-dimensional X, and M = (X, p,m), we define M∨ = (X, tp, d −m). We

know that any motive N is a direct factor of h(Y )⊗Ln, for some Y ∈ SmProj/k and n ∈ Z

and that A0(M ⊗ h(Y ) ⊗ L−n) is isomorphic to HomMk
(h(Y ),M ⊗ L−r) for some r. This

proves the claim.
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From this lemma we can deduce the following proposition,

Proposition 46. (Manin’s Identity Principle). (1) Let f : M → N be a morphism of

motives, f is an isomorphism if and only if ωf (Y ) : ωM(Y ) → ωN(Y ) is so for every

Y ∈ SmProj/k.

(2) Let f, g : M → N be morphisms, f = g if and only if ωf (Y ) = ωg(Y ) for any Y ∈

SmProj/k.

(3) Given morphisms M1
i1−→ M

p2−→ M2 in Mk, there exist p1 : M → M1 and i2 : M2 →

M such that M is a direct sum of M1 and M2 via (i1, i2, p1, p2), if and only if the sequence

0 −→ Hom (h(Y ),M1 ⊗ L∗)
ωi1

(Y )
−→ Hom(h(Y ),M ⊗ L∗)

ωp2 (Y )
−→ Hom (h(Y ),M2 ⊗ L∗) −→ 0. is

exact for any Y ∈ SmProj/k.

Example 7.1. Let us calculate the motive of Pn using Manin’s principle. We will have to

borrow a result from intersection theory,

A∗ (X × Pn) ≃ A∗(X)[t]/
(
tn+1

)
where t ∈ A1 (Pn) is the class of a hyperplane in Pn, see [9, Theorem 2.1]. Manin’s principle

yields an isomorphism of motives

h (Pn) =
n⊕

s=0

1⊗ Ls =
n⊕

s=0

Ls.

In fact, for any Y ∈ SmProj/ k equi-dimensional of dimension d we have

Hom (h(Y ), h (Pn) (r)) = Ad+r (Y × Pn) =
n⊕

s=0

Ad+r−s(Y ) = Hom

(
h(Y ),

n⊕
s=0

Ls−r

)
.

7.4 Motive of an Abelian variety

In this section we will consider an abelian variety X over k of dimension g. For an integer

n, write [×n] : X → X for multiplication by n. Also let µ : X ×X → X be the group law,

ε ∈ X(k) the identity element and σ : X → X multiplication by −1.

As we have already seen using the projectors p0(X), p2d(X), p+(X) = ∆X−p0(X)−p2d(X)

there always exist decomposition of a space X of the form

h(X) = h0(X)⊕ h+(X)⊕ h2d(X).
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We will now see that there exists an even finer decomposition of the motive of an abelian

variety,

Theorem 7.4. There is a unique decomposition inMk

h(X) =

2g⊕
i=0

hi(X)can

which is stable under [×n]∗, and such that [×n]∗|hi(X) is multiplication by the scalar ni, for

every n ∈ Z.

We first introduce some simple notations. If i ∈ Z then write A∗(X)(i) for the subspace

comprising all c ∈ A∗(X) such

[×n]∗(c) = nic for every n ∈ Z.

Likewise if X ′ is a second abelian variety, of dimension g′, write A∗ (X ×X ′)(i,j) for the set

of all c ∈ A∗ (X ×X ′) such that

([×m]× [×n])∗(c) = minjc for all m,n ∈ Z.

Proposition 47. c ∈ A∗ (X ×X ′)(i,j) if and only if, for every n ∈ Z, one has identities of

correspondences

[×n]∗X′◦C = njc and c ◦ [×n]∗X = n2g−ic.

Therefore if c ∈ A∗ (X ×X ′)(i,j) and d ∈ A∗ (X ′ ×X ′′)(r,s) one has d ◦ c = 0 unless

j = 2g′ − r.

We say ξ ∈ A∗(X) is symmetric if σ∗ξ = ξ. For such ξ define λ = µ∗ξ − pr∗1ξ − pr∗2ξ ∈

A1(X ×X).

Proof. Let ξ ∈ A1(X) be a symmetric ample line bundle. If 0 ≤ i ≤ 2g define

fi =
∑

max(0,i−g)≤j≤i/2

1

j!(g − i+ j)!(i− 2j)!
pr∗1ξ

j · pr∗2ξj · λi−2j ∈ Ai(X ×X)(i,i),

qi =
∑

max(0,i−g)≤j≤i/2

1

j!(g − i+ j)!(i− 2j)!
pr∗1ξ

g−i+j · pr∗2ξj · λi−2j ∈ Ag(X ×X)(2g−i,i).
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In particular qi ◦ qi′ = 0 if i ̸= i′. Now

2g∑
i=0

qi =
∑

0≤i≤2g
max(0,i−g)≤j≤i/2

1

j!(g − i+ j)!(i− 2j)!
pr∗1ξ

g−i+j · pr∗2ξj · λi−2j

=
1

g!
(pr∗1ξ + pr∗2ξ + λ)g

=
1

g!
µ∗ξg = dµ∗[ε] = d [Γσ]

where the last equality follows from the following fact: if η ∈ A1(X) is symmetric, then

ξg = g!d[ε] ∈ Ag(X).

Now define pcani = 1
d
σ∗ ◦ qi = (−1)i

d
qi ∈ Ag(X ×X)(2g−i,i). Then we have,∑

pcani = 1 and
∑

pcani ◦ pcani =
(∑

pcani

)2
= 1

This forces pcani ◦ pcani = pcani , and then hi(X)can = (X, pcani , 0) satisfies the properties given

in the statement.
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