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Chapter 1

Introduction

It is hard to imagine life without polymer because of their several uses. The term polymer

is derived from a Greek word poly means ’many’, and meros meaning ’parts’. Hereby,

polymer is a large unit made up of small structural units, called monomer connected

by a covalent bond [1]. They can have identical monomers (homopolymer) or it can

be all different (heteropolymer). Polymer can be both found in nature or be produced

artificially. Some of the well known polymers are natural rubber, cellulose etc., whereas

plastic, nylon, to name a few, are synthetic polymers produced chemically by a process

called polymerization [1].

Structurally, polymers can be linear, branched or has a network like structure. In a

linear polymer the monomers are arranged in a linear fashion. For a branched polymer,

there are side chains coming out as branches giving it a tree-like structure. However, by

a polymer we shall mean a linear polymer.

During the past several decades, geometrical lattice models such as random walks etc.,

have played an important role in statistical mechanics such as study of polymer adsorption.

Lattice models, in spite of their apparent simplicity, can be successfully used in the studies

of real physical systems, to describe conformation and growth features. We focus on simple

mostly two-dimensional lattice Models.

In order to make our models exactly solvable, we impose ”microscopic” restrictions

by disallowing certain steps in an unrestricted random walk. The resulting models are in

many instances exactly solvable by methods including generating function.The idea is to

solve exact solutions for Dyck and Motzkin paths.

Let us briefly discuss the properties of simple random walk before going to the directed
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walk models.

1.1 Random Walk

This section focus on features of an unrestricted walk.

1.1.1 Simple Walk

The simplest example of a random walk is where the walker is confined to a straight line.

In this case, the walker moves either in ”right” or ”left” direction with equal probability.

Suppose the walker has taken N steps out of which, n are towards right and N − n are

towards left direction. Assuming each step size to be l, the probability for such N step

walk resembles to a Gaussian distribution [3]

P (N, d) ∼ exp

(
−x2

2l2N

)
(1.1)

1.1.2 Elementary Calculation and Quantities of Interest

Average Displacement

Since the walker is moving with equal probability towards left and right directions, the

average displacement of the walker from the origin is zero.

〈x〉 = 0. (1.2)

Mean Square Displacement

The mean square displacement of the walker from the origin, 〈x2〉 is given by [3]

〈x2〉 = Nl2. (1.3)

1.2 Polymer Adsorption

Polymers can be adsorbed spontaneously from solution onto surfaces if the interaction

between the polymer and the surface is more stronger than that of the solvent with the

surface. This phenomenon is of greater use in applications like lubrication, adhesion etc

[7]. The adsorption process depends on the type of surface, on which the polymer is

adsorbed. The surface can be penetrable (soft wall), or can be rigid (hard wall).
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1.2.1 Adsorption-Desorption Transition

An adsorbed polymer can be desorbed from the surface simply by an increase in the

temperature. At low temperatures, the polymer prefers to remain adsorbed on the surface

to gain energy, however, at high temperatures, it stay away from the surface to gain

entropy. This battle between the energy and the entropy ( to minimize the total free

energy) result in an adsorption-desorption transition. The relevant quantities of interest

is the critical temperature Tc, above which the polymer is desorbed from the surface

[6, 7, 9, 10, 11, 12].

1.2.2 Unzipping Transition

An adsorbed polymer can also be removed from the surface by applying a pulling force at

one end. This transition induced by a pulling force is known as unzipping transition. The

polymer unzips from the surface if the pulling force exceeds a critical value [14, 15, 16, 17].

The thesis is organized as follows: In the next chapter, we study the directed walk

models to understand unzipping of polymers. We consider fully directed walks of a polymer

on a two- dimensional lattice and calculate quantity of interest associated with it. This

include both soft-wall and hard-wall problems for both Dyck and Motzkin paths. The soft

wall allows the polymer to cross through it while hard-wall restrict the polymer on the

positive x-axis only.

In Appendix A and B, we give the solution for the unzipping of an adsorbed polymer

for both Dyck and Motzkin paths, respectively. The attempt is to solve it exactly through

generating function technique for both in the fixed distance, and the fixed force ensembles.

The force-distance isotherms for both Dyck and Motzkin paths are obtained by iterat-

ing the recursion relation using the exact transfer matrix technique. The details are given

in Appendix C and D for Dyck and Motzkin paths respectively. The sample codes written

in C programming language is also given.
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Chapter 2

Directed Walk

In this chapter, we briefly review various possible directed walks and then consider the

Fully Directed Self Avoidance Walk (FDSAW) models to show their relevance in un-

derstanding polymer unzipping [2, 4, 5]. In sec. 2.1, we define directed walk. The

exact solution is also discussed here. The various FDSAW models, with their respective

quantities of interests are defined in sec. 2.2. The results for various models are also

discussed here. We draw our conclusion in sec. 2.3.

2.1 Definition

A directed walk in D = d + 1 dimensions is a walk which grows in a preferred direction

and can have transverse fluctuations in d dimensions. A discretized version of this is a

directed random walk on a lattice and can be defined as follows: If we choose ~z as a

preferred direction, then for a Directed random walk, the projection of each step on ~z is

non-zero [19]. For example, in D = 1+1, a directed walk which takes steps only along the

diagonal of a square lattice can be imitated as a directed walk. However, the number of

configuration varies for different models. In a Dyck path, where there are only two possible

steps at each lattice point, the total number of configuration for a N step polymer is 2N ,

while for a Motzkin path, where there are three possible steps at each lattice point, the

total configuration turn outs to be 3N .
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2.2 Model

2.2.1 Dyck Path

The systematic diagram of a polymer immersed in a medium with an attractive wall, with

potential Vw(x), at the diagonal of the square lattice (x = 0) is shown in Fig. 2.1. The

wall suppresses the transverse fluctuation of the polymer because the polymer gains energy

every time it is on the wall. Depending on the ensemble one is working with, either a fixed

force g can be applied at the end monomer (fixed force ensemble), or the distance x of

the end monomer can be fixed from the wall (fixed distance ensemble). The starting end

of the polymer is always anchored. Further, the following type of wall can be added as a

constraint:

1. A hard-wall, which do not allow a polymer to cross through it,

2. A soft-wall which allows a polymer to cross.

This model has been studied earlier [19].

Partition Function

In D = 1 + 1, the recursion relation, in the fixed distance ensemble is given by

ZN+1(x) =
∑
j=±1

ZN (x+ j)[1 + (eβε − 1)δx,0] (2.1)

where ZN (x) is the partition function of a polymer of length N whose Nth monomer is

at a distance x from the wall, β = 1/kbT . We take the Boltzmann constant kb = 1 [19].

The wall potential is of the form

Vw(x) =

−ε (ε > 0) for x = 0,

0 otherwise.
(2.2)

The initial condition for the above recursion relation is

Z0(x) = eβεδx,0. (2.3)

The non crossing constraint of a polymer in a hard wall is taken care by the condition

Zj(x) = 0, ∀ x < 0, (2.4)

5



Figure 2.1: Schematic Diagram of a polymer in a medium with attractive wall. By

construction,one direction along the polymer is special the wandering is along transverse

d direction and therefore d + 1 dimensional model. Here d=1. There is a line at x = 0 (

a wall or interface) that attracts the polymer. a). Soft Wall: polymer is allowed in the

whole region. b). Hard Wall: polymer is not allowed in the region (x < 0).

after each step j.

The canonical partition function in the fixed force ensemble with a fixed force g acting

at one end, keeping the other end anchored at the diagonal of the square lattice (x = 0)

is then calculated by summing all allowed configurations of the walks on the lattice.

ZN (g) =
∑
x

ZN (x)eβgx, (2.5)

where eβgx is the Boltzmann weight added due to fixed force g. The thermodynamic

properties in a given ensemble are obtained from the free energy,

FN (T, x) = −T logZn(x), fixed-distance (2.6)

ΓN (T, g) = −T logZn(g), fixed-force (2.7)
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Ensembles and Quantities of Interest

The process is studied in the following ensembles:

A Fixed Force Ensemble:

In this ensemble a fixed force g is applied at the end monomer keeping the other

end anchored at origin(x = 0). In such transition, in order to keep the pulling force

g constant, the distance between the wall and the end monomer of the polymer is

allowed to fluctuate. Consequently, the quantities of interest is:

• Average distance from the wall: The average distance of the end monomer from

the wall, 〈x〉 when a fixed pulling force is applied is given by [19]:

〈x〉 =

∑
x xZN (x)eβgx∑
x ZN (x)eβgx

(2.8)

B Fixed Distance Ensemble: In this ensemble, the distance between the wall and

the end monomer, x is kept constant. In this case, the force g is the fluctuating

variable.

• Average Force: The average force required to keep the distance between the

wall and end monomer constant is given by:

〈g(T, x)〉 =
∂F (T, x)

∂x
(2.9)

Results

A Phase Diagrams:

The recursion relation for the given canonical partition function can be solved

exactly via generating function technique. The generating function Eq. (2.5) has

the following three singularities:

z1 =
1

2
, (2.10)

z2(βε) =

1
2

√
1− (1− exp(−βε))2 for soft-wall

1
2

√
1− (1− 2 exp(−βε))2 for hard-wall

(2.11)
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and

z3(βg) =
1

2 cosh(βg)
(2.12)

The phase of the polymer is given by the singularity which is closest to the origin

and the phase transition takes place when two singularities cross. For low force, z2

is closest to the origin and polymer is in the zipped phase, while for high force, z3

becomes closest and the polymer is in the unzipped phase. The unzipping transition

in the fixed force ensemble is given by the condition z2 = z3 which gives the following

analytical expressions in the force-temperature plane [19]

gc(T ) = 2T cosh−1
[

1

2

(
1

z2(βε)
− 1

)]
, (2.13)

where z2(βε) for both the softwall and the hardwall cases are given by the above

equation. The recursion relation can be solved exactly also in the fixed distance

ensemble. The phase boundary is given by

gc(T ) =

T log
[
2eβε − 1

]
for soft-wall,

T log
[
eβε − 1

]
for hard-wall.

(2.14)

The phase diagrams are plotted in Fig.2.2. One can see that both the expressions give

the same phase boundaries. The details of the calculations are given in Appendix A.

The absorption-desorption transition is given by the condition z1 = z2 which gives

the desorption temperature Tc = ε
ln 2 for hard-wall and Tc = ∞ for soft-wall. If we

compare the phase boundary at very low temperature (T = 0), the force required

to unzip the polymer from the wall is same for both soft- wall and hard- wall. This

implies the low temperature behaviour of polymer is same for both the walls i.e. g ∝ ε
[19]. The polymer behaves differently with the increase in temperature. In the case

of Hard-wall, the polymer can be unzipped simply by increasing the temperature.

The transition temperature Tc = ε
ln 2 corresponds to a pure first -order transition.

However, in the case of soft wall, the transition in the force- temperature plane takes

place at Tc =∞, depicting that the force needed to unzip the polymer from the wall

increases monotonically with the temperature.
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[t]

Figure 2.2: < gc(T ) > Vs T phase diagram for both Hard and Soft Wall, following a Dyck

path

B Isotherms:

For the unzipping transition, < x > /N Vs g (fixed force ensemble) or < g > Vs

x (fixed distance ensemble) are of interests. The isotherms for a polymer of length

N=64 at ε = −1.0 for a hard wall are shown in Fig. 2.3; for a soft wall shown in

Fig. 2.4.

For finite N , they are obtained by iterating the recursion relation to calculate the

partition function and then the extension or the force, depending on the ensem-

ble used. The numerical procedure to calculate various thermodynamic quantities

through the language of C is discussed in Appendix C. (Code A - Soft Wall and

Code B - Hard Wall).

In the fixed distance ensemble, the distance between the end monomer of the polymer

and the wall x is varied at a step 1. The quantity of interest, the average force

required to maintain the distance x between the polymer and the wall, is calculated

using finite differences in free energy. In the fixed force ensemble, the average

separation < x > between the polymer and wall at the site of application of force at

a temperature T , is calculated by taking the finite difference of exact free energies

as g is increased in steps of ∆g = 0.001.

The < g > Vs x isotherms in Fig. 2.3(a) and Fig. 2.4(a) signals a coexistence

between the average force and the temperature T for a polymer of length N=64.
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Figure 2.3: Isotherm in (a) fixed distance ensemble. (b) fixed force ensemble for the

hard-wall case for a polymer of length N=64 at ε = −1.0 for the Dyck path model

Figure 2.4: Isotherm in (a) fixed distance ensemble (b) fixed force ensemble for a soft wall,

for a polymer of length N=64 at ε = −1.0 following a Dyck path

At temperature above the critical temperature Tc, we need zero force to unzip the

polymer. The attribute remains same when studying the dependence of T on the

average separation between the wall and polymer, < x >, for a polymer of length

N=64 given the fact the applied force is increased in steps of ∆g = 0.001. The Fig.

2.3(b) and Fig. 2.4(b) shows that the average separation, < x > , increase with the

increase in temperature T . For small T , once the applied force g is slightly above

the critical force, the average separation is proportional to N , but for large N , it is

due to finite size effects.

The scaled separation between the polymer and the wall, x/N , versus the corre-

sponding average force at T = 1.0 for various length of polymers, for both soft wall

and hard wall are shown in Fig. 2.5(a) and Fig. 2.6(a) respectively. The isotherms

shows that a flat region for lower separation. The difference from the flat region for
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Figure 2.5: (a) < g > Vs x/N and (b) < x > /N Vs g isotherms at T = 1.0 for various

length of polymers for a hard wall following a Dyck path

Figure 2.6: (a) < g > Vs x/N and (b) < x > /N Vs g isotherms at T = 1.0 for various

length of polymers, for a soft wall following a Dyck path

higher separation is due to the finite size effects.

The < x > /N Vs g isotherms for the polymer of various length at T = 1.0, for

a hard wall is shown in Fig. 2.5(b); for a soft wall in Fig. 2.6(b) The isotherms

shows that for g below gc, the polymer is adsorbed on the wall whereas for g slightly

above gc, the polymer is unzipped from the wall. The transition becomes sharp as

the length of the polymer increases.

2.2.2 Motzkin Path

The idea of solving the Motzkin path is to visualise the change in the quantities of interest

with the change in the number of configuration (3N in the case of Motzkin path). The

system is same, with an polymer immersed in a medium with attractive wall, with potential
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Figure 2.7: Schematic Diagram of a polymer in a medium with attractive wall for a

Motzkin path. a). Soft Wall: polymer is allowed in the whole region. b). Hard Wall:

polymer is not allowed in the region (x < 0).

Vm(x), at the diagonal of square lattice (x = 0) as shown in Fig. 2.7. The system is studied

in both fixed distance ensemble and fixed force ensemble with constraints as above.

1. A hard wall, which do not allow a polymer to cross through it

2. A soft wall which allows a polymer to cross.

However, the change is in the iteration i.e. the number of lattice point approaching

the final position. Unlike the Dyck path, the iteration in Motzkin path comes from∑
j=0,±1Mt(x).

Partition Function

The above recursion relation needs to be iterated with an initial condition:

M0(x) = eβεδx,0 (2.15)

The non crossing constraint in a hard wall is taken care by:

Mj(x) = 0, ∀x < 0, (2.16)
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after each step j. The canonical partition function for a fixed force ensemble is then

calculated with summing over all configurations

ΠN (g) =
∑
x

MN (x)eβgx, (2.17)

where eβgx is the Boltzmann weight added due to a fixed force g. Further, the thermody-

namic properties in a given ensemble are obtained from the free energy as above,

FN (T, x) = −kBT logMn(x), fixed distance (2.18)

ΓN (T, g) = −kBT log Πn(g), fixed force (2.19)

Results

A Phase Diagrams:

The recursion relation for the given canonical partition function is solved exactly.

The generating function has the following singularities:

z1 =
1

3
(2.20)

z2(βε) =


1
3

[
e−2βε

√
e2βε(−3 + eβε(6 + eβε)− 1

]
for soft-wall

1
2eβε

[√
(eβε − 1)(eβε + 3)− (eβε − 1)

]
for hard-wall

(2.21)

z3(βg) =
1

2 cosh(βg) + 1
(2.22)

The force-temperature phase boundary is given by equating z2 = z3 which gives

gc(T ) = 2T cosh−1
[

1

2

(
1

z2(βε)
− 1

)]
, (2.23)

where z2(βε) for both the softwall and the hardwall cases are given by the above

equation. The recursion relation can be solved exactly also in the fixed distance

ensemble. The details of calculations are is given in Appendix B.

Similar to the Dyck path model, the force-temperature plane bears resemblance as

shown in Fig. 2.8 The absorption-desorption transition is given by the condition

z1 = z2 with a melting temperature Tc = ε
ln 3/2 = 2.4663 for hard-wall; and for

the soft wall Tc = ∞ as with the Dyck path. At low temperature, the polymer
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Figure 2.8: < gc(T ) > Vs T phase diagram for both Hard and Soft Wall, following a

Motzkin path

behaves similarly for both walls with g ∝ ε. However, as in the Dyck path, the

polymer behaves differently with increase in temperature. For the hard wall, the

force required to unzip the polymer in decreases monotonically with the increase in

temperature. The transition is of first-order as in the case of Dyck path. However,

for the soft wall it increases with increase in temperature.

B Isotherms:

At a given temperature T and a force g the partition function for a polymer of length

N can be obtained exactly by iterating the recursion relation. For the unzipping

transition, < x > /N Vs g (fixed force ensemble) or < g > Vs x (fixed distance

ensemble) are of interests, as studied in the Dyck path. However, the difference is in

the number of configurations in the recursion relation. The isotherms for a polymer

of length N=64 at ε = −1.0 for a hard wall are shown in Fig. 2.9; for a soft wall

shown in Fig. 2.10. The numerical procedure to calculate the quantities of interest

is discussed in Appendix D.

The ensembles studied are identical to the ensembles discussed above. In the fixed

distance ensemble, the distance between the end monomer of the polymer and the

wall x is varied at a step 1. The average force required to maintain the distance

x between the polymer and the wall, is then calculated using finite differences in

free energy. In the fixed force ensemble, the average separation < x > between the

14



Figure 2.9: Isotherm in (a) fixed distance ensemble (b) fixed force ensemble for a hard

wall, for a polymer of length N=64 at ε = −1.0 for a Motzkin path

Figure 2.10: Isotherm in (a) fixed distance ensemble (b) fixed force ensemble for a soft

wall, for a polymer of length N=64 at ε = −1.0 for a Motzkin path

polymer and wall at the site of application of force at a temperature T , is calculated

by taking the finite difference of exact free energies as g is increased in steps of ∆g

= 0.001.

The results bears resemblance. The < g > Vs x isotherms in Fig. 2.9(a) and Fig.

2.10(a) signals the same coexistence between the average force and the temperature

T for a polymer of length N=64 as shown in Fig. 2.3(a) and Fig. 2.4(a) The

average force, here again increases with decrease in temperature T . However, this

is true for only hard-wall. For the soft-wall, the force increases as the temperature

increases. The same happens when studying the dependence of T on the average

separation between the wall and polymer, < x >, for a polymer of length N=64

when the applied force is increased in steps of ∆g = 0.001. The Fig. 2.9(b) and Fig.

2.10(b) increases more significantly when compared to the plot in Fig. 2.3(b) and

15



Figure 2.11: (a) < g > Vs x/N and (b) < x > /N Vs g isotherms at T = 1.0 for various

length of polymers for a hard wall following a Motzkin path

Figure 2.12: (a) < g > Vs x/N and (b) < x > /N Vs g isotherms at T = 1.0 for various

length of polymers for a soft wall following a Motzkin path

Fig 2.4(b); but the nature of the curve remains same. For small temperatures. the

average separation is proportional to N , once the applied force g is above the critical

force; however for large value of temperature T , it is due to finite size effects.

The resemblance in the nature of the curve continues in the x/N Vs < g > and

< x > /N Vs g isotherms at T = 1.0 for various length of polymers,for both soft

wall and hard wall. The scaled separation between the polymer and the wall, x/N ,

versus the corresponding average force,for both soft wall and hard wall are shown in

Fig. 2.11(a) and Fig. 2.12(a) respectively; whereas the < x > /N Vs g isotherms for

the polymer of various length at T = 1.0, for a hard wall is shown in Fig. 2.11(b);

for a soft wall in Fig. 2.12(b) The absorption-desorption transition takes place in the

phase diagram Fig. 2.11(b) and Fig. 2.12(b), if the pulling force exceeds a critical

value, with < x > /N proportional to the length of polymer N .
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2.3 Conclusion

In this chapter we studied the unzipping and adsorption-desorption transition of an ad-

sorbed polymer in D = 1 + 1 dimensions for both Motzkin and Dyck path. We have

obtained the exact phase diagrams for both hard and soft walls with uniform affinities on

either sides of the wall. We studied the unzipping transition of an adsorbed polymer by

pulling one end of the polymer by a force keeping the other end anchored. Some of the

important results we have found are:

• An adsorbed polymer unzips from the wall, if the pulling force exceeds a critical

value which is dependent on the temperature.

• The unzipping and the adsorption-desorption transition for both Dyck and Motzkin

path shows striking resemblance. Therefore, many features of the latter can be

understood(qualitatively) by studying the transition of the Dyck path and vice versa.

• The resemblance clearly indicates that the number of configuration in the recursion

relation has no role to play in the qualitative nature of isotherms.

• The exact formulation through the language of generating function resembles with

the isotherms drawn through exact transfer matrix technique for both Dyck and

Motzkin path.
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Appendix A

In Chap.3, we set up recursion relation for the partition function which can be used to

study the unzipping transition of an adsorbed polymer for a Dyck path. We stated the

recursion relation for the pure case can be solved exactly using the generating function

technique. In this appendix we give the details of its calculations.

A.1 Phase Boundary

As stated in sec 3.3, we consider the general case by assuming a uniform potential at each

lattice points on either side of the wall. The recursion relation in the presence of potential

is:

Soft Wall

ZN+1(x) =


[ZN (x+ 1) + ZN (x− 1)] for x < 0

[ZN (x+ 1) + ZN (x− 1)] for x > 0

[ZN (+1) + ZN (−1)]eβε for x = 0

(A.1)

Hard Wall

ZN+1(x) =

[ZN (x+ 1) + ZN (x− 1)] for x > 0

[ZN (+1) + ZN (−1)]eβε for x = 0
(A.2)

with the initial condition Z0(x) = eβεδx,0. The partition function for the above

recursion relation is:

G(z, x) =
∑
N

zNZN (x) (A.3)

18



which can be taken in the form of (ansatz)

G(z, x) =

λxA for x > 0

λ−xA for x < 0
(A.4)

with λ and A to be determined. The convergence test tells us that the singularity

closest to origin (on the positive real axis) in the complex z- plane determines the partition

function for N →∞ [19]. For finite N , using contour integration around the singularities

yield the recursion relation ZN .

Using the ansatz equation, we get

for soft wall

λx

z
= [λx+1 + λx−1] for x > 0

λ−x

z
= [λ−x−1 + λ−x+1] for x < 0

A

z
= [2λA+

1

z
]eβε for x = 0

(A.5)

and for hard wall

λx

z
= [λx+1 + λx−1] for x > 0

A

z
= [λA+

1

z
]eβε for x = 0

(A.6)

from which one obtains

Soft Wall

λ =
1−
√

1− 4z2

2z
(A.7)

A =
eβε

1− 2λzeβε
(A.8)

Hard Wall

λ =
1−
√

1− 4z2

2z
(A.9)

A =
eβε

1− λzeβε
(A.10)

The singularities coming from λ is

z1 =
1

2
(A.11)
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A has the singularity

z2(βε) =

1
2

√
1− (1− exp(−βε))2 for soft-wall

1
2

√
1− (1− 2 exp(−βε))2 for hard-wall

(A.12)

Fixed Distance Ensemble

In the fixed distance ensemble, the relevant quantity ZN (x) for N → 0 can be determined

using the contour integration [3]

ZN (x) =
1

2πi

∮
λx(z)A(z)

zN+1
dz (A.13)

where the integration is over a contour around origin. This can be distorted to contours

around z2 and z1, with the leading contribution coming from the contour around z2. For

the large length N we get

ZN (x) ∼
λx(z2)

zN+1
2

, (x > 0) (A.14)

with the free energy

βF (x) = N log z2 − x log λ(z2) (A.15)

The force required to maintain the distance x is given by g = 2∂F∂x . A factor of 2 is

needed as per our definition of unit length as the diagonal of a unit square. The phase

boundary is then given by

gc(T ) = −2T log λ(z2) (A.16)

or,

gc(T ) =

T log
[
2eβε − 1

]
for soft-wall,

T log
[
eβε − 1

]
for hard-wall.

(A.17)
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Fixed Force Ensemble

In the fixed force ensemble, apart from the above mentioned singularities, an addition

force dependent singularity,

z3 =
eβg

e2βg + 1
=

1

2 cosh(βg)
(A.18)

comes from the generating function

G(z, g) =
∞∑
N=0

zN
∑
x

ZN (x)eβgx (A.19)

The phase boundary in the fixed force ensemble comes from equating the leading singu-

larity above z2 with z3(z2 = z3). It is

gc(T ) =

2T cosh−1[(
√

1− (1− 1
eβε

)2)−1] for soft-wall,

2T cosh−1[(
√

1− (1− 2
eβε

)2)−1] for hard-wall.
(A.20)
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Appendix B

In this appendix, we’ll give the details of calculations for a exact solution for unzipping

transition of an adsorbed polymer for a Motzkin path. The attempt is similar as above -

through the language of generating function.

B.1 Phase Boundary

As stated in the above appendix, the assumption are same, a uniform potential at each

lattice points on either side of the wall. The recursion relation in the presence of potential

is:

Soft Wall

ZN+1(x) =


[ZN (x+ 1) + ZN (x) + ZN (x− 1)] for x < 0

[ZN (x+ 1) + ZN (x) + ZN (x− 1)] for x > 0

[ZN (+1) + ZN (0) + ZN (−1)]eβε for x = 0

(B.1)

Hard Wall

ZN+1(x) =

[ZN (x+ 1) + ZN (x) + ZN (x− 1)] for x > 0

[ZN (+1) + ZN (0) + ZN (−1)]eβε for x = 0
(B.2)

with the initial condition Z0(x) = eβεδx,0. The partition function for the above recursion

relation then can be given as:

G(z, x) =
∑
N

zNZN (x) (B.3)

which can be taken in the form of (ansatz)
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G(z, x) =


λxA for x > 0

λ−xA for x < 0

A for x = 0

(B.4)

with λ and A to be determined. We know the singularity closest to origin (on the positive

real axis) in the complex z- plane determines the partition function for N →∞.

Using the ansatz equation, we get

for soft wall

λ−x

z
= [λ−x−1 + λ−x + λ−x+1] for x < 0

λx

z
= [λx+1 + λx + λx−1] for x > 0

A

z
= [(2λ+ 1)A+

1

z
]eβε for x = 0

(B.5)

for hard wall

λx

z
= [λx+1 + λx + λx−1] for x > 0

A

z
= [(λ+ 1)A+

1

z
]eβε for x = 0

(B.6)

from which one obtains

Soft Wall

λ(z) =
(1− z)−

√
(1 + z)(1− 3z)

2z
(B.7)

A(z) =
eβε

1− (2λ+ 1)zeβε
(B.8)

Hard Wall

λ(z) =
(1− z)−

√
(1 + z)(1− 3z)

2z
(B.9)

A(z) =
eβε

1− (λ+ 1)zeβε
(B.10)

The singularities coming from λ is

z1 =
1

3
(B.11)
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A has the singularity

z2(βε) =


1
3

[
e−2βε

√
e2βε(−3 + eβε(6 + eβε)− 1

]
for soft-wall

1
2eβε

[√
(eβε − 1)(eβε + 3)− (eβε − 1)

]
for hard-wall

(B.12)

Fixed Distance Ensemble

In the fixed distance ensemble, using contour integration, one can calculate the relevant

ZN (x) for N → 0

ZN (x) =
1

2πi

∮
λx(z)A(z)

zN+1
dz (B.13)

where the integration is over a contour around origin. However, the integration could be

influenced by the contribution made by the leading singularity which is coming out from

zx. Therefore, as above

The phase boundary is then given by

gc(T ) = −2T log λ(z2) (B.14)

with λ given by Eq. B.7 and z2 given by Eq. B.12

Fixed Force Ensemble

In the fixed force ensemble, the addition force dependent singularity, arises from the

generating function

G(z, g) =
∞∑
N=0

zN
∑
x

ZN (x)eβgx (B.15)

is:

z3 =
eβg

e2βg + eβg + 1
=

1

2 cosh(βg) + 1
(B.16)

The phase boundary in the fixed force ensemble comes from equating the leading singu-

larity above z2 with z3(z3 = z3). It is

gc(T ) = T cosh−1
[

1

2

(
1

z2(βε)
− 1

)]
, (B.17)

where z2(βε) for both the softwall and the hardwall cases are given by the above equation

Eq. B.12.
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Appendix C

In this appendix we show the numerical procedure to calculate the generating function of

the Dyck Path studied above.

Dyck Path

Let Dt(x) denote the partition function for a Dyck path in a fixed distance ensemble.

At a given inverse temperature β (β = 1
kBT

), where kB is the Boltzmann constant, which

we choose as kB=1 , the partition function follows the recursion:

Dt+1(x) =
∑
j=±1

Dt(x)[1 + (eβε − 1)δx,0] (C.1)

In order to obtain the partition function for a polymer of length N , we have to iterate the

above expression with an initial condition D0(0) = 1.0

One may note that in the expression of the partition function, there is a term eβε which

grows exponentially, which allows the partition function to grow exponentially as well. At

low temperature, the partition can easily flow over the upper limit (10±300) [19] of the

floating point representation. Hereby, the partition function of only short chain polymer

can be exactly solved at a low temperature.

In the following codes, we have calculated the quantity of interest in a fixed distance

and fixed force ensemble for both soft and hard wall. In this case, the quantity of interest

is the average distance from the wall and the average force required.
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Code A

-------------------------------------------------------------------

This program calculates the quantities of interest in a fixed

force and fixed distance ensemble for a soft wall as discussed

in Chap. 3

-------------------------------------------------------------------

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#define N 2

#define T 1.0

#define EPS -1.0

int main ( )

{

double beta, Z[N+1][2*N+3] , g ,xavg, xavg2, P[2*N+1] , Ztot;

int x, t;

beta = 1./T;

for (t = 0; t <=N; t++){

for (x = 0; x <=2*N+2; x++)

Z[t][x] = 0.0;

}

-------------------------------------------------------------------

Recursion relation for a Soft Wall

-------------------------------------------------------------------

Z[0][N+1] = 1.0;

for (t=1; t <= N; t++) {

for (x = -t; x <= t; x += 2)

Z[t][x+N+1] = Z[t-1][x+N] + Z[t-1][x+N+2] ;
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Z[t][N+1] *= exp(-beta * EPS);

}

-------------------------------------------------------------------

Isotherm in Fixed distance ensemble

-------------------------------------------------------------------

printf("# Isotherm Fixed distance ensemble\n");

for (x=1; x<=2*N-1; x+=2) {

printf("%d\t%lf\n", x,- 0.5* T* (log(Z[N][x+2]) - log(Z[N][x])));

}

-------------------------------------------------------------------

Fixed force ensemble

-------------------------------------------------------------------

printf("\n\n");

printf("# Isotherm Fixed force ensemble\n");

for (g = 0.0; g <= 1.4; g+= 0.01) {

Ztot = 0.0;

for (x=1; x<=2*N+1; x+=2)

Ztot += Z[N][x] * exp( beta * g * x);

for (x=1; x<=2*N+1; x+=2)

P[x] = Z[N][x] * exp (beta * g *x) / Ztot;

xavg=0.0; xavg2 = 0.0;

for (x=1; x<=2*N+1; x+=2){

xavg += x * P[x];

xavg2 += x * x * P[x];

}

printf ("%lf\t%lf\t%lf\n",g, xavg, xavg2);

}
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return 0;

}

Code B
-------------------------------------------------------------------

This program calculates the quantities of interest in a fixed

force and fixed distance ensemble for a Hard Wall as discussed

in Chap. 3

-------------------------------------------------------------------

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#define N 2

#define T 2.0

#define EPS -1.0

int main ( )

{

double beta, Z[N+1][N+3], P[N+1], Ztot;

double g, xavg, xavg2;

int x, t;

beta = 1./T;

for (t = 0; t <= N; t++){

for (x = 0; x <= N+2; x++)

Z[t][x] = 0.0;

}
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-------------------------------------------------------------------

Recursion relation for a Hard Wall

-------------------------------------------------------------------

Z[0][1] = 1.0;

for (t=1; t <= N; t++) {

for (x=1; x<=t+1; x++)

Z[t][x] = Z[t-1][x-1] + Z[t-1][x+1] ;

Z[t][1] *= exp(-beta*EPS);

}

-------------------------------------------------------------------

Fixed Distance ensemble

-------------------------------------------------------------------

printf("# Isotherm Fixed distance ensemble\n");

if(N%2==0){

for (x=1; x<=N-1; x+=2)

printf("%d\t%lf\n", x,- 0.5* T* (log(Z[N][x+2]) - log(Z[N][x])));

}

else{

for (x=2; x<=N-1; x+=2)

printf("%d\t%lf\n", x,- 0.5* T* (log(Z[N][x+2]) - log(Z[N][x])));

}

-------------------------------------------------------------------

Fixed force ensemble

-------------------------------------------------------------------

printf("\n\n");

printf("# Isotherm Fixed force ensemble\n");

for (g = 0.0; g <= 1.4; g+= 0.01) {
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Ztot = 0.0;

if(N%2==0)

{

for (x=1; x<=N+1; x+=2)

Ztot += Z[N][x] * exp( beta * g * x);

}

else

{

for (x=2; x<=N+1; x+=2)

Ztot += Z[N][x] * exp( beta * g * x);

}

if(N%2==0)

{

for (x=1; x<=N+1; x+=2)

P[x] = Z[N][x] * exp (beta * g *x) / Ztot;

}

else

{

for (x=2; x<=N+1; x+=2)

P[x] = Z[N][x] * exp (beta * g *x) / Ztot;

}

xavg=0.0; xavg2 = 0.0;

if(N%2==0)

{

for (x=1; x<=N+1; x+=2){

xavg += x * P[x];

xavg2 += x * x * P[x];

}

}

else

{

for (x=2; x<=N+1; x+=2){
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xavg += x * P[x];

xavg2 += x * x * P[x];

}

}

printf ("%lf\t%lf\t%lf\n",g, xavg, xavg2);

}

return 0;

}
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Appendix D

In this appendix we show the numerical procedure to calculate the generating function of

the Motzkin Path.

Motzkin Path

Let Mt(x) denote the partition function for a Motzkin path in a fixed distance ensemble.

However, unlike Dyck path, Motzkin path has iteration coming from
∑

j=0,±1Mt(x). As a

consequence, at a given inverse temperature β, the partition function follows the recursion:

Mt+1(x) =
∑

j=0,±1
Mt(x)[1 + (eβε − 1)δx,0] (D.1)

In order to obtain the partition function for a polymer of length N , we have to iterate the

above expression with an initial condition as given M0(0) = 1.0

The codes for Motzkin path follow the same procedure as for Dyck. However, the funda-

mental difference is in the number of configuration which accounts for 3N configurations

in Motzkin path. The quantities of interest calculated are same as above.
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Code A

-------------------------------------------------------------------

This program calculates the quantities of interest for a Hard Wall

as discussed in Chap. 3

-------------------------------------------------------------------

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#define N 128

#define T 2.0

#define EPSY -1.0

int main ( )

{

double beta, M[N+1][N+3], P[N+1], Mtot;

double g, xavg, xavg2;

int x, t;

beta = 1./T;

for (t = 0; t <= N; t++){

for (x = 0; x <= N+2; x++)

M[t][x] = 0.0;

}

-------------------------------------------------------------------

Recursion relation

-------------------------------------------------------------------

M[0][1] = 1.0;
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for (t=1; t <= N; t++) {

for (x=0; x<=t; x++)

M[t][x+1] = M[t-1][x] + M[t-1][x+2] + M[t-1][x+1];

M[t][1] *= exp(-beta*EPSY);

}

-------------------------------------------------------------------

Fixed distance Ensemble

-------------------------------------------------------------------

printf("# Isotherm Fixed distance ensemble\n");

for (x=1; x<=N; x++) {

printf("%d\t%lf\n", x,- 0.5* T* (log(M[N][x+1])-log(M[N][x])));

}

-------------------------------------------------------------------

Fixed force Ensemble

-------------------------------------------------------------------

printf("\n\n");

printf("# Isotherm Fixed force ensemble\n");

for (g = 0.0; g <= 1.4; g+= 0.01) {

Mtot = 0.0;

for (x=1; x<=N+1; x++)

Mtot += M[N][x] * exp( beta * g * x);

for (x=1; x<=N+1; x++)

P[x] = M[N][x] * exp (beta * g *x) / Mtot;

xavg=0.0; xavg2 = 0.0;

for (x=1; x<=N+1; x++){
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xavg += x * P[x];

xavg2 += x * x * P[x];

}

printf ("%lf\t%lf\t%lf\n",g, xavg, xavg2);

}

return 0;

}

Code B
-------------------------------------------------------------------

This program calculates the quantities of interest for a Soft Wall

as discussed in Chap. 3

-------------------------------------------------------------------

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#define N 3

#define T 1.0

#define EPSY -1.0

int main ( )

{

double beta, M[N+1][2*N+3] , g ,xavg, xavg2, P[2*N+2] , Mtot;

int x, t;

beta = 1./T;

for (t = 0; t <=N; t++){

for (x = 0; x <=2*N+2; x++)

M[t][x] = 0.0;

}
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-------------------------------------------------------------------

Recursion relation

-------------------------------------------------------------------

M[0][N+1] = 1.0;

for (t=1; t <= N; t++) {

for (x = -t; x <= t; x ++ )

M[t][x+N+1] = M[t-1][x+N] + M[t-1][x+N+2] + M[t-1][x+N+1];

M[t][N+1] *= exp(-beta * EPSY);

}

-------------------------------------------------------------------

Fixed Distance Ensemble

-------------------------------------------------------------------

printf("# Isotherm Fixed distance ensemble\n");

for (x=1; x<=2*N; x++) {

printf("%d\t%lf\n", x,- 0.5* T*(log(M[N][x+1])-log(M[N][x])));

}

-------------------------------------------------------------------

Fixed force Ensemble

-------------------------------------------------------------------

printf("\n\n");

printf("# Isotherm Fixed force ensemble\n");

for (g = 0.0; g <= 1.4; g+= 0.01) {

Mtot = 0.0;

for (x=1; x<=2*N+1; x++)

Mtot += M[N][x] * exp( beta * g * x);

for (x=1; x<=2*N+1; x++)
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P[x] = M[N][x] * exp (beta * g *x) / Mtot;

xavg=0.0; xavg2 = 0.0;

for (x=1; x<=2*N+1; x++){

xavg += x * P[x];

xavg2 += x * x * P[x];

}

printf ("%lf\t%lf\t%lf\n",g, xavg, xavg2);

}

return 0;

}
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