
Primality and Factoring

Anuj Jakhar

A dissertation submitted for the partial fulfilment of

BS-MS dual degree in Science

Indian Institute of Science Education and Research Mohali

April 2014

Certificate of Examination

This is to certify that the dissertation titled “Primality and Factoring”

submitted by Mr. Anuj Jakhar (Reg. No. MS09020) for the partial fulfil-

ment of BS-MS dual degree programme of the Institute, has been examined

by the thesis committee duly appointed by the Institute. The committee

finds the work done by the candidate satisfactory and recommends that the

report be accepted.

Dr. Alok Maharana Dr. Chanchal Kumar Prof. Kapil H. Paranjape

(Thesis supervisor)

Dated: April 25th, 2014

Declaration

The work presented in this dissertation has been carried out by me under

the guidance of Prof. Kapil H. Paranjape at the Indian Institute of Science

Education and Research Mohali.

This work has not been submitted in part or in full for a degree, a diploma,

or a fellowship to any other university or institute. Whenever contributions

of others are involved, every effort is made to indicate this clearly, with due

acknowledgement of collaborative research and discussions. This thesis is a

bonafide record of original work done by me and all sources listed within

have been detailed in the bibliography.

Anuj Jakhar

Dated : April 25th, 2014

In my capacity as the supervisor of the candidate’s project work, I certify

that the above statements by the candidate are true to the best of my

knowledge.

Professor Kapil H. Paranjape

(Thesis supervisor)

Acknowledgment

My first and foremost thanks is to my thesis supervisor Professor Kapil H.

Paranjape. It was a great experience to work in his guidance. I very much

appreciate his way of handling a student’s doubt by providing him/her the

correct line of thought and then allowing one to figure out by oneself, as it

helped me learning many new things during the process.

I am grateful to Professor K. V. Subrahmanyam (CMI, Chennai) and Dr.

Amitava Bhattacharya (TIFR, Mumbai) for teaching me useful algorithms in

Primality during my summer internships. I thank my committee members,

Dr. Chanchal Kumar and Dr. Alok Maharana, for their insightful comments.

Nothing is possible without financial resources. I would like to sincerely

acknowledge DST, Government of India for providing me INSPIRE fellow-

ship. I am much thankful to IISER Mohali for providing me infrastructure

and Computer Centre for all the technical support.

I am grateful to all my friends at IISER and otherwise, for giving me all

the non-technical support and of course sheer luck because of which I got

the opportunity to learn mathematics.

I am deeply thankful to Agastya P. Bhati for all his support throughout

my stay at IISER.

No acknowledgement would ever adequately express my gratitude to my

family. I would like to give a special mention to Sh. Sahi Ram, Supyar, Atul

and Kalpana for always believing in me. Their moral support has always

boosted my confidence and motivated me to achieve and their teachings have

enabled me for it. It is their love and affection which gives me a reason to

succeed.

Anuj Jakhar

MS09020

IISER Mohali

iii

Notation

#S : Cardinality of a set S.

Fq : Finite field with q elements.

R : Field of Real numbers.

If x ∈ R, then :

dxe : smallest integer greater than x.

bxc : greatest integer smaller than x.

Given n ∈ N, [n] : the set {1, 2, · · · , n}.

Let a, b be elements of some ring R. Then :

b|a : b divides a in R , i.e. ∃ c ∈ R such that a = b·c.

Z/nZ : ring of integers modulo n.

(Z/nZ)* : the abelian group consisting of the units in Z/nZ.

Let f(x) be an irreducible polynomial in Fp[x]. Then :

f(x) ≡ g(x) (mod h(x), p) means f(x)–g(x) = 0 in the ring (Z/pZ)[x]/(h(x)).

(a, b) = c means gcd(a, b) = c.

or(p) denotes the smallest non negative integer k such that pk ≡ 1(mod r).

If n ∈ N, Then φ(n) denotes the number of integers less than or equal to n that

are relatively prime to n.

iv

Asymptotic Notation for Runtime Analysis

Throughout this thesis, all logarithms will be to the base 2 and denoted log(n) rather

than log2(n) or lg(n). Additionally, all of our runtime analysis will use “Big O”

notation, which is defined as follows :

O(f) = {g | ∃c,∃n0, for all n > n0 : |g(n)| ≤ c · |f(n)|}
O∼(f) = {g | ∃c,∃n0,∃k, for all n > n0 : |g(n)| ≤ c · |f(n)|logk(|f(n)|)}
Ω(f) = {g | ∃c,∃n0, for all n > n0 : |g(n)| ≥ c · |f(n)|}
Θ(f) = O(f)∩Ω(f)

Notation Given a non negative integer n, ||n|| denote the number of bits in the

binary representation of n. Then ||n|| = dlog(n+ 1)e.

Fact 1 : If g1(n) = O(f1(n)) and g2(n) = O(f2(n))

(1) g1(n) + g2(n) = O(max{f1(n), f2(n)})
(2) g1(n) · g2(n) = O(f1(n) · f2(n))

As implication of the part (1) of the above fact is that complex algorithms can

often have a single step whose complexity dominates the other steps, meaning that

the overall complexity of an algorithm is sometimes simply the complexity of a single

step of the algorithm.

Definition 0.0.1. We say that an algorithm has polynomial time complexity (in input

size), if for given input n, all computations are performed in O(||n||k) bit operations

for some k ≥ 0, where a bit operation refers to the number of steps needs to perform

an arithmatical operation on a natural number given in binary representation.

Lemma 0.0.2. Let n, m ∈ N. Then :

(1) Computing m + n takes O(||n||+ ||m||) = O(log(n)+log(m)) bit operations.

(2) Computing m·n takes O(||n|| · ||m||) = O(log(n)·log(m)) bit operations.

(3) Computing the quotient n div m and the remainder n mod m takes O((||n|| −
||m||+ 1) · ||m||) bit operations.

Addition and subtraction can therefore be computed in linear time, while multipli-

cation and division can be computed in quadratic time, which is still polynomial.

v

Fact 2 : Let m,n ∈ N with at least k bits each. Then :

(1) m and n can be multiplied with O(k(log(k))(loglog(k))) = O∼(k) bit operations.

(2) n div m and n mod m can be computed using O(k(log(k))(loglog(k))) = O∼(k) bit

operations.

(3) Multiplication of two polynomials of degree d with coefficients at most m bits in

size can be done in O∼(d·m) bit operations.

Proof. : Refer to [39] for proof of (1) and [40] for proof of (2) & (3).

vi

Contents

Notation iv

Asymptotic Notation for Runtime Analysis v

Abstract x

1 Introduction 1

I Primality 5

2 Primality Testing Algorithms 7

2.1 The Sieve of Eratosthenes Primality test and Trial Division 7

2.1.1 Algorithm (The Sieve of Eratosthenes) 7

2.1.2 Algorithm (trial division) . 8

2.2 Wilson’s characterization of primes . 8

2.2.1 Algorithm . 8

2.2.2 Wilson’s Theorem . 8

2.3 Euler Test and Lucas test . 9

2.3.1 Algorithm (Euler test) . 9

2.3.2 Euler Theorem . 10

2.3.3 Lucas Theorem . 11

2.3.4 Algorithm (Lucas test) . 11

2.4 Fermat Test and Carmichael Numbers 12

2.4.1 Algorithm (Fermat Test(n)) . 12

2.4.2 Fermat Little theorem . 12

2.4.3 Fermat witness and Fermat liar 13

2.4.4 Idea of the Algorithm . 13

2.4.5 Carmichael Numbers and Their Some Properties 13

vii

2.4.6 Chinese Remainder Theorem . 14

2.4.7 Correctness of the Algorithm 17

2.5 The Miller-Rabin primality Test . 17

2.5.1 Algorithm (Miller-Rabin(n)) . 18

2.5.2 Idea of the algorithm . 18

2.5.3 Correctness of the algorithm . 18

2.5.4 Run time analysis . 20

2.6 Primality Certificate . 21

2.7 AKS Algorithm . 22

2.7.1 Algorithm . 22

2.7.2 Idea of the algorithm . 22

2.7.3 Correctness of the algorithm . 23

2.7.4 Runtime Analysis of the Algorithm 31

II Integer Factorization and Polynomial Factorization 37

3 Integer factorization algorithms 39

3.1 Pollard Rho Method . 39

3.1.1 Algorithm . 39

3.1.2 Refinement of the Algorithm : 40

3.1.3 Running time Analysis . 41

3.2 Pollard p-1 method . 43

3.2.1 Algorithm . 43

3.2.2 Complexity of the algorithm . 44

3.3 Fermat Factorization and Fermat Factor base Method 45

3.3.1 Fermat Factorization method 45

3.3.2 Algorithm (Fermat Factorization) 45

3.3.3 Generalized Fermat factorization Algorithm 46

3.3.4 Fermat factor base method . 46

3.3.5 Idea of the algorithm . 47

3.3.6 Factor base Algorithm . 49

3.3.7 Running time analysis . 50

3.4 The continued fraction method . 55

3.4.1 Continued fractions . 55

3.4.2 Idea of the continued fraction factoring method 58

viii

3.4.3 Continued fraction factoring algorithm 58

3.4.4 Running time of the algorithm 60

3.5 The Quadratic Sieve Method . 60

3.5.1 Idea of the algorithm . 60

3.5.2 Algorithm . 61

3.5.3 Running time Analysis . 64

3.6 The Number Field Sieve . 64

3.6.1 Special Number Field Sieve (SNFS) 64

3.6.2 SNFS Algorithm : . 67

3.6.3 General number field Sieve (GNFS) 74

3.6.4 GNFS Algorithm . 81

4 Polynomial Factorization 93

4.1 Resultant and some useful properties 93

4.2 Discriminant of function : . 96

4.3 Lattice and reduced basis . 97

4.3.1 Gram-Schmidt orthogonalization 97

4.3.2 Reduced basis of Lattice . 98

4.3.3 Procedure to find a reduced basis 99

4.3.4 LLL Algorithm . 106

4.4 Some important properties of reduced basis 111

4.5 Polynomial factorization method using LLL algorithm 113

4.5.1 Lenstra - Lenstra - Lovasz (LLL) Algorithm for factoring a non-

constant polynomial: . 126

Bibliography 128

ix

Abstract

This exposition is the result of a year’s study of the Primality and Factoring. It has

two parts. In the first part of the thesis, we discuss the most popular methods of

primality testing. After providing a brief survey of primality testing algorithms (i.e.

the Chinese primality test, Fermat test, Lucas test, the Miller-Rabin primality test

etc.), we present a thorough analysis of the unconditional deterministic polynomial

time algorithm for determining that a given integer is prime or composite proposed

by Agrawal, Kayal and Saxena in their paper “Primes is in P” [6]. In the second part

of the report, we discuss the well known algorithms for integer factorization (such

as Pollard rho method, Pollard p-1 method, Fermat factor base method, Continued

fraction method etc.) along with intermediate steps of their formulation. At the end of

this part, we present quadratic Sieve method for factoring integers in exponential time

(in the input size) and number field Sieve algorithm briefly. At the end, we discuss

Lenstra-Lenstra-Lovasz (LLL) - algorithm for getting reduced basis of a lattice and

factoring any arbitrary non-constant polynomial in Z[X] in polynomial time (as in

input size).

x

Chapter 1

Introduction

Testing whether a number is prime number or not and finding out its prime factors

are the fundamental problems in computational number theory. Since ancient times,

every mathematician has been fascinated by problems concerning prime numbers.

Primality testing and integer factorization have wide applications in computer science,

mainly in cryptography.

In the first part, we discuss the well known algorithms and address the attempts

at developing an efficient and reliable method for testing primality. A primality test

is a function that determines if a given integer greater than 1 is prime or composite.

These tests can be subclassified as either probabilistic primality tests or deterministic

primality tests. In a deterministic test when we put an integer n, then the output will

be yes if the integer is prime, or no if the integer is not prime (or integer is composite).

A nondeterministic primality test takes an inputted integer n and returns either no it

is not prime or it may be a prime. A probabilistic primality test is a nondeterministic

test that returns either that the inputted integer is not a prime or that is probably

a prime to some given degree of likelihood. Every time someone uses the RSA pub-

lic key cryptosystem and they need to generate a private key consisting of two large

prime numbers and a public key consisting of their product. To do this, one needs to

be able to check rapidly whether a number is prime.

The simplest and well-known algorithm to test whether n is prime is the Sieve of Er-

atosthenes. Eratosthenes lived in Greece circa 200 B.C. His method for determining

primality is as follows :

Suppose we want to determine that n is prime or composite. First we make a list of

integers 2, 3, · · · , m where m is the largest integer less than or equal to
√
n. Next we

1

circle 2 and cross off all multiples of 2 from the list. Then we circle 3 and cross off its

multiples. We now continue through the list, each time advancing to the list, integer

that is not crossing off, circling that integer, and crossing off all its multiples. We

then test to see if any of the circled numbers divide n. If the list of circled numbers

is exhausted and no divisor found, then n is prime. The trial division algorithm is

based on the simple observation that if n is composite then n has a prime factor less

than or equal to
√
n.

As in the application to cryptography, most of the primality testing is concerned with

large numbers, usually in excess of 100 digits and often much larger. If we were to

use the Sieve of Eratosthenes to determine the primality of a number with just 20

digits, we would need first to find at least all the primes up to 1010. There are around

450 million primes found less than 1010 (using “prime number theorem”)[1]. At the

rate of finding one prime per second, (including crossing off all of its multiples) we

would be working for a little over 14 years to find 450 million primes. Certainly their

are computers that can run this algorithm faster and more efficiently but the running

time of this algorithm is exponential in the input size. We need quicker algorithms.

We know that if an integer is not prime then it is composite and vice versa. In 1980,

Michael Rabin discovered a randomized polynomial time algorithm to test whether a

number is prime or composite. It is called the Miller-Rabin primality test because it

is closely related to a deterministic algorithm studied by Gary Miller in 1976. This

is still the most practical known primality testing algorithm, and is widely used in

software libraries.

In 2002, Manindra Agrawal, Nitin Saxena and Neeraj Kayal developed a new deter-

ministic primality test. This test runs fairly rapidly as compare to previous determin-

istic primality tests. Specifically, given x bits of input, the number of steps needed by

their test is bounded by some polynomial in x.

The second part is devoted to methods to generate all the prime factors of any

given integer greater than 1. Although any schoolchild can multiply two integers and

determine their product, determining the prime factorization of a given integer has

actually been an active area of mathematical research for over 2300 years. Anybody

who is doubtful about the difficulty of factoring is invited to factor the following 212

digit number, for which security company RSA is offering $30,000 :

74037563479561712828046796097429573142593188889231289084936232638972765034

0282662768 9199641962511784399589433050212758537011896809828673317327310893

09005525051168770632 99072396380786710086096962537934650563796359

2

Suppose we know a certain large odd integer n, which is composite; for example, we

found that it fails one of the primality tests in part 1, which does not mean that we

have any idea of what a factor of n might be. Of the methods, we have encountered

for testing primality, only the very slowest algorithm - Sieve of Eratosthenes - actually

gives us a prime factor at the same time as it tells us that n is composite. All the

faster primality test algorithms are more indirect. They tell us that n have prime

factors but not what they are.

The method of trial division by primes <
√
n can take more than O(

√
n) bit opera-

tions. In 1975, J. M. Pollard discovered a simplest algorithm “The rho method” (also

called the “Monte Carlo method”) of factorization, which is substantially faster than

the trail division method.

In 1980’s, Pomerence developed a new method for factoring large integers, called “The

quadratic Sieve method” which was more successful than any other method of fac-

toring integers n of general type which have no prime factor of order of magnitude

significantly less than
√
n.

Until recently, all of the contenders for the best general purpose of factoring algorithm

had running time of the form O(exp(
√
lognloglogn)). Some people even thought that

this function of n might be a natural lower bound on the running time. However,

during the last few years a new method - called the number field Sieve - has been de-

veloped that has a heuristic running time that is much better, namely O(exp((logn)1/3

(loglogn)2/3)).

In the last chapter of this part, we introduce Lenstra-Lenstra-Lovasz (LLL)-algorithm

for getting reduced basis of a given basis of lattice. After this, using LLL-reduction

method, we discuss an algorithm for getting all irreducible factors of a non-constant

polynomial which is in Z[X] and it has polynomial time (in input size).

3

4

Part I

Primality

5

Chapter 2

Primality Testing Algorithms

2.1 The Sieve of Eratosthenes Primality test and

Trial Division

This is the simplest algorithm to test whether a given integer n is prime or not.

2.1.1 Algorithm (The Sieve of Eratosthenes)

Input : n ∈ N

1: a[1· · · n] integer array;

2: for j = 1 to n do

3: a[j] ← j;

4: i ← 2;

5: while i2 < n do

6: if a[i] 6= 0 then

7: t ← 2.i;

8: while t ≤ n do

9: a[i] ← 0; t ← t+i;

10: i ← i+1;

11. for j = 2 to n do

12. if a[j] 6= 0 then return a[j] is prime.

Sieve method has O(10log10(n)) operations to prove primality if n has log10n digits.

We can say that this algorithm is of exponential time in terms of the input length.

7

Similarily :

2.1.2 Algorithm (trial division)

(1) For k = 2, 3, 4, · · · , b
√
nc.

(2) Test if (for any k),

n ≡ 0 (mod k), output composite;

(3) Else return n is prime.

Trial division algorithm runs in time O(
√
nlog2(n)), but this running time is exponen-

tial in the input size since the input represents n as a binary number with dlog2(n)e
digits. Similarly, for large value of n, the Sieve of Eratosthenes requires a lot of

memory and for proving primality, it can require up to
√
n cycles.

2.2 Wilson’s characterization of primes

2.2.1 Algorithm

Input : n ∈ N

(1) If (n-1)! ≡ -1 (mod n), output prime;

(2) otherwise, return composite.

This algorithm is based on a theorem by John Wilson in 1770.

2.2.2 Wilson’s Theorem

Theorem 2.2.1. Let n ∈ N. Then n is prime if and only if (n-1)! ≡ -1 (mod n).

Proof: ⇒ : Suppose n is prime. Then every integer in the interval [2,3,4, · · · ,
n-2] is coprime to n and has a unique inverse modulo n. Therefore,

∏
2≤j≤n−2

j ≡ 1(mod(n))

and we know that (n-1) ≡ -1 (mod n). Hence,

8

∏
2≤j≤n−1

j = (n− 1)! ≡ −1(mod(n)).

⇐ : Now, for the converse part, suppose that n is composite. Then {1, 2, 3, · · · , n-1}
contains all prime factors of n, which implies that (n-1)! 6= -1 (mod n) (because if

(n − 1)! ≡ −1(mod(n)), then a factor of n, say d, will also satisfy this congruence.

One can see that (n−1)! ≡ 0(mod(d))). �.

From the Wilson’s characterization of primes, we can determine the primality of

an integer n by calculating (n-1)! (mod n). But this computation requires (n-1)

multiplications, making it very time consuming.

2.3 Euler Test and Lucas test

Euler Test :
This test is based on the following simple lemma :

Lemma 2.3.1. n is prime if and only if φ(n) = n-1.

Proof : If n is prime number, then every integer less than n is relatively prime to it,

hence, by definition, φ(n) = n-1. Conversely, if n > 1 is composite, then n has a divisor

d such that 1<d<n. It follows that there are at least two integers among 1,2,3,· · · ,n
which are not relatively prime to n, namely d and n itself. As a result, we get φ(n) ≤ n-

2. This proves the lemma. �.

2.3.1 Algorithm (Euler test)

Input n ∈ N.

Check φ(n);

If φ(n) = n-1,

then output is Prime

Else, return composite.

From the Euler characterization of primes, we can determine the primality of an in-

teger n by calculating φ(n), but for calculating φ(n), we require the factors of n and

factorization is more difficult problem than primality testing.

9

Lucas Test :
Before going ahead, we will discuss Euler theorem, which is useful in Lucas theorem.

Lucas primality test is based on the Lucas theorem.

2.3.2 Euler Theorem

Theorem 2.3.2. If n ≥ 1 and gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n).

Before proving Euler theorem, we will do another lemma :

Lemma 2.3.3. Let n > 1 and gcd (a, n) = 1. If a1, a2, · · · , aφ(n) are the positive

integers less than n and relatively prime to n, then aa1, aa2, · · · , aaφ(n) are congruent

modulo n to a1, a2, · · · , aφ(n) in some order.

Proof : Observe that, none of the integers aa1, aa2, · · · , aaφ(n) are congruent mod-

ulo n, because if aai ≡ aaj (mod n), with 1 ≤ i < j ≤ φ(n), then the cancellation laws

yields ai ≡ aj (mod n), and thus ai = aj, a contradiction. Furthermore, since gcd(ai,

n) = 1 for all i and gcd(a, n) = 1, each of the aai is coprime to n. Fixing on a particular

aai, there exists a unique integer b, where 0≤ b < n, for which aai ≡ b(modn). Because

gcd(b, n) = gcd(aai, n) = 1. b must be one of the integers a1, a2, · · · , aφ(n). All told,

this proves that the numbers aa1, aa2, · · · , aaφ(n) and the numbers a1, a2, · · · , aφ(n) are

identical (modulo n) in a certain order. �

Proof of the Euler theorem : There is no harm in taking n > 1. Let

a1, a2, · · · , aφ(n) be the positive integers less than n that are relatively prime to n.

Because gcd(a, n) = 1, it follows from the above lemma that aa1, aa2, · · · , aaφ(n) are

congruent, not necessarily in order of appearence, to a1, a2, · · · , aφ(n). Then :

aa1 ≡ a
′
1 (mod n); aa2 ≡ a

′
2 (mod n); · · · ; aaφ(n) ≡ a

′

φ(n) (mod n)

where a
′
1, a

′
2, · · · , a

′

φ(n) are the integers a1, a2, · · · , aφ(n) in some order. On taking the

product of these φ(n) congruences, we get

(aa1)(aa2) · · · (aaφ(n)) ≡ a
′

1a
′

2 · · · a
′

φ(n)(modn) ≡ a1a2 · · · aφ(n)(modn)

and so aφ(n)(a1a2 · · · aφ(n)) ≡ a1a2 · · · aφ(n) (mod n). Since gcd(ai, n) = 1 for each i,

so, gcd(a1a2 · · · aφ(n), n) = 1. Therefore, we may divide both sides of the foregoing

congruence by the common factor a1a2 · · · aφ(n), leaving us with the result: aφ(n) ≡ 1

(mod(n)). �

10

2.3.3 Lucas Theorem

Theorem 2.3.4. Let n > 1. If for every prime factor p of n − 1, there exists an

integer a such that :

(1) an−1 ≡ 1 (mod n) and

(2) a
n−1
p is not congruent to 1 (mod n),

then n is prime.

Proof of Lucas theorem : Suppose n satisfies the conditions of the theorem. To

show that n is prime, it is enough to show that φ(n) = n− 1 (using lemma 2.3.1). Since

in general φ(n) < n − 1, to show equality we will show that under the above conditions

n − 1 divides φ(n) (which means φ(n) ≥ n-1 ⇒ φ(n) = n-1). Suppose not. Then

there exists a prime p such that pr divides n − 1 but pr does not divide φ(n) for some

exponent r ≥ 1. For this prime p, there exists an integer a satisfying the conditions

of the theorem. Let m be the order of a modulo n. Then m divides n − 1 (since

the order of an element divides any power that equals 1). However, by the second

condition in the theorem and for the same reason, m does not divide n−1
p

. Therefore

pr divides m, which divides φ(n) (using theorem 2.3.2), contradicting our assumption.

Hence n − 1 = φ(n) and therefore n is prime. �

2.3.4 Algorithm (Lucas test)

Input n ∈ N, n ≥ 2

Factor n-1 in to prime factors

Choose an a such that gcd(a, n) = 1

If an−1 ≡ 1 (mod n) and a
n−1
p 6= 1 (mod n) for all prime factor p

then return Prime

Else return Probably composite.

Although this Lucas test is deterministic, but it depends on the factorization of n

− 1. In general, factorization is even more difficult than testing for primality.

11

2.4 Fermat Test and Carmichael Numbers

2.4.1 Algorithm (Fermat Test(n))

Input : n ∈ N

(1) Choose x ∈ {1, 2, 3, · · · , n-1} uniformly at random.

(2) If xn−1 6=1 (mod n), return composite;

Else

(3) return Probably Prime.

The above algorithm is based on Fermat’s little theorem.

2.4.2 Fermat Little theorem

Theorem 2.4.1. (Fermat’s little theorem) : The number n is prime ⇐⇒ the congru-

ence

xn−1 ≡ 1(modn)

is satisfied for every integer x between 0 and n.

Before proving the theorem, we will discuss a proposition which is needed in the

proof.

Proposition 2.4.2. If A is a subset of the integers which is closed under addition

and subtraction, then A is equal to dZ, the set of all multiples of d, for some integer

d.

Proof: If A = {0} then we can take d = 0 and we are done. Otherwise, let d be

the absolute value of the smallest non-zero element of A. Thus A contains {±d} and

A is closed under addition and subtraction. So, it contains all multiple of d. Now it

is enough to prove that A does not contain any integer x which is not divisible by d.

If A has, then we can subtract x by the nearest multiple of d and we get a nonzero

element whose absolute value is less than d, a contradiction. �

Proof of Fermat’s little theorem : ⇒ Suppose n is prime, let A be the set of

integers x which satisfy xn ≡ x (mod n). This set contains x = 1, and it is closed

under addition and subtraction [because we know that, if p is prime then for every

pair of integers a, b satisfies (a + b)p ≡ ap + bp (mod p)]. Hence every integer x

12

belongs to A (from proposition 2.4.2).

Now let x be any integer not divisible by n. The fact that x ∈ A means that n|(xn-x)

implies n|x(xn−1-1). Since n is prime and x is indivisible by n, this implies n|(xn−1-1),

i.e. xn−1 ≡ 1 (mod n).

⇐ Now suppose n is not prime then it has a divisor d>1. Thus if we take x = d then

the number dn−1 is divisible by d, so, it is not equal to 1 mod n. �

2.4.3 Fermat witness and Fermat liar

Definition 2.4.3. Let n be composite number. Define a number x ∈ {1,2,· · · ,n-1} :

1. Fermat witness for n if x - n and xn−1 6= 1 (mod n).

2. Fermat liar for n if x - n and xn−1 ≡ 1 (mod n).

2.4.4 Idea of the Algorithm

The idea of algorithm is simple.

(1) pick a positive integer x < n.

(2) Check Whether x is Fermat witness.

(3) If so, then output “composite”. Otherwise output “probably prime”.

Now, to determine whether x is Fermat witness for n, we needs to compute xn−1 mod

n. The obvious way of doing this requires n-2 iterations of mod n multiplication. But

using the binary expansion of n-1 and repeated squaring method, we can reduce this

to O(logn) multiplication operations.

Example : let’s take n = 23, then n-1 = 22 = 16+4+2 ; So,

x22 = x16x4x2 = (((x2)2)2)2.(x2)2.x2

and this describes an efficient algorithm for raising any integer to the 22nd power.

Before proving the correctness of the algorithm, we define Carmichael numbers.

2.4.5 Carmichael Numbers and Their Some Properties

Definition 2.4.4. A composite number n is said to be a Carmichael number if every

x satisfying gcd(x,n) = 1 is a Fermat liar for n.

For proving some properties of Carmichael numbers, we require some lemma’s :

13

Lemma 2.4.5. Let a, b be any two integers and let d = gcd(a, b). The set aZ+ bZ =

{ar + bs : r, s ∈ Z } is equal to dZ where d = gcd(a, b).

Proof: We can easily observe that the set aZ + bZ is closed under addition and

subtraction. So, using proposition 2.3.2, aZ + bZ = cZ for some integer c. Given d =

gcd(a, b). So, every element of aZ + bZ is divisible by d, means d|c. But a and b are

both elements of cZ, i.e. both are divisible by c. This means c is common divisor of a

and b, so c|d. It follows c = d. �

Lemma 2.4.6. If gcd(b, n) = 1 then there is an integer b−1 such that b·b−1 ≡ 1 (mod

n).

Proof: By lemma 2.4.5, the set bZ + nZ is equal to Z, the set of all integers. This

means their are integers r, s such that br + ns = 1. This implies b·r≡ 1 (mod n), as de-

sired. �

2.4.6 Chinese Remainder Theorem

Theorem 2.4.7. (Chinese Remainder Theorem) : Let n1,n2,n3, · · · ,nk be positive

integers such that gcd(ni,nj) = 1 for i 6=j. Then for any integers a1,a2,a3, · · · ,ak the

system of congruences

x ≡ a1(modn1); x ≡ a2(modn2);; x ≡ ak(modnk)

has a solution, which is unique modulo the integer n1n2n3 · · · nk.

Proof: Let mi denote the product of all elements of the set {n1, n2, n3, · · · , nk}
other than ni. We can see that gcd(mi, ni)=1. So, using lemma 2.4.6 implies that

there is a number ri such that miri ≡ 1 (mod ni). Now let

x =
k∑
i=1

aimiri

We can easily see that this x satisfies the given system of congruences.

If x1, x2 both satisfy the given system of congruences, then x1 - x2 is divisible by each

of the n1, n2, n3, · · · , nk. And we know that gcd(ni, nj) = 1, So, x1-x2 is divisible by

n1n2n3 · · ·nk. �

14

Lemma 2.4.8. If p is prime, then for any k > 0, the number of x ∈ {1,2,3, · · · ,p-1}
satisfying xk ≡ 1 (mod p) is at most k.

Proof: We will prove this lemma more generally, for any non zero polynomial

P(x) = a0 + a1x + · · · + akxk, the number of x ∈ {1,2,3,· · · ,p-1} satisfying P(x) ≡ 0

(mod p) is at most k. We will prove it by induction on k.

For k = 0, it is trivial.

Now suppose a satisfies P(a) ≡ 0 (mod p). We may write P(x) = (x - a)Q(x) + c,

where Q(x) is a polynomial of degree k-1 with integer coefficients. Since P(a) ≡ 0 (mod

p), it means c is divisible by p. If b satisfies P(b) ≡ 0 (mod p) but Q(b) 6= 0 (mod

p) then p is a divisor of (b - a)Q(b) but not of Q(b), hence b ≡ a (mod P). It follows

that every b ∈ {1,2,3,· · · ,p-1} satisfying either b = a or Q(b) ≡ 0 (mod P). Hence by

the induction hypothesis, at most k-1 elements of {1,2,3, · · · ,p-1} satisfy the second

congruence. �

Some properties of Carmichael numbers :

Proposition 2.4.9. Every Carmichael number is odd.

Proof: If n (≥ 4) is even then (n - 1)n−1 ≡ (-1)n−1 ≡ -1 mod(n), so is not congruent

to 1 mod(n). �

Lemma 2.4.10. If n is a Carmichael number, then n has at least three distinct prime

factor and is not divisible by the square of any prime.

Proof: Firstly, we will show that Carmichael numbers are square free. Suppose

to contrary that p is prime and p2 |n. let n = pkq where k > 1 and p-q. Using the

Chinese remainder theorem, we may find a number x such that x ≡ p+1 (mod pk) and

x ≡ 1 (mod q). Now, we can observe that gcd(x, n) = 1, because x has no common

factors with pk and q, and n = pkq. We can also check easily that x is a Fermat

witness for n or xn−1 6= 1 (mod n). To prove xn−1 6= 1 (mod n), it is enough to prove

that xn−1 6= 1 (mod p2) or equivalently xn 6= x (mod p2). We know that

(p+ 1)p =

p∑
k=0

(pk)p
k

implies (p+1)p ≡ 1 (mod p2), which implies that xn ≡ 1 (mod p2) and which prove

that xn 6= x (mod p2). Hence Carmichael numbers are square free.

Now, it remains to prove that if p, q are distinct odd primes then their product n =

pq is not a Carmichael number. Assume without loss of generality that p < q. By

15

using lemma 2.4.8, we can ensure that we can choose a x ∈ {1,2,3,· · · ,q-1} such that

congruence xp−1 6= 1 (mod q). Now, it is enough to prove that x is a Fermat witness

for n. To prove this, we can observe that

xn−1 = xpq−1 = xpq−pxp−1 = (xp)q−1xp−1 = xp−1 6= 1(modq)

Since q is a divisor of n. It follows that xn−1 6= 1 (mod n). Thus we have shown that

x is Fermat witness for n. Therefore n = pq is not a Carmichael number. �

Proposition 2.4.11. If a prime p divides a Carmichael number n, then n ≡ 1 (mod

p-1).

Proof: Given that n is a Carmichael number. Let p be a prime divisor of n: say

n = pkr for some k, where r is not a multiple of p. Take an element a which has

order p−1 in the field (Z/pZ)∗ (such an element exist because we know (Z/pZ)∗ is

finite field, which is cyclic). By the Chinese remainder theorem (theorem 2.4.7), there

exists b such that b ≡ a mod p and b ≡ 1 mod r. Then b is coprime to both p and r,

and therefore to n. By hypothesis, bn−1 ≡ 1 mod n, so bn−1 ≡ 1 mod p. Also, order

of b is dividing n−1. So p−1 divides n−1. �

Theorem 2.4.12. A number n is a Carmichael number if and only if n = p1p2 · · · pk,

a product of (at least three) distinct primes, and pj−1 divides n−1 for each j.

Proof:

⇒ This part follows using lemma 2.4.10 and proposition 2.4.11.

⇐ Let n be as stated, and let gcd(a, n) = 1. By Fermat’s theorem (theorem 2.4.1), for

each j, we have apj−1 ≡ 1 mod pj. Since pj−1 divides n−1, an−1 ≡ 1 mod pj. This holds

for each j, hence an−1 ≡ 1 mod n. �

Now, before discussing correctness of the algorithm, we will discuss a lemma :

Lemma 2.4.13. If a,b,n are positive integers such that gcd(b, n)=1 and the con-

gruence xa ≡ b (mod n) has k > 0 solutions, then the xa ≡ 1 (mod n) also has k

solutions.

Proof: Let x0 be a solution of xa ≡ b (mod n). We can observe that gcd(x0, n) = 1,

because otherwise gcd(x0
a, n) = gcd (b, n) would be greater than 1, contradicting our

hypothesis gcd(b,n)=1. Using lemma 2.4.6, there exist a number x0
−1 such that x0·x0

−1

≡ 1 (mod n). Now we can define a one to one correspondence between the solution

16

sets of xa ≡ b (mod n) and xa ≡ 1 (mod n), by defining the map y→ y·x0, which proves

the lemma. �

2.4.7 Correctness of the Algorithm

Theorem 2.4.14. The above algorithm outputs probably prime when n is prime and

outputs composite with probability at least 1/2 when n is odd composite number but

not a Carmichael number.

Proof: The first part of the theorem (i.e. when n is prime the output is probably

prime) is obvious from Fermat little theorem 2.4.1.

For the second part, when n is odd composite number and not a Carmichael number

which means that n has at least one Fermat witness x such that gcd(x, n) = 1. Now

it is enough to prove that at least half of the elements of 1, 2, 3,· · · , n− 1 are Fermat

witness for n. If gcd(x, n) = 1 and x is a Fermat witness for n, then xn−1 ≡ b (mod

n) for some b 6= 1 satisfying gcd(b, n) = 1. Using lemma 2.4.13, we can say that there

are at least as many Fermat witnesses as Fermat liar. And we know that 2 is the only

even number which is prime, all the other even numbers are composite. Thus from

the above arguments, we can see that output will be composite with probability at

least 1/2. �

So far we have established the Fermat t est which always outputs “probably prime”

when n is “prime”, and outputs composite with probability at least 1/2 when n is

an odd composite number but not a Carmichael number. But we still don’t have

a good algorithm for distinguishing Carmichael numbers from prime numbers. The

Miller-Rabin test is a more advanced version of the Fermat test which accomplishes

this.

2.5 The Miller-Rabin primality Test

This is the advanced version of the Fermat primality test. This is based on Fermat

little theorem and the following lemma :

Lemma 2.5.1. (fake square root lemma)

If x, n are positive integers such that x2 ≡ 1 (mod n) but x 6= ±1 (mod n), then n is

composite.

17

Proof: From the hypothesis of lemma, n divides x2-1 = (x-1)(x+1), but n divides

neither x + 1 nor x - 1. This is impossible when n is prime. Hence n is composite. �

2.5.1 Algorithm (Miller-Rabin(n))

Input : n ∈ N
(1) If n > 2 and n is even, return composite.

(2) Choose x ∈ {1, 2, 3, · · · , n-1} uniformly random.

(3) Test if xn−1 6=1 (mod n), return composite;

Else

(4) Factor n-1 = 2s·t, where t is odd.

(5) Compute

ui = x2i·t(mod(n)); 0 ≤ i < s.

(6) If there is an i such that ui = 1 and ui−1 6= ±1, then output composite;

(7) Else return probably prime.

2.5.2 Idea of the algorithm

The idea of the test is to pick a random number x in {1, 2, · · · , n-1} and use it to try

finding either a Fermat witness or a fake square root of 1 modn.

2.5.3 Correctness of the algorithm

Definition 2.5.2. Let n be an odd composite number . Define a number x ∈ {1,2,3,· · · ,n-

1} :

(1) Miller-Rabin witness (or MR-witness) if the algorithm (2.5.1) outputs compos-

ite.

(2) Miller-Rabin liar (or MR-liar) if the algorithm (2.5.1) outputs probably prime.

Theorem 2.5.3. If n is prime then Miller-Rabin primality testing algorithm outputs

“probably prime” with probability 1 and if n is an odd composite number, then

algorithm outputs “composite” with probability at least 3/4.

Proof: The first part of the theorem is obvious. Because, when n is prime then

we can easily see that step (1) will not output composite. step (3) will also not

output composite using Fermat little theorem (theorem 2.4.1). And using lemma

18

2.5.1, step (6) will not output composite. Hence output will be “probably prime

in step (7).

Now, for proving the second part of the theorem, suppose n is an odd composite

number. We will solve this part in two subparts :

(1) When n has at least one square factor.

(2) When n is square free.

(1) : When n has at least one square factor or n = Pα1
1 Pα2

2 Pα3
3 · · ·P

αk
k , where at

least one P
αj

j has αj ≥ 2. As we know that if p is an odd prime, then the number

of incongruence solutions of xq ≡ 1 (mod pα) is at most gcd(q, pα−1(p-1)). Let n =

1+2st, and x be MR-liar for n. We than have :

xt ≡ 1(mod(n) or (xt)2r ≡ −1(mod(n))

for some r < s. In particular, from the inequality we have xn−1 ≡ 1 (modn). So, we can

now conclude that there are at most gcd(n-1, Pαi
i (Pi-1)) = gcd(n-1, Pi-1) incongruent

solutions to xn−1 ≡ 1 (mod Pαi
i) for i = 1,2, · · · ,k. Hence, by Chinese Remainder

theorem (theorem 2.4.7), there are at most
∏k

i=1gcd(n-1, pi-1) incongruent solutions

to xn−1 ≡ 1 (modn). Since at least one P
αj

j has αj ≥ 2. So, we have :

pj − 1

P
αj

j

=
1

P
αj−1
j

− 1

P
αj

j

≤ 2

9

because pj must be greater than or equal to 3. Then, for n ≥ 9, we have
∏k

i=1gcd(n-1,

pi-1) ≤
∏k

i=1(pi-1) ≤
∏k

i 6=j(pi-1)(2
9
P
αj

j) ≤
∏k

i 6=j(pi)(
2
9
P
αj

j) < n
4
.

(2) : Now, suppose n is squre free or n = P1· P2 · · · Pk. Write Pi = 1 + ti·2si with

ti odd. Hence we have n = 1 + 2s·t = P1· P2 · · · Pk = (1 + t1·2s1)(1 + t2·2s2) · · · (1

+ tk·2sk). We can observe from here that s is not less than minimum of the si. For

proving this subpart, it is enough to show that the set T = {x ∈ Z/nZ | xt ≡ 1(mod(n)

or (xt)2r ≡ −1(mod(n)) for some r < s } has cardinality less thann/4. We decompose

T into the set T−1 = {x | xt ≡ 1(mod(n)} and the sets Tr = {x | (xt)2r ≡ −1(mod(n))

for some r < s }. Then, elements of T−1 reduce to units in Z/piZ which have order

dividing t. This is a subgroup of order gcd(t, pi−1) = gcd(t, ti). Thus, by the Chinese

remainder theorem (theorem 2.4.7) :

#T−1 =
k∏
i=1

gcd(t, ti)

19

The elements of Tr can be characterized as elements whose tth power has order exactly

2r+1 when reduced modulo pi. In particular, this means that r < si for every i ; the

other Tr’s are empty. There are exactly gcd(t·2r+1, ti·2r+1) = gcd(t, ti)·2r+1 elements

in Z/piZ with order dividing t·2r+1 and among these a subgroup of index 2 has

elements of order dividing t·2r (Since the group of units in Z/piZ (finite field) is

cyclic group and a subgroup of a cyclic group is cyclic). Thus, by Chinese remainder

theorem (theorem 2.4.7), we obtain

#Tr =
k∏
i=1

gcd(q, qi) · 2kr

Thus we see that the cardinality of T is :

#T = #T−1+
l−1∑
r=0

#Tr =
k∏
i=1

gcd(t, ti)+
l−1∑
r=0

k∏
i=1

gcd(t, ti)·2kr =
k∏
i=1

gcd(t, ti)·(1+
l−1∑
r=0

2kr)

which is equal to
∏k

i=1 gcd(t, ti)(
2kl+2k−2

2k−1
), where l is the minimum of the si’s.

Now, using Chinese remainder theorem (theorem 2.4.7), the number of units in Z/nZ
is precisely (p1-1)·(p2-1) · · · (pk-1), which is equal to

∏k
i=1ti·2

∑k
i=1 si , which is at

least one less thann. Thus the proportion of elements in T is strictly smaller than∏k
i=1 gcd(t,ti)(

2kl+2k−2

2k−1
)∏k

i=1 ti·2
∑k

i=1
si

=
∏k

i=1 gcd(t,ti)∏k
i=1 ti

· 2kl+2k−2

(2k−1)·2
∑k

i=1
si

.

The first term in the above expression is not more than 1, while the second term is not

more than 1/2k−1 (note that l ≥1 and equal to minimum of si). Thus we obtain the re-

sult unless k = 2. Now let k = 2 and suppose s1 >s2 (or vice versa) then we see that the

second term is no more than 1/2k, so, we have the result in this case. Thus we may as-

sume that s1 = s2 = l. Now if gcd(t, t1) < t1 then (since these are odd numbers and one

divides the other) gcd(t, t1) ≤ 3t1. This implies that the above expression is no more

than 1/6. Thus, we may further assume that gcd(t, t1) = t1. By expanding the identity

(1 + t · 2s) = (1 + t1 · 2l)(1 + t2 · 2l), we see that gcd(t, t1) = gcd(t, t2). Since the primes

p1 and p2 are distinct, so, t1 6= t2; thus t1 = gcd(t, t1) ≤ 3t1 as above. Now we again

obtain that the above expression is no more than 1/6. This completes the proof of

the theorem. �

2.5.4 Run time analysis

The running time of Miller-Rabin primality tesing algorithm is O(log3n). To see this,

we have already mentioned in the subsection 2.4.4 that it is possible to compute xt

20

(modn) using O(logn) mod-n multiplication operations (Each mod-n multiplication

takes time O(log2n) using the naive algorithms for integer multiplication and division).

Once we have computed xt (modn), the remaining numbers x2t, x4t, · · · ,x2st (modn)

may be obtained by s ≤ log2(n) iterations of repeated squaring modn, which again

provide O(logn) mod-n multiplication operations. All the remaining operations in the

Miller-Rabin algorithm require much less running time.

2.6 Primality Certificate

We now examine the situation where n is probably prime (having passed the Miller-

Rabin test with probability about 1 - (1/4)n). In such a situation, we wish to provide

a “certificate” that n is a prime. One situation that one can think of is where an

“oracle” produces keys for us. While we trust the oracle not to “leak” a key, we are

not so sure that oracle (in order to save time and money) may be using some quick

and dirty method to generate the modulus, which may be weak. Then we would ask

the oracle to “provide proof” that it has given us a prime number. Another situation

is that someone “pay” us to factor a number. We would need to certify that factor-

ization is complete. The certificate should be very “easy” to check.

Certificate :

Theorem 2.6.1. n ∈ N is prime iff there exist an element a ∈ Z/nZ, such that am

= 1 but am/q 6= 1 and q ≥
√
n for some integer m and a prime factor q.

Proof. Suppose we find an element a in Z/nZ so that am = 1 but a
m
q 6= 1 and q ≥

√
n;

for some integer m and a prime factor q. Then n is prime because if p is a factor of n,

then gcd(a
m
q -1, p) divides gcd(a

m
q -1,n) and thus a

m
q 6= 1 in Z/pZ. But this means q

divides p-1. Since q ≥
√
n, so it can not be possible. Hence n is prime. On the other

hand , if n is not prime, n must have a prime factor smaller than
√
n.

Remark 2.6.2. The correctness of the above certificate depends on the primality of

various q’s, so, we would need a certificate for those as well.

Another Certificate : As we have discussed Lucas primality test (theorem 2.3.4),

which is also a primality certificate.

21

2.7 AKS Algorithm

2.7.1 Algorithm

Input : n ∈ N
(1) If ∃ a, b > 1 ∈ N such that n = ab, then output composite; (Call Algorithm

2.7.4.1)

(2) Find the minimal r ∈ N such that or(n) > log2(n); (by lemma 2.7.4)

(3) For a = 1 to r do

if 1 < (a, n) <n, then output composite;

(4) if r ≥ n, then output prime;

(5) For a = 1 to b
√
φ(r) · log(n)c do

if (X + a)n 6= Xn + a (mod Xr – 1,n), output composite;

(6) Return Prime.

2.7.2 Idea of the algorithm

This algorithm based on the following lemma :

Lemma 2.7.1. Let n ∈ N, n ≥ 2, a ∈ Z, such that gcd(a,n) = 1. Then

n is prime⇐⇒ (X + a)n ≡ Xn + a(mod n).

Proof: For 0 < i < n, the coefficient of X i in ((X + a)n − (Xn + a)) is
(
n
i

)
an−i .

⇒ : Suppose n is prime then
(
n
i

)
≡ 0 (modn). Hence all the coefficients are zero and

we are done.

⇐ : Suppose n is composite. Consider a prime q that is a factor of n and qk |n, where

k ≥ 1. Let n = qk·t. Then, qk does not divide
(
n
q

)
and coprime to aq (because

(
n
q

)
=

n(n−1)(n−2)···(n−q+1)
q!

, where numerator is divisible by qk but not divisible by qk+1 and

denominator is divisible by q and (a, q)=(aq, qk) = 1). Therefore, coefficient of Xn−q

is not zero (mod n). Thus (X + a)n − (Xn + a) is not identically zero over Z/nZ.

Thus, our lemma follows. �

The above identity suggests a simple test for primality of an integer n in the fol-

lowing steps :

Given an input n ∈ N

22

(1) Choose an integer a such that gcd(a, n) = 1.

(2) Calculate f(X) = (X + a)n – (Xn + a) (modn)

(3) If f(X) ≡ 0, then output prime;

(4) Else return composite.

However, this takes time O(n) because we need to evaluate n coefficients in the Step

(2) in the worst case. A simple way to reduce the number of coefficients is to evaluate

both sides of the identity modulo a polynomial of the form Xr − 1 for an appropriately

chosen small r. In other words, test if the following equation is satisfied:

(X + a)n = Xn + a (modXr − 1, n) (2.1)

From lemma 2.7.1, it is immediate that all primes n satisfy the equation (2.1) for all

values of a and r. The problem now is that some composites n may also satisfy the

equation for a few values of a and r (and indeed they do). However, we can almost

restore the characterization: we show that for appropriately chosen r if the equation

(2.1) is satisfied for several a’s then n must be a prime power. The number of a’s and

the appropriate r are both bounded by a polynomial in log(n) and therefore, we get

a deterministic polynomial time algorithm for testing primality.

2.7.3 Correctness of the algorithm

Before proving the correctness of the algorithm, we will prove some lemma’s :

Lemma 2.7.2. Let n ∈ N with n ≥ 7. Then dn = lcm([n]) ≥ 2n.

Proof: We can easily check that lemma holds for n = 7 and n = 8. So, we may

assume n ≥ 9. Consider the integral

I(m,n) =

∫ 1

0

xm−1(1− x)n−mdx (1 ≤ m ≤ n)

Now using binomial expansion of (1 - x)n−m :

∫ 1

0

xm−1(1−x)n−mdx =

∫ 1

0

xm−1

n−m∑
k=0

(−1)kxk
(
n−m
k

)
dx =

n−m∑
k=0

(−1)k
(
n−m
k

)∫ 1

0

xm+k−1dx

Therefore I(m,n) =
n−m∑
k=0

(-1)k
(
n−m
k

)
1

m+k
. And we know that 0 ≤ k ≤ n-m, so, m+k

divides dn. Thus I(m,n)·dn ∈ Z.

23

And using iterated integration by parts we get :

I(m,n) =
(n−m)!

n · (n− 1) · · ·m
=

(n−m)!(m− 1)!

n!
=

1

m
(
n
m

)
.

Hence we get that m
(
n
m

)
|dn for all 1 ≤ m ≤ n. From here, we may conclude that

n
(

2n
n

)
|d2n |d2n+1 (since dn|dn+1) and (n+1)

(
2n+1
n+1

)
= (2n+1)

(
2n
n

)
|d2n+1. As (n,

2n+1)=1, it follows that n(2n+1)
(

2n
n

)
|d2n+1. We know that

(
2n
n

)
is the largest of the

binomial coefficients in the expansion of (1+1)2n. So, d2n+1≥n4n (for n ≥ 1). If n

≥ 2 then d2n+1≥2·4n = 22n+1 and if n ≥ 4 then we have d2n+2 ≥d2n+1 ≥4n+1. Thus

we have shown that dn ≥ 2n when n ≥ 9 (since easy to check d7 and d8 directly).

�

Lemma 2.7.3. For all n ∈ N, we have
(

2n+1
n

)
> 2n+1.

Proof: By definition,
(

2n+1
n

)
= (2n+1)···(n+2)

n!
≥
∏n

i=1
2i+1
i
≥
∏n

i=12 = 2n. We

can check that
∏3

i=1
2i+1
i

= 35
2
> 24 from which we conclude that

(
2n+1
n

)
> 2n+1.

�

Lemma 2.7.4. There exists an integer r ∈ N with the following properties :

(1) r ≤ max{3, dlog5(n)e}
(2) or(n) > log2(n)

(3) (r, n) = 1

Proof: If n = 2, then r = 3 satisfies the lemma. So, we may assume that n

> 2. And for n > 2, dlog5(n)e > 10. Now, using lemma 2.7.2, we can see that

lcm([dlog5(n)e]) > 2dlog
5(n)e. Define

N = n ·
blog2(n)c∏
i=1

(ni − 1)

Let r be the smallest integer not dividing N. It means r is not a divisor of (ni-1) for i

≤ blog2(n)c, i.e., ni 6= 1(mod r). Hence condition (2) of the lemma is satisfied.

To see that condition (1) is satisfied as well, Observe that N≤n1+2+···+log2(n) = n
1
2
·(log4(n)+log2(n))

< nlog
4(n) = 2log

5(n) ≤ 2dlog
5(n)e ≤ lcm([dlog5(n)e]) (using lemma 2.7.2). Therefore ∃r0

≤ dlog5(n)e such that r0-N and as r was chosen to be minimal, so, we have r <

dlog5(n)e.
Now, we have to prove condition(3) of the lemma. It is clear that (r, n) < r, other-

wise r would be divide n and hence N. Thus r
(r,n)

is another integer less than max{3,

24

dlog5(n)e} not dividing N. But r was chosen to be minimal, hence r = r
(r,n)

, i.e., (r, n)

= 1. �

Now onwards in the AKS algorithm, we will make the following assumptions :

(1) Natural number n has p as a prime divisor.

(2) r is less than dlog5(n)e and or(n) > log2(n).

(3) (r, n) = 1.

(4) Define l = b
√
φ(r)·log(n)c.

Definition 2.7.5. Let f ∈ Z[x] and m ∈ N. Then m is said to be introspective for f if :

f(x)m ≡ f(xm)(modxr − 1, p)

In lemma 2.7.1, we have seen that given a prime p, and an integer a ∈ Z such that

(a, p) = 1, p is introspective for the function (x + a).

Lemma 2.7.6. (f+g)p = fp + gp for all f, g ∈ Fp[x].

Proof: By using the binomial theorem, (f+g)p = fp +
∑p−1

k=1

(
p
k

)
fk·gp−k + gp. Every

term in the summation is divisible by p, and therefore equal to zero with in the ring

Fp[x]. Therefore (f+g)p = fp + gp. �

Lemma 2.7.7. Let f ∈ Fp[x] for some prime p. Then f(x)p = f(xp).

Proof: Let f(x) = anxn + an−1xn−1 + · · · + a1x + a0. Then by lemma 2.7.6, we

have : f(x)p = (an)p(xn)p + (an−1)p(xn−1)p + · · · + (a1)p(x)p + (a0)p.

Now, using Fermat’s little theorem (theorem 2.4.1), it follow that f(x)p = (an)(xn)p +

(an−1)(xn−1)p + · · · + (a1)(x)p + (a0) = f(xp). �

Some theory about Cyclotomic polynomials and Finite fields

Definition 2.7.8. The nth cyclotomic polynomial Φn(x) ∈ C[x] is the polynomial

whose roots are precisely the ϕ(n) primitive nth roots of unity in C.

Let µn denote the group of nth roots of unity over Q. We know that as a group, µn
∼= Z/nZ because of the map a 7−→ µan where µn is a fixed primitive nth root of unity.

Φn(x) =
∏

ζprimitive∈µn

(x− µ) =
∏

(a,n)=1

(x− µan)

25

In particular note that the degree of Φn(x) = ϕ(n).

The roots of (xn - 1) are precisely the nth roots of unity. So, xn - 1 =
∏
ζ∈µn

(x - µ).

Grouping the factors (x - µ) according to their order in µn yields :

xn - 1 =
∏
d|n

∏
ζprimitive∈µn

(x - µ) =
∏
d|n

Φd(x).

It turns out that for all n ∈ N, Φn(x) has integer coefficients. To prove this we

need an important result regarding polynomial factorizations in Z[x].

Definition 2.7.9. A polynomial f(x) ∈ Z[x] is called primitive if : f(x) = anxn +

an−1xn−1 + · · · + a1x + a0, then gcd(an,an−1,· · · ,a0) = 1.

Lemma 2.7.10. (Gauss Lemma) Let p(x) ∈ Z[x] be primitive.

(1) If q|f(x)·g(x), where q is a prime integer and f(x), g(x) in Z[x], then either q|f(x)

or q|g(x) in Z[x].

(2) If p(x) is reducible in Q[x] then it is reducible in Z[x].

Proof: Consider the ring Fq[x]. Then q divides f·g in Fq[x] means f · g = 0. But

Fq[x] is an integral domain, so, it must be the case either f = 0 or g = 0.

Now to prove (2) part of the lemma, suppose that f|p in Q(x), where f has integer

coefficients. Then ∃g ∈ Q(x) such that p = f·g. Now, clearing the denominator right

hand side gives us d·p = f·g where d∈Z, d·p ∈ Z(x). Let p0 be some prime factor of d.

Then by part (1), p0 divides f or g. But f was assumed to be primitive, so, p0 divides

g. Then by induction, we see that d|g. Therefore p(x) = f(x)·h(x)
d

. �

Proposition 2.7.11. Φn(x) ∈ Z[x].

Proof: We already know that Φn(x) is monic of degree ϕ(n). For proving the

lemma, we will proceed by induction. In the case that n = 1, the result is clear. So,

let n > 1 and assume that Φd(x) ∈ Z[x] for all 1 ≤ d < n. Then xn - 1 = Φn(x)f(x), f(x)

=
∏

d|n,d<n
Φd(x). f(x) clearly divides xn - 1 in Q(ζn)[x], and because both polynomials

have coefficients in Q, we have that f(x) divides xn - 1 in Q[x]. Then by using Gauss

lemma, f(x) divides xn - 1 in Z[x], hence Φn(x) ∈ Z[x]. �

Lemma 2.7.12. Let n ∈ N and q be prime with (q, n) = 1. Then Φn(x) factors into

the product of ϕ(n)
on(q)

distinct monic irreducible polynomials in Fq[x].

Proof: We begin this proof by showing that on(q) is the smallest integer such that

ζn ∈ Fqon(q) , where ζn is a primitive nth root of unity. Indeed ζn ∈ Fqk if and only if

ζq
k

n = ζn which is equivalent to the identity qk ≡ 1(mod n). The smallest integer k for

which this holds is obviously k = on(q). Thus ζn lies in Fqon(q) but no proper subfield.

26

Therefore the degree of the minimal polynomial of ζn over Fq is on(q). As the degree

of Φn(x) is ϕ(n), it follows that Φn factors into ϕ(n)
on(q)

monic irreducible polynomials in

Fq[x].

Now, we have to show that these polynomials are distinct. Let Φn(x) be the image of

Φn(x) in Fq[x], and let Φ′n(x) be its formal derivative. Suppose that g(x) is irreducible in

Fq[x] and g(x)
2
| Φn(x). Then we see that (Φ′n(x), Φn(x)) 6= 1. But Φn(x) | (xn−1), So,

((xn - 1), nxn−1) 6= 1. We know that n 6= 0 in Fq, so, ((xn - 1), nxn−1) = ((xn - 1), xn−1)

= 1, which is a contradiction. Therefore, g(x)
2
- Φn(x), which means that all of the

irreducible factors of Φn(x) are distinct. �

Lemma 2.7.13. Let n ∈ N have prime divisor p and let a ∈ N with 0 ≤ a ≤l. If n,

p are introspective for (x + a), then n
p

is introspective for (x + a) as well.

Proof: By lemma 2.7.7, f(x)p = f(xp) for all f ∈ Fp[x]. Also given, as p, n are

introspective for (x + a). So, we have : (x
n
p + a)p ≡ (xn + a) ≡ (x + a)n ≡ (x +

a)p·
n
p (mod xr-1, p). Now define f = (x

n
p + a) and g = (x + a)

n
p . We have just shown

that fp = gp in the ring (Z/pZ)[x]/(xr-1). Then fp + (-g)p = 0. Using lemma 2.7.6,

we see that (f-g)p = 0. Let h = (f-g). Now, it remains to show that h = 0 with in the

ring (Z/pZ)[x]/(xr-1). Since (r, p) =1. Using lemma 2.7.12, we see that (xr-1) factors

into distinct irreducibles hi(x) over (Z/pZ)[x], i.e., xr-1 =
∏

i hi(x). Therefore, using

Chinese remainder theorem, we see that :

hp ∈ (Z/pZ)[x]

xr − 1
=

(Z/pZ)[x]

(
∏

i hi(x))
=
∏
i

(Z/pZ)[x]

hi(x)

Because (xr-1)| hp, we see that each of the irreducible factor hi(x) of (xr−1) divides h.

Thus (xr − 1) | h, completing the proof. �

We now can see that introspective numbers are closed under multiplication and the

set of functions for which a given integer is introspective is closed under multiplication.

Lemma 2.7.14. Let f, g ∈ Z[x], s, t∈ N. then the following holds :

(1) If s and t are introspective for f, then s·t is introspective for f.

(2) If s is introspective for f and g, then s is introspective for f·g.

Proof: (1) Given that : t is introspective for f, so, we have : f(x)s·t ≡ (f(xt))s

(mod xr-1, p). Also s is introspective for f, so : f(x)s ≡ f(xs) (mod xr-1, p). Now, by

substituting yt for x in this above identity, we see that : (f(yt))s ≡ f(ys·t) (mod yr·t -

1, p). And we know that (yr - 1) divides (yr·t - 1) = (yr - 1)(yr·(t−1) + yr·(t−2) + · · ·

27

+ yr + 1). So the above equation can be written as : (f(yt))s ≡ f(ys·t) (mod yr - 1,

p). Now, replacing the value of y by x and comparing with the first equation in the

proof, we get the desired result : f(x)s·t ≡ f(xs·t) (mod xr - 1, p).

(2) Since s is introspective for f and g, we have :

[f(x) · g(x)]s = f(x)s · g(x)s ≡ f(xs) · g(xs) = (f · g)(xs)(mod xr − 1, p).

�

Lemma 2.7.13 and lemma 2.7.14 shows that every element of the set I = {(n
p
)i·pj

: i, j ≥ 0} is introspective for every poynomial in the set P = {
l∏

a=0

(x + a)ea : ea ≥

0} (Assumed that n is introspective for (x+a)). We now define two groups based on

these sets .

Proposition 2.7.15. Ir = i (mod r) : i ∈ I is a multiplicative subgroup of (Z/rZ)*.

Sketch of the proof: Firstly, we can notice that Ir is closed under multiplication

:

((
n

p
)i1 · pj1)(modr)× ((

n

p
)i2 · pj2)(modr) = ((

n

p
)i1+i2 · pj1+j2)(modr)

We have already seen that (n, r) = (p, r) = 1, so both n, p are units in (Z/rZ). Because

Ir is generated by n (mod r) and p (mod r), so we have Ir ⊂ (Z/rZ)*. �

Let |Ir | = t, and we have seen that Ir is generated by n (mod r) and p (mod r)

which means nt ≡ 1 (mod r). So, or(n)>log2(n) implies that t>log2(n).

Let Φr(x) be the rth cyclotomic polynomial over Fp. Then Φr(x)|(xr-1) and by

lemma 2.7.14, Φr(x) factors into distinct irreducibles of degree or(p). Let F be the

splitting field of xr-1 over Fp and ζ ∈ F be primitive rth root of unity with minimum

polynomial h(x) ∈ Fp[x]. Then h(x) is an irreducible factor of xr-1 over Fp[x] of order

or(p). This implies that F = Fp(ζ) ∼= Fp[x]/(h(x)) (Note that the map Ψ : Fp[x]/(h(x))

7−→ Fp(ζ) which sends g(x) to g(ζ) is an isomorphism).

Recall that P = {
∏l

a=0(x + a)ea : ea ≥ 0}. Now, define G = {f (mod h(x), p) : f ∈
P}. This group is clearly generated by the linear polynomials x, x+1, · · · + x+l with

in the field F.

28

Let k = or(p). We have already seen that k = deg(h(x)), implying that |F| = pk.

Now, we can actually use this fact to prove the lemma 2.7.13 in the case of f(x) ∈ G.

Lemma 2.7.16. Let f(x) ∈ G.

If (f(x))n = f(xn) and (f(x))p = f(xp) then (f(x))
n
p = f(x

n
p).

Proof: |F| = pk =⇒ for all β ∈ F, βu = βv whenever u ≡ v (mod pk-1). Suppose

that v is introspective for f. Then f(ζ)u = f(ζ)v = f(ζv) = f(ζu). Since introspective

elements are closed under multiplication, so f(x)n·p
k−1

= f(xn·p
k−1

). Then the result

holds as we know : n · pk−1 ≡ n
p

(mod pk-1). �

Before preceeding ahead, we will discuss two lemma’s which will be useful in finding

out the lower bound for |G|.

Definition 2.7.17. A k-subset of [n] is a set of distinct elements of [n] having cardi-

nality k. It is well known that the number of k-subsets of [n] is equal to
(
n
k

)
.

Definition 2.7.18. A k-multiset of [n] is a set of k elements of [n], in which repetition

is allowed.

Let f (k, n) denote the number of k-multisets of [n].

Lemma 2.7.19. The number of k-multisets of [n] is equal to
(
n+k−1

k

)
.

Proof: Let 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤ n + k - 1 be a k-subset of [n + k - 1].

Now define bi = ai - i + 1. Then {b1 , · · · , bk} is a k-multiset on [n]. Conversely,

given a k-multiset on [n] : 1 ≤ b1 ≤ b2 ≤ · · · ≤ bk ≤ n, we can define ai = bi + i

-1 in order to get a k-subset of [n + k - 1]. Therefore, the number of k-combinations

of [n] with repetition is simply the number of k-subsets of [n + k - 1], i.e.,
(
n+k−1

k

)
.

�

Lemma 2.7.20. Let l, t ∈ Z. Then f(t-1,l+2) =
t−1∑
k=0

f(k,l+1).

Proof: Let A be the set of all (t − 1) - multisets of [l + 2], and B be the set

consisting of all i-multisets of [l + 1] for i = 0, 1, · · · , (t − 1). Then |A| = f(t − 1,

l + 2) and |B| =
t−1∑
k=0

f(k, l + 1). For proving the lemma, we now exhibit a bijection

between A and B.

Let A0 ∈ A. If (l + 2) /∈ A0 then A0 is a (t − 1) - multiset of [l + 1] and thus an

element of B. If (l + 2) ∈ A0 , then let al+2 denote its multiplicity in A0 . Then

A0-{(l + 2), (l + 2), · · · , (l + 2)}︸ ︷︷ ︸
al+2times

is an element of B.

29

Now, let B0 be an element of B of cardinality k (i.e., B0 is a k-multiset of [l+1]). If k =

(t-1) then B0 ∈ A. If k 6= (t-1), then B0 ∪ {(l + 2), (l + 2), · · · , (l + 2)}︸ ︷︷ ︸
(t−1−k)times

is an element

of A.

These two operations are clearly inverses of each other, which prove the lemma. �

The next two lemma provide us with lower and upper bound for |G|.

Lemma 2.7.21. |G| ≥
(
t+l
t−1

)
.

Proof: Note that x is a primitive rth root of unity in F because h(x) is a factor of

Φr(x). We now show that if f, g ∈ P are distinct polynomials with degree less than t

then they map to distinct elements in G.

Suppose that f(x) = g(x) in F. Let m ∈ I. Then m is introspective for f and g, so,

f(xm) = g(xm) with in F. Then xm is a root of j(z) = f(z) - g(z) for every m ∈ Ir. By

lemma 2.7.4, (m, r) = 1, so, each such xm is a primitive rth root of unity. Hence their

are |Ir | = t distinct roots of j(z) in F. But the degree of j(z) < t, by choice of f and

g. This contradiction implies that f(x) 6= g(x) in F.

We can observe that i 6=j in Fp whenever 1≤i,j≤ l, since l = b
√
φ(r)·log(n)c<

√
r·log(n)

< r < p. Then by above, x, x+1, · · · ,x+l are all distinct in F. Since the degree of h(x)

is greater than 1, all of these linear polynomials are nonzero in F. Therefore there are

at least (l+1) distinct polynomials of degree 1 in G. By lemma 2.7.19, there are at least(
l+s
s

)
polynomials of degree s in G. Then by lemma 2.7.20, the order of G is at least

t−1∑
k=0

(
l+s
s

)
=
(
t+l
t−1

)
. �

Lemma 2.7.22. If n is not a power of p, then |G| ≤ n
√
t.

Proof: Consider the following subset of I : I’ = {
(
n
p

)i · pj : 0 ≤ i,j ≤ b
√
tc}. If n

is not a power of p, then |I’| ≥ (1+b
√
tc)2 > t. Since |Ir | = t, there are at least two

elements of I’ that are equivalent modulo r. Name these elements m1, m2 where m1

> m2 (WLOG). Then xm1 ≡ xm2 (mod xr-1). Now, let f(x) ∈ P. Then, because m1,

m2 are introspective,

f(x)m1 ≡ f(xm1) ≡ f(xm2) ≡ f(x)m2(mod(xr − 1), p)

Thus, f(x)m1 = f(x)m2 in the field F. Therefore the polynomial R(y) = ym1 - ym2 has at

least |G| roots in F (Since f(x) ∈ P was arbitrary). Then deg(R(y)) = m1 ≤ (n
p
·p)b

√
tc

= nb
√
tc, because (n

p
)b
√
tcpb

√
tc is the largest element of I’. It follows that |G| ≤ n

√
t.

�

30

Correctness of the AKS algorithm

Theorem 2.7.23. The AKS algorithm outputs Prime if and only if n is Prime.

Proof: ⇐ Suppose n is prime. Then n is certainly not of the form ab for any a,

b>1, so, step (1) of the algorithm will not output composite. Since n is prime ,

we also know that for all x ∈ N, (n, x) = 1 or n. Hence step (3) will not output

composite. By lemma 2.7.1, we have already seen that n is prime, then (x + a)n ≡
xn + a (mod n), so step (5) will not output composite. Therefore the algorithm

will output prime.

⇒ Now suppose that the algorithm outputs prime. If the algorithm returns prime

during step (4), then we know that for all m < n, (m, n)=1 (this was checked in

step(3)), which means that n is prime. Now assume that algorithm returns prime

during step (6) which means n is introspective for (x+a). Recall that |Ir | = t and

is generated by n and p. Therefore t = or(n) > log2(n) ⇒ t2 > t·log2(n) ⇒ t >

b
√
tlog(n)c. Then lemma 2.5.21 shows that for l = b

√
φ(r)·log(n)c : |G| ≥

(
t+l
t−1

)
≥(l+1+b

√
tlog(n)c

b
√
tlog(n)c

)
≥
(1+2b

√
tlog(n)c

b
√
tlog(n)c

)
(since Ir ⊂Z∗r ⇒ t≤ ϕ(r) ⇒ l = b

√
φ(r)·log(n)c ≥

b
√
t·log(n)c).

Now using lemma 2.7.3,(
1 + 2b

√
tlog(n)c

b
√
tlog(n)c

)
> 2b

√
tlog(n)c+1 ≥ 2

√
tlog(n) = n

√
t

Then by lemma 2.7.22, we know that |G| ≤ n
√
t if n is not a power of p. Therefore it

must be the case that n = pk for some k>0. But step (1) did not output composite,

so, k=1, which proves that n is indeed prime. This completes the proof of the

theorem. �

2.7.4 Runtime Analysis of the Algorithm

Before finding out the running time of the algorithm, we will find out the running

time for the Euclidean Algorithm and Perfect power test Algorithm.

Euclidean Algorithm and its running time

Algorithm 2.7.4.1 :

Input m,n ∈ Z
(1) a, b integer;

(2) if |n| ≥ |m|

31

(3) then a← |n|; b ← |m|;
(4) else b ← |n|; a ← |m|;
(5) while b > 0 repeat

(6) (a, b) = (b, a mod b);

(7) return a.

Lemma 2.7.24. The complexity of the above algorithm is O(log(n)·log(m)).

Proof. : Let ai, bi denote the values stored in variables (a, b) after the loop in lines

5,6 has been executed for the ith time. Then (m, n) = (ai, bi) (which implies that

the algorithm returns (m, n)), and the numbers b1, b2, · · · form a strictly decreasing

sequence. Now, we begin by showing that the while loop in lines 5, 6 of the algorithm

runs at most 2·min{||n||, ||m||} times. In the algorithm, we have seen that this loop

ends when the strictly decreasing sequence b1, b2, · · · reaches 0. Consider the following

two cases :

Case 1 : bi+1 >
1
2
bi = 1

2
ai+1. Then bi+2 = ai+1 - bi+1 <

1
2
bi.

Case 2 : bi+1 ≤ 1
2
bi = 1

2
ai+1. Then bi+2 = ai+1 (mod bi+1) < bi+1 ≤ 1

2
bi.

We therfore see that for every two executions of the loop, the bit length of the variable

b is reduced by 1. It follows that after 2·min{||n||, ||m||} many executions of the while

loop, b = 0, stopping the loop.

Using elementary methods for dividing allows us to compute ai mod bi in O((||ai|| −
||bi||+ 1) · ||bi||) many bit operations. Since bi = ai+1 for 0≤i≤t. We have : ((||ai|| −
||bi|| + 1) · ||bi||) = ||ai|| · ||bi|| − ||ai+1|| · ||bi|| + ||bi|| ≤ (||ai|| − ||ai+1||)||b0|| + ||bi||.
Thus we bound the number of bit operations of the algorithm by∑

0≤i≤t

O((||ai|| − ||bi||+ 1)||bi||) = O(
∑

0≤i≤t

((||ai|| − ||ai+1||)||b0||+ ||bi||))

= (||a0|| · ||b0||+ t · ||b0||) = O(||n|| · ||m||).

�

Fast Modular Exponentiation

Let n = 2a1 + 2a2 + · · · + 2ak , where a1 > a1 > · · · > ak. Define f0 = (x + a), fi+1

= fi(x)2 (mod xr-1, n). Then faj(x) = (x + a)2aj . If we further define g1(x) = fa1(x)

and gt(x) = gt−1(x)fat(x) (mod xr-1, n), then we see that gk(x) ≡ (x + a)2a1+···+2ak =

(x + a)n (mod xr-1, n). We have therefore computed (x+a)n (mod xr-1, n) in a1 + ak

≤ 2log(n) steps, where a step consists of multiplying two polynomials of degree less

32

than r with coefficients in Z/nZ. This leads to a total runtime of O∼(r·log2(n)).

Idea of the running time in a simple way : We want to discuss a simple algorithm

for total running time of Fast Modular Exponentiation is O∼(r·log2(n)) in following

steps:

(1) In computing the gk(x) : we use the following method :-

(x + a)2 = x2 + 2x · a+ a2 ; number of multiplication = 3

(x2 + (2xa+ a2))2 = (x2)2 + 2x2·(2xa+ a2) + (2xa+ a2)2 ; number of multiplications

= 5

We will continue this procedure and the power of the function is bounded by r and

we are taking the coefficients mod(n). Hence approximately total running time is

O((2r+1)log2(n)).

(2) for computing gk(x), we use function gt(x) which is product of two functions. So

we proceed as follows: 4·gt−1(x) · fat(x) = (gt−1(x)+fat(x))2 - (gt−1(x)-fat(x))2 .

Therefore total number of running time (approximately) is O∼(r·log2(n)).

Perfect power test Algorithm and its running time

Algorithm 2.7.4.2 :

Input n ∈ N.

(1) a, b, c, m ∈ Z
(2) b ← 2

(3) while b ≤ log(n) do //Loop 1

(4) a =1; c = n;

(5) while c - a ≥ 2 do //Loop 2

(6) m ← (a + c) div 2;

(7) p ← min{mb, 1};
(8) if p = n then return “n is a perfect power”;

(9) if p<n then a ← m else c ← m;

(10) b ← b+1;

(11) return “n is not a perfect power”.

Suppose we are given an integer n and want to determine whether or not n is a

perfect power, we will be conducting a binary search of the integers {1, 2, · · · , n} for

a number m such that n = mb for some b>1. Let b>1 and suppose that if a solution

m to mb = n exists then it must lie in some interval [ci, di]. When i = 0 we may take

[c0, d0] = [1, n]. Now, to define [ci+1, di+1], consider α = b (ci+di)
2
c. If αb = n, then we

33

are done. If αb > n, let [ci+1, di+1] = [ci, α]; otherwise αb < n and we let [ci+1, di+1]

= [α, di]. We continue in this manner until |ci+1 − di+1| ≤ 1. We then increase the

value stored in variable b and start the loop again. Performing this loop for all b ≤
log(n) completes our algorithm.

Lemma 2.7.25. The complexity of the above algorithm is O∼(log3(n)).

Proof. : Loop (1) will run at most log(n) times. Also, it will take atmost log(n)

iterations of loop 2 before |c−a| ≤ 1. During each iteration of loop 2, we calculate (a

+ c) div 2 and mb, which can be done in O∼(log(n)) [Fact 2 in the Asymptotic Nota-

tion] bit operations. The complexity of the entire algorithm is therfore O∼(log3(n)).

�

Runtime Analysis of AKS Algorithm

Lemma 2.7.26. The complexity of the above algorithm is O∼(log10.5(n)).

Proof. : Step (1)
We have shown in lemma 2.7.25 that step (1) will take at most O∼(log3(n)) bit op-

erations.

Step (2)
In this step the algorithm finds the list r such that or(n) > log2(n). By lemma 2.7.4,

there exists an r less than dlog5(n)e. The easiest way to find such an r is simply to

calculate nk (mod r) for k = 1,2, · · · ,log2(n). This involves O(log2(n)) multiplications

modulo r for each r, so step (2) takes O(log7(n)) bit operations.

Step (3)
In this step the algorithm computes (a, n) for a = 1, · · · , r in order to determine

whether (a, n) > 1 for some a ≤ r. Computing each gcd takes O∼(log2(n)) bit opera-

tions using Euclidean Algorithm (lemma 2.7.24), resulting in a total of O∼(log7(n)).

Step (5)
During this step the algorithm determines whether the congruence (x + a)n ≡ (xn +

a) (mod xr-1, n) holds for a = 1,2,3,· · · ,b
√
φ(r)·log(n)c. Given a ≤ b

√
φ(r)·log(n)c,

we may calculate (x + a)n in the ring Z/nZ as reducing modulo xr-1 is trivial. In order

to calculate (x + a)n, we must perform O(log(n)) multiplications of polynomials of

degree less than r with coefficients of size O(log(n)) (as the coefficients are in written

modulo n; recall that all polynomials are reduced modulo xr-1 during Fast Modular

Exponentiation). Each congruence therfore takes O∼(log7(n)) bit operations to verify.

step (5) therfore takes O∼(
√
φ(r)log(n)log7(n)) = O∼(

√
φ(r)log8(n)) = O∼(log

21
2 (n))

34

bit operations. The complexity of the step (5) clearly dominates the complexity of

the other steps, so the overall complexity of the algorithm is O∼(log10.5(n)), which is

indeed polynomial. �

35

36

Part II

Integer Factorization and

Polynomial Factorization

37

Chapter 3

Integer factorization algorithms

Suppose we know that a certain large odd integer n is composite; for example, we

found that it fails one of the primality tests in Chapter 2. As mentioned before in

introduction part that it does not mean that we have any idea of what a factor of n

might be. Of the methods we have encountered for testing primality, only the very

slowest - trying to divide by successive primes less than
√
n - actually gives us a prime

factor at the same time as it tells us that n is composite. All of the faster primality

test algorithms are more indirect : they tell us that n must have proper factors, but

not what they are. The method of trial division by primes <
√
n can take more than

O(
√
n) bit operations. In this chapter, we will discuss faster algorithms of integer

factorization.

3.1 Pollard Rho Method

The simplest algorithm which is substantially faster than trial division is J.M. Pollard’s

“rho method” (also called the “Monte Carlo” method) of factorization.

3.1.1 Algorithm

Algorithm follows in the following steps :

(1) Choose an easily evaluated map from Z/nZ to itself, a fairly simple polynomial

with integer coefficients, such as x2+a. [Note : Later we can observe it from proposi-

tion 3.1.4 that f(x) must not be linear polynomial and in fact, should not give a 1-to-1

map.]

(2) Choose some particular value x = x0 (perhaps x0 = 1 or 2, or perhaps it is a

randomly generated integer).

39

(3) Compute the successive iterates of f : x1 = f(x0), x2 = f(f(x0)), x3 = f(f(f(x0))), etc.

That is we define xj+1 = f(xj), j = 0,1,2,· · ·
(4) Compare between different xj’s and find two of which are in different residue classes

modulo n but in the same residue class modulo some divisor of n (let denote them xj

and xk) .

(5) Compute gcd(xj - xk, n), which is equal to a proper divisor of n. [Note : After

providing an example, we will describe a way to carry out the algorithm so as to make

only one g.c.d. computation for each k.]

Example 3.1.1. : Let us factor 91 by choosing f(x) = x2+1, x0 = 1. Then we have

x1 = 2, x2 = 5, x3 = 26, etc. We can find gcd(x3-x2, n) = (21, 91) = 7, so 7 is a

factor.

3.1.2 Refinement of the Algorithm :

As we know that rho method works by successively computing xk = f(xk−1) and com-

paring xk with the earlier xj until we find a pair satisfying gcd(xk - xj, n) = r > 1.

But as k becomes large, it becomes very time consuming to have to compute gcd(xk-xj,

n) for each j < k. We now describe a way to carry out the algorithm so as to make

only one gcd computation for each k.

First observe that, once there is a k0 and j0 such that xk0 ≡ xj0 mod r for some divisor

r|n, we then have the same relation that xk ≡ xj mod r for any pair of indices j, k

having the same difference k-j = k0-j0. To see this, simply set k = k0 + m, j = j0 + m,

and apply the polynomial f to both sides of the congruence xk0 ≡ xj0 mod r repeatedly,

i.e., m times.

We now describe how the refined rho algorithm works in Step (4). We successively

compute the xk, and for each k we proceed as follows :

(1) Suppose k is an (h+1)-bit integer, i.e., 2h ≤k<2h+1. Let j be the largest h-bit

integer : j=2h-1.

(2) Compare xk with this particular xj, i.e., compute gcd(xk-xj, n).

(3) If this gcd gives a nontrivial factor of n, we stop; otherwise we move on to k+1.

This modified approach has the advantage that we compute only one gcd for each

k. It has the disadvantage that we probably will not detect the first time there is a k0

such that gcd(xk0-xj0, n) = r > 1 for some j0 < k0.

40

However before long we will detect such a pair xk, xj whose difference has a common

factor with n. Namely, suppose that k0 has (h+1) bit integer. Set j = 2h+1-1 and k =

j+(k0-j0), in which case j is the largest (h+1)-bit integer and k is an (h+2) bit integer

such that gcd(xk-xj, n) > 1.

Notice that, we have k < 2h+2 = 4·2h ≤ 4·k0.

Example 3.1.2. : Suppose we have to factor 4087 using f(x) = x2+x+1 and x0 = 2.

Then x1 = f(2) = 7 and gcd(x1-x0, n) = gcd(7-2,4087) = 1; x2 = f(7) = 57 and gcd(x2-

x1, n) = gcd(57-7, 4087) = 1; x3 = f(57) = 3307 and gcd(x3-x1, n) = gcd(3307-7,

4087) = 1; x4 ≡ f(3307) ≡ 2745 mod 4087 and gcd(x4-x3, n) = gcd(2745-3307, 4087)

= 1; x5 ≡ f(2745) ≡ 1343 mod 4087 and gcd(x5-x3, n) = gcd(1343-3307, 4087) = 1;

x6 ≡f(1343) ≡ 2626 mod 4087 and gcd(x6-x3, n) = gcd(2626-3307, 4087) = 1; x7 ≡
f(3734) ≡ 2734 mod 4087 and gcd(x7-x3, n) = gcd(3734-3307, 4087) = 61.

Thus we obtain 4087 = 61·67.

3.1.3 Running time Analysis

Let us suppose f(x) is a random map from Z/nZ to itself and compute how long we

expect to have to wait before we have two iterations xj and xk such that xj-xk has a

nontrivial common factor with n. We do this by finding for a fixed divisor r of n

(which, in practice, is not yet known to us) the average (taken over all maps from

Z/nZ to itself and over all values of x0) of the first index k such that there exists j<k

with xj ≡ xk mod r. In other words, we regard f(x) as a map from Z/rZ to itself and

ask how many iterations are required before we encounter the first repetition of values

xk = xj in Z/rZ.

Proposition 3.1.3. Let S be a set of r elements. Given a map f from S to S and an

element x0 ∈ S, let xj+1 = f(xj) for j = 0,1,2,· · · . Let λ be a positive real number,

and let m = 1+[
√

2λr]. Then the proportion of pairs (f, x0) for which x0, x1, · · · , xm

are distinct, where f runs over all maps from S to S and x0 runs over all elements of

S, is less than e−λ.

Proof : There are r choices of x0, and for each of the r different x ∈ S there are

r choices of f(x). So, the total number of pairs are rr+1. Now we will check that how

many pairs (f, x0) are there for which x0, x1, · · · , xm are distinct. There are r choices

for x0, there are r-1 choices for f(x0) = x1 (since this can not be equal to x0), there

are r-2 choices for f(x1) = x2, and so on, until f(x) has been defined for x = x0, x1,

· · · , xm−1. Then the value of f(x) for each of the r-m remaining x is arbitrary, i.e.,

41

there are rr−m possibilities for those values. Hence, the total number of possible ways

of choosing x0 and assigning the values f(x) so that x0, x1, · · · , xm are distinct is :

(r-m)·rr−m ·
∏m−1

j=0 (r-j) = rr−m ·
∏m

j=0(r-j), and the proportion of pairs having the stated

property (i.e., the above number divided by rr+1) is :
rr−m·

∏m
j=0(r−j)

rr+1 = r−m−1
∏m

j=0(r-j)

=
∏m

j=1(1- j
r
).

Now we have to show that log of this is less than -λ (where m = 1+[
√

2rλ]). To prove

this, we take the log of the product and use the fact that log(1-x) < -x for 0 < x < 1.

So, we have :

log(
m∏
j=1

(1− j

r
)) <

m∑
j=1

−j
r

=
−m(m+ 1)

2r
<
−m2

2r
<
−(
√

2rλ)2

2r
= −λ

This completes the proof of the proposition. �

The significance of proposition 3.1.3 is that it gives an estimate for the probable

length of time of the rho method, provided that we assume that our polynomial behaves

like an average map from Z/rZ to itself.

Proposition 3.1.4. Let n be an odd composite integer, and let r be a nontrivial

divisor of n which is less than
√
n (i.e., r|n, 1 < r <

√
n; we suppose that we are

trying to determine what r is). If a pair (f, x0) consisting of a polynomial f with

integer coefficients and an initial value x0 is chosen which behaves like an average pair

(f, x0) in the sense of proposition 3.1.3 (with f a map from Z/rZ to itself and x0 an

integer), then the rho method will reveal factor r in O((n)
1
4 ·log2n) bit operations with

a high probability. More precisely, there exists a constant C such that for any positive

real number λ the probability that the rho method fails to find a nontrivial factor of n

in C
√
λ(n)

1
4 log2n bit operations is less than e−λ.

Proof : Let C1 be a constant such that gcd(y-z, n) can be computed in C1log2n bit

operations whenever y, z ≤ n (proved in lemma 2.7.24). Let C2 be a constant such

that the least nonnegative residue of f(x) modulo n can be computed in C2log2n bit

operations whenever x < n. If k0 is the first index for which there exists j0 < k0 with

xk0 ≡ xj0 mod r, then the refined rho algorithm as described above finds r in the kth

step, where k < 4k0.

Thus the number of bit operations needed to find r is bounded by 4·k0(C1log2n +

C2log2n). According to proposition 3.1.3, the probability that k0 is not greater than

1+
√

2rλ is less than e−λ. If k0 is not greater than 1+
√

2rλ, then the number of bit

42

operations need to find r is bounded by (here r <
√
n) : 4(1+

√
2rλ)(C1+C2)log2n <

4(1+
√

2
√
λ(n)

1
4)(C1+C2)log2n.

If we choose C slightly greater than 4
√

2(C1+C2) (so as to take care of the added 1), we

conclude, as claimed, that the factor r will be found in C
√
λ(n)

1
4 log2n bit operations,

unless we made an unfortunate choice of (f, x0), of which the likelihood is less than

e−λ. �

Thus according to proposition 3.1.4, if we choose λ large enough to have confidence

in success - for example, e−λ is only about 0.0001 for λ = 9 - then we know that for an

average pair (f, x0) we are almost certain to factor n in 3C(n)
1
4 log2n bit operations.

3.2 Pollard p-1 method

This is a classical factoring technique. Suppose we want to factor the composite num-

ber n, and p is some (as yet unknown) prime factor of n. If p happens to have the

property that p-1 has no large prime divisor, then this method is virtually certain to

find p.

3.2.1 Algorithm

(1) Choose an integer k that is a multiple of all or most integers less than some bound

B. For example, k might be B!, or it might be the least common multiple of all integers

≤ B.

(2) Choose an integer a between 2 and n-2. For example, a could equal 2, or 3, or a

randomly chosen integer.

(3) Compute ak mod n by the repeated squaring method.

(4) Compute d = gcd(ak-1, n) using the Euclidean algorithm and the residue of ak

modulo n from step 3.

(5) If d is not a nontrivial divisor of n, start over with a new choice of a and/or a

new choice of k.

Now we will explain that when this algorithm will work. Suppose that k is divisible

by all positive integers ≤ B, and further suppose that p is a prime divisor of n such

that p-1 is a product of small prime powers, all less than B. Then k is a multiple of

p-1 because it is a multiple of all the prime powers in the factorization of p-1. So, by

Fermat little theorem 2.4.1, we have ak ≡ 1 mod p, which means p|gcd(ak-1,n). We

43

can observe that the only way in which we will get a nontrivial factor of n in step (4)

is when ak ≡ 1 mod n.

Example 3.2.1. Suppose we have to factor 540143 by this method, choosing B =

8 and a = 2. Hence, we can get k = 840, which is the least common multiple of

1,2,· · · ,8. We find 2840 mod 540143, which is equal to 53047. So, gcd(53046, 540143)

= 421 provides us a nontrivial factor of n.

The main weakness of the Pollard p-1 method is clear that if we attempt to use it

when all of the prime divisors p of n have p-1 divisible by a large prime (or prime

power). In the following example, due to this weakness, it is very difficult to find a

nontrivial factor of n by this algorithm.

Example 3.2.2. Let n = 491389. We would be unlikely to find a nontrivial divisor

until we choose B ≥ 191. This is because it turns out that n = 383·1283. We have

383-1 = 382 = 2·191 and 1283-1 = 2·641 (both 191 and 641 are primes). Except a

≡ 0, ±1 mod 383, all other a’s have order modulo 383 either 191 or 382; and except

for a ≡ 1, ±1 mod 1283, all other a’s have order modulo 1283 either 641 or 1282.

So unless k is divisible by 191 (or 641), we are likely to find again and again that

gcd(ak-1, n) = 1 in step (4).

The basic dilemma with Pollard’s p-1 method is that we are pinning our hopes on

the group (Z/pZ)∗ (more precisely, the various such groups as p runs through the

prime divisors of n). For a fixed n, these groups are fixed. If all of them happen to

have order divisible by a large prime, then we are stuck.

3.2.2 Complexity of the algorithm

Theorem 3.2.3. The complexity of the algorithm is bounded by O(n2log3(n)).

Proof : In Step (1), If we take k = B! then it will take O(B2log2(B)) (by simple

naive algorithm), or we can say it is bounded by O(n2log2(n)).

In Step (3), we have described a method to compute ak mod n in the Miller-Rabin

primality test, which takes O(log3(n)).

In Step (4), computing d will take O(log2(n)) by Euclidean algorithm, which is de-

scribed in the last subsection of AKS algorithm.

Thus the overall complexity of the algorithm is O(n2log3(n)). �

44

3.3 Fermat Factorization and Fermat Factor base

Method

3.3.1 Fermat Factorization method

This method is efficient if n is a product of two integers which are close to one another.

3.3.2 Algorithm (Fermat Factorization)

(1) Compute t = [
√
n]+1, [

√
n]+2, · · · until we obtain a t for which t2 - n = s2 is a

perfect square (s, t are nonnegative integers).

(2) gcd(t+s, n) is a nontrivial factor of n.

This algorithm is based on the following proposition :

Proposition 3.3.1. Let n be a positive odd integer. There is a one to one corre-

spondence between factorizations of n in the form n = a·b, where a ≥ b > 0, and

representations of n in the form t2 - s2, where s and t are nonnegative integers. The

correspondence is given by the equations :

t =
a+ b

2
, s =

a− b
2

; a = t+ s, b = t− s.

Proof : Given such a factorization, we can write n = a·b = ((a+b)/2)2 - ((a-

b)/2)2, so we obtain the representation as a difference of two squares.

Conversely, given n = t2 - s2 we can factor the right side as (t+s)(t-s). The equations

in the proposition explicitly give the one to one correspondence between the two ways

of writing n. �

Example 3.3.2. Suppose we have to factor 200819. Then firstly, we compute [
√

200819]+1

= 449. But we observe that 4492-200819 = 782, which is not a perfect square. Next,

we try t = 450 and we get 4502-200819 = 1681 = 412. Thus, 200819 = 4502-412 =

(450+41)(450-41) = 491·409.

If n = a·b with a and b close together, then s = (a-b)/2 is small, and t is only

slightly larger than
√
n. In this case, we can find a and b by trying all values fot t

starting with [
√
n]+1, until we find one for which t2-n = s2 is a perfect square.

But we can notice that if a and b are not close together for any factorization n =

a·b, then the Fermat factorization method will eventually find a and b, but only after

45

trying a large number of t = [
√
n]+1, [

√
n]+2, · · · . There is a generalization of the

Fermat factorization that often works better in such a situation.

3.3.3 Generalized Fermat factorization Algorithm

(1) Choose a small k, and succesively set t = [
√
kn]+1, [

√
kn]+2, · · · , until we obtain

a t for which t2-kn = s2 is a perfect square.

(2) gcd(t+s, n) is a nontrivial factor of n.

Since in the generalized Fermat factorization algorithm, kn = t2-s2 = (t+s)(t-s).

It means that t+s has a nontrivial common factor with n which can be found by

computing gcd(t+s, n).

Example 3.3.3. Let we have to factor 141467. Then if we use Fermat factorization

method, setting t = [
√

141467]+1 = 377, 378, · · · , after a while we tire of trying differ-

ent t’s. However if we use generalized Fermat factorization and setting t = [
√

3n]+1

= 652, 653, · · · . We soon find that 6552-3·141467 = 682, at which point we compute

gcd(655+68,141467) = 241. We conclude that 141467 = 241·587.

The reason why generalized Fermat factorization worked with k =3 in the above ex-

ample is that there is a factorization n = a·b with b close to 3a. With k = 3, we need

to try only four t’s, whereas with simple Fermat factorization (i.e. k = 1) it would

have taken thirty eight t’s.

3.3.4 Fermat factor base method

factor bases :

There is a generalization of the idea behind Fermat factorization which leads to a much

more efficient factoring method. Namely, we use the fact that any time we are able to

obtain a congruence of the form t2 ≡ s2 mod n with t 6= ±s mod n, we immediately

find a factor of n by computing gcd(t+s, n) (or gcd(t-s, n)). This is because we have

gcd(t+s, n) must be a proper factor a of n, and then b = n/a divides gcd(t-s, n).

The main problem in this algorithm is to select a random various b for which the

least positive residue of b2 mod n is a perfect square. That is very unlikely if n is

large, so it is necessary to generalize this method in a way that allows much greater

flexibility in choosing the bi’s which have the property that b2
i mod n is a product of

46

small prime powers, and such that some subset of them, when multiplied together, give

a b whose square is congruent to a perfect square modulo n.

Definition 3.3.4. A factor base is a set B = {p1, p2,· · · ,ph} of distinct primes, except

that p1 may be the integer -1. We say that the square of an integer b is a B-number

(for a given n) if the least absolute residue b2 mod n can be written as a product of

numbers from B.

Note (1) : By the “least absolute residue” of a number a modulo n we mean the

integer in the interval from -n/2 to +n/2 to which a is congruent. We shall denote

this a mod n.

Note (2) : Let Fh2 denote the vector space over the field of two elements which

consists of h-tuples of zeroes and ones. Given n and a factor base B containing h

numbers, we show how to correspond a vector −→ε ∈ Fh2 to every B-number. Namely,

we write b2 mod n in the form
∏h

j=1p
αj

j and the jth component εj equal to αj mod 2,

i.e., εj = 0 if αj is even, and εj = 1 if αj is odd.

3.3.5 Idea of the algorithm

Suppose that we have some set of B-number b2
i mod n such that the corresponding

vectors −→εi = {εi1, εi2, · · · , εih} add up to the zero vector in Fh2 . Then the product of

the least absolute residues of b2
i is equal to a product of even powers of all of the pj in

B. That is, if for each i we let ai denote the least absolute residue of b2
i mod n and we

write ai =
∏h

j=1p
αij

j , we obtain

∏
i

ai =
h∏
j=1

p
∑

i αij

j = (
∏
j

p
γj
j)2

where γj = 1
2

∑
i αij (we can write this because the exponent of each pj is an even

number). Thus if we set b =
∏

i bi mod n (least positive residue) and c =
∏

j p
γj
j mod

n (least positive residue), we obtain two numbers b and c, constructed in quite different

ways (one as a product of bi’s and the other as a product of pj’s) whose squares are

congruent to modulo n. Now if b 6= ±c mod n then gcd(b+c, n) gives us a nontrivial

factor of n.

47

Note (3): It may happen that b ≡ ±c mod n, in which case we are out of luck,

and we must start again with another collection of B-numbers whose corresponding

vectors sum to zero. This will happen, for example, if we foolishly choose bi less than√
n/2, in which case all of the vectors are zero vectors, and we end up with a trivial

congruence.

Selection of B and bi :
(1) One method is to start with B consisiting of the first h primes (or the first h-1

primes together with p1 = -1) and choose random bi’s until we find several whose

squares are B-numbers.

(2) Another method is to start by choosing some bi’s for which b2
i mod n (least positive

residue) is small in absolute value (for example, take bi close to
√
kn for small multi-

ples kn ; one another method for this we will describe in next section). Then choose

B to consist of a small set of small primes (and usually p1 = -1) so that several of

the b2
i mod n can be expressed in terms of the numbers in B.

Now if we choose the first method, then the question arise that, when can we be sure

that we have enough bi to find a sum of −→εi which is the zero vector ? In other words,

given a collection of vectors in Fh2 , when can we be sure of being able to find a subset of

them which sums to be zero ? For this, it is enpogh to find out the collection of vectors

which are linearly dependent over the field F2. According to the basic linear algebra

(which applies as well over the field F2 as over the real numbers), this is guaranteed

to occur as soon as we have h+1 vectors. Thus, at worst we will have to generate h+1

different B-numbers in order to find our first example of (
∏

i bi)
2 = (

∏
j p

γj
j)2 mod n.

It can also possible that we can get the linearly dependent vectors before h+1 vectors.

Note (4) : For more randomly chosen bi, because n is composite, we would expect

that b and c would happen to be congruent (up to ±1) modulo n at most 1/2 of the

time. This is because any square modulo n has 2r ≥ 4 square roots if n has r different

prime factors. Therefore a random square root of b2 has only a 2/2r ≤ 1
2

chance of

being either b or -b. Thus, if we go through the above procedure for finding b and c

until we find a pair that gives us a nontrivial factor of n, we see that there is at most

a 2−k probability that this will take more than k tries.

We now summarize a systematic method to factor a very large n using a random

choice of the bi.

48

3.3.6 Factor base Algorithm

(1) Choose an integer y of intermediate size, for example, if n is a 50 decimal digit

integer, we might choose y to be a number with 5 or 6 decimal digits.

(2) Set B consists of -1 and all primes ≤ y.

(3) Choose a large number of random bi (close to
√
kn for small integers k, like [

√
kn],

[
√
kn]+1, · · ·), and try to express b2

i mod n (least absolute residue) as a product of

the primes in B.

(4) From step (3), obtain a large quantity of B-numbers b2
i mod n (π(y)+2 is enough,

where π(y) denotes the number of primes ≤ y).

(5) Take the corresponding vectors in Fh2 (where h = π(y)+1) and by row reduction

determine a subset of the bi whose corresponding −→εi sum to zero.

(6) Set b =
∏

ibi mod n and c =
∏

j p
γj
j mod n (as described before Note (3)). Then

b2 ≡ c2 mod n.

(7) If b ≡ ±c mod n, repeat the process with a new random collection of B-numbers

(or, to be more efficient, choose different subset of rows in the matrix of −→εi ’s which

sum is zero, if necessary find a few more B-numbers and there corresponding rows).

(8) If b 6= c mod n, compute gcd(b+c, n), which will be nontrivial factor of n.

Some examples :

Example 3.3.5. Suppose we have to factor n = 4633. Set B = {-1, 2,3,5}. Choose

b1 = [
√
n] = 68, b2 = [

√
n]+1 = 69, b3 = [

√
2n] = 96, etc. Then we see that 68,

69 and 96 are B-numbers because 682 = -9 mod 4633 which has corresponding vector

{1,0,0,0}; 692 = 128 mod 4633 which has corresponding vector {0,1,0,0}; and 962 =

-50 mod 4633 which has corresponding vector {1,1,0,0}. Since the sum of the these

three vectors is zero, we can take b = 68·69·96 ≡ 1031 mod 4633 and c = 24·3·5 =

240. So, we see that b 6= ±c mod 4633. Therefore, we obtain gcd(240+1031, 4633) =

41, a nontrivial factor.

Example 3.3.6. Let us factor n = 1829. Take bi’s = [
√
kn] and [

√
kn]+1 for k

= 1,2,· · · , such that b2
i mod n is a product of primes less than 20. For each bi, we

write b2
i mod n =

∏
j p

αij

j and tabulate the αij. After taking k =1,2,3,4, we have the

following table, in which the number at the top of the jth column is pj and the entry

in the ith row beneath pj is the power of pj which occurs in b2
i mod n :

49

bi -1 2 3 5 7 11 13

42 1 - - 1 - - 1

43 - 2 - 1 - - -

61 - - 2 - 1 - -

74 1 - - - - 1 -

85 1 - - - 1 - 1

86 - 4 - 1 - - -

We now look for a subset of rows whose entries sum to an even number in each

column. We see that 2nd and 6th rows sum to the even row i.e. - 6 - 2 - - - , which

leads to the congruence (b2·b6)2 ≡ (26/2·52/2)2 mod n = (43·86)2 ≡ 402 mod 1829.

But 43.86 ≡ 40 mod 1829, so here we find a trivial relationship. Thus we have to

look for another subset of rows which sum to a row of even numbers. We notice that

the sum of the first three rows and fifth row is 2 2 2 2 2 - 2 , and this gives the

congruence (42·43·61·85)2 ≡ (2·3·5·7·13)2 mod 1829, i.e., 14592 ≡ 9012 mod 1829.

Thus we conclude that a factor of 1829 is gcd(1459+901, 1829) = 59.

3.3.7 Running time analysis

We now give a very rough derivation of an estimate for the number of bit operations it

takes to find a factor of a very large n using the algorithm described above. We shall

use several simplyfying assumptions and approximations, and in any case the result

will only be a probabilistic estimate. If we are unlucky in our random choice of bi,

then the algorithm will take longer.

Before estimating the running time of the algorithm, we need following lemma’s,

we will describe only the idea of the proof of the lemma’s :

Lemma 3.3.7. Stirling formula : For n ∈ N,

limn→∞
n!√

2nπnne−n
= 1 or n! ≈

√
2πnn+ 1

2 e−n

or we can say log(n!) is approximately nlogn-n.

Idea of the Proof : This can be proved by observing that log(n!) is the right-

endpoint Riemann sum (with endpoints at 1,2,3,· · ·) for the definite integral
∫ n

1
logxdx

= nlogn - n + 1. �

50

Lemma 3.3.8. Given a positive integer N and a positive number u, the total number

of nonnegative integer N-tuples αj such that
∑N

j=1 αj ≤ u is the binomial coefficient(
[u]+N
N

)
.

Idea of the Proof : Each N-tuple solution αj correspond to the following

choice of N integers βj from among 1,2,· · · ,[u]+N. Let β1 = α1+1, and for j ≥ 1,

let βj+1 = βj+αj+1+1, i.e., we choose the βj’s so that there are αj numbers between

βj−1 and βj. This gives a one to one correspondence between the number of solu-

tions and the number of ways of choosing N numbers from a set of [u]+N numbers.

�

Proposition 3.3.9. The probability that a random number less than x is a product of

primes less than y (where y is a number much less than x) will be 1
uu

, where u denote

the ratio logx
logy

.

Proof : Let x be an r-bit integer and y is an s-bit integer, then u is approximately

the ratio of r/s. Now, let π(y) denote the number of prime numbers which are ≤ y.

We know by “Prime Number Theorem” that π(y) is approximately equal to y/log(y).

Now since y is much less than x, so, u is much smaller than y and π(y). In a typical

practical application of the algorithm, we might take y, u, x of approximately the

following sizes : x ≈ 1048 ; y ≈ 106 ; so that u ≈ 8 and π(y) ≈ 7·104 and log(y) ≈ 14.

Let ψ(x, y) denote the number of integers ≤ x which are not divisible by any prime

greater than y, i.e., the number of integers which can be written as a product
∏

j p
αj

j

≤ x, where the product is over all primes ≤ y and αj are non negative integers.

We can observe that there is one-to-one correspondence between π(y)-tuples of non-

negative integers αj for which
∏

j p
αj

j ≤ x and integers ≤ x which are not divisible by

any prime greater than y. Thus, ψ(x,y) is equal to the number of integer solutions αj

to the inequality
∑π(y)

j=1 αjlogpj ≤ log(x) (by taking logarithm).

We can now observe that most of the pj’s have logarithms not too much less than

log(y) because most of the primes less than y have almost the same number of digits

as y; only relatively few have many fewer digits and hence a much smaller logarithm.

Thus we can replace logpj by log(y) in the previous inequality. After dividing both

sides of the resulting inequality by log(y) and replacing logx/log(y) by u, we can

say that ψ(x,y) is approximately equal to the number of solutions of the inequality∑π(y)
j=1 αj ≤ u.

We now make another important simplification, replacing the number of variables

π(y) by y. This might appear at first to be a rather reckless modification of our prob-

51

lem. And in fact, replacing π(y) by y does introduce nontrivial terms; however , it

turns out that those terms cancel, and the net result is the same as one would get by

a much more careful approximations of ψ(x, y). Thus we can suppose that ψ(x, y) is

roughly equal to the number of y-tuple nonnegative integer solutions to the inequality
y∑
j=1

αj ≤ u.

Now using lemma 3.3.8 (with N = y), ψ(x, y) is approximately
(

[u]+y
y

)
. We now es-

timate log(ψ(x,y)
x

), which is the logarithm of the probability that a random integer

between 1 and x is a product of primes ≤ y.

We know that log(x) = ulog(y), by definition of u. Now using the approximation for

ψ(x, y) and lemma 3.3.7, we get :

log(ψ(x,y)
x

) ≈ log(([u]+y)!
[u]!y!

) - ulogy ≈ ([u]+y)log([u]+y)-([u]+y)-([u]log[u]-[u])-(ylogy-y)-

ulogy. We now make some further approximations. First, we replace [u] by u. Next,

we note that, because u is assumed to be much smaller than y, so, we can replace

log(u+y) by logy. After cancellation we obtain log(ψ(x,y)
x

) ≈ -ulogu, i.e., ψ(x,y)
x
≈ u−u.

�

The above proposition says that if x ≈ 1048 and y ≈ 106 as above, then the proba-

bility that a random number between 1 and x is a product of primes ≤ y is about 1

out of 88.

Theorem 3.3.10. The overall complexity of the Fermat factor base algorithm is

O(ec
√
rlogr) for some constant c, where n is an r-bit integer.

Proof : For analysing the running time of the algorithm, we estimate the number

of bit operations required to carry out the following steps :

(1) choose random numbers bi between 1 and n and express the least positive residue

of b2
i modulo n as a product of primes ≤ y if it can be so expressed, continuing until

we have π(y)+1 different bi’s for which b2
i mod n is written as such a product.

(2) Find a set of linearly dependent rows in the corresponding ((π(y)+1)×π(y))-matrix

of zeroes and ones to obtain a congruence of the form b2 ≡ c2 mod n.

(3) If b ≡ ±c mod n, repeat (1) and (2) with new bi until we obtain b2 ≡ c2 mod

n with b 6= ±c mod n, at which point find a nontrivial factor of n by computing

gcd(b+c, n).

Step (1) (Sieving): Assuming that the b2
i mod n (meaning least positive residue

of b2 modulo n) are randomly distributed between 0 and 1, using proposition 3.3.9,

we expect that it will take approximately uu tries before we find a bi such that b2
i

52

mod n is a product of primes ≤ y, where u = logn/logy.

Choosing y → : We will decide later that how to choose y so as to minimize the

length of time.

* : If we choose y large enough then it would make uu small, and so we would

frequently encounter bi such that b2
i mod n is a product of primes ≤ y. However in

this case the factorization of b2
i mod n into a product involving all of those primes -

which we would have to do π(y)+1 times - and then the row reduction of the matrix

would all be very time consuming.

* : Conversely, if we choose y fairly small, then the latter tasks would be easy, but

it would take us a very long time to find out any bi’s for which b2
i mod n is divisible

only by primes ≤ y, because in this case uu would be very large.

→ : So y should be chosen in some intermediate range, as a compromise between

these two extremes.

→ : In order to decide how y should be chosen, we first make a very rough estimate

in terms of y (and n, of course) of the number of bit operations. We then minimize

this with respect to y, and find our estimate with y chosen so that time is minimized.

Suppose n is an r-bit integer and y be an s-bit integer; then u is very close to r/s.

Now we can observe that to generate a random integer bi between 1 and n, takes a

fixed amount O(r) bit operations of time to generate a random bit. Next, computing

b2
i mod n takes O(r2) bit operations. We must then divide b2

i mod n successively by

all primes ≤ y which divide it evenly (and by any power of the prime that divides it

evenly), and we hope that when we are done we will be left with 1. A simple way to

do this would be to divide successively by 2 and by all odd integers p from 3 to y,

recording as we go along what power of p divides b2
i mod n evenly. We can notice that

if p is not prime, then it will not divide evenly, since we will have already removed

from b2
i mod n all the factors of p. Since a division of an integer ≤ r bits by an integer

of ≤ s bits takes time O(rs). Thus we see that each test of a randomly chosen bi takes

O(rsy) bit operations.

To complete step(1) requires testing approximately uu(π(y)+1) values of bi, in order

to find π(y)+1 values for which b2
i mod n is a product of primes ≤ y. Since we know

by prime number theorem that π(y) ≈ y/logy = O(y/s). Hence Step (1) takes

O(uury2) bit operations.

Step (2) (finding a linearly dependent set) : The second step to row reduce

a matrix, assuming a size of approximately y2, can be done in at most O(y3) with

53

Gaussian elimination, but there are faster methods available. We know that r is at

most log(n), combining the relations to get the desired squares can be done O(rh), so,

this step involves operations which are polynomial in y and r (such as matrix reduction

and finding b and c modulo n). Thus, step (2) takes O(yjrh) bit operations for some

integers j and h. Therefore, overall complexity at the end of the Step (2) is O(uury2

+ yjrh).

Step (3) : We know (as discussed above in Note (4)) that each time we perform

steps (1)-(2) there is at least a 1/2 probability of success, i.e., of finding that b 6= c mod

n. More precisely, the chance of success is 50% if n is divisible by only two distinct

primes, and is greater if n is divisible by more primes. Thus if we say that 1-2−50

probability of finding a non trivial factor of n, it suffices to go through the steps 50

times. Therefore taking this as good enough for all practical purposes, we have overall

complexity : O(50(uury2 + yjrh)) = O(rhuuyj) = O(rhuueks) = O(rh(r/s)r/seks), for

suitable integers h and k.

We now find y and equivalently s, for which this estimate is minimal. Since r, the

number of bits in n, is fixed, this means, we have to minimize (r/s)r/seks with respect

to s, or equivalently, minimize its log, which is r
s
log r

s
+ ks. Thus, we set :

0 =
d

ds
(
r

s
log

r

s
+ ks) = − r

s2
(log

r

s
+ 1) + k ≈ − r

s2
log

r

s
+ k

From the above equation we can observe that we have to choose s such a way that ks

≈ r
s
log r

s
or in other words (r/s)r/s ≈ eks. Because k is a constant, it follows from the

above approximate inequality that s2 has the same order of magnitude as rlog(r/s) =

r(logr-logs), which means that s has order of magnitude between
√
r and

√
rlogr. But

this means that logs is approximately 1
2
logr, and so, making this substitution logs ≈

1
2
logr. We transform this in above approximate inequality and we get :

0 ≈ − r

2s2
logr + k or s ≈

√
r

2k
logr

With this value of s, we now estimate the total time. Since (r/s)r/s ≈ eks, So, overall

complexity of the algorithm simplifies to O(e2ks) = O(e
√

2k
√
rlogr). Thus replacing the

constant
√

2k by C, we finally obtain O(ec
√
rlogr) bit operations required to factor an r-

bit integer n. �

54

In the above theorem, the argument was very rough. We did not attempt to justify

our simplifications or bound the error in our approximate inequalities. In addition,

both our algorithm and our estimate of its running time are probabilistic.

3.4 The continued fraction method

In the last section, we saw that the factor base method of finding a nontrivial factor

of a large composite integer n works best if one has a good method of finding integers

b between 1 and n such that the least absolute residue b2 mod n is a product of

small primes. This is most likely occur if the absolute value of b2 mod n is small. In

this section, we describe a method for finding many b such that |b2 mod n| < 2
√
n.

This method uses “continued fractions”, so, we shall start with a brief introduction

to the continued fraction representation of a real number. We will describe only those

features which will be needed here.

3.4.1 Continued fractions

Given a real number x, we construct its continued fraction expansion as follows :

(1) Let a0 = [x] ; where [x] denote the greatest integer not greater than x and set x0

= x - a0

(2) let a1 = [1
x0

] and set x1 = 1
x0

- a1

(3) for i > 1, let ai = [1
xi−1

], and set xi = 1
xi−1

- ai

(4) when 1
xi−1

is an integer, then we find xi = 0, and the process stops.

It is not hard to see that the process terminates if and only if x is rational (because

in that case the xi are rational numbers with decreasing denominators) or we can say

that ai become a repeating sequence if and only if x is a quadratic irrationality, i.e., of

the form x1+x2

√
n with x1 and x2 rational and n not a perfect square. This is known

as Lagrange’s theorem.

Notation : Because of the construction of the a0, a1, · · · , ai, for each i we can write

:

x = a0 +
1

a1 + 1
a2+··· 1

ai+xi

55

which is usually written in a more compact notation as follows :

x = a0 +
1

a1+

1

a2+

1

a3+
· · · 1

ai + xi

Suppose x is an irrational real number. If we carry out the above expansion to the ith

term and then delete xi, we obtain a rational number bi/ci, called the ith convergent

of the continued fraction for x :

bi
ci

= a0 +
1

a1+

1

a2+

1

a3+
· · · 1

ai−1+

1

ai

Proposition 3.4.1. In the above notation, we have :

(a) b0
c0

= a0
1

; b1
c1

= a0a1+1
a1

; bi
ci

= aibi−1+bi−2

aici−1+ci−2
for i ≥ 2.

(b) The fractions on the right in part (a) are in lowest terms, i.e., if bi = aibi−1 + bi−2

and ci = aici−1 + ci−2, then gcd(bi, ci) = 1.

(c) bici−1 - bi−1ci = (-1)i−1 for i ≥ 1.

Proof : (a) For proving this part, we define the sequences {bi} and {ci} by the

relations in (a) and prove by induction that bi/ci is the ith convergent. We will prove

this without assuming that the ai are integers, i.e., we will prove that for any real

numbers ai the ratio bi/ci with bi and ci defined by the formulas in (a) is equal to

a0 + 1
a1+

1
a3+
· · · 1

ai
. It is trivial to check the beginning of the induction (i = 0,1,2). We

now suppose that the claim is true through the ith convergent, and we prove the claim

for the (i+1)th convergent. Note that we obtain the (i+1)th convergent by replacing

ai by ai+1/ai+1 in the formula that expresses the numerator and denominator of the

ith convergent in terms of the (i-1)th and (i-2)th. That is, the (i+1)th convergent is :

(ai + 1
ai+1

)bi−1 + bi−2

(ai + 1
ai+1

)ci−1 + ci−2

=
ai+1(aibi−1 + bi−2) + bi−1

ai+1(aici−1 + ci−2) + ci−1

=
ai+1bi + bi−1

ai+1ci + ci−1

by the induction assumption. This completes the induction and proves part (a).

(b) This part follows from part (c), because any common divisor of bi and ci must

divide (-1)i−1, which is ±1.

(c) We will prove this part by induction. Let the inequality of this part hold for i.

Now similar to part (a), we will show this for i+1.

bi+1ci−bici+1 = (ai+1bi+bi−1)ci−bi(ai+1ci+ci−1) = bi−1ci−bici−1 = −(−1)i−1 = (−1)i

56

This completes the proof of the proposition. �

Note (1) : If we divide the equation in the last part of the above proposition by

cici−1, we find that bi
ci
− bi−1

ci−1
= (−1)i−1

cici−1
. Since ci form a strictly increasing sequence

of positive integers, this inequality shows the sequence of convergents behaves like an

alternating series, i.e., it oscillates back and forth with shrinking amplitude; thus, the

sequence of convergents converges to a limit.

Note (2) : The limit of the convergents is the number x which was expanded in the

first place. To see that, we can notice that x can be obtained by forming the (i+1)th

convergent with ai+1 replaced by i/xi. Thus using part (a) of the above proposition

(with i replaced by i+1 and ai+1 replaced by 1/xi), we have

x =
bi
xi

+ bi−1

ci
xi

+ ci−1

=
bi + xibi−1

ci + xici−1

and this is strictly between bi−1/ci−1 and bi/ci. To see this, we can consider the two

vectors u = (bi, ci) and v = (bi−1, ci−1) in the plane, both in the same quadrant; and

we can observe that the slope of the vector u+xiv is intermediate between the slopes

of u and v. Thus, the sequence bi/ci oscillates around x and converges to x.

Example 3.4.2. Let we have to expand
√

3 as a continued fraction, So, using the

procedure which is discussed in starting of the continued fraction, we obtain :

√
3 = 1 +

1

1+

1

2+

1

1+

1

2+

1

1+

1

2+
· · · .

At this point we might conjecture that ai’s alternate between 1 and 2. To prove this,

let x equal to the infinite continued fraction on the right with alternating 1’s and 2’s.

Then clearly, x = 1+ 1
1+(1/(1+x))

, as we see by replacing x on the right by its definition as

a continued fraction. Simplifying the rational expression on the right and multiplying

both sides of the equation by (2+x) gives : 2x+x2 = 3+2x, i.e., x =
√

3.

Proposition 3.4.3. Let x > 1 be a real number whose continued fraction expansion

has convergents bi/ci. Then for all i : |b2
i - x2c2

i | < 2x.

Proof : Since x is between bi/ci and bi+1/ci+1, and since the absolute value of

the difference between these succesive convergents is 1
cici+1

(by Note (1)), so |x− bi
ci
| <

57

1
cici+1

, we have

|b2
i − x2c2

i | = c2
i |x−

bi
ci
||x +

bi
ci
| < c2

i

1

cici+1

(x + (x +
1

cici+1

))

Hence,

|b2
i − x2c2

i | − 2x < 2x(−1 +
ci
ci+1

+
1

2xc2
i+1

) < 2x(−1 +
ci
ci+1

+
1

ci+1

< 2x(−1 +
ci+1

ci+1

) = 0

This proves the proposition. �

Proposition 3.4.4. Let n be a positive integer which is not a perfect square. Let bi/ci

be the convergents in the continued fraction expansion of
√
n. Then the residue of b2

i

modulo n which is smallest in absolute value (i.e., between -n/2 and n/2) is less than

2
√
n.

Proof : Write b2
i ≡ b2

i - nc2
i mod n. Now taking x =

√
n in the proposition 3.4.3,

we get the result. �

3.4.2 Idea of the continued fraction factoring method

Proposition 3.4.4 is the key to the continued fraction algorithm. It says that we can

find a sequence of bi’s whose squares have small residues by taking the numerators of

the convergents in the continued fraction expansion of
√
n. We can observe here that

we do not have to find the actual convergent, only numerator bi is needed, and that

is needed only modulo n. Thus the fact that the numerator and denominator of the

convergents soon become very large does not worry us. We never need to work with

integers larger than n2 (when we multiply integers modulo n).

3.4.3 Continued fraction factoring algorithm

Let n be the integer to be factored. All computations below in the algorithm will be

done modulo n, i.e., products and sums of integers will be reduced modulo n to their

least nonnegative residue (or least absolute residue). The algorithm :

(1) Set b−1 = 1, b0 = a0 = [
√
n], and x0 =

√
n - a0.

(2) Compute b2
0 mod n.

(3) Set ai = [1/xi−1] and then xi = 1/xi−1 - ai for i = 1,2,· · · succesively.

(4) Set bi = aibi−1+bi−2 (reduced modulo n).

(5) Compute b2
i mod n.

58

(6) In step (5), after doing for several i, look at the numbers which factor in to ±a

product of small primes.

(7) Take factor base B which consists -1 and the primes which occur in more than one

of the b2
i mod n (or which occur to an even power in just one b2

i mod n).

(8) List all of the numbers b2
i mod n which are B-numbers, along with the corresponding

vectors −→εi of zeroes and ones.

(9) If possible, find a subset whose vectors sum to zero.

(10) Set b =
∏

ibi mod n (working modulo n and taking the product over the subset

for which
∑

i
−→εi = 0) and c =

∏
j p

γj
j mod n (where pj are the elements of B (except

for -1) and γj = 1
2

∑
i αij)

(11) If b 6= ±c mod n, then gcd(b+c, n) is a nontrivial factor of n.

(12) If b ≡ ±c mod n, then look for another subset of i such that
∑

i
−→εi = 0. If it is

not possible to find another subset of i such that
∑

i
−→εi = 0, then continue computing

more ai, bi, and b2
i mod n, enlarging factor base B if necessary.

Remark 3.4.5. For computing c =
∏

j p
γj
j , it is efficient if for each B-number b2

i

mod n, we record the vector −→αi = {· · · , αij, · · · }j rather than −→εi , which is simply −→αi
reduced modulo 2.

Example 3.4.6. Suppose we have to factor 17873. We start with the following table

:

i 0 1 2 3 4 5

ai 133 1 2 4 2 3

bi 133 134 401 1738 3877 13369

b2
i mod n -184 83 -56 107 -64 161

If we set B = {-1,2,7,23}, we have B-numbers when i = 0,2,4,5; the corresponding

vectors −→αi are respectively {1,3,0,1}, {1,3,1,0}, {1,6,0,0} and {0,0,1,1}. The sum

of the first, second and forth of these four vectors is zero modulo 2. However, if we

compute b = 133·401·13369 ≡ 1288 mod 17873 and c = 23·7·23 = 1288, we find that

b ≡ c mod 17873. Thus, we must continue to look for more B-numbers with vectors

that sum to zero modulo 2. Continuing the table, we have :

i 6 7 8

ai 1 2 1

bi 17246 12115 11488

b2
i mod n -77 149 -88

59

If we enlarge B to include the prime 11, i.e., B = {-1,2,7,11,23}, then for i =

0,2,4,5,6,8 we obtain B-numbers with vectors −→αi as follows : {1,3,0,0,1}, {1,3,1,0,0},
{1,6,0,0,0}, {0,0,1,0,1}, {1,0,1,1,0}, {1,3,0,1,0}. We now note that the sum of the

second, third, fifth and sixth of these six vectors is zero modulo 2. This leads to b =

7272, c = 4928, and we finally find a nontrivial factor gcd(7272+4928, 17873) = 61.

Thus we obtain : 17873 = 61·293.

3.4.4 Running time of the algorithm

In this algorithm, we are doing all the steps similar to Fermat factor base method

except the way of choosing random number bi. Therefore similar to Fermat factor

base, we can see that the overall complexity of this algorithm is O(ec
√
rlogr) for some

constant c, where n is an r-bit integer.

3.5 The Quadratic Sieve Method

The quadratic Sieve method for factoring large integers, developed by Pomerance in

the early 1980’s, for a long time was more successful than any other method of fac-

toring integers n of general type which have no prime factor of order of magnitude

significantly less than
√
n.

3.5.1 Idea of the algorithm

This algorithm is a variant of the factor base approach which is discussed in section

3.3. In this method, we choose our factor base B, the set of all primes p ≤ P (where

P is some bound to be chosen in some optimal way) such that n is a quadratic residue

mod p, i.e., (n
p
) = 1 for p odd, and p = 2 is always included in B. The set of integers

S in which we look for B-numbers (Recall : a B-number is an integer divisible only

by primes in B) will be the same set that we used in Fermat factorization (see section

3.3), namely :

S = {t2 − n|[
√
n] + 1 ≤ t ≤ [

√
n] + A}

for some suitably chosen bound A.

The main idea of the method is that, instead of taking each s ∈ S one by one

and dividing it by the primes p ∈ B to see if it is a B-number, we take each p ∈
B one by one and examine divisibility by p (and powers of p) simultaneously for all

60

of the s ∈ S. The word “Sieve” refers to this idea. Here we can recall the “Sieve of

Eratosthenes”, which one can use to make a list of all primes p ≤ A. For example, to

list the primes ≤ 1000 one takes the list of all integers ≤ 1000 and then for each p =

2,3,5,7,11,13,17,19,23,29,31 = [
√

1000], one discards all multiples of p greater than

p, one “lets them fall through a Sieve which has holes spaced a distance p apart”, after

which the numbers that remain are the primes.

3.5.2 Algorithm

Suppose we have an odd composite integer n. Then this method for factoring n follows

:

(1) Choose bounds P and A, both of order of magnitude roughly e
√
lognloglogn. Generally,

A should be larger than P, but not larger than a fairly small power of P, e.g., P <

A < P2. (The function exp(
√
lognloglogn), which is denoted by L(n), has order of

magnitude intermediate between polynomial in logn and polynomial in n. If n ≈ 106,

then L(n) ≈ 400.)

(2) For t = [
√
n]+1, [

√
n]+2, · · · , [

√
n]+A, make a column listing the integers t2-n.

(3) For each odd prime p ≤ P, first check that (n
p
) = 1; if not, then throw that p out

of the factor base.

(4) Assuing that p is an odd prime such that n is a quadratic residue mod p (we will

take the case p = 2 separately), solve the equation t2 ≡ n (mod pβ) for β = 1,2,· · · .
Take increasing values of β until find that there is no solution t which is congruent

modulo pβ to any integer in the range [
√
n]+1 ≤ t ≤ [

√
n]+A. Let β be the largest

integer such that there is some t in the range for which t2 ≡ n (mod pβ). Let t1 and

t2 be two solutions of t2 ≡ n (mod pβ) with t2 ≡ - t1 (mod pβ) (t1 and t2 are not

necessarily in the range from [
√
n]+1 to [

√
n]+A).

(5) Still with the same value of p, run down the list of t2 - n from step 2. In a column

under p put a 1 next to all values of t2-n for which t differs from t1 by a multiple of p,

change the 1 to 2 next to all values of t2-n for which t differs from t1 by a multiple of

p3, and so on until pβ. Then do the same with t1 replaced by t2. The largest integer

that appears in this column will be β.

(6) In step (5), as we go through the procedure, each time we put down 1 or change 1

to 2, 2 to 3, etc., divide the corresponding t2 - n by p and keep a record of what’s left.

(7) In the column p = 2, if n 6= 1 mod 8, then simply put a 1 next to the t2 - n fot t

odd and divide the corresponding t2-n by 2. If n ≡ 1 mod 8, then solve the equation

t2 ≡ n (mod 2β) and proceed exactly as in the case of odd p (except that there will be

61

4 different solutions, t1, t2, t3, t4 modulo 2β if β ≥ 3).

(8) When we finish with all primes ≤ P, throw out all of the t2-n except for those

which have become 1 after division by all the powers of p ≤ P.

(9) Now we have a table in which the column labeled bi will have the values of t, [
√
n]+1

≤ t ≤ [
√
n]+A, for which t2-n is a B-number, and the other columns correspond to

all values of p ≤ P for which n is a quadratic residue.

(10) The rest of the procedure is the same as in the Fermat factor base algorithm from

step (5).

Example 3.5.1. Suppose we have to factor n = 1042387. Take the bounds P =

50 and A = 500. Here [
√
n] = 1020. Our factor base consists of the 8 primes

{2,3,11,17,19,23,43,47} for which 1042387 is a quadratic residue. Since n 6= 1 (mod

8), the column corresponding to p = 2 alternates between 1 and 0, with a 1 beside all

odd t, 1021 ≤ t ≤ 1520.

We now describe in detail how to form the column under p = 3. We want a solution

t1 = t1,0 + t1,1·3 + t1,2·32 + t1,3·33 +· · · + t1,β−1·3β−1 to t2
1 ≡ 1042387 (mod 3β), where

t1,j ∈ {0,1,2} (for the other solution we can take 3β - t1). We can obviously take t1,0

= 1 (since solution of t2
1,0 ≡ 1042387 (mod 3) is t1,0 = 1 (or for all the numbers

1042387 is a quadratic residue) and for each of our 8 primes the first step - solving t2
1

≡ 1042387(mod p) - can be done quickly by trial). Next, we work modulo 9 : (1+3t1,1)2

≡ 1042387 ≡ 7 (mod 9), i.e., 6t1,1 ≡ 6 (mod 9), i.e., 2t1,1 ≡ 2 (mod 3), so t1,1 = 1.

Next modulo 27 : (1+3+9t1,2)2 ≡ 1042387 ≡ 25 (mod 27), i.e., 16+18t1,2 ≡ 25 (mod

27), i.e., 2t1,2 ≡ 1(mod 3), t1,2 = 2. Then modulo 81 : (1+3+18+27t1,3)2 ≡ 1042387

≡ 79 (mod 81), which leads to t1,3 = 0. Continuing until 37, we find the solution :

(210211)3 (mod 37), and t2 ≡ (2012012)3 (mod 37). However there is no t between

1021 and 1520 which is ≡ t1 or t2 modulo 37. Thus, we have β = 6, and we can take

t1 = (210211)3 = 589 ≡ 1318 (mod 36) and t2 = 36 - t1 = 140 ≡ 1112 (mod 35) (note

that there is no number in the range from 1021 to 1520 which is ≡ t2 (mod 36)).

We now construct our “Sieve” for the prime 3 as follows. Starting from 1318, we

take jumps of 3 down until we reach 1021 and up until we reach 1519, each time

putting a 1 in the column, dividing the corresponding t2-n by 3, and recording the

result of the division. (Actually, for t odd, the number we divide by 3 is half of t2-n,

since we already divided t2-n by 2 when we formed the column of alternating 0’s and

1’s under 2.) Now, we do the same with jumps of 9, each time changing the 1 to 2

62

in the column under 3, dividing the quotient of t2-n by another 3, and recording the

result. We go through the analogous procedure with jumps of 27, 81, 243 and 729

(there is no jump possible for 729 - we merely change the 5 to 6 next to 1318 and

divide the quotient of 13182-1042387 by another 3). Finally, we go through the same

steps with t2 = 1112 instead of t1 = 1318, this time stopping with jumps of 243.

After going through this procedure for the remaining 6 primes in our factor base,

we have a 500×8 array of exponents, each row corresponding to a value of t between

1021 and 1520. Now we throw out all rows for which t2-n is a B-number. After throw

out, we are left with the following table (blank spaces denote zero exponents) :

t t2-n 2 3 11 17 19 23 43 47

1021 54 1 3 - - - - - -

1027 12342 1 1 2 1 - - - -

1030 18513 - 2 2 1 - - - -

1061 83334 1 1 - 1 1 - 1 -

1112 194157 - 5 - 1 - - - 1

1129 232254 1 3 1 1 - 1 - -

1148 275517 - 2 3 - - 1 - -

1175 338238 1 2 - - 1 1 1 -

1217 438702 1 1 1 2 - 1 - -

1390 889713 - 2 2 - 1 - 1 -

1520 1268013 - 1 - 1 - 2 - 1

Now we look for relations modulo 2 between the rows of the matrix. That is,

moving down from the first row, we look for a subset of the rows which sums to an

even number in each column. The first such subset we find here is the first three rows,

the sum of which is twice the row 1 3 2 1 - - - - . Thus, we obtain the congruence

(1021·1027·1030)2 ≡ (2·33·112·17)2 (mod 1042387). But in this case we get only trivial

factorization because the two numbers being squared in the above congruence are both

111078 (mod 1042387). So, finally, when we are about to give up - we start over again

with a larger A - we notice that the last row (corresponding to our last value of t) is

dependent on the earlier rows. More precisely, it is equal modulo 2 to the fifth row.

This gives us (1112·1520)2 · (33·17·23·47)2 (mod 1042387), i.e., 6478532 ≡ 4961792

(mod 1042387), and we obtain the nontrivial factor gcd(647853-496179, 1042387) =

1487.

63

3.5.3 Running time Analysis

There are two major steps that the running time is effected by :

(1) Searching for squares with residues that are B-smooth modulo n.

(2) Finding a linear dependent set.

Running time of both steps, we have discussed in Fermat factor base method, takes

approximately O(eC
√
rlogr), where n is an r-bit integer and C is constant.

3.6 The Number Field Sieve

There are two types of number field Sieve algorithm - special number field Sieve (SNFS)

and general number field Sieve (GNFS), which have the smallest time complexity com-

pared to all other factoring algorithms. The SNFS works on a special type of com-

posites, namely integers of the form : re-s, for small integers r,s and integer e and

the GNFS works on all types of composites. The difference between SNFS and GNFS

is in the polynomial selection part of the algorithm, where the special numbers which

SNFS can be applied to make a special class of polynomials especially attractive and

the work in the square root step is also more complex for the GNFS. We will describe

these algorithms briefly.

3.6.1 Special Number Field Sieve (SNFS)

Before we describe the special number field Sieve, we will go through some mathemat-

ical results that the special number field Sieve rely upon.

Let f(x) = xd-t be an irreducible polynomial over Q, t ∈ Z. Let α be such that f(α)

= 0. K = Q(α) is then an algebraic extension, a number field, and Z[α] is a subring

of K.

Note : (1) The norm of an ideal I ∈ Z[α], I 6= (0) is the positive integer #(Z[α]/I).

(2) From the above note, it follows that this is finite, and that the norm of an ideal is

equal to the norm of the element generating the ideal.

(3). An ideal I is prime ideal if for all xy ∈ I ⇔ x ∈ I ∪ y ∈ I.

Definition 3.6.1. A first degree prime ideal is a prime ideal I with norm p, where p

is prime.

64

Let I be a first degree prime ideal of norm p, then it is possible to construct a ring

homomorphism

θ : Z[α]/I −→ Z/pZ

α −→ c modp

where c is a root of f(x) in Z/pZ, equivalently f(c) ≡ 0 (mod p)

The pair (p, c mod p) corresponds to the first degree prime ideal I, in fact the first

degree prime ideals and the pairs (p, c mod p) are in bijective correspondence with

each other. This follows from the two lemmas.

Lemma 3.6.2. Let p be a prime integer. If f(c) ≡ 0 (mod p) =⇒ I = 〈p, c-α〉 is a

first degree prime ideal.

Proof : Let φ be a mapping defined as follows :

φ : Z[α]/I −→ Z/pZ

α −→ c

z −→ z (modp)

for α ∈ Z[α], z ∈ Z and c ∈ Z/pZ such that f(c) ≡ 0 (mod p).

For proving lemma, it is enough to prove that φ is an isomorphism.

Firstly for ring homomorphism, let x, y ∈ Z[α]/I. Then we see that φ(x + y) =

(x + y) + I = (x + I) + (y+I) = φ(x)+φ(y) and φ(xy) = xy+I = (x+I)(y+I) =

φ(x)φ(y). So, we have φ is a ring homomorphism.

Now let y ∈ Z/pZ, we want to find an x ∈ Z[α]/I such that φ(x) = y. We know that

1 ∈ Z[α]/I and since φ is an homomorphism φ(1) = 1. Then φ(y) = φ(1 · y) = yφ(1)

= y, so, x = y will do the job and hence, φ is on to.

Again let x ∈ Z[α]/I but assume φ(x)=0. Since x ∈ Z[α]/I, it is of the form a0 +

a1α + · · · + anα
n where ai ∈ Z. If we then take an element x’ = a0 + a1c + · · · +

ancn ∈ Z[α]/I, add and subtract it from x, we get x = x - x’ + x’ = k1p+k2(c-α) for

k1, k2 ∈ Z[α] is an element of I, and we can conclude that φ is one-one.

Lemma 3.6.3. Let p be a prime integer. If I = 〈p, c-α〉 and I’ = 〈p, c’-α〉 ⇒ either

I 6= I’ (and c 6= c’ (mod p)) or I ≡ I’ (and c ≡ c’ (mod p)).

Proof : Consider (c-α)-(c’-α) = c-c’ has two options, either c-c’=0 or c-c’ 6= 0.

First case c-c’ = 0 gives c = c’ and then of course I = I’ and c ≡ c’ (mod p).

65

Second case c-c’ 6= 0 gives c 6= c’. Then we can evaluate gcd(c-c’, p). Since p is prime

this has to be equal to 1 or p.

First let gcd(c-c’, p) = 1 and assume I = I’. Then p, c-α, c’-α are all in the same

ideal which also means 1 is in the ideal. This is a contradiction since I would then be

the whole ring. We can then conclude I 6= I’ and c 6= c’ (mod p) when c 6= c’ and

gcd(c-c’, p) = 1.

Now assume gcd(c-c’, p) = p, then c-c’ = (c-α)-(c’-α) = kp, k ∈ Z. This gives c-α

= c’-α+kp, and since c’-α+kp ∈ I’, so, c-α is also in I’ and I ⊆ I’. Equivalently c’-α

= c-α+kp, and since c-α+kp ∈ I, c’-α ∈ I and I’ ∈ I. We can then conclude that I =

I’ and c ≡ c’ (mod p) if c-c’ 6= 0 and gcd (c-c’, p) = p.

From the above two lemma’s, it is clear that the pairs (p, c mod p) are in bijective

correspondence with the first degree prime ideals I, and I is generated by the elements

(p, c-α).

We can also use the map φ to check whether a given element in Z[α] is contained

in a first degree prime ideal I = 〈p, c− α〉. This is because

d−1∑
i=0

aiα
i ∈ I ⇐⇒

d−1∑
i=0

aic
i ≡ 0(modp) (3.1)

It should now be clear that an element Πp =
∑d−1

i=0 aic
i, ai ∈ Z of Z[α] generates a

first degree prime ideal corresponding to a pair (p, c mod p) if and only if N(Πp) =

±p and
∑d−1

i=0 aic
i ≡ 0 mod p.

• For describing the factorization of a+bα in Z[α], we have the following lemma :

Lemma 3.6.4. Let a,b ∈ Z, gcd(a, b) = 1. Then all prime ideals P that occur in

a+bα are the first degree prime ideals.

Proof : Assume that P occurs in a+bα, and let P be the kernel of a ring homo-

morphism ψ : Z[α] −→ F, where F is a finite field and suppose that the characteristic

of F is p, such that the field FP is a subfield of F.

Since (a+bα) ∈ P ⇒ ψ(a+bα) = 0 which again gives ψ(a) = -ψ(b)ψ(α).

Now it is easy to see that since both a, b ∈ Z ⇒ ψ(a) ∈ Fp and ψ(b) ∈ Fp.
Suppose that ψ(b) = 0, that means ψ(a) = 0 also, which means p|a and p|b, this

implies that p|gcd(a, b), which is a contradiction since gcd(a, b) = 1. So, ψ(b) 6= 0.

66

We can conclude that the element ψ(α) = −ψ(a)
ψ(b)

∈ Fp.
This shows that the ring homomorphism ψ maps all elements from Z[α] to Fp, and p

is the kernel of ψ which is by definition means it is a first degree prime ideal.

3.6.2 SNFS Algorithm :

Input : Composite number n = re - s, which is not a power of a prime.

Output : a nontrivial factor p of n.

Step (1) : (Polynomial Selection) : Find an irreducible polynomial f(x) over Q with

root m, i.e. f(m) ≡ 0 (mod n), where f(x) ∈ Z[x].

Method : Decide the degree d of the polynomial, let k be the least positive integer such

that kd ≥ e. Then let t = s·rk·d−e. Now f(x) = xd - t, and m = rk satisfies f(m) ≡ 0

(mod n).

Step (2) : Find an element α such that f(α) = 0 and set up an homomorphism φ :

φ : Z[α] −→ Z/nZ

α −→ m (modn)

Step (3) : (Factor base) Choose the factor bound B1 such that the factor base B
′

consists of primes less than B1. Now, decide a second bound B2 such that the factor

base B” consists of the primes less than B2 that together with an integer c correspond

to a first degree ideal in Z[α] as proved by lemma 3.6.2 and lemma 3.6.3.

{ Explanation : The factor base consists of three parts, the first part is all the prime

numbers up to some limit. The second and third part of the factor base is to consist of

generators for all the first degree prime ideals that have norm less than some chosen

bound, and a set of generators for the group of units of Z[α]. Since the subring Z[α] is

assumed to be a principal ideal domain we know there exists a generator for all ideals

in Z[α].

The first part of the factor base is practically the same as the factor base quadratic

Sieve uses, set a bound B1 and we want to find B1 - smooth integers (a+bm).

(a+ bm) =
∏
pj≤B1

p
ε(pj)
j

where ε(pj) ∈ Z≥0 is the corresponding exponent of each pj ≤ B1.

The second and third part works just as the first part in Z[α], it factorizes in the

67

extension. It does this by means of the first degree prime ideals that occur in the ideal

generated by the element. Call the set of the generators for the first degree prime

ideals of norm ≤ B2, G, and the set of generators for the units U. Then we will look

for elements that factors by G and U, that is elements of the form :

a+ bα =
∏
ui∈U

u
ε(ui)
i

∏
gi∈G

g
ε(gi)
i

For generators of the first degree ideal, firstly choose some bound B2 and then the

generators will be presented with the corresponding pairs (p, c mod p), where f(c) ≡ 0

(mod p). And as we have already shown after the lemma 3.6.3 that an element Πp =∑d−1
i=0 aiα

i, ai ∈ Z of Z[α] generates a first degree prime ideal corresponding to a pair

(p, c mod p) if and only if N(Πp) = ±p and
∑d−1

i=0 aic
i ≡ 0 mod p. Thus we find pair

(p, c mod p) and corresponding generator of the first degree prime ideal. }
Step (4) : (Sieving) In the sieving step, we want to find integers of the form a+bm

and a+bα, a,b ∈ Z, α and m roots of f in Z[α] and Z/nZ. The pairs (a, b) which we

want in this step, need to satisfy three conditions to be smooth.

(I) gcd(a, b) = 1

(II) |a+bm| is B1-smooth.

(III) a+bα is B2-smooth.

The second condition ensures that (a+bm) is B1-smooth in the same way as the factor

base in quadratic Sieve does.

The first and third condition will give us elements that has only generators of first

degree prime ideals with norm less than B2 as factors (and perhaps a unit). In the

same way as we search for smooth integers, we search for smooth elements, that is

completely factored by U and G.

Condition one ensures that all ideals containing a+bα are first degree prime ideals, as

proved by lemma 3.6.4.

We do not have to use the generators of each first degree prime ideal to check if the

elements is B2-smooth. The idea is as follows, due to equation (3.1) we know exactly

when a+bα is contained in the first degree prime ideal corresponding to (p, c (mod

p)). Since the extension is assumed to be a principal ideal domain and since the norm

is multiplicative this implies that the prime ideal factorization of 〈a+bα〉 corresponds

to the factorization of the norm of 〈a+bα〉. That is each first degree prime ideal that

is a factor of 〈a+bα〉 corresponds to a factor of the norm. So, one can simply check

68

the factorization of the norm N(a+bα) = ad-t(-b)d to see if the element a+bα factors

in the factor base. This means that second and third part of our factor base (U and G)

will during the sieving be replaced by all primes less than a limit B2 that together with

an integer c have a corresponding first degree prime ideal in Z. This means in the

context of condition 3 that an element a+bα is B2-smooth if the norm N(a+bα) only

has prime factors (norm of generators or p corresponding to (p, c mod p)) less than B2.

The purpose of the sieving step is to collect as many relations or pairs (a,b) as possible

(at least one larger than the elements in all the bases combined).

Step (5) (Linear Algebra) Once enough relations have been found it is straight for-

ward to put the exponent vectors in to a matrix (modulo 2) and start row reducing to

find a zero row, that is a linear dependent set of vectors.

Step (6) (Square roots) When all the problems with finding the factor base and, the

right combination of relations during the sieving and linear algebra step has been over-

come one is left with a set S with the relations that combined are squares both in Z
and Z[α].

x2 =
∏

(a,b)∈S

(ai + bim) ∈ Z

y2 =
∏

(a,b)∈S

(ai + biα) ∈ Z[α]

The square root of x is straight forward to compute. We know all exponents of each

relation in the product and it is therefore not even necessary to compute x2. We just

use the prime factorization and compute x straight away.

As for the product of the elements in the number field it is much the same thing.

We represent each relation a+bα ∈ S by it factors in G and U. This leaves us with

a factorization where each first degree prime ideal is represented an even number of

times. The square root can be represented as

y =
∏
ui∈U

u
1
2
e(ui)

i

∏
Πp∈G

Π
1
2
e(Πp)

Since a+bm and a+bα have the same image under φ in Z/nZ, so, applying φ gives

two integers, that squared are congruent modulo n.

x2 ≡ φ(x2) ≡ φ(x)2 ≡
∏

(a,b)∈S

φ(ai + bim) ≡
∏

(a,b)∈S

φ(ai + biα) ≡ φ(y)2 (mod n)

69

Then find gcd(φ(x) ± φ(y), n), hopefully gives a nontrivial factor of n. Otherwise

choose a different set of linear dependent vectors or increase bound B1, B2 for find

out more smooth pairs (a, b).

Note : (1) In choosing factor base, instead of two factor bases, there is a prac-

tical way to let B
′

and B” be equal (remember to check that the p’s have corresponding

first degree prime ideals). In this way it is enough to check if |(a+bm)N(a+bα)| is

factored by the factor base. This does not change the algorithm, as one can freely

choose the primes to put in the factor base.

(2) The technique described in the Step (4) using the norm a+bα to check for smooth-

ness is not bulletproof. The problem is that for each p there can be several correspond-

ing c’s. Still there is one first degree prime ideal for each pair (p, c (mod p)) but the

norm does not distinguish between the different ideals as they have the same norm p.

As an example of this consider the polynomial f = x2+1 (α = i), now the prime p =

13 has two corresponding c’s, that is the pairs (13, 5 (mod 13)), (13, 8 (mod 13)).

Consider the relations (a, b) : (2, 3), (3, 2)

N(2 + 3i) = 13

N(3 + 2i) = 13

Multiplying the norm of these together gives a square 13·13 = 169 but the element

(2+3i)(3+2i) we get by multiplying the generators for the first degree prime ideals is

not a square in Z[α].

The reason for this is of course that the relation (2, 3) with the factor 13 correspond

to the pair (13, 8 (mod 13)), but the relation (3, 2) with the factor 13 correspond to

the pair (13, 5 (mod 13)) (Here both elements are generators for two different first

degree prime ideals of norm 13). This means no square of an element when they are

multiplied together, and we can’t use these relations alone together.

The easiest way to get around this is of course to not use the primes that have several

corresponding c’s in the factor base.

(3) Here we will describe a sieving technique to perform the sieving in practice. This

technique uses two separate sieves, and combines their results to use the relations

which both sieves find it likely to be smooth.

First decide what range of a’s to search from, [amin, amax] and a start value for b, in

practice there is no real need for a maximum b value as one can just continue until

70

the desired number of relations is achieved.

Start the first Sieve by fixing the value of b, and search for a values that are -bm (mod

p), for all p’s in factor base B’. This gives us a’s that have a reasonable chance of

being B1-smooth.

In practice one will have an array with amax-amin+1 columns for each b, and every

time a number a is -bm (mod p) one adds log(p) to the a’s place in the array. Then

after sieving through all p’s, the a’s that have a value on its place in the array that

are close to log(a+bm) will be the most likely candidate to be B1-smooth.

In the second Sieve, fix the value for b again and start looking for a values that are

-bc (mod p), this is to find the pairs (a, b) in which first degree prime ideals occur

in the ideal generated by a+bα. And a+bα is contained in an ideal if and only if a

≡ -bc (mod p). In the same way as the first Sieve one would arrange an array and

add log(p) to a’s location every time it is -bc (mod p), and when we are finished the

locations that have a value close to logN(a+bα) are the most likely candidates to be

B2-smooth.

After the two sieving parts are done combine the candidates that both Sieves find it

likely to be smooth, check them for gcd and do trial division to find the integers that

are completely factored by the factor bases. If after the first Sieve, the number of

relations that most likely are B1-smooth aren’t that high it can be preferable to just

use trial division to check if they also are B2-smooth, but in a realistic scenario that

number will be considerable so it will be more efficient to apply the second Sieve right

away. The two Sieves can then be executed simultaneously.

Example 3.6.5. Suppose we have to factor n = 260101 = 5102+1. We will factor

this n stepwise :

Step (1) and (2) : we chose the polynomial to have degree 2, that is d = 2. n has r =

510, e = 2, s = -1 which gives the values k = 1, t = -1, f(x) = x2 + 1, and m = 510.

A root α of f(x) is then the complex number
√
−1 = i, the number field K is Q[i],

where the subring Z[i] is the ring of integers of Q[i]. Notice Z[i] is in fact a principal

ideal domain. The norm of an element a+bi ∈ Z[i] is the positive integer a2 + b2.

We set up the homomorphism φ

φ : Z[i] −→ Z/260101Z

i −→ 510

Step (3) : Now chose the limit B1 = 40, so the rational factor base B
′

= { 2, 3, 5, 7,

71

11, 13, 17, 19, 23, 29, 31, 37}
For the ideals we chose the first degree prime ideals with norm less than B2 = 55, so

the algebraic factor base :

(p, c mod p) Generator (p, c mod p) Generator

(2, 1 mod 2) (1+i) (29, 12 mod 29) (5+2i)

(5, 2 mod 5) (1+2i) (37, 6 mod 37) (1+6i)

(13, 5 mod 13) (3+2i) (41, 9 mod 41) (5+4i)

(17, 4 mod 17) (1+4i) (53, 23 mod 53) (7+2i)

The units of Z[i] are the set {i, -i, 1, -1}, a generator for this set is i.

Step (4) : Now, we Sieved with the values as follows, -amin = amax = 200, and b = 1

up to b = 54, when we had a total of 23 smooth pairs (a, b), which is just enough to

be sure a square as the number of primes in the factor base B′ is 12, G has 8 elements

and U has 2.

Step (5) : After doing linear algebra step, the smooth pairs of (a, b) we ended up with

are : S = {(34, 19), (-70, 1), (-4, 1), (-2, 5), (3, 1), (-5, 7), (3, 2), (-59, 2), (-102,

23)}.
or

After doing Gaussian elimination on the exponent vectors, the following set S of pairs

where found to be square when multiplied together :

(a, b) a+bm factors N(a+bi) factors ideal factorization

(34, 19) 9724 22·11·13·17 1517 37·41 (-1)(i)(1+6i)(5+4i)

(-70, 1) 440 23·5·11 4901 132·29 (i)(3+2i)2(5+2i)

(-4, 1) 506 2·11·23 17 17 (i)(1+4i)

(-2, 5) 2548 22·72·13 29 29 (i)(5+2i)

(3, 1) 513 33·19 10 2·5 (-1)(i)(1+i)(1+2i)

(-5, 7) 3565 5·23·31 74 2· 37 (1+i)(1+6i)

(3, 2) 1023 3·11·31 13 13 (3+2i)

(-59, 2) 961 312 3485 5·17·41 (1+2i)(1+4i)(5+4i)

(-102, 23) 11628 22·32·17·19 10933 13·292 (i)(3+2i)(5+2i)2

Step(6) : This set S gives the two products in Z and Z[α] for (ai, bi) ∈ S :

9∏
i=1

(ai+bim) = (25·33·5·7·112·13·17·19·23·312)2 = 115326340391581443052222694400

72

9∏
i=1

(ai + biα) = (−i3(1 + i)(1 + 2i)(3 + 2i)2(1 + 4i)(5 + 2i)2(1 + 6i)(5 + 4i)2)2

= (12028960768− 34623604674i)

Or

9∏
i=1

(ai + bim) = 115326340391581443052222694400 = (339597320942880)2

9∏
i=1

(ai + biα) = (12028960768− 34623604674i) = (−156017 + 110961i)2

Applying φ upon both squares will give us a square relation in Z/nZ :

φ(339597320942880)2 = (339597320942880)(mod 260101))2 = 1513282

φ(156017− 110961i)2 = ((−156017 + 110961 · 510)(mod 260101))2 = (−7824)2

Thus we can see :

(151328)2 ≡ (−7824)2(mod 260101)

This gives us the results as we wanted and by using the Euclidean algorithm to find

the greatest common divisor, we achieve two factors of 260101 :

gcd(260101, 151328− 7824) = 8924

gcd(260101, 151328 + 7824) = 29

and we see : 8969·29 = 260101.

Remark 3.6.6. The special number field Sieve is faster than quadratic Sieve method

and is the asymptotically fastest algorithm for integer factorization known today. But

the special number field Sieve works only for integers of the special form n = re - s.

The quadratic Sieve works for all integers. The running time estimates however are

not deterministic for neither of the algorithms. This is mostly due to the difficulty

of computing the probability of finding smooth integers in a given interval accurately.

Currently, the largest integer factored by the special number field Sieve is 21039-1, a

1039 bit composite integer, that is 313 digits.

Remark 3.6.7. The interesting thing is that each algorithm has its own intervals

where it is fastest, but since the ’fastest/best’ algorithm most often refers to which can

73

factor the largest integers in a reasonable amount of time. The special number field

Sieve is considered the best at the current moment.

The special number field Sieve is the asymptotically fastest algorithm when the number

n to factor is assumed as n −→ ∞. But there are many technicalities and aspects of

the algorithm that do not make it practical for the factoring of a random integer. The

most obvious is of course that the special number field Sieve only applies to integers

of the form n = re - s. There has been generalization, the general number field Sieve

and it is described in the next subsection.

3.6.3 General number field Sieve (GNFS)

This is the generalization of the SNFS. Before describing the algorithm, we will discuss

some mathematical background.

Mathematical Background :

Fields and Roots of Irreducible Polynomials Suppose a monic, irreducible

polynomial f(x) of degree d with rational coeffiecients is known. Then f(x) splits in to

distinct linear factors over the complex numbers as

f(x) = (x− θ1)(x− θ2) · · · (x− θd)

with θ ∈ C. One can choose any root θ = θi and form a ring.

Proposition 3.6.8. If θ denotes a complex root of a monic, irreducible polynomial f(x)

with rational coefficients, then the set of all polynomials in θ with rational coefficients,

denoted Q(θ), forms a ring.

Theorem 3.6.9. Given a monic, irreducible polynomial f(x) with rational coefficients,

a root θ ∈ C of f(x), and the associated ring Q(θ), the following hold :

(1). Q(θ) ∼= Q[x]/(f(x)).

(2). Q(θ) is a field.

(3). f(x) divides any polynomial g(x) for which g(θ) = 0.

(4). The set {1, θ, θ2, · · · , θd−1} forms a basis for Q(θ) as a vector space over Q.

Rings of Algebraic Integers

74

Definition 3.6.10. A complex number α is called an algebraic integer if it is the root

of a monic polynomial with integer coefficients.

Thus, if f(x) is an irreducible, monic polynomial of degree d with integer coefficients

and θ ∈ C is a root of f(x), it follows that θ is an algebraic integer according to this

definition.

Proposition 3.6.11. Given a monic, irreducible polynomial f(x) of degree d with

rational coefficients and a root θ ∈ C of f(x), the set of all algebraic integers in Q(θ),

denoted ð, forms a subring of the field Q(θ).

The actual ring that will be used in the GNFS is subring of the ring of algebraic

integers ð of Q(θ).

Proposition 3.6.12. Given a monic, irreducible polynomial f(x) of degree d with

integer coefficients and a root θ ∈ C of f(x), the set of all Z-linear combinations of the

elements {1, θ, θ2, · · · , θd−1}, denoted Z[θ], forms a subring of the ring of algebraic

integers ð of Q(θ).

Before going further, it should be pointed out that the subring Z[θ] can be indeed be

a proper subring of ð . For instance, the polynomial x2-5 is easily seen to be irreducible

and monic so that Q(
√

5) forms a field, which is a vector space over Q with basis S

= 1,
√

5. If α = (1+
√

5)/2 then α ∈ Q(
√

5), since α is a Q linear combination of

the elements of S. Furthermore α satisfies the polynomial g(x) = x2-x-1 and hence it

is an algebraic integer, but clearly α does not belong to Z[θ]. Hence, Q(
√

5) possesses

an algebraic integer which is not contained in Z[
√

5] and so Z[
√

5] $ ð $ Q(
√

5).

Producing a difference of Squares Having demonstrated that for any monic,

irreducible polynomial an associated ring can be constructed that has a natural repre-

sentation as Z-linear combinations of elements from a finite set. Now we will describe

a map that ring onto Z/nZ which produce a difference of squares.

Proposition 3.6.13. Given a monic, irreducible polynomial f(x) with integer coeffi-

cients, a root θ ∈ C of f(x), and an integer m ∈ Z/nZ with φ(1) = 1 (mod n) and

which sends θ to m, is a surjective ring homomorphism.

Now, to see how this can result in a difference of squares, suppose a set U of pairs

of integers (a, b) can be found such that∏
(a,b)∈U

(a+ bθ) = β2 and
∏

(a,b)∈U

(a+ bm) = y2

75

with β ∈ Z[θ] and y ∈ Z. Then applying the natural homomorphism φ from proposition

3.6.13 and letting φ(β) = x ∈ Z/nZ, it follows that

x2 ≡ φ(β)2 ≡ φ(β2) ≡ φ(
∏

(a,b)∈U

(a+bθ)) ≡
∏

(a,b)∈U

φ(a+bθ) ≡
∏

(a,b)∈U

(a+bm) ≡ y2(mod n)

and a difference of square results.

Note : The condition that the product of the elements a+bθ corresponding to pairs

in U be a perfect square in Z[θ] is imposed because the ring homomorphism φ is only

defined on elements of Z[θ]. In practice, the condition is relaxed to allow for the

product being a perfect square in Q(θ), which is less restrictive and hence more likely

to be satisfied. Now if ∏
(a,b)∈U

(a+ bθ) = α2

for some α ∈ Q(θ), it follows that α ∈ ð and in fact f ’(θ)·α ∈ Z[θ]. A difference of

squares can still be produced, for if∏
(a,b)∈U

(a+ bθ) = α2 and
∏

(a,b)∈U

(a+ bm) = z2

with α ∈ ð and z ∈ Z, then letting β = f’(θ)·α ∈ Z[θ], y = f’(m)·z, and x = φ(β) ∈
Z/nZ, it follows that

x2 ≡ φ(β2) ≡ φ(f
′
(θ)2

∏
(a,b)∈U

(a+ bθ)) ≡ φ(f
′
(θ))2

∏
(a,b)∈U

φ(a+ bθ)

≡ f
′
(m)2

∏
(a,b)∈U

(a+ bm) ≡ y2(modn) (3.2)

and another difference of squares has been produced.

Now we will describe some definition like norm, first degree prime ideal and their some

properties.

Proposition 3.6.14. Given a monic, irreducible polynomial f(x) of degree d with

integers coefficients and a root θ ∈ C of f(x), then the ring of algebraic integers ð
forms a Dedekind domain. In particular, this implies :

76

(1) The ring ð is noetherian.

(2) Prime ideals of ð are maximal ideals of ð, and vice versa.

(3) Using the canonical notation of ideal multiplication, non-zero ideals of ð can be

uniquely factored, up to order, into prime ideals of ð.

The idea then is to choose a set I of prime ideals of ð, which will be called an

algebraic factor base, and to find (a, b) pairs for which the element a+bθ has a

principal ideal 〈a+bθ〉 that factors completely into prime ideals of I. Such an element

is said to be smooth over the algebraic factor base I. By collecting more (a, b) pairs

than ideals in I, hopefully some of the a+bθ values corresponding these pairs can be

multiplied together to produce a perfect square in Z[θ].

Concept of Norm :

Theorem 3.6.15. Given a monic, irreducible polynomial f(x) of degree d with rational

coefficients and a root θ ∈ C of f(x), there are exactly d ring monomorphisms (em-

beddings) from the field Q(θ) into the field C. These embeddings are given by σi(Q)

= Q and σi(θ) = θi for 1 ≤ i ≤ d, assuming f(x) splits over C as :

f(x) = (x− θ1)(x− θ2) · · · (x− θd).

The embeddings of theorem 3.6.15 allow for the definition of the norm function

which maps elements of Q(θ) to elements of C :

Definition 3.6.16. Given a monic, irreducible polynomial f(x) of degree d with ra-

tional coefficients, a root θ ∈ C of f(x) and an element α ∈ Q(θ), the norm of an

element α, denoted by N(α), is defined as

N(α) = σ1(α)σ2(α) · · ·σd(α)

where the σi are in the distinct embeddings of Q(θ) into C as detailed in the theorem

3.6.15.

Example 3.6.17. Let in the above definition α = (a+bθ).

Then N(a+bθ) = σ1(a+bθ)·σ2(a+bθ) · · · σd(a+bθ)

N(a+bθ) = (a+bθ1)·(a+bθ2) · · · (a+bθd)

N(a+bθ) = bd[(a
b
+θ1)·(a

b
+θ2)· · · (a

b
+θd)]

N(a+bθ) = (-b)d[(-a
b
-θ1)·(-a

b
-θ2)· · · (-a

b
-θd)]

N(a+bθ) = (-b)df(-a
b
)

77

The real power of the norm function, as it is used in the GNFS, stems from the

following standard result from algebraic number theory :

Proposition 3.6.18. Given a monic, irreducible polynomial f(x) of degree d with

rational coefficients and a root θ ∈ C of f(x), the norm map of definition 3.6.16 is a

multiplicative function that maps elements of Q(θ) to Q ∈ C. Furthermore, algebraic

integers in Q(θ) are mapped to elements of Z.

Corollary 3.6.19. Given a monic, irreducible polynomial f(x) of degree d with integer

coefficients and a root θ ∈ C of f(x), then the norm function of definition 3.6.16 is a

multiplicative function that sends elements of Z[θ] to elements of Z.

Though proposition 3.6.18 and its corollary are initially useful because they allow

for recasting of questions about factorizations of elements of Z[θ] to factorization in

Z, the full power of these results comes when the concept of the norm of an element

is tied in with the norm of an ideal. Begin with the definition of norm of an ideal :

Definition 3.6.20. Given a ring R and an ideal I of R, the norm of I is defined to

be [R : I], the number of cosets of I in R.

(Note : The above definition is similar to the definition, which is described in Note

(1) before definition 3.6.1 in the SNFS.)

The following results recall elementary properties of the norm function on ideals of

ð, and explicitly relates the norm of an element of ð to the norm of the principal ideal

generated by that element :

Proposition 3.6.21. Let f(x) be a monic, irreducible polynomial of degree d with

rational coefficients and θ ∈ C a root of f(x). Then the norm function of definition

3.6.20 is a multiplicative function that maps ideals of ð to positive integers. Moreover,

if α ∈ ð then N(〈α〉) = |N(α)|.

Now, we will describe a final result from algebraic number theory, which clarifies

that how prime ideals of ð and prime integers are related :

Proposition 3.6.22. Let D be a Dedekind domain. If P is an ideal of D with N(P) =

p for some prime integer p, then P is a prime ideal of D. Conversely, if P is a prime

ideal of D then N(P) = pe for some prime integer p and positive integer e.

78

Given any element β ∈ ð, it follows from proposition 3.6.14 that the principal ideal

〈β〉 of ð factors uniquely as

〈β〉 = P e1
1 P e2

2 · · ·P
ek
k

for distinct prime ideals Pi of ð and positive integers ei with 1 ≤ i ≤ k. Furthermore,

Proposition 3.6.22 indicate that

|N(β)| = N(〈β〉) = N(P e1
1 P e2

2 · · ·P
ek
k) = N(P1)e1N(P2)e2 · · · N(Pk)ek = (pf11)e1(pf22)e2

· · · (pfkk)ek = pe1+f1
1 pe2+f2

2 · · · pek+fk
k

for (not necessarily distinct) primes pi and positive integers ei and fi with 1 ≤ i ≤ k.

It becomes the key tool for determining when an ideal 〈a+bθ〉 factors completely over

an algebraic factor base of prime ideals.

One very practical problem that presents itself is coming up with a representation for

prime ideals that can be stored in a computer, and more importantly, that facilitates

a sieving procedure for finding smooth a+bθ values. This is accomplished in GNFS by

restricting the algebraic factor base to prime ideals of Z[θ] of a special form instead of

prime ideals of ð, and then generalizing the above equation to these ideals. With this

in mind, begin by defining the special prime ideals of Z[θ], which will be used in the

algebraic factor base :

Definition 3.6.23. A first degree prime ideal P of a Dedekind domain D is a prime

ideal of D such that N(P) = p for some prime integer p (similar to definition 3.6.1).

Note : It should be observed that any ideal P of a ring R with N(P) = p for some

prime integer p is necessarily a prime ideal of R. This follows, since [R : P] = p

implies that R/P ∼= Z/nZ is a field and hence P is a maximal ideal of R. But any

maximal ideal of R is also a prime ideal of R.

Before preceeding to determine a good representation for the first degree prime ideals

of Z[θ], we will describe a lemma :

Lemma 3.6.24. If R is a commutative ring with identity 1R, S is a commutative ring

with identity 1S, and φ : R −→ S is a ring epimorphism, then φ(1R) = 1S.

Proof : Let y ∈ S. Since φ is a ring epimorphism, so, there exists x ∈ R such

that φ(x) = y. Then y·φ(1R) = φ(1R)·y = φ(1R) · φ(x) = φ(1R·x) = φ(x) = y, hence

φ(1R) = 1S.

79

The following result gives the convenient representation for the first degree prime

ideals (This following theorem prove the same thing which we have proved in lemma

3.6.2 and lemma 3.6.3) :

Theorem 3.6.25. Let f(x) be a monic, irreducible polynomial with integer coefficients

and θ ∈ C a root of f(x). The set of pairs (r, p) where p is a prime integer and r

∈ Z/pZ with f(r) ≡ 0 (mod p) is in bijective correspondence with the set of all first

degree prime ideals of Z[θ].

Proof. Let P be a first degree prime ideal of Z[θ]. Then [Z[θ] : P] = p for some prime

integer p, so that Z[θ]/P ∼= Z/pZ (also proved in lemma 3.6.2). There is a canonical

epimorphism of rings φ : Z[θ] −→ Z[θ]/P such that kerφ = P. Since Z[θ]/P ∼= Z/pZ, it

follows that φ can also be thought of as an epimorphism of rings φ : Z[θ] −→ Z[θ]/pZ
with kerφ = P, that is the elements in P map to integers that are divisible by p, and

any such integer is the image of an element in P. Furthermore φ(1) = 1 by lemma

3.6.24 and hence φ(a) ≡ a (mod p) for any integer a.

Let r = φ(θ) ∈ Z/pZ. If f(x) = xd + ad−1xd−1 + · · · + a1x + a0 with ai ∈ Z for 0 ≤
i < d, then φ(f(θ)) ≡ 0 (mod p) since f(θ) = 0 and hence

0 ≡ φ(f(θ)) ≡ φ(θd+ad−1θ
d−1 + · · ·+aθ+a0) ≡ φ(θ)d+ad−1φ(θ)d−1 + · · ·+a1φ(θ)+a0

≡ rd + ad−1r
d−1 + · · ·+ a1r + a0 ≡ f(r) (mod p)

so that r is a root of f(x) (mod p) and the ideal P determines the unique pair (r, p).

Conversely, let p be a prime integer and r ∈ Z/pZ with f(r) ≡ 0 (mod p). Then

there is a natural ring epimorphism (analogous to the one discussed in theorem 3.6.9)

that maps polynomials in θ to polynomials in r. In particular, φ(a) ≡ a (mod p) for

all a ∈ Z and φ(θ) = r (mod p). Let P = kerφ so that P is an ideal of Z[θ]. Since φ

is onto and kerφ = P, it follows that Z[θ]/P ∼= Z/pZ and hence [Z[θ] : P] = p and P

is therfore first degree prime ideal of Z[θ]. Thus the pair (r, p) determines the unique

pair (r, p) consistent with the first part of the proof. This gives the result.

Lemma 3.6.4 “which says Let a, b ∈ Z, gcd(a, b) = 1. Then all prime ideals P that

occur in a+bθ are the first degree prime ideals” holds here.

80

3.6.4 GNFS Algorithm

Input : Composite integer n.

Output : a nontrivial factor p of n.

Step (1) : (Polynomial selection)

Find an irreducible polynomial f(x) with root m, i.e. f(m) ≡ 0 mod n, f(x) ∈ Z[x].

Method :

Decide the degree d of the polynomial (experimently, we see that, for factoring an

integer with more than 110 digits, the degree d be set to 5. For integers between

50 and 80 digits a value of 3 for d is used. Since every implementations of GNFS

restricted d to an odd integer, so for integers between 80 and 110 digits, d = 5 is

used).

Having selected a value for d, the choice of f(x) and m is usually made simultaneously.

First m is chosen with m ≈ n
1
d and such that the quotient of n divided by md is exactly

one.

A “base - m” expansion of n then gives

n = md + ad−1m
d−1 + · · ·+ a1m+ a0

with coefficients 0 ≤ ai <m for 0 ≤ i < d. These coefficients may then be used to

construct

f(x) = xd + ad−1x
d−1 + · · ·+ a1x+ a0

which is monic of degree d. By construction f(m) = n ≡ 0 (mod n) so that m is a

root modulo n of f(x). Furthermore if f(x) = g(x)·h(x) for non-constant polynomial

g(x) and h(x) and it follows that

n = f(m) = g(m)·h(m) is likely to yield a non-trivial factorization of n. Thus, if f(x)

is reducible then n is likely is to be factored and the whole procedure can terminate,

or f(x) is irreducible and we can go on further steps for finding out factors of n.

Step (2) : (Factor bases) Choose the size for the factor bases and set up the rational

factor base, algebraic factor base and the quadratic character base.

The rational factor base RFB consists of all primes pi up to some bound which is

usually determined by experimenting with the smoothness of a+bm for different (a, b)

pairs. The rational factor base is stored as pairs (m (mod p), p).

The algebraic factor base AFB consists of first degree prime ideals of Z[θ], which

are represented as pairs (r, p) where p is a prime integer and r is the root of f(x)

considered as a polynomial with coefficients in Z/pZ (as proved in theorem 3.6.25).

81

The size of the algebraic factor base should be 2-3 times the size of the rational factor

base.

The quadratic character base QCB contains pairs (r, p) with the same properties as

the elements of the algebraic factor base, but the p’s are larger than the largest in the

algebraic factor base. The number of elements in QCB are usually relatively small

compared to the number of elements in RFB and AFB.

Method of finding first degree prime ideals of Z[θ] or AFB : Finding first

degree prime ideals of Z[θ] for the AFB and the QCB amounts to finding integers pairs

(r, p) with p a prime and r satisfying f(r) ≡ 0 (mod p) according to theorem 3.6.25.

In other words, finding first degree prime ideals is equivalent to finding roots of f(x)

modulo p for various prime integers p. Fortunately, this happens to be well studied

problem in a natural and efficient way.

A naive approach to finding roots of the polynomial f(x) (mod p) is to simply plug-in

all the integers from 0 to p-1 and determine which values are mapped to 0 by f(x).

As with most brute-force approaches, this words well for a small number of cases,

specially when p is small, but becomes quite impractical for the larger values of p used

in GNFS.

A dramatic improvement over this brute-force method can be made using the following

result in a clever way :

Theorem 3.6.26. When considered as a polynomial in Z/pZ[x], the polynomial xp-x

factors as

xp − x =

p−1∏
i=0

(x− i)

Proof : It is an elementary result from abstract algebra that the non-zero elements

of a field form a group under multiplication. In this case, that means the p-1 non-zero

elements of Z/pZ form a finite group of order p-1 under multiplication. Then for any

0 < a < p it follows that ap−1 ≡ 1 (mod p) and therefore ap ≡ a (mod p) for all a with

0 ≤ a < p. Rearranging the last congruence yields ap - a = 0 (mod p) and therefore

a is seen to be a root of xp-x (mod p) for 0 ≤ a < p. This determines p roots for xp-x

(mod p). But xp-x determines a monic, linear factor of xp-x (mod p) and vice versa.

So, the result follows.

Since finding roots of f(x) (mod p) is equivalent to finding monic, linear factors of

f(x) (mod p), and xp - x (mod p) is the product of all the monic, linear polynomial

over Z/pZ by above theorem, a natural idea is to somehow use xp-x (mod p) in the

82

root finding procedure. With this in mind, the first realization is that finding roots of

f(x) (mod p) is equivalent to finding roots of g(x) = gcd(f(x), xp - x). The effect of

computing g(x) (mod p) is to isolate the portion of f(x) (mod p) which is the product

of monic, linear polynomials over Z/pZ, since this is the portion where the roots of

f(x) (mod p) are to be found. Another way of thinking of this computation is as a way

to “strip out” of f(x) (mod p) any quadratic or higher degree polynomials that occur

in its canonical factorization into irreducibles, since such polynomials have nothing to

do with roots of f(x) (mod p).

Now let b be any integer with 0 ≤ b < p. Since g(x) (mod p) divides xp-x (mod p).

It must be product of distinct, monic, linear polynomials, and therefore so is g(x-b)

(mod p). If x is a factor of g(x-b) (mod p) then g(-b) ≡ 0 (mod p) so a root -b of g(x)

(mod p) and hence of f(x) (mod p) has been found. On the other hand, if x is not a

factor of g(x-b) (mod p) then

g(x− b)|xp − x = x(xp−1 − 1) = x(x(p−1)/2 + 1)(x(p−1)/2 − 1)

and the factors of g(x-b) (mod p) fall between (x(p−1)/2 + 1) (mod p) and x(p−1)/2 − 1)

(mod p). If not all of the factors of g(x-b) (mod p) divide into either of these latter

polynomials, i.e. if x(p−1)/2 6= ±1 (mod g(x-b)), then g(x-b) (mod p) can be split non-

trivially into the polynomials g1(x) = gcd(g(x-b), x(p−1)/2+1) and g2(x) = gcd(g(x-b),

x(p−1)/2-1), with the degree of each polynomial strictly less than the degree of g(x) (mod

p).

If gi(x) (mod p) is a monic polynomial then a root of g(x) (mod p) has been found.

Otherwise, the same procedure outlined above is applied to each gi(x) (mod p) to split

them into lesser degree polynomials. The algorithm continues on in this manner until

it terminate since polynomials are produced at each stage with degrees strictly less than

the degrees of the polynomials of the previous stage.

Note : In the event that x(p−1)/2 ≡ ±1 (mod g(x-b)), other values for b are substituted

until this condition no longer holds. Also note that a root r of g(x-b) (mod p) gives

rise to the root r-b of g(x) (mod p), and that r itself is not a root of g(x) (mod p)

unless b = 0.

Step (3) : (Sieving)

Find pairs of integers (a, b) with the following properties :

(I) gcd(a, b) = 1

(II) |a+bm| is smooth over the rational factor base.

(III) N(a+bθ) is smooth over the algebraic factor base.

83

A pair (a, b) with these properties is called a relation. The purpose of the sieving

stage is to collect as many relations as possible (at least one larger than the elements

in all of the base combined). The sieving step results in a set S of relations.

Here condition one ensures that all ideals containing a+bθ are first degree prime ide-

als, as proved by lemma 3.6.4.

(Note : The technique, which is useful in th sieving, is the similar to the sieving

technique what we have used in SNFS. This is described in the Note (3) after the

SNFS Algorithm or before the example 3.6.5.)

Step (4) : (Linear Algebra)

Once enough relations have been found, it is straight forward to put the exponent vec-

tors (e(a,b)) in to a matrix (modulo 2) and start row reducing to find a zero row, that

is a linear dependent set of vectors.

Method for Matrices and Dependencies :
If there are k primes in the rational factor base, l first degree prime ideals of Z[θ] in

the algebraic factor base, and m first degree prime ideals in the quadratic character

base, then each e(a,b) will be comprised of 1+k+l+m binary bits, determined by the

sign of a+bm and the respective bases. When these binary vectors are grouped to-

gether as columns in a matrix B, the binary vector resulting from the addition of the

two columns for pairs (a, b) and (c, d) represents (a+bm)·(c+dm) and 〈a+bθ〉·〈c+dθ〉
factored over the rational and algebraic factor bases, respectively, and the quadratic

characters for (a+bθ)·(c+dθ). From these relations, we can select a set of those rela-

tions which gives a non-trivial dependency among the columns of the matrix B, which

yields a product of different a+bm and a+bθ values that gives a square in Z and Z[θ].

The first bit of e(a,b) is 0 if a+bm is positive and 1 if it is negative, in which case addi-

tion modulo 2 of binary vectors e(a,b) and e(c,d) correctly reflects the sign of (a+bm)· · · (c+dm).

The next k-bits of e(a,b) is determined by the exponents modulo 2 of every prime in

the rational factor base F, when a+bm is factored over F. Similarly, the next l-bits

of e(a,b) are determined by the exponents modulo 2 of the primes p in the first degree

prime ideal pairs (r, p) in the algebraic factor base when N(a+bθ) is factored over

these primes.

Note that if p divides N(a+bθ) then there is exactly one (r, p) pair in the algebraic

factor base for which a ≡ -br (mod p), and that is the (r, p) which is deemed “re-

sponsible” for the exponent of the prime p occuring in the factorization of N(a+bθ).

It’s clear that addition modulo 2 of binary vectors e(a,b) and e(c,d) corresponds to the

binary vector represented by (a+bm)·(c+dm) and 〈a+bθ〉 · 〈c+dθ〉 since the latter two

84

multiplication essentially involve addition of exponents.

The final l bits of the vector e(a,b) are determined by each (s, q) = (r, p) pair in the

quadratic character base. For a fixed (s, q) pair the corresponding bit in e(a,b) is set

to zero if the Legendre symbol (a+bs
q

) has value 1 and is set to 1 otherwise. This last

representation preserves the multiplicative nature of the Legendre symbol in the exact

same way the sign of a+bm is preserved during multiplication by the first bit of e(a,b).

A non-trivial dependence among the column vectors of B represents a set U of (a,b)

pairs for which the product of the corresponding a+bm values is a square in Z and a

square has also been produced in Z[θ].

Step (5) : When all the problems with finding the factor base and, the right combi-

nation of relations during the sieving and linear algebra step has been overcome, one

is left with a set U with the relations that combined are squares both in Z and Z[θ]. If

∏
(a,b)∈U

(a+ bθ) = α2 and
∏

(a,b)∈U

(a+ bm) = z2

with α ∈ ð and z ∈ Z, then letting β = f’(θ)·α ∈ Z[θ], y = f’(m)·z, and x = φ(β) ∈
Z/nZ
Now as, we have seen in equation 3.6.3 that from this, we get :

x2 ≡ φ(β2) ≡ φ(f
′
(θ)2

∏
(a,b)∈U

(a+ bθ)) ≡ φ(f
′
(θ))2

∏
(a,b)∈U

φ(a+ bθ)

≡ f
′
(m)2

∏
(a,b)∈U

(a+ bm) ≡ y2(modn)

Then gcd(x ± y, n), hopefully gives a nontrivial factor of n. Otherwise choose a

different set of linear dependent vectors or increase bound of AFB, RFB and QCB for

find out more smooth pairs (a, b).

Example 3.6.27. Suppose we have to factor n = 45,113 from GNFS. Then we will

follow the following steps :

Step (1) :

Choose degree d = 3. m ≈ n1/d = (45,113)1/3 ≈ 35. Although m = 35 would yield a

monic polynomial following the base-m method of step (1), the value m = 31 serves

equally well and is used in this example. The base-m expansion of n:

45,113 = 312 + 15·312 + 29·31 + 8

yields the polynomial f(x) = x3 + 15x2 + 29x+ 8 for which f(m) ≡ 0 (mod n) since

f(x) was constructed with f(31) = 45,113.

85

Now, the only concern is that f(x) be irreducible over Q, which amounts to verifying

that f(x) does not have any roots over Q since f(x) is cubic. The only possible roots are

±1, ±2, ±4 and ±8. The positive portions of these possibilities can be immediately

dispensed with so only four possibilities for roots need be considered. Now f(-1) = -7,

f(-2) = 2, f(-4) = 68 and f(-8) = 224, so that f(x) has no rational roots and hence is

irreducible over Q.

Step (2) :

Rational factor base

The rational factor base consists of prime integers 2, 3, 5, 7 and so on up to a particu-

lar bound which is usually determined by experimenting with the smoothness of a+bm

for different (a, b) pairs. In this example, all the primes up to 29 are used. Rational

factor base is stored as pairs (m (mod p), p).

Table (3.6.1)

(m (mod p), p) (m (mod p), p) (m (mod p), p)

(1, 2) (9, 11) (8, 23)

(1, 3) (5, 13) (2, 29)

(1, 5) (14, 17)

(3, 7) (12, 19)

Algebraic factor base

The algebraic factor base consists of first degree prime ideals of Z[θ], which are

represented as pairs (r, p) where p is a prime integer and r is a root of f(x) =

x3+15x2+29x+8 considered as a polynomial with coefficients in Z/pZ. Computing

the algebraic factor base then amounts to finding roots of f(x) modulo 2, 3, 5, 7 and

so on.

Using the methods which is discussed in the step (2) of the algorithm, and the prime

67 as an example, start by computing the polynomial g(x) = gcd(f(x), x67-x), where

g(x) serves to isolate the linear factors of f(x). In this case, g(x) ≡ f(x) (mod 67) so

that f(x) consists of all linear factors and hence must have three roots over Z/67Z.

Now g(0) = 8 (mod 67) so that 0 is not a root of g(x). Since g(x) divides x67-x =

x(x33+1)(x33-1), it follows that g(x) must divide (x33+1)(x33-1) and in fact

g(x) ≡ gcd(x33+1, f(x))·gcd(x33-1, f(x)) ≡ (x2+21x+21)·(x+61) (mod 67)

Hence, 6 ≡ -61 (mod 67) is a root of g(x) in Z/67Z and the pair (6, 67) represents a

first degree prime ideal of Z[θ] that may be added to the algebraic factor base.

The same process can be used to determine the linear factors of g1(x) = x2+21x+21.

86

Now g−1 ≡ 1 (mod 67) so that -1 is not a root of g1(x) and hence g1(x-1) must divide

(x33+1)(x33-1) for the same reason g(x) does. However, gcd(x33-1, g1(x-1)) ≡ 1 (mod

67) so that g1(x-1) can’t be immediately split into non-trivial factors as was done with

g(x) in above equation.

Continuing on with g−2 ≡ 50 (mod 67), it is seen that -2 is not a root of g1(x) and

hence g1(x-2) must then divide (x33+1)(x33-1). This time luck prevails and

g1(x-2) ≡ gcd(x33+1, g1(x-2))·gcd(x33-1, g1(x-2)) ≡ (x+21)·(x+63) (mod 67).

The latter yields 46 ≡ -21 (mod 67) and 4 ≡ -63 (mod 67) as roots of g1(x-2), so

that 44 and 2 are roots of g1(x) over Z/67Z and hence the pairs (2, 67) and (44, 67)

represent first degree prime ideals of Z[θ] which may be used in the algebraic factor

base.

Roots finding with primes other than 67 is performed in the exact same manner to

determine the rest of the algebraic factor base shown in the table below.

Table (3.6.2)

(r, p) (r, p) (r, p) (r, p)

(0, 2) (19, 41) (44, 67) (62, 89)

(6, 7) (13, 43) (50, 73) (73, 89)

(13, 17) (1, 53) (23, 79) (28, 97)

(11, 23) (46, 61) (47, 79) (87, 101)

(26, 29) (2, 67) (73, 79) (47, 103)

(18, 31) (6, 67) (28, 89)

Quadratic character base

Since the quadratic character base is simply a small set of first degree prime ideals of

Z[θ] that don’t occur in the algebraic factor base, in practice one begins searching for

roots of f(x) modulo primes q, with q strictly greater than the largest prime p occurring

in a (r, p) pair in the algebraic factor base. The worked example of the AFB serves

as sample illustration of how the quadratic character base seen in the table below is

computed.

Table (3.6.3)

(r, p) (r, p) (r, p)

(4, 107) (80, 107) (99, 109)

(8, 107) (52, 109)

87

Step (3) :

For this example, the sieving interval is chosen such that -1000 < a < 1000 for b

starting at 1 and proceeding through 2, 3, 4 and so on until more than 39 pairs are

found with a+bm and a+bθ smooth. Finding more than 39 pairs will guarantee a

linear dependence among the binary vectors associated with those pairs, which leads

to perfect squares in Z and Z[θ], as explained in last step of the algorithm.

A straight forward implementation technique is to have two Sieve arrays in memory,

one for a+bm and the other for N(a+bθ), each with 2000 entries for all possible a

values for a fixed b. Sieving for smooth values of a+bm proceeds exactly as in Note

(3) which is before the example 3.6.5 in SNFS algorithm. For instance, the values of

a for which a+bm is divisible by the prime 5 for b = 7 are of the form a = -7m + 5k

for k ∈ Z such that -1000 < a < 1000. From table 3.6.1, it is seen that m ≡ 1 (mod

5) and hence a is of the form a = -7 + 5k for k ∈ Z. The positions in the Sieve array

for a+bm corresponding to an a value of -997, -992, · · · , -12, -7, -2, 3, 8, 13, · · · ,
993, 998 then have ln(5) added to their value. This procedure is repeated for all the

pairs of table (5.1). A similar procedure is followed with the (r, p) pairs of table (5.2)

and the Sieve array for N(a+bθ) are trail divided to test for smoothness. The whole

procedure is then repeated for the next value of b.

After enough sieving, 40 (a, b) pairs are found with a+bm and a+bθ, as seen in

following table (5.4).

Table (5.4)

(a, b) pair (a, b) pair (a, b) pair (a, b) pair (a, b) pair (a, b) pair (a, b) pair

(-73, 1) (-2, 1) (-1, 1) (2, 1) (3, 1) (4, 1) (8, 1)

(13, 1) (14, 1) (15, 1) (32, 1) (56, 1) (61, 1) (104, 1)

(116, 1) (-5, 2) (3, 2) (25, 2) (32, 2) (-8, 3) (2, 3)

(17, 3) (19, 4) (48, 5) (54, 5) (313, 5) (-43, 6) (-8, 7)

(11, 7) (38, 7) (44, 9) (4, 11) (119, 11) (856, 11) (536, 15)

(5, 17) (5, 31) (9, 32) (-202, 43) (24, 55)

Step (4) : (Linear algebra)

To find the set U in note (before proposition 3.6.14), first make a binary matrix B

is constructed as in Step (4) of the algorithm, where a single column of the matrix

corresponds to an (a, b) pair found in above Step (Sieving step) with a+bm and a+bθ

smooth. Since there are 10 primes in the rational factor base, 23 first degree prime

ideals in the algebraic factor base, and 5 first degree prime ideals in the quadratic

88

character base, each column of the matrix will have 39 entries, or 39 total rows for

the matrix (one bit is added for the sign of a+bm).

To show explicitly how the matrix is formed, the column entry pair (-8, 3) found in

above step will be calculated. The first entry is set to 0 since a+bm = -8+3·31 = 85 is

positive. The next 10 entry in this column vector are determined from the factorization

of a+bm = 85 is positive. The next 10 entries in this column vector are determined

from the factorization of a+bm = 85 over the rational factor base :

85 = 20 · 30 · 51 · 70 · 110 · 130 · 171 · 190 · 230 · 290

where all the primes in the rational factor base have been shown for clarity. The

column vector for (-8, 3) then has 10 entries formed by taking the above 10 exponent

vectors modulo 2 :

(0, 0, 1, 0, 0, 0, 1, 0, 0, 0)

Next, the norm of (-8, 3) is computed and factored over the primes occurring in first

degree prime ideal pairs in the algebraic factor base. Recalling from example 3.6.18

that N(a+bθ) = (-b)df(-a/b), it follows that the norm of an element a+bθ with d = 3

and f(x) = x3 + 15x2 + 29x + 8 can be computed as

N(a+ bθ) = (−b)3 · (−a
3

b3
+ 15

a2

b2
− 29

a

b
+ 8) = a3 − 15a2b+ 29ab2 − 8b3

The norm of -8+3θ is then N(-8+3θ) = -83 - 15·(-8)2·3-29·8·32-8·33 = -5696 = -

1·26891 gives the factorization of that norm over the primes p occurring in the (r, p)

pairs of the algebraic factor base.

Note that there can be up to d pairs (r, p) in the algebraic factor base that share the

same prime p, but only one such pair can have a ≡ -br (mod p). Such an (r, p) pair is

the one that will be “responsible” for counting the number of times p divides N(a+bθ).

In the case for -8+3θ, there are three first degree prime ideals in table (5.2) that have

89 as the prime in their pair representation, specifically (28, 89), (62, 89) and (73,

89). But -8 ≡ 81 ≡ 3 · 62 (mod 89) so the first degree prime ideal pair (62, 89) is

responsible for the exponent of 89. Combining this with the first degree prime ideal

having pair (0, 2) yields the next 23 bits in the column vector for (-8, 3) :

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

Now, to compute a quadratic character for -8+3θ, corresponding to the first degree

89

prime ideal represented by the pair (s, q) that the Legendre symbol (−8+3s
q

) must be

calculated. Using (80, 107) from the quadratic character base as an example yields :

(
−8 + 3 · 80

107
) = −1

In this case, the vector coordinate for (-80, 107) is stored as 1 and would have been

stored as 0 had the Legendre symbol been 1.

Performing the same operations for the remainder of the quadratic character base

yields the final 5 bits in the column for (-8, 3) :

(1, 0, 0, 1, 0)

The complete 39-bit column vector for (-8, 3) then is seen to be :

(0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0)T

This same procedure is used on the rest (a, b) pairs found in above step to produce the

39×40 binary matrix B.

(a, b) pairs occurring in a dependency listed below in the following table :

Table (5.5)

(a, b) pair (a, b) pair (a, b) pair (a, b) pair (a, b) pair

(-1, 1) (104, 1) (-8, 3) (-43, 6) (856, 11)

(3, 1) (3, 2) (48, 5) (-8, 7)

(13, 1) (25, 2) (54, 5) (11, 7)

Step (5) : (Square root and factor of n)

Computing an explicit square root in Z[θ] :

Now. we have set U. As we have discussed in step (5) of the algorithm :

x2 ≡ φ(β2) ≡ φ(f
′
(θ)2

∏
(a,b)∈U

(a+ bθ)) ≡ φ(f
′
(θ))2

∏
(a,b)∈U

φ(a+ bθ)

≡ f ′(m)2
∏

(a,b)∈U

(a+ bm) ≡ y2(modn)

Firstly we compute that f ’(θ)2 = 138·θ2 + 363·θ + 481 ∈ Z[θ].

and we see that :

90

∏
(a,b)∈U

(a + bθ) = (-1 + θ)·(3 + θ)·(13 + θ)·(104 + θ) ·(3 + 2θ)·(25 + 2θ)·(-8 +

3θ)·(48 + 5θ) ·(54 + 5θ)·(-43 + 6θ)·(-8 + 7θ)·(11 + 7θ)·(856 + 11θ)

= 2051543129764485·θ2 + 15388377355799440·θ + 24765692886531904

where all the computations are treated as multiplication of polynomials modulo f(x) =

x3+15x2+29x+8 with θ substituted for x.

So, f ’(θ)2 ·
∏

(a,b)∈U
(a+bθ) = 22455983949710645412·θ2 + 54100105785512562427·θ +

22939402657683071224, which is the square of an element γ ∈ Z[θ].

Indeed without too much more effort it is seen that :

γ = 599923511·θ2 + 3686043120·θ + 3889976768 satisfies that γ2 ∈ Z[θ].

Now applying the ring homomorphism φ : Z[θ] −→ Z/45113Z (which we have already

discussed), to γ gives :

x = 43922 ≡ 694683807559

≡ 599923511 · 312 + 3686043120 · 31 + 3889976768

≡ φ(γ)(mod45331)

Computing the square root in finite field :

y2 = f’(m)2
∏

(a,b)∈U
(a + bm) = (138·(31)2 + 363·(31) + 481)·(-1 + 31)·(3 + 31)·(13

+ 31)· (104 + 31)·(3 + 2·31)·(25 + 2·31) ·(-8 + 3·31)·(48 + 5·31)·(54 + 5·31) ·(-43 +

6·31)·(-8 + 7·31)·(11 + 7·31) ·(856 + 11·31) = (3824)2·(1007840477402391282609960000)

= (3824)2·(31746503388600)2

So, y = 15160 ≡ 3824·31746503388600 (mod 45117)

Thus, we get, 151602 ≡ 439222 (mod 45113).

Therefore, gcd(15160 - 43922, 45113) = 197 and gcd(15160 + 43922, 45113) = 229

give nontrivial factors of n.

91

92

Chapter 4

Polynomial Factorization

4.1 Resultant and some useful properties

Definition 4.1.1. Let f(x) = anxn+ · · · + a0 and g(x) = bmxm + · · · + b0 be two poly-

nomials of degrees at most n and m respectively, with coefficients in an arbitrary field

F. Their resultant R(f, g) = Rn,m(f, g) is the element of F given by the determinant

of the (m+n) × (m+n) matrix given by (Sylvester matrix) :

M = Syln,m(f, g) =

an an−1 an−2 · · · 0 0 0

0 an an−1 · · · 0 0 0

· · · · · ·
· · · · · ·
0 0 0 · · · a1 a0 0

0 0 0 · · · a2 a1 a0

bm bm−1 bm−2 · · · 0 0 0

0 bm bm−1 · · · 0 0 0

· · · · · ·
· · · · · ·
0 0 0 · · · b1 b0 0

0 0 0 · · · b2 b1 b0

where the m first rows contain the coefficients an, an−1, · · · , a0 of f shifted 0,1,

· · · , m-1 steps and padded with zeroes, and the n last rows contain the coefficients bm,

bm−1, · · · , b0 of g shifted 0, 1, · · · n-1 steps and padded with zeroes. In other words,

the entry at (i, j) equals an+i−j if 1 ≤ i ≤ m and bi−j if m+1 ≤ i ≤ m+n, with ai =

0 if i > n or i < 0 and bi = 0 if i > m or i < 0.

93

Remark 4.1.2. From the definition, we can observe that

Rn,m(g, f) = (−1)nmRn,m(f, g) (4.1)

Example 4.1.3. If n = 3 and m =2,

R(f, g) = det

a3 a2 a1 a0 0

0 a3 a2 a1 a0

b2 b1 b0 0 0

0 b2 b1 b0 0

0 0 b2 b1 b0

If we write Rn,m(f, g) as a polynomial with integer coefficients for any field with

characteristic 0, such as Q or C, then the formula is valid (with the same coefficients)

for every field F (because the coefficients are given by expanding the determinant of

M and thus have a combinatorial interpretation independent of F. For a field of

characteristic p 6= 0, the coefficients may be reduced modulo p, so they are not unique

in that case).

Theorem 4.1.4. (1) : If deg(g) ≤ k ≤ m then

Rn,m(f, g) = am−kn Rn,k(f, g) (4.2)

(2) : If deg(f) ≤ k ≤ n, then

Rn,m(f, g) = (−1)(n−k)mbn−km Rk,m(f, g) (4.3)

(3): Let f and g be polynomials with deg(f) ≤ n and deg(g) ≤ m. If n ≥ m and h is

any polynomial with deg(h) ≤ n - m, then

Rn,m(f + hg, h) = Rn,m(f, g) (4.4)

Proof. (1) : Suppose deg(g) < m, so, bm = 0. Then the first column of the Sylvester

matrix M is 0 except for its first element an, and the submatrix of M = Syln,m(f,g)

obtained by deleting the first row and column equals Syln,m−1(f,g). Hence, by expand-

ing the determinant Rn,m(f,g) along the first column, Rn,m(f,g) = anRn,m−1(f,g).

The equation 4.2 follows for k = m, m-1, m-2, · · · , 0 by backwards induction.

94

(2) : By equation 4.1 and part (1),

Rn,m(f,g) = (-1)nmRm,n(g,f) = (-1)nmbn−km Rm,k(g,f) = (-1)nm−kmbn−km Rk,m(f,g).

(3) : Given that, n ≥ m and deg(h) ≤ n - m. Then Syln,m(f+hg, g) is obtained

from Syln,m(f,g) by row operations that do not change its determinant Rn,m. (If h(x)

= crx
r+ · · · + c0, add ck times row n+i-k to row i, for i = 1, 2, · · · , m and k = 0, 1,

· · · , r.)

The main importance of the resultant lies in the following formula, which often is

taken as the definition :

Theorem 4.1.5. Let f(x) = anxn+ · · · + a0 and g(x) = bmxm + · · · + b0 be two

polynomials of degrees n and m, respectively, with coefficients in an arbitrary field F.

Suppose that, in some extension of F, f has n roots (with counting multiplicities) α1,

· · · , αn and g has m roots (with counting multiplicities) β1, · · · , βm (not necessarily

distinct). Then

R(f, g) = amn b
n
m

n∏
i=1

m∏
j=1

(αi − βj) (4.5)

Proof. We will prove this theorem by induction on n+m.

Assume that deg(f) = n and deg(g) = m.

Then at least in some extension field, f(x) = an
∏n

i=1(x-αi) and g(x) = bn
∏m

j=1(x-βj).

If n+m = 0 (n = 0, m = 0), then result (equation (4.5)) is obvious.

By induction, let equation 4.5 hold for all smaller values of n+m and all polynomials

of these degrees.

Case (1) : Suppose 0 < n = deg(f) ≤ m = deg(g). Divide g by f to obtain polynomials

q and r with g = qf + r, where deg(r) < deg(f) = n. Note that deg(q) = deg(qf) -

deg(f) = deg(g-r) - n = m - n.

By previous theorem part (3), we know that

Rn,m(f, g) = Rn,m(f, g − qf) = Rn,m(f, r) (4.6)

Case 1(a) : Let r 6= 0 and let k = deg(r) ≥ 0. By previous theorem part (1), we get

Rn,m(f, r) = am−kn Rn,k(f, r) and using induction hypothesis, we get the desired result.

Case 1(b) : Suppose that r = 0, so g = qf, but n > 0 . Then Syln,m(f, r) = Syln,m(f,

0) has the last n rows identically zero, so Rn,m(f, r) = 0, and so by equation (4.6),

Rn,m(f, g) = 0 and we get the result.

95

Case (2) : Suppose that n = 0, Then R0,m(f, g) = am0 , which agrees with our result.

(This includes the case when n=0 and m=0, which starts the induction hypothesis).

Case(3) : Suppose m = deg(g) ≤ deg(f). Then we can interchange f and g in case (1)

and (2).

This completes the induction hypothesis .

Important properties of Resultant : If we use theorem 4.1.5, as the definition

of Resultant, then it is clear that : R(f,g) = 0 if and only if f and g have a common

root, that is, if and only if f and g have nontrivial g.c.d .

Hence we get following two useful properties :

(1) R(f,g) = 0 if and only if f and g have a common root.

(2) R(f,g) = 0 if and only if gcd(f,g) 6= 1.

4.2 Discriminant of function :

Let F be an arbitrary field, and f(x) ∈ F[x] a polynomial of degree n ≥ 1 and with

coefficients an. Let α1, α2, · · · , αn be the roots of f(x) (in some extension of F). The

discriminant of f(x) is defined as

Disc(f(x)) = a2n−2
n

n∏
i=1

n∏
j=i+1

(αi-αj)
2 = (-1)n(n−1)/2a2n−2

n

n∏
i=1

n∏
j=1,j 6=i

(αi-αj).

Lemma 4.2.1. Let f(x) be as in above definition, f ’(x) is the derivative of f, and let

deg(f ’(x)) = m, Then

Disc(f(x)) = (-1)n(n−1)/2an−m−2
n Res(f(x),f ’(x)).

If m = n-1 (If the characteristic of F is zero), we have

Disc(f(x)) = (-1)n(n−1)/2a−1
n Res(f(x), f ’(x)).

Hence, For any field F, Disc(f(x)) 6= 0 if and only if f(x) is square free.

Proof. We can easily see this by using theorem (4.1.5).

Hensal lifting lemma

Theorem 4.2.2. Let f be a monic polynomial in Z[X] and (h mod pi−1) is a irreducible

factor of (f mod pi−1) for some integer i ≥ 2. Then there exists a polynomial h1

(uniquely up to mod pi) such that (h1 mod pi) divides (f mod pi) and (h1 mod pi−1) =

(h mod pi−1).

96

Proof. Since (h mod pi−1) divides (f mod pi−1), so, there exists a poynomial g(x) ∈
Z[X] such that (f mod pi−1) = (h mod pi−1)(g mod pi−1). Moreover, (h1 mod pi−1)

has to be equal to (h mod pi−1), so, h1 = h + upi−1 for some u ∈ Z[X] with deg(u)

≤ deg(h).

Since (h1 mod pi) has to divide (f mod pi), so, there exists a g1 ∈ Z[X] such that (f

mod pi) = (h1 mod pi)(g1 mod pi). Set g1 = g + vpi−1 for an appropriate choice of

v ∈ Z[X] with deg(v) ≤ deg(g). Now we have :

(f mod pi) = (h + upi−1)(g+vpi−1) mod pi

⇒ (f mod pi) = (hg + (ug + vh)pi−1 + uvp2i−2) mod pi

⇒ f
pi−1 mod pi = hg

pi−1 + (ug + vh) mod pi

⇒ (f−hg
pi−1) mod pi = (ug + vh) mod pi

Since we had f = hg mod pi−1, so, f = hg + cpi−1 where c ∈ Z, therefore f - hg

= cpi−1 and (f−hg)
pi−1 = c. So, we have :

(c mod pi) mod p = ((ug + vh) mod pi) mod p

⇒ c mod p = (ug + vh) mod p.

Hence there exists unique u and v, so h1 and g1.

4.3 Lattice and reduced basis

Definition 4.3.1. A subset L of the real vector space Rn is called a lattice if there

exist a basis b1, b2, · · · , bn of Rn such that :

L = {
n∑
i=1

sibi|where si ∈ Z for i ∈ {1, 2, · · · , n}} (4.7)

We call b1, b2, · · · , bn : a basis for L and n to be the rank of L.

Moreover we define d(L) = |det(b1, b2, · · · , bn)| to be the determinant of the lattice.

4.3.1 Gram-Schmidt orthogonalization

Any basis B can be transformed in to an orthogonal basis for the same vector space

using the well-known Gram-Schmidt orthogonalization method.

Theorem 4.3.2. Let b1, b2, · · · , bn be some linear independent vectors in Rn. Define

b∗1 = b1

b∗i = bi -
∑i−1

j=1 µi,jb
∗
j for 1 ≤ i ≤ n.

97

where µi,j =
(bi,b

∗
j)

|b∗j |2
for 1 ≤ j < i ≤ n and (,) is inner product.

Then b∗1, b∗2, · · · , b∗n are the orthogonal basis of Rn.

Proof. For proving our result, we have to show that b∗1, b∗2, · · · , b∗n orthogonal and

they span Rn, if b1, · · · , bn span Rn.

We will prove this by induction on n.

If n = 1, then b∗1 = b1 and so, span(b1) = span(b∗1). Hence for n=1, result hold.

Now, assume that for n ≤ k, the result hold for the subspace of Rn, which means :

all the new basis elements b∗1, b∗2, · · · , b∗k are orthogonal and span (b∗1, b∗2, · · · , b∗k) =

span(b1, b2, · · · , bk).

Now for n = k+1. New element b∗k+1 = bk+1 -
∑k

j=1

(bk+1,b
∗
j)

|b∗j |2
b∗j . If 1 ≤ i ≤ k, then

(b∗k+1, b∗i) = (bk+1, b∗i) -
∑k

j=1

(bk+1,b
∗
j)

|b∗j |2
(b∗j , b∗i)

⇒ (b∗k+1, b∗i) = (bk+1, b∗i) - (bk+1, b∗i)

⇒ (b∗k+1, b∗i) = 0.

also,

bk+1 = b∗k+1 +
∑k

j=1

(bk+1,b
∗
j)

|b∗j |2
b∗j .

Hence span(b∗1, b∗2, · · · , b∗k+1) = span(b1, b2, · · · , bk+1) and all the elements b∗1, b∗2,

· · · , b∗k+1 are orthogonal. Therefore by induction hypothesis, our result holds.

4.3.2 Reduced basis of Lattice

Definition 4.3.3. A basis b1, b2, · · · , bn of a lattice L is called reduced if

|µi,j| ≤
1

2
for 1 ≤ j < i ≤ n (4.8)

and

|b∗i + µi,i−1b
∗
i−1|2 ≥

3

4
|b∗i−1|2 for 1 ≤ i ≤ n (4.9)

holds.

We can also write second condition as |b∗i |2 ≥ (3
4
-µ2

i,i−1)|b∗i−1|2 (since b∗i are orthog-

onal), which is known as the Lovasz’s condition.

Remark 4.3.4. The constant 3
4

in the definition is arbitrary chosen. Indeed, we could

take any other constant between 1
4

and 1.

98

4.3.3 Procedure to find a reduced basis

Idea of the Process : In this section, we will discuss an algorithm in which we

will give as input any arbitrary basis of a lattice and we will get a reduced basis of

the same lattice. From the definition of the reduced basis, we know that for finding

reduced basis, first we need an orthogonal basis. So, firstly, we will use Gram-Schmidt

orthogonalization process to given basis and after that we will modify these basis ele-

ments such that they fulfil the desired condition, which is given in equation (4.8) and

(4.9).

• Let {b1, b2, b3, · · · , bn} be an arbitrary basis of any Lattice L. Now, we will describe

the full procedure for finding reduced basis in the following steps :

Steps for finding reduced basis :

Step (1) : (Orthogonalization)

In this step, we will compute the orthogonal basis {b∗1, b∗2, b∗3, · · · , b∗n} and µi,j (1 ≤ j

< i ≤ n) for the given any arbitrary basis {b1, b2, b3, · · · , bn} using Gram-Schmidt

orthogonalization process which we have discussed in theorem 4.3.2.

• Now, we have to modify this orthogonal basis in a reduced basis, means we need to

modify this basis such that it satisfies the equation (4.8) and (4.9). For this we will

go by an iteration process. Therefore, we will assume that the given basis is already

reduced for {b1, b2, b3, · · · , bk−1} for some k<n, which means that orthogonal set

of this set satisfies equation (4.8) and (4.9). Now our aim is to modify bk (and if

necessary then b1, b2, b3, · · · , bk−1) in such a way that we can get a new set {b′1, b
′
2,

b
′
3, · · · , b

′

k} which fulfil all the conditions of the reduced basis such that b∗i ’s and µi,j

satisfies equation (4.8) and (4.9).

% Step (2) : %

Let k = 2

While k ≤ n % (Loop (1)) %

{

99

% Step (3) % :

If |µk,k−1| > 1
2

(Checking condition (4.8) (Condition 1)

→ If |µk,k−1| > 1
2
, then, for getting condition (4.8), for i= k and j = k-1, we proceeds

in the following way :

Let define an element t which is nearest to µk,k−1. Now, set b
′

k = bk - tbk−1. We can

see that after changing bk, we now have to modify all the µk,j, 1 ≤ j < k as well.

Since we know that µk,j =
(bk,b

∗
j)

|b∗j |2
.

Hence new µ
′

k,j =
(bk−tbk−1,b

∗
j)

|b∗j |2
=

(bk,b
∗
j)

|b∗j |2
- t

(bk−1,b
∗
j)

|b∗j |2

⇒ µ
′

k,j = µk,j - tµk−1,j for 1 ≤ j < k-1 and µ
′

k,k−1 = µk,k−1 - t

Thus, we can see if we define t this way then we obtain that |µk,k−1| ≤ 1
2
.

Now we will see that when we modify bk in to b
′

k for changing |µk,k−1| > 1
2

in to

|µk,k−1| ≤ 1
2
, then there will be no effect on b∗i ’s for i ∈ {1, 2, · · · , n}. For this, we

know that

b∗i = bi -
i−1∑
j=1

µi,jb
∗
j

Since, bk has been modified only, so, we have to check only for b∗k and b∗i for i ∈
[k+1,· · · , n].

b
′∗
k = b

′

k −
k−1∑
j=1

µ
′

k,jb
′∗
j

= bk − tbk−1 −
k−1∑
j=1

(µk,j − tµk−1,j)b
∗
′j

= bk −
k−1∑
j=1

µk,jb
∗
j − t(bk−1 −

k−1∑
j=1

µk−1,jb
∗
j)

= b∗k − t(b∗k−1 − µk−1,k−1b
∗
k−1)

= b∗k.

Thus we have following result :

b∗i = bi for all i.

µ
′

j,k =
(b′j ,b

′∗
k)

|b′∗k |2
=

(bj ,b
∗
k)

|b∗k|2
= µj,k for j>k.

|µk,k−1| ≤ 1
2

Remark : It is still not guaranteed that |µk,j| ≤ 1
2

for j < k-1.

100

% Step (4) %

If |b∗k + µk,k−1b
∗
k−1|2 < 3

4
|b∗k−1|2

{
If above condition holds then for getting condition (4.9) for i = k, we follow the below

procedure :

Interchange bk and bk−1, i.e.,

Set b’k = bk−1 and b’k−1 = bk

Then :

b
′∗
k−1 = b′k−1 −

k−2∑
j=1

µ′k−1,jb
′∗
j (Since b’∗j = b∗j for 1 ≤ j ≤ k-2)

= bk −
k−2∑
j=1

µk,jb
∗
j

= bk −
k−1∑
j=1

µk,jb
∗
j + µk,k−1b

∗
k−1

b′∗k−1 = b∗k + µk,k−1b
∗
k−1 (4.10)

Similarly,

b
′∗
k = b′k −

k−1∑
j=1

µ′k,jb
′∗
j

= bk−1 −
k−2∑
j=1

µk−1,jb
′∗
j − µ′k,k−1b

′∗
k−1(Since b′∗j = b∗j for 1 ≤ j ≤ k-2)

= bk−1 −
k−2∑
j=1

µk−1,jb
∗
j − µ′k,k−1b

′∗
k−1

b′∗k = b∗k−1 − µ′k,k−1b
′∗
k−1 (4.11)

b
′∗
k = b∗k−1 −

(b′k, b
′∗
k−1)

|b′∗k−1|2
b
′∗
k−1

= b∗k−1 −
(bk−1, b

∗
k + µk,k−1b

∗
k−1)

|b′∗k−1|2
b
′∗
k−1

101

b′∗k = b∗k−1 −
(b∗k−1 +

k−2∑
i=1

µk−1,ib
∗
i , b
∗
k + µk,k−1b

∗
k−1)

|b′∗k−1|2
b
′∗
k−1

= b∗k−1 −
(b∗k−1, µk,k−1b

∗
k−1)

|b′∗k−1|2
b
′∗
k−1

b′∗k = b∗k−1 − µk,k−1

|b∗k−1|2

|b′∗k−1|2
b′∗k−1 (4.12)

Now, Comparing equation (4.11) and (4.12) :

µ′k,k−1 = µk,k−1

|b∗k−1|2

|b′∗k−1|2
(4.13)

Thus, after interchanging bk and bk−1, we have following result :

b′∗j = b∗j for j 6= k, k-1

b
′∗
k−1 = b∗k + µk,k−1b∗k−1

b
′∗
k = b∗k−1 - µ′k,k−1b

′∗
k−1

µ′k,k−1 = µk,k−1
|b∗k−1|

2

|b′∗k−1|2

So, now we have to check the effect of interchanging the bk and bk−1 on the following

two things :

(1) µi,k−1 and µi,k for i > k.

(2) µk−1,i and µk,i for 1 ≤ i < k-1.

Case (1) : Since we know that bi = b’i for i > k, Hence :

bi = b∗i +
∑i−1

j=1 µi,jb
∗
j = b

′∗
j +

∑i−1
j=1 µ

′
i,jb

′∗
j = b’i

Since we know that b′∗j = b∗j for j 6= k, k-1, So, we can remove the common terms on

both sides of the equation by subtraction to get :

µi,k−1b
∗
k−1 + µi,kb

∗
k = µ′i,k−1b

′∗
k−1 + µ′i,kb

′∗
k (4.14)

and from equation (4.11), we have :

b∗k−1 = b
′∗
k + µ′k,k−1b

′∗
k−1

and from equation (4.10), we have :

b∗k = b
′∗
k−1 − µk−1b

∗
k−1

= b
′∗
k−1 − µk−1(b

′∗
k + µ′k,k−1b

′∗
k−1)

= (1− µk,k−1µ
′
k,k−1)b

′∗
k−1 − µk,k−1b

′∗
k

102

Now, using equation (4.13), we get :

b∗k = (1− µ2
k,k−1

|b∗k−1|2

|b′∗k−1|2
)b
′∗
k−1 − µk,k−1b

′∗
k

= (1−
(bk, b

∗
k−1)2

|b∗k−1|2|b′∗k−1|2
)b
′∗
k−1 − µk,k−1b

′∗
k

= (1−
(b∗k +

k−1∑
i=1

µk,ib
∗
i , b
∗
k−1)2

|b∗k−1|2|b′∗k−1|2
)b
′∗
k−1 − µk,k−1b

′∗
k

Using orthogonality of b∗i , we can write :

= (1−
(µk,k−1b

∗
k−1, b

∗
k−1)2

|b∗k−1|2|b′∗k−1|2
)b
′∗
k−1 − µk,k−1b

′∗
k

= (1−
|b∗k−1|4|µ2

k,k−1|
|b∗k−1|2|b′∗k−1|2

)b
′∗
k−1 − µk,k−1b

′∗
k

= (
|b′∗k−1|2 − µ2

k,k−1|b∗k−1|2

|b′∗k−1|2
)b
′∗
k−1 − µk,k−1b

′∗
k

Now using equation (4.10), we get :

b∗k = (
|b∗k + µk,k−1b

∗
k−1|2 − µ2

k,k−1|b∗k−1|2

|b′∗k−1|2
)b
′∗
k−1 − µk,k−1b

′∗
k

= (
|b∗k|2 + µ2

k,k−1|b∗k−1|2 − µ2
k,k−1|b∗k−1|2

|b′∗k−1|2
)b
′∗
k−1 − µk,k−1b

′∗
k .

Hence, we have :

b∗k =
|b∗k|2

b
′∗
k−1

b
′∗
k−1 − µk,k−1b

′∗
k (4.15)

By putting the value of b∗k (from the above equation) and b∗k−1 (from equation (4.11)),

we get :

µi,k−1(b
′∗
k + µ′k,k−1b

′∗
k−1) + µi,k(

|b∗k|
2

b
′∗
k−1

b
′∗
k−1 − µk,k−1b

′∗
k) = µ′i,k−1b

′∗
k−1 + µ′i,kb

′∗
k

⇒ (µi,k−1 - µi,kµk,k−1)b
′∗
k + (µi,k−1µ

′
k,k−1 + µi,k

|b∗k|
2

|b∗k−1|2
)b
′∗
k−1 = µ′i,k−1b

′∗
k−1 + µ′i,kb

′∗
k

Comparing the terms of b
′∗
k and b

′∗
k−1 both sides, we get the following result :

µ′i,k−1 = µi,k−1µ
′
k,k−1 + µi,k

|b∗k|2

|b∗k−1|2
and µ′i,k = µi,k−1 − µi,kµk,k−1 (for i > k) (4.16)

Case (2) : µ′k−1,j =
(b′k−1,b

′∗
j)

|b′∗j |2

Since we know that b’k−1 = bk and b
′∗
j = b∗j for j 6= k, k-1. Hence :

103

µ′k−1,j =
(bk,b

∗
j)

|b∗j |2
= µk,j.

Similarly, µ′k,j =
(b′k,b

′∗
j)

|b′∗j |2
=

(bk−1,b
∗
j)

|b∗j |2
= µk−1,j.

Therefore, In this condition, we have the following results :

b′∗j = b∗j for j 6= k, k − 1

b
′∗
k−1 = b∗k + µk,k−1b

∗
k−1

b
′∗
k = b∗k−1 − µ′k,k−1b

′∗
k−1

µ′k,k−1 = µk,k−1

|b∗k−1|2

|b′∗k−1|2

µ′i,k−1 = µi,k−1µ
′
k,k−1 + µi,k

|b∗k|2

|b∗k−1|2
for i > k

µ′i,k = µi,k−1 − µi,kµk,k−1 for i > k

µ′k−1,j = µk,j for 1 ≤ j < k − 1

µ′k,j = µk−1,j for 1 ≤ j < k − 1

And now after changing bk−1 and bk, we have also |b∗k + µk,k−1b
∗
k−1|2 ≥ 3

4
|b∗k−1|2.

If k ≥ 3, Set k = k-1

}

% Step (5) %

Else

{

For j = k-2, k-3, · · · , 1

{

If (|µk,j| > 1
2
) :

If this condition holds then for satisfying the condition (4.8), without changing any

b∗j , we follow below procedure :

Let l be the largest index such that |µk,l| > 1
2

for 1≤l<k-1.

Then, let r be the nearest integer to µk,l. Now, set b’k = bk - rbl.

104

Claim : (1) µ′k,j = µk,j - r µl,j for 1≤j<l

(2) µ′k,l = µk,l - r

(3) µ′k,j = µk,j for l<j≤k

(4) µ′j,k = µj,k for j > k

(5) b
′∗
i = b∗i for all i.

Proof : (1) and (2) : Since b
′∗
j = b∗j for j≤l<k and by definition,

µ′k,j =
(b′k, b

′∗
j)

|b′∗j |2

=
(bk − rbl, b∗j)
|b∗j |2

=
(bk, b

∗
j)

|b∗j |2
− r

(bl, b
∗
j)

|b∗j |2
for 1 ≤ j ≤ l < k

⇒ µ′k,j = µk,j − rµl,j for 1 ≤ j < l

and for j = l, µ′k,l = µk,l − r.

(3) and (4) : Since when j>k, we did not changed b’j = bj, So, b
′∗
j = b∗j .

For, j>k ; µj,k =
(b′j ,b

′∗
k)

|b′∗k |2
=

(bj ,b
∗
k)

|b∗k|2
= µj,k

Similarly for l<j≤k,

µ′k,j =
(b′k, b

′∗
j)

|b′∗j |2

=
(bk − rbl, b∗j)
|b∗j |2

Since from (5), b
′∗
k = b∗k.

=
(bk, b

∗
j)

|b∗j |2
− r

(bl, b
∗
j)

|b∗j |2

= µk,j − r
(b∗l −

l−1∑
i=1

µl,ib
∗
i , b
∗
j)

|b∗j |2

= µk,j − r(
(bl, b

∗
j)

|b∗j |2
+

l−1∑
i=1

µl,i
(b∗i , b

∗
j)

|b∗j |2
)

Using the orthogonality of all b∗j for j>l, we get :

µ′k,j = µk,j.

105

(5) : We can see that we need to check only for b
′∗
k = b∗k.

b
′∗
k = b′k −

k−1∑
j=1

µ′k,jb
′∗
j

= bk − rbl −
k−1∑
j=1

(µk,j − rµl,j)b∗j for 1 ≤ j < l ≤ k − 1.

= bk −
k−1∑
j=1

µk,jb
∗
j − r(bl −

l∑
j=1

µl,jb
∗
j)

= b∗k − r(bl −
l−1∑
j=1

µl,jb
∗
j − µl,lb∗l)

= b∗k − r(b∗l − b∗l) = b∗k.

We can also see from claim (2) that |µk,l| ≤ 1
2

for 1≤l<k-1.

}

Set k = k+1

}
}
Thus, we get reduced basis b1, b2, · · · , bn.

4.3.4 LLL Algorithm

(for getting reduced basis of a given basis b1,b2, · · · , bn of a Lattice L)

Algorithm (1) : (for getting b∗1, b∗2, · · · , b∗n) :

Input : b1, b2, · · · , bn

for j = 1,2,3,· · · ,n
Compute : b∗j = bj -

∑j−1
i=1 µj,ib

∗
i , where µj,i = (bj,b

∗
i)/(b∗i , b∗i).

Output : b∗1, b∗2, · · · , b∗n

106

Algorithm (2) : (for handling |µk,l| > 1
2
, where 1≤l<k≤n)

Let r be the nearest integer to µk,l.

Set b’k = bk - rbl

Update µ′k,j = µk,j - rµl,j for j = 1,2,3,· · · , l-1

Update µ′k,l = µk,l - r.

Output : for b1, b2, · · · , b’k, bk+1, · · · , bn, we have |µ′k,l| ≤ 1
2

Algorithm (3) : (for handling |b∗k + µk,k−1b
∗
k−1|2 < 3

4
|b∗k−1|2)

Set b’k = bk−1

Set b’k−1 = bk

Update b
′∗
k = b∗k−1 - µ′k,k−1b

′∗
k−1

Update b
′∗
k−1 = b∗k + µk,k−1b∗k−1

Update µ′k,k−1 = µk,k−1
|b∗k−1|

2

|b′∗k−1|2

Update µ′i,k−1 = µi,k−1µ
′
k,k−1 + µi,k

|b∗k|
2

|b∗k−1|2
for i>k.

Update µ′i,k = µi,k−1 - µi,kµk,k−1 for i>k

Output : for b1, b2, · · · , b’k−1, b’k, bk+1, · · · , bn, we have : |b′∗k +µ′k,k−1b
′∗
k−1|2 ≥ 3

4
|b′∗k−1|2

(LLL) Algorithm (4) : (for getting reduced basis)

Input : b1, b2, · · · , bn

Compute : b∗1, b∗2, · · · , b∗k (using algorithm (1)

Set k = 2,

While (k ≤ 2) {
If (µk,k−1 >

1
2
), Call algorithm (2) with l = k-1.

If (|b∗k + µk,k−1b
∗
k−1|2 < 3

4
|b∗k−1|2) {

Call algorithm (3).

If k ≥ 3, Set k = k-1.

}
Else {

For j = k-2,k-3, · · · , 1 {

107

If (|µk,j| > 1
2
), Call algorithm (2) with l = j.

}
Set k = k+1.

}
}
Output : Reduced basis b1, b2, · · · , bn.

Theorem 4.3.5. The LLL algorithm which is described above terminates and it re-

turns a reduced basis b’1, b’2, · · · , b’n.

Proof. Firstly, we can easily see that it returns a reduced basis. The main loop (while

loop) of algorithm (4) maintains the invariance on k, that condition (4.8) satisfied for

1 ≤ j < i ≤ k-1, and condition (4.9) is satisfied for 1 ≤ i ≤ k-1. Each iteration of the

loop attempts to enforce the conditions (4.8) and (4.9) at the current value of k.

First the condition on µk,k−1 is checked, and if this condition doesn’t hold then it

is repaired by using algorithm (2) without any side effects.

Next, Condition (4.9) is checked for i = k. If this condition holds, then other

µk,j values are handled, and we increased the current index of k by one, and the next

iteration of the while loop is started. However, if Condition (4.9) does not hold for i =

k, the vector bk−1 and consequently all µk−1,j values change in the process. Therefore

k is decremented, and the next iteration of the while loop is started.

However, when k = 2, there are no valid values of the µk−1,j, so, k is not decre-

mented. When the while loop terminates, we have k = n+1, by the loop invariance,

both the conditions (4.8) and (4.9) for a reduced basis are satisfied for all relevant

values of i and j. Thus, we get a reduced basis of the given lattice.

Claim (1) : The algorithm terminates or there are finitely only finitely many times

where we need to interchange bk−1 and bk (because every time we interchanged bk−1

and bk, we lowered the current index by one and in every other case we increased it

by one.)

Proof of Claim (1) : Define : di = det(Di) with Di = (bj,bk)1≤j,k≤i.

Define D =
∏n−1

i=1 di

Now, we will compute the effect of the changes of the bi’s in the algorithm on the two

quantities di and D.

Claim (2) : di =
∏i

j=1 |b∗j |2, for all i ∈ {1, 2, · · · , n }.
Proof of claim (2) : We will show this by using Gaussian elimination procedure to Di,

because we know that determinant will not change under these operations.

108

Since

di = det(Di) = det

(b1, b1) (b1, b2) · · · (b1, bi)

(b2, b1) (b2, b2) · · · (b2, bi)

· · · ·
· · · ·
· · · ·

(bi, b1) (bi, b2) · · · (bi, bi)

Now, the first step of Gaussian elimination method, we subtract

(bj ,b1)

(b1,b1)
times the first

row from the jth row, for all j ∈ {2, 3, · · · , i}. After subtracting, we get zeroes on

each entry of the first column except in the first row. The first row of the matrix will

remain unchanged and the kth column entry (for k = {2,3,· · · ,i}) of the jth row will

be :

(bj,bk) -
(bj ,b1)

(b1,b1)
(b1, bk) = (bj - µj1b∗1, bk) (Since b∗1 = b1)

Since b2 - µ2,1b∗1 = b∗2, hence for k=2 and j=2, we get (b∗j ,bj) = (b∗j , b∗j +
∑j−1

i=1 µj,ib
∗
i)

= |b∗j |2. Hence we get :

di = det(Di) = det

|b∗1|2 (b∗1, b2) (b∗1, b3) · · · (b∗1, bi)

0 |b∗2|2 (b∗2, b3) · · · (b∗2, bi)

0 (b3 − µ3,1b
∗
1, b2) (b3 − µ3,1b

∗
1, b3) · · · b3 − µ3,1b

∗
1, bi)

· · · · ·
· · · · ·
· · · · ·
0 (bi − µi,1b∗1, b2) (bi − µi,1b∗1, b3) · · · (bi − µi,1b∗1, bi)

Now, the second step of Gaussian elimination method, we subtract

(bj−µj,1b∗1,b2)

|b∗2|2
times

the second row from the jth row, for all j ∈ {3, 4, · · · , i}). After subtracting, we get

zeroes on each entry of the second column except in the first and second row.

The kth entry (k ∈ {3, 4, · · · , i}) of the jth row will be :

(bj − µj,1b∗1, bk)−
(bj − µj,1b∗1, b2)

|b∗2|2
(b∗2, bk) = (bj − µj,1b∗1 −

(bj − µj,1b∗1, b2)

|b∗2|2
b∗2, bk)

= (bj − µj,1b∗1)− (bj − µj,1b∗1, b∗2 + µ2,1b
∗
1)

|b∗2|2
(b∗2, bk)

109

= (bj − µj,1b∗1 − (µj,2 +
(bj, µ2,1b

∗
1)

|b∗2|2
−

(
(bj ,b

∗
1)

|b∗1|2
, µ2,1b

∗
1)

|b∗2|2
)b∗2, bk)

= (bj − µj,1b∗1 − (µj,2 +
(bj, µ2,1b

∗
1)

|b∗2|2
− (bj, b

∗
1)µ2,1

|b∗2|2
)b∗2, bk)

= (bj − µj,1b∗1 − µj,2b∗2, bk)

Hence we get :

di = det(Di) = det

|b∗1|2 (b∗1, b2) (b∗1, b3) · · · (b∗1, bi)

0 |b∗2|2 (b∗2, b3) · · · (b∗2, bi)

0 0 |b∗3|2 · · · b3 − µ3,1b
∗
1, bi)

0 0 (b4 − µ4,1b
∗
1 − µ4,2b

∗
2, b3) · · · (b4 − µ4,1b

∗
1 − µ4,2b

∗
2, bi)

· · · · ·
· · · · ·
· · · · ·
0 0 (bi − µi,1b∗1 − µi,2b∗2, b3) · · · (bi − (bi − µi,1b∗1 − µi,2b∗2, bi)

Thus, when we follow this procedure i times, then we get :

di = det(Di) = det

|b∗1|2 (b∗1, b2) (b∗1, b3) · · · (b∗1, bi)

0 |b∗2|2 (b∗2, b3) · · · (b∗2, bi)

0 0 |b∗3|2 · · · b3 − µ3,1b
∗
1, bi)

0 0 0 · · · (b4 − µ4,1b
∗
1 − µ4,2b

∗
2, bi)

· · · · ·
· · · · ·
· · · · ·
0 0 0 · · · |b∗i |2

=

i∏
j=1

|b∗j |2

Thus, we proved claim (2).

Now, we had to modify some of the b∗i ’s (namely b∗k and b∗k−1) when |b∗k+µk,k−1b
∗
k−1|2 <

3
4
|b∗k−1|2. In this case, we had |b′∗k−1|2 = |b∗k +µk,k−1b

∗
k−1|2 < 3

4
|b∗k−1|2. Thus, we can see

that dk−1 is decreased by a factor of 3
4

with every such change being made. We can

also observe that all the other dj for j ∈ {1, 2, · · · , i }-{k-1} remains unchanged.

Since we decrement the value of the current index of the algorithm if and only if such

a change is made, there is a one - one correspondence between the decremental of the

current index and D. Thus, if after one modification of the bi’s, we define the product

110

of the determinants defined above by D’, then we have D’ < 3
4
D.

Now, we will show a positive lower bound for di depending only on L.

Claim (3) : There is a positive lower bound for di.

Proof of claim (3) : Firstly, we define m(L) = min{|x|2; x 6= 0, x ∈ L }, which is

a positive real number (Here we are not claiming that this algorithm finds such a

shortest vector). Since we know by the definition of the determinant of the lattice

that :

d(L) = |det(b1, b2, · · · , bn)| = |det(b∗1, b∗2, · · · , b∗n)| =
∏n

i=1 |b∗i |
We know that b∗i ’s are pairwise orthogonal, so, dn = (d(L))2 and di (for 1 ≤ i < n) is

equal to the determinant of the lattice spanned by the vectors b1, b2, · · · , bi. Since

lattice have the property that there exists a vector x 6= 0 such that |x| ≤ 4
3

(i−1)
2 d

1
i
i .

Therefore

di ≥ 3
4

i(i−1)
2 |x|2i ≥ 3

4

i(i−1)
2 m(L)i, which is the lower bound for di, as we wanted. Thus

we proved claim (3).

By the above discussion, we know that when we interchange bk−1 and bk, then we

lower D by a factor of 3
4

every time, and there is a lower bound for D. Hence we

conclude that there can be only finitely many interchanges of bk−1 and bk during the

algorithm and therefore algorithm terminates. Thus we proved claim (1) and hence

theorem.

4.4 Some important properties of reduced basis

Theorem 4.4.1. If b1, b2, · · · , bn is some reduced basis for a lattice L in Rn, then

we have following :

(1) |bj|2 ≤ 2i−1|b∗i |2 for 1 ≤ j ≤ i ≤ n.

(2) d(L) ≤
∏n

i=1 |bi| ≤ 2n(n−1)/4d(L)

(3) |b1| ≤ 2(n−1)/4d(L)
1
n

(4) For any linearly independent set of vectors x1, x2, · · · , xt ∈ L, we have |bj| ≥
2(n−1)/2max(|x1|, |x2|, · · · , |xt|) for 1≤ j ≤ t.

Proof. (1) : We know that |bi|2 = |b∗i+
∑i−1

j=1 µi,jb
∗
j |2

Since all the b∗i are orthogonal for 1≤i≤n and |µi,j| ≤ 1
2
.

111

So, we have :

|bi|2 = |b∗i |2 +
i−1∑
j=1

µ2
i,i−1|b∗j |2

= |b∗i |2 + µ2
i,1|b∗1|2 + · · ·+ µ2

i,i−1|b∗i−1|2

≤ |b∗i |2 +
1

4
|b∗i−1|2 + · · ·+ 1

4
|b∗1|2

By Lovasz’s condition (which is described after equation (4.9)), we know that : |b∗j |2

≤ 2i−j|b∗i |2 for all j ≤ i. Hence for all i, we get :

|bi|2 ≤ (1 +
1

4
(2 + 22 + · · ·+ 2i−1))|b∗i |2

=
2i−1 + 1

2
|b∗i |2

≤ 2i−1|b∗i |2.

Thus we get : |b∗j |2 ≤ 2j−1|b∗j |2

Now again using Lovasz’s condition,

|b∗i |2 ≤ 2i−j2j−1|b∗i |2 = 2i−1|b∗i |2 for 1 ≤ j ≤ i ≤ n, which proves (1).

(2) : We now, d(L) =
∏n

i=1 |b∗i |
Since, |b∗i | ≤ |bi|, so,

d(L) ≤
∏n

i=1 |bi|
Now, using part (1), we get :

d(L) ≤
n∏
i=1

2(i−1)/2|b∗i |

= 2
n(n−1)

4

n∏
i=1

|b∗i |

= 2
n(n−1)

4 d(L),

which proves (2).

(3) : We know by Lovasz’s condition that for j =1 that |b∗1|2 ≤ 2i−1|b∗i |2 and since

112

|b∗1| = |b1|, Hence we have :

|b1|n ≤
n∏
i=1

2(i−1)/2|b∗i |

= 2
n(n−1)

4 d(L), which implies :

|b1| ≤ 2
(n−1)

4 d(L)
1
n ,

which proves (3).

(4) : If any xj ∈ L then we can write xj =
∑n

i=1ci,jbi =
∑n

i=1c’i,jb
∗
i with ci,j ∈

Z. Now, let 1≤j≤n be fixed and k be the largest index such that ck,j 6= 0.

Claim : ck,j = c’k,j.

Proof of the claim : Since xj =
∑k

i=1ci,jbi =
∑k

i=1c’i,j(bi-
∑i−1

i=1 µi,lb
∗
l)

Since, all the bi are independent and comparing the coefficient of bk on both sides,

we get ck,j = c’k,j.

Since all the b∗i are pairwise orthogonal, hence we have : |xj| =
∑k

i=1 |c′i,j||b∗i | ≥ |c′l,j||b∗l |
for all l ∈ {1, · · · , k} and so,

|x2
j |2 ≥ |c′k,j|2|b∗k|2 ≥ |b∗k|2 (since c’k,l = ck,l which is an integer).

Now, using part (1), we have :

|bi|2 ≤ 2k−1|b∗k|2

≤ 2k−1|xj|2

≤ 2n−1max(|x2
1|, |x2|2, · · · , |xt|2) for 1 ≤ i ≤ k, and since k ≤ n.

Moreover, since t ≤ k, hence this inequality holds for 1≤ i ≤ t, which we wanted for

proving.

4.5 Polynomial factorization method using LLL al-

gorithm

Using above discussed LLL - lattice reduction algorithm, we can create an algorithm

for finding factors of any arbitrary polynomials f ∈ Z[X].

113

Procedure for finding factors of any arbitrary polynomial f ∈
Z[X] :

Let f(x) = anxn + an−1xn−1 · · · + a0 be any arbitrary polynomial such that all the

coefficients ∈ Z[X].

Step (1) :

Firstly, we make f(x) to be primitive, because if it is not primitive then we can easily

calculate the gcd of its coefficients and take f1(x) to be f(x) divided through the gcd to

get a primitive polynomial. Thus, we have primitive polynomial function.

Step (2) :

Now, we make polynomial with no multiple factors. We know that f has a multiple

root if and only if gcd(f(x), f ’(x)) = 0 or if f(x) and f’(x) have a common root. We

also know from properties of resultant that f(x) and f’(x) have a common root if and

only if R(f(x), f ’(x)) = resultant(f(x), f ’(x)) = 0 or by lemma (4.2.1), if and only if

Disc(f(x)) = 0.

If f(x) and f’(x) have a common root, means R(f, f ’) = 0, then we will calculate r(x) =

gcd(f(x), f ’(x)), which is then the set of multiple roots of f. Now, set f1(x) = f(x)
r(x)

, then

obviously f1(x) has no multiple roots. After factoring f1(x), it will be very easy to find

the factorization of r(x), since r(x) only has factors that appear in the factorization

of f1(x), and there are only finitely many factors in f1(x).

Step (3) :

Now, we will find out all the irreducible factors of f (mod p), where p is some prime

(we will see later that how we will choose prime p). These factors can be determined

with the use of Berlekamp’s Algorithm.

Berlekamp’s Algorithm :

Aim : To find the complete factorization of (f(x) mod p) into irreducible factors in

Z/pZ[X].

Assume that f(x) is reduced modulo p and square free. Moreover assume that there

exists a polynomial f0(x) =
∏

a∈Z/pZ
(g(x) - a) ∈ Z/pZ[X] such that f(x) divides f0(x).

114

Then every irreducible factor of f(x) is also a irreducible factor of f0(x) and we have :

f(x) = gcd(f(x), f0(x))

= gcd(f(x),
∏

a∈Z/pZ
(g(x)− a))

=
∏

a∈Z/pZ
gcd(f(x), g(x)− a).

Clearly, we can observe that not every such gcd will be an irreducible factor of f(x)

mod p, so, we need to find enough polynomials g(x) to factor out f(x) mod p completely

into irreducible factors.

We know that
∏
a∈F

(X - a) = Xp - X for a finite field F, so, for f0(x), we get
∏

a∈Z/pZ
(g(x)

- a) = g(x)p - g(x). Since f0(x) is divisible by f(x), hence we get that (g(x)p - g(x)) is

divisible by f(x) and therefore, we have :

g(x)p ≡ g(x) mod (f(x)) (4.17)

Hence, we can restrict the search of the g(x) to the set with this above property. This

set is also said to be Berlekamp subalgebra and it has some very nice properties, which

help us in finding out g(x).

Define a matrix Q = {ck,l}0≤k,l≤n with entries ck,l given by the equation.

xip = (cn,ix
n + cn−1,ix

n−1 + · · · + c0,i) mod f(x) for i ∈ [0, 1, · · · , n].

Claim : g(x) will satisfy the equation (4.17) if and only if g(x) is a eigenvector of Q

with eigenvalue one.

Proof of the claim : We know that (x+y)p = xp + yp in Z/pZ using the expansion of

the binomial theorem and fact that p|
(
p
i

)
. Moreover, bp = b for b ∈ Z/pZ.

Assume now that g(x) = gnxn + gn−1xn−1 + · · ·+ g0 and it is an eigen vector of Q

with eigenvalue one, then :

g(x) =
n∑
i=1

gix
i

=
n∑
i=0

(
n∑
j=0

cj,igj)x
i

115

⇐⇒
n∑
j=0

gj(x
jpmodf(x))

=
n∑
j=0

(gjx
j,p)modf(x)

= (
n∑
j=0

gjx
j)pmodf(x)

= g(x)pmod(f(x)),

which proves the claim.

With the above claim, we are now able to describe an algorithm that factors the poly-

nomial f(x) in Z/pZ[X] :

• First, we calculate Q. This can be done by calculating xip mod f(x) for all i ∈
{0, 1, 2, · · · , n}.

• Now, we calculate all the eigenvectors gj(x) for j ∈ [1, 2, · · · , rank(Q - Id)]

(since, there are exactly rank(Q-I) linearly independent vectors satisfying the

equation (Q-I)g = 0).

• For all gj(x) and for all a ∈ Z/pZ, we now have to calculate gcd(f(x), gj(x)-

a), which can be done by the Euclidean algorithm (when the algorithm finds

rank(Q-I) different factors, algorithm can stop).

• Repeat this procedure for all factors of f(x) which we have found so far, until all

the factors are irreducible.

Hence, we can observe that, these factors h (mod p) of f (mod p) have the following

properties :

(h mod p) is monic irreducible in Z/pZ[X] (4.18)

(h mod p)2 does not divide (f mod p) in Z/pZ[X]. (4.19)

The equation (4.19) holds, because we know that f(x) is square free and we will select

the value of p also such that both of the above equations hold.

Step (4) :

Now, we will have some properties of f and f (mod p) that will allow us to find an

116

irreducible factor h0 by taking one irreducible factor h (mod p) of f (mod p) using LLL

lattice reduction method.

Now, we choose an monic irreducible factor h (mod p) of f (mod p), let deg(h) = l,

where l < n, which fulfils the following condition :

(h mod pk) divides (f mod pk) in (Z/pkZ)[X]. (4.20)

Note (1) : We will describe the value of k at later stage. Now, k is some integer.

Note (2) : From (4.20), we get that (h mod p)|(f mod p). We see this by considering

that if x|y then (x mod p)|(y mod p) and ((h mod pk) mod p) = (h mod p).

Note (3) : We can get such a factor h (mod p) of f (mod p) which satisfy above equa-

tion using Hensal’s lifting lemma.

Using Hensal lifting lemma (theorem 4.2.2), we can modify h such that (h mod p)

does not change but equation (4.20) is true.

Hence, now, we have a factor (h mod p) of (f mod p) which has degree l and satisfy

all the conditions (4.18), (4.19) and (4.20).

Proposition 4.5.1. Let f and h are the functions as above. Then there is a polynomial

h0 ∈ Z[X] such that h0 is an irreducible factor of f, (h mod p) divides (h0 mod p) and

h0 is unique up to sign.

Moreover, if g|f in Z[X], then the following are equivalent :

1. (h mod p) divides (g mod p) in (Z/pZ)[X].

2. (h mod pk) divides (g mod pk) in (Z/pkZ)[X].

3. h0 divides g in Z[X].

Proof. The existence of such an h0 follows from equation (4.18) and the note (2). If

h itself is a divisor of f, then h0 = h, and irreducibility follows from equation (4.18).

If h does not divide f in Z[x], there is an irreducible factor h0 such that (h0 mod p)

factors into (h mod p) and (h1 mod p) in Z/pZ, and from equation (4.19), we get the

uniqueness. Now we will show that if g|f, then above three statements are equivalent.

2 ⇒ 1 : This is obvious, as, we have discussed it in Note (2).

3 ⇒ 1 : h0|g which means, (h0 mod p)|(g mod p) ⇒ (h mod p)|(g mod p).

117

1 ⇒ 3 : Given (h mod p)|(g mod p) and (h mod p)2 -(f mod p). Hence (h mod

p)-(f/g mod p) in Z/pZ[X]. Since, (h mod p) is a factor of (h0 mod p), so, (h0 mod

p)-(f/g mod p) and h0 -(f/g). Hence h0 has to be a divisor of g.

3 ⇒ 2 : Now, we have h0|g ⇒ (h0 mod p)|(g mod p) ⇒ (h mod p)|(g mod p)

and also (h mod P)|(f mod p) but (h mod P)2 -(f mod p), so, (h mod p)-(f
g

mod p),

which means, (h mod p) and (f/g mod p) have no common divisor in Z/pZ. Hence

there exists s and t ∈ Z[X] such that :

(s mod p)(h mod p) + (t mod p)(f/g mod p) = 1

⇒ sh + t(f/g) = 1 - rp with r ∈ Z[X].

Now, by multiplying both sides with g and v(r) = 1 + pr + p2r2 + · · · + pk−1rk−1,

we get :

sgv(r)h + tv(r)f = (1 - pr)v(r)g = (1 - pkrk)g

⇒ (s1)h + t1f) mod pk = g mod pk.

Now, since we know that (h mod pk)|(f mod pk), so, left hand side is divisible by

h mod pk, hence, right hand side (g mod pk) is divisible by (h mod pk) which we

wanted.

Note : If we choose g to equal h0 then third statement is true, and so, by the

equivalence of the three statements, we get that (h mod pk)|(h0 mod pk).

Now with all of the above quantities, our aim is now to find a way to calculate h0.

Now for finding h0, we will use lattice-reduction algorithm.

Defining lattice : To apply the results from the section 4.3, we need to introduce a

lattice L representing all the possible polynomials for h0. Let dim(L) = dimension of

L = m. Clearly m ≥ l because the degree of h0 is greater than or equal to the degree of

h. An upper bound for m would be n-1 because a factor (not necessarily irreducible) of

a polynomial has at most degree one less than that the polynomial itself. We will set

the actual value of m later for shorter running time of the algorithm, but we consider

it fixed.

Set L = set of all polynomials in Z[X] with property that if they are taken modulo p

then they are divisible by (h mod p) in Z/pZ.

Claim : A basis of L is given by : {pkXi ; 0 ≤ i < l} ∪ {hXj ; 0 ≤ j ≤ m-l}.
Proof of the claim : Since for basis of L, (h mod p) has to be divide each of these

polynomials mod p. We can see that h divides hXj, hence (h mod p) divides (hXj mod

118

p) as well. The polynomials in the first set are zero when they are taken mod p and

zero can be divided by everything. Hence, all the linear combinations of these basis

elements satisfy the desired property. Now, for checking that these two sets indeed

cover all the polynomials, we can see that there are l + (m-l+1) = m + 1 elements in

the basis of L and they are linearly independent. Hence the claim follows.

Now, we can also calculate the determinant of the lattice L :

dL = det

pk 0 · · · 0 h0 0 · · · 0

0 pk · · · 0 h1 h0 · · · 0

· · · · · · · ·
· · · · · · · ·
0 0 · · · pk hl−1 hl−2 · · ·
0 0 · · · 0 1 hl−1 · · ·
0 0 · · · 0 0 1 · · ·
· · · · · ·
· · · · · ·
0 0 · · · 0 0 · · · 1

= pkl

Claim (A) : h0 can be calculated as the greatest common divisor of some basis elements

of a reduced basis of L.

Proof of the claim : For proving above claim, we need three propositions, which are

discussed below :

Proposition 4.5.2. Let b ∈ L such that pkl > |f |m|b|n. Then h0 divides b in Z[X]

and therefore gcd(f ,b) 6= 1.

Note : |f | = Euclidean norm of (an, an−1, · · · , a0) =
√
|a0|2 + |a1|2 + · · ·+ |an|2.

Proof. Let gcd (f, b) = g. It is enough to show that (h mod p)|(g mod p) because

then by proposition (4.5.1), it follows that h0|b in Z[X] and hence h0 divides b.

Claim (1) : (h mod p)|(g mod p).

proof of the claim : To prove this claim, we assume to the contrary that let (h mod

p)-(g mod p). Since (h mod p) is irreducible in Z/pZ, so, we have that (h mod p) and

(g mod p) are relatively prime in Z/pZ and therefore

sh+ tg = 1− rp (4.21)

119

for some s, t, r ∈ Z[X].

Let deg(g) = e and deg(b) = e’

Define M = {sf + tb; s, t ∈ Z[X], deg(s) < e’ - e, deg(t) < n - e}
We can observe that M is the subset of the set of all polynomials with integer coeffi-

cients and degree lesser than or equal to n + e’ - e - 1, i.e., M ⊂ (Z + ZX + · · · +

ZXn+e′−e−1

Claim (2) : M is a lattice of rank n + e’ - 2e.

Proof of the claim : We can observe that we can define a basis for M by projections

such that it has rank n + e’ - 2e.

Define M’ to be the projection of M on (ZXe + ZXe+1 + · · · + ZXn+e′−e−1).

Claim (3) : Kernel of this above projection is trivial, and so, its image has the same

rank as M itself.

proof of the claim : Suppose (sf + tb) ∈ M projects to zero in M’. Then we have

deg(sf + tb) < e. Since g divides f and b, so, it will also divide (sf + tb) and we get

: (sf + tb) = 0 and hence, s(f/g) = -t(b/g). Since gcd(f, b) = g, it follows that (f/g)

and (b/g) has no common divisor and thus, (f/g) has to divide t and by the analysis

of the degrees of (f/g) and t, we see that t needs to be zero. Similarly, s needs to be

zero which proves that kernel is zero, and hence claim (3) follows.

From the claim (3), we have that M has the same rank as M’. Now, we have that the

projections of {Xif ; 0≤ i < e’-e} ∪ {Xjb ; 0 ≤ j < n-e} on M’ are linearly independent

and span M’. Hence, M’ is a lattice of rank n+e-2e and from the claim (3), we have

that M has the same rank n + e’ - 2e, which proves claim (2).

Now, from the second part of the theorem (4.4.1), we get that :

d(M ′) ≤
e′−e−1∏
i=0

|X if |
n−e−1∏
j=0

|Xjb| = |f |e′−e|b|n−e ≤ |f |m|b|n < pkl (4.22)

In order to derive a contradiction :

Claim (4) : The set {θ ∈ M; deg(θ) < e + l} is a subset of pkZ.

Proof of the claim : let θ be an element of the above set. Then by the definition of

M, g divides θ. So, we can multiply the equation (4.21) by (θ/g) and v(r) = 1 + pr +

p2r2 + · · · + pk−1rk−1. We have done the same calculation in the proof of proposition

(4.5.1), hence we get :

(s1h + t1θ) mod pk = (θ/g) mod pk.

120

where s1 = s(θ/g)v(r) and t1 = tv(r) and hence both are in Z[X].

Since b ∈ L, hence (h mod pk) divides (b mod pk), and we know that (h mod pk)

divides (f mod pk) from equation (4.20). θ ∈ M, so, it a sum of multiple of f and b.

Hence, we have (h mod pk) divides (θ mod pk). Therefore, from the above inequality,

we have that (h mod pk) divides ((θ/g) mod pk). By observing the degrees, deg(h

mod pk) = l and deg((θ/g) mod pk) < e + l - e = l. Hence, ((θ/g) mod pk) has to be

zero, and so, (θ mod pk) has to be zero, which proves claim (4).

Now, choose a basis be, be+1, · · · , bn+e′−e−1 of M’ such that deg(bi) = i. Then we can

observe that the matrix representing M’ corresponding to this chosen basis has upper

triangular form and we can calculate d(M’) easily by multiplying the leading coeffi-

cients. By the observation above, the set ({θ ∈ M ; deg(θ) < e + l} ⊆ pkZ[X]). So,

we have be, be+1, · · · , be+l−1 are all divisible by pk and so are the leading coefficients

of be, be+1, · · · , be+l−1. Hence, we get that d(M’) ≥ pkl but by equation (4.22), we

have d(M’) < pkl. Hence, we get a contradiction. Thus claim (1) follows and hence

proposition.

By the next proposition, we will check that deg(h0) is smaller than m, i.e., h0 ∈ L.

This will be useful to determine the value of m in the algorithm. Clearly, if we can

take m = n-1 to be sure that h0 ∈ L, but we can shorten the algorithm running time

if we can choose m as small as possible.

Before proceeding in the next proposition, first, we will see one another useful theorem

which is useful in the proof of the next proposition.

Theorem 4.5.3. (Landau-Mignotte) : Let f(x) ∈ Z[X], which have degree n and g(x)

∈ Z[X], which is a divisor of f(x) of degree m. Then we have

|g| ≤
(

2m

m

)1/2

|f | (4.23)

Proof. For proving this, firstly, we need following claim :

Claim : |(x - a)h| = |a||(x− ā−1h| for a ∈ C and h ∈ C[X].

Proof of the theorem :

To prove the above claim, define h =
∑n

i=0hix
i and h−1 = hn+1 = 0 and now we

calculate :

121

|(x− a)h|2 =
n+1∑
i=0

|hi−1|xi|2 − ahi|2|xi|2

=
n+1∑
i=0

(hi−1 − ahi)(hi−1 − ahi)|xi|2

=
n+1∑
i=0

(hi−1 − ahi)(hi−1 − āh̄i)|xi|2

=
n+1∑
i=0

(|hi−1|2 − ahihi−1 − āh̄ihi−1 + |ahi|2|xi|2)

Since
n+1∑
i=0

|hi|2 =
n+1∑
i=0

|hi−1|2 + |hn+1|2 − |h−1|2 =
n+1∑
i=0

|hi−1|2

and similarly
n+1∑
i=0

|ahi|2 =
n+1∑
i=0

|ahi−1|2.

So, after using this, we get :

|(x− a)h|2 =
n+1∑
i=0

|āhi−1 − hi|2|xi|2

= |(āx− 1)h|2

= |a|2|(x− ā−1)h|2

and hence we proves the claim.

Now, let a1, a2, · · · , as be the set of the roots of f inside the unit disk and as+1,

as+2, · · · , an be the set of roots of f outside the unit disk which all are in decreasing

order in absolute value and fn be the leading coefficients of f. Then we have :

|f |2 = |fn
s∏
i=1

(x− ai)
n∏

i=s+1

(x− ai)|2

Now using the above claim, we get :

|f |2 = |a1a2 · · · as|2|fn
s∏
i=1

(x− āi)
n∏

i=s+1

(x− ai)|2

122

= |a1a2 · · · as|2|fnxn + · · ·+ (−1)nfn

s∏
i=1

āi
−1

n∏
i=s+1

ai|2

≥ |a1a2 · · · as|2|fn
s∏
i=1

āi
−1

n∏
i=s+1

ai|2

= |fn
n∏

i=s+1

ai|2.

Now, let b1, b2, · · · , bm are the roots of g(x) ordered such that bi ≥ bi+1 for all 1

≤ i ≤ m-1 and g(x) = gm
∏m

i=1(x-bi) =
∑m

i=0gix
i.

Define Si = Set of all subsets of b1, b2, · · · , bm with m-i elements. Then :

|gi| = |gm
∑

Si
(
∏

bj∈Si
bj)|

Since there are
(
m
i

)
=
(
m
m−i

)
such subsets in Si and the absolute value of such a subset

can be at most |b1b2 · · · bm−i|, hence we get :

|gi| ≤ gm
(
m
i

)
|b1b2 · · · bm−i|

Since we have that g|f, so, |b1b2 · · · bm−i| ≤ |as+1as+2 · · · as+m−i| and

|gi| ≤ gm
(
m
i

)
|as+1as+2 · · · as+m−i| ≤ gm

(
m
i

)
|as+1as+2 · · · an| ≤

(
m
i

) |gm|
|fn| |f |

Since g|f, so, we also have that gm|fn and therefore gm
fn
≤ 1, and we get :

|gi| ≤
(
m
i

)
|f |

Thus, we have :

|g| = (
∑m

i=0 |gi|2)
1
2 ≤ (

∑n
i=0

(
m
i

)2|f |2)
1
2 =

(
2m
m

) 1
2 |f |, which proves the theorem.

Proposition 4.5.4. Let b1, b2, · · · , bm+1 be a reduced basis for L and assume pkl >

2
mn
2

(
2m
m

)n
2 |f |m+n, Then we have :

deg(h0) ≤ m ⇐⇒ |b1| < (pkl/|f |m)
1
n

Proof. We will show the proof of the proposition both sides.

⇒ Given deg(h0) ≤ m, so, h0 ∈ L. Hence, applying theorem (4.4.1) part (4) to b1 and

h0, we get : |b1| ≤ 2
m
2 |h0|.

Since we know that h0|f, so, deg(h0)≤m and by the above theorem, we have : |h0| ≤(
2m
m

) 1
2 |f |. So, we get :

|b1| ≤ 2
m
2 |h0| ≤ 2

m
2

(
2m
m

) 1
2 |f | = (2

mn
2

(
2m
m

)n
2 |f |n |f |

m

|f |m)
1
n

< (p
kl
n

|f |m/n) = (pkl

|f |m)
1
n

⇐ Given |b1| < (pkl/|f |m)
1
n ⇒ pkl > |b1|n|f |m. Hence, by previous proposition, we

have that h0|b1 in Z[X] and since deg(b1) ≤ m, so, we have deg(h0) ≤ m.

123

Proposition 4.5.5. Similar to above proposition, let b1, b2, · · · , bm+1 be a reduced

basis for L and assume pkl > 2
mn
2

(
2m
m

)n
2 |f |m+n. Let t be the largest integer in {1, 2,

· · · , m+1} such that |bt| < (pkl

|f |m)
1
n .

Then we have :

deg(h0) = m + 1 - t and h0 = gcd(b1, b2, · · · , bt).

Proof. Deinfe J = set of all indices j such that |bj| < (pkl

|f |m)
1
n . Hence, by the above

proposition (4.5.2), we have h0|bj for all j ∈ J. So, let us define h1 = gcd({bj ; j ∈ J}).
Claim (1): h0 = h1

Proof of the claim : Clearly, we cansee that h0 divides h1.

Claim (2) : There are at most m + 1 - deg(h1) elements in J.

proof of the claim : Since h1 divides all bj (j ∈ J) and the degree(bj) is smaller than

m. So, bj is an element of the lattice L1, which defined through the basis :

Basis for L1 = {h1Xi ; 0 ≤ i ≤ m - deg(h1)}.
Since, by the definition, all the bj’s are linearly independent and there are at most m

+ 1 - deg(h1) linearly independent elements in the lattice L1, so, there are at most m

+ 1 - deg(h1) elements in J. Thus claim (2) proves.

Since in the proof of the above claim (2), we have h0Xi ∈ L for i ∈ {0, 1, · · · , m

- deg(h0)}. Hence, by using the forth part of the theorem (4.4.1), we get :

|bk| ≤ 2
m
2 max{|xi|; 0 ≤ i ≤ m - deg(h0)} = 2

m
2 |h0X

i| = 2
m
2 |h0|.

Now, using Landau - Mignotte theorem, we have that |X ih0| ≤
(

2m
m

) 1
2 |f | for all i ∈

{0, 1, · · · , m - deg(h0)}, so, we get :

|bk ≤ 2
m
2

(
2m
m

) 1
2 |f | < (pkl

|f |m)
1
n for all k ∈ {1, 2, · · · , m + 1 - deg(h0)}.

Since, J was defined to be all the indices such that exactly above inequality holds.

So, {1, 2, · · · , m + 1 - deg(h0)} ⊂ J. Since deg(h1) ≥ deg(h0) and with the above

observation from claim (2) about the upper bound for the number of elements in J,

we get following inequality :

#{1, 2, · · · , m + 1 - deg(h1)} = m + 1 - deg(h1) ≤ #{1, 2, · · · , m + 1 - deg(h0)} ≤
J ≤ m + 1 - deg(h1).

Hence we can conclude that deg(h0) = deg(h1).

Since J = {1, 2, · · · , m + 1 - deg(h0)}, hence, t = m + 1 - deg(h0), and so, deg(h0)

= m + 1 - t.

Now, we know that h0 and h1 have the same degree and h0|h1, so, we know that they

are equal up to a factor in Z, so, we will show that this factor equals to one, i.e., if

content of h1 is one. Then h0 = h1.

124

Claim (3) : h1 is primitive.

Proof of the claim : Choose some arbitrary j ∈ J and let cj be the content of bj. We

know that all bj are divisible by h0 and h0 is primitive, so, h0| bjcj . By the definition of

L, we have that bj/cj ∈ L. But bj is the basis element of L, so, cj = 1 for all j ∈ {1,

2, · · · ,t} and hence the content of h1 = gcd(b1, b2, · · · , bt) is one. So, h1 is primi-

tive, which proves the claim (3), and hence claim (1) follows. Therefore, proposition

follows.

Thus, from the above proposition, we can find an irreducible factor of f(x), and by

repeating this algorithm for different (h mod p) and taking all the reducible factors of

(f(x)) as a new f(x), we can find out all the irreducible factors of f(x).

Remark 4.5.6. Deciding the value of p : Define p to be the smallest prime not

dividing R(f(x), f ’(x)) because we choose p such that equation (4.19) and (4.20) holds.

Claim : The above chosen value of p is reasonable, i.e., for this value of p, equation

(4.19) and (4.20) holds.

Proof of the claim : Since we know that R(f(x), f ’(x)) is up to sign equal to the

product of the leading coefficients fn and the discriminant D(f) of f (using lemma

(4.2.1)). Since, we choose p such that R(f(x), f ’(x)) 6= 0 (mod p), hence, we have

fnD(f) 6= 0 (mod p) and therefore fn 6= 0 (mod p) and D(f) 6= 0 (mod p).

Now, we see that, if we choose any two roots of f, say xi and xj, then since D(f) 6= 0

(mod p), hence (xi - xj) 6= (0 mod p) which means that xi and xj are not differ by a

multiple of p. Hence (xi mod p) 6= (xj mod p) and (x - xi mod p) 6= (x - xj mod p).

For proving the contradiction of equation (4.19), i.e., there are multiple roots in (f

mod p), we would need (x - (xi mod p)) to be equal to (x - (xj mod p)) for some choice

of xi and xj, but from the above discussion, we can say that there are none.

Since (h mod p)|(f mod p), hence equation (4.20) satisfies for the choice of p, which

proves our claim.

Remark 4.5.7. Deciding the value of k : We decide k such that equation (4.18),

(4.19) and (4.20) is satisfied for the prime p which we specified in the above remark.

If we set, k =1 then we can observe that equation (4.18), (4.19) and (4.20) holds.

Since for using the results from the three propositions, we need the equation pkl >

2
mn
2

(
2m
m

)n
2 |f |m+n (proposition 4.5.4) to hold. Recall that l ≤ deg(h0) ≤ m. Degree of

h0 can not be grater than m, because h0 ∈ L, otherwise, h0 is not in the lattice, and

we can not find out h0 with the results above. Since in the worst case deg(h0) = n-1,

125

hence set m = n - 1 in the above inequality, and define k to be the least integer such

that the inequality holds, i.e.

k = min{k ∈ Z; pkl > 2
n(n−1)

2

(
2n− 2

n− 1

)n
2

|f |2n−1} (4.24)

Clearly, equation (4.18) and (4.19) satisfy and we have already shown that equation

(4.20) is satisfied by using Hensal’s lifting lemma for any integer k ≥ 2.

Remark 4.5.8. We can choose m smaller such that the running time of the algorithm

becomes shorter. For this we can follow this way :

Let v be such that l ≤ bn−1
2v
c. Choose mi = b (n−1)

2v−i c for 0 ≤ i ≤ v and check that if

deg(h0) ≤ mi, by the result of proposition (4.5.4) for every value of mi. As soon as

deg(h0) ≤ mj for some mj, then calculate h0 using proposition (4.5.5). So, for every

choice of mi, we first determine a reduced basis b1, b2, · · · , bm+1 by the LLL-Algorithm

and then we check if deg(h0) ≤ mi by checking if |b1| < (pkl/|f |m)
1
n . If the inequality

holds, we can calculate h0 by the equation h0 = gcd(b1, b2, · · · , bj), if not, continue

with the next value of mj+1. Since we know that m goes up to n - 1, it is guaranteed

that we will find h0 sooner or later.

4.5.1 Lenstra - Lenstra - Lovasz (LLL) Algorithm for factor-

ing a nonconstant polynomial:

Let R(f(x), f ’(x)) = r ;

g(x) = 1 ;

If (r = 0) {
g(x) = gcd(f(x), f ’(x)) ; f = f/g ; r = R(f(x), f ’(x));

}
Choose p = smallest prime number such that p-r.

H = {h mod p ; (h mod p) is irreducible factor of (f mod p)} (using Berlekamp’s

Algorithm)

Define f1 = 1 ; f2 = f ;

While (f2 6= 1) { h = some arbitrary element of H; l = degree of h;

If (l = n) {
h0 = f };
break ;

k = min{k ∈ N; pkl > 2
n(n−1)

2

(
2n−2
n−1

)n
2 |f |2n−1};

126

Modify h by using Hensal lifting lemma.

(**) m = n - 1;

Call LLL algorithm (4) of section (4.3) to {pkX i ; 0≤i<l} ∪ {hXj ; 0≤j≤m-l}
j = greatest integer such that |bj| < (pkl/|f |m)

1
n (bj means - one of the reduced basis

from above chosen basis)

h0 = gcd(b1, b2, · · · , bj) (**)

f1 = f1h0 ; f2 = f2/h0;

H0 = {h mod p ; (h mod p)|(h0 mod p)} ;

H = H\H0 ;

}
Now, let g1 = 1; g2 = g;

while (g2 6= 1) {
Check all factors of f if they divide g2. Let f̄ divide g2.

g1 = g1f̄ ; g2 = g2/f̄ ;

}

If we use remark 4.5.8 for optimizing the running time of the algorithm by smaller

value of m, then we can replace line 16 to 20 (means (**) to (**)) by the following

algorithm :

Define u = max{ u ∈ N; l < (n−1)
2u
};

While (m ≤ (n-1) {
m = b (n−1)

2u
c ;

Call LLL algorithm (4) of section (4.3) to {pkX i ; 0≤i<l} ∪ {hXj ; 0≤j≤m-l}
If (|bj| < (p

kl

|f |)
1
n) {

h0 = gcd(b1, b2, · · · , bj);

m = n;

}
u = u - 1;

}

127

128

Bibliography

[1] Dickson, L. E.,“History of the theory of numbers”, Vol. I, G. E. Stechert and

company, 1934.

[2] Neil Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag,

New York, second edition, 2010.

[3] Kapil H. Paranjape, Notes on Miller-Rabin primality test, available at

http://www.imsc.res.in/ kapil/crypto/index.html.

[4] Abhijit Das, Computational Number Theory, CRC Press, first edition, 2013.

[5] David M. Burton, Elementary Number Theory, Tata McGraw-Hill Education

Private Limited, sixth edition, 2011.

[6] M.Agrawal, N. Kayal and N. Saxena, “Primes is in P”,Annals of Mathematics

160(2), 2004, 781-793.

[7] A. Schnhage and V. Strassen, Schnele multiplikation, grosser zahlen. Computing

7 (1971), 281-292.

[8] Henri Cohen, A Course in computational algebraic number theory, Springer-

Verlag, Graduate texts in mathematics;138, 1996.

[9] Dummit and Foote, Abstract Algebra, second edition, John Wiley and Sons,

Inc., 1999.

[10] M. Dietzfelbinger, Primality Testing in Polynomial Time, Springer, 2004.

[11] Alford, Granville and Pomerance, there are infinitely many carmichael numbers,

Ann. of Mathematics 140(3), 1994, 703-722.

[12] Joachim von zur Gathen and Jurgen Gerhard, Modern Computer Algebra, Cam-

bridge University Press, 1999.

129

[13] R. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press,

1997.

[14] H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbachs prob-

lem, Acta Arith. (27) 1975, 353370.

[15] Manasse, Pollard, Lenstra, Lenstra, The number field Sieve, Lecture notes in

Mathematics, 1993.

[16] J. M. Couveigne, Computing a square root for the number field Sieve. Lecture

notes in Mathematics, 1993.

[17] D. E. Knuth, The art of Computer programming, Semi numerical algorithms,

second edition, volume - 2.

[18] Pomerance, Buhler, Lenstra, Factoring integers with number field Sieve, Lecture

notes in Mathematics, 1993.

[19] Manasse, Pollard, Lenstra, Lenstra, The factorization of the ninth Fermat num-

ber, Mathematics of computation, 1993.

[20] D. H. Wiedemann, Solving sparse linear equations over finite fields, IEEE trans-

actions on information theory, issue - 1, 1986.

[21] Victor Shop, A Computational Introduction to number theory and algebra, Cam-

bridge university press, 2005.

[22] Buchmann, Loho and Zayer, An implementation of the general number field

Sieve, Advances in Cryptology (Proceeding of Crpto ’93)(Berlin), Lecture Notes

in computer science, no 773, Springer-Verlag, 1994, pp. 50 - 94.

[23] Jean-Marc Couveignes, Computing a square root for the number field Sieve, In

Lenstra and Lenstra [29], pp. 95-102.

[24] Henri Cohen, A Course in computational algebraic number theory, Graduate

Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993.

[25] A. K. Lenstra, D. J. Bernstein, A general number field Sieve implementation,

In Lenstra and Lenstra [29], pp. 103-126.

[26] Thomas W. Hungerford, first edition, Algebra, Springer-Verlag, New York,

2004.

130

[27] Huizing, An implementation of the number field Sieve, Experimental mathemat-

ics (5) 1996, no. 3, 231-253.

[28] Friedberg, Insel, Spence, Linear algebra, Prentice-Hall, Englewood Cliffs, New

Jersey, Second edition, 1989

[29] A.K. Lenstra, H.W. Lenstra, The development of the number field Sieve, Lecture

notes in mathematics, vol. 1554, springer-verlag, berlin, 1993.

[30] Niven, Zuckerman, Montgomery, An introduction to the theory of numbers, fifth

edition, John Wiley and Sons, New York, 1991.

[31] Peter Montgomery, Square roots of products of algebraic numbers, Mathematics

of computation 1943-1993, 1993.

[32] J. M. Pollard, The lattice Sieve, In lenstra and lenstra [29], pp. 43-49.

[33] McCurley, Golliver, Lenstra, Lattice sieving and trial division, Algorithmic

number theory, Lecture notes in computer science, Springer-Verlag, Berlin,

1994.

[34] Hans Riesel, Prime numbers and computer methods of factorization, second

edition, Progress in mathematics, vol. 126, Birkhausar, Boston, 1994.

[35] Stewart, Tall, Algebraic number theory, second edition, Chapman and Hall,

London, 1987.

[36] Cohen, Cuypers, Sterk, Some Tapas of computer algebra, pp. 66-90, Springer-

Verlag, 1999.

[37] E.R. Berlekamp, Factoring polynomials over finite fields, Bell systems technical

journal 46, 1967.

[38] A.K. Lenstra, H.W. Lenstra, L. Lovansz, Factoring polynomials with rational

coefficients, pp. 515-534, 1982.

[39] A. Schnhage and V. Srassen, Schnele multiplication grosserr zahlen, Computing

7 (1971), 281-292.

[40] Joachim von zur Gathen and Jurgen Gerhard, Modern Computer Algebra, Cam-

bridge University Press, 1999.

131

	Notation
	Asymptotic Notation for Runtime Analysis
	Abstract
	Introduction
	I Primality
	Primality Testing Algorithms
	The Sieve of Eratosthenes Primality test and Trial Division
	 Algorithm (The Sieve of Eratosthenes)
	Algorithm (trial division)

	Wilson's characterization of primes
	Algorithm
	Wilson's Theorem

	Euler Test and Lucas test
	Algorithm (Euler test)
	Euler Theorem
	Lucas Theorem
	Algorithm (Lucas test)

	Fermat Test and Carmichael Numbers
	Algorithm (Fermat Test(n))
	Fermat Little theorem
	Fermat witness and Fermat liar
	Idea of the Algorithm
	Carmichael Numbers and Their Some Properties
	Chinese Remainder Theorem
	Correctness of the Algorithm

	The Miller-Rabin primality Test
	Algorithm (Miller-Rabin(n))
	Idea of the algorithm
	Correctness of the algorithm
	Run time analysis

	Primality Certificate
	AKS Algorithm
	Algorithm
	Idea of the algorithm
	Correctness of the algorithm
	Runtime Analysis of the Algorithm

	II Integer Factorization and Polynomial Factorization
	Integer factorization algorithms
	Pollard Rho Method
	Algorithm
	Refinement of the Algorithm :
	Running time Analysis

	Pollard p-1 method
	Algorithm
	Complexity of the algorithm

	Fermat Factorization and Fermat Factor base Method
	Fermat Factorization method
	Algorithm (Fermat Factorization)
	Generalized Fermat factorization Algorithm
	Fermat factor base method
	Idea of the algorithm
	Factor base Algorithm
	Running time analysis

	The continued fraction method
	Continued fractions
	Idea of the continued fraction factoring method
	Continued fraction factoring algorithm
	Running time of the algorithm

	The Quadratic Sieve Method
	Idea of the algorithm
	Algorithm
	Running time Analysis

	The Number Field Sieve
	Special Number Field Sieve (SNFS)
	SNFS Algorithm :
	General number field Sieve (GNFS)
	GNFS Algorithm

	Polynomial Factorization
	Resultant and some useful properties
	Discriminant of function :
	Lattice and reduced basis
	Gram-Schmidt orthogonalization
	Reduced basis of Lattice
	Procedure to find a reduced basis
	LLL Algorithm

	Some important properties of reduced basis
	Polynomial factorization method using LLL algorithm
	Lenstra - Lenstra - Lovasz (LLL) Algorithm for factoring a nonconstant polynomial:

	Bibliography

