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Abstract

Differential equations are viewed as models for the trajectories of moving particles.

Using differential equations to study the trajectory of a particle undergoing random mo-

tion is not straight forward. The aim of the project is to understand diffusion processes,

which are used as models for the trajectory of particle exhibiting a random behaviour.

The analysis behind defining stochastic integration and the use of Itô’s formula in writing

the stochastic differential equations is rigorously reproduced. The solutions of the SDEs

and the sufficient conditions for their existence and uniqueness are studied, the analysis is

supplemented with important examples and applications.
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Chapter 1

Brownian Motion

1.1 Introduction

The term Brownian Motion was coined for the motion exhibited by a small particle sus-

pended in a fluid, it was named after Robert Brown who observed this phenomenon in

1827. T.N. Thiele(in 1880), L. Bachelier(in 1900) and A. Einstein(in 1905) made inde-

pendent efforts to model the Brownian motion. The mathematical theory of Brownian

motion was given a firm foundation by Norbert Wiener in 1923, in his honour, Brownian

motion is also known as Wiener process.[6]

Definition 1.1. A Brownian motion {Bt : t ≥ 0} is a stochastic process defined on a

probability space (Ω,F ,P) with

• B0 = x;

• stationary, independent and normally distributed increments

• and almost surely continuous paths.

If B0 = 0, the process is called a standard Brownian motion.

We observe the meanings of some of the important terms used in the above definition.

A stochastic process X(t, ω) is a real valued function X : R × Ω → R. It can thus be

viewed either as a collection of random variables X(t, ·) or as a random function X(·, ω).

Stationary increments means that for s < t, the difference Bt − Bs depends only on

t− s, by independent increments we mean that Bt − Bs is independent of {Br : r ≤ s}
whenever s < t. The distribution of Bt − Bs is given by N(0, t − s), also the map

t → Bt is continuous [10]. The continuity of paths is crucial as it technicaly adds more
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information which goes beyond the finite dimensional distributions of the process. Suppose

that {Bt : t ≥ 0} is a Brownian motion and T is an independent random variable which

is uniformly distributed on [0, 1]. Then the process {B′t : t ≥ 0} defined by

B′t =

Bt if t 6= T,

0 if t = T,

has the same finite dimensional distribution as a Brownian motion, but is discontinuous if

BT 6= 0, i.e. with probability one, and hence is not a Brownian motion.[6]

A process {Wt : t ≥ 0} with the distribution of the increments given by N(µ(t −
s), σ2(t − s)) is called a Brownian motion with drift. Here µ is the drift coefficient and

σ is the diffusion coefficient. This process can be expressed in the terms of a standard

Brownian motion as follows:

Wt = W0 + µt+ σBt

where Bt is a standard Brownian motion. Thus for any Brownian motion, the process

given by:
Wt −W0 − µt

σ

represents a standard Brownian motion.

1.2 Existence of Wiener Measure

We will follow the approach as given in [10]. We first begin with a simple one dimensional

random walk (beginning at origin and whose probability of moving in either direction is

same) and observe that in certain limiting cases, we obtain what is known as Brownian

motion. The probability function f(t, x) of a simple random walk with time intervals τ

and step size h satisfies the difference equation:

f(t+ τ, x) = f(τ, h)f(t, x− h) + f(τ,−h)f(t, x+ h) (1.1)

In the limits h→ 0, τ → 0 and
h2

τ
→ 1 we obtain that the probability density function

satisfies the following equation:

∂f

∂t
=

1

2

∂2f

∂x2
(1.2)
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Here we have chosen the limits for
h2

τ
to be 1. We could have chosen any constant value

for it. We can easily see that it cannot be 0 or +∞ as then the process may approach

+∞ in a finite number of steps which cannot be true.

We have obtained the heat equation and we observe that the Gaussian kernel, p(t, x) =
1√
2πt

exp
−x2

2t
, is a solution to (1.2) under the initial value f(0, x) = u(x) in the sense

that limt→0 f(t, x) = u(x). This can be interpreted as the probability that the process

begins at x. It can be observed that:

p(t, x) ≥ 0

∫
p(t, x)dx = 1

lim
t→0

p(t, x) = δ(x) =

0 if x 6= 0,

1 if x = 0,

where δ(x) is the dirac delta function, thus giving the probability that the process

begins at the origin. We see that if we translate the origin to y, p(t, x − y) is still the

solution to the heat equation. For each y ∈ Rn, p(t, x − y)dy defines a probability

distribution which we can interpret as giving the probability that a particle starting at y

at time 0 will be in the given region in Rn at time t. The solution to the initial value

problem can thus be expressed in the form:

f(t, x) =

∫
R
u(y)p(t, x− y)dy (1.3)

where u(y) is bounded and continuous.

Lemma 1.1. Let p(t, x) =
1√
2πt

exp
−x2

2t
for t > 0. Then

p(t, ·) ∗ p(s, ·) = p(t+ s, ·)

The proof of the above lemma can be obtained using Fourier transforms. By the virtue

this lemma we can write:∫
R
p(s− 0, z − y)p(t− s, x− z)dz = p(t, x− y), 0 < s < t
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p(t−s, x−z) can be interpreted as the transition probability, i.e. the probability of moving

from a space point z at time s to space point x at time t. In view of this result, we obtain

that: ∫
R
u(y)p(t, x− y)dy =

∫ ∫
u(y)p(s, z − y)p(t− s, x− z)dzdy

It follows that the above holds for any finite partition 0 < t1 < t2 < . . . < tn = t. Thus,

given 0 < t1 < t2 < . . . < tn = t and given Borel sets Ej ⊂ Rn, the probability that a

path, starting at x = 0 at t = 0, lies in Ej at time tj for each j ∈ {1, 2, . . . n} is∫
. . .

∫
p(tn − tn−1, xn − xn−1) . . . p(t1, x1)dxn . . . dx1

Hence for each partition (t1, t2, . . . , tn), we have a probability distribution function P(t1,t2,...,tn),

therefore we have obtained a family of probability distribution functions corresponding to

all possible n-tuples (t1, t2, . . . , tn) of t. The existence of a countably additive measure

characterized by the properties as above follows from the Kolmogorov’s extension theorem.

For a detailed proof of the theorem, refer [1].

Theorem 1. Kolmogorov’s Extension Theorem

If P(t1,t2,...,tn) are a system of distributions satisfying the consistency conditions given

by:

P(t1,t2,...,tn)(H1 ×H2 × . . .×Hn) = P(tπ1,tπ2,...,tπn)(Hπ1 ×Hπ2 × . . .×Hπn) (1.4)

and,

P(t1,t2,...,tn−1)(H1 ×H2 × . . .×Hn−1) = P(t1,t2,...,tn)(H1 ×H2 × . . .×Hn−1 × R) (1.5)

where π is a permutation function which maps n-tuples to any one of its possible per-

mutations. Then there exists on some probability space (Ω,F ,P) a stochastic process

{Xt, t ∈ T} having P(t1,t2,...,tn) as its finite dimensional distributions.

As a consequence of the above discussion and Kolmogorov’s theorem, for a Brownian

motion on Ω = C([0,∞);R) with the Borel σ- algebra F and a sequence of sub-σ-

algebras Ft = σ{X(s), 0 < s < t}(this sequence is also known as filtration) we obtain a

measure known as the Wiener measure which induces a product measure on Π0<s<∞R.

Therefore a Brownian motion with starting point x is an R- valued stochastic process with
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X(0) = x and the family of distribution of the process is specified by

P(t1,t2,...,tn)(A) =

∫
A

p(tn − tn−1, xn − xn−1) . . . p(t1, x1 − x)dxn . . . dx1 (1.6)

for every Borel set A in Rn.

1.3 Properties of Brownian Motion

We will enumerate some of the important properties of Brownian motion with brief outlines

of their proofs. The arguments given are inspired from [6] [11] [3].

1. Brownian motion {Bt : t ≥ 0} is a Gaussian process.

Proof A process {Xt : t ≥ 0} is called Gaussian if ∀ 0 ≤ t1 < t2 < · · · < tn

the probability distribution of the random vector (Xt1 , . . . , Xtn) on Rn is normal

or Gaussian. We just need to verify that for any t1, . . . , tn , (Bt1 , . . . , Btn) is

multivariate Gaussian. From the definition of Brownian motion, it is immediate that

(Bt1 , Bt2 − Bt1 , . . . , Btn − Btn−1) is multivariate Gaussian. Since (Bt1 , . . . , Btn) is

a linear combination of (Bt1 , Bt2 −Bt1 , . . . , Btn −Btn−1) it is multivariate Gaussian

as well. From the properties of a normal distribution, it follows that the distribution

of a Gaussian process is characterized by the mean E[Xt] and covariance function

cov(Xs, Xt) = E[Xs − E[Xs]]E[Xt − E[Xt]]

Thua a Brownian motion is a Gaussian process with mean 0 and covariance s ∧ t,
the minimum of s and t.

2. Brownian motion {Bt : t ≥ 0} is a Markov process. Let s > 0, then the process

{Bt+s − Bs : t ≥ 0} is again a Brownian motion started in the origin and it is

independent of the process {Br : 0 ≤ r ≤ s}.

Proof A process is Markov if the future development of the process depends on

its present value alone, without any reference to its past history. The property of the

Brownian motion that it possesses stationary and independent increments ensures

that it is a Markov process.
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3. Scaling property: If {Xt : t ≥ 0} is defined by Xt =
1√
c
Bct then {Xt : t ≥ 0} is

also a standard Brownian motion.

Proof Under scaling, we observe that continuity of sample paths, stationary and

independent increments are preserved. We observe that Xt −Xs are normally dis-

tributed.

Xt −Xs =
1√
c
Bct −

1√
c
Bcs ∼

1√
c
N(0, c(t− s)) ∼ N(0, t− s)

4. Time inversion property: If {Xt : t ≥ 0} is defined by

Xt =

0 if t = 0

tB 1
t

if t > 0

then {Xt : t ≥ 0} is also a standard Brownian motion.

Proof We check that for the above process, E[Xt] = tE[B 1
t
] = 0 and cov[Xt, Xs] =

(ts)cov[B 1
t
, B 1

s
] = (ts)1

t
= s for 0 < s < t. Since this is the characteristic of a

Brownian motion(which is a Gaussian process) we just need to check that the process

{Xt, t ≥ 0} has almost surely continuous paths.

Time inversion is a useful tool to relate the properties of Brownian motion in a

neighbourhood of time t = 0 to properties at infinity.

5. Law of Large Numbers: Almost surely, limt→∞
Bt
t

= 0.

Proof Using the time inversion, we obtain that

lim
t→∞

Bt

t
= lim

t→∞
X 1

t
= X0 = 0 almost surely.

6. The sample paths of a Brownian motion are nowhere differentiable.

Proof We define a process {Dt : t ≥ 0} as Dt = limh→0
Bt+h −Bt

h
. This process

takes the value of the slope of the paths of the Brownian motion at any time t. We

observe that its distribution is given by
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Dt ∼ limh→0
N(0,h)
h
∼ limh→0N(0, h−1)

Thus the slope has variance that goes to infinity almost everywhere, hence the

Brownian motion is nowhere differentiable.

7. The paths of Brownian motion have a non-zero finite quadratic variation, such that

on interval (s, t), the quadratic variation is (t− s)

Proof For a partition π = {s = t1 < t2 < . . . < tn = t} of [s, t] we can form the

sum of squared increments
n−1∑
i=1

(Bti+1
− Bti)

2. These sums converge to a random

variable [B]t in probability as mesh(π)= maxi(ti+1− ti)→ 0. The process obtained

is called the quadratic variation.

E[[B]t] = E[
n−1∑
i=1

(Bti+1
−Bti)

2]

=
n−1∑
i=1

[E[(Bti+1
−Bti)

2]]

=
n−1∑
i=1

[ti+1 − ti]

= t− s

8. The paths of Brownian motion have infinite variation on compact time intervals,

almost surely.

Proof The main idea that we use here is that a function that has bounded variation

is differentiable almost everywhere, which is not the case with the Brownian motion.

Using this contrapositive argument, we have the result.

9. Strong Markov Property: For every almost surely finite stopping time T , the

process {BT+t − BT : t ≥ 0} is a standard Brownian motion independent of F+
T

where F+
T =

⋂
t>T Ft.

Proof Consider a sequence of stopping times Tn = (m + 1)2−n if m2−n ≤ T <

(m + 1)2−n. Define B(k) = {B(k)
t : t ≥ 0} such that B

(k)
t = Bt+ k

2n
− B k

2n
, and
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B∗ = {B∗t : t ≥ 0} such that B∗t = Bt+Tn − BTn . Now, for E ∈ F+
Tn

and an event

{B∗ ∈ A}, we have

P ({B∗ ∈ A} ∩ E) =
∞∑
k=0

P ({B(k) ∈ A} ∩ E ∩ {Tn = k2−n})

=
∞∑
k=0

P ({B(k) ∈ A})P (E ∩ {Tn = k2−n})

this follows from the independent increments property of Brownian motion. Since

B(k) = {B(k)
t : t ≥ 0} is also a standard Brownian motion, we have that P ({B(k) ∈

A}) = P ({B ∈ A}) is independent of k, and hence

∞∑
k=0

P ({B(k) ∈ A})P (E ∩ {Tn = k2−n}) = P ({B ∈ A})
∞∑
k=0

P (E ∩ {Tn = k2−n})

= P ({B ∈ A})P (E)

which shows that B∗ is a Brownian motion and is independent of E, and hence

independent of F+
Tn

.

Now as Tn ↓ T we have that {Bs+Tn − BTn : s ≥ 0} is a Brownian motion

independent of F+
Tn
⊃ F+

T . Hence the increments of the process {Br+T −BT : r ≥
0} given by

Bs+t+T −Bt+T = lim
n→∞

Bs+t+Tn −Bt+Tn

are independent and normally distributed with mean zero and variance s. The

process is almost surely continuous and hence is a Brownian motion independent of

F+
T . For a more elaborated study on stopping times and filtrations, the reader is

referred to [3].

10. Reflection Principle: Given a standard Brownian motion {Bt : t ≥ 0} , for every

a ≥ 0

P [ sup
0≤s≤t

Bs ≥ a] = 2P [Bt ≥ a] (1.7)

Proof Define τa = inf{t ≥ 0 : Bt = a}. Then by the strong Markov property it

follows that {Bτa+t − Bτa : t ≥ 0} is a standard Brownian motion independent of
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F+
τa . Using this argument and that P [Bt < 0] = 1

2
we have

P [ sup
0≤s≤t

Bs ≥ a] = P [ sup
0≤s≤t

Bs ≥ a,Bt ≥ a] + P [ sup
0≤s≤t

Bs ≥ a,Bt < a]

= P [Bt ≥ a] + P [ sup
0≤s≤t

Bs ≥ a, (Bτa+t −Bτa) < 0]

= P [Bt ≥ a] +
1

2
P [ sup

0≤s≤t
Bs ≥ a]

= 2P [Bt ≥ a]

We can observe that the process {B∗t : t ≥ 0} called the Brownian motion reflected

at τa and defined by

B∗t = Bt1{t≤τa} + (2Bτa −Bt)1{t>τa}

is also a standard Brownian motion.

11. Martingale Property: {Bt : t ≥ 0} is an Ft- martingale. i.e. for t ≤ u

E[Bu|Ft] = Bt

Proof For all 0 ≤ t ≤ u <∞

Bu = Bt +

∫ u

t

dBs

E[Bu|Ft] = E[Bt +

∫ u

t

dBs|Ft]

= E[Bt] + E[

∫ u

t

dBs|Ft]

= Bt + 0 = Bt

Thus we have that a standard Brownian motion is a continuous Ft-martingale. Some

important related results are mentioned below, these can be verified following the

above method.

(a) {Bt
2, t ≥ 0} is not an Ft- martingale.

(b) {Bt
2 − t, t ≥ 0} is an Ft- martingale.

(c) Brownian motion with drift {Wt, t ≥ 0} where Wt = µt + σBt is not an Ft-
martingale.
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(d) {Wt − µt, t ≥ 0} is an Ft- martingale.

(e) {Xt, t ≥ 0}, where Xt = exp{λBt − 1
2
λ2t} is an Ft- martingale.

1.4 Applications and Examples

1.4.1 Geometric Brownian Motion

A stochastic process {St : t ≥ 0} defined such that the logarithm of the process agrees

with the Brownian motion with drift is known as a geometric Brownian motion. It is widely

used in the modelling of stock prices using the Black-Scholes model.[8] The process is given

by the relation

St = expWt (1.8)

where,

Wt = W0 + µt+ σBt

Thus we can say that log(St) is normally distributed with mean W0 +µt and variance σ2t.

We note that St ≥ 0 ∀ t. Using the properties of log-normal distribution we can say that:

E[St] = exp(µt+W0 +
σ2t

2
)

V ar[St] = exp(2µt+ 2W0 + σ2t)((expσ2t)− 1)

1.4.2 Brownian Bridge

A stochastic process {St : t ≥ 0} , obtained by conditioning the Brownian motion {Bt :

t ≥ 0} on an interval [0, 1] to the event B1 = 0 is known as a Brownian bridge. [11]. The

formal relation between a Brownian motion and a Brownian bridge is given by

St = Bt − t B1 (1.9)

Thus the probability distribution of the Brownian bridge is the conditional probability

distribution of a Brownian motion to the given condition B1 = 0. We can say that the
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Brownian bridge is a Gaussian process with

E[St] = E[Bt − t B1] = E[Bt] = 0

cov[Ss, St] = cov[Bs − sB1, Bt − t B1]

= E[(Bs − sB1)(Bt − t B1)]

= E[BsBt]− tE[B1Bs]− sE[B1Bt] + stE[B1
2]

= (s ∧ t)− t(1 ∧ s)− s(1 ∧ t) + st

= (s ∧ t)− st

It can be verified using the mean and covariance property that

Yt = (1− t)W t
1−t

for 0 ≤ t ≤ 1;Y1 = 0 (1.10)

also gives a Brownian bridge.

1.4.3 Ornstein-Uhlenbeck Process

A stochastic process {Xt : t ≥ 0} given by the relation

Xt = e−tBe2t (1.11)

is known as Ornstein-Uhlenbeck process. The process is stationary, Gaussian, Markov and

mean-reverting. It can be observed that Xt is standard normally distributed. i.e.

Xt ∼ N(0, 1)

Using the time-inversion property of Brownian motion, we can observe that the process is

time reversible that is Xt and X−t have the same law. [6].

1.4.4 Fractional Brownian Motion

It is an example of a stochastic process which is Gaussian, self-similar and it has stationary

increments. It differs from Brownian motion as it does not possess independent increments.

A gaussian stochastic process {Xt : t ≥ 0} is called a fractional Brownian motion of Hurst

parameter α ∈ (0, 1) if it has mean zero and covariance given by

cov(Xs, Xt) =
1

2
(s2α + t2α− | t− s |2α)

13



The value of α determines the correlation between the increments of fractional Brownian

motion.

Ifα


= 1

2
increments are uncorrelated

< 1
2

increments are negatively correlated

> 1
2

increments are positively correlated

Due to the self similarity of the process, it is widely used for fractal simulations.[8]
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Chapter 2

Stochastic Integration

2.1 Introduction

In this chapter we first construct a stochastic integral with respect to Brownian motion.

We will look at a Brownian motion {Bt : t ≥ 0} as a random function. From the previous

chapter we know that this function is of infinite variation, which is why we cannot use

Riemann-Stieltjes integration to define the integrals with respect to Brownian motion.

Utilizing the fact that {Bt : t ≥ 0} is a random function and thus using the weaker form

of limits, we can define such integration. If we consider a Riemann- Stieltjes integral:∫
f(t)dg(t, w) = h(w) (2.1)

We say, that the integral makes sense if f is continuous and g is a function of bounded

variation ( i.e. g is the difference between two monotone functions). But we have seen

that Brownian motion has infinite variation. The idea is to define an integral in the above

sense for functions with infinite variation [10]. We will define the integral with respect

to Brownian motion, a more general form where the integral is defined with respect to

a semi-martingale exists but we will not be concerned with it in our work. To define an

integral of the type: ∫
f(t)dB(t, w) = h(w) (2.2)

We first look at a suitable class of integrands that can be admitted so as to define this

integral. We denote by (Ω,B,P) the probability space on which our Brownian motion is

defined and suppose that {Ft : t ≥ 0} is a filtration to which the Brownian motion is

adapted. We assume that the filtration is complete,i.e. contains all the sets of probability

15



zero in B. We will require the class of integrands to be progressively measurable. We

define such processes as follows

Definition 2.1. A process {Xt : t ≥ 0} is called progressively measurable if for each

t ≥ 0 the mapping X : [0, t] × Ω → R is measurable with respect to the σ-algebra

B([0, t])⊗Ft.

Having defined the integrand and the integrator of the integral we now construct the

integral and look forward to its interpretation.

2.2 Itô’s Stochastic Integral

In the above equation, let us assume f to be a determinstic step function of the type:

f =
n∑
i=1

aiχ[ti,ti+1), 0 ≤ t1 < t2 < . . . < tn+1 (2.3)

Then following the Riemann- Stieltjes type integral we define:

h(w) =

∞∫
0

f(t)dB(t, w) =
n∑
i=1

ai(Bti+1
(w)−Bti(w)) (2.4)

We observe that h is a random variable and its distribution is obtained as follows:

h(w) =
n∑
i=1

ai(Bti+1
(w)−Bti(w))

∼
n∑
i=1

aiN(0, ti+1 − ti)

∼
n∑
i=1

N
(
0, ai

2[ti+1 − ti]
)

∼ N

(
0,

n∑
i=1

ai
2[ti+1 − ti]

)

Thus,

E [h] = 0;

E
[
h2
]

=
n∑
i=1

ai
2[ti+1 − ti] = ‖f‖2

2
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Now for any constant α and any two step functions f , g the following can be easily

obtained:

∞∫
0

(αf) dB(t, w) = α

∞∫
0

(f) dB(t, w);

∞∫
0

(f + g) dB(t, w) =

∞∫
0

(f) dB(t, w) +

∞∫
0

(g) dB(t, w)

The mapping f →
∞∫
0

fdB is therefore a linear L2 - isometry of the space S of all step

functions of the type:

n∑
i=1

aiχ[ti,ti+1), 0 ≤ t1 < t2 < . . . < tn+1

into the space L2(Ω,B,P). To extend this result uniquely to the space L2[0,∞), we

observe that the space S is dense in L2[0,∞). Thus there is a unique linear L2
R - isometry

of L2[0,∞) into the space L2(Ω,B,P). One thing that we must notice here is that,

if we define this integral as a process with respect to t i.e. if we define the process

Xt =
t∫

0

f(s)dBs , it comes out to be a martingale. We check for u < t:

E [Xt|Fu] = Xu + E

 t∫
u

f(s)dBs|Fu

 = Xu

Thus we have made sense of the stochastic integral for deterministic function in L2[0,∞).

Now to extend the definition for continuous time stochastic processes we need to define

the integrals of the type:

h(t, w) =

t∫
0

Y (s, w)dB(s, w) (2.5)

We first define simple functions Φ, extend our definition for these functions and then move

towards the progressively measurable continuous functions.

17



Definition 2.2. A function Φ : [0,∞) × Ω → R is called simple if for a partition

0 ≤ s0 < s1 < s2 . . . < sn < . . . <∞ of [0,∞)

Φ(s, w) = Φj(w); for s ∈ [sj, sj+1)

where Φj(w) is Fsj measurable and bounded.

Following the Riemann- Stieltjes type integral, we define

h(t, w) =

t∫
0

Φ(s, w)dB(s, w)

Lemma 2.1. For h(t, w) as defined above:

1. the map Φ→ h is linear.

2. h(t, w) is an Ft- martingale.

3. E [h(t, w)] = 0

4. h2(t, w)−
t∫

0

Φ2ds is a martingale with

E[h2(t, w)] = E[

t∫
0

Φ2(s, w)ds] (2.6)

Thus we obtain a similar isometry for the simple functions. It follows from the Lebesgue

dominated convergence theorem that for a continuous Ft- measurable function Y (s, w)

with E

[
t∫

0

Y 2ds

]
<∞, ∃ a sequence Φn(s, w) of simple functions such that

lim
n→∞

E[

t∫
0

|Φn(s, w)− Y (s, w)|2ds] = 0

All that is left is to extend the definition of the integrals from simple functions to that of

Ft- measurable functions. The following theorem takes care of this part of the definition.

Theorem 2. Let Y (s, w) be Ft- measurable, such that

E

 t∫
0

Y 2ds

 <∞
18



for each t > 0. Let {Φn} be a sequence of simple functions that approximate Y . Put

hn(t, w) =

t∫
0

Φn(s, w)dB(s, w)

Then

1. limn→∞hn(t, w) exists uniformly in probability, i.e. there exists an almost surely

continuous h(t, w) such that

lim
n→∞

P

(
sup
t
|hn(t, w)− h(t, w)| ≥ ε

)
= 0

for each ε > 0.

2. The properties in Lemma 2.1 extend to the function h(t, w).

Proof

1. Using the property that the stochastic integral is linear for simple functions we obtain

a random variable

(hn − hm)(t, w) =

t∫
0

(Φn − Φm)(s, w)dB(s, w)

Now we use the Doob’s martingale inequality to get the upper bound as follows:

P

(
sup

0≤t≤∞
|hn(t, w)− hm(t, w)| ≥ ε

)
≤ E[(hn − hm)2(∞, w)]

ε2

E[(hn − hm)2(∞, w)] = E[

∞∫
0

(Φn − Φm)2ds]

Therefore,

lim
n,m→∞

E[(hn − hm)2(∞, w)] = 0 (2.7)

which gives us that (hn − hm) is uniformly Cauchy in probability. Therefore there

exists an Ft- measurable h such that

lim
n→∞

P

(
sup

0≤t≤∞
|hn(t, w)− h(t, w)| ≥ ε

)
= 0, ∀ε > 0
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2. The rest of the proof can be easily constructed after observing that h now obtained

is almost surely continuous.

This completes the definition of the Itô integral and we have made sense of integrating

progressively measurable processes with respect to a standard Brownian motion. Although

the integral has been defined, it is not straight forward to compute the integrals of the

above type.[10]

2.3 Extension of the Itô integral

We have defined the integral for the class of square integrable processes that are progres-

sively measurable i.e. for {Xt : t ≥ 0}∫ ∞
0

X2
t dt <∞

We now extend this to a more general class of processes that are progressively measurable

and satisfy

P [

∫ ∞
0

X2
t dt <∞] = 1 (2.8)

To extend our definition to this class of processes we use localization through stopping

times.

Theorem 3. For a process {Xt : t ≥ 0} satisfying the above property and n ∈ N
consider the stopping time

τn = inf{T ≥ 0 :

∫ T

0

X2
t dt ≥ n}

Then limn→∞ τn =∞ a.s. and∫ ∞
0

XtdBt = lim
n→∞

∫ τn

0

XtdBt

exists as limit in probability.

Proof Consider an event ΩN = {ω :
∫∞

0
X2
t dt < N}. By assumption

⋃
N≥1 ΩN has

probability one. For all n > N on ΩN we have τn =∞. Choosing M so large that

P [
M⋃
N≥1

ΩN ] ≥ 1− ε
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The random variables
∫ τn

0
XtdBt are finite for all n ≥M with probability atleast 1−ε. This

implies that these random variables form Cauchy sequence with respect to convergence in

probability. By completeness the limit exists.

Although the limit exist in probability, it may not exist in L2 sense. The limit process

may also not have a finite expectation. The process may fail to be a martingale, the best

that can be claimed is that it is locally martingale. For a more rigorous proof refer [9].

2.4 An Explicit Computation

We will explicitly solve an example
∫ 1

0
BsdBs and observe the fundamental difference be-

tween the stochastic calculus and the ordinary calculus also we will see that the quadratic

variation property of Brownian motion plays a central role in defining the stochastic calcu-

lus. We will follow the idea used in the proof and observe a sequence of processes whose

limit is the required result. Let us consider a standard Brownian motion in interval [0, 1].

Xs = Bs1s≤1

Clearly the process is adapted to the natural filtration of standard Brownian motion, also

the process is square integrable∫ ∞
0

E[Xs
2]ds =

∫ 1

0

E[Bs
2]ds =

∫ 1

0

sds =
1

2
≤ ∞

Let us consider a sequence of simple functions

Φ(n)
s = X k

2n
for s ∈

[
k

2n
,
k + 1

2n

)

Through this we observe that the sequence Φ
(n)
s converges in L2 sense to Xs.∫ ∞

0

E[(Xs − Φ(n)
s )2]ds =

2n−1∑
k=0

∫ k+1
2n

k
2n

E[(Xs − Φ(n)
s )2]ds

=
2n−1∑
k=0

∫ k+1
2n

k
2n

E[(Bs −B k
2n

)2]ds

=
2n−1∑
k=0

∫ k+1
2n

k
2n

(s− k

2n
)ds
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This tends to zero as n tends to ∞. Therefore the integral
∫∞

0
XsdBs is the limit of the

sequence of integrals
∫∞

0
Φ

(n)
s dBs. Using the Riemann type sums, we write this integral

to be ∫ ∞
0

Φ(n)
s dBs =

2n−1∑
k=0

B k
2n

(B k+1
2n
−B k

2n
)

Observe that

B1
2 −B0

2 =
2n−1∑
k=0

(B k+1
2n

2 −B k
2n

2)

= 2
2n−1∑
k=0

B k
2n

(B k+1
2n
−B k

2n
) +

2n−1∑
k=0

(B k+1
2n
−B k

2n
)2

= 2

∫ ∞
0

Φ(n)
s dBs +

2n−1∑
k=0

(B k+1
2n
−B k

2n
)2

Therefore for n→∞ ∫ ∞
0

XsdBs =
B1

2

2
− 1 (2.9)

Clearly the result does not match with what we would have expected it to be using ordinary

calculus.

2.5 Itô’s Formula

From the previous computation, we infer that the Itô integral is not an integral in the

usual sense. There does not exist a fundamental theorem of calculus for these integrals,

which makes it difficult to evaluate stochastic integrals. The following theorem is a chain

rule for stchastic integrals and makes it possible to evaluate the integrals straight away

without having to do the computation as above.

Theorem 4. Let u(x, t) be a function of x ∈ R and t ≥ 0 that is twice continuously

differentiable in x and once continuously differentiable in t, and let {Bt : t ≥ 0} be a

Brownian motion. Denote by ut, ux, anduxx the first and second partial derivatives

of u with respect to the variables t and x. Then

u(Bt, t)− u(0, 0) =

∫ t

0

ux(Bs, s)dBs +

∫ t

0

ut(Bs, s)ds+
1

2

∫ t

0

uxx(Bs, s)ds (2.10)
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Suppose that u(x, t) is such that the partial derivatives ux, uxx are bounded on R ×
[0, t], say,

| ux(Bs, s) | < C

| uxx(Bs, s) | < C

Fix an ω ∈ Ω0 ⊂ Ω such that P (Ω0) = 1 and s → Bs(ω) is continuous for each

ω ∈ Ω0. Now, we partition the interval [0, t] into n equal subintervals so that 0 = t
(n)
0 <

t
(n)
1 < t

(n)
2 < · · · < t

(n)
n = t where t

(n)
j = jt

n
. Thus define 4jt = t

(n)
j+1 − t

(n)
j and

4jB = Btj+1
(ω)−Btj(ω). Then

u(Bt(ω), t)− u(0, 0) =
n−1∑
j=0

u(Btj+1
(ω), tj+1)− u(Btj(ω), tj)

=
n−1∑
j=0

(
u(Btj+1

(ω), tj+1)− u(Btj+1
(ω), tj) + u(Btj+1

(ω), tj)− u(Btj(ω), tj)
)

For some τj ∈ [tj, tj+1) and zj between Btj(ω) and Btj+1
(ω), by Taylor’s theorem we have

=
n−1∑
j=0

ut(Btj+1
, τj)4j t

+
n−1∑
j=0

ux(Btj , tj)4j B

+
1

2

n−1∑
j=0

uxx(zj, tj)(4jB)2

We consider these three terms and observe their behaviour as n→∞. For the first term

ut(Btj+1
, τj) = ut(Btj+1

, τj)− ut(Btj+1
, tj+1) + ut(Btj+1

, tj+1)

By hypothesis, we have that ut is continuous, thus it is uniformly continuous on a compact

interval. Also the map t → Bt being continuous, is bounded on a compact interval. In

particular, for any ε > 0, there is n sufficiently large such that

| ut(Btj+1
, τj)− ut(Btj+1

, tj+1) | < ε whenever

| τj − tj+1 | <
1

n
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Therefore as n→∞ the sum

n−1∑
j=0

ut(Btj+1
, τj)4j t =

n−1∑
j=0

ut(Btj+1
, τj)− ut(Btj+1

, tj+1)4j t

+
n−1∑
j=0

ut(Btj+1
, tj+1)4j t

= ε t+

∫ t

0

ut(Bs, s)ds

Now for the second term, consider a sequence of functions given by

gn(s, ω) =
n−1∑
j=0

ux(Btj(ω), tj)1[tj ,tj+1](s)

From the hypothesis ux is continuous, hence uniformly continuous on a compact interval

[0, t] and the sequence of functions gn(s) → g(s) uniformly on (0, t], where g(s, ω) =

ux(Bs(ω), s), therefore

| gn(s, ω)− g(s, ω) |< 2C

It thus follows that ∫ t

0

| gn(s, ω)− g(s, ω) |2 ds ≤ 4tC2

which tends to zero as n→∞, which thus implies that

E

(∫ t

0

| gn(s, ω)− g(s, ω) |2 ds
)
→ 0

Thus using the Itô isometry we have that

‖
∫ t

0

gn(s, ω)dBs −
∫ t

0

g(s, ω)dBs‖2 → 0 (2.11)

That is there is a subsequence
∫ t

0
gnk(s, ω)dBs converging to

∫ t
0
g(s, ω)dBs almost surely.

Thus we have that our second term converges to
∫ t

0
g(s, ω)dBs almost surely. The third

24



term 1
2

∑n−1
j=0 uxx(zj, tj)(4jB)2, for any ω ∈ Ω can be written as:

1

2
uxx(zj, tj)(4jB)2 =

1

2
uxx(Bj, tj)((4jB)2 −4jt)

+
1

2
(uxx(zj, tj)− uxx(Bj, tj))(4jB)2

+
1

2
uxx(Bj, tj)4j t

Using the continuity and boundednes of uxx and the quadratic variation property of Brow-

nian motion, we have that the above tends to 1
2

∫ t
0
uxx(Bs, s)ds as n → ∞. Therefore

combining the three results, we have proved the theorem for ux, uxx both bounded. This

restriction can be removed by putting

yn(x, t) = φn(x)u(x, t)

such that φn(x) = 1 for |x| ≤ n and φn(x) = 0 for |x| > n. The above result holds for

yn(x, t) for all n hence it holds for the limit of these functions which is continuous but

not bounded. This proves the theorem and we have obtained the Itô’s Formula.

2.6 Applying Itô’s Formula

We shall look at some historically relevant examples to understand the use of Itô’s formula.

We will not be able to solve the Itô integrals directly, but using Itô’s formula for relevant

functions will help us in evaluating the value of that integral indirectly.

Example Let u(x, t) = xt. Using the Itô’s formula we get:

u(Bt, t)− u(0, 0) =

∫ t

0

sdBs +

∫ t

0

Bsds

tBt =

∫ t

0

sdBs +

∫ t

0

Bsds∫ t

0

sdBs =

∫ t

0

Bsds− tBt
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Example Let u(x, t) = x2. Using the Itô’s formula we get:

Bt
2 − 0 =

∫ t

0

2BsdBs +
1

2

∫ t

0

2ds

Bt
2 − t
2

=

∫ t

0

BsdBs

This is the result that we have computed earlier.

Example Let u(x, t) be such that it satisfies the heat equation ut + 1
2
uxx = 0. Also

assume that ux is properly defined. Using the Itô’s formula we get:

u(Bt, t)− u(0, 0) =

∫ t

0

ux(Bs, s)dBs +

∫ t

0

ut(Bs, s)ds+
1

2

∫ t

0

uxx(Bs, s)ds

u(Bt, t)− u(0, 0) =

∫ t

0

ux(Bs, s)dBs

By the definition of Itô integral, the RHS is a martingale. Thus any u(Bt, t) satisfying

the heat equation is a martingale. Hence we can observe that Xt = exp{λBt − 1
2
λ2t} is

a martingale.

Example Change of Variable: Itô’s formula can also be applied to compute an integral

with respect to a general process Xt which is not a standard Brownian motion. Let us

consider u(x, t) again, but this time the x variable is taken by a process which is not a

standard Brownian motion [11]. Following the Itô formula, we have:

u(Xt, t)− u(0, 0) =

∫ t

0

ux(Xs, s)dXs +

∫ t

0

ut(Xs, s)ds+
1

2

∫ t

0

uxx(Xs, s)(dXs)
2

Let {Xt : t ≥ 0} be any process that satisfies for some µ and σ

Xt −X0 =

∫ t

0

µ(Xs, s)ds+

∫ t

0

σ(Xs, s)dBs

In symbolic differential form the above can be written as:

dXs = µ ds+ σ dBs

∴ dXs
2 = µ2 ds2 + σ2 dBs

2 + 2µσ ds dBs
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Using that (ds)2, (ds)(dBs) are negligible and (dBs)
2 ∼ ds we have dXs

2 = σ2ds. Sub-

stituting the values of dXs, dXs
2 we can compute the required integral.

Let us consider u(Xt, t) = exp(Xt) where

Xt = X0 +

∫ t

0

gdBs −
1

2

∫ t

0

g2ds

Then

dXs = −1

2
g2 ds+ gdBs

ut = 0

ux = expx

uxx = expx

Therefore in the symbolic differentiation sense, we obtain that

du(Xs, s) = us ds+ ux dXs +
1

2
uxx dXs dXs

= expXs(−
1

2
g2 ds+ g dBs) +

1

2
expXsg

2 ds

= expXs g dBs

Therefore using this change of variable and Itô’s formula we can solve integrals with respect

to processes that are not standard Brownian motion.

Example Feynman-Kac Formula: For the heat equation ut = 1
2
uxx with u(0, x) =

f(x). The solution can be written as

u(t, x) =
1√
2πt

∫ ∞
−∞

f(v) exp
(v − x)2

2t
dv (2.12)

The RHS can however be interpreted as the expectation E[f(x + Bt)] and x + Bt is a

Brownian motion beginning at x, rather than at 0.

Theorem 5. Let q : R→ R and f : R→ R be bounded. Then the unique solution to

the initial value problem

ut =
1

2
uxx + (q)(u)
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with u(0, x) = f(x), has the unique representation

u(t, x) = E

(
f(x+Bt) exp

∫ t

0

q(x+Bs)ds

)
(2.13)

Proof Consider the function f(s, y) = u(t− s, x− y) and apply the Itô’s formula to it.

fs = −u1

fy = u2

fyy = u22

Therefore

df(s, Bs) = −u1(t− s, x+Bs) ds+
1

2
u22(t− s, x+Bs) dBsdBs + u2(t− s, x+Bs) dBs

= −q(x+Bs)u(t− s, x+Bs) ds+ u2(t− s, x+Bs) dBs

For 0 < s < t, set

Ms = u(t− s, x+Bs) exp

∫ s

0

q(x+Bv) dv

Therefore, by the product rule for stochastic processes and Itô’s formula,

dMs = df exp

∫ s

0

q(x+Bv)dv + fd(exp

∫ s

0

q(x+Bv)dv) + dfd(exp

∫ s

0

q(x+Bv)dv)

= (−q(x+Bs)u(t− s, x+Bs)ds)(exp

∫ s

0

q(x+Bv)dv)

+ (u2(t− s, x+Bs)dBs)(exp

∫ s

0

q(x+Bv)dv)

+ fq(x+Bs) exp

∫ s

0

q(x+Bv)dv + 0

= (u2(t− s, x+Bs)dBs)(exp

∫ s

0

q(x+Bv)dv)

It thus follows that

Mt = M0 +

∫ t

0

u2(t− s, x+Bs) exp

∫ s

0

q(x+Bv)dvdBs
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Thus Mt is a martingale and therefore E[Mt] = E[M0]. By construction, we have that

M0 = u(t, x) almost surely and so E[M0] = u(t, x) and

E[Mt] = E

[
u(0, x+Bt) exp

∫ t

0

q(x+Bv)dv

]
= E

[
f(x+Bt) exp

∫ t

0

q(x+Bv)dv

]
Thus the result follows.
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Chapter 3

Stochastic Differential Equations

3.1 Introduction

Let St = f(Bt) be a function of a standard Brownian motion. We wish to write a

differential equation to examine the trajectory of such a function. Brownian motion being

nowhere differentiable does not allow us to differentiate the equation right away. We

assume the function to be nice and use the Taylor’s expansion to obtain

St+dt − St = (Bt+dt −Bt)f
′(Bt) +

1

2!
(Bt+dt −Bt)

2f ′′(Bt) + . . .

Since Brownian motion have finite quadratic variation, we obtain that

dSt = f ′(Bt)dBt +
1

2!
f ′′(Bt)dt

This gives us the chain rule (Itô’s formula) for differentiating functions of Brownian motion.

The above obtained equation is called a stochastic differential equation. The general

form of a one-dimensional stochastic differential equation with one-dimensional driving

Brownian motion is given by

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt (3.1)

We would define a process {Xt : t ≥ 0} as a solution to 3.1 in the sense that

Xt = X0 +

∫ t

0

µ(Xs, s)ds+

∫ t

0

σ(Xs, s)dBs (3.2)
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3.2 Diffusion processes

A diffusion process {Xt : t ≥ 0} is a solution to 3.1, where µ and σ are continuous

functions of t,Xt. Here µ and σ can be thought of as the infinitesimal mean and variance

of the increments of the process Xt, they are the drift and diffusion coefficients of the

process. Since we define diffusion processes as the solutions to 3.1, we must observe the

conditions on the coefficients for these solutions to exist. Before going into the details of

this, we look at some examples of diffusion processes.

1. General Brownian motion: Consider the process Wt = W0 + µt + σBt. The SDE

for this process using the Itô’s formula is:

dWs = σdBs + µds

In the integral form:

Wt = W0 + σ

t∫
0

dBs + µ

t∫
0

ds

2. Geometric Brownian motion: Consider the process St = expWt. The SDE for this

process using the Itô’s formula is obtained as:

dSt = (µ+
σ2

2
)Stdt+ σStdBt

3. The Ornstein- Uhlenbeck process: Given a SDE,

dXt = κ(θ −Xt)dt+ σdBt

where, κ, θ, σ > 0 are constants. We look at the solution of the equation. The

process obtained is mean-reverting i.e. there is a factor that pushes the process

towards the mean. Substitute Yt = Xt − θ, we obtain:

dYt = −κ(Yt)dt+ σdBt

Now, substitute Zt = expκt Yt, using the product rule we obtain:

dZt = κ expκt Ytdt+ expκt dYt

= κ expκt Ytdt+ expκt(−κ(Yt)dt+ σdBt)

= σ expκt dBt
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Integrating both sides

Zt = Z0 + σ

t∫
0

expκs dBs

Reversing the changes of variables, we obtain the solution:

Xt = θ + exp−κt(X0 − θ) + σ

t∫
0

expκ(s−t) dBs

4. The Brownian Bridge: The SDE

dXt = − Xt

1− t
dt+ dBt

for t ∈ [0, 1) has a unique continuous solution known as a Brownian bridge. We have

seen earlier that it is a Gaussian process, therefore we check that for the solution

to this equation, the expectation and covariance agrees with that of the Brownian

bridge. The formulation for this process for t ∈ [0, 1] and X1 = 0 is obtained as

Xt =

∫ t

0

1− t
1− s

dBs

3.3 Solutions of SDE : Definitions

The solutions of an SDE can be explicitly obtained in many cases. Itô and Skorkhod

gave the theorems regarding the sufficient conditions for existence and uniqueness of the

solutions to 3.1. Before we study the theorems, we define the two types of solutions that

we discuss, and observe the difference between them.[3]

Let {Bt : t ≥ 0} be a standard Brownian motion on a probability space (Ω,F , P ) with

a filtration {Ft : t ≥ 0}. A strong solution of 3.1 with initial condition x ∈ R is an

adapted process with continuous paths such that for all t ≥ 0, with probability 1

Xt = x+

∫ t

0

µ(Xs, s)ds+

∫ t

0

σ(Xs, s)dBs

There are a few key points in this definition that we observe
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1. The integrals above must exist in the sense that for t ≥ 0 and probability 1∫ t

0

| µ(Xs, s) | ds <∞,
∫ t

0

σ2(Xs, s)ds <∞

2. The solution must exist for all t <∞ with probability 1.

3. The process Xt must lie on the same probability space as that of the driving Brownian

motion and must be adapted to the given filtration.

A weak solution of 3.1 with initial condition x is a continuous stochastic process

{Xt : t ≥ 0} defined on some probability space (Ω,F , P ) such that for some Brownian

motion Bt and some admissible filtration, the process {Xt : t ≥ 0} is adapted and satisfies

Xt = x+

∫ t

0

µ(Xs, s)ds+

∫ t

0

σ(Xs, s)dBs

A weak solution is often denoted as a triple (Xt, Bt, (Ω,F , P,Ft)).

Thus we observe that in the case of strong solutions we have a given probability space,

Brownian motion and its filtration whereas for a weak solution, the probability space,

Brownian motion and filtration are obtained as a part of a solution. We explicitly look at

the theorems for the solutions in the next part.

3.4 Existence and uniqueness of Solutions

3.4.1 Strong solutions

The major outline for this section is borrowed from [4].

Theorem 6. Assume that µ : R → R and σ : R → R+ are uniformly Lipschitz, that

is, ∃ a constant C <∞ such that for all x, y ∈ R,

| µ(x)− µ(y) | ≤ C | x− y | and

| σ(x)− σ(y) | ≤ C | x− y |
(3.3)

Then 3.1 has strong solutions, in particular, for any standard Brownian motion Bt,

any admissible filtration {Ft : t ≥ 0}, and any initial value x ∈ R there exists a

unique adapted process {Xt : t ≥ 0}with continuous paths such that, a.s.

Xt = x+

∫ t

0

µ(Xs, s)ds+

∫ t

0

σ(Xs, s)dBs
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The proof will make use of the Gronwall’s inequalities.

Lemma 3.1 (Gronwall). Let y(t) be a non-negative function such that for some T <

∞ there exists constants A,B ≥ 0 such that ∀ 0 ≤ t ≤ T

y(t) ≤ A+B

∫ t

0

y(s)ds <∞

Then ∀ 0 ≤ t ≤ T

y(t) ≤ AeBt (3.4)

Proof Assuming C =
∫ T

0
y(s)ds <∞ and T <∞, it follows that y(t) ≤ D = A+BC

on the interval [0, T ]. Iterating this equation we obtain that after k iterations:

y(t) ≤ A+ ABt+
AB2t2

2!
+ . . .+

ABktk

k!
+ Ik

where Ik is a (k + 1)-fold integral given by

Ik = Bk

∫ t

0

∫ s

0

. . .

∫ r

0

(A+B

∫ q

0

y(p)dp) . . . dqdrds

Since in the interval [0, T ], y(t) ≤ D the series is bounded above for all t ≤ T . Therefore

Ik ≤
BkDt(k+1)

(k + 1)!
and thus converges to zero uniformly for t ≤ T as k → ∞. Hence the

result follows.

Lemma 3.2. Let yn(t) be a sequence of non-negative functions with y0(t) ≡ C (con-

stant) such that for some constant B, ∀ t ≤ T and n ∈ Z+

yn+1(t) ≤ B

∫ t

0

yn(s)ds <∞

Then ∀ t ≤ T

yn(t) ≤ CBnT n

n!
(3.5)
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Proof The result is again obtained by iterating the inequality

yn+1(t) ≤ B

∫ t

0

yn(s)ds

≤ B

∫ t

0

(B

∫ s

0

yn(r)dr)ds

≤ B

∫ t

0

(B

∫ s

0

(B

∫ r

0

yn(q)dq)dr)ds

≤ . . .

≤ CB(n+1)I(n+1) ≤ CB(n+1) T
(n+1)

(n+ 1)!

(3.6)

This holds for all t ≤ T and n ∈ Z+

Proof [Theorem6] To sketch the proof of the theorem, we first for inspiration consider

the case where σ is a constant, then we will extend the results to the general case. The

solution of the equation is of the form

Xt = x+

∫ t

0

µ(Xs, s)ds+

∫ t

0

σdWs

Using the hypothesis that µ is uniformly Lipschitz, we look at the uniqueness and existence

of the solution of the above form. Let us assume that for some initial value x there are

two solutions

Xt = x+

∫ t

0

µ(Xs, s)ds+

∫ t

0

σdWs

Yt = x+

∫ t

0

µ(Ys, s)ds+

∫ t

0

σdWs

Then the difference of the two solutions satisfies

Yt −Xt =

∫ t

0

(µ(Ys, s)− µ(Xs, s))ds,

and since µ is uniformly Lipschitz, there exists a constant B <∞, such that ∀ t <∞

| Yt −Xt |≤ B

∫ t

0

| Ys −Xs | ds
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3.4 above implies that Yt−Xt = 0. Thus, for an initial value x, the SDE can have atmost

one solution. To check the existence of the solution, we define a sequence of adapted

processes Xn(t) with initial value x by

X0(t) = x

Xn+1(t) = x+

∫ t

0

µ(Xn(s), s)ds+ σW (t).

Since µ is continuous, it follows that Xn+1 have continuous paths. We will show that

the sequence converges uniformly on compact intervals, and the limit process Xt satisfies

3.1. We again look at the difference of two successive processes and using the uniform

Lipschitz property of µ there exists a constant B such that

Xn+1(t)−Xn(t) =

∫ t

0

(µ(Xn(s), s)− µ(Xn−1(s), s))ds

| Xn+1(t)−Xn(t) | ≤ B

∫ t

0

| Xn(s)−Xn−1(s) | ds

3.5 implies that for t ≤ T <∞ and some n,m > 0

| Xn+1(t)−Xn(t) | ≤ xBnT n

n!

| Xm+n(t)−Xn | =
n+m−1∑
k=n

| Xk+1(t)−Xk(t) |

≤ (m− 1)
xBnT n

n!

Thus the processes Xn(t) converge uniformly on compact time intervals, therefore

the limit process Xt has continuous path. Using dominated convergence theorem and

continuity of µ we can show that the limit process solves the SDE. Thus we have obtained

that a solution of this form exists.

Now for a general case when σ is not a constant function, the similar approach will not

lead to vanishing of the Itô integral. Instead we will have to use the Gronwall inequality

for the second moments and observe the convergence in L2 sense. To prove the existence,

we again define a sequence of processes as follows:

X0(t) = x

Xn+1(t) = x+

∫ t

0

µ(Xn(s), s)ds+

∫ t

0

σ(Xn(s), s)dWs.
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The processes are well defined and have continuous paths, this follows through induction.

We would show that these converge uniformly on the compact intervals and the limit

process is a solution to 3.1. The first two terms of the sequence X0(t) = x and X1(t) =

x+µ(x)t+σ(x)Wt are uniformly bounded in L2 for t in any bounded interval [0, T ], thus

for each T <∞ ∃ CT <∞ such that ∀ t ≤ T

E[(X1(t)−X0(t))2] ≤ CT (3.7)

By hypothesis, we have that µ and σ are uniformly Lipschitz, hence ∃ a suitable constant

B <∞ such that ∀ t ≥ 0

| µ(Xn(t))− µ(Xn−1(t)) | ≤ B | Xn(t)−Xn−1(t) |,

| σ(Xn(t))− σ(Xn−1(t)) | ≤ B | Xn(t)−Xn−1(t) |

Thus for the convergence of processes Xn(t) in L2 sense,

E[(Xn+1(t)−Xn(t))2]

≤ E

[(∫ t

0

(µ(Xn(s))− µ(Xn−1(s)))ds+

∫ t

0

(σ(Xn(s))− σ(Xn−1(s)))dWs

)2
]

≤ 2E

[(∫ t

0

(µ(Xn(s))− µ(Xn−1(s)))ds

)2
]

+ 2E

[(∫ t

0

(σ(Xn(s))− σ(Xn−1(s)))dWs

)2
]

≤ 2B2E

[(∫ t

0

| Xn(s)−Xn−1(s) | ds
)2
]

+ 2B2E

[(∫ t

0

| Xn(s)−Xn−1(s) | dWs

)2
]

≤ 2B2E

[(
t

∫ t

0

| Xn(s)−Xn−1(s) |2 ds
)]

+ 2B2

∫ t

0

E
[
| Xn(s)−Xn−1(s) |2

]
ds

≤ 2B2(T + 1)

∫ t

0

E
[
| Xn(s)−Xn−1(s) |2

]
ds ∀ t ≤ T

Now consider a sequence of functions αn(t) = E [| Xn+1(t)−Xn(t) |2]. From 3.7 we

have that α0(t) ≤ CT , thus from 3.5 we have that ∀ t ≤ T

αn(t) = E
[
| Xn+1(t)−Xn(t) |2

]
≤ CT [2B2(T + 1)]nT n

n!

Therefore for each t ≤ T the sequence of random variables Xn(t) converges uniformly in

L2. It remains to show that the limit process satisfies 3.1. Since Xn(t) → Xt in L2, the
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Lipschitz property of µ and σ implies that in L2 sense and for t ≤ T∫ t

0

σ(Xn(s), s)dWs →
∫ t

0

σ(Xs, s)dWs∫ t

0

µ(Xn(s), s)ds→
∫ t

0

µ(Xs, s)ds

Thus Xt = x+
∫ t

0
µ(Xs, s)ds+

∫ t
0
σ(Xs, s)dWs is the solution of the SDE. Xt being the

uniform limit has continuous paths.

We need to show that the solution obtained is unique. We assume that for initial condition

x there are two continuous solutions given by:

Xt = x+

∫ t

0

µ(Xs, s)ds+

∫ t

0

σ(Xs, s)dWs

Yt = x+

∫ t

0

µ(Ys, s)ds+

∫ t

0

σ(Ys, s)dWs

Then the difference of these solutions satisfy

Yt −Xt =

∫ t

0

(µ(Ys, s)− µ(Xs, s))ds+

∫ t

0

(σ(Ys, s)− σ(Xs, s))dWs

Although the second integral may not be bounded pathwise, but since σ is Lipschitz its

second moment can be bounded

E

[∫ t

0

(σ(Ys)− σ(Xs))dWs

]2

≤ B2

∫ t

0

E(Ys −Xs)
2ds

It is not obvious that E(Ys −Xs)
2 is always meaningful, but still using second moments

we obtain

E [Yt −Xt]
2 ≤ (2B2 + 2B2T )

∫ t

0

E[Ys −Xs]
2ds (3.8)

Had E[Ys − Xs]
2 been defined almost surely, using 3.4, we would have obtained that

E[Ys − Xs]
2 ≡ 0, hence the uniqueness. To circumvent this, we use localization and

define stopping times as follows

τA = inf{t : X2
t + Y 2

t ≥ A}

We have that τA → ∞ as A → ∞, this follows because Xt, Yt are continuous for all

t, thus bounded almost surely on compact time intervals. Hence with probability one,
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t ∧ τA = t for all sufficietly large values of A. Thus in a compact interval [0,T] and for

stopping time τ = τA

E [Yt∧τ −Xt∧τ ]
2 ≤ (2B2 + 2B2T )

∫ t

0

E[Ys∧τ −Xs∧τ ]
2ds

Thus we prevent our process from exploding in the compact interval. Now using 3.4 we

have

E [Yt∧τ −Xt∧τ ]
2 = 0

It thus follows that Xt = Yt almost surely. Hence the uniqueness is obtained.

3.4.2 Weak solutions

We will first look at two concepts of uniqueness for weak solutions of the SDEs. The

pathwise uniqueness is the generalisation of the strong uniqueness concept whereas the

uniqueness in law is a weaker sense of uniqueness. Pathwise uniqueness implies uniqueness

in law.

Definition 3.1. Pathwise uniqueness for the solution of the SDE holds whenever two

weak solutions (Xt, Bt, (Ω,F , P,Ft)), (X̃t, Bt, (Ω,F , P, F̃t)) with P (X0 = X̃0) = 1

satisfy

P
(
∀t ≥ 0 : Xt = X̃t)

)
= 1

that is with respect to different filtrations on the same probability space and for same

Brownian motion the path of the solution is almost surely the same.

Definition 3.2. Uniqueness in law for the solution of SDE holds whenever two weak

solutions (Xt, Bt, (Ω,F , P,Ft)), (X̃t, B̃t, (Ω̃, F̃ , P̃ , F̃t)) with the same initial distribu-

tion have the same law, that is ∀n ∈ N, t1, t2, . . . tn > 0 and Borel sets B1, B2, . . . Bn

P [Xt1 ∈ B1, Xt2 ∈ B2, . . . Xtn ∈ Bn] = P̃ [X̃t1 ∈ B1, X̃t2 ∈ B2, . . . X̃tn ∈ Bn]

We will first state the Girsanov’s theorem and then using it we shall prove the existence

of weak solutions. Consider for a process {Xt : t ≥ 0}

Yt = exp(

∫ t

0

XsdBs −
1

2

∫ t

0

(Xs)
2ds)
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The processes of this form are called exponential martingales, for suitable conditions on

Xt, the process Yt is a martingale, in particular

E[Yt] = E[Y0] = 1

Theorem 7 (Girsanov). Let {Xt : t ≥ 0} be a process defined on (Ω,F , P ) and

{Bt : t ≥ 0} be a standard Brownian motion on this space. Consider a process

Yt = exp(

∫ t

0

XsdBs −
1

2

∫ t

0

(Xs)
2ds)

such that for T ∈ [0,∞],

E[YT ] = 1

. On the measurable space (Ω,F), define a measure

P̃ (dω) = YT (ω)P (dω)

Then (Ω,F , P̃ ) is a probability space and {B̃t : t ≤ T} is a Brownian motion on

(Ω,F , P̃ ) where

B̃t =

∫ t

0

Xsds+Bt

.

Proof That (Ω,F , P̃ ) is a probability space follows from

P̃ (dω) = YT (ω)P (dω)

P̃ (Ω) =

∫
Ω

YT (ω)P (dω) = E[YT ] = 1

To observe that {B̃t : t ≤ T} is a Brownian motion on (Ω,F , P̃ ), we use the Lev̀y’s char-

acterisation of Brownian motion, which says that a martingale starting at 0 and quadratic

variation t is a Brownian motion. Defining a process Zt = YtB̃t. Using the definition of

the measure P̃ and that Zt is a martingale, for s < t

Ẽ[B̃t|Fs] =
E[YtB̃t|Fs]
E[Yt|Fs]

=
Zs
Ys

= B̃s (3.9)
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and the quadratic variation

Ẽ[
n−1∑
i=1

(B̃ti+1
− B̃ti)

2] = E[
n−1∑
i=1

(

∫ ti+1

0

Xsds−
∫ ti

0

Xsds+Bti+1
−Bti)

2]

=
n−1∑
i=1

(
E[

∫ ti+1

ti

Xsds]
2 + E[Bti+1

−Bti ]
2 + 2E[(

∫ ti+1

ti

Xsds)(Bti+1
−Bti)]

)
= t

Thus we have obtained a probability space (Ω,F , P̃ ) and the Brownian motion {B̃t : t ≤
T} on it.

Now we can articulate the proof for the existence of weak solution of a stochastic

differential equation.

Theorem 8. Consider the SDE

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt, 0 ≤ t ≤ T

X0 = x

If the coefficients µ and σ are measurable then there exists a weak solution.

Proof Assume on a probability space (Ω,F , P ) a process {St : t ≥ 0} such that for

some T > 0

dSt = α(St, t)dt+ σ(St, t)dBt, 0 ≤ t ≤ T

Further assume a measurable function

β(x, t) := −µ(x, t)− α(x, t)

σ(x, t)

Then using the exponential martingale

Zt = exp

(∫ t

0

β(St, t)dBt −
1

2

∫ t

0

β(St, t)
2ds

)
and the Girsanov’s theorem, there exists a probability measure such that

P̃ (dω) = ZTP (dω)

and a Brownian motion

B̃t = Bt +

∫ t

0

β(Ss, s)ds
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Therefore,

dB̃t = dBt + β(St, t)dt

dB̃t = dBt −
µ(x, t)− α(x, t)

σ(St, t)
dt

σ(St, t) dB̃t = σ(St, t)dBt + α(St, t)dt− µ(St, t)dt

σ(St, t)dB̃t = dSt − µ(St, t)dt

We obtain that (St, B̃t, (Ω,F , P̃ )) is the required weak solution of the SDE.

3.4.3 Examples of Existence of strong and weak solutions

Some examples from [9] are reproduced here:

1. Deterministic SDE: The following SDE has no solutions.

X0 = 0

dXt = −sgn(Xt)dt
(3.10)

Proof Let Zt be a solution. Then

Zt = −
∫ t

0

sgn(Zs)ds

For some t > 0 assume that Zt = a > 0 and define v = inf{t ≥ 0 : Zt = a} and

u = sup{t ≤ v : Zt = 0}. We therefore have

a = Zv − Zu = −(v − u)

a contradiction as it implies Zt ≤ 0. Similarly a contradiction Zt ≥ 0 is obtained

for a < 0. Thus, Zt ≡ 0, but it is not a solution of the given SDE.

2. The SDE

dXt = − 1

2Xt

I(Xt 6= 0)dt+ dBt

X0 = 0

(3.11)

has no solutions.
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Proof Suppose (Z,B) is a solution (weak or strong). Then

dZt = − 1

2Zt
I(Zt 6= 0)dt+ dBt

dZt
2 = dBt

2

Using Itô’s formula, it follows that

Z2
t = −

∫ t

0

2Zs
2Zs

I(Zs 6= 0)ds+

∫ t

0

2ZsdBs +

∫ t

0

ds

=

∫ t

0

(1− I(Zs 6= 0))ds+

∫ t

0

2ZsdBs

=

∫ t

0

I(Zs = 0)ds+

∫ t

0

2ZsdBs

∫ t
0
I(Zs = 0)ds is the local time of the process at 0 i.e. the total time spent by the

process Zt at 0, this is 0. Hence the process Z2
t is a positive local martingale and

thus a supermartingale

E[Z2
t ] ≤ Z2

0 = 0

This implies that Z2
t = 0 a.s. But Zt = 0 is not a solution of the SDE, therefore it

has no solutions.

3. Two-sided Tanaka’s equation: This has no strong solution but has a weak solu-

tion.

dXt = sgn(Xt)dBt

X0 = 0
(3.12)

Proof Clearly sgn(Xt)dXt = sgn2(Xt)dBt therefore Bt =
∫ t

0
sgn(Xs)dXs. Us-

ing the Tanaka’s formula for local times

|Xt| =
∫ t

0

sgn(Xs)dXs + L0
t (X)

Where L0
t (X) is the total time spent by the process at zero. Therefore we have

Bt = |Xt| − L0
t (X)
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We observe taht both the processes Xt and |Xt| spend equal time at zero, thus

L0
t (X) = L0

t (|X|). Hence FBt ⊂ F
|X|
t . For Xt to be a strong solution FXt ⊂ FBt

but this would imply that FXt ⊂ F
|X|
t which cannot be true. Hence this has a weak

solution but no strong solution.

4. One-sided Tanaka’s equation: This has a strong solution.

dXt = I(Xt > 0)dBt

X0 = a
(3.13)

Proof Consider the stopping time v = inf{t ≥ 0 : a + Bt ≤ 0} and set Xt =

a+Bt∧v. Using the Itô’s formula we observe that

Xt −X0 =

∫ t

0

I(a+Bt∧v > 0)dBs =

∫ t

0

I(Xs > 0)dBs

Moreover it is adapted to the filtration generated by Bt ∪ {a}. Hence it is a strong

solution.
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