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Notation

Z The set of integers

R The set of real numbers

C The set of complex numbers

Rn n-dimensional Euclidean space

Sn The unit sphere in Rn+1

πn(X,x0) nth-homotopy group of the space X at the base point x0

Dn The unit disc in Rn

XX Space of continuous mappings from X to X

Zn The integers mod n

G(X,x0) Gottlieb group of the space X at the base point x0

Pn The projective space of dimension n

χ(X) Euler characteristic of the space X
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Abstract

A very fundamental problem in topology is to find whether two topological spaces are

homeomorphic or not. This problem cannot be solved using purely topological tools

only. Algebraic topology originated to develop tools to deal this problem using algebraic

methods. Fundamental group is a very basic and one of the most important invariants

of a topological space. In the first chapter, some basic concepts like CW complexes,

fibration and H-spaces are defined, which will be used in the later chapters. In the second

chapter, homotopy groups are defined and some of their properties are discussed. Some

computations are done for spheres. In the last chapter, we discuss an important subgroup

of the fundamental group of a space. These groups were defined by Daniel Henry Gottlieb

in 1965. Following Gottlieb [2], we discuss some properties of these groups and compute

them for some nice spaces such as lens spaces, projective spaces and two dimensional

manifolds.
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Chapter 1

Basic Definitions

In this chapter, some basic concepts are defined. The definitions given in this chapter are

based on Hatcher [1] and Aguilar-Gitler-Prieto [3].

1.1 Paths and Homotopy

In a space X, a path is a continuous map f : I → X; where I is a unit interval [0,1].

Let X, Y be spaces and f , g are two continuous maps from X to Y . Then we say f is

homotopic to g if there exists a continuos map F : X × I → Y such that

F (x, o) = f(x)

F (x, 1) = g(x)

∀ x ∈ X.

If f and g are homotopic, then we write f w g. F (x, t) is called a homotopy and sometimes

we denote a homotopy by simply ft.

Similarly, two paths α and β in X are said to be said to be homotopic if there exists a

continuous function F : I × I → X such that

F (s, 0) = α(s)

F (s, 1) = β(s) ; ∀ s ∈ I.

A loop in a space X, based at x0 is a path α : I → X such that α(0) = α(1) = x0.

A map f is called nullhomotopic if it homotopic to a constant map.

Let α and β are two paths in a space X such that α(1) = β(0), then we can join these

two paths.
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We define an operation ∗ such that

(α ∗ β)(t) =

α(2t); 0 ≤ t ≤ 1/2

β(2t− 1); 1/2 ≤ t ≤ 1 .
(1.1)

If α, β are two loops in X, based at x0 and they are homotopic, then we write α 'x0 β.

' is an equivalence relation. The equivalence class of α is denoted by [α] and is also called

the homotopy class of α. So all the loops based at x0 and homotopic to α belong to [α].

1.2 CW complexes

By an n-cell we mean a space which is homeomorphic to an open n-disk, int(Dn). We call

a space is a cell if it is an n-cell for n ≥ 0.

Note that a 0-cell is a point. We denote an n-cell by en.

A CW complex or cell complex is a space constructed in the following way

( a ) We start with 0-cells ( with discrete set X0 ).

( b ) Inductively, n-skeleton Xn is formed by attaching n-cells enα to (n−1) skeleton Xn−1

via maps ϕα : Sn−1 → Xn−1. We can view Xn as the quotient space of the disjoint union

Xn−1∐
αD

n
α ; x is identified with ϕα(x) (x ∼ ϕα(x)) for x ∈ δDn

α.

So as a set, Xn = Xn−1∐
α e

n
α.

( c ) We can stop this process by setting X = Xn, or continue this inductive process

indefinitively by setting X =
⋃
Xn.

Examples

1. Sn is an example of a CW complex. It can be constructed by attaching just two

cells e0 and en; where en is attached to e0 via constant map (Sn → e0).

2. An one dimensional CW complex X = X1 is called a graph. It is constructed by

vertices (0-cells) and edges (1-cells).

3. A torus can also be considered as a cell complex. It can be constructed by one 0-cell,

two 1-cells and one 2-cell.
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1.3 Fibrations

Let X,E,B be spaces and p : E → B and f : X → B be maps. Then lifting problem for f

with respect to p is that

Is there a continuous map f
′

: X → E such that

f = p ◦ f ′ ?

If there exist such a map then we say f can be lifted to E with respect to p and f
′

is a lift

of f.

Definition 1.1 A map p : E → B is said to have the homotopy lifting property if for the

given maps

f
′

: X → E and F : X × I → B

such that F (x, 0) = p ◦ f ′(x) for x ∈ X.

There exist a map F
′

: X × I → E such that F ′(x, 0) = f
′
(x) for x ∈ X and

p ◦ F ′ = F.

Now we move to define Fibration.

Definition 1.2 Fibration is a map p : E → B if the map p has the homotopy lifting property

with respect to every space X.

E is called the total space of the fibration and B is called the base space of the fibration.

For b ∈ B, p−1(b) is called the fibre over b. Sometimes we write fiber bundle as F → E →
B. It can be considered as a short exact sequence of spaces.

Examples

1. Let F , B be spaces, then the projection map B × F → B is a fibration.

2. Take E to be the Mobius band

E = I × [−1, 1]/ ∼;

where identify (0, v) ∼ (1,−v). Then E is a bundle over S1 and fiber is the interval

[-1, 1].
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3. Klein bottle is also a bundle over the circle S1 where fiber is also S1.

4. Projective spaces yield very important fiber bundles. In the real case, Sn are bundles

over projective space RPn. In the complex case, S2n+1 is a bundle over CPn with

fiber S1. When n = 1, then CP 1 = S2 so the sequence becomes S1 → S3 → S2.

It is an important example which we will give us an important relation between

homotopy groups of spheres.

Definition 1.3 Let X be a space. Then X̃ is said to be a covering space of X if there is a

continuous surjection p :X̃ → X satisfying the following property

For each point x ∈ X, there is an open neighbourhood U of x such that p−1(U) is a disjoint

union of open sets Uj ; j ∈ J such that p|Uj : Uj → U is an homeomorphism.

p is called a covering map or a covering projection. X̃ is called a covering space.

p−1(x) is a fiber over x, and clearly it is a discrete space.

We can see that a fiber bundle but with a discrete fiber is a covering space.

Examples

1. R is a covering space of the circle S1. The covering map p : R→ S1 can be given by

p(t) = (cos2πt, sin2πt).

2. A homeomorphism p : X̃ → X is naturally a covering projection.

3. Let qn : S1 → S1 is a covering projection, where

qn(z) = zn.

4. Let p : X̃ → X and q : X̃ → X are covering projections. Then the product map

p× q : X̃ × Ỹ → X × Y defined by

(p× q)(x, y) = (p(x), q(y))

is also a covering projection.
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1.4 H-spaces

Let (W,w0) be a pointed topological space. Then W is said to be an H-space if there

exists a continuous map µ

µ : W ×W →W

such that if e : W → W is the constant map ( e(W ) = w0 ) ; then this constant map e is

identity map up to homotopy (or an H-identity) i. e. the composites

µ ◦ (e, id) : W →W , µ ◦ (id, e) : W →W

are homotopic to the identity map (id) of W .

A space W is called homotopy associative or H-associative if

these two composite maps

µ ◦ (µ× id), µ ◦ (id× µ) : W ×W ×W →W

are homotpic.

H-inverse A map j : W →W determines H-inverse if both the composites

µ ◦ (id, j), µ ◦ (j, id) : W →W

are (each) homotopic to the constant map e : W →W. It means that both are nullhomo-

topic.

These properties are similar to the axioms of a group, but they are upto to homotopy. So

we have the concept of an H-group.

H-group An H-space, which is H-associative and has a map j : W →W that determines

H-inverse is called an H-group.

An H-space, or H-group is H-abelian if these two maps µ, µ ◦ T : W × W → W are

homotopic ; where we define T as T (x, y) = (y, x).

H-homomorphism Let W and W ′ to be H-spaces, then a continuous map

h : W →W ′ is said to be an H-homomorphism if the composite maps

h ◦ µ : W ×W →W ′, µ′ ◦ (h× h) : W ×W →W ′

are homotopic.

Examples

1. Any topological group is also an H-group.

2. A loop space of a space is an H-group.
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Chapter 2

Homotopy Groups and some

computations

In this chapter, homotopy groups are defined and some computations are done for spheres.

The definitions, theorems and related computations are based on Hatcher [1].

2.1 Fundamental groups

Definition 2.1 The fundamental group π1(X,x0) is the set of all homotopy classes of loops

in X based at x0.

For [α], [β] ∈ π1(X,x0), define

[α] ∗ [β] = [α ∗ β].

This operation is well defined and associative. Constant loop (maps every poit to x0) is

the identity of this group. Inverse of a loop α(t) is α−1(t) = α(1− t).
If our space X is path-connected, then it does not matter which point we are choosing as

a base point. Because then

π1(X,x0) is isomophic to π1(X,x1) ; for any x0, x1 ∈ X.

Then we simply denote our fundamental group by π1(X).

The most basic and simple example of the fundamental group is the fundamental group

of the circle. Computation of π1(S
1) is done later in this chapter. We will prove that
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π1(S
1) ∼= Z and we will try to compute higher homotopy groups of spheres also.

Some properties of the fundamental groups

1. Let (X,x0) and (Y, y0) be two pointed spaces. Let f : (X,x0) → (Y, y0) be a map

(f(x0) = y0). Then there is an homomorphism induced by f

f∗ : π1(X,x0)→ π1(Y, y0)

given by f∗[α] = [f ◦ α].

2. If X and Y are two path-connected spaces of the same homotopy type, then their

fundamental groups are isomorphic

π1(X) ∼= π1(Y ).

3. Let (X,x0) and (Y, y0) be two pointed path-connected spaces. Then

π1(X × Y, (x0, yo)) ∼= π1(X,x0)× π1(Y, y0).

2.2 Higher homotopy groups

We have defined fundamental group in the previous section. Now we will define higher

homotopy groups. Higher homotopy groups are just the higher-dimensional analogs of the

fundamental group.

2.2.1 πn(X, x0)

The nth-homotopy group for a space (X,x0) is defined in the same manner. So πn(X,x0)

is the set of homotopy classes of maps ( or n-dimensional loops) f : (In, δIn) → (X,x0);

and it is required that homotopies ht satisfy ht(δI
n) = x0 for all t ; where In is the n-

dimensional cube and δIn is the boundary of In.

Also for n = 0, this definition works. We can take I0 = a point and δI0 = φ. Then this

definition divides our space in disjoint path connected components or path components.

So π0(X,x0) is the set of path components of X.
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Group operation for πn(X,x0) for n ≥ 2, we define as follows

Let f, g ∈ πn(X,x0), then

(f ∗ g)(t1, t2, · · ·, tn) =

f(2t1, t2, · · ·, tn) ; 0 ≤ t1 ≤ 1/2

g(2t1 − 1, t2, · · ·, tn) ; 1/2 ≤ t ≤ 1
(2.1)

It can be easily proved that πn(X,x0) is a group using the same arguments as for π1(X,x0)

because only the first co-ordinate is used in the group operation.

Identity element is the constant map ( maps In → x0 ) and inverse is defined as

f̄(t1, t2, · · ·, tn) = f(1− t1, t2, · · ·, tn).

For n ≥ 2, πn(X,x0) is abelian. So sometimes we use + as a group operation instead of ∗
for πn(X,x0) ; where n ≥ 2.

Since we can define the Sn by taking quotient of In with its boundary δIn. So Sn = In/δIn,

we can view πn(X,x0) in a different way. We can consider πn(X,x0) be the set of homotopy

classes of maps (Sn, s0)→ (X,x0); where basepoint s0 = δIn/δIn.

For path-connected space X, as same for π1, we get isomorphic groups for different choices

of the base points. Now we can simply denote it by πn(X).

2.2.2 Relative homotopy groups

Let X be a space, A be a subspace of X and choose a base point x0 such that x0 ∈ A. So

we define a relative homotopy group πn(X,A, x0) for a pair (X,A).

To define this, take In−1 ⊂ In ( face of In ) with last coordinate tn = 0. Define

Jn−1 = closure of ( δIn − In−1 ).

Then we define πn(X,A, x0) - the set of homotopy classes of maps

f : (In, δIn, Jn−1)→ (X,A, x0) ; for n ≥ 1.

By taking A = x0, we get πn(X,x0, x0) = πn(X,x0). So absolute homotopy groups

πn(X,x0) are a special case of relative homotopy groups.

Group operation in πn(X,A, x0) is the same as defined in πn(X,x0). But here the last

co-ordinate tn is 0. So in general π1(X,A, x0) is not a group. So for n ≥ 2, πn(X,A, x0)

is a group and for n ≥ 3, it is abelian.
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Since we can view πn(X,x0) as the set of homotopy classes of maps from (Sn, s0) →
(X,x0). Similarly we can view or define πn(X,A, x0) in a differrent way as the set of

homotopy classes of maps from (Dn, Sn−1, s0) to (X,A, x0).

Compression criterion This criterion is the reformulation of the definition of zero

(identity) element in πn(X,A, x0) in a way so that it will help us to prove the exactness

of the long sequence of homotopy groups. It says that

If f is a map from (Dn, Sn−1, s0) to (X,A, x0), then f is trivial (or zero) element in the

group πn(X,A, x0) if and only if f is homotopic ( relative to Sn−1 ) to a map whose image

is contained in A.

Let (X,A, x0) and (Y,B, y0) be two pairs of spaces; x0 ∈ A, y0 ∈ B. Let A and B are

subspaces of X and Y respectively. Then a map ϕ : (X,A, x0) → (Y,B, y0) induces a

map ϕ∗ : πn(X,A, x0) → πn(Y,B, y0) and this is a homomorphism for n ≥ 2. We define

boundary maps δ. δ restrict maps (In, δIn, Jn−1) → (X,A, x0) to In−1 or (Dn, Sn−1, s0)

to (X,A, x0) to Sn−1. δ is a homomorphism when n > 1.

Theorem 2.2 Let (X,A, x0) be a space and i, j are the inclusion maps (A, x0) ↪→ (X,x0)

and (X,x0, x0) ↪→ (X,A, x0) respectively. δ is the boundary map. Then the sequence

· · · → πn(A, x0)
i∗−→ πn(X,x0)

j∗−→ πn(X,A, x0)
δ−→ πn−1(A, x0)

i∗−→ · · · → π0(X,x0)

is exact.

Here, i∗ and j∗ are the induced maps from the inclusion maps i and j.

Theorem 2.3 Let E and B to be spaces and p : E → B has the homotopy lifting property

with respect to disks Dk for all k ≥ 0. Let b0 is the basepoint of B and F is the fibre of b0

(F = p−1(b0)) and take x0 ∈ F. Then the induced map p∗ : πn(E,F, x0)→ πn(B, b0) is an

isomorphism for all n ≥ 1. If B is path-connected, then we have a long sequence

· · · → πn(F, x0)→ πn(E, x0)
p∗−→ πn(B, b0)→ πn−1(F, x0)→ · · · → π0(E, x0)→ 0; which

is exact.

This type of fibration which has the homotopy lifting property with respect to all disks

Dk ; k ≥ 0, is sometimes called Serre fibration.
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2.3 Some computations for spheres

2.3.1 πi(S
n)

π1(S1)

To compute this we will use path lifting property which can be stated as follows

Let p : X̃ → X be a covering projection and p(x̃0) = x0. Then any path α : I → X has a

unique lift α̃ : I → X̃ starting at x̃0.

Since R is a covering of S1, so we can apply path lifting property here. Let α : I → S1 be

a loop starting at (1, 0) ∈ S1. Then there is a unique lift α̃ : I → R such that α̃(0) = 0.

Since P maps α̃(1) to (1, 0) ∈ S1, this implies that α̃(1) must be an integer.

We call this α̃(1) to be the degree of α.

If α, β are two loops in S1 and α w β, then degree(α) = degree(β). Therefore we can talk

of equivalence classes.

Now we define a map

φ : π1(S
1)→ Z

by φ([α]) = degree(α). It can be easily proved that φ is an isomorphism. Therefore

π1(S
1) ∼= Z.

Based on this we get fundamental group of torus which is

π1(S
1 × S1) ∼= π1(S

1)× π1(S1) ∼= Z× Z.

πi(S
1)

πi(S
1) is the trivial group for i ≥ 2. To prove this result we will use the next theorem.

Theorem 2.4 Let p : (X̃, x̃0) → (X,x0) is a covering projection. Then p induces an

isomorphism p∗ : πi(X̃, x̃0)→ πi(X,x0) for i ≥ 2.

11



Since R is a covering of S1 and R is a contractible space or it is homotopic to a point, so

πi(R) ∼= 0 for all i. Therefore πi(S
1) is trivial for all i ≥ 2.

πi(S
n); i < n

Now we want to compute πi(S
n) for i < n. To define homotopy groups we take maps or

n-dimensional loops f : (In, δIn)→ (X,x0). But these maps are same as the maps of the

quotient In/δIn = Sn to X and taking the basepoint s0 = [δIn] to x0.

So we can also view homotopy group πn(X,x0) as homotopy classes of maps

(Sn, s0)→ (X,x0).

Definition 2.5 A space X is called n-connected (n ≥ 0) if for all k ≤ n, any map from Sk

to X is homotopic to a constant map or nullhomotopic.

Theorem 2.6 For each n ≥ 1, the n-sphere Sn is (n− 1)-connected.

This theorem can be proved with the help of simplical approximation theorem. Since

πi(S
n) is the set of homotopy classes of maps (Si, s0) → (Sn, s0). By the above theorem

we get that all these maps are nullhomotopic for i < n. This implies that

πi(S
n) = 0

for i < n.

πi(S
3)

As we have seen earlier S1 → S3 → S2 is a fiber bundle.

Since it is a fiber so it has the homotopy lifting property, then by Theorem 2.3 we get an

exact sequence of homotopy groups

· · · → πn(S1)→ πn(S3)
p∗−→ πn(S2)→ πn−1(S

1)→ · · · → π0(S
3)→ 0.

From this we get an isomorphism

πn(S3) ∼= πn(S2)

for n ≥ 3 and

π2(S
2) ∼= π1(S

1).
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2.3.2 πn(S
n)

Definition 2.7 Let X be a space. Then we define a space SX called suspension of X. SX

is the quotient space of X × I with identification X × {0} to one point and X × {1} to

another point.

Examples

1. When X = Sn, then SX ∼= Sn+1. The suspension points are north poles and south

poles of Sn+1.

2. In the case of n-dim. cubes In, it is same as spheres. WhenX = In, then SX ∼= In+1.

Not only spaces but maps between them can also be suspended.

Let f : X → Y be any map, there is a induced map Sf : SX → SY given by

Sf(x, t) = (f(x), t).

But we are more interested in the suspension space of spheres.

The next theorem is called Freudenthal suspension theorem.

Theorem 2.8 The suspension map πi(S
n)→ πi+1(S

n+1) is an isomorphism for i < 2n− 1

and it is a surjection for i = 2n − 1. More generally it is also true for the suspension

πi(X)→ πi+1(SX) if X is an ( n-1 )-connected CW complex.

This theorem can be proved using Theorem 2.2. Proof of this theorem is given in Hatcher,

p. 360 [1].

Corollary 2.9 πn(Sn) ∼= Z for all n ≥ 1.

Proof From the Theorem 2.8, we get a suspension sequence

π1(S
1)→ π2(S

2)→ π3(S
3)→ π4(S

4)→ · · ·

The first map is surjective and all other maps are isomorphisms. We know that π1(S
1) ∼= Z.

From the section 2.3.4, we know that π1(S
1) ∼= π2(S

2). This implies that

πn(Sn) ∼= Z.
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Chapter 3

Gottlieb Groups

In this chapter, we define a subgroup of the fundamental group called Gottlieb group.

Some properties of these groups are discussed and they are computed for many interesting

spaces. The role of this group as the subgroup of the group of deck transformations of

the universal covering space is discussed, leading to the computation for lens spaces and

projective spaces. The relation of this group to the mapping space XX is discussed.

The definitions, theorems and proofs given in this chapter are completely based on the

fundamental paper of Gottlieb [2].

3.1 Cyclic homotopy and Gottlieb groups

To define a Gottlieb group, first we have to define cyclic homotopy, and we will always

assume that our space is pathwise connected and a CW complex throughout this chapter.

Let (X,x0) be a pointed topological space. A cyclic homotopy is a homotopy F : X×I → X

which satisfy the following property

F (x, 0) = F (x, 1) = x.

In other words we can say that at t = 0 or t = 1, F (x, t) is just the identity map of X.

Definition 3.1 Let F (x, t) be a cyclic homotopy and α : I → X be a path.

α is called the trace of F (x, t) if

α(t) = F (x0, t).
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Obviously trace is a closed path and we denote it by τ(F ).

Definition 3.2 Let (X,x0) be a pointed topological space. The set G(X,x0) of all those

loops which are trace of some cyclic homotopy forms a subgroup of the fundamental group

π1(X,x0) called Gottlieb group. This was first introduced by D. H. Gottlieb in his paper

in 1965. [2]

But how do we know that which types of loops are the trace of some cyclic homotopy ?

The next theorem will tell us that it depends only on the homotopy classes of the loops.

Theorem 3.3 Let α be a loop which is the trace of a cyclic homotopy and [α] denote the

homotopy class of α. If β ∈ [α] ,then β is also the trace of some cyclic homotopy.

Proof Let F : X × I → X be the cyclic homotopy of which α is the trace.

Since β ∈ [α], we have a homotopy ft such that f0(s) = α(s) and f1(s) = β(s). We have

already assumed that our space X is a CW complex, so we can talk of a subcomplex A of

X × I. Let

A = (X × 0) ∪ (X × 1) ∪ (x0 × I)

be the subcomplex of X×I. On the subcomplex A, define a partial homotopy hs : A→ X

such that

hs(x, t) = x; if t = 0 or 1

ks(x0, t) = fs(t).

A is a subcomplex of X× I, so we can use homotopy extension property. Using homotopy

extension property, we get a homotopy

Hs : X × I → X

such that H0 = F and Hs | A = hs. Then the new homotopy H1 : X × I → X is a cyclic

homotopy on X and its trace is β. This completes the proof.

We have already defined Gottlieb group G(X,x0) as the set of all homotopy classes of

loops [α] of π1(X,x0) ; where α is the trace some cyclic homotopy. Now let’s prove that

it is a subgroup of the fundamenatal group.

Theorem 3.4 G(X,x0) forms a subgroup of the fundamental group π1(X,x0) .
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Proof Let [α] and [β] be the elements of G(X,x0). Let ft and gt be the cyclic homotopies.

α and β are the trace of ft and gt respectively. We have to prove that α ∗ β is also the

trace of some cyclic homotopy. We define a new homotopy ht

ht(x) =

f2t(x); 0 ≤ t ≤ 1/2.

g2t−1(x); 1/2 ≤ t ≤ 1 .
(3.1)

So α ∗ β is the trace of the cyclic homotopy ht. Therefore [α ∗ β] = [α] ∗ [β] ∈ G(x, x0).

Inverse of an element is also belongs to G(X,x0). α
−1 is the trace of the cyclic homotopy

f1−t. Since [α]−1 = [α−1], so [α]−1 ∈ G(X,x0). Identity element also belogs to G(X,x0)

because it is the trace of the cyclic homotopy ht(x) = x. This completes the proof.

The fundamental group of a path-connected space has the property that it does not depend

on the choice of the base point. Gottlieb group also has the same property. The next proves

that G(X,x0) has this property.

Theorem 3.5 Let x0 and x1 be two points in the space X and σ be a path connecting x0

to x1, say σ(0) = x0 and σ(1) = x1. Let σ∗ : π1(X,x1) ∼= π1(X,x0) be the induced

isomorphism. Then this induced isomophism is also an isomorphism between G(X,x1)

and G(X,x0)

σ∗ : G(X,x1) ∼= G(X,x0).

Proof Since we know that σ∗ is 1-1, so we just have to show that σ∗(G(X,x1)) ⊆ G(X,x0).

Let [α] ∈ G(X,x1), so there is a cyclic homotopy F : X × I → X of which α is the

trace. Here we again use the homotopy extension property which says that there exists a

homotopy H : X × I → X such that H(x, 0) = x and H(x0, t) = σ(t).

Define a new homotopy J : X × I → X by

J(x, t) =


H(x, 3t); 0 ≤ t ≤ 1/3.

F (H(x, 1), 3t− 1); 1/3 ≤ t ≤ 2/3

H(x, 3(1− t)); 2/3 ≤ t ≤ 1.

(3.2)
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Observe that J is a cyclic homotopy and trace of J with respect to x0 is σ ∗ α ∗ σ−1.
Therefore σ∗[α] = [σ ∗ α ∗ σ−1] ∈ G(X,x0). This completes the proof.

Since G(X,x0) is independent of the choice of the base point, so from now on we may

denote it by simply G(X) to avoid any confusion.

3.2 P (X, x0) and some computations

We first establish some notations. If (X,x0) and (Y, y0) are two spaces, then we will always

take the point (x0, y0) as the base point for the space X × Y . In this case, by space X we

mean X × y0 and by Y we mean x0 × Y and X ∨ Y = (X × y0) ∪ (x0 × Y ).

Remark 3.6 Let σ : (S1, s0) → (X,x0) or a closed loop in X at x0. Then [σ] is an

element of G(X,x0) if and only if we can extend the map f : X ∨ S1 → X to X × S1;

where

f(x) = x ; x ∈ X and f(s) = σ(s) ; if s ∈ S1.

The elements of fundamental group π1(X,x0) acts as a group of automorphisms on

πn(X,x0).

Definition 3.7 The set of all those elements of π1(X,x0) which acts trivially on all πn(X,x0)

also forms a subgroup of π1(X,x0). We denote this subgroup by P (X,x0).

Remark 3.8 An element [α] of the fundamental group π1(X,x0) acts trivially on πn(X,x0)

if and only if there is an extesion H : Sn × S1 → X for every map h : Sn → X such that

H|S1 = α.

Theorem 3.9

G(X,x0) ⊆ P (X,x0).

Proof Let [σ] be an element of G(X,x0). Then there exist a map f : X × S1 → X ( by

Remark 3.6) such that

f(x) = x ; x ∈ X and f(s) = σ(s) ; if s ∈ S1.
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Let α : (Sn, r0) → (X,x0) be an nth-loop. Then define a map H : Sn × S1 → X as

H(r, s) = f(α(r), s) for r ∈ Sn and s ∈ S1.

Because H(r, s0) = f(α(r), s0) = f(r) and H(r0, s) = f(x0, s) = σ(s), this implies that

H|S1 = σ.

So [σ] satisfies the condition in the Remark 3.8, therefore

G(X,x0) ⊆ P (X,x0).

This completes the proof.

Also G(X,x0) ⊆ Z(π1(X,x0)). Because the subgroup of the fundamental group π1(X,x0)

which acts trivially on itself is precisely the center Z(π1(X,x0)) of π1(X,x0). Therefore,

P (X,x0) ⊆ Z(π1(X,x0)). This implies

G(X) ⊆ Z(π1(X)).

Corollary 3.10 If X is any 1-dimensional polyhedron and it is not homotopic to circle, then

G(X) = 1.

Corollary 3.11 Let Pn to be the projective n-space. Then for n > 1,

G(P 2n) = 1.

Proof Since we know that P 2n is not a 2n-simple space i.e. action of π1(P
2n) on π2n(P 2n)

is not trivial. Since π1(P
2n) ∼= Z2, This implies that action of the generator α of π1(P

2n)

on π2n(P 2n) is not trivial.

Therefore α /∈ P (P 2n, x0) implies that subgroup P (X,x0) is trivial. Therefore G(P 2n) is

also trival.

Corollary 3.12 Any closed two-dimensional manifold M except for torus and Klein bottle

has the trivial Gottlieb group.

Proof If M = P 2, then by previous corollary we have G(M) = 1. Otherwise center of

π1(M) is trivial. Since G(M) ⊆ Z(M), so G(M) = 1.

Theorem 3.13 If a space X is also an H-space, then its Gottlieb group is precisely the

fundametal group itself

G(X) = π1(X).
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Proof We have defined an H-space earlier. So an H-space (X,x0) has an element x0 and

a continuous multiplication µ such that the maps

µ ◦ (e, id) : X → X,µ ◦ (id, e) : X → X

are homotopic to the identity map (id) on X. Since we have already assumed that our

space is a CW complex and since X ∨X is a subcomplex of X ×X, so we can apply the

homotopy extension property here. So there exists a continuous multiplication ∗, such

that x0 becomes a multiplicative identity with ∗. Let α be a loop at x0 in X. Then we

define a cyclic homotopy as

H(x, t) = α(t) ∗ x.

Trace of this homotopy H(x, t) is

H(x0, t) = α(t) ∗ x0 = α(t).

So α(t) is the trace of the cyclic homotopy H(x, t). α is arbitarily chosen, therefore

G(X) = π1(X). This completes the proof.

Therefore to compute Gottlieb group of a circle S1 and a torus T , we can use the above

theorem. From this we conclude that

G(S1) = π1(S
1) ; G(T ) = π1(T )

because they are H-spaces.

Furthermore, if a space X is a topological group, then G(X) = π1(X).

3.3 Basic properties of Gottlieb groups

Fundametal groups have a property that for any continuous map f : (X,x0) → (Y, y0)

there is a induced homomorphism

f∗ : π1(X,x0)→ π1(Y, y0).

But Gottlieb groups do not have this important property. It is not necessary that f∗(G(X))

is contained in G(Y ).
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Example 3.14 Let X to be the circle (S1, s0) and Y to be the figure eight. Let

f : (S1, s0)→ (Y, y0) be the embedding of S1 onto one of the loops of figure eight (Y, y0).

Take α to be a generator of π1(S
1, s0) and f∗(α) is not the identity element 1 of π1(Y, y0).

Since we know that G(Y, y0) = 1, this implies that f∗(α) /∈ G(Y, y0).

Since we know that G(S1, s0) = π1(S
1, s0), therefore f∗G(S1, s0) * G(Y ).

But there are some properties which tell us about the relations between Gottlieb groups

of two spaces, for that we have the following theorems.

Theorem 3.15 Let r to be a retraction from (X,x0) to (Y, y0). Then

r∗(G(X,x0)) ⊆ G(Y, y0).

Proof Let i to be the inclusion map from Y to X. y0 is the base point of Y, take i(y0)

be the base point of X. Let [β] ∈ G(X, i(y0)). Then by Remark 3.6, we have a map

F : X × S1 → X such that

F |X = 1X and F |S1 = β.

Now define a new map J : Y × S1 → Y as

J(y, s) = r ◦ F (i(y), s); where y ∈ Y ands ∈ S1.

Now we calculate J(y, s0) and J(y0, s). So

J(y, s0) = r ◦ F (i(y), s0) = r(i(y)) = y

and J(y0, s) = r ◦ F (i(y0), s) = r ◦ β(s).

This implies that [r ◦ β] belongs to G(y, y0). Since we know that r∗[β] = [r ◦ β], so this

implies that

r∗(G(X, i(y0))) ⊆ G(Y, y0).

Now we have to prove it for any arbitary base point of space X. So let any point x0 ∈ X
and r(x0) = y0. Let γ be a path from i(y0) to x0. Then there is an isomorphism γ∗ :

π1(X,x0) ∼= π1(X, i(y0) induced by γ as follows

γ∗[β] = [γ ∗ β ∗ γ−1]

Let [β] ∈ G(X,x0). So by Theorem 3.3, γ∗[β] ∈ G(X, i(y0)) and r∗(γ∗[β]) ∈ G(X, y0). But

r∗(γ∗[β]) = r∗[γ ∗ β ∗ γ−1] = [r ◦ γ ∗ r ◦ β ∗ r ◦ γ−1].
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Since r is a retraction, so r ◦ γ and r ◦ γ−1 are closed paths in the space Y. So we have

r∗(γ∗[β]) = [r ◦ γ] ∗ [r ◦ β] ∗ [r ◦ γ−1]

= [r ◦ γ] ∗ [r ◦ β] ∗ [r ◦ γ]−1.

Since G(Y, y0) ⊆ Z(π1(Y, y0)) and r∗(γ∗[β]) ∈ G(Y, y0), we can multiply r∗(γ∗[β]) by [r◦γ]

and [r ◦ γ]−1 as

r∗(γ∗[β]) = [r ◦ γ]−1 ∗ r∗(γ∗[β]) ∗ [r ◦ γ]

= [r ◦ γ]−1 ∗ ([r ◦ γ] ∗ [r ◦ β] ∗ [r ◦ γ]−1) ∗ [r ◦ γ]

= [r ◦ β].

So finally, we get r∗(γ∗[β]) = [r ◦β]. Therefore r∗[β] ∈ G(Y, y0). This completes the proof.

Now we move to the next property of Gottlieb groups. The next theorem tells us that if

two spaces are homotopic, then there is an isomorphism between their Gottlieb groups.

Theorem 3.16 Let (X,x0) and (Y, y0) be two homotopy equivalent spaces. Let f : (X,x0)→
(Y, y0) be a homotopy equivalence. Then f induces an isomorphism

f∗ : G(X,x0) ∼= G(Y, y0).

Proof Since f : (X,x0) → (Y, y0) is a homotopy equivalence. It implies that there is a

map g : (Y, y0) → (X,x0) such that f ◦ g ' 1Y and g ◦ f ' 1X . Let F : Y × I → Y be a

homotopy such that

F (y, 0) = f ◦ g(y) and F (y, 1) = y.

Now let [α] ∈ G(X,x0). Since X and Y are homotopy equivalent so we know that

f∗ : π1(X,x0) ∼= π1(Y, y0) is an isomorphism. So we know that f∗[α] ∈ π1(Y, y0). Therefore

we just need to show that f∗[α] ∈ G(Y, y0). Let H : X × I → X be that cyclic homotopy

whose trace is α. Define a homotopy

J : Y × I → Y
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such that J(y, t) = f ◦H(g(y), t).

Then J(y, 0) = f ◦ g(y) = J(y, 1) and J(y0, t) = f(H(x0, t)) = f(α(t)) = f ◦ α(t) for all

t ∈ I.

Define a new homotopy K : Y × I → Y such that

K(y, t) = F (y, 1− 3t); for 0 ≤ t ≤ 1/3

K(y, t) = J(y, 3t− 1); for 1/3 ≤ t ≤ 2/3

K(y, t) = F (y, 3t− 2); for 2/3 ≤ t ≤ 1.

Now from K(y, 0) = F (y, 1) = y and K(y, 1) = F (y, 1) = y, we get that K is a cyclic

homotopy. Let σ : I → Y be a path in Y such that σ(t) = F (y0, t). Now we σ(0) =

F (y0, 0) = y0 and σ(1) = F (y0, 1) = y0, so σ is a closed path.

The trace τ(K) of K is

τ(K) = K(y0, t) = (σ−1 ∗ (f ◦ α) ∗ σ)(t).

Therefore [τ ] = [σ]−1 ∗ [f ◦ α] ∗ [σ] ∈ G(Y, y0). Since G(Y ) ⊆ Z(π1(Y )), so we can always

multiply [τ ] with [σ] and [σ]−1 on both side as we did in the proof of the previous theorem

to get the desired result. Therefore [f ◦ α] ∈ G(Y, y0). This completese the proof.

The next theorem states another property that G(X) share with the fundamental group.

Theorem 3.17 Let (X,x0) and (Y, y0) be two spaces. Then

G(X × Y, (x0, y0)) ∼= G(X,x0)⊕G(Y, y0).

Proof Let Z = X × Y and z0 = (x0, y0). Let p and q are the projections of Z onto

X and Y respectiely and let p∗ and q∗ are the induced homomorphisms. We know that

fundamental group has a property that there is an isomorphism

f : π1(Z, z0)→ π1(X,x0)⊕ π1(Y, y0)

given by

f([α]) = p∗([α])⊕ q∗([α]).

Since projections are retractions and by applying Theorem 3.10, we get that f(G(Z)) ⊆
G(X,x0)⊕G(Y, y0). Let [α] ∈ G(X,x0) and [β] ∈ G(Y, y0). Now let j and k be maps such
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that j injects X → X × y0 and k injects Y → x0 × Y.
Then f−1([α]⊕ [β]) = [(j ◦ α) ∗ (k ◦ β)]. Since [α] ∈ G(X,x0) and [β] ∈ G(Y, y0), so there

are cyclic homotopies, F (x, t) with trace α and H(x, t) with trace β.

Define a new homotopy J : X × Y × I → X × Y as

J(x, y, t) = (F (x, 2t), y); for 0 ≤ t ≤ 1/2

J(x, y, t) = (x,H(y, 2− 2t)); for 1/2 ≤ t ≤ 1.

J(x, y, 0) = (F (x, 0), y) = (x, y) and J(x, y, 1) = (x,H(y, 0)) = (x, y), so J is a cyclic

homotopy and it can be easily checked that its trace is (j ◦ α) ∗ (k ◦ β). Therefore

h−1([α]⊕ [β]) ∈ G(Z, z0), thus f−1(G(X)⊕G(Y )) ⊆ G(Z). Therefore

f(G(Z)) ⊇ G(X,x0)⊕G(Y, y0). This completes the proof.

3.4 Gottlieb groups of aspherical spaces

We have proved that G(X) ⊆ P (X). Here two important questions arise : (1) When the

equality of two groups occur ? (2) Is there any space for which the containment of two

groups is strict ? These questions are not answered completely. But we have something

important in the next theorem.

We give some definitions first. Let [α] ∈ π1(X,x0), define a map

fα : X ∨ S1 → X

such that fα|S1 = α and fα|X = 1X . Let X(n) be the n-skeleton of X and

fαn+1 : (X ∨ S1) ∪ (X(n) × S1)→ X

be an extension of fα. We say [α] is (n+ 1)-extensible if fαn+1 exists.

Let G(n)(X,x0) is the set of all (n + 1)-extensible [α] and it is a subgroup of π1(X,x0).

Then we get a decreasing sequence of groups as

G(1)(X) ⊇ G(2)(X) ⊇ .... ⊇ G(X).

Now let P (n)(X,x0) be the subgroup of π1(X,x0) consists of all those [α] which trivially

operate on πi(X,x0) for i ≤ n. Then we get another decending sequence of groups as

P (1)(X) ⊇ P (2)(X) ⊇ .... ⊇ P (X).
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Theorem 3.18

G(1)(X,x0) = P (1)(X,x0) = Z(π1(X,x0)).

Proof We know that the subgroup of π1(X,x0) which acts trivially on π1(X,x0) itself is

exactly the center of π1(X,x0). So we don’t have to show that P (1)(X,x0) = Z(π1(X,x0)).

To show G(1)(X,x0) = Z(π1(X,x0)), we have to show that fα : X∨S1 → S1 is 2-extensible

over X × S1 if and only if [α] belongs to Z(π1(X,x0)). It can be shown in the following

way

Let K be CW-complex and L be a connected subcomplex of K. Let l0 ∈ L and Y be a

path-connected space. Let f be a map from (L, l0) to (Y, y0) and i be the inclusion map

from L to K and

f∗ : π1(L, l0)→ π1(Y, y0), i∗ : π1(L, l0)→ π1(K, l0)

be the induced homomorphisms. Then f is 2-extensible if and only if there exists a

homomorphism g : π1(K, l0)→ π1(Y, y0) such that f∗ = gi∗.

In our case, let L = X ∨ S1,K = X × S1, Y = X and f = fα. Then π1(L) is the free

product of π1(X) and π1(S
1) and π1(K) ∼= π1(X)⊕ π1(S1).

Now let a ∈ π1(X), b ∈ π1(S1) and z be the generator of the π1(S
1). Then i∗(a∗ b) = a⊕ b

and f∗(a ∗ z) = a · [α].

Now suppose g exists and f∗ = gi∗. Since f∗(z) = [α] and i∗(z) = 1⊕ z, so [α] = g(1⊕ z)
and also a = f∗(a) = gi∗(a) = g(a⊕ 1).

Therefore if g exists, then g satisfy the equation g(a⊕ z) = a · [α] for all a ∈ π1(X). Now

f∗(a ∗ z) = a · [α] and f∗(z ∗ a) = [α] · a.
But gi∗(a ∗ z) = a · [α] = gi∗(z ∗ a) and f∗ = gi∗.

Therefore a · [α] = [α] · a for all a ∈ π1(X). Therefore [α] must belong to Z(π1(X,x0)).

This completes the proof.

Definition 3.19 A space X is said to be aspherical if πn(X) = 0 for n > 1.

Corollary 3.20 If a space is aspherical, then its Gottlieb group is exactly the center of its

fundamental group.

Proof Let X be a space and it is aspherical. Then X × S1 is also aspherical. Therefore

any 2-extensible map fα : X ∨ S1 → X must be extensible over X × S1.
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From the previous corollary, we get a nice result about Klein bottle. If K is a Kleinbottle,

then G(K) = Z(π1(K)).

3.5 Gottlieb groups and deck tranformations

As we have already assumed in the section 3.1 that our space X is always path-connected

CW-complex. Therefore there always exists a universal cover X̃ for X. We will denote

our covering projection by p : (X̃, x̃0)→ (X,x0).

D(X) will denote the group of Deck tranformations acting on X̃ and v will denote the

natural isomorphism between π1(X,x0) and D(X). Therefore there is a correspondence

between G(X,x0) and a subgroup of D(X) under v. So the subgroup vG(X) is naturally

defined in the D(X).

Theorem 3.21 G(X,x0) is isomorphic to the subgroup of those elements of D(X) which

are homotopic to the identity map 1X̃ by fiber preserving properties.

Proof Suppose [α] ∈ π1(X,x0) and f : X̃ → X̃ is a deck transformation generated by

[α]. That means that image of any path ω : x̃0 → f(x̃0) will be a closed path p ◦ ω ∈ [α].

Let [α] ∈ G(X,x0). Then by definition there is a cyclic homotopy ht : X → X with trace

α. Identity map 1X̃ : X̃ → X̃ covers the map 1X ◦ p : X̃ → X.

Since the map ht ◦ p : X̃ → X is a homotopy of the map 1X ◦ p, then by homotopy lifting

property there exist a homotopy h̃t : X̃ → X̃ which is lift of ht ◦p such that ht ◦p = p◦ h̃t.
Since ht is a cyclic homotopy, h1 = 1X so p = p ◦ h̃1. Therefore h1 must be a deck

transformation of X̃. Now h̃1 = f , since the path τ̃(t) = h̃t(x̃0) starting from x̃0 to h̃1(x̃0)

is a lift of α.

Thus h̃t is the desired fiber preserving homotopy from 1X̃ to f .

Conversely, suppose h̃t is a fiber preserving homotopy so that h̃0 = 1X̃ and h̃1 = f , then

there is a cyclic homotopy ht : X → X so that ht ◦ p = p ◦ h̃t. It is clear that ht : X → X

is a cyclic homotopy and trace of ht is τ(t) = ht(x0) ∈ [α]. This completes the proof.

For covering spaces, there is a very nice condition for the homotopies to be fiber preserving.

Theorem 3.22 Let D(X) be the group of Deck tranformations. Then the homotopy h̃t :

X̃ → X̃ is fiber preserving if and only if k ◦ h̃t = h̃t ◦ k for every k ∈ D(X).
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Proof Let h̃t be a fiber preserving homotopy. Suppose k be any deck transformation and

x ∈ X̃ be any point. So x and k(x) are in the same fiber. Since both h̃t(x) and h̃t(k(x))

belong to the same fiber, so there exists a l ∈ D(X) such that l ◦ h̃t(x) = h̃t ◦ k(x). For

a sufficiently small ε > 0, we have l ◦ h̃t−ε(x) = h̃t−ε ◦ k(x). In the set of t’s, greatest

lower bound must occur at t = 0 satisfying l ◦ h̃t(x) = h̃t ◦ k(x). So by the continuity, we

get l ◦ h̃0(x) = h̃0 ◦ k(x). But we have h̃0 = 1X̃ , so l(x) = k(x). This implies that l = k.

Therefore k ◦ h̃t = h̃t ◦ k for every k ∈ D(X).

Conversely, let k ◦ h̃t = h̃t ◦ k for every k ∈ D(X). Let x, y ∈ X̃, both are in the same

fiber of p. Suppose k(x) = y. Since h̃t = k−1 ◦ h̃t ◦ k, so we get h̃t(x) = k−1 ◦ h̃t(y). Thus

h̃t(x) and h̃t(y) are in the same fiber. Therefore h̃t is fiber preserving. This completes the

proof.

Corollary 3.23 Let A be the subgroup of D(X) consisting of those elements of D(X) which

are homotopic to identity via a homotopy which commutes with every element of D(X).

Then A is isomorphic to G(X,x0).

Let p, q ∈ Z and they are relatively prime. Let L(p, q) be a three dimensional lens space.

Then π1(L(p, q)) is isomorphic to the cyclic group of order p.

Theorem 3.24

G(L(p, q)) ∼= π1(L(p, q)).

Proof Let S3 given by the complex coordinates (Z0, Z1) and Z0Z̄0 + Z1Z̄1 = 1. Let

f : S3 → S3 be a map given by

f(Z0, Z1) = (Z0e
2πi/p, Z1e

2πqi/p).

So f is the generator of Zp; cyclic group of rotations. Every element of this group Zp is

fixed point free. Then S3/Zp is the lens space L(p, q).

Now let ht : S3 → S3 be a homotopy given by

ht(Z0, Z1) = (Z0e
2πti/p, Z1e

2πqit/p).

So h0 is the identity map 1S3 and h1 = f . Also f ◦ht = ht ◦f , therefore ht commutes with

all Zp. So f belongs to vG(L(p, q)); where v is the natural isomorphism between π1(X)

and D(X). Therefore G(L(p, q)) ∼= Zp.

Theorem 3.25 Let Pn denote the n-dimensional real projective space. Then

G(P 2n+1) = π1(P
2n+1) ∼= Z2.
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Proof We can define sphere S2n+1 in the complex plane using (n + 1) tuples (Z0, Z1, ...., Zn)

satisfying the condition Z0Z̄0 +.... ZnZ̄n = 1. We get P 2n+1 by identifying antipodal

points. Let k ∈ D(X) and k(Z0, Z1, ...., Zn) = (−Z0,−Z1, ....,−Zn). Then define a

homotopy ft : S2n+1 → S2n+1 where

ft(Z0, ...., Zn) = (Z0e
πti, ...., Zne

πti).

Then by ft we get that f0 is the identity and f1 = k. We also have k ◦ ft = ft ◦ k i.e. ft

commutes with every deck transformation. So we can apply Corollary 3.23 here. Therefore

G(P 2n+1) = π1(P
2n+1) ∼= Z2.

Let H(X) to be the set all those elements of D(X) which are in Z(D(X)) and homotopic

to the identity; where Z(D(X)) is the center of D(X).

H(X) is a subgroup of D(X).

Theorem 3.26

G(X,x0) ⊆ H(X) ⊆ P (X,x0).

Proof The first part G(X,x0) ⊆ H(X) is obvious using Corollary 3.23.

Let k ∈ D(X) and ft : X̃ → X̃ is a homotopy such that f0 is the identity and f1 = k.

Let α̃ : I → X̃ given by α̃(t) = ft(x0). Let α = p ◦ α̃. Then k is the corresponding deck

transformation to [α] under v. Suppose α operates on [σ] ∈ πn(X,x0);n > 1. Define a

map h : Sn ∨ S1 → X; where h|Sn = σ and h|S1 = α. Then α operates trivially on σ if

and only if h can be extended to a map h′ : Sn × S1 → X.

We have to define h′. By the property of the universal covering space we get a map

g : Sn → X̃ so that p ◦ g = h|Sn for n > 1. Consider S1 as a unit interval i.e 0 is

identified with 1, then h′(s, t) = (p ◦ ft ◦ g, s). Since h′(s, 0) = p(g(s)) = p ◦ k(g(s)) =

p◦f1◦g(s) = h′(s, 1). h′ is well-defined and it is an extension of h. Therefore we have shown

that H(X) ⊆ subgroup of π1(X,x0) given by those elements which operates trivially on

πn(X,x0);n > 1. Since we know H(X) is contained in Z(π1(X,x0)), α ∈ H(X) operates

trivially on π1(X,x0). Therefore H(X) ⊆ P (X,x0). This completes the proof.

For a space X whose universal covering space X̃ is compact and odd-dimensional sphere,

we have H(X) = P (X) = Z(π1(X).

Theorem 3.27 Let X be a contractible CW complex. Let G be a discrete group of homeo-

morphisms of X onto itself and G acts freely on X. If f is an element of Z(G), then there
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exists a homotopy ht such that h0 = 1X and h1 = f and ht commutes with all elements

g ∈ G.

Proof Let X/G be the space obtained by identifying the orbits under G. Then X can be

seen as the universal covering space of X/G. G can be seen as the deck transformations

of the covering and thus as the fundamental group of X/G. Since X/G is aspherical, this

implies that G(X/G) ∼= Z(G). Therefore Z(G) consists of all those elements of G which

are homotopic to 1X by a homotopy ht and ht commutes with all elements of G.

3.6 Gottlieb groups of mapping spaces

In this section, we will compute Gottlieb group of the space of all continuous mappings

from a space to itself.

Let XX be the space of continuous mappings from from X to X having compact-open

topology. Compact-open topology is generated by a subbasis which is formed by the sets

S(C,U) = {f | f ∈ XX , f(C) ⊂ U} ;

where C is a compact subspace and U is an open subset of X.

Let Ω denote the path connected component of XX having the identity 1X .

Let ρ : XX → X be the evaluation ρ(f) = f(x0). We want ρ to be continuous, so we will

assume that the space X is locally compact throughout this section.

Remark 3.28 Let (XX)S
n
) and XX×Sn

be spaces of maps, then there is a natural

homeomorphism ϕ : (XX)S
n
) → XX×Sn

given by ϕ(f)(x, s) = (f(s))(x); where x ∈
X, s ∈ Sn and f ∈ XX . Also f ∼= g if and only if ϕ(f) ∼= ϕ(g).

Theorem 3.29

ρ∗π1(X
X , 1X) ∼= G(X,x0).

Proof By Remark 3.28, we get that the loop α : S1 → XX corresponds to the cyclic

homotopy ϕ(α) : X × S1 → X. Now ρ ◦ α : S1 → X is equal to ϕ(α)|S1 for ρ(α)(x0, s) =

α(s)(x0) = ρ(α(s)) = ρ ◦ α(s).

So every closed loop α ∈ Ω ⊆ XX is a cyclic homotopy of X and trace of α equals ρ ◦ α.

Conversely every cyclic homotopy of X is a closed path α in Ω such that ρ ◦ α is equal to

the trace of the cyclic homotopy. This completes the proof.
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Theorem 3.30 Let X be a locally finite, aspherical and path-connected simplical polyhedron.

Then

ρ∗ : π1(X
X , 1X) ∼= Z(π1(X,x0))

and for n > 1;πn(XX , 1X) = 0.

Proof To prove this theorem we will use the following lemmas.

Lemma 3.31 For n > 1,

πn(XX , 1X) = 0.

Proof Let f : X × Sn → X be a map such that f(X, s0) = x; ∀x ∈ X and s0 is the base

point of Sn. Define g : X × Sn → X such that g(x, s) = x. g is just the projection of

X×S1 onto X. If we can show that f ∼= g, then by Remark 3.28, we get ϕ−1(f) ∼= ϕ−1(g).

Since ϕ−1(g) : S1 → XX is the constant map onto 1X , so we are done.

Since X is aspherical, then f ∼= g if and only if f∗ : π1(X × Sn, x0 × s0)→ π1(X,x0) and

g∗ : π1(X × Sn, x0 × s0)→ π1(X,x0) are equivalent, i. e.

f∗(α) = ζ−1 · g∗(α) · ζ

∀ α ∈ π1(X × Sn) and some ζ ∈ π1(X).

So now π1(X × Sn, x0 × s0) ∼= π1(X,x0)⊕ π1(Sn, s0) ∼= π1(X,x0). Both f∗ and g∗ act like

the identity and thus f∗ = g∗. Therefore f ∼= g. This completes the proof.

Lemma 3.32

ρ∗(π1(X
X , 1X)) = Z(π1(X,x0)).

Proof Since X is aspherical, we have Z(π1(X,x0)) = G(X,x0). Therefore by the Theorem

3.29, we get ρ∗(π1(X
X , 1X)) = Z(π1(X,x0)).

Lemma 3.33 Let Ω0 ⊆ XX denote the space of all those maps f such that f(x0) = x0.

Then π1(Ω0, 1X) = 0.

Proof Let g : X × S1 → X such that g(x, s) = x. Let f : X × S1 → X be any arbitary

map such that f(x0, s) = x0 for all s ∈ S1. We have to show that there exist a homotopy

kt : X × S1 → X such that k0 = f and k1 = g and kt(x0, s) = x0 for all s ∈ S1 and t ∈ I.

Then ϕ−1(kt) will be a homotopy connecting ϕ−1(f) ∈ Ω0 and ϕ−1(g) where ϕ−1(g) is
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the constant map from S1 to 1X . Since ϕ−1(kt) ∈ Ω0 for each t ∈ I, so the lemma will be

proved.

We can view S1 as I where 0 and 1 are identified in I. Therefore we can consider f and

g as maps from X × I to X.

Let

A = (X × 0× I) ∪ (X × 1× I) ∪ (x0 × I × I) ∪ (X × I × 0) ∪ (X × I × 1).

Define K(1) : A→ X such that

K(1)(x, s, 0) = f(x, s)

K(1)(x, s, 1) = g(x, s)

K(1)(x0, s, t) = x0

K(1)(x, 0, t) = K(1)(x, 1, t) = x.

We want to extend K(1) to a map K : X × I × I → X. Because then K(x, s, t) = kt(x, s)

which is the desired homotopy.

Let X(n) denote the n-skeleton of X. Let L = X × I × I. Consider I to be decomposed

into {0}, {1} and (0, 1). Then

L(1) ⊆ A and L(2) ⊆ X(0) × I × I ∪A.

Then we shall extend K(1) : A → X to K(2) : L(2) → X by the following procedure. Let

xi ∈ X(0). Then

Si1 = (xi × I × 0) ∪ (xi × 1× I) ∪ (xi × I × 1) ∪ (xi × 0× I)

forms a circle. Since Si1 ∈ A,K(1)|Si1 : Si1 → X. Observe that K(1)|Si1 is null homotopic,

so it can be extended to K
(2)
i : Xi × I × I. Define K(2) : L(2) → X by

K(2)(y) =

K(1)(y) ; if y ∈ A

K
(2)
i (y) ; if y ∈ xi × I × I.

(3.3)

Since X is aspherical, we can extend K(2) : L(2) → X to K : X × I × I → X. Since

K(x, 0, t) = K(x, 1, t), K can be considered as a map from X × S1 × I to X. Now we

can define kt(x, s) = K(x, s, t) and see that k0 = f and k1 = g and kt(x0, s) = x0. This

completes the proof.

Lemma 3.34

ρ∗ : (π1(X
X , 1X)) ∼= Z(π1(X,x0)).
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Proof Consider the homotopy sequence

π1(Ω0)
i∗−→ π1(X

X)
ρ∗−→ π1(X).

By previous lemma, we get π1(Ω0) = 0, so ρ∗ must be one-one. But ρ∗(π1(X
X , 1X)) =

Z(π1(X,x0)), so ρ∗ : (π1(X
X , 1X)) ∼= Z(π1(X,x0)). This completes the proof.

Lemmas 3.31 through 3.34 prove the Theorem 3.30.

Corollary 3.35 If X is a path-connected, aspherical, locally finite simplical polyhedron.

Then Ω, the path connected component of XX containing the identity 1X , is contractible.

Corollary 3.36 If X is a locally finite, aspherical, pathwise connected simplical polyhedron.

Then ρ : Ω→ X is a homotopy equivalence if and only if π1(X,x0) is abelian.

3.7 Euler characteristic and Gottlieb groups

Theorem 3.37 Suppose X has the same homotopy type as a compact and connected poly-

hedron and suppose that the Euler characteristic χ(X) 6= 0, then G(X) is trivial.

Proof This proof is an application of Nielson-Wecken theory of fixed point classes. Here

we have summarized the pertinent facts needed for the proof. These facts are proved in

Wecken [5].

By Theorem 3.15, we can assume that X is a compact, connected polyhedron. Let X̃ be

the universal covering of X. We regard π1(X) as the group of deck transformations on X.

Let f : X → X is a map. Consider the set of all lifts of f to maps f̃ : X̃ → X̃. We define

an equivalence relation among these lifts as follows: f̃ ≡ f̃1 if and only if f̃1 = γ−1 ◦ f̃ ◦ γ
for some γ ∈ π1(X).

Let [f̃ ] denote the equivalence class of f̃ . The set of fixed points of f̃ project down, by the

covering map p, onto a subset of fixed points of f̃ . The fixed points of any f̃1 in the same

equivalence class as f̃ also project down to the same subset of fixed points of f . If f̃1 is

not equivalent to f , then the fixed points of f̃1 project down to a subset of fixed points

of f disjoint from those of f̃ . This procedure partitions the fixed points of f into disjoint

subsets, called fixed point classes. Thus each fixed point class is uniquely associated with

an equivalence class of lifts of f . We can also have lifts, f̃ , of f with no fixed points, and

so the equivalence class of f̃ corresponds to a void class of fixed points.

If ht : f w g for g : X → X, then ht defines a 1-1 correspondence between the lifts of f
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and those of g preserving equivalence classes. Hence there is a 1-1 correspondence between

fixed point classes.

With each fixed point class [f̃ ], it is possible to assign a number v such that v = 0 if [f̃ ]

is empty and such that v is preserved under homotopy. That is if [f̃ ] corresponds to [g̃]

under a homotopy from f to g, then v for [g̃] is equal to the v for [f̃ ]. Finally the sum of

all the v’s equals Lf , the Lefschetz number.

Suppose that f = 1X . Then every v = 0 except possibly for v1, the number associated

with the fixed point class given by the identity 1̃ : X̃ → X̃. This follows since every other

lift of 1X has no fixed point. Also we know that Lf = χ(X) when f = lX . Assume that

χ(X) 6= 0. Then v1 = χ(X) 6= 0.

Let α ∈ G(X). Then there is a cyclic homotopy ht : X → X which can be lifted to a

homotopy h̃t : 1̃ w α where we regard α as a deck transformation. So [1̃] corresponds to

[α]. But α : X̃ → X̃ has no fixed points, unless α = 1̃. Since v 6= 0 for [α], the associated

fixed point class must be nonempty so α = 1̃. Therefore α = 1 ∈ π1(X). Hence G(X) = 1.

[2]

Using this theorem, we get a number of interesting corollaries.

Corollary 3.38 Let X be the homotopy type of a compact connected polyhedron. If χ(X) 6= 0

and X is an H-space, then π1(X) = 1.

Proof By Theorem 3.13, we get that G(X) = π1(X). Since G(X) = 1, by the previous

theorem, we get π1(X) = 1.

Corollary 3.39 Let X be the same homotopy type as a compact, connected polyhedron. If

X is aspherical and χ(X) 6= 0, then Z(π1(X)) = 1.

Proof By Corollary 3.19, we get G(X) = Z(π1(X)). Thus Z(π1(X)) = 1.

Corollary 3.40 If X is any 2-dimensional manifold except for torus, projective space and

the Klein Bottle. Then Z(π1(X)) is trivial.
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