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"श्री कृष्ण र्भूगवान ने अरु्जु�न से कहा: आप को अपने निन�ा�रिरत कत�व्य का पालन करने का अधि�कार है, लेनिकन आप
कर्भूी कर्म� फल की इच्छा से कर्म� र्मत करो (कर्म� फल देने का अधि�कार सिसफ�  ईश्वर को है)। कर्म� फल की अपेक्षा से

आप कर्भूी कर्म� र्मत करें, न ही आप की कर्भूी कर्म� न करने र्में प्रवृर्तित हो (आप की हरे्मशा कर्म� करने र्में प्रवृर्तित हो) ।।"  

"Sri Krishna said to Arjuna: You have a right to perform your prescribed duty, but you are
not entitled to the fruits of action. Never consider yourself the cause of the results of your

activities, and never be attached to not doing your duty."  

(Bhagwat Gita: Chapter Two verse 47)
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Abstract

It has been understood that the conventional electronics based devices will not

be able to meet the ever increasing requirements for data storage and processing of

the modern world. Among others, the idea of utilizing the spin degree of freedom

associated with electrons has been considered as a potential alternative. This has given

rise to a new research field, popularly known as spintronics, wherein electron’s spin

is used as the carrier of information for device functionalities. While it is not easy

to detect and utilize spin of a single electron in materials containing a large num-

ber of them, certain magnetic configurations show a desired stability and possible

control via external electric or magnetic field. Therefore, search for magnetic mate-

rials supporting certain stable magnetic textures has become a key theme of research in

recent years. Topologically protected magnetic textures, such as skyrmions and anti-

skyrmions, are of special importance due to their stability. Such textures have been

discovered in chiral magnets and in thin films of a variety of magnetic metals.

The fundamental physics associated with formation of magnetic skyrmions has

fascinated researchers since the discovery of these topological textures. The current

approach to understand these intriguing textures is via spin models consisting of

Dzyaloshinskii-Moriya (DM) interactions or frustrating long range interactions. In this

thesis, we present a microscopic mechanism for skyrmion and antiskyrmion formation

in metals that emerges from electronic itinerancy. We derive and study a microscopic

spin Hamiltonian on a lattice for double exchange metals modified by the Rashba and

Dresselhaus spin-orbit coupling (SOC). In our model, anisotropic interactions of the

Dzyaloshinskii-Moriya (DM) and pseudo dipolar form emerge naturally in addition to

the standard isotropic term. We present phase diagram of the effective spin Hamiltonian

which has very interesting ground states like classical spin liquid state using large scale

Monte Carlo simulations. We show that in the presence of Zeeman field the mechanism

we propose not only provides an accurate microscopic understanding of the existence of

skyrmions, but also explains key features in small angle neutron scattering (SANS) and

Lorentz transmission electron microscopy (LTEM) data on thin films of MnSi-type B20

metals and transition metals and their alloys. We identify hexagonal and square lattice

arrangements of skyrmions in two different regimes of the parameter space. Sparse

skyrmions emerge at finite temperatures as excitations of the ferromagnetic phase.

Further, the skyrmion states are characterized as topological metals via explicit

calculations of Bott index and Hall conductivity. Local density of states (LDOS)
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display characteristic oscillations arising from a combination of confinement effect and

gauge-field induced Landau level physics. These unique features serve as testable

predictions for the presence of the new mechanism of skyrmion formation in real

materials. The discovery of a new mechanism based on two celebrated physics

concepts not only fills a major conceptual void in the current understanding of skyrmions

and antiskyrmions in metals, but also opens a new route for tuning the size, density

and stability of skyrmions in magnetic metals. We also emphasize the importance of a

consistent treatment of spin-orbit coupling for calculating electronic properties of met-

als hosting unconventional magnetic textures such as skyrmions.

Finally, we provide a clear understanding of how Neel-type skyrmions, Bloch-type

skyrmions and the corresponding antiskyrmions are related with one another within

a simple lattice model. We also emphasize the role played by electron itineracy in

deciding the type of skyrmion textures in a metal. These features are completely missed

in a spin-only model written without reference to a starting microscopic model.
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1
Introduction

A brief introduction to spintronics and importance of unusual spin textures such as skyrmions is

presented in this chapter. Interesting aspects and problems related to the magnetism in metallic

systems are discussed. Important concepts like spin-orbit interactions and Kondo lattice model,

which set up the background before we get into the next few chapters of thesis are discussed in

detail. Finally an overview of the thesis is provided.
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1.1 Electronics and limitations

Information and communication devices such as computers, smart phones, storage

units, etc. have become an essential part of day-to-day life today. The commonly

used electronic devices consist of two main parts: semiconductor integrated circuits

(e.g., microprocessor and random-access memory) and permanent magnetic data stor-

age devices (hard disk and memory card). The semiconductor integrated circuits (IC)

are fabricated using hundreds of millions of electronic components such as resistors,

diodes, transistors, and capacitors arranged together in a single chip1. All these elec-

tronic components make use of the fundamental degree of freedom - the electronic

charge. Modern data storage devices, on the other hand, rely on the use of magnetic

materials2. In microprocessors and random access memories, the information is pro-

cessed and temporarily stored based on the electric charge of electron using classical

bits3. The low voltage represents the 0, while the high voltage represents the 1. In-

creasing the number of transistor-capacitor (memory cell) in the chip will increase the

number of bits and consequently its efficiency and capacity. In 1965, Gordon E. Moore

stated that the numbers of the transistors in the integrated circuit will double nearly

every 2 years. In 2019, the actual size of the transistor placed in commercial micro-

processor is about 50 nm with gate length of 20 nm and node of 7 nm4. But with the

continuous reduction in transistor size, the dimension of the transistor will reach to the

atomic size. At this size, both the writing and reading processes will become extremely

challenging due to quantum size effect and heat dissipation5–8. As a result the progress

in the electronic devices will come to the end when the transistor node size reaches to

1 nm. Random access memory (RAM) used in conventional electronics lose informa-

tion when power (electricity) is cutoff4. Also, the capacitors in conventional electronics

consume more energy due to charge leakage4. To overcome these limitations scientists

are working on a promising alternative technology called spintronics.

1.2 Spintronics

Spintronics is an emerging field of research with a potential to revolutionalize data stor-

age and processing technologies. The key idea is to utilize electron’s spin, in addition

to or instead of its charge, as the carrier of information for device functionalities9–12.

Spintronics has become an emerging field of condensed matter physics not only because

of its potential in developing future technologies but also because one can explore and

answer the very fundamental questions on physics of electron spin. Utilizing electron

spin in the quantum transport phenomena provides many important implications. The
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first spintronic device concept known as spin field effect transistor was originally pro-

posed by Datta-Das in 199013. Since then condensed matter physicists are working on

understanding the fundamental physics and novel mechanisms that can be utilized in

developing these devices.

Albert Fert and Peter Grunberg were awarded the 2007 Nobel Prize in Physics for

the discovery of giant magnetoresistance (GMR)14–16. The read heads of magnetic hard

drives which is based on this phenomenon is the first commercial application of spin-

tronics technology in computers. 0 bit (spin up) and 1 bit (spin down) are the two

magnetic states used in the hard disk drive to store data by encoding them magnetically

on circular rotating platters. To write or read these data, disk heads are used.4. In the

case of reading the disk, the disk heads transform magnetic field stored on platters to

electrical current, while the writing process is performed by converting the electrical

current into magnetic field. GMR system consists of two magnetic layers separated by

a non-magnetic one. GMR as a disk head exhibited a large change in resistance nearly

reaching 20% when exposed to a magnetic field change spin. In GMR, the parallel orien-

tation of the two magnetic layers is characterized by an electrical state of low resistance,

while the antiparallel orientation in the two magnetic layers is a state of high resistance.

The huge changes in resistance of this device can be used to sense the magnetic storage

data in the hard drive platters with high efficiency. The success of the giant magnetore-

sistance encourages the scientists to work on replacing the semiconductor components

such as random access memory, microprocessor, and transistors by magnetic random

access memory, magnetic microprocessor, and spin-transistor in computer device. Un-

like semiconductor random access memory, computer with a magnetic random access

memory as spintronics device would always retain its information even when power is

suddenly cutoff17. Also less energy is needed to switch the spin states from 0 to 1 or

vice versa, so spintronics devices use less power. The magnetic random access memory

technology still needs improvement, but the work is continuous to fabricate it perfectly.

Thus spintronics combines the semiconductor properties based on charge (integrated

circuits) and the magnetic properties based on spin (storage hard drive) in a single chip

to perform all process in one device. We can conclude that the transfer from conven-

tional electronics to spintronics technology opens the possibilities to construct devices

with high storage density, low power consumption, and fast operation and that are

cheap and robust.

It is well known that interactions in many particle systems can give rise to emergent

quasiparticles whose dynamics can be very different from that of constituent particles.

This holds true for magnetic systems as well. New particle-like textures in magnetiza-

tion can become stable. Such textures may prove very useful in both, insulators and met-
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als, for technological applications. Therefore, search for magnetic materials supporting

unusual magnetic textures has been a key theme of research in recent years18? –25. Pres-

ence of such spin textures in metals allows for their control using low currents26–32.

Furthermore, nontrivial magnetic states in metals are known to dramatically influence

the charge transport, which can be utilized in spintronic devices.

Topologically protected magnetic textures, such as skyrmions, are of special impor-

tance due to their stability33. Skyrmion-based devices have the potential to store and

process information in unprecedentedly small spaces. The presence or absence of a

skyrmion could serve as a 1 or 0 in a data bit for racetrack memory, and multiple

skyrmions could aggregate to form storage devices. Smaller the skyrmions we have,

denser is the packing of information. The states of such devices could be modulated

by an electric current that drives skyrmions in and out of the devices . The flexibility

to design the host and tune the skyrmion properties offers versatility for technological

applications33–39 has motivated the discovery of skyrmions in variety of materials iclud-

ing B20 Ferromagnet, Ferromagnetic thin film, Magnetic Multilayer, Multiferroics, van

der Waals ferromagnet/heterostructure, SAF-antiferromagnet etc. in recent years40–53.

Some of them are listed in Table 1.

1.2.1 Magnetic Skyrmions and Antiskyrmions

Magnetic skyrmions, are whirling cylinders of magnetization. Although the term skyrmion

was introduced in nuclear physics, the term has spread, and now it describes vari-

ous physical phenomena in condensed matter, string theory and particle and nuclear

physics54.

Topologically, a magnetic skyrmion is described by an integer, known as topological

charge, which is given by :

Q =
1

4π

∫
d2r(∂xm×∂ym) ·m (1.1)

where, m is a unit vector pointing in the direction of the magnetization. The topolog-

ical charge describes how many times magnetic moments wrap around a unit sphere

upon application of stereographic projection (see Fig. 1.1). Erasing a skyrmion requires

globally modifying the system and, as a result, skyrmions possess topological protection.
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Table 1: Materials and Thin-Film Heterostructures Hosting Topological Spin Textures

material content transition tem-

perature(K)

spin texture conductivity

MnSi 30 Bloch Sk metal

Fe1−xCoxSi (0.05≤ x≤ 0.7) 2-50 Bloch Sk semiconductor

FeGe 280 Bloch Sk metal

MnSi1−xGex (0≤ x≤ 0.25) 30 Bloch Sk metal

Co10−x/2Zn10−x/2Mnx (0≤ x≤ 6) 148-462 Bloch Sk metal

x = 6 160 Bloch Sk metal

Co8Zn9Mn3 325 Bloch Sk metal

meron lattice

Co8−xFexZn8Mn4 (0≤ x≤ 4.5) 130-300 Bloch Sk metal

FeCo0.5Rh0.5Mo3N 120 Bloch Sk metal

EuPtSi 4 Bloch Sk metal

Cu2OSeO3 59 Bloch Sk insulator

Mn1.4Pt0.9Pd0.1Sn 400 anti-Sk metal

GaV4S8 13 Neel Sk insulator

GaV4Se8 17.5 Neel Sk insulator

VOSe2O5 7.5 Neel Sk insulator

Fe/Ir(111) 11 Neel Sk metal

PdFe/Ir(111) 4.2 Neel Sk metal

(Ir/Co/Pt)10 > 300 Neel Sk metal

SrIrO3/SrRuO3 120 Neel Sk metal

BaTiO3/SrRuO3 80 Neel Sk metal

Gd2PdSi3 20 Bloch Sk metal

Gd3Ru4Al12 19 Bloch Sk metal

Table 1 Materials and Thin-Film Heterostructures Hosting Topological Spin Textures.

The table is adapted from review article55.

Magnetic skyrmions that were discovered in chiral B20 compounds such as MnSi,

FeGe are reffered as Bloch- and Neel-type skyrmions. Helicity and polarity are also used

to describe skyrmions. Helicity can be defined as the angle of the global rotation around

the z-axis that relates various skyrmions to the Neel skyrmion. For the Neel skyrmion,

helicity is zero. Polarity describes whether the magnetization points in the positive

(p = 1) or negative (p = −1) z-direction at the center of the skyrmion. For Bloch and

Neel skyrmions, the topological charge and polarity are equal (Q = p). The difference

in helicity distinguishes Bloch and Neel skyrmions from one another. Some magnetic

skyrmions can also have opposite topological charge and polarity (Q =−p). Such mag-
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Figure 1.1 (Top and bottom) Bloch (left), Neel (middle) skyrmions and Antiskyrmion (right).

netic textures are known as antiskyrmions. Fig. 1.2 shows some of the skyrmions and

antiskyrmions with their respective topological charge and helicity (γ).

1.3 Existing Theories for Skyrmions formation

The key step towards designing or discovering materials with unconventional spin tex-

tures is to understand the physics of minimal microscopic models incorporating es-

sential elementary mechanisms56–58. The current microscopic understanding of these

intriguing magnetic textures in insulators relies on spin models57,59–62. Microscopic

mechanisms to twist neighbouring spin-moment directions are necessary for the for-

mation of skyrmions and various noncolliner spin textures. Such twisting mechanisms

is mainly rooted in the antisymmetric exchange interaction due to spin orbit coupling

i.e., Dzyaloshinskii Moriya (DM) interaction, which is present in magnets with non-

centrosymmetric crystal lattice structures. Skyrmions have appeared in polar noncen-

trosymmetric ferromagnet, GaV4S8 and in nanolayers with engineered Dzyaloshinskii

Moriya interactions. Spin Hamiltonians naturally emerge in insulators as the charge

degrees of freedom become inactive and the low energy physics is determined by the

spin degrees of freedom. So understanding based on spin only models for insulators

is correct. But these models should not be extended for the explanation of emergence

of exotic spin textures in metallic systems as the ininerancy of electrons is the crucial
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Figure 1.2 Magnetization configuration of skyrmions (Q = 1) and antiskyrmions (Q = −1) with
fixed polarity (p = 1) and varying helicity. The length and direction of the arrows represent the
in-plane component of m, and the color indicates mz.

fecture of those systems that can not be ignored.

As far as metals are concerned skyrmions have discovered in many chiral cubic he-

limagnet metals including FeGe, MnSi etc. A simplified model for the energy w0 of a

chiral cubic ferromagnet in an applied magnetic field H is

w0(M) = A(∇ ·M)2−M ·H−D(M ·∇×M) (1.2)

The equation has three energy components, which contribute to the formation of mag-

netic skyrmions. The first ferromagnetic exchange energy term, with constant A, im-

poses parallel ordering of the magnetic moments. The second term, which is the in-

teraction with the applied magnetic field, favors magnetization oriented along H. The

final Dzyaloshinskii Moriya term induces helical modulations. The model introduces

two fundamental parameters: the helix period LD = 4πA/|D| and the saturation field
13



HD = D2M/(2A) that suppresses chiral modulations. At high magnetic fields, minimiz-

ing the energy functional w(M) yields isolated skyrmions in the form of weakly repul-

sive localized states in an otherwise uniformly magnetized state. They arise from a

subtle balance of the competing magnetic forces. The antiparallel magnetization at the

skyrmion center is energetically unfavorable in the presence of an applied magnetic

field, so the skyrmion core gradually shrinks with increasing magnetic field.

On the other hand, long-ranged exchange interactions mediated by itinerant elec-

trons, as represented by Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction leads to

magnetic frustration or higher order interactions, resulting in formation of various kinds

of noncollinear spin textures such as spin spirals63–66. Formation of multiple-q state is

further assisted by geometrical frustration such as in triangular or kagome lattices or

by the higher-order terms of the long-range interactions among multi sites and multi

spin components. As the modulation period is comparable to the length scale of mag-

netic interactions in this case, the skyrmion size can be consequently as small as a few

nanometers. Such interactions result in the topological spin crystals such as in the Fe/Ir

interface, MnGe, Gd-based compounds and SrFeO3. The long-range exchange interac-

tions enables the skyrmion formation in the centrosymmetric materials with the absence

of DM interaction.

Studies so far on the skyrmions formation and transport in the metals that con-

sist of a subsystem of localized magnetic moments interacting with conduction band

are highly inadequate. People have studied these systems using the spin Hamiltonians

which include DM interations of the form D ·Si×S j between localized spins with direct

interactions and easy axis anisotropic terms. And for the transport properties they just

have studied the effect of the magnetic ground states on charge carriers60,62,67. So,

the basic questions that motivates us to look beyond the phenomelogical models and is

central theme of this thesis is what happens when the itenerancy of charge carriers is

included in the Model?

• What are the magnetic groundstates induced by the strong correlation of localized spins
with charge carriers?

• How is the charge transport affected by the magnetic order?

In next three sections we provide the details some of the important concepts that are

foundation of the theoretical work that we are presenting in the thesis.
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1.4 Spin-Orbit Interaction

Spin-orbit coupling is a relativistic effect. The electron moving even in the absence of

externally applied magnetic field experiences a magnetic field in its rest frame that arise

from the Lorentz transformation of the static (external) electric field. This relativisti-

cally generated magnetic field, known as spin orbit (SO) field, couples to the electron’s

magnetic moment68.

SO coupling in atoms

In atoms, the orbital motion of an electron in the centrally symmetric electric field of

an atomic nucleus gives rise to SO coupling effect and lift the degeneracy of the one

electron energy level with opposite spins. The SO coupling increases with the atomic

number Z of the atom as Z4. Only this SO coupling is the reason for the Hund’s third

rule which states that “ given Hund’s first and second rules, depending on whether the

shell of orbitals is more than half filled (+) or less than half filled (-), the orbital and

spin angular momentum either align or antialign respectively, so that the total angular

momentum is J = |L±S| ”.

SO coupling in solids

SO coupling can be present in solids in externally applied electric field. It arises from

an interaction of the electron spin with the magnetic field that is experienced by the

moving electrons in their frame of motion. Suppose an electron moves with velocity v

in an electric field E. Performing Lorentz transformation to its rest frame, the electron

experiences a magnetic field,

B =− 1
c2 (v×E). (1.3)

The magnetic moment of the electron can interact with this field, giving rise to a

Zeeman-like term

HSO =−1
2

g∗µBB ·σ . (1.4)

Substituting Eq.(1.3) in Eq.(1.4) and using v = P/m∗ we finally get,

HSO =
g∗eh̄

4m∗2c2 (P×E) ·σ (1.5)

where, λ = g∗eh̄
4m∗2c2 is a material constant describing the strength of coupling.

Existence of internal electric fields is prohibitted in inversion symmetric crystals. SO

coupling is present only in crystals which lack the inversion symmetry. Depending on
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the origin of assymetry they can be further classify into two types:

1.4.1 Dresselhaus spin orbit coupling

Figure 1.3 Crystal structure with bulk inversion asymmetry.

SOC known as Dresselhaus SOC ocuurs in the crystal structures which lack a center

of inversion such as the GaAs or InSb. This inversion asymmetry is known as Bulk

inversion asymmetry, beacause of which there occurs a net electric field in certain crystal

directions.

The Mathematical form of the Hamiltonian corresponding to the Dresselhaus SOC

in 3D is given by69,

H3D
DSO = γ((P2

y −P2
z )Pxσ

x +(P2
z −P2

x )Pyσ
y +(P2

x −P2
y )Pzσ

z) (1.6)

When we make a layer or a thin film of such materials so that the electrons are confined

in two dimension, the cubic Dresselhaus SO coupling Eq.(1.6) reduces to the linear

Dresselhaus SO coupling,

H2D
DSO = β (Pxσ

x−Pyσ
y) (1.7)

1.4.2 Rashba spin orbit coupling

Experimentally, when a two dimensional electron gas is created at the interface; the

structural inversion symmetry breaks along the growth direction. This is done by con-

fining electrons by an approximate triangular potential well V(z)(see Fig. 1.4). If this

well is narrow enough electrons will only occupy the lowest eigenstate (bound states)

and the movement along the z direction is effectively frozen out so that electrons are

only free to move in a two-dimensional plane.
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bound states

Fermi energy

V(z)

z

Figure 1.4 An approximate triangular potential well V(z) confining the conduction electrons at
the interface (x-y plane).

The assymetry of this potential well not only confines the electrons in a plane but also

give rise to so called Rashba spin orbit coupling because of the nonzero potential gradi-

ent69. From Eq.(1.5) we get,

HRSO = λ
dV
dz

P · (ẑ×σ) (1.8)

For non uniform dV/dz, α = λ 〈dV/dz〉 is called Rashba parameter which will be non

zero only for the assymetric confining potential well. Important point to be noted here

is that the strength of the Rashba parameter is directly proportional to the potential

drop at the interface. So it can be controlled by an external gate voltage across a

heterojucntion containing two-dimensional electron gas. Applying gate voltage modifies

the shape of confining potential well and electron occupation, and thus the strength of

Rashba parameter. This control on Rashba parameter has lead to proposals for a variety

of devices based upon controlling the spin degrees of freedom electrically (rather than

with magnetic fields).

Eq.(1.8) can also be written as,

HRSO = α(Pyσ
x−Pxσ

y) (1.9)

1.5 Kondo Lattice Model

The Kondo lattice describes the materials in which the interactions are dominated be-

tween two distinct varieties of electrons; localized electrons possessed of a magnetic

moment, and itinerant electrons70.
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This situation is realised in, at least, the following two classes of materials:

(i) Manganese oxide perovskites, in which there exist a ferromagnetic exchange

interaction because of the mixed valency of magnetic ion.

(ii) Rare earth and actinide compounds, also known as heavy fermion materials, in

which the f orbitals remain strongly localized and interact with electrons in the con-

ducting d (or hybridized s-d) band.

The model was originaly proposed to explain the effect known as Kondo effect. In 1934

it was observed that for metals like silver, gold doped with impurities like Fe, Mn, the

resistivity ρ at low temperature increases with decreasing temperature (T) instead of

decreasing as expected from normal metals according to the Landau theory of Fermi

liquids as

ρ(T ) = ρo +aT2 +bT5, (1.10)

where, a and b are constants, ρo is the residual resistivity due to defects and impu-

rities, T2 dependence comes from electron-electron scattering whereas T5 dependence

comes from electron-phonon scattering.

In metals with magnetic impurities, the magnetic moments behave like free moments at

high temperatures but below a characteristic temperature, known as the Kondo temper-

ature TK, the conduction electrons begin to form a cloud of opposite spin-polarization

around the impurity spin via singlet formation with the localized spin which leads to the

impurity spin becoming non-magnetic. This process of magnetic screening of a magnetic

impurity by the conduction electrons is known as the Kondo effect. This effect results in

a new term in the resistivity which is proportional to -JK lnT where JK is the exchange

coupling between the local moment and the conduction electrons. As T→ 0 for antifer-

romagnetic interaction (JK > 0), ρ ∝ − lnT diverges. This leads to the appearance of a

resistivity minimum, below which the resistivity increases with decreasing temperature.

The Hamiltonian for Kondo Lattice Model is given by,

H = −t ∑
〈i j〉,σ

(c†
iσ c jσ +H.c)+ JK ∑

i
Si · si. (1.11)

which includes hoppings between nearest neighbor sites, coupling between localized

spins and itenerant electron spin at each site. JK denote the strength of Kondo cou-

pling. si is the spin operator for an electron at site i, and Si denotes the localized spin at
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that site. We will focus more on the regime with ferromagnetic coupling (JK < 0), also

called ferromagnetic Kondo lattice model. This arises from an on-site Hund’s rule cou-

pling between the localized electron spin and the spin of the the conduction electrons

in Hund’s metals. Since the localized spins are usually very large (S = 3/2,5/2,7/2) in

Hund’s metals; we approximate Si as a classical vector with |Si|= 1. Even with this ap-

proximation the model gives results that are in very good agreement with experiments.

Kondo Lattice Model belongs to a class of Hamiltonians with non-interacting elec-

trons coupled to classical spin variables. While the model may appear deceivingly sim-

ple, the key difficulty is in determining which classical configurations will lead to the

minimum energy. As surprising as it may sound, there is no analytical solution to this

problem. The only reliable approach is a hybrid Monte Carlo method that requires

diagonalization of Hamiltonian for each Monte Carlo update.

Depending on the strength of Kondo coupling the two limiting cases of the model are

as follows:

(i) Weak coupling : at t/|JK|>> 1, second order perturbation theory generates an

effective long range interaction known as Ruderman-Kittel-Kasuya-Yosida (RKKY) inter-

action between the localized spins which is mediated by the conduction electrons71–73.

RKKY Hamiltonian is given by,

HRKKY = ∑
i, j

Ji jSi ·S j. (1.12)

(ii) Strong coupling : at t/|JK|<< 1, we can rewrite the Hamiltonian Eq.(1.11) in a

basis where the spin-quantization axes are site dependent and align with the direction of

the local magnetic moment74,75. Since antiparallel orientations are strongly suppressed

for large JK, the low energy physics is determined by effectively spinless fermions with

the spin quantization axis parallel to the local moments. Projecting onto the parallel

subspace, we obtain :

Ht−J = −∑
〈i j〉

(ti jc
†
ipc jp +H.c)+ JAF ∑

〈i j〉
Si ·S j. (1.13)

where, ti j = −t
[

cos(θi
2 )cos(θ j

2 )+ sin(θi
2 )sin(θ j

2 )e
−i(φi−φ j)

]
depends on the polar and az-

imuthal angles (θi,φi) of the localised spins. JAF = 2t2/JK is the effective antiferromag-

netic coupling between the localised spins at neighbouring sites. This model is analo-

gous to the t-J model in large U limit of Hubbard model. The first and second terms of

Eq.(1.13) are called double exchange and classical super exchange terms respectively.
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1.5.1 Double Exchange Mechanism

For large JK, the bare energy band splits into two subbands. since, JK → ∞ we can

ignore second term of Eq.(1.13). The strong exchange interaction between localized

and itinerant electron spin wants to keep them all aligned. Thus at electronic filling

away from half filling, it is not energetically favourable for an itinerant electron to

hop to a neighbouring site where the localized spin will be antiparallel. Ferromag-

netic alignment of localized spins on neighbouring sites is therefore required. This is

called double exchange mechanism, introduced by Zener76 in 1951 to describe ferro-

magnetism in the perovskite manganese oxides. This ferromagnetic alignment due to

double exchange mechanism occurs in some oxides because of the mixed valency of

magnetic ion. For example, La1−xSrxMnO3 (0 ≤ x ≤ 1) in which there is presence of

mixture of Mn3+ and Mn4+ ions. With x = 0 and x = 1, are both antiferromagnetic insu-

lators, as would be expected for an oxide material in which the magnetism is mediated

by superexchange through the oxygen. However when LaMnO3 is doped with Sr up to a

level of x = 0.175, the material becomes ferromagnetic with a Curie temperature around

room temperature, below which it becomes metallic. This we can understand with the

help of schematic shown in Fig. 1.5.

Figure 1.5 Double exchange mechanism gives ferromagnetic coupling between Mn3+ and
Mn4+ ions participating in electron hopping. Exchange interaction doesn’t favour hopping if
(a) neighbouring ions antiferromagnetically aligned and (b) favors hopping if neighbouring ions
are ferromagnetically aligned.

The eg electron on a Mn3+ ion can hop to a neighbouring site where Mn4+ which has

no electrons in its eg orbital, this should present no problem. However, there is a strong

single-centre (Hund’s rule number 1) exchange interaction between the eg electron and

the three electrons in the t2g orbital which wants to keep them all aligned. Thus it is not

energetically favourable for an eg electron to hop to a neighbouring ion in which the t2g

spins will be antiparallel to the eg electron (Fig. 1.5(a)). Ferromagnetic alignment of

neighbouring ions is therefore required to maintain the up-spin arrangement on both
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the donating and receiving ion. Because the ability to hop gives a kinetic energy saving,

allowing the hopping (Fig. 1.5(b)) reduces the overall energy. Thus the system ferro-

magnetically aligns to save energy. Moreover, the ferromagnetic alignment then allows

the eg electrons to hop through the crystal and the material becomes metallic.

In 1955 Anderson and Hasegawa gave a microscopic derivation of the double-exchange

interaction on a two-site Kondo lattice with a ferromagnetic coupling (JK < 0), which

models the Hund’s rule coupling in the Mn oxides77,78. They found that the sign of

the coupling was irrelevant for the ferromagnetic ordering within a semiclassical ap-

proximation for the localized spins. For JK < 0, the ferromagnetic ordering comes via

triplet formation and double-exchange mechanism whereas for JK > 0 there is a com-

petition between singlet formation and double-exchange ordering. When t/|JK| is small

Kondo singlet formation dominates, while as t/|JK| increases, there is a large energy

gain for conduction electron hopping and this favours double-exchange hence the lo-

calized spins are then strongly ferromagnetically ordered. This mechanism provides

the understanding of ferromagnetic metals, has also played a key role in the descrip-

tion of magnetic and magneto-transport phenomena in, for example, manganites, dilute

magnetic semiconductors and Heusler metals79–81.

1.6 Overview of Thesis

The central theme of the thesis is to explore the physics of metallic systems which con-

tain localised spins interacting with spin orbit coupled itenerant charge carriers. As a

result of competing interactions, non trivial magnetization textures emerge in these sys-

tems. We present the interesting aspects that we have discovered during this exploration

in following chapters.

In chapter 2 we discuss the Rashba-Dresselhaus spin orbit coupled ferromagnetic Kondo

lattice model which is relevant for metallic systems. We then present the detailed ana-

lytical calculation of the Hamiltonian in the Double exchange limit. We provide details

of Kubo formalism used for electronic transport calculations and derive the current op-

erator for SOC ferromagnetic Kondo lattice model. Since the work of thesis is largely

done using numerical simulations, we also discuss the methods and numerical tech-

niques used in the thesis.

In chapter 3 we propose a microscopic magnetic Hamiltonian for exotic spin textures in

metals. Starting from Rashba double exchange model we present the analytical deriva-
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tion of an effective spin Hamiltonian. We study the effective spin model using the

classical Monte Carlo simulations and map out the phase diagram at low temperatures.

In chapter 4 we begin with exact calculations on Rashba double exchange model in

presence of Zeeman field and show the formation of skyrmions. With the help of the

effective spin model we provide an elegant understanding of the conditions under which

sparse or packed skyrmion phases emerge in metallic systems. Further, we unveil unique

topological features of these skyrmionic phases by computing the Bott index, equivalent

of Chern index for disordered systems, and the Hall conductivity.

In chapter 5 we study double exchange model modified by Dresselhaus SOC in presence

of Zeeman field. The form of the Hamiltonian is very similar to Rashba double exchange

model. With the help of the effective spin model we understand the similarity and

differences between two models. We find that in this model the antiskyrmion phases

emerge as ground states. We also map out the Zeeman field vs temperature phase

diagram to understand thermal stability of the states. We report the emergence of

Bloch skyrmions in these systems by suitably tuning the sign of hopping parameters.

Finally, in chapter 6 we present a brief summary of the thesis along with some future

prospects.

22



Bibliography

[1] T. Datta-Chaudhuri, P. Abshire and E. Smela, Lab on a Chip, 2014, 14, 1753–1766.

[2] R. Comstock, Journal of Materials Science: Materials in Electronics, 2002, 13, 509–

523.

[3] J. S. Meena, S. M. Sze, U. Chand and T.-Y. Tseng, Nanoscale research letters, 2014,

9, 526.

[4] S. M. Yakout.

[5] S.-Q. Shen, AAPPS Bulletin, 2008, 18, 29.

[6] B. Aktas and F. Mikailov, Advances in Nanoscale Magnetism: Proceedings of the In-
ternational Conference on Nanoscale Magnetism ICNM-2007, June 25-29, Istanbul,
Turkey, Springer Science & Business Media, 2008, vol. 122.

[7] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami and S. Piramanayagam, Ma-
terials Today, 2017, 20, 530–548.

[8] V. K. Joshi, Engineering science and technology, an international journal, 2016, 19,

1503–1513.

[9] S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, v. S. von Molnár, M. Roukes,

A. Y. Chtchelkanova and D. Treger, science, 2001, 294, 1488–1495.

[10] A. Hirohata, K. Yamada, Y. Nakatani, L. Prejbeanu, B. Diény, P. Pirro and B. Hille-

brands, Journal of Magnetism and Magnetic Materials, 2020, 166711.
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2
Model and Methods

In this chapter we present the Rashba Dresselhaus spin orbit coupled Kondo lattice model

Hamiltonian which is relevant for metals. First we derive the same Hamiltonian in the dou-

ble exchange limit and finally derive a new effective spin Hamiltonian. Kubo formalism for

calculations of longitudinal, transverse conductivities and spin Hall conductivities is discussed.

We derive the Kubo formulas for spin Hall conductivities in double exchange limit. Methods

used in simulations are also discussed.
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2.1 Introduction - Kondo Lattice Model

The Kondo lattice is one of the most important canonical models used to study strongly

correlated electron systems because of its relevance to several broad classes of real

materials as discussed in Chapter 1. The Kondo lattice Model describes the interaction

between a conduction band, itinerant electrons, and a lattice of localized magnetic

moments1 (see Fig. 2.1).

t t

JKJK

Figure 2.1 Schematic diagram showing the classical localized moments coupled to itinerant
electron spins.

The Hamiltonian for Ferromagnetic Kondo Lattice Model is given by,

H = Ht +HKondo

= −t ∑
〈i j〉,σ

(c†
iσ c jσ +H.c)− JK ∑

i
Si · si. (2.1)

where, the first term is usual tight binding hopping between nearest neighbor sites.

ciσ (c
†
iσ ) is the annihilation (creation) operator for electron at site i with spin σ , 〈i j〉

implies that sites i and j are nearest neighbors. The second term is the coupling between

localized spins and itenerant electron spin at each site. JK > 0 denote the strength of

ferromagnetic Kondo coupling. Si denotes the classical localized spin at site i and si is

the spin operator for an electron at that site. We can expand second term as:

HKondo = −JK

2 ∑
i,µ

Sµ

i ·σ
µ

i . (2.2)

HKondo = −JK

2 ∑
i
[Sx

i (c
†
i↑ci↓+ c†

i↓ci↑)− iSy
i (c

†
i↑ci↓− c†

i↓ci↑)+Sz
i (c

†
i↑ci↑− c†

i↓ci↓)]. (2.3)

30



where,

σ
x =

[
0 1

1 0

]
= c†

i↑ci↓+ c†
i↓ci↑,

σ
y =

[
0 −i

i 0

]
=−i(c†

i↑ci↓− c†
i↓ci↑),

σ
z =

[
1 0

0 −1

]
= c†

i↑ci↑− c†
i↓ci↓.

(2.4)

are Pauli matrices.

2.2 Rashba Dresselhaus Spin Orbit Coupling

As discussed in Chapter 1, Rashba and Dresselhaus spin-orbit coupling Hamiltonian in

2D continuum system is,

H = α(Pyσ
x−Pxσ

y)+β (Pxσ
x−Pyσ

y) (2.5)

The presence of Rashba and Dresselhaus spin orbit coupling on a square lattice is de-

scribed by the Hamiltonian2,

H = i ∑
i,σ ,σ

′
(c†

i,σ Λ̂1ci+y,σ ′ − c†
i,σ Λ̂2ci+x,σ ′ −H.c) (2.6)

where, The operators, Λ̂1 = λRσ x − λDσ y and Λ̂2 = λRσ y− λDσ x written in terms of

Rashba (λR) and Dresselhaus (λD) spin orbit coupling strengths and Pauli matrices.

Equation (2.6) can be expanded as:

H = ∑
i
[(λR + iλD)c

†
i↓ci+x↑− (λR− iλD)c

†
i↑ci+x↓

+(λD + iλR)c
†
i↓ci+y↑− (λD− iλR)c

†
i↑ci+y↓]+H.c (2.7)

If λD = 0, we have Rashba SOC Hamiltonian

HR = λR ∑
i
[(c†

i↓ci+x↑− c†
i↑ci+x↓)+ i(c†

i↓ci+y↑+ c†
i↑ci+y↓)]+H.c, (2.8)

31



and if λR = 0, we have Dresselhaus SOC Hamiltonian

HD = λD ∑
i
[i(c†

i↓ci+x↑+ c†
i↑ci+x↓)+(c†

i↓ci+y↑− c†
i↑ci+y↓)]+H.c. (2.9)

The tight-binding model with Rashba and Dresselhaus SOC on a square lattice is de-

scribed by the Hamiltonian,

H = −t ∑
〈i j〉,σ

(c†
iσ c jσ +H.c)

+∑
i
[(λR + iλD)c

†
i↓ci+x↑− (λR− iλD)c

†
i↑ci+x↓

+(λD + iλR)c
†
i↓ci+y↑− (λD− iλR)c

†
i↑ci+y↓]+H.c. (2.10)

using,

ciσ =
1√
N ∑

k
e−ik·rickσ ,

1
N ∑

i
ei(k−k′)·ri = δkk′,

with definitions,

S1 = λR sin(ky)+λD sin(kx),

S2 = λR sin(kx)+λD sin(ky), (2.11)

we get,

H = ∑
k
−2t(cos(kx)+ cos(ky))c

†
k↑ck↑−2t(cos(kx)+ cos(ky))c

†
k↓ck↓

+2(S1 + iS2)c
†
k↑ck↓+2(S1− iS2)c

†
k↓ck↑. (2.12)

By diagonalizing the Hamiltonian in momentum space, we obatain the eigenvalues

εk± =−2t(cos(kx)+ cos(ky))±2
√

S2
1 +S2

2 (2.13)

and eigenvectors

Ψk± =
1√
2

[
c†

k↑±
S1− iS2√

S2
1 +S2

2

c†
k↓

]
|0〉. (2.14)

So the Hamiltonian Eq.(2.14) has two bands of chiral eigenstates. The chiral states

are of different nature for pure Rashba and pure Dresselhaus SOC cases as shown in

(Fig. 2.2).
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Figure 2.2 Fermi contours at 1/5 filling for (a) pure Rashba SOC (λR = 0.3, λD = 0.0) , (b) pure
Dresselhaus SOC ( λR = 0.0, λD = 0.3). Hopping parameter, t = 1.0 for the calculation.

2.3 Rashba Dresselhaus Kondo Lattice Model

The FKLM in the presence of Rashba and Dresselhaus SOC on a square lattice in global

quantization axis frame is described by the Hamiltonian,

H = Ht +HR +HD +HKondo

= −t ∑
〈i j〉,σ

(c†
iσ c jσ +H.c)

+λR ∑
i
[(c†

i↓ci+x↑− c†
i↑ci+x↓)+ i(c†

i↓ci+y↑+ c†
i↑ci+y↓)]+H.c

+λD ∑
i
[i(c†

i↓ci+x↑+ c†
i↑ci+x↓)+(c†

i↓ci+y↑− c†
i↑ci+y↓)]+H.c

−JK ∑
i

Si · si. (2.15)

We re-write the Hamiltonian in a frame of reference which has site-dependent quantiza-

tion axis pointing along the local classical spins direction. This transforms the Hamilto-

nian in new operators, dip(dia) which annihilates an electron at site i with spin parallel

(antiparallel) to the localized spin. This is achieved by performing a site dependent

rotation of the spin-1
2 basis given by the canonical SU(2) transformations3,[

ci↑
ci↓

]
=

[
ηi η

′
i

][dip

dia

]
(2.16)
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where,

ηi = eiχi

cos
(

θi
2

)
e−iφi/2

sin
(

θi
2

)
eiφi/2

 ,
η
′
i = e−iχi

−sin
(

θi
2

)
e−iφi/2

cos
(

θi
2

)
eiφi/2

 (2.17)

are the spinors defined in terms of θi, φi are the polar and azimuthal angles describe

the direction of the local spin Si and phase factor, χi is a gauge freedom. For follow up

derivations we use χi = φi/2. That is,

[
ci↑
ci↓

]
=

 cos
(

θi
2

)
−sin

(
θi
2

)
e−iφi

sin
(

θi
2

)
eiφi cos

(
θi
2

) [dip

dia

]
(2.18)

which gives,

ci↑ = cos
(

θi

2

)
dip− sin

(
θi

2

)
e−iφidia,

ci↓ = sin
(

θi

2

)
eiφidip + cos

(
θi

2

)
dia,

c†
i↑ = cos

(
θi

2

)
d†

ip− sin
(

θi

2

)
eiφid†

ia,

c†
i↓ = sin

(
θi

2

)
e−iφid†

ip + cos
(

θi

2

)
d†

ia. (2.19)

where, d†
ip(d

†
ia) creates an electron at site i with spin parallel (antiparallel) to the local-

ized spin. These transformations Eq.(2.19) modify the various terms of the Hamiltonian

Eq.(2.15) as we describe in detail below.

2.3.1 Tight Binding Term

The Tight Binding term of the Hamiltonian Eq.(2.15) is,

Ht = −t ∑
〈i j〉

(c†
i↑c j↑+ c†

i↓c j↓)+H.c (2.20)
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where, site j = i + γ is the nn of site i along spatial direction γ ∈ {x,y}. Using the

transformations Eq.(2.19), we get

Ht = −t ∑
〈i j〉

[(
cos
(

θi

2

)
d†

ip− sin
(

θi

2

)
eiφid†

ia

)(
cos
(

θ j

2

)
d jp− sin

(
θ j

2

)
e−iφ jd ja

)]
+
[(

sin
(

θi

2

)
e−iφid†

ip + cos
(

θi

2

)
d†

ia

)(
sin
(

θ j

2

)
eiφ jd jp + cos

(
θ j

2

)
d ja

)]
+H.c

(2.21)

Expanding Eq.(2.21) we get the various terms of Tight Binding Hamiltonian ,

hpp
t = −t ∑

〈i j〉

[
cos
(

θi

2

)
cos
(

θ j

2

)
+ sin

(
θi

2

)
sin
(

θ j

2

)
e−i(φi−φ j)

]
d†

ipd jp, (2.22)

hpa
t = −t ∑

〈i j〉

[
sin
(

θi

2

)
cos
(

θ j

2

)
e−iφi− cos

(
θi

2

)
sin
(

θ j

2

)
e−iφ j

]
d†

ipd ja, (2.23)

hap
t = −t ∑

〈i j〉

[
− sin

(
θi

2

)
cos
(

θ j

2

)
eiφi + cos

(
θi

2

)
sin
(

θ j

2

)
eiφ j
]
d†

iad jp, (2.24)

haa
t = −t ∑

〈i j〉

[
sin
(

θi

2

)
sin
(

θ j

2

)
ei(φi−φ j)+ cos

(
θi

2

)
cos
(

θ j

2

)]
d†

iad ja. (2.25)

2.3.2 Rashba SOC Term

We transform the Rashba SOC terms of the Hamiltonian Eq.(2.15) along x and y direc-

tions using Eq.(2.19)

along x ( j = i+ x)

HR(x) = λR ∑
〈i j〉

(c†
i↓c j↑− c†

i↑c j↓)+H.c

= λR ∑
〈i j〉

[(
sin
(

θi

2

)
e−iφid†

ip + cos
(

θi

2

)
d†

ia

)(
cos
(

θ j

2

)
d jp− sin

(
θ j

2

)
e−iφ jd ja

)]
−
[(

cos
(

θi

2

)
d†

ip− sin
(

θi

2

)
eiφid†

ia

)(
sin
(

θ j

2

)
eiφ jd jp + cos

(
θ j

2

)
d ja

)]
+H.c

(2.26)
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hpp
R (x) = λR ∑

〈i j〉

[
sin
(

θi

2

)
cos
(

θ j

2

)
e−iφi− cos

(
θi

2

)
sin
(

θ j

2

)
eiφ j
]
d†

ipd jp, (2.27)

hpa
R (x) = λR ∑

〈i j〉

[
− sin

(
θi

2

)
sin
(

θ j

2

)
e−i(φi+φ j)− cos

(
θi

2

)
cos
(

θ j

2

)]
d†

ipd ja, (2.28)

hap
R (x) = λR ∑

〈i j〉

[
cos
(

θi

2

)
cos
(

θ j

2

)
+ sin

(
θi

2

)
sin
(

θ j

2

)
ei(φi+φ j)

]
d†

iad jp, (2.29)

haa
R (x) = λR ∑

〈i j〉

[
− cos

(
θi

2

)
sin
(

θ j

2

)
e−iφ j + sin

(
θi

2

)
cos
(

θ j

2

)
eiφi
]
d†

iad ja. (2.30)

along y ( j = i+ y)

HR(y) = iλR ∑
〈i j〉

(c†
i↓c j↑+ c†

i↑c j↓)+H.c

= iλR ∑
〈i j〉

[(
sin
(

θi

2

)
e−iφid†

ip + cos
(

θi

2

)
d†

ia

)(
cos
(

θ j

2

)
d jp− sin

(
θ j

2

)
e−iφ jd ja

)]
+
[(

cos
(

θi

2

)
d†

ip− sin
(

θi

2

)
eiφid†

ia

)(
sin
(

θ j

2

)
eiφ jd jp + cos

(
θ j

2

)
d ja

)]
+H.c

(2.31)

hpp
R (y) = iλR ∑

〈i j〉

[
cos
(

θi

2

)
sin
(

θ j

2

)
eiφ j + sin

(
θi

2

)
cos
(

θ j

2

)
e−iφi

]
d†

ipd jp, (2.32)

hpa
R (y) = iλR ∑

〈i j〉

[
cos
(

θi

2

)
cos
(

θ j

2

)
− sin

(
θi

2

)
sin
(

θ j

2

)
e−i(φi+φ j)

]
d†

ipd ja, (2.33)

hap
R (y) = iλR ∑

〈i j〉

[
− sin

(
θi

2

)
sin
(

θ j

2

)
ei(φi+φ j)+ cos

(
θi

2

)
cos
(

θ j

2

)]
d†

iad jp, (2.34)
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haa
R (y) = iλR ∑

〈i j〉

[
− sin

(
θi

2

)
cos
(

θ j

2

)
eiφi− cos

(
θi

2

)
sin
(

θ j

2

)
e−iφ j

]
d†

iad ja. (2.35)

2.3.3 Dresselhaus SOC Term

Similarly, we transform the Dresselhaus SOC terms of the Hamiltonian Eq.(2.15) along

x and y directions using Eq.(2.19)

along x ( j = i+ x)

HD(x) = iλD ∑
〈i j〉

(c†
i↓c j↑+ c†

i↑c j↓)+H.c

= iλD ∑
〈i j〉

[(
sin
(

θi

2

)
e−iφid†

ip + cos
(

θi

2

)
d†

ia

)(
cos
(

θ j

2

)
d jp− sin

(
θ j

2

)
e−iφ jd ja

)]
+
[(

cos
(

θi

2

)
d†

ip− sin
(

θi

2

)
eiφid†

ia

)(
sin
(

θ j

2

)
eiφ jd jp + cos

(
θ j

2

)
d ja

)]
+H.c

(2.36)

hpp
D (x) = iλD ∑

〈i j〉

[
cos
(

θi

2

)
sin
(

θ j

2

)
eiφ j + sin

(
θi

2

)
cos
(

θ j

2

)
e−iφi

]
d†

ipd jp, (2.37)

hpa
D (x) = iλD ∑

〈i j〉

[
cos
(

θi

2

)
cos
(

θ j

2

)
− sin

(
θi

2

)
sin
(

θ j

2

)
e−i(φi+φ j)

]
d†

ipd ja, (2.38)

hap
D (x) = iλD ∑

〈i j〉

[
− sin

(
θi

2

)
sin
(

θ j

2

)
ei(φi+φ j)+ cos

(
θi

2

)
cos
(

θ j

2

)]
d†

iad jp, (2.39)

haa
D (x) = iλD ∑

〈i j〉

[
− sin

(
θi

2

)
cos
(

θ j

2

)
eiφi− cos

(
θi

2

)
sin
(

θ j

2

)
e−iφ j

]
d†

iad ja. (2.40)
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along y ( j = i+ y)

HD(y) = λD ∑
〈i j〉

(c†
i↓c j↑− c†

i↑c j↓)+H.c

= λD ∑
〈i j〉

[(
sin
(

θi

2

)
e−iφid†

ip + cos
(

θi

2

)
d†

ia

)(
cos
(

θ j

2

)
d jp− sin

(
θ j

2

)
e−iφ jd ja

)]
−
[(

cos
(

θi

2

)
d†

ip− sin
(

θi

2

)
eiφid†

ia

)(
sin
(

θ j

2

)
eiφ jd jp + cos

(
θ j

2

)
d ja

)]
+H.c

(2.41)

hpp
D (y) = λD ∑

〈i j〉

[
sin
(

θi

2

)
cos
(

θ j

2

)
e−iφi− cos

(
θi

2

)
sin
(

θ j

2

)
eiφ j
]
d†

ipd jp, (2.42)

hpa
D (y) = λD ∑

〈i j〉

[
− sin

(
θi

2

)
sin
(

θ j

2

)
e−i(φi+φ j)− cos

(
θi

2

)
cos
(

θ j

2

)]
d†

ipd ja, (2.43)

hap
D (y) = λD ∑

〈i j〉

[
cos
(

θi

2

)
cos
(

θ j

2

)
+ sin

(
θi

2

)
sin
(

θ j

2

)
ei(φi+φ j)

]
d†

iad jp, (2.44)

haa
D (y) = λD ∑

〈i j〉

[
− cos

(
θi

2

)
sin
(

θ j

2

)
e−iφ j + sin

(
θi

2

)
cos
(

θ j

2

)
eiφi
]
d†

iad ja. (2.45)

2.3.4 Kondo Term

Pauli matrices Eq.(2.4) transform in new operators using Eq.(2.19) as:

σ
x =

 sin(θi)cos(φi) cos2
(

θi
2

)
− sin2

(
θi
2

)
e−i2φi

cos2
(

θi
2

)
− sin2

(
θi
2

)
ei2φi −sin(θi)cos(φi)


σ

y =

 sin(θi)sin(φi) −i
(

cos2
(

θi
2

)
+ sin2

(
θi
2

)
e−i2φi

)
i
(

cos2
(

θi
2

)
+ sin2

(
θi
2

)
ei2φi

)
−sin(θi)sin(φi)


σ

z =

[
cos(θi) −sin(θi)e−iφi

−sin(θi)eiφi −cos(θi)

]
(2.46)
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using Eq.(2.46) in Kondo Hamiltonian Eq.(2.2) we get,

HKondo = −JK

2 ∑
i

[
d†

ip d†
ia

][hpp
kondo hpa

kondo

hpa
kondo haa

kondo

][
dip

dia

]
(2.47)

where,

hpp
kondo = Sx

i [sin(θi)cos(φi)]+Sy
i [sin(θi)sin(φi)]+Sz

i [cos(θi)]

= (Sx
i )

2 +(Sy
i )

2 +(Sz
i )

2 = |Si|= 1, (2.48)

hpa
kondo = Sx

i

[
cos2

(
θi

2

)
− sin2

(
θi

2

)
e−i2φi

]
+Sy

i

[
− i
(

cos2
(

θi

2

)
+ sin2

(
θi

2

)
e−i2φi

)]
+Sz

i

[
− sin(θi)e−iφi

]
= sin(θi)cos(φi)cos2

(
θi

2

)
− sin(θi)cos(φi)sin2

(
θi

2

)
e−i2φi− isin(θi)sin(φi)cos2

(
θi

2

)
−isin(θi)sin(φi)sin2

(
θi

2

)
e−i2φi− sin(θi)cos(θi)e−iφi

= −sin(θi)sin2
(

θi

2

)
e−iφi + sin(θi)cos2

(
θi

2

)
e−iφi− sin(θi)cos(θi)e−iφi

= sin(θi)e−iφi
(

cos2
(

θi

2

)
− sin2

(
θi

2

))
− sin(θi)cos(θi)e−iφi

= sin(θi)cos(θi)e−iφi− sin(θi)cos(θi)e−iφi = 0, (2.49)

hap
kondo = (hpa

kondo)
∗ = 0, (2.50)

haa
kondo = −Sx

i [sin(θi)cos(φi)]−Sy
i [sin(θi)sin(φi)]−Sz

i [cos(θi)]

= −[(Sx
i )

2 +(Sy
i )

2 +(Sz
i )

2] =−|Si|=−1. (2.51)

Kondo term of the Hamiltonian in rotated reference frame reduces to,

HKondo = −JK

2 ∑
i

[
d†

ip d†
ia

][1 0

0 −1

][
dip

dia

]

= −JK

2 ∑
i

d†
ipdip−d†

iadia. (2.52)

We can see here that in the rotated frame of reference the Kondo term just contains the

diagonal elements as the itinerant electrons tend to align parallel or antiparallel to the

direction of localized spins. However, this simplification in the Kondo coupling term

came at the cost of complicated hopping and SOC terms as described above.
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2.4 Rashba Dresselhaus Double Exchange Model

The advantage of transforming the Hamiltonian Eq.(2.15) in new operators which align

electron spin parallel or antiparallel to the localized moments is that the coupling term

now contains just the diagonal terms in the Hamiltonian matrix, whereas the angular

dependencies of the spins are incorporated in hopping amplitudes.

t

t

Figure 2.3 Schematic diagram showing itinerant electrons in global quantization and local
quantization axis frame of reference.

In the double exchange (JK → ∞) limit, the bare energy band splits into two sub-

bands of spins parallel and antiparallel to the localized moments at each site. Since

antiparallel orientations are strongly suppressed for large JK, the low energy physics is

determined by effectively spinless fermions with the spin quantization axis parallel to

the local moments (see Fig. 2.3). Projecting onto the parallel subspace, we obtain the

modified hopping and SOC amplitudes :

ti j(γ) = −t
[

cos
(

θi

2

)
cos
(

θ j

2

)
+ sin

(
θi

2

)
sin
(

θ j

2

)
e−i(φi−φ j)

]
, (2.53)

λ
R
i j(x) = λR

[
sin
(

θi

2

)
cos
(

θ j

2

)
e−iφi− cos

(
θi

2

)
sin
(

θ j

2

)
eiφ j
]
, (2.54)

λ
R
i j(y) = iλR

[
cos
(

θi

2

)
sin
(

θ j

2

)
eiφ j + sin

(
θi

2

)
cos
(

θ j

2

)
e−iφi

]
, (2.55)
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λ
D
i j (x) = iλD

[
cos
(

θi

2

)
sin
(

θ j

2

)
eiφ j + sin

(
θi

2

)
cos
(

θ j

2

)
e−iφi

]
, (2.56)

λ
D
i j (y) = λD

[
sin
(

θi

2

)
cos
(

θ j

2

)
e−iφi− cos

(
θi

2

)
sin
(

θ j

2

)
eiφ j
]
. (2.57)

So, we describe the Rashba Dresselhaus Double Exchange Model by,

HRDDE = ∑
〈i j〉,γ

[gγ

i jd
†
ipd jp +H.c], (2.58)

where,

gγ

i j = ti j(γ)+λ
R
i j(γ)+λ

D
i j (γ) (2.59)

is the projected hopping and site j = i+ γ is the nn of site i along spatial direction

γ ∈ {x,y}.
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2.5 Effective Spin Model

In this section we derive an effective spin hamiltonian from Rashba Dresselhaus Double

Exchange Model. Using Eq.(2.53) to Eq.(2.57) in Eq.(2.59), we can write the real and

imaginary parts of gγ

i j as:

Re(gx
i j) = − t

[
cos
(

θi

2

)
cos
(

θ j

2

)
+ sin

(
θi

2

)
sin
(

θ j

2

)
cos(φi−φ j)

]
+λR

[
sin
(

θi

2

)
cos
(

θ j

2

)
cosφi− cos

(
θi

2

)
sin
(

θ j

2

)
cosφ j

]
−λD

[
cos
(

θi

2

)
sin
(

θ j

2

)
sinφ j− sin

(
θi

2

)
cos
(

θ j

2

)
sinφi

]
,

(2.60)

Im(gx
i j) = t

[
sin
(

θi

2

)
sin
(

θ j

2

)
sin(φi−φ j)

]
−λR

[
sin
(

θi

2

)
cos
(

θ j

2

)
sinφi + cos

(
θi

2

)
sin
(

θ j

2

)
sinφ j

]
+λD

[
sin
(

θi

2

)
cos
(

θ j

2

)
cosφi + cos

(
θi

2

)
sin
(

θ j

2

)
cosφ j

]
,

Re(gy
i j) = − t

[
cos
(

θi

2

)
cos
(

θ j

2

)
+ sin

(
θi

2

)
sin
(

θ j

2

)
cos(φi−φ j)

]
−λR

[
cos
(

θi

2

)
sin
(

θ j

2

)
sinφ j− sin

(
θi

2

)
cos
(

θ j

2

)
sinφi

]
+λD

[
sin
(

θi

2

)
cos
(

θ j

2

)
cosφi− cos

(
θi

2

)
sin
(

θ j

2

)
cosφ j

]
,

Im(gy
i j) = t

[
sin
(

θi

2

)
sin
(

θ j

2

)
sin(φi−φ j)

]
+λR

[
sin
(

θi

2

)
cos
(

θ j

2

)
cosφi + cos

(
θi

2

)
sin
(

θ j

2

)
cosφ j

]
−λD

[
sin
(

θi

2

)
cos
(

θ j

2

)
sinφi + cos

(
θi

2

)
sin
(

θ j

2

)
sinφ j

]
.

Writing gγ

i j in polar form, gγ

i j = f γ

i je
ihγ

i j , such that

f x
i j = {(Re(gx

i j))
2 +(Im(gx

i j))
2}1/2,

f y
i j = {(Re(gy

i j))
2 +(Im(gy

i j))
2}1/2

Using Eq.(2.60) and simplifying, we obtain the following closed form expressions for f x
i j

and f y
i j :
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f x
i j =

{
1
2
[t2(1+Sx

i Sx
j +Sy

i Sy
j +Sz

i S
z
j)+λ

2
R(1−Sx

i Sx
j +Sy

i Sy
j−Sz

i S
z
j)

−2tλR(Sx
i Sz

j−Sz
i S

x
j)+λ

2
D(1+Sx

i Sx
j−Sy

i Sy
j−Sz

i S
z
j)+2tλD(Sz

i S
y
j−Sy

i Sz
j)]

}1/2

=

{
1
2
[t2(1+Si ·S j)+λ

2
R(1−Si ·S j +2Sy

i Sy
j)+2tλRŷ · (Si×S j)

+λ
2
D(1−Si ·S j +2Sx

i Sx
j)−2tλDx̂ · (Si×S j)]

}1/2

(2.61)

f y
i j =

{
1
2
[t2(1+Sx

i Sx
j +Sy

i Sy
j +Sz

i S
z
j)+λ

2
R(1+Sx

i Sx
j−Sy

i Sy
j−Sz

i S
z
j)

+2tλR(Sz
i S

y
j−Sy

i Sz
j)+λ

2
D(1−Sx

i Sx
j +Sy

i Sy
j−Sz

i S
z
j)−2tλD(Sx

i Sz
j−Sz

i S
x
j)]

}1/2

=

{
1
2
[t2(1+Si ·S j)+λ

2
R(1−Si ·S j +2Sx

i Sx
j)−2tλRx̂ · (Si×S j)

+λ
2
D(1−Si ·S j +2Sy

i Sy
j)+2tλDŷ · (Si×S j)]

}1/2

(2.62)

The phase angles, hγ

i j, are easily obtained via,

hγ

i j = arctan

(
Im(gγ

i j)

Re(gγ

i j)

)
, (2.63)

The ground state expectation values of the Hamiltonian Eq. (2.58) is identical to the ex-

pression, −∑〈i j〉,γ Dγ

i j f γ

i j , where Dγ

i j = 〈[eihγ

i jd†
ipd jp +H.c.]〉gs. Following the strategy used

in double exchange models4, we promote the above expression to a spin Hamiltonian,

HS = − ∑
〈i j〉,γ

Dγ

i j f γ

i j. (2.64)

We emphasize that, by construction, the magnetic ground states of HS Eq. (2.64) and
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HRDDE Eq. (2.58) are identical. We also note that an equality of energy between ground

states of HS Eq. (2.64) and HRDDE Eq. (2.58) exists only if Dγ

i j are allowed to be

inhomogeneous. A model with constant coupling parameter is an ad hoc approximation,

unless a consistency check is carried out to show that the ground state supports Dγ

i j≡D0.

2.6 Kubo-Greenwood Formalism

Many experiments in condensed matter physics measure the liner response to an exter-

nal perturbation. Kubo formulas are the correlation function that describes the linear

response5. This formation was first proposed by Green (1952,1954) for transport in liq-

uids. Kubo (1957,1959) first derived the equations for electrical conductivity in solids.

We use the standard Kubo formalism for the computation of the transport properties

of any given non-interacting Hamiltonian. A brief theory of the formalism is presented

here:

In electrical conduction, a time-dependent external electric field,

E(t) = Eo exp(−ιωt) (2.65)

is applied. In linear response, the induced current is proportional to the applied electric

field. σ(ω) is the response function

σ(ω) =
h̄
N ∑

m
∑

n6=m

f (Em)− f (En)

Em−En
|〈m|Jγ |n〉|2δ (|Em−En|− h̄ω)) (2.66)

where, Em and En are eigenvalues corresponding to the eigenstates |m〉 and |n〉,
f (Em) = 1/1+ exp(Em−µo

kT ) is Fermi distribution function and Jγ is current density opper-

ator along γ direction in tight binding model is given by,

Jγ =−it ∑
i, j
(nγ .δij)(c

†
jci− c†

i c j) (2.67)

where, nγ is the unit vector in γ direction whereas δi j is vector from i to j site. In square

lattice for current density opperator along x direction, nx · δi j = 1 and nx · δi j = 0. So,

Longitudinal current density operator is,

Jx =−it ∑
i, j
(c†

jci− c†
i c j) (2.68)
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since, eigen sates can be written in site basis,

|m〉= ∑
i

z(i,m)|i〉 (2.69)

so,the matrix elements of Jx in eigen basis of H can be written as,

〈m|Jx|n〉=−it ∑
i, j

z∗( j,m)z(i,n)− z∗(i,m)z( j,n) (2.70)

The general expression for longitudinal and transverse d.c electrical conductivities i.e

for ω → 0 at T = 0 are given by6,

σxx(E) =
h̄
N ∑

m
∑

n6=m

( f (Em)− f (En)

Em−En

)
Γ

(Em−En)2 +Γ2 |〈m|Jx|n〉|2 (2.71)

σxy(E) =
ih̄
N ∑

m
∑

n6=m
( f (Em)− f (En))

〈m|Jx|n〉〈n|Jy|m〉
(Em−En)2 +Γ2 (2.72)

Γ is a positive infinitesimal Lorentzian broadening. Resistivities are obtained by using,

ρxx =
σxx

σ2
xx +σ2

xy
, (2.73)

ρxy =
σxy

σ2
xx +σ2

xy
. (2.74)

2.6.1 Current density operators

Here we derive the current density operators (Jγ) for Rashba Double Exchange Model

on square lattice. The current operator is defined as JJJ = ie
h̄ [H,rrr] that takes the following

form:

J =
ie
h̄
[H, n̂i] (2.75)

where, n̂i = c†
i ci is number operator. We use following properties of anticommutators of

fermionic operators:

{c†
iσ ,c

†
jσ} = {ciσ ,c jσ}= 0 (2.76)
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{c†
iσ ,c jσ ′} = δi jδσσ

′ (2.77)

to get,

[ciσ , n̂iσ ] = ciσ (2.78)

[c†
iσ , n̂iσ ] = −c†

iσ (2.79)

[ciσ , n̂iσ ′ ] = [c†
iσ , n̂iσ ′ ] = 0 (2.80)

[ciσ , n̂ jσ ] = [c†
iσ , n̂ jσ ] = 0 (2.81)

The tight binding (TB) and Rashba spin orbit (SO) coupling contributions of current

operator along γ ∈ {x,y} directions such that site j = i+ γ is the nn of site i are,

TB along γ

JTB
γ =

−iet
h̄ ∑
〈i j〉,σ

[(c†
iσ c jσ + c†

jσ ciσ ), n̂iσ ]

=
−iet

h̄ ∑
〈i j〉,σ

[c†
iσ c jσ , n̂iσ ]+ [c†

jσ ciσ , n̂iσ ]

=
−iet

h̄ ∑
〈i j〉,σ

c†
iσ [c jσ , n̂iσ ]+ [c†

iσ , n̂iσ ]c jσ + c†
jσ [ciσ , n̂iσ ]+ [c†

jσ , n̂iσ ]ciσ (2.82)

using Eq. (2.78) - Eq. (2.81) in Eq. (2.82) we get,

JTB
γ =

−iet
h̄ ∑
〈i j〉,σ

(c†
jσ ciσ −H.c) (2.83)

SO along x

JSO
x =

ie
h̄
[Hx, n̂i] = [Hx, n̂i↑+ n̂i↓]

=
ieλR

h̄ ∑
〈i j〉

[(c†
i↓c j↑− c†

i↑c j↓+ c†
j↑ci↓− c†

j↓ci↑), n̂i↑+ n̂i↓] (2.84)

simplifying Eq. (2.84) we get,
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JSO
x =

ieλR

h̄ ∑
〈i j〉

((c†
j↑ci↓− c†

j↓ci↑)−H.c) (2.85)

SO along y

JSO
y =

ie
h̄
[Hy, n̂i] = [Hy, n̂i↑+ n̂i↓]

=
ieλR

h̄ ∑
〈i j〉

[(ic†
i↓c j↑+ ic†

i↑c j↓− ic†
j↑ci↓− ic†

j↓ci↑), n̂i↑+ n̂i↓] (2.86)

simplifying Eq. (2.86) we get,

JSO
y =

ieλR

h̄ ∑
〈i j〉

(−i(c†
j↑ci↓+ c†

j↓ci↑)−H.c) (2.87)

Transforming Eq. (2.83), (2.85) and (2.87) using unitary transformations defined in

Eq. (2.19) and projecting onto the parallel subspace in double exchange limit (the

same way as we transformed the Hamiltonian), we get the current operator for Rashba

Dresselhaus double exchange model as,

Jγ =
ie
h̄ ∑
〈i j〉,γ

[gγ

i jd
†
ipd jp−H.c], (2.88)

where, gγ

i j is given by Eq. (2.59).

2.7 Methods

In the present thesis, we study the spin-orbit coupled magnetic metallic systems. Be-

cause of this interesting interplay of magnetism and itinerant charge carriers, we expect

exotic spin textures as ground states. To understand the essential physics behind such

exotic magnetic orderings and related phenomena, we study the models introduced in

this chapter. In order to study classical spin Hamiltonians, we employ Markov chain

classical Monte Carlo technique. The standard Metropolis algorithm is used for the im-

portance sampling of spin configurations at finite temperatures. For semi-classical spin

Hamiltonians, we rely on hybrid monte Carlo method. For analysis of the topological as-

pects of the studied Hamiltonians, we perform Bott index calculations. In the following,

we elaborate on these methods, which have been used to obtain the results reported in

47



this thesis.

2.7.1 Classical Monte Carlo

Monte Carlo methods are a broad class of computational algorithms that rely on re-

peated random sampling to obtain numerical results. The advantage of this technique

is that we can estimate the physical quantities accurately by using only sample quite a

small fraction of the states of the system. Monte Carlo technique is used to solve quan-

titative problems in the area of physics and in other areas of science, engineering, and

finance. This technique was implemented to study the neutron transport7, chemical ki-

netics8. Monte Carlo method also plays a key role in designing and analyzing materials

such as organic solar cells9, organic LEDs10, etc. This method has been successfully ap-

plied in statistical physics, probability theory, mathematical optimization and computer

science11. In condensed matter physics, it has proved to be a powerful method to study

Hamiltonians whose complexity does not allow for analytical treatment. In magnetic

systems, the classical and semi-classical spin models often simulated using Monte Carlo

methods. The Quantum version of the method can be used to study quantum electronic

Hamiltonians. However, it suffers from the infamous "sign problem" for some fermionic

models, and is limited to small lattices. The classical Monte Carlo, on the other hand,

can be used to simulate very large lattices and hence provides results close to thermody-

namic limit. Another advantage of all Monte-Carlo methods is that they allow access to

local physical quantities, and can provide a deeper understanding of complex ordering.

The core idea in Monte Carlo is to simulate the random thermal fluctuation of the system

from state to state over the course of an experiment. In the Monte Carlo simulation of

a thermal system, one is mainly interested in the calculation of the expectation value

〈M〉 of some observable quantity ‘ M ’, such as the internal energy, susceptibility, or

the magnetization in a magnetic model. This is done by averaging ‘ M ’ over all the

microstates of the canonical ensemble weighted with the Boltzmann probability.

〈M〉 =
∑µ Mµe−βEµ

∑µ e−βEµ

(2.89)

where, Eµ is the energy of state µ. Since it is impossible to calculate 〈M〉 by averag-

ing over all the microstates because of the large number of microstates which increases

rapidly with system size. So we restrict ourselves to only those states which are statis-

tically most relevant. The technique for picking out the important states from the very

large number of possibilities is called importance sampling. This is done by choosing

the states with Boltzmann probability Pµ = Z−1e−βEµ where ‘ Z ’ is partition function of
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the system.

Monte Carlo make use of Markov process repeatedly to generate a Markov chain of

states. Starting with a state µ, we generate a new state ν with some fixed transition

probability P(µ → ν), and then we feed that state to generate another state and so on.

The transition probabilities must satisfy the constraint:

∑
ν

P(µ → ν) = 1 (2.90)

This process when run for long enough starting from any state of the system eventually

produces a succession of states which appear with probabilities given by the Boltzmann

distribution. There are two requirements for Markov process. It must obey condition

of ergodicity and the condition of detailed balance. Condition of ergodicity ensures the

possibility for our Markov process to reach any state of the system from any other state.

Condition of detailed balance is expressed mathematically as:

pµP(µ → ν) = pνP(ν → µ) (2.91)

The left hand side of the equation, is the product of probability of being in a state µ and

the probability of making a transition from that state to another state ν . In other words,

it is the overall rate at which transitions from µ to ν happen in our system. The right

hand side is the overall rate for the reverse transition. The condition of detailed balance

tells us that on average the system should go from µ to ν just as often as it goes from ν

to µ. We can choose any probability distribution pµ of states generated by our Markov

process such that it satisfies Eq. (2.91). Since we want the equilibrium distribution to

be the Boltzmann distribution, the detailed balance equation becomes:

P(µ → ν)

P(ν → µ)
=

pν

pµ

= e−β (Eν−Eµ ) (2.92)

After we choose the transition probabilities we use Metropolis Algorithm proposed by

Metropolis and his co-workers in 1953. This algorithm chooses a set of selection prob-

abilities g(µ → ν) for each possible transition from state µ → ν . Then chooses a set of

acceptance probabilities A(µ → ν) such that the condition of detailed balance is satis-

fied. The algorithm works by repeatedly choosing a new state ν , and then accept or

reject it at random with chosen acceptance probability. We get,

P(µ → ν) = g(µ → ν)A(µ → ν) (2.93)

If we use classical monte carlo for a N classical spin system with single-spin-flip dynam-
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ics. There are N different spins that we can flip, and hence N possible states ν which

can be reached from a given state µ. Thus the selection probabilities,

g(µ → ν) =
1
N

(2.94)

Using Eq. (2.93) and Eq. (2.94) in Eq. (2.92) we get,

P(µ → ν)

P(ν → µ)
=

A(µ → ν)

A(ν → µ)
= e−β (Eν−Eµ ) (2.95)

The chances of making any move for which ∆E > 0 are very small, it means that an

algorithm using the acceptance ratio would be extremely slow, spending most of its time

rejecting moves and not flipping any spins at all. The way to maximize the acceptance

ratios is, suppose that if Eµ < Eν . Then the larger of the two acceptance ratios is A(ν →
µ), so we set that equal to 1. Then to satisfy Eq. (2.95) A(µ → ν) must be e−β (Eν−Eµ ).

Thus for the optimal algorithm12,13,

A(µ → ν) =

{
e−β (Eν−Eµ ) If Eν −Eµ > 0

1 otherwise
(2.96)

2.7.2 Steps to implement Metropolis Algorithm

For the classical spin Hamiltonian Eq. (2.64), we make use of conventional Classical

Monte Carlo simulation technique. In this thesis work we have investigated the Hamil-

tonians by following two protocols. In the field cooled protocol, the temperature is

lowered in the presence of a finite external field. At each temperature point we imple-

ment Metropolis algorithm in following steps:

• An initial completely random configuration of spins with polar (θi) and azimuthal (φi)
angles defined at each site i is taken on the given lattice at temperature much larger than
other energy scales in the model. Energy of this configuration is then calculated. (θ , φ) are
picked from a set of uniformly distributed discrete points on the surface of a unit sphere.

• A new configuration is then generated by selecting a lattice site and changing θi → θ ′i ,
φi→ φ ′i at that site and energy is calculated.

• Difference in energy of old and new configurations i.e ∆E = E(θ ′i ,φ
′
i )−E(θi,φi) is evalu-

ated

• If ∆E ≤ 0 then the move is accepted, since in this case A(µ → ν) = 1 .
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• If ∆E > 0 then A(µ → ν) = e−β (Eν−Eµ ) is calculated and a random number r ∈ (0,1) is
chosen. If r < A(µ → ν) the move is accepted, else rejected.

• The above steps are repeated until each site is visited once for attempting an update. This
completes one Monte Carlo update over the lattice.

• Approximately 106 such updates are performed at each temperature for the system to
reach equilibrium.

• Physical quantities such as, various order parameters, average energy etc., are then com-
puted by averaging over next 106 updates.

• The temperature is then reduced and the above procedure is repeated with the last con-
figuration of the old temperature serving as the first configuration of the new temperature.

In the zero field cooled protocol, the simulations begin in the paramagnetic phase with

hz = 0 and temperature is then lowered in discrete steps. To calculate the field depen-

dence at low temperatures, which is the main focus of the study, the external field hz is

increased in discrete steps. For detailed exploration of parameter space we use 60×60

lattice, and the stability of results is ensured by simulating sizes up to 200× 200 for

selected cases.

2.7.3 Hybrid Monte Carlo

Hamiltonian Eq. (2.15) and Eq. (2.58), belongs to a class of models with classical

degrees of freedom coupled to electrons. The Hybrid Monte Carlo simulation, an ex-

tension of Classical Monte Carlo simulation is the most reliable and numerically exact

approach for the study of such Hamiltonians. In this approach, the classical variables

are updated according to Metropolis algorithm, and we can treat classical spins as a

‘fixed’ background when solving the electron problem. Unlike classical variables for

solving electron problem, one has to perform exact diagonalization of the quantum

hamiltonian. For a lattice with N sites, the resulting Hamiltonian matrix is ‘2N’ dimen-

sional, where 2 is because of up and down spin states. One need to diagonalize the full

Hamiltonian at each step of the monte carlo. Diagonalization itself is a process which

scales as O(N3) and one needs to repeat this N times for a system sweep, so the cost

per sweep for this class of model is O(N4), in contrast to the O(N) cost for the classical

spin Hamiltonian Eq. (2.64). Hence simulations are limited to very small lattices ∼ 100

sites. To estimate the energy change associated with the spin updated at the choosen

site, we don’t need to diagonalize the full Hamiltonian, instead we can perform the
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exact diagonalization of the fermionic part of Hamiltonian on a smaller cluster centred

around the site to be updated. Hence for simulations on the larger lattices without com-

promising on the accuracy we use Travelling cluster approximation (TCA) method14,15.

If we take that cluster of dimension Nc, then the cost of the MC is O(NN3
c). This leads

to a huge gain and allows us to go up lattices of size 402. For the results presented in

this thesis, TCA simulations are performed on 24× 24 lattice with periodic boundary

conditions using an 8× 8 cluster with open boundary conditions. A typical schematic

is shown in Fig. . While for calculating the system properties, we diagonalize the full

system. The ‘CHEEVX’ subroutine of the LAPACK library is used for the diagonalization

of the Hamiltonian. We use ∼ 103 MC steps each for equilibration and averaging at each

value of temperature and Zeeman field. Other details are same as in the classical Monte

Carlo simulation method.

Figure 2.4 Schematic showing the travelling cluster approximation on a square lattice (size 122

) consists of random spins. The green and the yellow squares are two representative clusters
(size 62 ) built around the circled sites which are to be updated.

2.7.4 Bott Index

Loring and Hasting first introduced the concept of Bott index in condensed matter sys-

tems16. It is a measure of the obstruction to form localized Wannier orbitals from the

occupied states17,18. Bott index has been handy in successfully describe the approxi-
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mate integer quanta of the transverse conductivity of a finite two-dimensional system

described by a short-range, spectrally gapped Hamiltonian even in the presence of local

disorder19. In this thesis, we study the Bott index variation to study the topological

aspect of the transverse conductivity in the presence of skyrmion (Chapter 4). The

mathematical implementation of Bott index has already been explained in some of the

previous studies20–24. First, a projector operator is constructed out of all the occupied

states below Fermi level.

P =
Nel

∑
i
|ψi〉〈ψi| , (2.97)

where, |ψi〉 is the occupied state corresponds to the ith eigenvalue εi, and Nel is the

number of electrons in the system. The position coordinates (xi , yi) of any lattice site

i can be mapped into the spherical co-ordinates (θi , φi) on a torus (using periodic

boundary condition) where 0 ≤ θi < 2π and 0 ≤ φi < 2π. The next step is to calculate

the position operators mapped onto the project operator P, given as,

U = PeiΘP,

V = PeiΦP, (2.98)

where, Θ and Φ are the diagonal matrices with θi and φi as diagonal elements respec-

tively. The Bott index, which determines the commutativity of the projected position

operators U and V 25,26 is given by,

B =
1

2π
Im
{

tr
[

log(VUV †U†)
]}

, (2.99)

The Bott index is demonstrated to be closely related to the Chern number19, it can

be employed as a topological invariant to distinguish between topologically nontrivial

from trivial states, and hence is proved to be quite useful in the study of topological

Hall effect. This calculation involves diagonalization of complex non-symmetric matrix

for which we use the ‘CGEES’ LAPACK subroutine.

For a better numerical convergence, the product VUV †U† needs to be unitary. Hence,

det(VUV †U†) = 1 and the eigenvalues of log(VUV †U†) should be purely imaginary, and

the Bott index is a real integer19. For improved numerical stability, we perform singular

value decomposition (SVD) M = ZΣW † for the projected position operators U and V .

Z and W are the unitary matrices where Σ is real diagonal matrix. It can be shown

that the "unitary part" M̃ = ZW † is the transformed unitary projected position operators.
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Mathematically, the Singular value decomposition is similar to a scaling transformation;

hence it does not alter the commutation relation between two operators. Therefore, we

can safely state that employing SVD does change anything to the original formalism, but

the convergence and numerical stability get effectively improved. For SVD the ‘CGESVD’

subroutine from LAPACK package has been employed.
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3.1 Introduction

Search for magnetic materials supporting unusual spin textures has become an impor-

tant theme of research in recent years1–7. Presence of such textures in insulators and

metals holds promise for technological applications8–10. In particular, topologically pro-

tected magnetic textures such as skyrmions, are considered building blocks of race-track

memory devices11–13. Presence of such spin textures in metals allows for their con-

trol using ultra-low currents. Furthermore, noncoplanar magnetic states in metals are

known to dramatically influence the spin-polarized charge transport – a feature that

can be utilized in spintronics applications14–20. There are various metallic magnets,

e.g. MnSi, FeGe, Co-Zn-Mn alloys, etc., that support exotic spin textures not only in

the ground state but also at higher temperatures5,21–24. Similar spin textures are also

observed in thin films as well as multilayers involving transition metals25–29.

The key step towards designing or discovering materials with unconventional spin

textures is to understand the physics of minimal microscopic models incorporating es-

sential elementary mechanisms30–32. Spin Hamiltonians naturally emerge in insulators

as the charge degrees of freedom become inactive and the low energy physics is de-

termined by the spin degrees of freedom. In contrast, spin Hamiltonians in metals are

phenomenologically motivated. Exceptions exist in metals that consist of a subsystem

of localized magnetic moments interacting with conduction band. The RKKY model is

a famous example in this category33–37. Explanation of skyrmion-like spin textures re-

lies on the presence of DM interactions38–42. While such anisotropic terms have been

motivated by invoking the effect of spin-orbit coupling (SOC) in a two-site setting, a

derivation on lattice for the metallic case does not exist30,43.

In this work, we present a closed form expression for a spin Hamiltonian for Rashba

coupled double-exchange (DE) magnets. The resulting model consists of anisotropic

terms resembling DM and pseudo-dipolar interactions on nearest neighbor (nn) sites

with inhomogeneous coupling parameter. After presenting the derivation, we explicitly

test the validity of the pure spin model by comparing results against exact diagonaliza-

tion based simulations on the starting electronic model. The magnetic phase diagram

of the spin model is obtained via large-scale Monte Carlo simulations. The model sup-

ports, in addition to a ferromagnetic (FM) phase, (i) single-Q (SQ) spiral states, (ii)

diagonally-oriented flux (d-Flux) state, (iii) multiple-Q (MQ) states with noncoplanar

skyrmion crystal (SkX) patterns, and (iv) a classical spin liquid (CSL) state characterized

by diffuse ring patterns in the spin structure factor (SSF). The CSL state shows filamen-

tary domain wall structure of remarkable similarity to the experimental data on thin
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films and multilayers of B20 compounds and transition metals20,26,27. The spin model

introduced here has wide range of applicability as it originates from the FM Kondo lat-

tice model (FKLM) – a generic model for metals with local moments. Some of the well

known families of materials where FKLM is realized are, manganites, doped magnetic

semiconductors and Heusler compounds44–51. The key ingredient in the model is the

Rashba SOC, which requires breaking of inversion symmetry. Such inversion symmetry

breaking is naturally achieved for the emergent conduction layers at interfaces, or in

thin films of magnetic metals52.

3.2 Derivation of the spin Hamiltonian

Our starting point is the FKLM in the presence of Rashba SOC on a square lattice,

described by the Hamiltonian,

H = −t ∑
〈i j〉,σ

(c†
iσ c jσ +H.c.)+λ ∑

i
[(c†

i↓ci+x↑− c†
i↑ci+x↓)

+i(c†
i↓ci+y↑+ c†

i↑ci+y↓)+H.c.]− JH ∑
i

Si · si. (3.1)

Here, ciσ (c
†
iσ ) annihilates (creates) an electron at site i with spin σ , 〈i j〉 implies that i

and j are nn sites. λ and JH denote the strengths of Rashba coupling and ferromagnetic

Kondo (or Hund’s) coupling, respectively. si is the electronic spin operator at site i, and

Si, with |Si| = 1, denotes the localized spin at that site. We parameterize t = (1−α)t0
and λ = αt0 in order to connect the weak and the strong Rashba limits, α = 0 and α = 1,

respectively. t0 = 1 sets the reference energy scale.

Note that coupling between localized spins Si is mediated via the conduction elec-

trons. In the limit of weak Kondo coupling, this leads to a modified RKKY Hamiltonian

which is discussed in a recent work53. To clarify the physics of the above Hamiltonian

in the JH → ∞ limit, also known as the DE limit, we rewrite the Hamiltonian in a basis

where the spin-quantization axes are site dependent and align with the direction of the

local magnetic moment according to the canonical SU(2) transformation,[
ci↑
ci↓

]
=

[
cos(θi

2 ) −sin(θi
2 )e
−iφi

sin(θi
2 )e

iφi cos(θi
2 )

][
dip

dia

]
.

Here, dip(dia) annihilates an electron at site i with spin parallel (antiparallel) to the

localized spin and θi, φi are the polar and azimuthal angles describing the direction
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of the local spin Si. Since antiparallel orientations are strongly suppressed for large

JH , the low energy physics is determined by effectively spinless fermions with the spin

quantization axis parallel to the local moments. Projecting onto the parallel subspace,

we obtain the Rashba DE (RDE) Hamiltonian,

HRDE = ∑
〈i j〉,γ

[gγ

i jd
†
ipd jp +H.c.], (3.2)

where, d†
ip creates an electron at site i with spin parallel to the localized spin. Site j =

i+γ is the nn of site i along spatial direction γ = x,y. The projected hopping gγ

i j = tγ

i j+λ
γ

i j

have contributions from the standard hopping integral t and the Rashba coupling λ , and

depend on the orientations of the local moments. The two contributions to gγ

i j are given

by,

tγ

i j = −t
[

cos
(

θi

2

)
cos
(

θ j

2

)
+ sin

(
θi

2

)
sin
(

θ j

2

)
e−i(φi−φ j)

]
,

λ
x
i j = λ

[
sin
(

θi

2

)
cos
(

θ j

2

)
e−iφi− cos

(
θi

2

)
sin
(

θ j

2

)
eiφ j
]
,

λ
y
i j = iλ

[
sin
(

θi

2

)
cos
(

θ j

2

)
e−iφi + cos

(
θi

2

)
sin
(

θ j

2

)
eiφ j
]
. (3.3)

We can write the real and imaginary parts of gγ

i j as:

Re(gx
i j) = − t(cos(

θi

2
)cos(

θ j

2
)+ sin(

θi

2
)sin(

θ j

2
)cos(φi−φ j))

+λ (sin(
θi

2
)cos(

θ j

2
)cosφi− cos(

θi

2
)sin(

θ j

2
)cosφ j),

(3.4)

Im(gx
i j) = t(sin(

θi

2
)sin(

θ j

2
)sin(φi−φ j))−λ (sin(

θi

2
)cos(

θ j

2
)sinφi + cos(

θi

2
)sin(

θ j

2
)sinφ j),

Re(gy
i j) = − t(cos(

θi

2
)cos(

θ j

2
)+ sin(

θi

2
)sin(

θ j

2
)cos(φi−φ j))

−λ (cos(
θi

2
)sin(

θ j

2
)sinφ j− sin(

θi

2
)cos(

θ j

2
)sinφi),

Im(gy
i j) = t(sin(

θi

2
)sin(

θ j

2
)sin(φi−φ j))+λ (sin(

θi

2
)cos(

θ j

2
)cosφi + cos(

θi

2
)sin(

θ j

2
)cosφ j).

Writing gγ

i j in the polar form, gγ

i j = f γ

i je
ihγ

i j , the phase angles, hγ

i j, are easily obtained via,

hγ

i j = arctan

(
Im(gγ

i j)

Re(gγ

i j)

)
, (3.5)
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and closed form expressions for f x
i j and f y

i j :

f x
i j =

√
1
2
[t2(1+Sx

i Sx
j +Sy

i Sy
j +Sz

i S
z
j)+λ 2(1−Sx

i Sx
j +Sy

i Sy
j−Sz

i S
z
j)−2tλ (Sx

i Sz
j−Sz

i S
x
j)]

=

√
1
2
[t2(1+Si ·S j)+λ 2(1−Si ·S j +2Sy

i Sy
j)+2tλ ŷ · (Si×S j)],

f y
i j =

√
1
2
[t2(1+Sx

i Sx
j +Sy

i Sy
j +Sz

i S
z
j)+λ 2(1+Sx

i Sx
j−Sy

i Sy
j−Sz

i S
z
j)+2tλ (Sz

i S
y
j−Sy

i Sz
j)]

=

√
1
2
[t2(1+Si ·S j)+λ 2(1−Si ·S j +2Sx

i Sx
j)−2tλ x̂ · (Si×S j)]. (3.6)

We define the ground state expectation values Dγ

i j = 〈[eihγ

i jd†
ipd jp +H.c.]〉gs as coupling

constants, we obtain the low-energy approximate spin Hamiltonian,

HS = − ∑
〈i j〉,γ

Dγ

i j f γ

i j,

√
2 f γ

i j =
[
t2(1+Si ·S j)+2tλ γ̂ ′ · (Si×S j)+λ

2(1−Si ·S j +2(γ̂ ′ ·Si)(γ̂ ′ ·S j))
]1/2

,(3.7)

with γ̂ ′ = ẑ× γ̂. We note that the functional form f γ

i j was motivated in an earlier work

by considering a two-site problem43. However, the key argument of performing link-

dependent SU(2) rotations to gauge away the Rashba term works only for two isolated

sites and cannot be generalized to a lattice. Our derivation is free from such limitations,

and provides a model where Dγ

i j in Eq. (3.7) need not be uniform.

3.3 Comparison with the exact electronic model

The key question is, how well does HS Eq. (3.7) describe the low energy magnetic states

of the spin-fermion model HRDE? We directly address this by comparing energetics of

the two models in the low temperature regime. Hybrid simulations combining exact

diagonalization and Monte Carlo (EDMC) are carried out for HRDE at electronic filling

fraction of n = 0.344,55. Results are compared with simulations on HS using Dγ

i j as

coupling constants. Energy per site E is defined as statistical average HS/N for the

pure spin model, and as quantum statistical average 〈HRDE〉/N for the spin-fermion

model, where the bar denotes the averaging over Monte Carlo steps and N is the number

of lattice sites. Comparison of energy per site with varying temperature is shown for

representative values of α (see Fig. 3.1) (a)-(b)).
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Figure 3.1 (a)-(b) Temperature dependence of energy per site obtained via EDMC simulations
of HRDE (open symbols) and that obtained via classical Monte Carlo on HS (filled symbols) for
the values of α indicated in the panels. Simulations are carried out on 8×8 lattices.

Ground states are correctly captured by HS for all choices of α, and the energies

between HRDE and HS match very well in the low temperature regime. The quantitative

agreement can be further improved by using simulation techniques already known for

DE systems56,57. We can simulate HS using uniform Dγ

i j≡ 1 as an approximation because

of the narrow distributions of Dγ

i j which is illustrated below.

3.4 Distribution of coupling constants

We calculate the distributions of Dγ

i j for the pairs of nearest neighbor sites in different

magnetic ground states obtained by simulating the model with Dγ

i j ≡ 1. The Dγ

i j are
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obtained at a generic average filling of 0.3 electrons per site using Dγ

i j = 〈[eihγ

i jd†
ipd jp +

H.c.]〉gs. The density of Dγ

i j is then defined as,

N (D) = 1/N ∑
〈i j〉

δ (D−Dγ

i j)≈ 1/N ∑
〈i j〉

η/π

η2 +(D−Dγ

i j)
2
,

where, η is Lorentzian broadening parameters which is set to 0.001 for calculations.
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Figure 3.2 Distributions of Dγ

i j for different ground states, (a) ferromagnet, (b) classical spin
liquid, (c) single-Q spiral, (d)-(e) skyrmion crystals, and ( f ) diagonal-flux, obtained at an average
electron filling of n = 0.3 per site.

The density of Dγ

i j is shown in Fig. (3.2) for different values of α. We find that typically

the Dγ

i j distributions are narrow. The Dγ

i j calculated from EDMC simulations on smaller

lattices also lead to similar distributions. This justifies that using a single coupling con-

stant in the effective spin Hamiltonian is a reasonable approximation. However, for the
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non-trivial skyrmion states we note multi-peak distributions. This makes it important

to perform consistency check on all the ground states obtained in the simulations. We

have performed this consistency check now in order to verify the stability of our phase

diagram. In the consistency check we calculate Dγ

i j for the ground state configurations

and re-simulate the model with new inhomogeneous parameters. We find all the states

to be consistent ground states of the exact spin model HS =−∑Dγ

i j f γ

i j. Incidentally, most

of the ground states obtained in EDMC on HRDE lead to narrow distributions of Dγ

i j. This

motivates a simplified approximate spin Hamiltonian with Dγ

i j ≡ D0 in Eq. (3.7).

3.5 Magnetic phases of the new spin Hamiltonian

In order to investigate the magnetic phase diagram of the spin Hamiltonian Eq. (3.7)

with Dγ

i j ≡D0 = 1, we use classical Monte Carlo simulations with the standard Metropo-

lis algorithm. The simulations are carried out on lattice sizes varying from N = 402 to

N = 2002, and ∼ 5× 104 Monte Carlo steps are used for equilibration and averaging at

each temperature point. A consistency check on the stability of ground states is per-

formed simulations on the exact spin Hamiltonian Eq. (3.7) by re-calculating Dγ

i j. We

emphasize that the exact match of ground state energies between the electronic and the

effective spin Hamiltonian, as shown in (see Fig. 3.1), is achieved only when inhomo-

geneities in Dγ

i j are retained. The different magnetic phases are characterized with the

help of component resolved SSF,

Sµ

f (q) =
1

N2 ∑
i j

Sµ

i Sµ

j e−iq·(ri−r j), (3.8)

where, µ = x,y,z denotes the component of the spin vector and ri is the position vec-

tor for spin Si. The total structure factor can be computed as, S f (q) = ∑µ Sµ

f (q). (see

Fig. 3.3) shows the temperature variations of characteristic features in the SSF for dif-

ferent values of α. In the small α regime, the ground state is FM (characterized by

S f (q) at q = (0,0) in Fig. 3.3(a)) and the Curie temperature reduces with increasing α.

In the large α limit, d-Flux state characterized by simultaneous appearance of peaks

at q = (π,0) and q = (0,π) in SSF is stabilized (see Fig. 3.4( f )). The correspond-

ing ordering temperature increases with increasing α (see Fig. 3.3(d)). We find two

other ordered states at intermediate values of α: SQ spiral states with SSF peaks ei-

ther at q = (q,0) or at q = (0,q) (see Fig. 3.3(b) and Fig. 3.4(d)), and noncoplanar MQ

states with all three components, µ = x,y,z, contributing to total SSF at different q. For
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Figure 3.3 (a)-(d) Temperature dependence of different components of SSF for representative
values of α. Results are obtained on 60×60 lattice.

0.06 ≤ α ≤ 0.34, the SSF displays a circular pattern without any prominent peaks, sug-

gestive of a liquid-like magnetic state58–60. The detailed form of SSF for these unusual

phases is discussed below.

We summarize the simulation results in the form of a phase diagram in Fig. 3.4(g). The

ground state changes from a FM at small α to a d-Flux at large α, via three non-trivial

phases for intermediate values of α. The evolution of the ground state SSF is displayed

in Fig. 3.4 (a)-( f ).

65



Figure 3.4 (a)-( f ) Color map of SSF at T = 0.001 for different values of α. (g) Phase diagram
for the new spin Hamiltonian in the T −α plane. The boundaries are based on the temperature
dependence of the relevant components of the SSF. Inset in (g) shows variation in the magni-
tude q of the relevant wave-vector q with α.
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As the FM state is destabilized upon increasing α, we do not find any ordered phase.

Instead, the SSF shows a diffuse circular pattern (see Fig. 3.4(b)) characteristic of a

disordered liquid-like state. The radius of the ring increases upon increasing α, and

the intensity near the axial points, (±q,0) and (0,±q), becomes relatively large (see

Fig. 3.4(c)). For 0.34 < α < 0.58, we find SQ spiral states with either horizontal or

vertical FM stripes (see Fig. 3.4(d) and Fig. 3.5(c)). In a narrow window, 0.58 < α <

0.66, MQ noncoplanar states are stabilized. Finally the planar d-Flux state is obtained as

the ground state for α > 0.66. Inflexion point in the temperature dependence of relevant

components of SSF are used to identify the boundaries between the paramagnet (PM)

and ordered phases. Note that, in case of CSL state a well defined order parameter does

not exist, and dashed line indicates the temperature at which the diffuse ring pattern

appears in the SSF.

We provide a clear understanding of the ground state evolution in terms of typical

low temperature spin configurations in (see Fig. 3.5). Upon increasing α, the FM state

is destabilized and typical configurations consist of filamentary structures of domain

walls (see Fig. 3.5(a)-(b)). The stability of the filamentary structures is related to an

unusual degeneracy of spiral states (Box 1). The fact that domain walls can turn in

arbitrary direction with negligible energy cost is responsible for the presence of the

diffuse circular pattern in the SSF (see Fig. 3.4 (b)). For larger values of α, the width

of domain walls decreases and a preference for horizontal or vertical orientations of

the domain walls is found (see Fig. 3.5 (b)). This is reflected in the appearance of arc

features in SSF near the axial points (see Fig. 3.4 (c)). For α > 0.58 we obtain long-

range ordered MQ states. The MQ states can be non-coplanar (see Fig. 3.5 (d)-(e)) or

coplanar (see Fig. 3.5 ( f )). The noncoplanar patterns in the MQ states are identical to

lattices of smallest skyrmions62.
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Figure 3.5 Snapshots of spin configurations obtained at low temperature for, (a) α = 0.10, (b)
α = 0.34, (c) α = 0.50, (d) α = 0.60, (e) α = 0.64, and ( f ) α = 0.80. The x and y components of
the spins are indicated by the arrow while the z component is color coded. For (a)-(b) we show
60× 60 lattice. For the ordered states we display for clarity only a smaller section, 16× 16 for
(c), (d) and ( f ) and 24×24 for (e), of the full lattice. The configurations are shown at T = 0.001.
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Box 1: Origin of classical spin liquid (CSL) behavior

We provide a simple description of CSL states observed in the small α regime.

A careful look at the form of the Hamiltonian Eq. (3.7) suggests that for small

values of α, terms proportional to λ 2 may be ignored. The only non-trivial effect

then comes from terms proportional to tλ . These terms prefer spiral states with

competing orientations of the spiral planes. Along x-direction, a spiral in xz plane

is preferred and along y-direction a spiral in yz plane is preferred. This motivates

us to construct the following variational ansatz where the plane of the spiral is

one of the variational parameters:

Sx
i = S0 sin(qqq.rrri)cos(Φp),

Sy
i = S0 sin(qqq.rrri)sin(Φp),

Sz
i = S0 cos(qqq.rrri). (3.9)

In the above, S0 is the unit magnitude of the classical spin vectors, Φp is the

orientation of the spiral plane (Φp = 0 for xz plane and Φp = π

2 for yz plane)

and qqq = q(cosβ ,sinβ ) is the spiral wave-vector. In the CSL state, we find that

the energy of a spiral is independent of the spiral plane angle Φp, provided the

wave-vector angle β is related to Φp via β −Φp = π. This explains the stability

of filamentary domain wall structure in the CSL regime: the domain walls can

freely reorient as long as the spiral plane also undergoes a reorientation in such

a way that the spiral plane is oriented perpendicular to the local orientation of

the domain wall. While the re-orientations of domain walls are energetically free,

change in their width does cost energy. This leads to an intermediate degeneracy

with O(e
√

N) configurations, as opposed to a true macroscopic degeneracy with

O(eN) ground states. This peculiar nature of the degeneracy may effect how a

specific Monte Carlo update dynamics explores the configuration space.

In order to quantify the degeneracy of spiral states, we define ∆E =

max[Emin(Φp)]−min[Emin(Φp)]. Emin(Φp) represents the minimum energy obtained

for a given orientation of the spiral plane, marked by a square symbol Fig. 3.6.

Exact degeneracy is characterized by ∆E = 0. We show the variation of ∆E with

the coupling constant α as an inset in Fig. 3.6 (b). The degree of degeneracy

clearly reduces near α = 0.35, which coincides with the crossover point between

CSL and SQ spiral states.
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Figure 3.6 Energy per site E as a function of wave-vector direction β , for (a) α = 0.15, (b) α =
0.25, (c) α = 0.30 and (d) α = 0.35, obtained for states defined via variational ansatz Eq. (3.9).
Energy is minimized over the magnitude q of qqq. Square symbols represent the minimum value,
Emin, of E for each choice of Φp. Inset in panel (b) shows the variation with α of the width ∆E of
Emin.

3.6 Finite size effects

We now discuss the finite size effects that lead to minor changes in the phase diagram

shown in Fig. 3.4(g). We plot below the variation in magnitude q of the ordering wave

vector q as a function of α (also shown in inset of Fig. 3.4(g) ) obtained at low tem-

perature (T = 0.001) for different lattice sizes. In general, the competition between FM

and DM interactions leads to spiral phases. However, the possible spiral wave vectors

depend on the linear dimension of the lattice. For example, the smallest non-zero spiral

wave vector for SQ states with q = (q,0)/(0,q) is q = 2π/
√

N for an N site square lat-

tice. This suggests that the FM state described by q = 0 will remain stable over a wider
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range of α on smaller lattice sizes. This is indeed true as shown in (see Fig. 3.7(a)-

(c)) . Similarly, the state at q = π/2 has an extra range of stability due to finite lattice

sizes. We extract the discontinuity in q, δq, near q = 0 and q = π/2 and plot these δq

values as a function of inverse linear dimension. The data simply falls on the expected

δq = 2π/
√

N line (see Fig. 3.7(d)). Hence, we conclude that the FM phase as well as the

q = π/2 spiral phase will not have extended window of stability and hence disappear in

the thermodynamic limit.

Figure 3.7 (a)-(c) Variation of the magnitude q of the ordering wave vector q with α for simula-
tions performed on different lattice sizes. (d) Discontinuity δq near q = (0,0) and q = (q,0)/(0,q)
states as a function of 1/

√
N. Red circles (blue squares) denote the value of δq near the FM

(spiral) state. Black solid line is the expected behavior showing that δq will extrapolate to zero
as N→ ∞
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3.7 Conclusion

We have derived a spin Hamiltonian on a lattice for DE metals in the presence of Rashba

SOC. The model, in general, has inhomogeneous coupling constants and anisotropic DM

and pseudo-dipolar interactions, similar to those required for stabilizing exotic spin tex-

tures. We explicitly compare the energetics in the low temperature regime between

the exact Hamiltonian and our spin model in order to prove the validity of the latter.

Increasing the relative strength of Rashba term w.r.t. the hopping generates CSL, SQ

spiral and MQ SkX states, starting from the trivial FM phase. An elegant description

of this evolution emerges from the ground state degeneracy analysis. Our spin model

provides a consistent description of spin textures in itinerant magnets. In particular, the

filamentary domain wall structures obtained in our simulations are in excellent agree-

ment with the experimental observations in thin films and multilayers of transition met-

als20,26,27,29,63. Typically, one would associate such irregular spin textures to impurities

or defects in the samples. However, our microscopic analysis without including any ad

hoc term in the Hamiltonian shows that these are intrinsic features of the electronic

system. While quenched disorder in a real sample may lead to the pinning of these fil-

amentary domains, we predict that in a disorder free sample a re-orientation dynamics

of the domain walls should be observed. Interestingly, similar domain patterns were

noticed many years back in FM garnet films64.

The weak coupling approach to understand magnetism in spin orbit coupled itin-

erant magnets is via RKKY type effective models53. Such models are long ranged and

strongly depend on the filling fraction of the conduction band. In contrast, the form

of the spin Hamiltonian discussed here is independent of the electronic filling fraction.

Therefore, in our description, the exotic magnetic states do not originate from Fermi

surface nesting features. Consequently, such states are expected without fine-tuning of

electron density. This is consistent with the fact that such spin textures are experimen-

tally observed in a variety of thin films and multilayers of transition metals. While the

model is derived starting from the FKLM, at the mean-field level similar physics should

hold for the Hubbard model where localized and itinerant electrons are associated with

the same band65,66.
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4.1 Introduction

Magnetic skyrmions are being envisioned as building blocks of next-generation data

storage and processing devices1–6. This has led to a surge in research activity geared

towards identifying candidate materials7–18. Such textures in metals are particularly

important since they can be manipulated by ultra-low electrical currents10,11,19,20. Ap-

pearance of skyrmions has been reported in bulk as well as in thin films of a variety

of chiral metallic magnets12–15,21–26. However, the current understanding of skyrmion

formation in magnets is via spin Hamiltonians that either include Dzyaloshinskii-Moriya

(DM) interactions or geometrical frustration27–31. Such studies have also shown forma-

tion of three dimensional lattices of skyrmions, relevant for skyrmions in bulk32,33. This

approach is inconsistent for metals as the aforementioned terms are usually understood

as arising from the effect of spin-orbit coupling in Mott insulators34. Therefore, the

importance of electronic Hamiltonian based understanding of skyrmion formation in

metals has been recognized and a mechanism based on RKKY interactions has recently

been put forward35,36. Furthermore, most theoretical studies describe states that are

periodic arrangement of skyrmions. Whereas, experiments on certain thin films or on

constricted samples also support a phase with sparse skyrmions9,26,37,38.

Introduction of double exchange (DE) mechanism by Zenger represents a milestone

in our understanding of ferromagnetic metals39–41. The mechanism has played a key

role in the description of magnetic and magneto-transport phenomena across families of

materials, such as, perovskite manganites, dilute magnetic semiconductors and Heusler

metals42–45. Surprisingly, the role of DE physics in skyrmion formation has largely

remained unexplored. On the other hand, DE mechanism is commonly invoked when

studying the effect of magnetic textures, including skyrmions, on transport properties

in metals. The implication of spin-orbit modified DE physics on transport properties has

recently been discussed46.

In this work, we show that the Rashba DE (RDE) model in the presence of Zeeman

field leads to states hosting nano-skyrmions. We explicitly demonstrate the appearance

of skyrmions using the state-of-the-art hybrid Monte Carlo (HMC) simulations. An effec-

tive spin Hamiltonian is studied for a comprehensive understanding of the origin as well

as stability of these spin textures. A filamentary domain wall (fDW) phase is identified

as the parent of sparse skyrmions (sSk), which are found to be stable only at finite tem-

peratures and metastable in the ground state, and a single-Q (SQ) spiral state leads to

packed skyrmions (pSk). Our findings are consistent with small angle neutron scatter-

ing (SANS) and Lorentz transmission electron microscopy (LTEM) data on thin films of
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Co-Zn-Mn alloys, FeGe and MnSi, and transition metal multilayers10–13,25,26,47,48. Fur-

thermore, we explicitly demonstrate by calculating Bott index and the topological Hall

conductivity that the skyrmion phases are a natural realizations of amorphous topo-

logical metals. This is particularly important in view of recent attempts to engineer

tight-binding models for the realization of amorphous topological phases49–51. We also

present LDOS calculations to show the importance of consistent treatment of spin-orbit

coupling for the skyrmion formation and for electronic transport aspects. A combina-

tion of dI/dV measurements and LDOS analysis can be a useful alternate to the existing

methods for estimating the strength of Rashba coupling in real materials.

4.2 Skyrmions in the RDE model

We start with the ferromagnetic Kondo lattice model (FKLM) in the presence of Rashba

SOC, described by the Hamiltonian,

H = −t ∑
〈i j〉,σ

(c†
iσ c jσ +H.c.)+λ ∑

i
[(c†

i↓ci+x↑− c†
i↑ci+x↓)

+i(c†
i↓ci+y↑+ c†

i↑ci+y↓)+H.c.]− JH ∑
i

Si · si. (4.1)

Here, ciσ (c
†
iσ ) annihilates (creates) an electron at site i with spin σ , 〈i j〉 implies that i

and j are nearest neighbor (nn) sites. λ and JH denote the strengths of Rashba and

Hund’s coupling, respectively. si is the electronic spin operator at site i, and Si, with

|Si|= 1, denotes the localized spin at that site. We parameterize t = (1−α)t0 and λ =αt0
and set t0 = 1 as the reference energy scale. Assuming large JH and taking the double-

exchange approximation, we obtain the RDE Hamiltonian52,

HRDE = ∑
〈i j〉,γ

[gγ

i jd
†
i d j +H.c.]−hz ∑

i
Sz

i , (4.2)

where, di(d
†
i ) annihilates (creates) an electron at site i with spin parallel to the localized

spin. The second term represents the Zeeman coupling of local moments to external

magnetic field of strength hz. Site j = i+ γ is the nn of site i along spatial direction

γ = x,y. The projected hopping gγ

i j = tγ

i j + λ
γ

i j depend on the orientations of the local
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moments Si and S j
52,

tγ

i j = −t
[

cos(
θi

2
)cos(

θ j

2
)+ sin(

θi

2
)sin(

θ j

2
)e−i(φi−φ j)

]
,

λ
x
i j = λ

[
sin(

θi

2
)cos(

θ j

2
)e−iφi− cos(

θi

2
)sin(

θ j

2
)eiφ j

]
,

λ
y
i j = iλ

[
sin(

θi

2
)cos(

θ j

2
)e−iφi + cos(

θi

2
)sin(

θ j

2
)eiφ j

]
, (4.3)

where, θi (φi) denotes the polar (azimuthal) angle for localized spin Si.

We study the RDE Hamiltonian using numerically exact hybrid Monte Carlo (HMC)

simulations as discussed in Section 2.7.3. Presence of skyrmions is inferred via local

skyrmion density28,

χi =
1

8π
[Si · (Si+x×Si+y)+Si · (Si−x×Si−y)]. (4.4)

Total skyrmion density is defined as, χ =∑i χi. We also compute the spin structure factor

(SSF),

S f (q) =
1

N2 ∑
i j

Si ·S j e−iq·(ri−r j), (4.5)

and the relevant component of vector chirality η as,

η =
1
N ∑

i
(Si×Si+x) · ŷ− (Si×Si+y) · x̂. (4.6)

Averaging of all quantities over MC steps is implicitly assumed, unless stated otherwise.

Results obtained via HMC simulations for two representative values of α are shown

in Fig. 4.1. Upon increasing hz, Magnetization, Mz =
1
N ∑i Sz

i , increases and η decreases.

The magnitude of χ initially increases with applied field, and then decreases on ap-

proach to the saturated ferromagnetic (sFM) state (see circles in Fig. 4.1(a), (d)). The

qualitative behavior appears to be similar between α = 0.25 and α = 0.45. The nega-

tive sign of χ reveals that the polarity of skyrmions is opposite to the orientation of the

background magnetization.

The existence of skyrmions in the RDE Hamiltonian is explicitly demonstrated via

the spin configurations as well as skyrmion density maps in the ground state. We find

that small values of α lead to sparse skyrmions within the zero field cooled (ZFC) pro-

tocol (see Fig. 4.1(b)), and the packing (size) of skyrmions increases (decreases) with

increasing α (see Fig. 4.1(e)). The negative polarity is consistent with the fact that the
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Figure 4.1 Magnetization Mz (triangles), total skyrmion density χ (circles) and vector chirality η

(squares) as a function of applied Zeeman field for, (a) α = 0.25, and (d) α = 0.45. Snapshots of
spin configurations, (b), (e), and the local skyrmion density, (c), (f), at T = 0.01 for representative
values of α and hz: (b)-(c) α = 0.25, hz = 0.03; (e)-(f) α = 0.45, hz = 0.09.
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central spin in the skyrmion texture is oriented opposite to the magnetization direction

(see Fig. 4.1(c), (f)). We also note that the skyrmions obtained here are of Neel type

with negative effective magnetic monopole charge. In order to understand the origin

and stability of sSk and pSk, we present results on an effective spin model derived from

the RDE Hamiltonian.

4.3 Origin and stability of sparse and packed skyrmions

Including the Zeeman coupling term in the recently derived effective spin model for

HRDE
52, we obtain,

Heff = − ∑
〈i j〉,γ

Dγ

i j f γ

i j−hz ∑
i

Sz
i ,

√
2 f γ

i j =
[
t2(1+Si ·S j)+2tλ γ̂ ′ · (Si×S j)

+λ
2(1−Si ·S j +2(γ̂ ′ ·Si)(γ̂ ′ ·S j))

]1/2
,

Dγ

i j = 〈[eihγ

i jd†
i d j +H.c.]〉gs. (4.7)

In the above, γ̂ ′ = ẑ× γ̂, f γ

i j (hγ

i j) is the modulus (argument) of complex number gγ

i j and

〈Ô〉gs denotes expectation values of operator Ô in the ground state. It has been shown

that using a constant value of Dγ

i j captures the essential physics of the Hamiltonian Eq.

(4.7), therefore we set Dγ

i j ≡D0 = 1 in our simulations52. Note that a derivation starting

with a simple two-site picture also leads to an identical functional form for the effective

spin model55.

We simulate Heff using the conventional classical MC scheme as discussed in Sec-

tion 2.7.1. We find that the field-dependence of magnetization, η and χ for Heff is

similar to that obtained via HMC (compare Fig. 4.1 (a), (d) and Fig. 4.2). For small

values of α, magnetization increases linearly for small hz, followed by a slower than lin-

ear rise. This change to non-linear behaviour is accompanied by a sharp increase in the

magnitude of χ (see Fig. 4.2(a), (b)). A simple understanding is that the emergence

of skyrmions arrests the ease with which spins align along the direction of external

magnetic field. A finite value of η in the absence of magnetic field originates from

the DM-like terms present in the effective Hamiltonian. Variation of η is anticorrelated

with that of magnetization and the former shows a sharp decrease accompanying the

increase in magnitude of χ (see Fig. 4.2(a), (b)). Finally, for still larger values of ap-

plied field, system approaches sFM state, with both χ and η vanishing. For α = 0.5, the

change in χ near hz = 0.25 is sharper, and is accompanied by a weak discontinuity in
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Figure 4.2 (a) - (d) Magnetization (triangles), total skyrmion density (circles) and vector chirality
(squares) as a function of hz for different values of α. Left y-axis scale is for χ.

both magnetization and η (see Fig. 4.2(c)). This qualitatively different behavior is an

indicator of the pSk state, as will be illustrated below with the help of real space spin

configurations. For α = 0.6, χ is finite even at hz = 0. This is consistent with our results

reported for Rashba FKLM52. Interestingly, the magnitude of χ reduces with increasing

hz, and then again increases before finally vanishing on approach to the sFM state (see

Fig. 4.2(d)). The re-entrant behavior of χ shows that the SkX state does not directly

lead to sFM state via isolated skyrmions, instead a SQ spiral phase is stabilized at in-

termediate hz before the sFM state appears in the strong field limit. This suggests that

in contrast to the pSk phase, which can be viewed as a packed arrangement of isolated

skyrmions, the SkX phase should be interpreted as a fully cooperative ordered arrange-

ment of spins stable only in the low-field regime. Note that square lattice of skyrmions

has also been reported in experiments56,57
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Figure 4.3 Low temperature snapshots of spin configurations for representative values of α

and hz. (a) fDW state at α = 0.16, hz = 0, (b) sparse skyrmions at α = 0.16, hz = 0.036, (c) pSk
at α = 0.32, hz = 0.13 and (d) pSk at α = 0.32, hz = 0.21.

We find that, within the ZFC protocol at finite temperatures, the domain junctions

in the fDW states for small α (see Fig. 4.3(a)) become nucleation centers for skyrmions

when magnetic field is applied (see Fig. 4.3(b)). For larger values of α, SQ spiral state

gives way to the pSk phase (see Fig. 4.3(c)). For a given α, increasing hz leads, initially,

to a reduction of the size (compare Fig. 4.3 (c) and (d)) and then to a reduction of the

number of skyrmions. We have also confirmed that the skyrmion formation in the model

is not an artifact of the ZFC protocol, by verifying their existence using the field cooled

protocol. However, an important question is whether sSk phase is a thermodynamically

stable ground state phase. By comparing energies between increasing- and decreasing-

hz simulations at low temperatures we find that a saturated ferromagnet has lower

energy compared to sSk phase. Therefore, sSk is not a stable ground state phase.
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Figure 4.4 Snapshots of typical spin configurations (left column) and corresponding skyrmion
density map (right column) taken from Monte Carlo simulations with increasing temperature
starting from sFM state at T = 0.001. (a)-(b): T = 0.044, (c)-(d): T = 0.052, (e)-(f): T = 0.058.
Inset in (b) shows the variation in skyrmion count nSk with temperature confirming the existence
of isolated skyrmions in the ferromagnetic background as finite-T excitations. The calculations
are performed on a 60×60 lattice at α = 0.25 and hz = 0.1.

We perform additional simulations starting at low temperatures with a sFM con-
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figuration and find that isolated skyrmions spontaneously form by simply increasing

temperature in simulations (see Fig. 4.4). This suggests that sSk phase is entropically

favored over sFM and hence it should be relevant to real systems. We show how the

skyrmion count, nSk, first increases and then decreases upon increasing T (see inset in

Fig. 4.4(b)). A possible interpretation is that isolated skyrmions exist as thermal excita-

tions in the ferromagnetic background. However, a confirmation of this requires more

systematic exploration of the model at finite temperatures which will be taken up in

a separate study. The reduction of nSk with increasing temperature correlates with the

transition of the parent ferromagnetic state into a paramagnetic state.

Figure 4.5 (a) Low-temperature phase diagram in the α-hz plane. SSF for, (b) fDW at α = 0.22,
hz = 0 (c) pSk at α = 0.4, hz = 0.16, and (d) SkX at α = 0.6, hz = 0.3. Inset in (a) shows an explicit
count of skyrmion centers, nSk, as a function of hz along the vertical dashed line at α = 0.5. The
sSk phase is metastable and sFM is the true groundstate in that parameter regime.
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We now summarize the results discussed above in the form of a phase diagram in

Fig. 4.5(a). We identify, in addition to the trivial sFM state, (i) a fDW state, (ii) a SQ

spiral with peaks in the spin structure factor at (0,Q) or (Q,0), (iii) a pSk state, and (iv)

a SkX with square geometry. Furthermore, a metastable sSk region is also indicated in

the ground state phase diagram. The boundary between fDW/SQ and sSk/pSk is de-

termined from the sharp increase in the magnitude of χ with increasing hz (see dashed

black lines in Fig. 4.2(a)-(d)). Similarly, the boundary between SkX and SQ is inferred

from the variation in χ (see dashed red line in Fig. 4.2(d)). Note that the sharp change

in χ is accompanied by a weak but noticeable change in hz-dependence in magneti-

zation and chirality. The sFM boundary is defined by the saturation of magnetization

together with a complete vanishing of chirality and skyrmion density. It is important

to mention that the finite-T sSk phase can only be characterized by real-space images

showing the presence of isolated skyrmions. Since these isolated skyrmions exist in the

ferromagnetic background any bulk indicators, such as SSF, will identify this phase as

a ferromagnet. Since the definition of sSk state as a true thermodynamic phase is not

possible, we indicate this as a metastable region just below the sFM phase boundary.

This is to be understood as the region where isolated skyrmions will emerge at finite

temperatures. The boundary between pSk and sSk states is obtained from the hz de-

pendence of explicit skyrmion count nSk. In the pSk phase, number of skyrmions do

not change upon changing external magnetic field (see inset in Fig. 4.5(a)). Strictly at

T = 0, the skyrmion count should exhibit a step-like jump to zero. However, at finite

T there is a narrow region in hz displaying a steep decrease in the skyrmion count. A

similar gradual decrease in the skyrmion count is expected upon increasing tempera-

ture close to the paramagnetic phase boundary. This can be interpreted as a melting of

skyrmion lattice via sSk state58.

The SSF for fDW, pSk and SkX states are displayed in Fig. 4.5(b)-(d), in that order.

Circular diffuse pattern for small α (see Fig. 4.5(b)-(c)) matches well with SANS exper-

iments and Fourier transform of LTEM images on MnSi and Co-Zn-Mn alloys11,15. We

also characterize the pSk state by plotting the number of skyrmions, nSk, as a function of

applied field. A plateau in nSk is an indicator of the pSk state (see inset in Fig. 4.5(a)).

The SSF in the pSk phase seems to have an hexagonal symmetry. This is expected

as close packing of disk-shaped particles will naturally lead to the formation of a tri-

angular lattice. However, on a closer look one finds that the points on the ky axis are

more intense than those located close to the diagonals. We have identified the origin

of this asymmetry in the SSF of the hz = 0 state. As mentioned earlier, the spirals in

the hz = 0 SQ phase are doubly degenerate with the (0,Q) and (Q,0) having identical

energies. In simulations, one of these spirals is spontaneously stablized at low tempera-
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Figure 4.6 SSF for, (a),(c) hz = 0 and (b),(d) hz = 0.16 in two independent simulations. The
ground state in the absence of magnetic field is doubly degenerate with (0,Q) and (Q,0) spirals
having equal energy. The hexagonal pattern in SSF at finite magnetic field displaying a slight
asymmetry related to the hz = 0 spiral state.

tures. By selecting two such simulations where different SQ states were stabilized, and

by increasing hz in the ZFC protocol we obtain pSk phases characterized by SSF pattern

that has a relative 90◦ rotation (compare Fig. 4.6(b) and (d)). In either case, the peaks

located on the kx or ky axis are relatively intense. Observation of these asymmetries sug-

gest that formation of an emergent lattice of extended particles residing on, and defined

from, the sites of a square lattice cannot form a perfect hexagonal structure. Clearly, in

continuum a triangular lattice can spontaneously form with an arbitrary orientations of

the three defining axes. On a square lattice, however, the x or y direction becomes a

natural choice for one of the axes of the triangular lattice leading to a stronger intensity

in the SSF along that direction.

In section Section 4.2. we have shown that the RDE model can account for forma-
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tion of skyrmions within an electronic Hamiltonian without the need to write a spin-only

model. In section Section 4.3. we explicitly verified that the connection of the electronic

Hamiltonian approach to the standard DM interaction based approach to skyrmion for-

mation is understood via the effective spin Hamiltonian derived in our earlier work52.

While it is well known that itinerant electrons strongly coupled to a magnetic skyrmion

background generate anomalous response in transport59,60, the influence of Rashba

coupling on transport properties has been pointed out only recently46. For consistency

and completeness, in the next section we discuss the effect of magnetic skyrmion states

on the electronic properties. This is important to emphasize as in the existing litera-

ture it is common practice to use the standard DE model for studying the response of

itinerant electrons to unconventional spin textures29,59,61,62. The fact that spin-orbit in-

teractions play a crucial role in stabilizing skyrmion textures is commonly ignored when

analysing the response of itinerant electrons to skyrmions and the resulting anomalous

Hall physics.

4.4 Bott index and topological metalicity

The possibility of finding amorphous analogs of translationally invariant topological in-

sulators has attracted much attention in recent years. Models for disordered topological

metallic or insulating states have been proposed49,63. A crucial feature of these mod-

els is a spatially-dependent pattern of hopping parameters which may not be easy to

realize. It is well known that electrons coupled to noncoplanar magnetic patterns ex-

perience an effective magnetic field and generate anomalous Hall effect59,60. We study

how the presence of Rashba coupling in the DE model affects this anomalous response.

We present topological characterization of the sSk and pSk states by computing the Bott

index B and the Hall conductivity σxy. Loring and Hastings first introduced the concept

of Bott index in condensed matter systems64,65. It is a measure of the incapability of

the system to form localized Wannier orbitals from the occupied states65. Our motiva-

tion to compute the Bott index here is to mathematically confirm the topological aspect

of the band structure of electrons in the presence of magnetic skyrmion states. The

implementation details of the Bott index calculation can be found in literature49–51,66.

Nevertheless, for completeness we outline the key steps below. First step is to construct

a projection operator out of all the occupied states.

P =
Nel

∑
k=1
|ψk〉〈ψk|, (4.8)
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where, |ψk〉 is the occupied eigenstate corresponding to the kth eigenvalue Ek, and Nel is

the number of electrons in the system. The position coordinates (xi , yi) of any lattice site

i can be mapped into the spherical co-ordinates (Θi , Φi) on a torus where 0≤ Θi < 2π

and 0≤Φi < 2π. The next step is to define the projected position operators,

U = PeiΘP,

V = PeiΦP, (4.9)

where, Θ and Φ are the diagonal matrices with Θi and Φi as diagonal elements respec-

tively. The Bott index is given by

B =
1

2π
Im
{

tr
[

log(VUV †U†)
]}

, (4.10)

For numerical stability of the algorithm, we perform singular value decomposition of the

projected position operators U and V following Huang and Liu50,51. The Hall conductiv-

ity, σxy, is computed using Kubo-Greenwood formalism as discussed in Section 2.6. Both

sSk and pSk states support finite values of σxy as well as B (see Fig. 4.7(a), (e)). Both

quantities display a change of sign as Fermi level crosses zero. Since the Bott index is an

analog of the Chern index for inhomogeneous systems, the aforementioned correspon-

dence between Hall conductivity and Bott index confirms the topological aspect of the

skyrmion phases in the RDE model in the same manner as finite Chern index confirms

the topological nature of states in translationally invariant systems. Therefore, metallic

systems with few or many skyrmions can be classified as topological metals in close

analogy with recently proposed hopping-pattern engineered tight-binding models49,63.

Further, the larger magnitude of σxy in Fig. 4.7(e) compared to that in Fig. 4.7(a) is

due to the increase in the number of skyrmions. In the sparse skyrmion regime, the Hall

conductivity increases linearly with the number of skyrmions. The dependence becomes

sub-linear on approach to a pSk phase. On the other hand, in pSk phase increasing the

number of skyrmions necessarily leads to a decrease in the size of skyrmions. The con-

sequence is larger gauge fields and hence a smaller and quantized Hall conductivity.
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Figure 4.7 (a) Bott index, B, and Hall conductivity, σxy (in units of e2/h) as a function of Fermi
level EF , (b) low temperature magnetic configuration obtained via simulations with open bound-
ary conditions, (c) LDOS at skyrmion cores with (red lines) and without (blue lines) local gauge
fields, and (d) real space map of LDOS at E =−3.38 in absence of local gauge fields (hγ

i j ≡ 0).
Panels (a)-(d) display results for α = 0.15. (e)-(h) Same quantities as shown in (a)-(d), in that
order, for α = 0.30. LDOS in panel (h) is shown for E = −2.87. The results are obtained on
100×100 lattice using open boundary conditions. 91



In order to further differentiate between the Rashba modified DE mechanism from

the standard DE physics, we calculate local density of states (LDOS),

ρi(E) = 1/N ∑k |ψk
i |2δ (E −Ek), where ψk

i is the amplitude on site i of the single par-

ticle eigenstate |ψk〉 corresponding to eigenvalue Ek of the RDE Hamiltonian Eq. (4.2).

Lorentzian with broadening parameter 0.01 is used to approximate the Dirac delta func-

tion. We find that the skyrmion textures in magnetization have strong implications for

the electronic wavefunctions in this unusual metallic phase. We use open boundary

conditions for LDOS calculations in order to illustrate the presence of edge modes due

to skyrmion-induced gauge fields. Note that the open boundary condition results lead

to visible textures in magnetization along the edges. These are a simple consequence of

competition between DM-like and ferromagnetic terms in the spin Hamiltonian along

the edges and is unrelated to the presence of skyrmions in the bulk. We focus on the

LDOS for sites located in skyrmion cores. In the sparse skyrmion case, there is a weak

enhancement in LDOS near the band edge (see Fig. 4.7(c)). The effect becomes much

pronounced for the packed skyrmion state. Furthermore, periodic modulations as a

function of energy become clear (see Fig. 4.7(g)). Inset in Fig. 4.7(g) show the energy

difference of two consecutive peaks, ∆En, as a function of peak index. There are two

possible interpretations of the spikes in LDOS. They can appear either due to the con-

finement effect, similar to those reported in metallic nanoislands and carbon nanotubes

with defect67,68, or due to effective magnetic flux hidden in the gauge fields. We find

a clear approach to disentangle these two effects. Ignoring the phases in the complex

hopping parameters gγ

i j in the RDE Hamiltonian sets the gauge fields to zero and the

resulting model with real hopping parameters contains pure confinement effects. The

results of LDOS calculation using hγ

i j ≡ 0 in Eq. (4.2)(blue lines in Fig. 4.7(c), (g))

show that the periodic modulations vanish and only a single peak near the band edge

survives. In Fig. 4.7 (d), (h), we plot lattice maps of LDOS for the energy fixed at peak

location. The resulting maps display inhomogeneities, and a clear localization of elec-

tronic wavefunctions at skyrmion cores for the pSk state (see Fig. 4.7(h)). Note that the

depletion of LDOS along the edges visible in Fig. 4.7(d) is related to the magnetic tex-

ture along the edges in Fig. 4.7(b), and is not a topological feature. The above analysis

proves that, although the confinement effects are present due to change in the magni-

tude of gγ

i j, the oscillations can only be explained by Landau level physics arising from

effective magnetic flux hidden in complex gγ

i j. This is further confirmed by performing

LDOS calculations on ideal skyrmion lattices in next section where we explicitly show

quantization of σxy.
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4.5 Emergent gauge fields and Landau levels

In order to confirm this, we set up a calculation where we reduce the disorder effects

by designing ideal skyrmion lattice configurations. The elementary skyrmion unit is

constructed by defining azimuthal and polar angles for localized spins as69, φi = π +

tan−1(yi/xi) and θi = 2tan−1(rs/ri)eβ (rs−ri) Θ(2rs− ri), respectively. In the above, xi(yi)

denote the x (y) coordinate of the site i located at distance ri from the skyrmion core

site, 2rs is the skyrmion radius and Θ denotes the Heaviside step function. We fix β =

0.04 to ensure similarity of ideal skyrmions with those obtained in HMC and effective

Hamiltonian simulations.

We show LDOS calculations for the ideal skyrmion crystals with rs = 1.5 (Fig. 4.8(a))

and rs = 2.5 (Fig. 4.8(e)). We obtain a very clear Landau level distribution for smaller

skyrmions (Fig. 4.8(b)), whereas the Landau levels are not well separated for larger

skyrmions. Therefore, smaller skyrmions generate stronger effective magnetic fields.

As a consequence, quantization of Hall conductivity at integer values is clearly visible

in Fig. 4.8(c). Presence of disorder can further effect the separation of Landau levels,

leading to an oscillatory behaviour only near the band edges as obtained for simulated

skyrmion textures (see Fig. 7(g) in main text). In Fig. 4.8(d) and (h) we show the

LDOS maps calculated for the two locations of Fermi energies, corresponding to com-

pletely filled first and second Landau levels, marked by the vertical dotted lines in Fig.

4.8(b). LDOS calculations explicitly show the presence of one (Fig. 4.8(d)) and two

(Fig. 4.8(h)) edge modes in the two cases. Inset in Fig. 4.8(b) show the energy differ-

ence of two consecutive Landau levels as a function of Landau level index. Note that in

continuum ∆En is independent of n, however in a tight binding model the energy depen-

dence of the density of states leads to an n-dependence in ∆En. The dashed line shows

∆En for a two dimensional tight-binding model with applied magnetic flux of strength

1/40 flux quanta per square plaquette. This explicitly confirms that the gauge fields

due to skyrmions play the same role as the external magnetic flux. Since the features

discussed in this section are unique to the RZ mechanism proposed in this work, they

serve as testable predictions for the presence of the mechanism in thin films of magnetic

metals.
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Figure 4.8 Perfect skyrmion crystal configuration with, (a) rs = 1.5 and (e) rs = 2.5. Panels (b)
and (f) display LDOS in skyrmion cores, with (red lines) and without (blue lines) gauge fields, for
configurations shown in (a) and (e), respectively. Panels (c) and (g) show the variation of Hall
conductivity with Fermi energy for configurations displayed in (a) and (e), respectively. LDOS
maps at EF = −2.95 (panel (d)) and EF = −2.75 (panel (h)) (marked by green dotted lines in
panel (b)). One edge mode per filled Landau level is easily identified in panels (d) and (h).
The calculations are performed on lattice sizes 112× 112 (for rs = 1.5) and N = 110× 110 (for
rs = 2.5). We use α = 0.2 for all calculations shown in this figure.
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4.6 Importance of consistent treatment

In order to clearly emphasize the importance of a consistent treatment of Rashba cou-

pling in the DE mechanism of skyrmion formation, we demonstrate the qualitative dif-

ference between LDOS maps obtained without and with the Rashba term. Once again

we take the typical configurations from sSk and pSk phases for this demonstration. For

both sSk and pSk states, LDOS maps calculated by setting α = 0 display a depletion of

electron density near skyrmion cores (see Fig. 4.9 (a),(c)). When the consistent cal-

culations are performed by setting the value of α equal to that used for obtaining the

skyrmion textures an opposite qualitative picture emerges. The skyrmion cores tend to

behave as attraction centers for the electronic charge (see Fig. 4.9 (b),(d)). This change

of qualitative behaviour is a clear sign of caution for the calculations performed within

conventional DE approach.

(c) (d)

(a) (b)

0.0

0.04

0.08

0.12

0.0

0.2

0.4

0.6

Figure 4.9 For sSk configuration obtained at α = 0.15 and hZ = 0.04 (shown in Fig. 4.7(b)):
LDOS map for energy near the band edge, (a) in an inconsistent electronic model with α = 0.0
and (b) for the consistent calculation with α = 0.15 in the itinerant model. For pSk configuration
shown in Fig. 4.7(f): LDOS maps within, (c) inconsistent calculation with α = 0.0 and (d)
the consistent calculation with α = 0.30. Note the qualitative difference between the left and
right columns: while the skyrmion cores behave as repulsive centers for electrons in α = 0
calculations, they become attractive centers in the consistent calculations.
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4.7 Conclusion

Double exchange mechanism provides a basis for understanding ferromagnetism in a

variety of metallic magnets. We have uncovered a new aspect associated with the clas-

sic DE mechanism by including the effect of Rashba SOC and Zeeman field in the DE

model. An explicit demonstration of the existence of nanoscale skyrmions in an elec-

tronic model with no direct spin-spin interactions is presented. In the presence of mag-

netic field, at finite temperatures, phases with sparse as well as packed skyrmions are

stabilized. While the pSk states are shown to be true ground states of the model, the

sparse skyrmions are metastable in the ground state but occur at finite temperature as

excitations of the ferromagnet. The circular patterns in the SSF are remarkably similar

to those reported in the SANS experiments on Co-Zn-Mn alloys and MnSi15. The corre-

sponding real-space images, representative of fDW states, are also in agreement with the

LTEM images on FeGe, Co-Zn-Mn and transition metal multilayers8–10,12,13,15,26,47,48. In

order to emphasize the similarity, we show below representative images from LTEM

and SANS experiments and compare with the images obtained in our calculations.

Figure 4.10 Qualitative comparison between spin configurations from our simulations (first col-
umn) with LTEM images from different experimental papers (Column 247, Column 326, column
412. The lower (upper) row is in absence (presence) of the external magnetic field.
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Figure 4.11 Comparison between spin structure factor obtained in our simulations (left column)
with SANS image from experimental study48 (right column).

The origin of the skyrmion states lies in the anisotropy terms of the DM and pseudo-

dipolar form that become apparent in the effective Hamiltonian derived from the RDE

model. In addition to a hexagonal packed lattice of skyrmions, we also find a qual-

itatively different square lattice skyrmion crystal stable for larger values of α. Hall

conductivity and Bott index calculations are presented to explicitly demonstrate that

the skyrmion states are examples of amorphous topological metals. Analogy with re-

cently proposed tight-binding models for amorphous topological metals and insulators

is also discussed. The LDOS calculations are presented in order to emphasize the impor-

tance of Rashba coupling in the DE mechanism that is commonly used for analysing the

influence of magnetic textures on electronic transport. The characteristic oscillations

in LDOS as a function of energy can be directly measured in experiments via dI/dV

spectra. Such dI/dV measurements can also be used to estimate the strength of Rashba

coupling in a metal with the help of a careful modelling of the data.
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5
Antiskyrmions and Bloch
skyrmions in Dresselhaus
double exchange metals

In this chapter, we explicitly show that inclusion of Dresselhaus spin orbit coupling and Zeeman

field stabilizes sparse and packed antiskyrmions in the paradigmatic double exchange model. We

provide a simple understanding of antiskyrmion phases with the help of an effective spin model

derived from the microscopic electronic Hamiltonian. We emphasize the role of electronic band

structure in deciding the type of skyrmion textures in the spin-orbit modified double exchange

model.
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5.1 Introduction

Topological magnetic textures like skyrmions and antiskyrmions characterized by oppo-

site winding numbers of ±1 can carry different, but complementary binary information

that can be used for building future information storage and processing devices1–5.

Achieving small size and increasing the stability of these magnetic textures over a wide

temperature-magnetic field phase space are also future challenges. These textures can

be stabilized in systems with antisymmetric exchange, i.e., Dzyaloshinskii Moriya inter-

action (DMI) due to large spin-orbit coupling (SOC)6–10. Other than DMI, frustrated

interactions due to long-ranged exchange mediated by itinerant electrons11–14 can also

lead to such magnetic states. Current theories suggest that while skyrmions are sta-

bilized by isotropic DMI, stabilization of antiskyrmions require anisotropic DMI15–17

or dipolar interactions18. Appearance of skyrmions has been observed with various

techniques, such as small angle neutron scattering (SANS) and Lorentz transmission

electron microscopy (LTEM) in bulk as well as in thin films of a variety of chiral mag-

nets19–27. On the other hand, antiskyrmions have been observed in bulk materials28–30

but not in thin films. Antiskyrmions offer some advantage over skyrmions in that they

can under some conditions move in the direction of an applied spin polarized current,

while skyrmions necessarily move at an angle16. Lifetime of antiskyrmions at room

temperature is found to be longer than the skyrmions31,32.

We have shown in previous chapters that the Rashba Double Exchange (RDE) model

in the presence of Zeeman field leads to states hosting nano-skyrmions33,34. Materials

hosting antiskyrmions like Mn1.4Pt0.9Pd0.1Sn, Mn1.4PtSn, Mn2Rh0.95Ir0.05Sn are usually

inverse Heusler metals lacking a center of inversion. In addition there is large spin-

orbit coupling associated with heavy elements, such as Pt and Sn, in these compounds.

Therefore an appropriate description of these metallic magnets can be in terms of a dou-

ble exchange model modified by Dresselhaus SOC. Here, we show that the Dresselhaus

DE (DDE) model in the Zeeman field’s presence leads to stabilization of antiskyrmion

states. We explicitly demonstrate the appearance of antiskyrmions using the state-of-

the-art hybrid Monte Carlo (HMC) simulations. For the comprehensive understand-

ing of the origin as well as stability of these spin textures, we also study an effective

spin Hamiltonian. We compare and differentiate between the filamentary domain wall

(fDW) phases arising in Rashba and Dresselhaus metals.
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5.2 Spin-fermion model and hybrid Monte Carlo results

We start with the ferromagnetic Kondo lattice model (FKLM) in the presence of Dres-

selhaus SOC, described by the Hamiltonian,

H = −t ∑
〈i j〉,σ

(c†
iσ c jσ +H.c.)+λ ∑

i
[i(c†

i↓ci+x↑+ c†
i↑ci+x↓)

+(c†
i↓ci+y↑− c†

i↑ci+y↓)+H.c.]− JH ∑
i

Si · si. (5.1)

Here, ciσ (c
†
iσ ) annihilates (creates) an electron at site i with spin σ , 〈i j〉 implies that i

and j are nearest neighbor (nn) sites. λ and JH denote the strengths of Dresselhaus

and Hund’s coupling, respectively. si is the electronic spin operator at site i, and Si,

with |Si| = 1, denotes the localized spin at that site. We parameterize t = (1−α)t0 and

λ = αt0 and set t0 = 1 as the reference energy scale. Assuming large JH and taking the

double-exchange approximation, we obtain the DDE Hamiltonian,

HDDE = ∑
〈i j〉,γ

[gγ

i jd
†
i d j +H.c.]−hz ∑

i
Sz

i , (5.2)

where, di(d
†
i ) annihilates (creates) an electron at site i with spin parallel to the localized

spin. The second term represents the Zeeman coupling of local moments to external

magnetic field of strength hz. Site j = i+ γ is the nn of site i along spatial direction

γ = x,y. The projected hopping gγ

i j = tγ

i j + λ
γ

i j depend on the orientations of the local

moments Si and S j,

tγ

i j = −t
[

cos(
θi

2
)cos(

θ j

2
)+ sin(

θi

2
)sin(

θ j

2
)e−i(φi−φ j)

]
,

λ
x
i j = iλ

[
sin(

θi

2
)cos(

θ j

2
)e−iφi + cos(

θi

2
)sin(

θ j

2
)eiφ j

]
,

λ
y
i j = λ

[
sin(

θi

2
)cos(

θ j

2
)e−iφi− cos(

θi

2
)sin(

θ j

2
)eiφ j

]
, (5.3)

where, θi (φi) denotes the polar (azimuthal) angle for localized spin Si.

Comparing Eq.(5.1) with the Hamiltonian in Chapter 4 we can see that the form of

the Hamiltonians is same, only difference is the interchange of the SOC terms along x

and y directions. As a consequence of that we get same Eq. (5.2) as in Eq. (4.2) but

notice the interchange of λ x
i j and λ

y
i j expressions in Eq.(5.3) as compared to Eq. (4.3)

in Chapter 4. We can anticipate that the phase diagram and the ground states in DDE

model will be similar as obtained in Chapter 4 but nature of the magnetic textures could

be different.
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We study the DDE Hamiltonian using numerically exact hybrid Monte Carlo (HMC)

simulations as discussed in Section 2.7.3. Presence of skyrmions or antiskyrmions is

inferred via local skyrmion density6,

χi =
1

8π
[Si · (Si+x×Si+y)+Si · (Si−x×Si−y)]. (5.4)

Total skyrmion density is defined as, χ =∑i χi. We also compute the spin structure factor

(SSF),

S f (q) =
1

N2 ∑
i j

Si ·S j e−iq·(ri−r j), (5.5)

and the relevant component of vector chirality η as,

η =
1
N ∑

i
−(Si×Si+x) · x̂+(Si×Si+y) · ŷ. (5.6)

Averaging of all quantities over MC steps is implicitly assumed, unless stated otherwise.

Results obtained via HMC simulations for two representative values of α are shown

in Fig. 5.1. Upon increasing hz, Magnetization, Mz =
1
N ∑i Sz

i , increases and η decreases.

The magnitude of χ initially increases with applied field, and then decreases on ap-

proach to the saturated ferromagnetic (sFM) state (see circles in Fig. 5.1(a), (d)). The

qualitative behavior is similar between α = 0.25 and α = 0.4. The positive sign of χ that

is opposite to sign of the polarity (defined by magnetization of the central spin of the

texture) reveals that the the ground states are antiskyrmions.

The existence of antiskyrmions in the DDE Hamiltonian is explicitly demonstrated

via the spin configurations as well as skyrmion density maps in the ground state. We

find that small values of α lead to sparse antiskyrmions within the zero field cooled

(ZFC) protocol (see Fig. 5.1(b)), and the packing (size) of antiskyrmions increases

(decreases) with increasing α (see Fig. 5.1(e)). The negative polarity is consistent with

the fact that the central spin in the antiskyrmion texture is oriented opposite to the

magnetization direction (see Fig. 5.1(c), (f)). In order to understand the origin and

stability of sASk and pASk, we present results on an effective spin model derived from

the DDE Hamiltonian.
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Figure 5.1 Magnetization Mz (triangles), total skyrmion density χ (circles) and vector chirality η

(squares) as a function of applied Zeeman field for, (a) α = 0.25, and (d) α = 0.4. Snapshots of
spin configurations, (b), (e), and the local skyrmion density, (c), (f), at T = 0.01 for representative
values of α and hz: (b)-(c) α = 0.25, hz = 0.0298; (e)-(f) α = 0.4, hz = 0.06.
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5.3 Origin and stability of sparse and packed antiskyrmions

We derive an effective spin model for HDDE in similar way as derived for HRDE in Chap-

ter 4, we obtain,

Heff = − ∑
〈i j〉,γ

Dγ

i j f γ

i j−hz ∑
i

Sz
i ,

√
2 f γ

i j =
[
t2(1+Si ·S j)+(−1)γ̂ ′2tλ γ̂ · (Si×S j)

+λ
2(1−Si ·S j +2(γ̂ ·Si)(γ̂ ·S j))

]1/2
,

Dγ

i j = 〈[eihγ

i jd†
i d j +H.c.]〉gs. (5.7)

In the above, γ̂ ′ = x̂ · γ̂, f γ

i j (hγ

i j) is the modulus (argument) of complex number gγ

i j and

〈Ô〉gs denotes expectation values of operator Ô in the ground state. It has been shown

that using a constant value of Dγ

i j captures the essential physics of the Hamiltonian Eq.

(5.7), therefore we set Dγ

i j ≡ D0 = 1 in our simulations.

We simulate Heff using the conventional classical MC scheme as discussed in Sec-

tion 2.7.1. Similar to the RDE model33, we find classical spin liquid states with filamen-

tary domain wall structure characterized by the diffuse ring pattern in the spin structure

factor in the absence of external field for small α. These states can be viewed as the

parent state for the exotic skyrmion- and antiskyrmion-like spin textures. Although the

filamentary domain walls are randomly oriented in these states and look similar for

Rashba and Dresselhaus systems. We differentiate between these two by plotting the

corresponding relevant component of vector chirality maps for each respectively (see

Fig. 5.2). Compare the vector chirality definitions Eq. (4.6) and Eq. (5.6) for each. The

relevant components of (Si× S j) in each definitions are nothing but the components

occur in Heff derived for each model. Physically it means that unlike Rashba system in

which along x-direction, a spiral in xz plane and along y-direction a spiral in yz plane is

preferred; here in Dresselhaus metals a spiral in yz plane is preferred along x-direction

and along y-direction a spiral in xz plane is preferred.
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Figure 5.2 Snapshots of fDW states (left column) and corresponding vector chirality map (right
column) taken from Monte Carlo simulationsa at α = 0.16 and hz = 0.0. (a)-(b) for Heff from DDE
model, (c)-(d) for Heff from RDE model.

In Fig. 5.3 we show the field-dependence of magnetization, η and χ for Heff which

is very similar to that obtained via HMC (compare Fig. 5.1 (a), (d) and Fig. 5.3). For

small values of α, magnetization increases linearly for small hz, followed by a slower

than linear rise. This change to non-linear behaviour is accompanied by a sharp increase

in the magnitude of χ (see Fig. 5.3(a), (b)). A simple understanding is that the emer-

gence of antiskyrmions arrests the ease with which spins align along the direction of the

external magnetic field. A finite value of η in the absence of magnetic field originates

from the DM-like terms present in the effective Hamiltonian. Variation of η is anticorre-

lated with that of magnetization and the former shows a sharp decrease accompanying

the increase in magnitude of χ (see Fig. 5.3(a), (b)). Finally, for still larger values of

applied field, system approaches sFM state, with both χ and η vanishing. For α = 0.5,

the change in χ near hz = 0.25 is sharper, and is accompanied by a weak discontinuity
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Figure 5.3 (a) - (d) Magnetization (triangles), total skyrmion density (circles) and vector chirality
(squares) as a function of hz for different values of α.

in both magnetization and η (see Fig. 5.3(c)). This qualitatively different behaviour is

an indicator of the pASk state, as will be illustrated below with the help of real space

spin configurations. For α = 0.6, χ is finite even at hz = 0. Interestingly, the magnitude

of χ reduces with increasing hz, and then again increases before finally vanishing on

approach to the sFM state (see Fig. 5.3(d)). These results are consistent with our re-

sults reported for RDE model34 which suggest that the phase diagram will look similar

to Fig. 4.5.
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Figure 5.4 Low temperature snapshots of spin configurations for representative values of α and
hz. (a) fDW state at α = 0.15, hz = 0, (b) sparse antiskyrmions at α = 0.15, hz = 0.036, (c) pASk
at α = 0.3, hz = 0.11, (d) ASk size reduction at α = 0.3, hz = 0.18, (e) number of ASk reduction
at α = 0.3, hz = 0.22 and (f) ASkX at α = 0.6, hz = 0.0.
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We show in Fig. 5.4 the evolution of magnetic textures with change in α and hz

within Heff. We observe that within the ZFC protocol at finite temperatures, the domain

junctions in the fDW states for small α (see Fig. 5.4(a)) become nucleation centers

for antiskyrmions when magnetic field is applied (see Fig. 5.4(b)). For larger values

of α, SQ spiral state gives way to the pASk phase (see Fig. 5.4(c)). For a given α,

increasing hz leads, initially, to a reduction of the size by polarizing the spins in the tail

of skyrmions (compare Fig. 5.4 (c) and (d)) and then to a reduction of the number

of skyrmions. (compare Fig. 5.4 (d) and (e)). A perfectly ordered crystal of smallest

possible antiskyrmions on a square lattice is obtained in the absence of external field

at α = 0.6 (see Fig. 5.4 (f)). The pASk phase sits in proximity to the sASk phase and

therefore, it can be viewed as a packed version of isolated skyrmions. This picture does

not apply for the ASkX phase as upon increasing hz, the phase is destabilized in favour

of a SQ spiral state. Therefore, the key difference between pASk and ASkX is that in

the pASk phase each antiskyrmion can be viewed as an individual entity, but the ASkX

phase represents a truely cooperative order of spins. We have also confirmed that the

skyrmion formation in the model is not an artifact of the ZFC protocol, by verifying their

existence using the field cooled protocol.

5.4 Thermal stability of antiskyrmions

In this section we show the skyrmion density map in applied Zeeman field (hz) vs tem-

perature (T ) plot for small Dresselhaus SOC regime. We find that at small but finite T

the isolated antiskyrmions (finite skyrmion density) emerge in increating-T simulations

starting with the sFM state (zero skyrmion density) at T = 0.001. A possible explanation

for such an appearance of skyrmions is in terms of entropic contributions to free energy

that become relevant only at finite temperatures. Therefore, while the sASk is not a sta-

ble ground state, it is still experimentally relevant as the isolated antiskyrmions appear

as excitations in the sFM ground state at finite T . The number density of antiskyrmions

and hence skyrmion density in this finite T phase depends on the values of T and hz,

in addition to α. At high enough temperature antiskyrmion state will have transition to

paramagnetic state (zero skyrmion density).
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Figure 5.5 hz - T plot with χ map at α = 0.2. Various states like sFM, antiskyrmion state and
paramagnet are found at various (hz, T ) regime.

5.5 Origin and stability of Bloch skyrmions

In effective spin model Eq. (5.7) if we modify f γ

i j such that

√
2 f γ

i j =
[
t2(1+Si ·S j)+2tλ γ̂ · (Si×S j)+λ

2(1−Si ·S j +2(γ̂ ·Si)(γ̂ ·S j))
]1/2

, (5.8)

which practically means that the sign of either t or λ along x direction is reversed

relative to the y direction. We simulate the modified Heff using the conventional classical

MC and see the consequences. In Fig. 5.6 we show the evolution of magnetic textures

with change in α and hz within modified Heff. We find that, the domain junctions in the

fDW states for small α (see Fig. 5.6(a)) become nucleation centers for Bloch skyrmions

when magnetic field is applied (see Fig. 5.6(b)). For larger values of α, packed Bloch

skyrmions phase (see Fig. 5.6(c)) are stabilized as ground states. The triangular lattice

of packed Skyrmions phase is obtained in the presence of external field, while at α = 0.6

the square-lattice Bloch SkX is already present at hz = 0 (see Fig. 5.6 (d)).

113



Figure 5.6 Low temperature snapshots of ground states in modified model for representative
values of α and hz. (a) fDW state at α = 0.16, hz = 0, (b) sparse Bloch skyrmions at α = 0.16,
hz = 0.036, (c) packed Bloch skyrmions at α = 0.3, hz = 0.12 and (d) Bloch skyrmions crystal at
α = 0.6, hz = 0.0.

5.6 Conclusion

We have explored the classic DE mechanism modified by Dresselhaus SOC in the pres-

ence of Zeeman field. An explicit demonstration of the existence of nanoscale anti-

skyrmions in an electronic model with no direct spin-spin interactions is presented. At

small Dresselhaus SOC parameter the fDW states exist at low temperature, which are

different from the fDW states found in Rashba metals33. As a consequence of that these

fDW structures can be viewed as parent state for antiskyrmions unlike skyrmions in

Rashba metals. While the pASk states are found to be true ground states of the model,
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the sparse antiskyrmions are metastable in the ground state but occur at finite temper-

ature as excitations of the ferromagnet in the presence of magnetic field. The reversal

of sign of hopping parameter along x direction relative to the y direction leads to stabi-

lization of Bloch skyrmion states. Similarly in RDE model, reversal of sign of hopping

parameter along any direction will result in stabilization of antiskyrmions. We can de-

sign materials with appropriate electronic band structure that will host antiskyrmions in

thin films. From these results we conclude that in addition to the type of spin orbit cou-

pling (Rashba or Dresselhaus) the electron itineracy also plays very important role in

deciding the type of skyrmion and the corresponding antiskyrmions textures in a metal.
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6
Summary and Outlook

A brief summary of the work done in this thesis is presented.
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This thesis presents a microscopic description of exotic magnetic states observed in thin

films of a broad class of metallic magnets. Magnetic skyrmions are topological textures

in magnetization that are envisioned as the building blocks of next-generation data

storage and processing devices. The capacity of information storage of such devices is

controlled by the density, and hence the size, of skyrmions. Therefore, new ideas for

stabilizing nanoscale skyrmions are of immense research interest. More importantly,

the current understanding of skyrmions in metals is highly inadequate as it relies on

generalized Heisenberg models that are derived for Mott insulators. This is a serious

conceptual flaw as no clear argument exists in the literature for ignoring electron itin-

erancy in metallic magnets. This thesis presents a significant advance on both these

fronts.

In chapter 2 We start with Rashba-Dresselhaus spin-orbit coupled ferromagnetic

Kondo lattice model, which is relevant for metallic systems. We study the model in dou-

ble exchange limit and from double exchange model we derive microscopic spin only

Hamiltonian. In particular, the model is applicable to thin films of MnSi-type B20 met-

als and multilayers of transition metals and their alloys. In this model, Dzyaloshinskii-

Moriya and Kitaev-type anisotropic interactions emerge naturally, in addition to the

standard Heisenberg term. We studied Rashba and Dresselhaus systems separately in

following chapters.

In chapter 3 we explicitly test the validity of the effective spin model by comparing

results against those obtained for the exact electronic model. We then map out the

phase diagram of the effective spin model using large scale Monte Carlo simulations.

The phase diagram consists of (i) planar spiral states, (ii) non-coplanar skyrmion crystal

states, (iii) diagonally oriented planar flux state, and (iv) a classical spin liquid metallic

state with filamentary domain wall structure characterized by the diffuse ring pattern

in the spin structure factor. These filamentary structures display a remarkable similarity

with the experimental observations on thin films of transition metals and B20 metals,

and this state can be viewed as the parent state for the exotic skyrmion states. We

identify the origin of this exotic filamentary state in an unusual ground state degeneracy

present in the model because of the spiral states with competing orientations of the

spiral planes. The model can be tuned across these states by varying the strength of

Rashba coupling.

In chapter 4 we show that the classic double exchange mechanism modified by

Rashba spin-orbit coupling in the presence of Zeeman field provides all the necessary

ingredients to stabilize Neel skyrmions with tunable size and density of skyrmions. The

results are numerically exact as they are based on quantum mechanical hybrid Monte
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Carlo simulations. An effective spin Hamiltonian is studied for a comprehensive un-

derstanding of the origin as well as stability of these spin textures. A filamentary do-

main wall (fDW) phase is identified as the parent of sparse skyrmions (sSk), which are

found to be stable only at finite temperatures and metastable in the ground state, and

a single-Q (SQ) spiral state leads to packed skyrmions (pSk). The similarity of our sim-

ulation results with, (i) circular pattern in the small angle neutron scattering (SANS)

experiments, and (ii) filamentary textures in Lorentz transmission electron microscopy

(LTEM) images on thin films of Co-Zn-Mn alloys, FeGe, MnSi and PdFe/Ir bilayer, makes

us believe that the mechanism is not merely a theoretical construct but exists in real ma-

terials. The DM interaction based theories present a diagonal spin spiral with ordering

wavevector (Q, Q) as the parent of skyrmion states. These theories do not explain

the two key experimental features mentioned above. Our results, on the other hand,

show that the skyrmion states emerge either from filamentary domain walls or from

collinear (0, Q)/(Q, 0) spirals. The isolated skyrmions also appear as excitations in the

saturated ferromagnet ground state at finite T. The Bott index is shown to be finite in

skyrmion states; hence we characterize these phases as disordered topological metals.

Topological Hall conductivity is shown to correlate with the Bott index. Local density

of states are shown to possess oscillations near the band edges – characteristic of quan-

tum confinement effects. These features are completely beyond the scope of existing

phenomenological theories and provide a clear test for the presence or absence of the

proposed mechanism in real materials.

In chapter 5 we study double exchange model modified by Dresselhaus SOC. The

form of the Hamiltonian is similar to that obtained for the Rashba double exchange

model. With the help of the effective spin model, we find that unlike Rashba system in

which along x-direction, a spiral in xz plane and along y-direction a spiral in yz plane

is preferred; here in Dresselhaus metals a spiral in yz plane is preferred along the x-

direction and along y-direction a spiral in xz plane is preferred. As a result of that the

antiskyrmion phases emerge as ground states in this model in the presence of Zeeman

field. We map out the Zeeman field vs temperature phase diagram to understand ther-

mal stability of the states. The reversal of sign of hopping parameter along x direction

relative to the y direction results in stabilization of Bloch skyrmion states. We summa-

rize the results in form of a table below which shows that the spin texture stabilized in

the SOC modified double exchange models depends on the type of spin-orbit coupling

(Rashba or Dresselhaus) and the sign of the hopping parameters.
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Table: Spin Texture dependence on type of SOC and sign of hopping parameters

SOC hopping along x (tx) hopping along y (ty) spin texture

Rashba +ve +ve

Rashba −ve +ve

Dresselhaus +ve +ve

Dresselhaus −ve +ve
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