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Notation

Chapter-1

ε Coupling Parameter

ps Probability of random links

pt Probability of link change

η site of 1st neighbour (randomly chosen with probability ps and regularly chosen with (1 - ps))

ξ site of 2nd neighbour (randomly chosen with probability ps and regularly chosen with (1 - ps))

Z(n) Synchronization error function

Tsync Time to reach synchronization

Lintermittant Time duration of intermittant behavior

Chapter-2

τ0 Total period of disease cycle

τI Period for which individual is infected

τR Period for which individual is refractory/immune

S0 Initial fraction of Susceptible individuals in the population

R0 Initial fraction of Refractory individuals in the population

It Fraction of Infected individuals in the population at time ’t’

η Initial fraction of refractory population having randomly different phases

χ Range from which initial phases of refractory individuals is taken
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Abstract

Chapter-1 Connection topology is the key to controlling the spatio-temporal dynamics of

coupled maps, and varying the fraction of random links can tune the system from spatio-

temporal chaos to synchronized stable fixed points. Here we consider a network of chaotic

maps, where the sites connect to nearest neighbours with probability (1−ps), and to random

non-local sites with probability ps. Further we consider that the underlying links in the

system can switch with probability pt, keeping the average fraction of random links the

same. This implies that when pt is unity, the links in the network change at each iteration,

with the new links being random with probability p. We study two kinds of variation of

the links. We consider the scenario where the links change independently at the local level,

namely, the coupling connections of every node is switched with probability pt. Our central

result is that the probabilistic switching of links, at the local or global level, yields a sharply

increasing range of synchronized fixed point, as one goes from a completely static network

to completely dynamic one. Further, for small pt, we observe that different realizations of

the connectivity matrix, with the same fraction of random links, synchronizes at different

values of coupling strength, and so there is a spread in the values of the critical coupling

strength necessary for synchronization. However, as we go towards the completely dynamic

limit (pt = 1) there is rapid convergence to a specific critical coupling strength, indicating

that dynamic rewiring acts like a self-averaging mechanism, as the network evolves under

many different connection matrices drawn from an ensemble of matrices with the same p,

over time. The enhanced spatio-temporal regularity obtained under dynamic links is also

verified through linear stability analysis about the synchronization manifold. Lastly, for low

probabilities of link change, we find that the system shows intermittency, and as the links

switch more frequently, this intermittency gives way to perfect synchronization.

Chapter-2 We investigate the emergent infection spreading patterns in a population on

2-Dimensional lattice based on a cellular automata model of the SIRS disease cycle. We

observed that in a population consisting of randomly distributed refractory and susceptible

individuals, an infection seed can lead to persistent infection in the population. Further,

our results suggest that the size of the infected sub-population depends on the dynamical

characteristics of the disease cycle, and on the heterogeneity of the population in which the

disease spreads.
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Chapter 1

Regularizing influence of

Dynamical Links

1.1 Introduction

Networks of coupled dynamical systems capture the essential spatiotemporal features of

large interactive systems with complex dynamics at the local scale [13]. Most studies so far

have focussed on static networks. However, in many realistic scenarios the links between

the constituent sub-systems are likely to change over time. In fact a wide range of extended

systems of biological, technological and physical significance are better described by a dy-

namically changing web of connections. Motivated by this, we will study the spatiotemporal

dynamics of networks of coupled systems where the links change with a certain prescribed

probability.

1.2 Model

We consider a one dimensional ring of coupled strongly chaotic logistic maps. The sites are

denoted by i = 1, 2, 3, ....N where N denotes the linear size of the lattice. The evolution of

this lattice, in discrete time n is given by

xn+1(i) = (1− ε)f [xn(i)] +
ε

2
{xn(ξ) + xn(η)} (1.1)

where,

f(x) = 4x(1− x) (1.2)

and ε is the coupling strength.We also define a parameter ps which represents the probability

of links being random. Here, ξ = i + 1 with probability 1 − ps and is a randomly chosen

integer ξ (1 ≤ ξ ≤ N) with probability ps. Similarly, η = i − 1 with probability 1 − ps

1



and is a randomly site with probability ps. The ps = 0 case corresponds to regular nearest

neighbour coupling and ps = 1 corresponds to completely random connections.

Now we consider a situation wher the connections in the network can vary in time. If

the switching of links occurs at every dynamical time step, then it is a completely dynamic

networks, aqnd if ξ and η do not change in time then it is a completely static network.

Our focus here is to study the transition between these two limits. We do this through a

parameter pt which gives the probability with which a link in the network can change. If

pt = 0 then we have the case of quenched links (ξ and η fixed in time) and if pt = 1 then all

links switch at every time step.

So the link switching criterion is local, and the links of every node(site), at every instant

of time, can change independently with probability pt. It is evident then, that if a node

swtiches links at a certain point in time, the other nodes may or may not switch their

connections. The frequency of changing connections, on an average, is determined by the

probability pt. This is in contrast with the network changing all the links globally with a

certain probability, i.e. the scenario where the entire connectivity matrix of the network

changes at certain points in time.

In this work, we investigate the asymtotic dynamics of this network, evolving from ran-

dom initial conditions. Specifically, we examine the spatiotemporal implications of varying

the coupling strength ε, and the link switching probabilty pt.

1.3 Analysis

Through extensive numerical simulations of this dynamical network we obtain bifurcation

diagrams with respect to couplinbg strength ε. From these bifurcation diagrams we find the

critical coupling strength εc such that one obtains spatio-temporal syncronization, namely

a spatio-temporal fixed point, for ε ≥ εc

1. pt = 1.0, ps = 1.0. This is the regime where one has a completely random network

with the links switching at every iteration. Fig. 1.3-[top-left] shows that the critical

coupling strength εc ≈ 0.54.

2. pt = 1.0, ps = 0.65. Here links are switched at every time step. However, the proba-

bility of these links being spatially random is reduced. Fig. 1.3-[top-right] shows that

this decrease in randomness in spatial connections reduces the range of spatiotemporal

syncronization, with the critical coupling strength now being εc ≈ 0.62.

3. The case of pt = 0.5, ps = 0.65 is displayed in Fig. 1.3-[bottom-left] and that for pt =

0.1, ps = 0.65 in Fig. 1.3-[bottom-right]. With decreasing pt, at fixed ps, the critical

coupling strength εc increases from ≈ 0.66 for pt = 0.5 to ≈ 0.91 for pt = 0.1. Namely

as the probability of changing links decreases, the range for the spatio-temporal fixed

2



point decreases. So a more dynamic web of links is more favourable for inducing

spatiotemporal regularity in coupled chaotic systems.

Now, we consider low probability of link change, namely a network near the static

limit, with pt close to zero. The analysis in this regime is complicated by the fact that one

obtains a range of critical coupling strengths, with εc being strongly dependent on the initial

configuration of links. A deeper understanding is gained by studying the distribution of εc,

at fixed pt and ps, for different initial conditions, as displayed for representative cases in

Fig. 1.2.

It is clear from Fig. 1.2 that for the case of pt = 0.0, i.e. a static network with quenched

links, there is a spread of critical coupling strengths εc, with the range being approximately

[0.73 : 0.97], and the most probable value being ∼ 0.85. As pt increases, for instance when

pt = 0.01, we observe that the spread of critical coupling strength εc narrows considerably,

and the most probable value alo shifts to a smaller value. Lastly, for the limiting case of

pt = 1.0, it is clear that the critical coupling strength εc rapidly converges to a single value.

This is a reflection of the “self-averaging” arising from dynamically changing links, as pt

becomes larger.

Now we analyze the variation of the average critical coupling strength 〈εc〉 with respect

to the probability of link change pt. Figs. 1.3 display the average critical coupling strength

(in red), the maximum value of critical coupling strength εcmax observed (in green) and the

mimimum value of critical coupling strength εcmin observed (in blue). From the plots it is

evident that 〈εc〉 diplays a clear trend under increasing pt, even at low pt when the εcmin

and εcmax values are rather far apart.

1.3.1 Interplay of ps and pt on spatio-temporal regularity

The next part of our analysis is to uncover the effect of ps on the dependence of the critical

coupling strength 〈εc〉 on pt. In order to do this, we examine the 〈εc〉 vs pt curves for different

values of ps, and attempt to fit a suitable functional form to capture the trend.

We explored a power-law fit, given by:

〈εc〉 =
1

(pt)a
+ b (1.3)

with a and b being the fitting paramters.

For the best possible curve fit analysis, we took the datapoints in the range pt = [0.25−
0.75]. Fig. 1.4 shows the data alongside the fitted curve.

The values of the fitting paramters a and b are tabulated below:

3



ps a b

0.5 0.0656857 -0.328514

0.65 0.0724886 -0.384942

0.7 0.07449 -0.400539

0.8 0.0801529 -0.428067

0.9 0.0847064 -0.446896

Dependence of parameters a and b on ps:

Fig. 1.5 shows the variation of fitting parameter a on ps.

Fig. 1.5 shows the variation of fitting parameter b on ps.

1.3.2 Synchronization

We now study the degree of syncronization in the system quantitatively through the syn-

chronization error function defined as

Z(n) =
1

N

N∑
i=1

[xn(i)− x∗]2 (1.4)

averaged over time n and calculated after transient time. Here x∗ is the fixed point for the

logistic map equal to 0.75.

In the results displayed here, the synchronization error is averaged over 10000 time steps,

after a transient time of 100 steps for 100 different initial conditions. The value of ps is 0.65.

Fig. 1.7-[top] shows the variation of the averaged synchronization error 〈Z〉 (in red), the

maximum synchronization error Zmax (in green), the minimum synchronization error Zmin

(in blue) as a function of coupling strength ε, for pt = 0 (i.e. a static network). At low

coupling strengths (ε ∈ [0.0 − 0.1]), and at very high coupling strengths (ε ≥ 0.95), 〈Z〉,
Zmin and Zmax are equal, i.e. different initial conditions yield the same spatio-temporal

dynamics. The range of coupling in-between these is of interest as a spread is observed here

between Zmax and Zmin, implying that different initial conditions lead to different degrees

of synchronization. However, the averaged synchronization error 〈Z〉 shows a clear trend,

as it decreases with increasing ε, finally becoming zero at εc ≈ 0.85. That is, for ε ≥ εc

we obtain complete syncronization. Another interesting observation is a dip at around

ε = 0.2, signifying enhanced synchronization around that coupling strength. This is due to

the existence of stable 2-cycle over a small range of coupling strengths.

Fig. 1.7-[middle] shows the case of pt = 0.01. Now the seperation in Zmin and Zmax

is negligible for entire coupling range (ε ∈ [0.0 : 1.0]), signifying that almost all initial

conditions evolve to same spatio-temporal state, i.e. there exists a global attractor for the

dynamics. The dip in 〈Z〉 is still discernable at around ε = 0.2. The bifurcation diagram

around this coupling strength is shown in Fig. 1.8.
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Fig. 1.7-[bottom] shows the results for pt = 0.5. The dip around ε = 0.2 is gone and

there is a smooth trend for 〈Z〉. This implies that the 2-cycle at weak coupling is destroyed

when the links change too frequently. However at strong coupling the dynamic links stabilize

a larger range for the spatiotemporal fixed point.

We have also studied the variation of Z with respect to pt. Fig. 1.9 shows the variation

of the averaged synchronization error 〈Z〉 (in red), the maximum synchronization error

Zmax (in green), the minimum synchronization error Zmin (in blue) as a function of pt, for

coupling strength ε = 0.65. It is evident that 〈Z〉 decreases as pt increases upto a critical

point pt ≈ 0.54, and there onwards is zero till pt = 1.0. This implies that if the probability

of changing links is higher than ∼ 0.54, one obtains complete synchronization.

A noteworthy trend here is that the separation of Zmin and Zmax rapidly decreases as

pt increases.

Fig. 1.10 shows the variation of 〈Z〉 with changing pt, for ε = 0.7. In this case, the critical

point after which complete synchronization is observed is around 0.28. Hence it is evident

that at higher coupling strengths larger range of pt exhibits complete synchronization.

1.4 Average time to reach Synchronization

We define an order parameter Tsync, which represents the time after which the network is

completely syncronized. We then study its variation with respect to pt and ε at different

values of ps. Specifically we calculate the average 〈Tsync〉, the maximum time Tsyncmax and

minimum time Tsyncmin.

Figs. 1.11 show the case of pt = 0.01 and pt = 0.1. The separation of the minimum

and maximum values of Tsync is large for low ε which then decreases consderably at higher

coupling strengths. Further for large pt, i.e. when the links change frequently, the spread in

synchronization time narrows considerably. This is a reflection of the self-averaging effect

of dynamic links.

We further, explored the trend of 〈Tsync〉 under variation of ps, pt and system size N .

We show representative cases in Figs. 1.12-1.14. It i clear that for smaller system, i.e. low

N , the sudden drop in the time needed to reach synchronization begins at lower coupling

strengths ε.

We have also investigated the dependence of the time needed to reach synchronization

〈Tsync〉 vs. pt. Representative results are displayed in Figs. 1.15-1.17.

1.4.1 Intermittent approach to synchronization

The system here mainly exhibits two kinds of dynamics after transience, either it syncronizes

to the fixed point completely or it stays chaotic. But here another regime is observed, where

the system displays synchronized periods with bursts of unsyncronized behaviour. This is
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illustrated by the time-series of a representative case shown in Fig. 1.18. As it can be seen,

the system shows almost complete spatiotemporal syncronization around t1 = 2500 for the

first time, but subsequently loses it, syncronizing again around t2 = 4600, after which it

remains synchronized upto the limits of our simulation time.

We define a parameter  Lintermittant which reflects for the time duration of such intermit-

tent behaviour. This is the time between the the first event of near complete spatiotemporal

syncronization and the last unsynchronized burst observed. Specifically, without loss of gen-

erality, we consider a system synchronized if the synchronization error Z < 0.00001.

We find the average of this parameter over 100 diifferent initial, and we follow the system

up to 5000 iterations. In particular, we study the dependence of the intermittent period on

the coupling strength.

Figs. ?? show that there is no intermmitency, i.e.  Lintermittant = 0, for the completely

chaotic region at low coupling strengths, and the completely syncronized region at high cou-

pling strengths. However, for a range of coupling around the critical coupling strength, the

average length of the intermittent period increases and then decreases, reaching a maximum

around εc. It is further evident that as the probability of changing links increases, the range

of coupling strengths over which this intermittent approach to synchronization is observed,

decreases.

Fig. 1.20 shows the dependence of the intermittent period on the probaility pt of link

change, and a similar qualitative picture is seen here as well.

1.5 Generality of Results

In order to gauge the generality of our results, we also analysed a network of Exponential

Maps (also known as the Ricker Map). These are given by the dynamical equation:

f(x) = x er(1−x) (1.5)

We take parameter r to be 2.6, where the map is strongly chaotic.

Representative results are shown in Fig. 1.21. Clearly, spatiotemporal synchronization

is obtained at coupling strengths ε > εc, where εc = 0.48 for pt = 1.

Now, for 100 different initial conditions, the variation of 〈εc〉, εcmax and εcmin with

respect to pt was calculated, and the results are displayed in Fig. 1.22. It is evident that

the qualitative picture is same as in a network of chaotic logistic maps. Namely, we again

observe a wider separation between εcmax and εcmin at very low pt (.e. close to the static

limit), and this shrinks rapidly as pt increases. As before, we also find a smooth decreasing

trend for 〈εc〉 with increasing pt. So it is clear that more frequent link changes enhances

the range of spatiotemporal synchronization, with the critical coupling strength necessary
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to obtain the spatiotemporal fixed point being lower in networks with faster variation in

connectivity.
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Figure 1.1: State of the system xn(i), i−1, . . . N , for a network of size N = 50, with respect
to coupling strength ε. The plot shows 5 superimposed iterates after 2000 transient steps,
for 10 random initial conditions. pt = 1.0 and ps = 1.0 (top left); pt = 1.0 and ps = 0.65
(top right); pt = 0.5 and ps = 0.65 (bottom left); pt = 0.1 and ps = 0.65 (bottom right).

Figure 1.2: Distribution of critical coupling strengths εc obtained for a network of size N =
50 with ps = 0.65 for 1000 different initial conditions. Here pt = 0.0 (left); pt = 0.01, 0.1, 1.0
(right).
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Figure 1.3: Averaged critical coupling strength 〈εc〉 with respect to the probability of link
change pt, in a network of size N = 50, with ps = 0.65.

Figure 1.4: Variation of the average critical coupling strength 〈εc〉 on the probability of link
change pt, for fraction of random links ps equal to (from top to bottom): 0.5; 0.65; 0.7; 0.8;
0.9.
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Figure 1.5: Plot of parameter a (see Eqn. 1.3) vs pt. The best fit line has slope equal to
0.0480409 (with standard deviation equal to 2.764%) and intercept equal to 0.0413957 (with
standard deviation equal to 2.319%)

Figure 1.6: Plot of parameter b (see Eqn. 1.3) vs pt. The best fit line has slope equal to
0.334595 (with standard deviation equal to 6.018%) and intercept equal to 0.0413957 (with
standard deviation equal to 8.25%)
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Figure 1.7: variation of the averaged synchronization error 〈Z〉 (in red), the maximum
synchronization error Zmax (in green), the minimum synchronization error Zmin (in blue) as
a function of coupling strength ε, for pt = 0 (i.e. a static network) [top]; pt = 0.01 [middle];
pt = 0.5 [bottom].
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Figure 1.8: Bifurcation diagram showing the state of the system xn(i), i = 1, . . . N , for a
system of size N = 50, with respect to coupling strength ε.

Figure 1.9: variation of the averaged synchronization error 〈Z〉 (in red), the maximum
synchronization error Zmax (in green), the minimum synchronization error Zmin (in blue)
as a function of pt, for ε = 0.65.
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Figure 1.10: variation of the averaged synchronization error 〈Z〉 (in red), the maximum
synchronization error Zmax (in green), the minimum synchronization error Zmin (in blue)
as a function of pt, for ε = 0.7.

Figure 1.11: Variation of the average time needed to reach the synchronized state 〈Tsync〉,
the maximum time Tsyncmax and minimum time Tsyncmin with respect to coupling strength
ε. To calculate 〈Tsync〉 we average over 3000 time steps and 500 different initial conditions.
Here the size of the system is N = 50, ps = 0.65, and pt = 0.01 [top]; pt = 0.1 [bottom].
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Figure 1.12: Variation of the average time needed to reach the synchronized state 〈Tsync〉
the maximum time Tsyncmax and minimum time Tsyncmin with respect to coupling strength
ε.. To calculate 〈Tsync〉 we average over 3000 time steps and 500 different initial conditions.
Here ps = 0.65, N = 50 and pt = 0.01; 0.02; 0.1; 0.5.

Figure 1.13: Variation of the average time needed to reach the synchronized state 〈Tsync〉,
with respect to coupling strength ε. To calculate 〈Tsync〉 we average over 3000 time steps
and 500 different initial conditions. Here N = 50, pt = 0.01, and ps = 0.65, 0.75, 0.85, 1.0.
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Figure 1.14: Variation of the average time needed to reach the synchronized state 〈Tsync〉,
with respect to coupling strength ε. To calculate 〈Tsync〉 we average over 3000 time steps
and 500 different initial conditions. Here pt = 0.01, ps = 0.65 and N = 50, 75, 100, 150.

Figure 1.15: Variation of the average time needed to reach the synchronized state 〈Tsync〉,
the maximum time Tsyncmax and minimum time Tsyncmin with respect to probability pt of
link change. To calculate 〈Tsync〉 we average over 3000 time steps and 500 different initial
conditions. Here ε = 0.65, ps = 0.65.
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Figure 1.16: Variation of the average time needed to reach the synchronized state 〈Tsync〉,
with respect to probability pt of link change. To calculate 〈Tsync〉 we average over
3000 time steps and 500 different initial conditions. Here ε = 0.75, N = 50; ps =
0.5, 0.65, 0.75, 0.85, 1.0.

Figure 1.17: Variation of the average time needed to reach the synchronized state 〈Tsync〉,
with respect to probability pt of link change. To calculate 〈Tsync〉 we average over 3000 time
steps and 500 different initial conditions. Here ε = 0.75, ps = 0.65; N = 50, 75, 100, 150.
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Figure 1.18: Time evolution of a system of coupled chaotic logistic maps, with pt = 0.01,
ps = 0.65, ε = 0.78 and N = 50.

Figure 1.19: Lintermittant vs. Coupling Strength for the case of local link changes, with
fraction of random links ps = 0.8, link switching probability pt = 0.01(red); 0.1(green);
1.0(blue). Here network size N = 100, and Lintermittent is obtained by aver- aging over 100
realizations.
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Figure 1.20: Lintermittant with respect to the probaility pt of link change, for a system of size
N = 50, with ps = 0.65 and ε = 0.65, averaged over 100 realizations and system followed
up to 2000 iterations.

Figure 1.21: Variation of the state of the system xn(i) (i = 1, . . . , N and n = 1, . . . , 5 after
a transient time of 1000 iterations), with respect to coupling strength ε, at pt = 1.0. The
system size N = 50, and probability of spatial randomness ps is 0.65.
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Figure 1.22: Variation of the average critical coupling strength necessary to obtain the
synchronized state 〈εc〉, the maximum coupling strength εcmax and the minimum coupling
strength εcmin, with respect to probability pt of link change. Here ps = 0.65 and N = 50.
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Chapter 2

A Cellular Automata Model of

disease spread on a 2-Dimensional

lattice

2.1 Introduction

How does a disease spread in a population? A question which has been greatly explored

over the years. Various cases of epidemics and their phenomenological descriptions have

been studied by the scientists.[18, 19, 20]

Mathematically, epidemiological models have been given to understand the dynamics of

infectious disease.[21, 22] In a paper by Hethcote (1976) a well known model for disease

progression: the SIRS cycle is explained. This model fits appropriately for diseases such as

small pox, tetanus, influenza , typhoid fever and cholera[23]. Recently, a study by Ozcaglar

(2012) has provided a review of earlier study on modeling different aspects of tuberculosis

dynamics.[24]

Here in this work we focus on disease progression described by cellular automata model of

SIRS cycle. Based on this model, work has been done previously to study the spread of in-

fection within a population where the interactions are described by small world network.[25,

26, 27]

Rhodes and Anderson (1996) presented a lattice-based epidemic model of a non-fatal com-

municable disease in a mobile host population in which they observed novel dynamical

behaviour.[28]

In this work we consider a lattice-based epidemic model where the population is represented

by a 2-D lattice with the nodes representing the individuals and the individual follow the

SIRS cycle of disease progression.
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2.2 Model

We consider a population spread to be represented by a 2-D lattice of dimensions (MxN),

where every node has 4 neighbors and with open boundaries. We further consider at the

individual level the disease progresses in accordance with the well-known epidemiological

model : the SIRS cycle.

The SIRS cycle can be elaborated in following steps : at the outset an individual is susceptible

to infection (a stage denoted by S); on infection with other infected people, the individual

moves to infectious stage (I). This is followed by a refractory stage (R), in this stage the

individual becomes immune to disease and also does not infect others. But this immunity

is temporary as the individual becomes susceptible again after some time interval.[27] Here,

we impose a condition that a susceptible(S) will become infected(I) if one or more of any of

its neighbours is infected.

Mathematically, the model is explained as follows:

Time is taken in discrete steps. Each element is characterized by a time counter τij(t) =

0,1,.....τI + τR = τ0, describing its phase in the cycle of the disease.[25] So at any time t,

if τij(t) = 0 , then individual at site (i,j) is susceptible,

if 1 ≤ τij(t) ≤ τI then it is infected and

if τij(t) > τI it is in refractory stage.

For, τij(t) 6= 0 the dynamics is given by τij(t+1) = τij(t) + 1, but when the cycle reaches

the end the individual becomes susceptible again which means if τij(t) = τ0 then, τij(t+1)

= 0.

Condition for infection:

Further, if τij(t) = 0, (the idividual is susceptible), then τij(t+1) = 1, if 1 ≤ τxy(t) ≤ τI

where xy ∈ {(i-1,j);(i+1,j);(i,j-1);(i,j+1)} which means the idividual becomes infected if

one or more of its nearest neighbours is infected.

2.3 Infection Spread: How it actually looks in time?

We consider different initial configurations of the 2-D lattice. Then, based on the above

explained model we studied the spread of infection and observed the changes in the state of

individuals in the poplulation with time. This was done through a simple visual study of

the 2-D lattice.

We fixed the parameters to be;

τI = 4; τR = 9; τ0 = 13 and lattice-size = 100x100.

The various senarios that we explored are as follows:

• All individuals are susceptible to infection. [ τij = 0]

22



– Case 1: 1 infected individual at the center of the lattice.[ τ50,50 = 1]. This can

be thought of as a control for this analysis as the results of this case can be

intuitively understood.

Fig. 2.1, exhibits that as time progresses the infection starts from the central

seed and spreads symmetrically. At the individual level the disease cycle also

progresses and so the phase of dynamical unit changes with time.

The interaction of susceptible individuals with the infected ones is a key factor in

the infection spread. As it takes place only at the outer boundary of the pattern

so the infection ultimately gets removed from the population.

– Case 2: 1 infected individual at the center of the lattice (but permanently

infected) [ τ50,50 = 1 always]. (Fig- 2.2) Same as the previous case, but a repeating

pattern due to the permanent infection is seen.

– Case 3: 2 infected individuals at (50,25) & (50,75)) [ τ50,25;τ50,75 = 1]. From

fig. 2.3 it can be clearly seen that even if the infection arising from one location

interact with an other infection, the result is a symmetrical pattern.

– Case 4: 2 individual always infected and located symmetrically at (50,25) &

(50,75)) [ τ50,25;τ50,75 = 1](Fig- 2.4).

After the control study, we now incorporate our model on a rather realistic case by

introducing randomness to the initial configuration of the 2-D lattice.

• Individuals are randomly distributed as susceptible with [ τij =τS = 0],

their fraction is represented by S0 and as refractory with τij = τR = (τI +

1), their fraction is represented by R0.

1 infected individual at the center of the lattice [ τ50,50 = 1], (S0: 0.5; R0: 0.5).

Fig 2.5 shows interesting results, the infection was only initial but as time progressed

a continuosly emerging infection pattern is seen.

For this case,a show-reel of infection spread

Time : t=0 to t=35 . (Zoomed in the center).
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Similar results were obtained for the case when the individuals in R phase (τR) will have

a randomly chosen phase from [(τI + 1), τ0].

2.4 Quantifying the infection in the population

Next, we discuss the possibility of quantifying the spread of infection in the population.

For this we define a parameter It which represents the fraction of infected individual in the

population at time ’t’.

It =
Total number of infected individuals

Total number of individuals
(2.1)

Similarly we also define S0 and R0 to be the initial fraction of Susceptible and Refractory

individuals respectively.

An important observation from the visual study was that not always does one see infection

being sustained in the population. Meaning, for a lot of cases the infection gets removed

entirely from the population with time.

The infection spread depends on infected individual coming in contact with a susceptible

individual. So, for a random initial configuration of S-R population the infection can either

progress or not.

2.4.1 Histogram analysis

As per the above defined parameter, non-zero It will signify that infection stays in the

population. At this point an analysis is required that gives an idea about the frequency of

such non-zero It events. Fig- 2.6, shows the histogram analysis for 2 configuration [S0:R0
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- 0.5:0.5] (top) & [S0:R0 - 0.75:0.25] and clearly it can be seen that a non-zero frequency

is observed only around 2 region in It. So, if It = 0, then infection gets removed from the

population. Also, if the infection do stays in the population with time ( It 6= 0), then a

small range for non-zero It signifies that to a great extent the spread pattern for different

realizations remains the same.

2.4.2 Dependence of infection spreading on the fraction of susceptibles in

the population

For fixed τI (4) and τ0 (13) measurement of It (fraction of infect individuals on the lattice

averaged over ’n’ realizations) were done for the complete range of S0 (Initial fraction of

susceptible individuals) [0,1]. This analysis gave insight about the influence of population

type (distribution of susceptible and refractory individuals) on infection spread. Two major

methods of defining the initial state/phase of individuals in the lattice were employed. In

both the methods, the initial phase of ’S’ population was τij = 0, but the ’R’ population

can be assumed to exist in following ways:

• Same phase(τij = τI + 1).

• Randomly different phase(τij = randomly chosen from [τI + 1,τ0]).

Fig - 2.7, shows the variation of It with initial S0 for the two cases discussed above.

2.4.3 Presenting the arguments to rationalize broad trends

In this section we discuss the broad trends seen in this study. The fig.2.8 shows the vari-

ation of It (fraction of infected individuals) over the whole range of S0 (Initial fraction of

Susceptible individuals in the population).Here, the key assumption taken in the analysis is

that all the individuals in refractory period initially would have same phase (τR = τI + 1

= 5).

As seen clearly, It remains zero at low S0 in the range ≈ (0,0.15) and also near S0 ≈ 1.

For the in between range one see a continuously increasing and then decreasing trend which

peaks around S0 ≈ 0.65. The spread of infection depends on basic level on infected in-

dividuals being in contact of a susceptible one, so it can be reasoned that at low S0 the

chances of this is fairly low so asymtotically the infection eventually gets removed from the

population. When there are reasonable number of susceptible individuals in the population,

it is seen that asymtotically infection stays in the population. The increasing trend in the

range S0 : (0.15,0.65) gives an indication that more and more realizations (initial population

conditions) are now leading to infection spread. The maxima of this variation comes around

a value It ≈ 0.25, which is fairly close to 0.28 value we found out in the histogram analysis

(this is the value of It observed for a realization leading to infection spread asymtotically).
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It means that a great number of realizations are resulting in infection spread.

A decreasing trend in the value of It is seen at higher S0 from here on which ultimately

goes to zero near Initial S0 = 1. The colored plots shown in the beginning gives a better

idea about this kind of situation. Consider the case where initially all the individuals are

susceptible to the infection and an individual in the center is infected, here one can see

that the infection does spread but ultimately gets removed from the population. Also, the

animation shown in the beginning clearly indicates the need of refractory indivduals in the

spreading of infection. When there are not many refractory individuals that complete there

cycle to again become susceptible, the infection does spread but asymtotically it will get

removed and this infection process will not be repeated.

Hence, it can be said that for the infection to stay in the population a well mixed population

is required with reasonable number of both susceptible and refractory individuals.

2.4.4 Checking the consistency of results

Different lattice sizes

It is important to check whether these results depend on the lattice size. From Fig- 2.9 it is

clear that the size of lattice does not influence the infection spread both qualitatively and

quantitatively.

Time-averaging results

Also the results obtained here are for a fixed time (t= 200). But, it becomes crucial to check

the time averaged results for this model as the results may vary in time as well.

So, taking the time average for the range t = [200,300], with fixed τI (4) and τ0 (13), infection

seed at the center, 40x40 lattice ,and same phase (τij = τI + 1) for Refractory fraction of

population.

From 2.10, it is clear that even on time averaging the variation curve is showing the same

trend, hence the analysis at a particular time yields same results as that with time average.

Random Infection seed

Another essential component of this analysis would be the location of initial infection seed.

Since, it is the source of disease spread it becomes necessary to check the validilty of these

results for a random initial infection.

Fig -2.11, clearly points out that a random infection seed only changes the origin of the

pattern. From fig - 2.12, 2.13 it can be seen that if the infection seed is random present

at any position in the lattice, the variation of It over the range of S0 remains qualitatively

same as that for infection seed at center of the lattice. Also, It remains invariant even in

this situation, shown in Fig- 2.14.
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2.4.5 Dependence on the dynamical characteristics of the disease cycle(τI;

τR; τ0)

The SIRS cycle itself plays a crucial role in the spread of the disease. The next part of

analysis focus on this interplay between the SIRS cycle and infection spread. According to

our model, out of three compartments of SIRS cycle, susceptible is fixed (τS =0), but the

other two can be changed. And taking different τI and τR, the infection spread analysis was

done.

Fig. 2.15 shows that when a infection spreads the pattern formed is similar looking although

as the infection and refractory periods are different, one see quantitatively different pattern.

From Fig- 2.16 (exhibit the case when R population is having a fixed same phase) it is

clearly seen that the variation of It with S0 shows a high dependence on the ratio τI
τR

. For

a case when
τI
τR

< 1 [τI = 4, τR = 9] & [τI = 4, τR = 9], a similar variation is observed with It zero at

high and low Sfraction and in between range forming a smooth peak. Here, a noteworthy

point is even when the actual cycle length changes the variation curve does not changes

much.

When, τI
τR

= 1 [τI = 4, τR = 4] & [τI = 9, τR = 9] a symmetrical variation curve is seen and

irespective of total cycle length, both lead to exactly same result, both qualitatively and

quantitatively.

An interesting case arises when τI
τR

> 1 [τI = 9, τR = 4], in this case one observe a high and

constant It value for the lower range of S0 upto ≈ .0.3 and then it smoothly goes to zero as

S0 reaches 1.0.

The same analysis when done for the case of R population having randomly different phase

is shown in Fig- 2.17. Here, it can be clearly seen that for fixed disease cycle length (τ0

= 13) as the period of infection (τI) increases the slope of It vs. Sfraction also increases.

It indicates that for a population having individuals in random phases in disease cycle will

qualitatively remains the same with changing infection period (τI), although the fraction of

infected individuals would be greater for larger τI .

2.4.6 Changing the heterogeneity in the initial population

Here we have considered two basic initial configuration of population, namely R population

having a fixed same phase and R population having randomly different phase. Now, consider

a case where the population is in between these two cases, means the refractory individuals

in the population are having phases neither completely random nor completely fixed to same

value.

We adopt two methods to achieve such configuration:
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• Mixture of uniform and non-uniform sub-populations: We define a parameter

η which represents the fraction of R population having randomly different phases ini-

tially and similarly, we can also say that (1 - η) represents fraction of R population

having a fixed phase initially (τR = τI + 1).

Fig- 2.18 exhibits the change in the variation curve as η and hence the initial con-

figuration changes. It can be clearly seen that as the transition takes place from one

extremal initial condition (all R individuals in same phase) to the other (all R indi-

viduals in randomly different phases) the variation curve of It gradually changes its

form.

• Varying the range of phases: We consider that the initial phase of individuals in

R compartment of SIRS cycle can be any integer from the range χ. This range can be

taken to be anything from [τI +1, τR] (completely random phases) to [τI +1, τI + 1]

(completely fixed and same phase).

First we perform the analysis by taking the range χ with fix lower bound τI +1 and

different upper bounds. Fig- 2.19 exhibits the variation curves for different χ: [5,5];

[5,7]; [5,9]; [5,11]; [5,13]. It can be clearly seen that as the transition takes place from

one extremal initial condition (all R individuals in same phase) to the other (all R

individuals in randomly different phases) the variation curve of It gradually changes

its form.

Another way of altering the range χ would be to fix the upper bound at τR and take

different lower bounds. Fig- 2.20 exhibits the variation curves for different χ: [5,13];

[7,13]; [9,13]. Here, shortening the range χ lead to decrease in It but the qualitatively

the variation curve remains the same and for χ close to end of cycle It is zero in

the entire S0 range: [0,1]. Hence, we can conclude that when the initial phases of

refractory individuals are taken more towards a value at the end of the disease cycle

then infection gets removed from the population.

The above done analysis basically covers two distinct senarios where the refractory in-

dividuals initially have same phase and randomly different phases. A comparison can be

done between the two by considering the randomly different phase situation with its mean

at say, 9 (median of refractory period[5,13]) and the same phase situation at initial τR =

9. From fig.- 2.21, it can be seen that both these senarios are actually distinct, where the

randomly different phase situation has the continuously decreasing variation curve and the

same phase situation (τR = 9) has a variation curve qualitatively similar to same phase with

τR = 4 but with considerably low It peaking at a lower value of S0.
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2.5 Discussions and Summary

Here we discuss broadly the model and its analysis by summarising the key ideas and results.

Basesd on the cellular automata model of SIRS cycle disease progression[25] we considered

a population represented by a 2-Dimensional lattice. Coupling was introduced in the system

by putting the condition for infection that if an individual comes in contact with an infected

individual then it will become infected.

To get an idea of the spread of infection visually we took different initial population senarios

and observed with time how the state of individuals changes. We found out that for a com-

pletely susceptible population a infect does not give rise to permanent infection although

the infection does spread but ultimately gets removed from the population. A permanent

infection seed does lead to greater and permanent infection spread in the population. All of

which was intuitively understandable, next we considered a situation where individuals are

both in susceptible and refractory phase. Here, the population is randomly distributed and

an interesting observation was that even for an infection seed put only initially one could

see a permanent infection spread pattern.

Now, we quantified the infection spread by defining a parameter It which represented the

fraction of infected individuals in the population. A key observation was that on fixing the

fraction of suseptible and refractory individuals if we take different random realizations then

not all realisations lead to permanent infection spread. Depending on the S0 and R0 the

frequency of permanent infection spread also changes.

We next looked at the variation of It over the entire range of S0, this was done for two

senarios, for refractory individuals in same phase initially and in randomly diiferent phase.

Contrasting trends were observed as for the randomly different phase a continuously de-

creasing trend was seen and for same phase situation a curve was seen which increased

continuously and after a point starts to decrease continuously, at the extremes zero infec-

tion was observed.

The analysis done till now was at a particular time, so by taking a time average of It we

checked that whether it is time dependent and the results of this analysis suggested that

the trends here does not change with time. Also, we checked proved the consistency of the

results for different lattice size and random infection seed situation.

The system here showed strong dependence on the disease cycle, the change in variation

curve for different infection period indicated that for the situation where Refratory indi-

viduals are in same phase initially the ratio τI
τR

decides the trend qualitatively. Although

for the situation where Refratory individuals are in randomly different phase initially only

quantitative change occur in the variation curve.

Next we considered a more general senarios where the randomness in the phases of Refrac-

tory individuals is not complete. We took two approaches, in one case the randomness was

changed by changing the fraction of individuals with randomly different phases in R and
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other case was shortening the range of randomness in phases. Both theses analysis lead to

the conclusion that the variation curve transitions from one case to other in a smooth fashion.
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Figure 2.1: Snapshots of the infection spread pattern at different times; t= 1, 20, 50, 100.
[color scheme: Green-refractory;Red-Susceptible;black-infected]
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Figure 2.2: Snapshot of the infection spread pattern at time=100[color scheme: Green-
refractory;Red-Susceptible;black-infected]

Figure 2.3: Snapshot of the infection spread pattern at time=50[color scheme: Green-
refractory;Red-Susceptible;black-infected]

Figure 2.4: Snapshot of the infection spread pattern at time=100[color scheme: Green-
refractory;Red-Susceptible;black-infected]
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Figure 2.5: Snapshots of the infection spread pattern at time=0,5,8,9,20,100 (order-left to
right & top to bottom)[color scheme: Green-refractory;Red-Susceptible;black-infected]
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Figure 2.6: Histogram for It after t= 200 [S0:R0 - 0.5:0.5](top) & [S0:R0 - 0.75:0.25] ; initially
infection put at the center with τI = 4; τ0 = 13
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Figure 2.7: Variation of It (after t= 200) with S0 (Red curve- R population with same
phase; Green curve- R population with randomly different phase)[initially infection put at
the center] N= 40x40; τI = 4; τ0 = 13, averaged over 103 realizations.

Figure 2.8: Variation of It (after t= 200) with S0). Refractory population having same
phase in R[τR = τI + 1 = 5]. τI = 4, τR = 9. N = 40x40.[initial infection at the center].
averaged over 103 realizations
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Figure 2.9: Variation of It (after t= 200) with S0 for population having same phase in R.
N = 40x40 (Red curve); 100x100 (Green curve); 70x70 (Blue curve)[initially infection put
at the center] τI = 4; τ0 = 13, averaged over 103 realizations.

Figure 2.10: Variation of It (averaged over t= [200,300]) with S0 for population having same
phase in R. N = 40x40 [initially infection put at the center] τI = 4; τ0 = 13, averaged over
103 realizations.
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Figure 2.11: Snapshot of the infection spread pattern at t= 200 and initially infection at a
random site with τI = 4; τ0 = 13 and [S0:Rfraction - 0.5:0.5] [color scheme: Green-R; Red-S;
black-I]

Figure 2.12: Variation of It (after t= 200) with S0 (Red curve- initial infection at random
site; Green curve- initial infection at the cente) [with ”R” population having fixed same
phase.] N= 40x40; τI = 4; τ0 = 13, averaged over 103 realizations.
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Figure 2.13: Variation of It (after t= 200) with S0 (Red curve- initial infection at random
site; Green curve- initial infection at the cente) [with ”R” population having randomly
different phases.] N= 40x40; τI = 4; τ0 = 13, averaged over 103 realizations.

Figure 2.14: Variation of It (after t= 200) with S0). N = 40x40(red curve); 100x100(green
curve).[ initial infection at random site]; τI = 4; τ0 = 13, averaged over 103 realizations.
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Figure 2.15: Snapshot of the infection spread pattern at t= 200 and initially infection put
at the center with τI = 6[left] & tauI = 9[right]; τ0 = 13 and [S0:Rfraction - 0.5:0.5]. [color
scheme: Green-refractory;Red-Susceptible;black-infected]
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Figure 2.16: Variation of It (after t= 200) with S0) for population having same phase in R
τI = 4, τR = 9(red curve); τI = 4, τR = 13 (pink curve); τI = 4, τR = 4 (blue curve with
crosses); τI = 9, τR = 9 (green curve); τI = 9, τR = 4 (blue curve with boxes). N = 40x40.[
initial infection at the center]. averaged over 103 realizations.

Figure 2.17: Variation of It (after t= 200) with S0) for population having randomly different
phase in R τI = 4, τR = 9(red curve); τI = 6, τR = 7 (green curve); τI = 8, τR = 5 (blue
curve); τI = 9, τR = 4 (pink curve). N = 40x40.[ initial infection at the center]. averaged
over 103 realizations
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Figure 2.18: Variation of It (after t= 200) with S0) (η: 0; 0.25; 0.5; 0.75; 1.0) .τI = 4, τ0 =
13. N = 40x40.[ initial infection at the center]. averaged over 103 realizations

Figure 2.19: Variation of It (after t= 200) with S0)(χ: [5,5]; [5,7]; [5,9]; [5,11]; [5,13]) .τI =
4, τ0 = 13. N = 40x40.[ initial infection at the center]. averaged over 103 realizations
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Figure 2.20: Variation of It (after t= 200) with S0)(χ: [5,13]; [7,13]; [9,13]) .τI = 4, τ0 =
13. N = 40x40.[ initial infection at the center]. averaged over 103 realizations

Figure 2.21: Variation of It (after t= 200) with S0). Refractory population having randomly
different phase in R [χ: [5,13]] (blue curve); same phase initially [τR = 9] (red curve); same
phase initially [τR = 4] (green curve). τI = 4, τR = 9. N = 40x40.[ initial infection at the
center]. averaged over 103 realizations
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