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Abstract

This project is a study of the notion of subjective probability and its applications in statis-

tical physics and thermodynamics. The ideas of subjective probability are then used to make

inferences on the optimality in thermodynamic processes involving maximum work extraction.

This thesis starts with the definition of probability and the difference between the objective

and subjective schools of thought in Chapter 1. This includes an analysis of a typical inverse

probability problem which is solved using the Bayesian Statistics. In chapter 2, some of the

pertinent literature related to this project are reviewed. In Chapter 3, there is an account of

an application of this technique to make inferences about identical thermodynamic systems un-

dergoing maximum work extraction process. In Chapter 4, there is an account of an attempt

to extend the inference making protocol for non-identical systems. Finally, the thesis ends with

the future possibilities and related exercises that can be undertaken.
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Chapter 1

Introduction

Probability begins as an abstract concept in probability theory which can be understood in

different ways. The way in which probability is interpreted is important as there has to be

epistemological consistency in a logical theory. There are three major interpretations that have

been suggested[1]:

• propensity (supported by Popper)

• degree of belief (Bayes, Laplace, Gauss, Jeffreys, de Finetti)

• relative frequency (Venn, Fisher, Neyman, von Mises)

The interpretation as propensity attributes the value of probability as the property of the

object involved. So, a fair coin when tossed has a propensity to give heads or tails. This is

entirely the property of the coin. The interpretation as degree of belief is different in the sense

that it factors in all the information previously obtained about the event to arrive at a belief for

success. The interpretation as relative frequency is reflective of the frequency of success when

the trial is repeated a very large number of times.

The interpretation as degree of belief is the core of the subjective school of probability while the

interpretation as relative frequency is the core of the objective school of probability.

1.1 Subjective and Objective Probability

The two schools have thought of themselves as correct and it becomes increasingly difficult

for a physicist to choose sides. But arguments could be made to see if any one of the two
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interpretations is more fundamental. It turns out that the idea of degree of belief is more

fundamental and without it, there would be logical difficulties in describing probabilities using

the relative frequency approach.

Suppose S is the number of times there is success in T events. Then, probability is equal to the

relative frequency S
T . It has been proved by many, including James Bernoulli, that

If the order of trials is unimportant, and if the probability of success at each trial is the same,

then S
T → p as T →∞ with probability one.

In this approach, it is important that the probability of success in each trial remains unchanged.

But using the relative frequency approach, defining the probability of each event would require

an infinite number of trials before that event. Using the frequency interpretation strictly lands

us in an infinitely recursive definition. On the other hand, the sense of the whole thing can be

made if the probabilities were interpreted as degrees of belief to begin with, in which case the

frequency interpretation would just update and validate the belief.

In this sense, it can be argued that the subjective notion of probability is more fundamental

of the two. It gives us freedom to use the concept of probability in cases where it would be

impossible to do a trial large number of times. It is a quantitative representation of the faith

of a person in an outcome of a trial based on any and every previous information available. An

inherent part of this approach is the process of updating one’s belief as new data and information

comes to light. This updating is done via Bayesian Statistics.

1.2 Bayes’ Theorem

The statement of the Bayes’ Theorem is as follows[2]:

Let {A1, A2, ...} be a sequence (either finite or infinite) of disjoint events such that their union

is the set of all possible outcomes of an experiment, and let B be another event, then

Pr(Ai|B) = Pr(B|Ai)Pr(Ai)∑
j Pr(B|Aj)Pr(Aj)

where Pr(Ai) is the prior probability of occurrence of Ai;Pr(Ai|B) is the probability of occur-

rence of Ai given that B has occurred and Pr(B|Ai) is the probability of occurrence of B given

that Ai has occurred.
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1.3 Bayesian Statistics

Bayesian Statistics entails using Bayes’ Theorem to solve the inverse probability problem. Let

us consider the following example of a novel casino game played between Alice and Bob[3].

1.3.1 Model

A reference ball is rolled on the pool table randomly and the position where it stops is noted.

Now the dealer rolls a ball and if the ball stop at the right of the reference ball, a point is won

by Alice. If the ball stops to the left of where the reference ball had stopped, the point is won

by Bob. Alice and Bob can’t see the pool table, so they do not know where the reference ball

had stopped. They are just informed about who has won a point. First one to reach six points

wins the game.

1.3.2 Bet

When Alice has won five points and Bob has won 3, Alice decides she will bet Bob that she is

going to win the game. Then what are the fair odds that should be offered?

The treatment of this problem seems quite simple in the sense that for Bob to win the game, he

needs to win each of the next three points, or else Alice wins the game. So, if the probability

that Alice wins a point is p, which will depend on the position of the reference ball and whose

value is unknown to both Alice and Bob, the probability that Bob wins the game is (1 − p)3

and the probability that Alice wins the game is [1− (1− p)3]. If the value of p was (for instance

in case of a fair coin) p = 1
2 , then the fair odds would have been 7 : 1 as P (Bob) = 1

8 and

P (Alice) = 7
8 . However, Alice does not know the value of p, and so it is not so easy for her to

calculate the odds.

1.3.3 Inverse Probability Problem

Alice can use the data that she has at her disposal to come to a fair odd. She has won five

games to Bob’s three. If she were to use this in terms of relative frequency, she could assign the

probability that she wins an event as p = 5
8 so that P (Bob) = 27

512 and P (Alice) = 485
512 . In this

case, the odds are about 18 : 1. But even this is not a fair assessment as one can’t be sure that

the value of p used is indeed correct. Such a surety when using the relative frequency approach

can only be achieved when there have been infinite number of trials.
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This is what essentially constitutes an inverse probability problem. Because the value of p is not

known, it is ideal to account for all possible values of it in the range {0, 1}. In such a situation,

the probability that Bob wins the game, i.e., the next three points can be expressed as

P (Bob) =
∫ 1
0 (1− p)3P (p|A = 5, B = 3)dp

where we consider the probability that p is the correct probability given the acquired results.

This inverse probability can be found using the Bayes’ Theorem, hence the name Bayesian

Statistics.

P (p|A = 5, B = 3) = P (A=5,B=3|p)P (p)∫ 1
0 P (A=5,B=3|p)P (p)dp

Now, P (A = 5, B = 3|p) = ( 8!
5!3!)p

5(1 − p)3. The prior P (p) can be assumed to be distributed

uniformly over [0, 1]. Using this in the above equation and using the properties of Γ−function,

it can be established that the correct odds for the bet would be 10 : 1.

This example shows that when there is a lack of certainty about the model, it is more prudent

to use the Bayesian Statistics for a better result. It also becomes essential that whenever there

is a parameter that is itself a random variable, its inverse probability should be found out.

1.4 Prior and updating the prior

The proper protocol of going about Bayesian Statistics is to assign some probability distribution

to a random variable in the problem based on the degree of belief which can be formed from the

available information. This distribution is called the prior distribution of the random variable.

As and when new information is available, it becomes important to update the probability

distribution that was earlier assigned so that it now reflects that the new information that has

been incorporated in our probability assignment. This updating is done via Bayes’ Theorem

and the distribution now obtained is called the posterior distribution. This posterior represents

the distribution based on all the information available till that point of time. For the next

cycle of updating, in case new information is obtained, the posterior now acts as the prior. For

instance, in the previous example, P (p) was the prior for p being the correct model. After it

became known that Alice had won five points and Bob had won three points, it was necessary

to update the prior and that was done using Bayes’ theorem. P (p|A = 5, B = 3) thus obtained

is the posterior distribution which contains the information of the results. If any further results

are known, then this posterior will act as a prior for further updating.
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1.5 Subjective vis-à-vis objective

To better understand the difference between subjective approach and objective approach, a

problem was considered[4]. There are six boxes H0, H1, H2, H3, H4, H5 having five balls each.

These five balls can either be white or black, and the subscript of each box denotes the number

of white ball in that box. So, for example, H2 has two white balls and three black balls. So, we

know that if a ball is to be drawn randomly from a box, then the probability that a white ball

is drawn is P (white|Hi) = i
5 for the box Hi.

1.5.1 The problem

A person has to take one ball out of a particular box from the six boxes and note the color of

the ball. The ball is then placed back in the box. The person drawing the ball out does not

know from which box he is drawing the ball out. The problem is to infer from which box is the

person drawing the ball out.

1.5.2 Approach and result

In this case, it is very easy to differentiate between the subjective and the objective approach.

In the frequency approach, if the probability {pi} associated with each {Hi} is to be found, then

the ball is taken out of the chosen box N number of times. Every time the drawn ball is white,

the event is recorded as success S. The value of i for which P (white|Hi) is closest to the relative

frequency S
N gives the box which has been chosen. In subjective approach, we find P (Hi|Ik)

where Ik includes all the information we have after the kth draw. Here, that value of i for which

P (Hi|Ik) tends to one gives the chosen box.

In his work[4], D’Agostini produces the results of a simulated experiment for this problem (Figure

1.1). It can be seen from the table that the prior P (Hi|I0) is same for all i’s before any ball is

drawn. This is so because there is no information and in that case, uniform distribution is the

best representation of our state of knowledge. Once a white ball is drawn, P (H0|Ik) immediately

becomes 0 because the box H0 is now ruled out with complete certainty. In contrast to this, in

the objective approach, it is still possible to have S
N < 1

5 ; this is in violation of the fact that we

can be certain that the smallest probability of drawing a white ball even without knowing which

box it is drawn from is 1
5 because after the first draw it is known for sure that there is at least

one white ball in the box. Also, it can be seen from the table that subjective approach gives a

more confident result in fewer repetitions as compared to the objective approach.
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Figure 1.1: Table showing result of simulated experiment to differentiate between effec-
tiveness of subjective approach and objective approach[4]
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Chapter 2

Literature Review

As part of the project, different literature was reviewed in an attempt to identify and understand

the working of Bayesian Statistics in the context of physics. Among the literature reviewed

were the seminal paper by E. T. Jaynes[5] on the correlation between information theory and

statistical physics and a paper by C. Caves[6] on the approach that should be taken when trying

to predict future duration of a phenomenon using the information about its present age.

2.1 Information theory and statistical physics

Ever since the path breaking paper of Shannon in which he introduced the idea of information

theory, its correspondence with statistical mechanics became an interesting study. In 1957,

Jaynes tried to show that the information entropy and thermodynamic entropy were inter-

changeable and he tried to interpret the theory of statistical mechanics from a informational

standpoint.

Previously, the theories were constructed based on the equations of motion supplemented by

ergodicity, equal a priori probability, and entropy as a physical quantity was identified at the

end by comparison of the resulting equations with laws of thermodynamics. Jaynes tried a new

approach where the definition for entropy was taken as a starting point and the rest of the

theory followed from there. While this is expected to simplify the subject mathematically and

conceptually, it also makes the theory much more general in its application.
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2.1.1 Maximum entropy distribution

Now that entropy is taken as the starting point in the theory, we start by finding the probability

distribution that maximizes the entropy. Entropy in the sense of information theory is a measure

of the lack of information about the system. Higher the informational entropy of a system, less

information we have about it.

To begin with, let us assume a quantity x ∈ {xi} where i ∈ {1, 2, ..., n}. The corresponding

probability {pi} are not known. The only other peice of information available is the expectation

value of a function f(x)

< f(x) >=

n∑
i=1

pif(xi); (2.1)

It goes without saying that any distribution pi we assume, it must be normalized so that∑
pi = 1. (2.2)

This case could be considered similar to a situation where a system can have many energy levels

but the distribution is not known. Only the expectation value of energy is given or known.

To find the distribution, we start by defining a function H(p1, p2, ..., pn) which measures the un-

certainty represented by this probability distribution pi. Because the distribution is not known,

there can be great many distributions that might represent the situation. But each distribution

is associated with a level of uncertainty about the system. To ensure that the distribution we

have chosen is the correct distribution, the uncertainty it entails should be maximum. This way,

we can be sure that no extra assumption were made which were not in accordance with the

information already available. This uncertainty is quantified by H(p1, p2, ..., pn). The quantity

H has the following properties:

1. H is a continuous function of pi’s

2. If all the pi are equal, then the quantity A(n) = H( 1
n ,

1
n , ...,

1
n) is a monotonically increasing

function of n.

3. H follows the composition law according to which, if the events {x1, x2, ..., xn} are grouped

such that there are r groups ({w1, w2, ..., wr}) each containing one or more xi, then

H(p1, ..., pn) = H(w1, ..., wr) + w1H(
p1
w1
, ...,

pk
w1

) + ..., (2.3)

where w1 = (p1 + ... + pk) is the group of first k of xi’s, w2 = (pk+1 + ... + pk+m) is the

group of next m of xi’s and so on.
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Using these three conditions, it is possible to arrive at an expression for the informational entropy

proposed by Shannon, also called the Shannon entropy:

H(p1, p2, ..., pn) = −K
∑
i

pi ln(pi). (2.4)

Here K is some positive quantity so that the entropy is positive. This is just the expression for

entropy which is found in statistical mechanics.

Now that the expression for entropy has been found, we need to arrive at a distribution which

maximizes this entropy within the constraint that it reflect the information that is already

possessed. This can be done by the method of Lagrange multipliers. Equation (2.4) has to

be maximized under the constraints of (2.1) and (2.2). The Lagrange multipliers λ and µ are

introduced as usual and we obtain the result

pi = e−λ−µf(xi) (2.5)

The constants λ and µ are determined by substituting this distribution in (2.1) and (2.2) and

we get

< f(x) >= −∂lnZ(µ)

∂µ
(2.6)

λ = lnZ(µ), (2.7)

where

Z(µ) =
∑
i

e−µf(xi), (2.8)

is called the partition function.

In the case where the system has energy levels Ei(α1, α2, ...), the above treatment results in the

Boltzmann distribution

pi = e−λ−µEi , (2.9)

with

λ = lnZ, (2.10)

µ =
1

kbT
, (2.11)

Z =
∑
i

e
− Ei

kbT . (2.12)
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The correspondence between statistical mechanics and information theory is phenomenal and

in this paper, Jaynes goes on to establish that the information and thermodynamic entropy are

indeed one and the same. This idea of correlation between the two streams motivated me to

study about any such relation between information theory and thermodynamics.

2.2 Inferring future duration

In 1993, J. R. Gott[7] in his Nature article proposed a prediction mechanism for future longevity

based on present age. His approach was based on Copernican Temporal Principle which states

that when an observer observes a phenomenon, the observation does not happen at a special

time. His delta-t argument went as follows:

Suppose there is a phenomenon that begins at t0 and ends at t0 + T so that the duration is T .

Now, an observation has been made in the present time t such that t0 < t < t0 + T . Then, the

present age tp = tt0 and future duration tf = Ttp. If there is nothing special about the time,

then tp is a random variable uniformly distributed between 0 and T . So,

P (aT < tp < bT ) = b− a = f (2.13)

From this, Gott inferred that the duration T lies between the corresponding bounds
tp
b and

tp
a

with the same probability f . He obtained the following:

G(
1− b
b

tp < tf <
1− a
a

) = b− a = f (2.14)

In a critical assessment of this approach, Carlton Caves[6] points out the pitfalls that should

have been avoided during such a treatment as the idea of Bayesian analysis does tend to be

tricky. First, Caves suggests that the quantity T is itself a random variable and thus, should

have a prior probability distribution of its own. After knowing the present age upon making

an observation, the prior distribution for T (or for tf ) has to be updated and the probability

assignment G is incorrect. Caves further argues that in a proper Bayesian analysis, there will

be a probability distribution for the start time t0 as well, so that γ(t0) gives the probability

γ(t0)dt0 that the phenomenon begins between time t0 and t0 + dt0. Also, p(T |t0)dT gives the

probability that the duration is T , given the event starts at t0. The correct use of the temporal

Copernican principle will then be to consider the phenomenon to be equally likely to begin at

any time so that γ(t0) is constant and to ensure that the total duration is independent of the

starting time.
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The motivation to study this treatment was to see how even seasoned physicist could overlook

details while using Subjective probability to make inferences. It is very important to keep tabs

on the random variables pertinent to the problem at hand. This random variable has to be

assigned prior probability and it is also important that the updating protocol must ensure that

all the available data, and only the available data, are taken into consideration.
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Chapter 3

Application of subjective probability

in thermodynamics

The subjective notion of probability can be used to make inferences while assuming ignorance

about certain information. This is in attempt to understand the relation between the information

theory and thermodynamics. It can be shown that even when there is a crippling lack of

information, use of subjective approach of probability makes it possible to infer outcomes of

processes to a very good agreement[8].

3.1 The idea

Two identical finite reservoirs, each at an equilibrium state at their own temperatures T+ and

T− such that T+ > T−. If these two systems undergo a reversible process, it is possible to extract

work to the point till their temperatures become equal. In fact, the work that can be extracted

will be the maximum extractable work from these two systems. If we consider the intermediate

temperatures of the two reservoirs, that is sometime after the process is started but has not yet

finished, say T1 and T2, it is possible to find a value of maximum work that can be extracted

even if we assume that we do not know:

1. which reading (T1 and T2) corresponds to the hot reservoir and to the cold reservoir

2. that the process will stop once the two temperatures are equal

The only information available is that the process is reversible and the only constraint is that

the extracted work should be positive. The parameters are T1 and T2 which are related to each

13



other by a function as a consequence of the process being reversible. So, T1 = F (T2). Thus,

this problem is essentially in one variable, either T1 or T2. The condition that the work done

W = 0 gives a range over which T1 or T2 can vary and in this case, both T1 ∈ {T+, T−} and

T2 ∈ {T+, T−}. In this range, a prior probability distribution can be defined for both Ti’s.

For defining the two prior probability distributions, it is important to realize that the state of

knowledge of an observer is the same whether the observer chooses to quantify the uncertainty

in terms of parameter T1 or T2. So, we assign the same probabilities for those values of T1 and

T2 which are related by the function F :

P (T1)dT1 = P (T2)dT2, (3.1)

when T1 = F (T2). Once a form for the prior has been obtained, it can be used to find the average

value of W which can be expressed as a function of either T1 or T2. So, for instance, if T2 is the

average value, then the average work extracted will be W (T2). We will see that this average for

work is very close to the optimal value of work that can be extracted (the value of work that

can be extracted from the beginning till the two reservoirs are at the same temperature,i.e, till

the process ends) even in the far-from-equilibrium region.

3.2 The model

As already mentioned, the model consists of two identical systems (finite reservoirs) that are at

final temperatures T1 and T2. The fundamental thermodynamic relation for the two systems

can be written as S ∝ Uω1 . Different physical systems are represented by different values of ω1.

The value of ω1 lies between (0, 1) so that the system considered has a positive heat capacity.

The system considered is a black-body if ω1 = 3
4 , an ideal fermi gas if ω1 = 1

2 , an ideal bose gas

if ω1 = 3
5 . The classical ideal gas can also be considered by making ω1 → 0.

Using the basic definition that ( ∂S∂U )V = 1
T , it can be easily seen that

⇒ U ∝ T
1

1−ω1 (3.2)

⇒ S ∝ T
ω1

1−ω1 (3.3)

⇒ S ∝ Tω, (3.4)
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where ω = ω1
1−ω1

. Now because the systems are undergoing reversible process, the change in

entropy is zero, or ∆S = 0. This gives the relation between T1 and T2:

∆S = 0; (3.5)

⇒ Tω1 + Tω2 − Tω+ − Tω− = 0 (3.6)

⇒ T1 = (Tω+ + Tω− − Tω2 )
1
ω . (3.7)

Equation (2.8) gives the relation between the two intermediate temperatures and can be used

to convert the expression for work into a function of only one variable. It can be noticed at this

point that there is a symmetry between T1 and T2 in the sense that the expression for T2 will

also be of the same form as (2.8), and can be obtained just by exchanging the two Ti’s. The

expression for work that has been extracted is given as:

W = −∆U ; (3.8)

W = (Tω0
+ + Tω0

− − T
ω0
1 − T

ω0
2 ), (3.9)

where ω0 = 1
1−ω1

.

This expression for work is a function of both T1 and T2. Substituting (2.8) into (2.10)

results in the following expression for work as a function of T2:

W = Tω0
+ + Tω0

− − (Tω+ + Tω− − Tω2 )
1
ω1 − Tω0

2 (3.10)

The expression for W as a function for T1 can be obtained by simply interchanging T1 and T2.

So, the entire analysis can be done in terms of either of the two. Here, it is done in terms of T2.

Now imposing the condition that the work extracted W ≥ 0 the range for possible values of T2

can be obtained and the range is [T−, T+].

It is intuitive that the actual range of T2 will not be [T−, T+] because both the systems will

reach the same temperature Tc which will lie in [T−, T+] and the temperatures of the system

will remain constant then on. The value of Tc is given as:

Tc = (
Tω+ + Tω−

2
)

1
ω . (3.11)

But as already mentioned, we are ignorant of that law of thermodynamics which says that the

process stops once the temperatures are same. Thus in our treatment, we will assign the prior
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based on the entire range of T2 which is feasible from our state of information. This is because

we don’t know how much the process has proceeded.

3.2.1 Assigning the prior

We are now ready to compute the prior for T2. It is easy to see from equations (2.1) and (2.7)

that the prior will be of the form

P (T2) =
ωTω−12

(Tω+ − Tω−)
. (3.12)

Equation (2.13) gives the normalized prior distribution of T2. The normalized prior distribution

for T1 would also have been of the same form with T2 replaced by T1. This is because the

equations are symmetric in both T1 and T2.

The next step is to evaluate the expected value of T2 which is given as

T2 =

∫ T+

T−

T2P (T2)dT2. (3.13)

If we choose T+ = 1 and θ = T2
T1

, we get the following expression for T2:

T2 = ω1
1− θω0

1− θω
. (3.14)

3.3 Results

Once the average value of T2 has been obtained, the expected value of the work done (Wp) can

easily be estimated by substituting the value of T2 from (2.15) into (2.11). The optimal value

of work extracted(Wo) can also be found by replacing T2 in (2.11) by Tc from equation (2.12).

For the sake of comparison, the expected value of T2 has also been found using an uniform prior

(assuming no information of any sort over the range for T2) and this value is used in eq. (2.11)

to give another estimate(Wu).

Figure 3.1 shows the results of the numerical analysis. It plots work as a function of the ratios

of initial temperature, θ; (a) ideal classical gas (ω1 → 0), (b) ideal Fermi gas (ω1 = 1
2), (c)

degenerate Bose gas (ω1 = 3
5), and (d) black-body radiation (ω1 = 3

4). The dashed curve is for

Wo, the thin curve is for Wp and the thick curve is for Wu.

It can be seen that the agreement between the optimal work and the work obtained using the
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Figure 3.1: Plot showing W p, W u and Wo as a function of ratio of bath temparature[8]

prior is remarkable and this agreement extends even in the far-from-equilibrium regime where

the value of θ � 1.

A further extension of this treatment would be to consider the finite reservoirs that are not

identical. An agreement in such a case will show that the process of inference is in some

way replicating the results that are obtained when there is complete information about the

thermodynamic systems and processes. My further work has been to generalize this approach

and I have been able to show that this agreement holds true in case of an ideal Fermi gas.
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Chapter 4

Inference of optimality in

thermodynamic processes involving

non-identical systems

It has been shown[8] the optimal work done can be inferred in the case where two identical finite

reservoirs are undergoing maximum work extraction process. Extending this would require

assuming non-identical reservoirs to begin with. The reservoirs can differ in volume, number of

particles, nature of particles (say monoatomic ideal gas and diatomic ideal gas), etc. But the

restriction that we will still adhere to is that the fundamental thermodynamic relation for both

the systems will be of the form S = kUω1 where ω1, as earlier, represents the different types of

systems that can be used.

4.1 The idea revisited

Two non-identical finite reservoirs, each at an equilibrium state at their own temperatures T+

and T− such that T+ > T−. If these two systems undergo a reversible process, it is possible to

extract work to the point till their temperatures become equal. If we consider the intermediate

temperatures of the two reservoirs, that is sometime after the process is started but has not yet

finished, say T1 and T2. But unlike in the previous case where we did not require to assign the

value T1 and T2 to the hot or the cold reservoir, it is now essential to identify T1 with the hot

reservoir and T2 with the cold reservoir. This is because of the fact that the two reservoirs are

now non-identical and the set of equations which will follow will not be symmetric with respect
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to T1 and T2. But we still consider that we are unaware of the fact that the process will stop once

the temperatures become the same and we still do not know the exact values of the parameters.

The only information available is that the process is reversible and the only constraint is that

the extracted work should be positive. The parameters T1 and T2 are once again related to each

other by a function as a consequence of the process being reversible. So, T1 = F (T2). Thus, this

problem is essentially in one variable, either T1 or T2.

The condition that the work done W = 0 gives a range over which T1 or T2 can vary. But once

again, unlike the previous case where both T1 ∈ {T+, T−} and T2 ∈ {T+, T−}, the two parameters

will have different range now and in their respective ranges, a prior probability distribution can

be defined for both Ti’s. While it is still true that the two prior probability distributions will be

of the same form, but because the ranges are now different, so the normalization constant will

now be different for the two.

P (T1)dT1 = P (T2)dT2, (4.1)

P (T1) =
f(T1)∫ T1,max

T1,min
f(T1)dT1

, (4.2)

P (T2) =
f(T2)∫ T2,max

T2,min
f(T2)dT2

. (4.3)

Once a form for the prior has been obtained, it can be used to find the average value of W which

can be expressed as a function of either T1 or T2. But unlike the previous case, now the two

expressions will not ideally be the same. Let’s start with the math.

4.2 New expressions for non-identical systems

Now there are two non-identical reservoirs with the hot reservoir at T1 and the cold reservoir

at T2. The two fundamental thermodynamic relation for the two systems can be written as

S = kUω1 . Different systems are represented by different values of ω1. The value of ω1 lies

between (0, 1) so that the system considered has a positive heat capacity. The system considered

is a black-body if ω1 = 3
4 , is an ideal fermi gas if ω1 = 1

2 , is an ideal bose gas if ω1 = 3
5 . The

classical ideal gas can also be considered by making ω1 → 0.

Using the basic definition that ( ∂S∂U )V = 1
T , it can be easily seen that

⇒ U = (ω1kT )
1

1−ω1 , (4.4)

⇒ S = k
ω1

1−ω1 (ω1T )
ω1

1−ω1 , (4.5)
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⇒ S = k1+ω(ω1T )ω. (4.6)

where ω = ω1
1−ω1

.

So, for the two systems, S1 = k1+ω1 (ω1T1)
ω and S2 = k1+ω2 (ω1T2)

ω. Similarly, U1 =

(ω1k1T1)
1

1−ω1 and U2 = (ω1k2T2)
1

1−ω1 .

Now because the systems are undergoing reversible process, the change in entropy is zero,

or ∆S = 0. This gives the relation between T1 and T2:

k1+ω1 (ω1T1)
ω − k1+ω1 (ω1T+)ω + k1+ω2 (ω1T2)

ω − k1+ω2 (ω1T−)ω = 0 (4.7)

k1+ω1 (Tω1 − Tω+) + k1+ω2 (Tω2 − Tω−) = 0 (4.8)

The expression for work extracted W can be written as:

W = −∆U ; (4.9)

W = (ωω0
1 )((k1T+)ω0 + (k2T−)ω0 − (k1T1)

ω0 − (k2T2)
ω0) (4.10)

where ω0 = 1
1−ω1

.

Here we once again make a simplifying choice of T+ = 1, T−
T+

= θ and k1
k2

= γ. Then, we can

write the following:

T1 = (1 + γω+1θω − γω+1Tω2 )
1
ω , (4.11)

T2 = (γ−(ω+1) + θω − γ−(ω+1)Tω1 )
1
ω , (4.12)

W = (ω1k1)
ω0(1 + (γθ)ω0 − Tω0

1 − (γT2)
ω0), (4.13)

W1(T1) = (ω1k1)
ω0 [1 + (γθ)ω0 − Tω0

1 − γ
ω0(γ−ω0 + θω − γ−ω0Tω1 )

1
ω1 ], (4.14)

W2(T2) = (ω1k1)
ω0 [1 + (γθ)ω0 − (1 + γω0θω − γω0Tω2 )

1
ω1 − (γT2)

ω0 ]. (4.15)

So, we have obtained the expression for work that can be extracted from the process in terms

of both the temperatures. It can be seen that the two expressions, W1 and W2 are not same

and so, the range for T1 and T2 they result in when we impose the condition that W ≥ 0 are

different. Plotting these expressions for different values of γ shows that the two parameters have

different ranges.

As can be seen, when γ = 1, T1 and T2 both lie in the same range [θ, 1]. But when γ 6= 1, range

for T1 and T2 is different. T1 goes from some T1,min to 1 and T2 goes from θ to some T2,max. If

these limits T1,min and T2,max are known, we can find the prior and thus, the expected value of
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Figure 4.1: Range for T1 and T2

work extracted in the process.

For an arbitrary value of ω1, equations (3.16) and (3.17) have to be solved numerically to

obtain the values of T1,min and T2,max. These equations have to be solved by running iterations

over small intervals of θ. But the case of ideal Fermi gas, for which ω1 = 1
2 can be done

analytically.

4.3 Assigning priors for the Ideal Fermi Gas system

When we assign the value for ω1 = 1
2 , we get the following as the limits for T1 and T2:

T1 ∈
[

1− γ2 + 2γ2θ

1 + γ2
, 1

]
(4.16)

T2 ∈
[
θ,

2− θ + γ2θ

1 + γ2

]
(4.17)
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Using these limits, the priors for T1 and T2 can be evaluated. The normalized prior turns out

to be uniform priors (these do not depend on T1 or T2):

P (T1) =
1 + γ2

2γ2(1− θ)
, (4.18)

P (T2) =
1 + γ2

2(1− θ)
, (4.19)

So, we see that the two priors are not equal. This is a consequence of the two systems being

non-identical. Putting γ = 1 in all the equations will replicate the treatment discussed in chapter

2.

Using these priors, we are in a situation to find the average values for T1 and T2:

T1 =
1 + γ2θ

1 + γ2
, (4.20)

T2 =
1 + γ2θ

1 + γ2
. (4.21)

So we see that the average value for T1 and T2 turn out to be the same. These values can be

used to find the expected value for work extracted in the entire process. Using the value T1 and

T2, we can find W1 W2 respectively. These can be compared with the optimal value of the work

extracted, which can be found by replacing T1 or T2 by Tc whose value is obtained by putting

T1 = T2 = Tc in eq. (3.10).

Tc =
1 + γ2θ

1 + γ2
(4.22)

So, Tc turns out to be same as T1 andT2. Plotting W 1, W 2 and Wo as a function of θ shows

that the inference made using the prior is once again in excellent agreement with the optimal

value of work that can be extracted.

As expected, the three curves are in complete agreement, and for γ = 1, the plot is the same as

the one in chapter 2 for identical systems.
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(a) for γ = 1.2 (b) for γ = 1.0

(c) for γ = .6

Figure 4.2: Plot showing W 1, W 2 and Wo as a function of θ for different values of γ.
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Chapter 5

Future direction

We have seen that in the case of absence of complete knowledge about a thermodynamic process,

it is possible to invoke the ideas of subjective probability which can help us infer the outcomes

of a process. These inferences are in a very good agreement with the values we would have got

had the complete information been given. We see that in case where the two finite reservoirs

are identical as well as in the case where the two finite reservoirs of ideal Fermi gas are non-

identical, the inferred value of maximum work extracted was in very close agreement with the

actual maximum value of the work that could have been extracted in the entire process.

The next step is to check if this correspondence holds for other systems such as ideal classical

gas, degenerate Bose gas, black-body radiation etc. We already have the recipe for extending

this work to other type of systems and these can be solved numerically using any standard math-

ematical software such as Mathematica. It will also be interesting to check for this agreement

if any one of the hot or cold reservoir becomes infinitely large. This will represent the limiting

cases for γ → 0 and γ →∞. In terms of making new inferences, we could include the inference

of efficiency which will give greater insight.

The entire work urges one to examine the relationship between thermodynamics and information

more deeply.
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