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Abstract

Today, the field of artificial intelligence is making major progress in almost all its stan-

dard sub-areas, and its breakthrough advancement has excellent application in a variety of

domains. It has applications in biomedical imaging, drug discovery, surveillance and mon-

itoring, speech recognition, autonomous vehicles, etc. This has been possible because of

the accumulation of volumes of data which are the building blocks of these advancements.

The environment around us is rich in acoustic information. One such piece of infor-

mation is based on the vocalizations of animals, also known as bioacoustics. This includes

not only the vocalizations of animals such as birds and mammals but also the sounds that

insects can produce. Depending upon the research purposes, bioacoustic data can be gen-

erated by deploying a recorder in the fields, but these field recordings may or may not

contain the specific target, and hence, it requires a large number of bioacoustic recordings

for proper analysis. However, it will still require much human labor to extract the specific

target out of this massive data if done manually. Even after retrieving the target, we still

rely on the manual procedure to obtain onsets/offsets, features of the acoustic signals, or

any other relevant applications.

Through this thesis research, we have first developed an understanding of machine

learning and deep learning. We have explored its application to reduce this labor and vig-

orous process by building a model that can automatically detect the region of interest from

the field recordings and can extract them for further analysis. We also explore an automated

method where the extracted target recordings can be automatically analyzed to extract var-

ious features for research purposes.
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Chapter 1

Introduction

1.1 What is Data?

In today’s world, data is everywhere. With the arrival of digital technology, a vast amount

of data is generated every second. It is collected, analyzed, shared, hacked, bought, and

sold. Data are collected from observations or measurements represented as text numbers or

multimedia. We may immediately think of numbers when we think of data, but data can

also be field notes, videos, audio recordings, photographs, and documents. Data can be

broadly categorized as qualitative or quantitative. Quantitative data can be expressed as a

number and counted or compared on a numerical scale. At the same time, qualitative data
is observation or description and cannot be expressed as a number.

In this emerging world of technology, “data” plays a significant role, especially in the

field of artificial intelligence. Data can be in any form, including numbers, images, videos,

recordings, etc. When a collected set of relevant data are processed, one can find many

hidden trends or significant relationship among those sets of data, and by working on those

details, one can draw a meaningful result. This process is called data mining. Data min-

ing is analyzing data, pre-processing data to transform it into an appropriate format, and

discovering the insights or trends hiding behind the data. These insights and patterns are

mined and extracted using various tools and techniques ranging from data visualization,

statistical modeling, machine learning or deep learning, etc.

The environment around us is rich in acoustic information. Acoustics is the science of

sound. The sound moves through a medium by alternately contracting and expanding parts

of the medium it is traveling through. This compression and expansion create a pressure

variation relative to the medium pressure that propagates in the form of waves to which the

animal ear is sensitive. When particles of the medium come closer, it is called compression,

whereas when the particles go farther than their normal position, it is called rarefaction, and

these regions are alternately the region of high pressure and low pressure. These changes

1



in air pressure create a wave. Therefore, a sound wave can be represented as pressure

variation in the medium through which it propagates. These sounds can be recorded using

a microphone, and the digital form of sound is referred to as audio. Microphones convert

these sounds into a digital format so that a computer can store them. It is a kind of analog-

to-digital converter that converts pressure variation into some numerical parameters that

define the properties of a sound. These parameters are the amplitude of a sound wave

representing its volume and the frequency representing its pitch. Unlike tabular data, audio

data does not follow a very clear and organized structure, and therefore, it is hard to work

with it.

Figure 1.1: Representation of Sound Waves

1.2 Problem Statement

This thesis research focuses on machine learning and deep learning, aiming to model the

problems based on specific acoustic signals belonging to the animal kingdom. Bioacoustics

is a branch of science concerned with sound production and its effects on living organisms.

It has a range of novel application areas, such as acoustic surveillance, essential for auto-

mated wildlife monitoring and overall ecosystem health. It also contributes to research on

climate change [Penar 20].

Bioacoustic in conservation has a lot of potential uses. Because we can not only hear

the animals themselves that we are trying to study, like the birds, the insects, the frogs,

even some mammals, but we can also hear what is happening to the habitat. The other
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advantage of bioacoustics is that it is easy not to be disturbing the biodiversity we are

studying. We can deploy our recorders in the field, leave them for the appropriate period,

and it can record volumes of data that can be used for research purposes. Depending upon

the research purposes, these field recordings may or may not contain the specific target.

To deal with this, the recordings are done for a long time, resulting in a massive volume

of data. However, it still requires much human labor to extract the specific target out of

this massive data if done manually. Through this project, we are trying to build a model

that automatically detects the region of interest from the field recordings and can extract

them for further analysis. We also explore an automated method where the extracted target

recordings can be analyzed further automatically for extracting various features for research

purposes.

1.3 Understanding Audio data

Like any other signal, anything that passes information from one source to another, sound

signals also carry information through the vibration. Two main features of any sound signal

are amplitude and frequency.

1.3.1 Time Domain Representation of Sound Wave

Figure 1.2: Time Domain Representation of Sound Wave

The above visualization of sound is called the time-domain representation of a sound

wave. It represents how a sound wave’s amplitude(or loudness) changes with time. The

region with amplitude zero represents silence.

3



1.3.2 Frequency Domain Representation of Sound Wave

The amplitudes in the time domain representation talk about the loudness of sound, and

therefore they are not very informative. The other way to understand these signals is the

frequency domain representation, which tells us how much of the signal lies within each

given frequency band over a range of frequencies. This time-domain to frequency-domain

conversion is done via Fourier Transform.

Audio files with just one frequency at the same time are very rare. In general, any

sound signal is a superposition of many sound signals, and when sound is recorded, we

only capture the resultant amplitudes of those multiple waves. But we can decompose a

signal into its constituent frequencies by using Fourier Transform.

Mathematically, for any continuous signal, g(t), its Fourier transform is given by

ĝ( f ) =
∫

g(t).e−2π f tdt (1.1)

Similarly, for discrete signal, x(t), we have,

x̂( f ) = ∑x(n).e−2π f n (1.2)

Figure 1.3: Frequency Domain Representation of Sound

Fig 1.3 represents the frequency domain representation of a sound which is obtained by

computing the Fourier transform of the sound wave shown in Fig 1.2. The magnitudes for

frequencies are higher only for the frequency value ranging between 3500 Hz to 4500 Hz

and have a very small magnitude in other regions as most of these frequencies are probably

due to the noise.
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1.3.3 Time-Frequency Representation - Spectrograms of Sound Wave

However, when we apply Fourier transform to our signal, it only gives us the frequency

values, and all the information based on time is lost. For example, a sound recording of

a human speech will make no sense after applying Fourier transformation as it will only

give frequency values. To preserve both time and frequency information, we use the visual

representation of the spectrum of frequency of a signal as it varies with time which is

known as spectrograms. A spectrogram is a frequency-time domain representation of a

sound where it chops up the time duration of the signal into a small time window(generally

in milliseconds) and then computes the frequencies contained in each window by applying

the Fourier transform for each smaller window. Also, the consecutive windows overlap

with each other so that we don’t lose any of the frequencies. It then combines the Fourier

transforms for all those segments into a single plot.

A human ear can easily differentiate between pairs of lower frequencies than the pairs

of higher frequencies, even if the difference between those pairs is the same in both cases.

This implies that even though the frequency difference between the two sets of sounds is

the same, our perception of those differences is not. It has been found that humans perceive

sound frequencies logarithmically and not linearly, and that log scale is referred to as the

mel scale.

Figure 1.4: Mel Scale vs Hertz Scale

The transformation of frequency from Hertz scale to mel scale is given by:

mel = 1127. ln(1+
f

700
) (1.3)
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Figure 1.5: Mel-Spectrogram of a Sound Wave

This mel spectrogram now is a proper representation of sound waves without losing

time or frequency information.

The recorded audio can be analyzed based on different parameters extracted from time-

domain representation, frequency domain representation, and frequency-time domain rep-

resentation. These features are the basis for sound event detection and segmentation of

audio into voiced and unvoiced regions. Also, these feature helps in creating a feature set

for the targeted regions of recording, which can be used for further analysis and to create

models.

1.4 Audio Features

A sound signal can have a voiced region or unvoiced region ( either silence or noise or both).

It may also have many voiced regions with different levels of amplitudes and frequencies.

Based on the different representations of a sound wave, one can extract useful features from

these signals and these different regions. When the features are calculated for the whole

signal, it will give small or little information about the signal because the amplitude and

frequency vary with time for a sound signal. Therefore, observing these features locally for

small-time windows that carry more information is important. Some of these features are

discussed below:

1.4.1 Zero Crossing Rate

The zero-crossing Rate(or ZCR) of a discrete-time signal is defined as the number of times

the zero axes are crossed per frame. When observed locally, ZCR correlates with the fre-

quency content of the signal, and hence it helps in identifying the voiced and unvoiced
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region of the signal as ZCR for the voiced region is usually low when compared to the

unvoiced region, which has a higher ZCR value.

ZCR =
1
n
.

n

∑
1
|sgn(x(n+1))− sgn(x(n))| (1.4)

where, x(n) is the signal and

sgn(k) =


1, if k > 0

0, if k = 0

−1. if k < 0

(1.5)

1.4.2 Energy

The energy of a sound wave is directly proportional to the square of the wave’s amplitude.

The average energy of a discrete-time signal x(n) is given by,

E(x(n)) =
∑

n
1(x(n))

2

n
(1.6)

Figure 1.6: Short Term Energy

When energy is computed for the whole signal, it gives little information about time-

dependent features for many audio signals. Since amplitude varies with time for a sound

wave, computing this energy for small-time windows will give more information. This

energy will have a higher value for the voiced region than the unvoiced region.

1.4.3 Amplitude Envelope

The amplitude envelope of an audio signal is a curve that shows the boundary within which

the signal is contained. This can be obtained by computing the analytical signal for the

given audio signal. An analytic signal is a complex-valued function that has no negative

7



frequency components. The real and imaginary parts of an analytic signal are real-valued

functions related to each other by the Hilbert transform. The Hilbert transform of a signal

x(t) is the convolution of x(t) with 1/πt. Mathematically, Hilbert transform is defined as:

xH(t) = x(t)∗ 1
πt

=
∫

∞

−∞

x(t)
π(t− τ)

dt (1.7)

Fourier transform of convolution of two functions is the product of their Fourier Trans-

form. Therefore, Fourier transform of Hilbert transform of signal x(t) will be given by,

F(xH(t)) = F(x(t)).F(
1
πt

) (1.8)

We also know that,

sgn(t) F.T←−−→ 2
iω

(1.9)

=⇒ 2
it

F.T←−−→ 2π.sgn(−ω) (1.10)

=⇒ 1
πt

F.T←−−→−i.sgn(ω) (1.11)

=⇒ xH(ω) =−i.sgn(ω).x(ω) (1.12)

From expression, 1.11, we can observe that the Hilbert transform shifts he phase of

original signal by π

2 . Using this, we can represent our sound signal in form of analytic

signal.

=⇒ xanalytic(t) = x(t)+ ixH(t) (1.13)

And |xanalytic(t)| represent the amplitude envelope. These envelopes in themselves are very

useful. These envelopes give a rough idea of loudness, and they can also be used for the

onset detection of the voiced region in an audio signal and segmentation of the audio signal

into voiced and unvoiced regions.

Figure 1.7: Original Audio Signal
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Figure 1.8: Signal with Hilbert Transform and Amplitude Envelope

1.4.4 Signal Variance

The variance of the signal is defined as the variance of the amplitudes. It is defined as,

Var(x(n)) =
1

n−1

n

∑
1
(x(n)− ¯x(n))2 (1.14)

Figure 1.9: Short Term Amplitude Variance

Computing the variance for the whole signal will give a single numerical value, while

computing it for small-time windows shows the variation of signal amplitude locally. The

unvoiced region usually has a smaller amplitude variance, while the voiced region has a

higher amplitude variance.

1.4.5 Spectral Centroid

The spectral centroid is the center of gravity of the magnitude of the frequency represen-

tation of the signal. It is defined as the weighted mean of the frequencies present in the
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signal, determined using a Fourier transform, with their magnitudes as the weights.

SC =
∑

n
1 A(k).k

∑
n
1 A(k)

(1.15)

where k is the frequency and A(k) is the corresponding magnitude of frequency.

Figure 1.10: Spectral Centroid

1.4.6 Spectral Bandwidth

The spectral bandwidth is measured as the deviation of the frequency of a signal from the

spectral centroid.

SB(k) =

√
∑

n
1 A(k).(k−SC)

∑
n
1 A(k)

(1.16)

where k is the frequency and A(k) is the corresponding magnitude of frequency and SC

is the spectral centroid of the signal.

In one of our thesis experiment (Chap 4, Part A), we have implemented the approach men-

tioned above in python to automate the procedure of segmentation of voiced and unvoiced

regions and feature extraction.
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Chapter 2

Theoretical Background

2.1 The Traditional Programming Paradigm

Traditional computer programming has been around for more than a century. It includes the

computer program, which is created manually after figuring out the specific rule of thumbs

between inputs and outputs. Then, putting back those rules and inputs in the machine will

give us the desired output. There is a growing variety and volumes of data available in the

current data-driven world. Sometimes the data we collect can be complex and challenging

to utilize unless organized and appropriately categorized. Hence finding the rule of thumb

for our traditional programming setup becomes more arduous, and we may not be able to

find the exact algorithm every time for every given data. Moreover, that is precisely where

artificial intelligence and machine learning come into play. The main characteristic feature

of machine learning is finding rules using existing examples.

2.2 Artificial Intelligence and Machine Learning

In 1956, Dartmouth Professor John McCarthy was the first to coin the term ”artificial in-

telligence.” He was the first computer scientist and one of the founders of the discipline

of artificial intelligence. AI is the branch of computer science that deals with developing

an intelligent machine capable of performing any task with human-like intelligence. AI

enables machines to mimic, develop and demonstrate human cognition or behavior. The

main motive of AI is to make these machines less artificial and more intelligent. Later

in 1959, Arthur Lee Samuel popularized the term “machine learning.” According to him,

machine learning(or ML) is the field of study that gives computers the ability to make intel-

ligent decisions based on their learning without being explicitly programmed.[Samuel 59]

It involves training the machine by making a model using different algorithms with a math-

ematical foundation and testing the level of training of the model using a test set.
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Figure 2.1: Traditional Programming Paradigm

According to Tom M.Mitchell, the concept of learning in ML is that it learns from expe-

rience E w.r.t to some task T and some performance measure P if its performance on T

as measured by P improves with experience E.[Mitchell 83] Unlike traditional program-

ming, ML is the concept where we feed the input and output to the machine, which tries to

learn the relationship between them after a proper analysis. ML is built upon a statistical

framework. It is evident because ML involves data, and data has to be described using a

statistical framework. It is an interdisciplinary field that uses linear algebra, probability &

statistics, and computer science to learn from data and provide insights that can be used to

make predictions.

2.2.1 Types of Machine Learning:

ML comprises several types of learning based on the problem, and three major recognized

categories are supervised learning, unsupervised learning, and reinforcement learning.

Supervised Learning

In supervised learning, an ML model is trained using labeled data where the model needs

to find the mapping function to map the independent variable with the dependent variable.

It is a type of predictive learning algorithm in which data comes with specific labels where

the labels are the target we are interested in predicting. Consider an image classification

problem where we have images of dogs and cats, and each of them is labeled as ’dog’ and

’cat’, respectively. Now the ML model would use previous data to predict the label of new

data points.

Unsupervised Learning

Unsupervised learning differs from supervised learning because this ML model is trained

using unlabeled data. However, since unlabeled data only consist of features, the goal here

is to find the underlying structure of the dataset, group that data based on similarities, and

represent the data set in the compressed structure. Consider the same example of image

classification mentioned in supervised learning but this time with no labels. We can still

differentiate both the animals based on similarities of their features using the method of
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unsupervised machine learning, which will group them in some way by similarity, even

without knowing what each group represents.

2.3 Model, Objective Function, and Parameter Learning -

Core of Machine Learning

The primary objective of any ML model is to make an accurate prediction after learning

from the data. It is an interdisciplinary field that uses probability and statistics, and therefore

to understand how an ML algorithm learns from data and improves its learning to predict

an outcome with high accuracy, we need to understand the underlying concepts involved in

training the algorithm.

2.3.1 Dependent and Independent Variable:

Independent variables are the inputs of a specific process, and the outputs of the process are

the dependent variables. Independent variables are also referred to as features.

2.3.2 Population and Sample

The entire set of all the elements associated with a problem statement is population. Since

we can never measure the entire population, we always consider a subset of the population

to draw inferences about the whole population. This subset considered for studies is called

the sample. Any value that describes the character of an entire population is a parameter of

population, and any statistics of the sample is the measure that describes the sample.

2.3.3 Probability and Statistics

Probability tells about the likelihood of future events, whereas statistics deals with analyz-

ing the observations of past events. The probability occurrence of an event is defined as

the number of times the event occurred (or the number of ways the particular event can

occur ) divided by the total number of incidents observed (or the total number of possible

outcomes). Statistics is any measurable function of the data, for example, mean, median,

etc. Statistics term is used both for the function and for the value of the function on a given

sample.
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2.3.4 Estimators, Likelihood Function and Maximum Likelihood Es-
timator

Given a data set, estimation in the statistical approach to find an estimate of a population

parameter, and when a sample statistics are used for estimating a population parameter, it

is called an estimator.

For example, the sample mean is an estimate of the population mean. Sample variance

is an estimate of the population variance. Sample standard deviation is an estimate of the

population standard deviation.

The difference between the expected value of an estimator of a population parameter

and the respective true parameter value gives the bias of an estimator. When this difference

is zero for an estimator, we call it an unbiased estimator of the population parameter.

For a statistical experiment resulting in n independent and identically distributed ran-

dom variables Xi where i = 1,2,...n, with a probability distribution Pθ parametrized by some

parameter θ , the likelihood function(L) is defined as a probability when the true value of

the parameter is θ .

L(θ |X1,X2, ...Xn) = ∏Pθ (Xi = xi) (2.1)

The maximum likelihood principal is a method of obtaining the optimum values of the

parameters that define a model. Moreover, while doing so, we increase the likelihood of

our model reaching the ”true” model. For the above model with a given likelihood function,

the maximum likelihood estimator of θ is defined as:

θ̂
MLE
n = argmaxθ L(θ |X1,X2, ...Xn) (2.2)

2.3.5 Loss Function

The loss function is a technique to evaluate the performance of an algorithm or model. It

is a function that measures how far an estimated value is from its true value. Tuning the

model parameter based on its loss functions helps us to improve the model accuracy. The

objective of any model or algorithm is to minimize the loss function and tune the model

parameter using some optimization techniques.

J(θ) =
∑ f (predicted, target)

n
(2.3)

where f(predicted,target) is a function of model parameter θ

14



Types of Loss Function:
Mean Absolute Error: For any dataset and model associated with it, MAE is measured

as the average of the absolute difference between the estimated value(predicted output) and

its true value(actual output).

Loss =
∑

n
1 ||ŷi− yi||

n
(2.4)

where ŷi is predicted output and yi is actual output.

Mean Squared Error: For any dataset and model associated with it, MSE is measured

as the average of the square of the difference between the estimated value(predicted output)

and its true value(actual output).

Loss =
∑

n
1 ||ŷi− yi||2

n
(2.5)

where ŷi is predicted output and yi is actual output.

Cross-Entropy Loss: For any dataset and model associated with it, cross-entropy loss

or log loss is a measure of divergence between the probability distributions.

Loss =
n

∑
1
−yilog(ŷi) (2.6)

where ŷi is predicted output and yi is actual output.

2.3.6 Optimizers in Machine Learning: Newton Raphson and Gradi-
ent Descent Method

The model’s performance is evaluated by the loss function, and this loss can be reduced if

model parameters can learn from the loss associated with them and then by updating the

model parameters accordingly to reduce the loss. This process is repeated till the conver-

gence of the loss function, and the process is known as optimization. There are several

optimization techniques used in machine learning.

For any function f (x), continuous and differentiable, then for any h in neighbourhood

of x, using Taylor series for first order approximation, we can write:

f (x+h) = f (x)+h f
′
(x)+O(h2) (2.7)

Therefore, in first order approximation, f (x+ h) is given by f (x) and f
′
(x) at x. Now

it’s clear that in order to get maximum leverage, for small h, moving in the direction of
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negative gradient will decrease f. Therefore, h =−α f
′
(x) where α > 0. Then,

f (x−α f
′
(x)) = f (x)−α f

′
(x) f

′
(x) (2.8)

Also for small value of α ,

f (x−α f
′
(x))≤ f (x) (2.9)

This means if use x−α f
′
(x) instead of x, f (x) will decline. This method, when repeated

continuously, under some constraints, f (x) will converge to a minimum value. This opti-

mization method is known as gradient descent. In machine learning, it is used to minimize

the cost function parameterized by the model’s parameter by updating the parameters in the

opposite direction of the gradient of the cost function with respect to the model parameters.

θ j : θ j−α ∗ dJ
dθ j

(2.10)

where J is the loss function and dependent on parameter θ j and α is the learning rate

that scales the magnitude of parameter updates.

· Since the first-order approximation is good only in the small neighbourhood of x, a

smaller value of α is used.

· If α is very small, the algorithm takes very long to converge to the minimum and

consumes more computation power.

· If α is very high, then there is a high chance of overshooting away from the minimum

as our first order approximation will lose its virtue and there will be the contribution

from higher order terms.

Another more accurate approach is the second-order approximation compared to the

first-order approximation. For a small value of h, by using the Taylor series, a second-order

approximation can be written as:

f (x+h) = f (x)+h f
′
(x)+

1
2

h2 f
′′
(x)+O(h3) (2.11)

On differentiating w.r.t. h,

f
′
(x+h) = f

′
(x)+h f

′′
(x) (2.12)

Thus, the first order condition for the value of h, that minimizes f
′
(x+h) is

0 = f
′
(x)+h f

′′
(x) (2.13)

=⇒ h =− f
′
(x)

f ′′(x)
(2.14)
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Considering the condition that h lies in the neighbourhood of x, we can re-write h as

h =−α
f
′
(x)

f ′′(x)
where α > 0.

Therefore if use x−α
f
′
(x)

f ′′(x)
instead of x, f (x) will decline and under valid constraints,

it converges to the local minima if applied iteratively. This optimization technique via

second-order approximations is known as Newton-Raphson method. To minimize the

cost function of a machine learning model, Newton’s method is more efficient in such cases

as they use the curvature to find the direction of minima in the curve. To minimize the cost

function, J, parameterized by model parameters θ , the parameters will be updated by the

following rule:

θ j : θ j−α ∗
∇J(θ j)

∇2J(θ j)
(2.15)

where J is the loss function and dependent on parameter θ j and J has to be twice differ-

entiable in order to calculate ∇2J(θ j) and α is the learning rate that scales the magnitude

of parameter updates.

· If α is very small, the algorithm takes very long to converge to the minimum and

consumes more computation power.

· If α is very high, then there is a high chance of overshooting away from the minimum.

Wherever applicable, Newton’s method converges much faster towards a local maxi-

mum or minimum than gradient descent. But for a model with a large number of model

parameters, the computation of the Hessian matrix(second order derivative) and finding the

inverse of the Hessian in high dimensions can be an expensive operation. It also fails when-

ever a stationary point is encountered. Therefore, in general, gradient descent is used for

optimizing the cost functions of an ML model. However, there are several ways to boost

this algorithm. Generally, a model uses the whole training set to update the model param-

eter in each iteration. For a large volume of data, it is very heavy on computation. To

fasten this process, instead of using the whole training set at once for each iteration, we

can randomly pick one data point from the whole training set at each iteration to reduce the

computations enormously. This method is called stochastic gradient descent(or SGD).
We can also sample a small number of data points from the training set instead of using just

one at each iteration and it is called mini-batch gradient descent(or MBGD).

Sometimes the cost function for a model can have local minima, and if it is a bit shallow,

the normal gradient descent algorithm finds it hard to escape, and sometimes it becomes a

vigorous process, but SGD and MBGD can escape it easily.
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2.4 Fundamental Machine Learning Model

To establish notation for this section, we will use n to denote the number of total features, m

to denote total number of data points in a dataset and xi
j represents the jth feature’s value in

the ith training example where i=1,2,...,m and j=1,2,...,n. Let xi denote the ith input features

of the training example, and yi is the corresponding output. The pair (xi,yi) is called a train-

ing example, and the whole data set for i = 1,2,...,m is called the training set. Considering

a training example,linear combination of features is processed in the hypothesis function

depending upon the model and this happens for all

θ
i
0 + xi

1θ
i
1 + ...+ xi

nθ
i
n (2.16)

where the term θ i
0 is called bias.

This can be further generalized in matrix form using all the features and including the

constant variable 1 in the feature of each training example. This matrix is known as the

feature matrix, the matrix of corresponding parameters is known as the parameter matrix,

and it is given by,

X =



1 x1
1 x1

2 ... x1
n

1 x2
1 x2

2 ... x2
n

. . . ... .

. . . ... .

. . . ... .

1 xm
1 xm

2 ... xm
n


Θ =



θ 1
0 θ 1

1 θ 1
2 ... θ 1

n

θ 2
0 θ 2

1 θ 2
2 ... θ 2

n

. . . ... .

. . . ... .

. . . ... .

θ m
0 θ m

1 θ m
2 ... θ m

n


(2.17)

2.4.1 Linear Regression:

It is one of the most popular supervised machine learning algorithms. It is a statistical

method used to predict output based on given features. The output is the linear combination

of one or more independent variables. The hypothesis function used here is given by

h(θ) = ΘXT (2.18)

yi = hi(θ) = θ
i
0 + xi

1θ
i
1 + ...+ xi

nθ
i
n (2.19)

Cost Function: In this model, we usually use the mean squared error to calculate the

cost and update the model parameters. Squared error functions are differentiable almost

everywhere and give non-negative errors. Also, being a quadratic function, it has only one

minimum, and gradient descent performs very well in this case. Absolute error functions

or higher-order functions are avoidable because of non-differentiable behavior or because

they may have more than one local minima, which does not give an optimal solution for

our model parameters.
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2.4.2 Logistic Regression:

It is also a popular supervised machine learning algorithm. The important thing to note

about logistic regression is that it is not a regression but a classification algorithm. Using

this model, we try to find out a decision boundary that can divide the dataset into different

classes. It is used to predict the categorical dependent variable, and therefore, the out-

come must be a discrete value(or categorical). Because of this, the hypothesis function is

a sigmoid function that gives probabilistic values between 0 to 1, and with some threshold

parameter, the values above/below the threshold value are classified as 1/0 (or True/False),

respectively.

h(θ) =
1

1+ e(−ΘXT )
(2.20)

yi = hi(θ) =
1

1+ e(−θ i
0−xi

1θ i
1−...−xi

nθ i
n)

(2.21)

Cost Function: Consider a case of dog and cat image classification problem. An ideal

model will predict,

Pθ i(yi|xi) =

1, if yi = 1(dog)

0, if yi = 0(cat)
(2.22)

We can also write this as,

Pθ i(yi|xi) = Pθ i(yi = 1|xi)yxPθ i(yi = 0|xi)1−y (2.23)

By using logistic regression, this unknown probability function is modeled as

Pθ i(yi|xi) =
1

1+ e(−θ ixi)
(2.24)

We can write the likelihood function as,

L(θ i|y,x) =
i=m

∏
i=0

Pθ i(yi|xi) (2.25)

Using expression 2.23, we can re-write likelihood function as:

L(θ i|y,x) =
i=m

∏
i=0

Pθ i(yi = 1|xi)yxPθ i(yi = 0|xi)1−y (2.26)

Instead of analyzing likelihood function, we can also analyze log-likelihood.

logL(θ i|y,x) =
i=m

∑
i=0

[yi. logPθ i(yi = 1|xi)+(1− yi). logPθ i(yi = 0|xi)] (2.27)

We need to maximize this log-likelihood, or we can minimize the negative of this log-

likelihood, which can be done via gradient descent to estimate the model parameters. Hence

the cost function (also known as cross entropy loss or log loss) in this case is given by,

J(θ) =−
i=m

∑
i=0

[yi. logPθ i(yi = 1|xi)+(1− yi). logPθ i(yi = 0|xi)] (2.28)
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2.5 The Problem of Under-fitting, Over-fitting and Regu-

larization Techniques

While training any model on the given data set, the aim is to learn from the data and create a

generalized set of rules that can perform well on the new data set. Sometimes a model fails

to learn from the data if it does not get trained until the convergence of the cost function, too

many input features where some of them are irrelevant or missing. This case is referred to

as the under-fitting. In the case of under-fitting, a model has low efficacy both on training

and test data.

Over-fitting is a case in which a model fits the training data too well but performs very

poorly on test data. Instead of learning from the hidden trends, the model also starts to learn

from noise, which negatively impacts the model’s ability to generalize.

Figure 2.2: Under-fitting vs Appropriate-fitting vs Over-fitting

Regularization is a technique that is used to avoid the problem of overfitting for any

model. In practice, it penalizes the model parameters so that the model does not learn the

more complex features to generalize the model. Depending upon the different learning

models, there are different regularization techniques. These regularization techniques can

be applied to the cost function, which optimizing gives a better model without affecting the

training accuracy and also increases the overall accuracy of the model.

Los(New) = Loss+λ ∗∑g(||model parameters||) (2.29)

where λ is the regularization parameter and g is some function of model parameters.

20



Chapter 3

Artificial Neural Network and
Convolutional Neural Networks

3.1 Deep Learning

Machine learning is just a subset of AI that focuses on teaching an algorithm to learn from

experiences without being explicitly programmed. Deep learning takes this idea even fur-

ther, and it is a subset of machine learning that focuses on using neural networks to au-

tomatically extract useful patterns in raw data and then using these patterns or features to

learn to perform that task.

3.2 Artificial Neural Networks

”Artificial neural network(or ANN)” refers to a biologically inspired sub-field of artificial

intelligence modeled after the human brain. An artificial neural network consists of a pool

of computing units called perceptron(also known as an artificial neuron) which communi-

cate by sending signals to each other over a large number of weighted connections.

3.2.1 Basic Components of ANN:

Perceptron:

Perceptrons were first developed by Frank Rosenblatt, inspired by the work of Warren Mc-

Culloch and Walter Pitts. Perceptrons are the structural building block of artificial networks

and deep learning. It takes one or more input variables and produces an output variable and

considering the impact factor of different input variables.
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Weight and Bias:

Weights are associated with each input variable depending on its influence on the model,

which decides the impact factor of an input variable. The more the weight of input, the

more it will influence the network. A perceptron receives input as a linear combination of

input variables and weights and a bias term. Bias is like the intercept in a linear equation.

It is used to adjust the output along with the weighted sum of input variables that help to

shift the activation function.

Figure 3.1: Perceptron with input variables xi, weights θi, bias θ0 and output y

Activation Function:

When the weighted sum of input variables along with the bias term is passed through a

perceptron, it takes that sum and passes it through an activation function, g , to produce the

final output.

y = g(z) ,where z = θ0 +∑
3
1 θixi (3.1)

The main purpose of the activation function is to introduce the non-linearity in the network,

which allows us to actually deal with non-linear data, and this is extremely important in

real life, especially because in the real world, data is almost always non-linear. Some of the

commonly used activation functions are sigmoid, softmax, hyperbolic tangent, rectified
linear unit, etc.

3.2.2 Hidden Layers and Deep ANN:

Depending upon the volume of data, the ANN can have a more complex architecture. These

complex architectures have several layers, and each layer has several perceptrons. In its

simplest form, ANN has only three layers: an input layer, an output layer, and multiple
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hidden layers. Instead of just taking the input features and passing them through a percep-

tron to produce output, the inputs from the first layer, i.e., the input layer, are passed to

the next layer, which is the hidden layer, and output from each perceptron of this layers is

then passed on to the next hidden layer and so on, and in the final layer, the output of the

previous layers are used to predict the output. The learning of ANNs can be improved in a

similar way to humans by filtering information through multiple hidden layers. The deeper

the network, the higher the efficacy of the model, which is referred to as deep learning.

Figure 3.2: Multilayered ANN

3.2.3 Computing Gradients: Backpropagation

The cost function for a neural network usually becomes quite complicated as there are

many hidden layers between the input and the output layers. Gradient descent involves the

computation of a lot of partial derivatives, and these errors propagate through the network

from the output layer to the input layer, which is called backward propagation or simply

backpropagation. Backpropagation is an efficient algorithm for computing gradients on

neural networks using the chain rule. In this, instead of calculating the gradient each time

for each weight and bias, the gradients obtained in each layer are stored and used further in

previous layers. The method of backpropagation helps to boost the computation of gradient

descent for the multilayered ANNs.

Consider the ANN network given below(Fig 3.3) with cost function J(θ). It shows the last

three layers of a simple ’L’ layered ANN architecture, each having one node. θ k
0 are bias

term and θ k
1 are the weights. Using the gradient descent on the output layer, i.e., Lth layer,
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Figure 3.3: An example of ANN for computing gradients via backpropagation

the error in the weight θ L
1 is given by,

dJ
dθ L

1
=

dJ
dxL ∗

dxL

dzL ∗
dzL

dθ L (3.2)

=⇒ dJ
dθ L

1
=

dJ
dxL ∗g

′
(zL)∗ xL−1 (3.3)

Here, dJ
dxL can be calculated using the cost function of the model, g

′
(zL) is the derivative of

the activation function g at point zL. Let,

ε =
dJ
dxL ∗g

′
(zL) (3.4)

On applying gradient descent on the second last layer, i.e., (L− 1)th, the error in the

weight θ
L−1
1 is given by,

dJ
dθ

L−1
1

=
dJ
dxL ∗

dxL

dzL ∗
dzL

dxL−1 ∗
dxL−1

dzL−1 ∗
dzL−1

dθ
L−1
1

(3.5)

=⇒ dJ
dθ

L−1
1

=
dJ
dxL ∗g

′
(zL)∗θ

L
1 ∗g

′
(zL−))∗ xL−2 (3.6)

=⇒ dJ
dθ

L−1
1

= ε ∗θ
L
1 ∗g

′
(zL−1)∗ xL−2 (3.7)

Here we can notice that the gradient obtained for the weight in the second last layer (equa-

tions 3.4 and 3.5) appears in the second last layer’s gradient update formula (equations 3.8

and 3.9). This represents the propagation of error in the backward direction, i.e., from one

layer to its previous layer.

3.2.4 Regularization in ANN

In deep learning, two most important regularization techniques are dropout and early
stopping. While training the model using ANN and using the dropout technique, some
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Figure 3.4: Dropout(left) and Early Stopping(right) Regularization

randomly selected activation nodes are set to zero. Generally, 50% of nodes from each

layer is set to zero in each iteration during the training process. It lowers the capacity of our

neural network so that they have to learn to perform better on test sets because sometimes,

on training sets, it just simply cannot rely on some of those parameters, so it has to be able

to be resilient to that kind of dropout. It also means that they’re easier to train because, at

least on every forward passive iteration, we’re training only 50 of the weights and only 50

of the gradients, so that also cuts our gradient computation time down in by a factor. So

because now we only have to compute half the number of neuron gradients. It basically

forces the network to learn how to take different pathways to get to its answer, and it can’t

rely on any of the one pathways too strongly and over-fit that pathway.

The other way regularization method in ANN is by training the model for a particular

number of iterations. In general, while training the model with the given training set and

validation set, the loss function keeps decreasing for the training set. However, for the

validation set, it decreases and then increases when the model starts over-fitting the data.

Now training the model till this point where the loss for validation set starts increasing gives

us a better generalization for unseen data.

3.3 Convolutional Neural Networks

As mentioned earlier, today, data are stored in numeric form as well as non-numeric forms

such as images, audio, video, etc. Visual data like images and videos can be analyzed by

computers, and the concerned field is known as Computer Vision. Computers recognize a

digital image as a matrix with each of its entries ranging from 0 to 255, and each entry is

known as pixels representing the intensity value. A convolution neural network is a subclass

of neural networks that are modeled to imitate human vision. It has very great applications
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in the field of Computer Vision. Examples: Object detection, Image Classification, etc.

Every image data has a certain set of features that are used to differentiate them from other

images, and that’s exactly what the CNN model tries to learn from the image data. It uses

the concept of convolution and tries to extract the local features of an image for a model as

well as reduce the image data without losing any important features.

3.3.1 Basic Components of CNN:

Any CNN architecture usually consists of a combination of convolution layers and pooling

layers at the beginning and one or more fully connected layers at the end, followed by a

softmax classifier to classify the input into various categories.

Figure 3.5: Basic CNN Architecture

Kernels and Convolution:

Kernels or filters are the way to extract features from the images. It is a matrix that is

convolved with a sub-region of an input image to create a feature set of that image(Fig 3.6).

Figure 3.6: Convolution in CNN(Stride=1, Filter Size = 3x3)
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Figure 3.7: Example of Filters - Vertical and Horizontal Edge Detection Filter

Pooling:

Pooling is an operation that is used to reduce the dimensionality of our inputs and our

feature maps while still preserving spatial invariants. The size of the pooling operation is

always smaller than the size of the feature map. More specifically, it is almost always 2x2

pixels applied with a stride of 2 pixels. Max-pooling and Average-pooling are two types of

the pooling operation. Max-pooling filter simply selects the maximum pixel value within

the given filter size.

Figure 3.8: Pooling in CNN (Stride = 2, Filter Size = 2x2)
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Introducing Non-Linearity:

Feature maps produced after each convolution is basically a matrix and each element of this

matrix is the weighted sum obtained from previous layer. To introduce non-linearity here,

ReLU(Rectified Linear Unit) is used as a activation function that replaces all the negative

pixels value by zero.

Figure 3.9: ReLU Activation Function

Padding:

While performing convolution operation, we lose information that is there on the edge of

the image, and to avoid this problem, we use padding, which basically extends the area of

an image on which convolution operations are performed.

Figure 3.10: Different types of Padding Operation
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Output size before pooling operation:

Out putSize =
InputSize−KernalSize

Stride
+1 (3.8)

Output size after pooling operation:

Out putSize =
InputSize−KernalSize+2∗Padding

Stride
+1 (3.9)

3.3.2 Backpropagation in CNN:

Just like ANN, CNN also uses a backpropagation algorithm to compute the gradient and

tune the parameters. In ANN, we used it to tune the weight and biases, while in CNN, we

use it to update weights and bias in the fully connected layer and also to tune the kernels or

filters( each element of the filters are tuned) so that the model can choose appropriate filters

for the given task.

In general, CNN is difficult to train on CPUs because it is a deep network that in-

volves huge amounts of matrix multiplications and other operations, and CPUs don’t have

much memory bandwidth. For faster computation, one can use GPU instead of CPU for

faster training and deployment. GPUs have more cores than CPUs that can be used to

perform the same operation on multiple data items in parallel. Hence, a GPU can pro-

cess the vast volume of data, speeding up the required tasks beyond what a CPU can

handle.[Madiajagan 19] For example: In this project a CNN model was trained (discussed

in Chapter 5, Part B) on ACER INSPIRE 7 - 8 GB RAM - CPU: Intel Core i5 - 9th Gen -

GPU: NVIDIA GEFORCE GTX 1650 -4 GB. On CPU, it took around 5 min per iteration

to train 5000 - 224x224 RGB images, whereas on GPU, it only took 3 min per iteration to

train 10,000 - 224 x 224 images over the same CNN model.

Machine Learning and Deep Learning have very great applications in several fields. We

have used these concepts to create a model in one of our experiments(Chapter 4, Part B).
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Chapter 4

Experiments, Results and Discussion

4.1 Part A: Analysis of Cricket’s Acoustics

Crickets are nocturnal ectotherms that communicate using sound. Their calling activity can

be limited by several environmental, physiological, and ecological factors. Acoustic com-

munication in crickets is to attract mates, promote copulation, and aggressive interactions

with rivals. The male cricket insects make sounds by stridulatory organs located on the

left forewing, which has lots of teeth or comb-like structure, and when the left forewing is

rubbed against the right forewing, they produce chirps.

Figure 4.1: Male and Female of Acanthogryllus Asiaticus collected from IISERM

In crickets, only males sing, and a sexually receptive female, upon hearing the ”calling

song” of a conspecific male, moves towards the sound source. Once the male and female

come into physical contact, the male switches to a distinct signal, “courtship song”, which is

part of a multimodal display that entices the female to mate. Males also sing “rivalry songs”
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during and, more typically, after winning, aggressive encounters with rivals.[Singh 21]

Figure 4.2: Scanning Electron Microscope images of Stridulatory Teeth present in (A)

Teleogryllus mitratus, (B) Teleogryllus occipitalis [JAISWARA 21]

4.1.1 Problem Statement:

The stridulatory teeth of the crickets are almost equidistant due to which the acoustic signals

produced by them on rubbing occur with a certain time difference. The sound produced due

Figure 4.3: Temporal Patterns in Cricket’s Call

to each tooth is referred to as a syllable, and in one go, several syllables are produced, which
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are referred to as a chirp. This syllable has certain onset/offsets and the same for chirps,

and once determined, these onsets/offsets can be used to determine important features for

each syllable and chirps, which can be used further for research purposes. Also, some of

the key features can also be used to create species classification models based on machine

learning and deep learning techniques. But determining the onset/offset of each syllable

and features based on them for all acoustic recordings can be a vigorous task when done

manually. We can automate this method of onset/offset detection and feature extraction by

using our proposed method.

4.1.2 Data Collection:

The data provided to us were the acoustic recordings of male crickets which were taken by

the members of Evolutionary Biology Lab, IISER Mohali. Those recordings were taken in

a sound proof setup by using Sony ICD-UX533F voice recorder with 44.1 kHz sampling

rate in a 16 bit wav file at room temperature and humidity being in the range of 40-70%.

The recordings were made in a box covered with anechoic foam, so that there would be no

echoes that might distort the recordings, with recorder attached at the cap of it.

Figure 4.4: Time-Domain Representation of Cricket’s Calls
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4.1.3 Proposed Model and Results:

The onset and offset of a square wave-like signal can be easily calculated by several meth-

ods. One of them is by computing the point where the slope is changing its value from

zero to a positive value and from a negative value to zero. It is a kind of extension to a

mathematical concept known as a turning point. Mathematically, a turning point is a point

at which the slope of a function changes its sign. Hence the product of the slope at a point

just before and after the turning point is a negative value. In our case, we can extend this

condition of a turning point, where the slope at a point just before and after the turning

point is a non-positive value, given that both of them can’t be zero simultaneously.

Figure 4.5: Enveloping the Signal (Syllable View)

In our proposed method, we have approximated our sound signal with a square wave like

signal in such a way that the onset/offset of the square wave lies just inside the syllables and

in the small neighbourhood of onset/offset of the syllables. This onset/offset of the square

wave like signal helps in the determination of the actual onset/offset of the syllables, which

are best approximated by the turning points in the cricket signals, which are just before/after

the onset/offset of the estimated square wave like signals. Instead of using the original

cricket calls, a better approach is to use the amplitude envelope of the syllables and turning

points of the amplitude envelope, as it will have the same onsets/offsets for syllables, and

it also ignores the turning points which have negative amplitude. This amplitude envelope

for the audio signal can be obtained by using the Hilbert transform(Fig 4.6,4.7).

The required square wave-like signal can be obtained by using a suitable threshold

value, below which the value of the amplitude will be set to zero, and in other cases, the

value of the amplitude will be set to the threshold value itself. In the case of the higher

threshold value, the generated square wave will have non-negligible differences in terms of

onset/offset w.r.t. our original onset/offset. The optimal threshold value for better approx-

imation can be calculated in terms of the mean amplitude of the envelope. On calculating

the average amplitude of a cricket call, it is found to be in the order of 10−6 or 10−7 seconds
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since it rises and falls symmetrically above and below the zero references. Therefore in-

stead of using this value, the mean amplitude of the envelope signal is used, which has some

significant value. Even in the case of envelope signal, since the time period for each syllable

is usually in the order of 10−1 or 10−2 seconds, the region of non zero amplitude is very

small, and therefore, because of this and silence region between two consecutive chirps,

most of the amplitude values lie near the x-axis only in the time domain representation and

the mean amplitude in this case also is as compared to the maximum amplitude.

On calculating, we observed that in most the case, this threshold could be set to the

mean amplitude because of the fact that for any syllable, ideally, all possible turning points

are the point of maximum amplitude and one before and after before the point of maximum

amplitude which is the actual onset/offset. And since the value of this mean amplitude is

very small, it can also avoid the presence of any other turning points between the point of

maximum amplitude and onset/offset of the syllable. In the model, we have allowed the

user to put any linear transformation of the mean amplitude of the envelope signal to tune

the results further.

Once the threshold is decided, it can be used to approximate the syllables with a square

wave like a signal. Further, we extracted all the stationary points of the envelope signal

whose amplitude is less than our threshold value. Out of all the extracted stationary points,

the one that was just before the onset of the square wave and the one just after the offset of

the square wave was approximated as onset and offset for syllables of our original signal.

Fig 4.7 to Fig 4.20 shows the result of each step followed and the results for the cricket’s

signal given in Fig 4.6. Data frames for both syllables and chirps with some of their features

which are obtained on the basis of detected onset/offset, are also shown in Fig 4.21 to Fig

4.24.

Figure 4.6: Cricket Signal

35



Figure 4.7: Amplitude Envelope (Syllable View)

Figure 4.8: Amplitude Envelope (Chirp View)

Figure 4.9: Square Wave Signal via Thresholding
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Figure 4.10: Detected Onset-Offset

Figure 4.11: Chirp with detected onset-offset(vertical red lines)

Figure 4.12: Chirp with detected onset-offset(vertical red lines)
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Figure 4.13: Chirp with detected onset-offset(vertical red lines)

Figure 4.14: Chirp with detected onset-offset(vertical red lines)

Figure 4.15: Chirp with detected onset-offset(vertical red lines)
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Figure 4.16: Syllable with detected onset-offset(vertical blue lines)
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Figure 4.17: Syllable with detected onset-offset(vertical blue lines)
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Figure 4.18: Syllable with detected onset-offset(vertical blue lines)
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Figure 4.19: Syllable with detected onset-offset(vertical blue lines)
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Figure 4.20: Syllable with detected onset-offset(vertical blue lines)
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Figure 4.21: Extracted Features for each Syllable

Figure 4.22: Some Statistics on Extracted Features of Syllables

Figure 4.23: Extracted Features for each Chirp

Figure 4.24: Some Statistics on Extracted Features of Chirps
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4.2 Part B: Bird Sound Detection

4.2.1 Problem Statement:

Assessing the presence and abundance of birds is important for monitoring specific species

as well as overall ecosystem health. Many birds are most readily detected by their sounds,

and thus, passive acoustic monitoring is highly appropriate.[Stowell 19]

Bio-acoustic data of birds are usually recorded in fields by placing a recorder for a long

period of time. Researchers record these acoustics over a period of months for analysis,

and these are huge volumes of data. But sometimes, it may happen that recordings may

or may not contain the bird songs at all therefore analyzing every recording and extracting

the region with bird calls is a vigorous task if performed manually. We can automate this

method of bird sound detection by using our proposed model based on deep learning.

4.2.2 Data Collection:

The data provided to us were the acoustic recordings from fields considering the presence of

birds in the area. The recordings were taken by the members of Evolutionary Biology Lab,

IISER Mohali. The recordings were done in various locations in IISER Mohali by using

AudioMoth v1.2.0 and were used with Audiomoth IPx7 case for protection during data col-

lection. Recordings were taken by deploying the audiomoth on trees(Height - 5m approx).

The configurations were done using Audiomoth Configuration App (Sample rate- 48kHz,

Gain- Medium, Recording duration- 55s, Sleep duration- 5s) No filtering of frequency or

amplitude threshold was enabled. So frequencies between 0-24kHz were recorded and were

automatically converted to WAV file format.

Figure 4.25: A) Himalayan Bulbul B) Time Domain representation of Field Recording of

Bulbul C) Mel-Spectrogram of Field Recording of Bulbul
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Figure 4.26: A) Indian Gray Hornbill B) Time Domain representation of Field Recording

of Hornbill C) Mel-Spectrogram of Field Recording of Hornbilll

Figure 4.27: A) Rose Ringed Parakeet B) Time Domain representation of Field Recording

of Parakeet C) Mel-Spectrogram of Field Recording of Parakeet

4.2.3 Proposed Model

Mel-spectrogram represents the frequency of a signal as it varies with time. These spec-

trograms are a unique representation of most of the sound signals from our surroundings.

Human speech, dog barks, bird calls, train whistle, crickets chirps, etc. All these sounds lie

in different frequency regions and follow a unique frequency-time representation. We can

extract these mel-spectrograms for a small window of a field recording, and each of that

mel-spectrogram can be mapped to a different class to which they belong. For example, a

mel-spectrogram of a region that is similar to the mel-spectrogram of birds will be classified

as a bird call. Using the mel-spectrogram, we can classify the different classes of sounds.

We can use the CNN-based model to classify these spectrograms. This CNN model makes

a prediction on each small time window of a field recording by obtaining the spectrograms

46



of all those windows. Hence we have reduced our problem of audio classification to image

classification.

Data Preprocessing and Feature Extraction:

From each 55s of field recordings, 2-sec audio was trimmed out manually using Audacity

on Windows, and each was labeled with 1 if there is a bird call present and 0 if there are

no bird calls or calls other than of birds. For each labeled recording, mel-spectrogram was

generated using Python and stored with previous respective labels. A total of 14,000 mel-

spectrogram were generated, 7000 for bird calls and 7000 for non-bird, which is around

7.7 hours of recording. Out of 14,000, 10,000(5.5 hours) mel-spectrograms were used for

training, 2000(1.1 hours) for validation, and 2000(1.1 hours) for testing.

Figure 4.28: Training Data: Spectrogram of 2 sec audio clip of Bird Calls.
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Based on the extracted feature, a CNN model was created, which has a total of 27,823,938

trainable parameters according to the architecture shown in Fig 4.29:

Figure 4.29: CNN Architecture

4.2.4 Results:

The model was trained on 10,000 labeled images along with a validation set of 2000 images

for 70 epochs and was tested on 2000 images (1000 for each category). Since it is an

classification model, cross entropy loss function was used for training which was optimized

through stochastic gradient descent on the batch size of 32 training data points. It took

around 4 hours on GPU to complete the training process. The overall training accuracy
was 93.7% and validation accuracy was 94.6%.

Figure 4.30: Value of Loss function at each iteration
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Figure 4.31: Accuracy of proposed model at each iteration

After training, the model was tested on 2000 labeled mel-spectrogram images, and the

confusion matrix was calculated, which is used for evaluating the performance of a classifi-

cation model. The confusion matrix compares the actual target values with those predicted

by the model. From the confusion matrix, we can also calculate the model’s accuracy,

precision, false-positive rate, etc.

Figure 4.32: Confusion Matrix

· A true positive is an outcome where the model correctly predicts the positive class.

Similarly, a true negative is an outcome where the model correctly predicts the neg-

ative class. In our case value of true positives and true negatives are 980 and 989

respectively.
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· A false positive is an outcome where the model incorrectly predicts the positive class.

And a false negative is an outcome where the model incorrectly predicts the negative

class. In our case value of false positives and false negatives are 11 and 20 respec-

tively.

· Accuracy is the most intuitive performance measure that the model correctly classi-

fied over the total number of records.

Accuracy =
T P+T N

T P+FP+T N +FN
= 0.9845 (4.1)

· Precision talks about, out of those predicted positive, how many of them are actual

positive. It measures the model’s accuracy in classifying a sample as true positive.

Precision =
T P

T P+FP
= 0.9889 (4.2)

· False Positive Rate: It’s the measure that a positive result will be given when the true

value is negative.

FPR =
FP

T N +FP
= 0.0110 (4.3)

For false negatives, the most common observation was that some data points contained very

faint bird sound, often needing multiple listens to be sure it was present. Also, as we were

trying to classify between bird sound and non-bird sound, the training data for non-bird

sound includes silence, train whistle, car/bike horn, etc. But out of all, data for silence

region was in the majority then all the other non-bird songs hence training the model is

slightly compromised for those which are in minor, and that might be the most probable

reason of misclassification and hence false positives, were observed.
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Appendix A

List of Python Libraries and Functions

A.1 Libraries

Figure A.1: Libraries used in our Model

A.2 Functions

Here, list represents, list of extracted syllable or chirps.
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Figure A.2: Function for computing Average Energy, Average Amplitude and Signal Vari-

ance(top to bottom)
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Figure A.3: Function for computing ZCR, Spectral Centroid and Spectral Bandwidth(top

to bottom)
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Figure A.4: Function for CNN Model
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