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Chapter 1

Introduction

Symbolic integration is the problem of finding a “closed form” expression for an indef-

inite integral. This problem attracted many mathematicians but the first substantial

contribution came from Joseph Liouville (1840). In crude terms, he proved that if an

algebraic function has an elementary integral then the latter is itself an algebraic func-

tion plus a sum of constant multiples of logarithms. Later, Maxwell Rosenlicht ([1],

[2]) provided a purely algebraic exposition of the problem and proved this theorem

of Liouville using algebraic techniques. Another serious contribution to the problem

of Symbolic integration was made by Robert Risch. In his paper ([3]), building on

the work of Rosenlicht, Risch produced an algorithm to determine when an indefinite

integral has a finite closed form expression. In this thesis, I will elaborate the works

of Rosenlicht and Risch on the theory of integration in finite terms. The rest of the

thesis is arranged as follows.

In Chapter 2, we define the notion of differential field and differential field exten-

sions and prove basic results that will be often used in this thesis. In Chapter 3, we

prove the Liouville’s theorem of Maxwell Rosenlicht. The Liouville criterion is also

presented in Chapter 3. In particular for non zero function f(z) and non-constant

function g(z), it states: The function feg has an elementary integral if and only if

there is a rational function q ∈ C(z) such that f = q′ + qg′ and then the integral is

qeg.

In Chapter 4, Risch algorithm is proved using previously developed theories for

determining the elementary integrability of those elementary functions which can be

built up (roughly speaking) using only the rational operations, exponentiation and

taking logarithms.
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Chapter 2

Differential Algebra

Here we define some basic terminologies from differential algebra and prove a standard

result which will serve as an important tool through out this thesis.

Definition 2.1. A differential field is a field F together with a map d : F → F which

satisfies following conditions ∀x, y ∈ F :

d(x+ y) = d(x) + d(y),

d(xy) = xd(y) + d(x)y,

we call such a map d as a derivation on F

Definition 2.2. An element c of a differential field is said to be constant if d(c) = 0.

From the definition of a derivation map, we prove the following immediate conse-

quences:

Lemma 2.1. a) d(1) = 0.

b) For all x and non zero y in F, d(x/y) =
(dx)y − x(dy)

y2
.

c) For all x in F and n in N, d(xn) = nxn−1dx.

Proof

a) d(1) = d(1.1) = d(1).1 + 1.d(1) = 2d(1) which implies d(1) = 0

b) Let x = zy, on differentiation we have, dx = d(zy) = (dz)y+z(dy) which implies

dz =
dx− zdy

y
.
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On substituting z = x/y, we have our desired expression

d

(
x

y

)
=

(dx)y − x(dy)

y2
.

c) Through simple induction on n we get the power ruleas, d(xn) = nxn−1dx∀x ∈
F

Now, it is easy to see from above Lemma that the set of all constants in F is

a subfield of F . In particular, if F has characteristic 0, then the constant subfield

contains the rational Q. Since, field of characteristic 0 contains Q.

Definition 2.3. A differential field E is a differential extension field of F, if it contains

F as a subfield and for the injective homomorphism φ : E → F

φ(df) = dφ(f),

for all f ∈ F .

Definition 2.4. An isomorphism of the differential field E and F which preserves the

differentiation operation is called a differential isomorphism.

Now we will derive a standard result on algebraic extension of differential field

which will be used extensively through out this document.

Proposition 2.1. Let (F,′ ) be a differential field of characteristic zero and K an

algebraic extension field of F . Then the derivation of F can be extended to a derivation

on K, and this extension is unique.

Proof Define the following maps:

D0 : F [X]→ F [X],

D0

(
n∑
i=0

aiX
i

)
=

n∑
i=0

a′iX
i,

and

D1 : F [X]→ F [X],

D1

(
n∑
i=0

aiX
i

)
=

n∑
i=0

iaiX
i−1,
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where ai ∈ F ∀i = 0, ..., n.

We show that if a differential structure exist on K extending that of F , then it is

unique.

For any x ∈ K and any A(X) ∈ F [X]

A(x)′ = (D0A)(x) + (D1A)(x)x′.

Now replace A(x) with the minimal polynomial f(X) of x. Then we have

f(x)′ = (D0f)(x) + (D1f)(x)x′.

Since f(x) = 0, this implies

x′ = −(D0f)(x)

(D1f)(x)
.

Notice that (D1f)(x) can never be zero because D1f has degree one less than f(X).

Since, f(X) is the minimal polynomial, we must have (D1f)(x) 6= 0. Hence, if a

differential field structure on K exists then it is unique. Now we show that such a

structure on K actually exists.

We can write K = F (x) for some x ∈ K.(see appendix A.1)

Define, D : F [X]→ F [X] as

D(A) = D0A+ g(x)D1A,

where g(x) ∈ F [X] to be determined later.

Since D0 and D1 are derivation, we observe for any A,B ∈ F [X]

D(A+B) = D(A) +D(B),

D(AB) = BD(A) + AD(B),

and for all a ∈ F , we have

D(a) = a′.

Consider the following surjective ring homomorphism

φ : F [X]→ F [x]

X ′ → x′

5



Let f(x) be the minimal polynomial of x over F then clearly, Kerφ = {p(x) | p(x) = 0}
and f(x) must divide p(x).Thus, we have Kerφ = 〈f〉 . By First Isomorphism theorem

F [X]

〈f〉
∼= F (x) = F [x].

Now we define the derivation D of F on F [X]
〈f〉 to be D(g(X)+〈f〉) = D(g(x))+〈f〉 and

once we show that D maps the Kernel of φ into itself then we can induce a derivation

on K = F (x).

Now consider f(X)h(X) ∈ Kerφ. Then

D(fh) = fD(h) + hD(f).

Applying φ on both the sides, we obtain

φ(D(fh)) = φ(fD(h)) + φ(hD(f))

= φ(f)φ(Dh) + φ(h)φ(Df)

= h(x)(Df)(x).

since, for this new derivation (Df)(x) = 0, we have

(D0f)(x) + g(x)D1f(x) = 0.

Since (D0f)(x) 6= 0, we obtain

g(x) =
−D0f(x)

D1f(x)

which is required g(x), and the condition for φ to map Kerφ into itself. Hence,

D0 + g(x)D1 maps f(x) into multiple of itself, and thus maps the ideal 〈f〉 of F [X]

into itself. Therefore, this induces a derivation on the factor ring F [X]/f(x), which

is isomorphic to F (x).
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Chapter 3

Liouville’s Theorem

In this chapter, we prove the Liouville’s theorem by Maxwell Rosenlicht [1, 2] but

before that, some important terminologies and results are in order which will serve as

important tools in proving the theorem. Here we present two proofs for the theorem

under section 3.1 and 3.2.

Definition 3.1. If x, y ∈ F and x 6= 0, we define “x” an exponential of “y” or ‘y”

a logarithm of “x” if dy =
dx

x
. And we have the following logarithmic derivative

identity:
d(an1

1 .a
n2
2 . . . anss )

a1.a2 . . . as
= n1

da1
a1

+ . . .+ ns
das
as
, (3.1)

for a1, . . . , an non zero elements of F and n1, . . . , ns integers.

Definition 3.2. A field E is an elementary extension of F if it is a differential field

extension of F and there exists a finite tower of fields

F = E0 ⊂ E1 ⊂ . . . ⊂ Ek−1 ⊂ Ek = E

such that each Ei = Ei−1(θi) where (θi) is a logarithmic or an exponential of an

element in Ei−1 or θi is algebraic over Ei−1. Moreover, any element in E is called

elementary function.

The following lemma is taken from [1] and an effort for detailed explanation has

been made.
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3.1 First Method

Lemma 3.1. Let F be a differential field with characteristic 0, F (t) be a differential

extension field of F having the same subfield of constants with t transcendental over F

and with either t′ ∈ F or t′/t ∈ F . If t′ ∈ F , then for any polynomial in f(t) ∈ F [t] of

positive degree, (f(t))′ is a polynomial in F [t] of the same degree as f(t) or degree one

less, according as the highest coefficient of f(t) is not, or is, a constant. If t′/t ∈ F ,

then for any non zero a ∈ F and any non-zero integer n we have (atn)′ = htn, for

some non-zero h ∈ F , and furthermore, for any polynomial f(t) ∈ F [t] of any positive

degree, f(t)′ is a polynomial in F [t] of the same degree, and is a multiple of f(t) only

if f(t) is a monomial.

Proof

Case I Suppose t′ ∈ F and let f(t) = ant
n + an−1t

n−1 + ... + a0 be any polynomial in

F [t] with an 6= 0. Then,

f(t)′ = a′nt
n + nant

n−1t′ + a′n−1t
n−1 + ...+ a′0

= a′nt
n + (nant

′ + a′n−1)t
n−1 + ...+ a′0.

If an is not a constant, then a′n 6= 0 which implies f(t)′ has same degree as

f(t). If an is a constant and nant
′ + a′n−1 = 0, then notice (nant + an−1)

′ =

nant
′ + a′n−1 = 0 which implies, nant + an−1 is a constant. Since F and F (t)

have same subfield of constants, nant + an−1 ∈ F , moreover t ∈ F which is a

contradiction. Hence, nant
′ + a′n−1 6= 0 and f(t)′ has one degree less than f(t).

Case II Now suppose t′/t ∈ F . Let a 6= 0 ∈ F and n 6= 0 ∈ Z. Then,

(atn)′ = a′tn + natn−1t′

= tn
(
a′ + na

t′

t

)
= tn(a′ + nab),

for some b ∈ F , if a′ + nab = 0, then (atn)′ = 0 which implies atn is a constant

in F which contradicts the transcendency of t over F . Therefore, a′ + nab 6= 0

and thus, for some h ∈ F

8



(atn)′ = htn.

Clearly, f(t)′ has same degree as f(t). We have shown that for any monomial

f(t)′ is a multiple of f(t) but that is not the case with any other f(t) ∈ F (t).

To see this, let f(t) = ant
n + amt

m, then after taking derivative we obtain

f(t)′ = a′nt
n + nant

n−1t′ + a′mt
m +mamt

m−1t′

=

(
a′n + nab

an

)
ant

n +

(
a′m +mamb

am

)
amt

m.

If f(t)′ is a multiple of f(t), then

a′n + nanb

an
=
a′m + namb

am

a′n
an

+ n
t′

t
=
a′m
am

+m
t′

t
.

Now observe that(
ant

n

amtm

)′
=
amt

m(ant
n)′ − (amt

m)′ant
n

(amtm)2

=
(ant

n)′

amtm
− (amt

m)′ant
n

(amtm)2

=
a′nt

n

amtm
− nant

n−1t′

amtm
−
[
a′mt

m +mamt
m−1t′

(amtm)2

]
ant

n

=
a′nt

n

amtm
− nant

n−1t′

amtm
− a′mt

mant
n

(amtm)2
− mt′ant

n

amtm+1

=
ant

n

amtm

[
a′n
an

+ n
t′

t
− a′m
am
−mt′

t

]
= 0

arguing as earlier, it contradicts the transcendency of t over F , hence not pos-

sible.

Theorem 3.1. (Liouville)Let F be a differential field of characteristic zero and α ∈ F .

If the equation y′ = α has a solution in some elementary differential extension field

of F having the same subfield of constants, then there are constants c1, c2, ..., cn ∈ F

9



and the elements u1, ...un, v ∈ F such that

α =
n∑
i=1

ci
u′i
ui

+ v′. (3.2)

Proof By assumption, we have tower of elementary differential extension fields of

F

F ⊂ F (t1) ⊂ . . . ⊂ F (t1, . . . , tn),

with same subfield of constants. We shall prove the theorem by induction on n.

For n = 0, y′ = α has solution in F itself, i.e α = y′ is the desired form. Now assume

that this result holds for n− 1 and apply this to the fields F (t1) ⊂ F (t1, . . . , tn) and

we obtain

α =
n∑
i=1

ci
u′i
ui

+ v′, (3.3)

but with u1, . . . , un, v ∈ F (t1) and c1, . . . , cn ∈ F . We wish to find a similar expression

for α but with all u1, . . . , un, v ∈ F , possibly with different n. For the rest of proof,

we set t1 = t.

Case I Suppose t is algebraic over F . So in this case we have F(t)=F[t], then there are

polynomials U1, . . . , Un, V ∈ F [X] such that Ui(t) = ui and similarly V (t) = v

for all i = 1, . . . , n. So we can rewrite 3.3 as

α =
n∑
i=1

ci
U ′i
Ui

+ V ′.

Let t = τ1, . . . , τs be distinct conjugates of t over F in some suitable algebraic

closure of F (t) and σ1, . . . , σs be F − isomorphisms. Notice that for all j =

1, . . . , s

σj(α) =
n∑
i=1

ci
Ui(σj(t))

′

Ui(σj(t))
+ V (σj(t))

′.

Since α ∈ F , we obtain

α =
n∑
i=1

ci
Ui(τj)

′

Ui(τj)
+ V (τj)

′.

10



After taking summation over j, it follows that

α =
1

s

n∑
i=1

s∑
j=1

ci
Ui(τj)

′

Ui(τj)
+

1

s

s∑
j=1

V (τj)
′

=
1

s

n∑
i=1

ci

(
Ui(τ1)

′

Ui(τ1)
+ . . .+

Ui(τs)
′

Ui(τs)

)
+

1

s

(
s∑
j=1

V (τj)

)′

=
1

s

n∑
i=1

ci
(Ui(τ1) . . . Ui(τs))

′

Ui(τ1) . . . Ui(τs)
+ . . .+

Ui(τs)
′

Ui(τs)
+

1

s

(
s∑
j=1

V (τj)

)′
.

Now we see that Ui(τ1) . . . Ui(τs) and V (τ1) + . . .+V (τs) are symmetric polyno-

mials in τ1, . . . , τs with coefficients in F and therefore they are fixed by each σj.

Hence, they belong to F and we get the desired form.

A number of comments are in order before we proceed to remaining cases. We

may assume that t is transcendental over F , then F (t) is a Unique Factorisation

Domain (UFD) and we have already

α =
n∑
i=1

ci
u′i
ui

+ v′, (3.4)

with u1, . . . , un, v ∈ F (t) and c1, . . . , cn ∈ F . For any i, we can write

ui = frm1
1 . . . rmss q−n1

1 . . . q−npp ,

with f ∈ F and monic polynomials r1 . . . rs, q1 . . . qp ∈ F (t) then notice,

ui(t)
′

ui(t)
=
f ′

f
+m1

r′1
r1

+ . . .+ms
m′s
ms

− n1
q′1
q1
− . . .− np

q′p
qp
.

So we can rewrite 3.4 with ui(t) either in F or a monic irreducible polynomial of

F [t]. Also, we can always write v(t) =
P (t)

Q(t)
with (P,Q) = 1 and Q be a monic

polynomial. Now consider the remaining cases.

Case II Now, let t is logarithm over F . Then, for some a ∈ F we can write t′ =
a′

a
.

Let f(t) be a monic irreducible element of F [t]. From the above discussion, we

can assume that ui(t) = f(t) and therefore by lemma 3.1, we know deg(f(t)) >

deg(f(t)′). Then f(t) - f(t)′, thus the fraction
ui(t)

′

ui(t)
is already in lowest form

11



which is not possible since α ∈ F . Now substitute V =
P

Q
in 3.4

α =
n∑
i=1

ci
ui(t)

′

ui(t)
+
QP ′ − PQ′

Q2
.

On clearing common denominators

n∏
i=1

ui(t)Q
2α = Q2

(
n∑
i=1

∏
j 6=i

ciuj(t)ui(t)
′

)
+

n∏
i=1

ui(t)(QP
′ − PQ′),

(
n∏
i=1

ui(t)α−
n∑
i=1

∏
j 6=i

ciuj(t)ui(t)
′

)
Q2 =

n∏
i=1

ui(t)(QP
′ − PQ′).

On comparing, it is easy to see that Q2 =
∏n

i=1 ui(t). Thus, it will appear in α

too, which is not possible. Therefore, v(t) ∈ F [t] with v′ ∈ F , again with the

help of lemma 3.1, we obtain v = ct + d with constants c, d ∈ F . Finally, we

arrive at the following identity,

α =
n∑
i=1

ci
u′i
ui

+ c
a′

a
+ d′,

with v = d we have the desired form for α.

Finally, consider the last case.

Case III Now consider the final case, when t is exponential over F . By similar argument

as in the preceding case, we can assume that ui(t) = f(t) as a monic irreducible

element in F [t]. Lemma 3.1 implies that if f(t) is a monic irreducible element

of F (t) other than t itself, then f(t)′ ∈ F [t] and f(t) - f(t)′. With the same

reasoning as above,we conclude that f(t) cannot appear in the denominator

of v(t) nor can any ui(t) = f(t). Thus v(t) = a0 + a1t + . . . + ant
n with

a0, . . . , an ∈ F and each of the quantities
ui(t)

′

ui(t)
∈ F . This implies v(t)′ ∈ F ,

so lemma 3.1 suggests v(t) ∈ F . If each ui(t) ∈ F , then we are done, otherwise

there is only one ui(t), say u1(t) /∈ F . Then u1(t) and u2(t), . . . , un(t) ∈ F . So

we can write

α =
n∑
i=2

ci
u′i
ui

+ (v + c1
t′

t
).

12



Theorem 3.2. Let g be a non-constant rational function in C(z). Then eg is tran-

scendental over C(z)

Proof We shall prove it by contradiction. Suppose on the contrary eg is algebraic

over C(z), then eg is contained in a finite normal algebraic extension F of C(z). For

each σ ∈ Aut(F/C(z)),

g′ =
σ(eg)′

σ(eg)
.

Set eg = t and on summing over all σ ∈ Aut(F/C(z))

[F : C(z)]g′ =
∑
σ

σ(t)′

σ(t)

=
(
∏

σ σ(t))′∏
σ σ(t)

,

where we have used logarithmic identity 3.1 in writing second equality. Now observe

that right hand side has pole of order of one, whereas left hand side can never have

pole of order one, since g is a non constant rational function.

Let f be a non zero rational function over C and g as above. Then we have the

following theorem.

Theorem 3.3. The function feg has an elementary integral if and only if there is a

rational function q ∈ C(z) such that

f = q′ + qg′,

and then the integral is qeg.

Proof Set eg = t for brevity and F = C(z). If the integral
∫
ft is elementary then

by Liouville’s theorem we must have

ft =
n∑
i=1

ci
u′i
ui

+ v′,

with c1, . . . , cn ∈ C and u1, . . . , un, v ∈ F (t). With the same argument used in Li-

ouville’s theorem, we conclude that v ∈ F [t] and all u1, . . . , un ∈ F with possible

exception of one of ui(t) = t. Since
∑ ui(t)

′

ui(t)
∈ F , we have ft = v′, hence we obtain

13



v = bt for some b ∈ F . Writing b = q we have ft = (q′ + qg′)t.

For the converse, suppose there is a q ∈ F such that f = q′ + qg′, then∫
(q′ + qg′)eg = qeg.

3.2 Second method

In this section, we prove the same theorem [2], but with a different approach.

Lemma 3.2. Let F be a differential field, F (t) be a differential extension field of

F having the same subfield of constants with t transcendental over F and with either

t′ ∈ F or t′/t ∈ F . Let c1, ..., cn ∈ F be linearly independent over the rational numbers

Q and let u1, ..., un be nonzero elements of F (t), v ∈ F (t). Then if

n∑
i=1

ci
u′i
ui

+ v′ ∈ F [t],

we have v ∈ F [t] and in the case t′ ∈ F, each ui ∈ F while in the case t′/t ∈ F , for

each i = 1, ..., n we have ui/t
νi ∈ F for some integer νi.

Proof In a suitable finite normal algebraic extension field K of F ; u1, ..., un, v of

F (t) will split into linear factors. Writing ui(t) =
p(t)

q(t)
, we can make both polynomials

monic and split linearly, and thus

ui = gi
∏
j

(t− zj)µij .

Similarly by partial decomposition of v

v =
∑
j,ν

hνj(t− zj)ν + f(t).

Above quantities hold for all i = 1, ..., n with j ranging over a finite set of positive

integers, ν ranges over a finite set of negative integers, each µij is an integer and each

0 6= gi, zj, hνj ∈ K.

We work in the differential extension field K(t) of F (t) (see proposition 2.1). By

hypothesis
n∑
i=1

ci
u′i
ui

+ v′ ∈ K[t].
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On substitution

n∑
i=1

ci
g′i
gi

∏
j

(t− zj)′µijgi
∏
j

(t− zj)µij +

(∑
j,ν

hνj(t− zj)ν + f(t)

)′
∈ K[t].

By logarithmic derivative identity 3.1, we can write

f(t)′ +
n∑
i=1

ci
g′i
gi

+
∑
i,j

ciµij
(t− zj)′

(t− zj)
+
∑
j,ν

(hνj(t− zj)ν)′ ∈ K[t]. (3.5)

Case I When t′ = a for some a ∈ F (logarithmic case). Consider the quantity
(t− zj)′

t− zj
=

t′ − z′j
t− zj

, substituting t′ = a yields,

t′ − z′j
t− zj

=
a− z′j
t− zj

.

We claim that this expression is in lowest terms i.e. a− z′j 6= 0. To see this, let

us assume a− z′j = 0 which implies a = z′j. Then for each σ ∈ Aut(K/F )

σ(a) = σ(z′j)

a = σ(zj)
′

Moreover, ∑
σ

a =
∑

σ(zj)
′

[K : F ]a =

(∑
σ

σ(zj)

)′
a =

(
∑

σ σ(zj))
′

[K : F ]
,

So we can write a = b′ for some b ∈ F . Hence, the quantity (t− b)′ = t′ − b′ =

a′ − b′ = 0 implies t − b is a constant. By assumption F and F (t) have same

subfield of constants. Therefore, we obtain t ∈ F which contradicts the tran-

scendency of t, thus a− zj 6= 0.
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Case II Similarly for t′ = at for some a ∈ F (exponential case) we have,

t′ − z′j
t− zj

=
at− z′j
t− zj

.

We show that above expression is also in lowest terms, provided zj 6= 0. Suppose

it is not in the lowest terms, then (t − zj) comes as a factor of numerator and

this implies z′j = azj. Given zj 6= 0

z′j
zj

= a

for each σ ∈ Aut(K/F ) ∑
σ

(σzj)
′

σzj
= [K : F ]a

again by logarithmic identity 3.1∏
σ(zj)

′∏
σ(zj)

= [K : F ]a

Numerator and denominator are symmetric in zj for all j. We conclude, for

some b 6= 0 ∈ F
[K : F ]a =

b′

b

let [K : F ] = N and consider

(tN)′

tN
= N

t′

t
= Na =

b′

b

which gives (
tN

b

)′
=
b(tN)′ − tNb′

b2

=
(tN)′

b
− tN(

b′

b2
)

=
NatN

b
− tN b

′

b2

=
tN

b

(
Na− b′

b

)
= 0

16



which implies tN/b is a constant in F , which again contradicts the transcendency

of t.

Thus, in all cases except when zj = 0 and t′ = at, the fraction
(t− zj)′

t− zj
is in

lowest terms. Now, consider the case when zj = 0

(t− zj)′

(t− zj)
=
t′ − z′j
t− zj

=
t′

t

= a ∈ F

Now, consider the last expression in 3.5

(hνj(t− zj)ν)′ = h′νj(t− zj)
ν + νhνj(t− zj)ν−1(t′ − zj)

=
h′νj

(t− zj)−ν
+ νhνj

(t′ − z′j)
(t− zj)1−ν

So what has been done above implies this expression is also in lowest terms,

except in the one exceptional case when zj = 0 and t′ = at. For the exceptional

case it becomes,

(hνj(t)
ν)′ = νhνj t

ν−1t′ + tνh′νj

= tν(νhνja+ h′νj)

We claim that if hνj 6= 0, then also νhνja+ h′νj 6= 0. Let νhνja+ h′νj = 0 which

implies
h′νj
hνj

= −νa Now, on summing over each σ ∈ Aut (K/F ), we obtain

∑
σ

(
σh′νj
σhνj

)
= −Nνa(

(
∏

σ σ(h′νj))

(
∏

σ σ(hνj))

)
= −Nνa

and therefore, −Nνa = b′

b
for some b 6= 0 ∈ F . Arguing similarly as in case II,

we obtain t−Nν/b ∈ F .

From above discussion, we conclude that in the exceptional case, (hνj(t− zj)ν)′

has denominator t−ν and in all remaining cases has (t− zj)1−ν as denominator.

Therefore, we have proved that L.H.S of 3.5 would not cancel to add upto a

17



polynomial in t and thus hνj = 0 and v = f(t) ∈ K[t].

Finally, we are left with ∑
i,j

ciµij
t′ − z′j
t− zj

∈ K[t]

Then,
∑

i ciµij = 0, since c1, ..., cn are linearly independent over R and we have

all µij = 0. In exceptional case, when zj = 0 and t′ = at

∑
i,j

ciµij
t′

t
=
∑
i,j

ciµija ∈ F

Thus, ui = btνi for some b ∈ F and integers νi.

Theorem 3.4. Let F be a differential field of characteristic zero and α ∈ F . If the

equation y′ = α has a solution in some elementary differential extension field of F

having the same subfield of constants, then there are constants c1, c2, ..., cn ∈ F and

the elements u1, ...un, v ∈ F such that

α =
n∑
i=1

ci
u′i
ui

+ v′.

Proof Let y ∈ FN , where by assumption

F = F0 ⊂ F1 ⊂ . . . ⊂ FN ,

and for each i = 1, ..., N ;Fi = Fi−1(ti) where ti is logarithm or exponential of an

element of Fi−1 or algebraic over Fi−1. We shall prove the theorem by induction on

N.

For N = 0, i.e. y ∈ F
α = y′

, is the required form. Now suppose result holds for N − 1, i.e for the chain

F1 ⊂ F2 ⊂ . . . ⊂ FN ,

and

α =
n∑
i=1

ci
u′i
ui

+ v′,

with with u1, . . . , un, v ∈ F1 and c1, . . . , cn ∈ F . Our aim is to modify n, ci, ui, v in

such a manner that the same expression holds for α but with all ui, v ∈ F

18



First, we prove that we can always assume c1, . . . , cn being linearly independent over

Q. Suppose they are linearly dependent and thus, we have a relation,

cn =
m1c1 + . . .+mn−1cn−1

m
,

with m1, . . . ,mn−1,m are integers and m 6= 0. We can also write

cn = m1
c1
m

+ . . .+mn−1
cn−1
m

.

Observe that, on replacing each ui by umi and each ci by ci/m, we again have the same

form for α.

α =
n∑
i=1

ci
m

u′mi
umi

+ v′

α =
n∑
i=1

ci
m
m

(
u′i
ui

)
+ v′ (3.6)

α =
n∑
i=1

ci
u′i
ui

+ v′

For i = 1, . . . , n − 1; set new ci = ci/m and ui = umi and now, new cn = m1c1 +

. . .+mn−1cn−1. On substitution in 3.6

α =
n−1∑
i=1

ci
u′i
ui

+ (m1c1 + . . .+mn−1cn−1)
u′n
un

+ v′

= c1

(
u′1
u1

+m1
u′n
un

)
+ . . .+ cn−1

(
u′n−1
un−1

+mn−1
u′n
un

)
+ v′

= c1

(
(u1u

m1
n )′

u1u
m1
n

)
+ . . .+ cn−1

(
(un−1u

mn−1
n )′

un−1u
mn−1
n

)
+ v′

Hence, we have same situation as earlier, but with smaller n. Thus, we can always

assume, c1, . . . , cn are linearly independent over Q.

Write F1 = F (t) and we continue the induction process for different cases.

Case I Suppose t is logarithmic over F . By assumption

α =
n∑
i=1

ci
u′i
ui

+ v′ ∈ F,

with u1, . . . , un, v ∈ F (t). By lemma 3.2, we conclude each u1, . . . , un ∈ F and

v ∈ F [t]. We also have v′ ∈ F , on writing v =
∑m

j=1 ajt
j with a1, . . . , am ∈ F ,
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am 6= 0 and after differentiation, we obtain

v′ = mamt
m−1t′ + tma′m + . . .+ a′0

= mamt
m−1

(
a′

a

)
+ tma′m + . . .+ a′0

= tma′m + tm−1
(
mam

a′

a
+ a′m−1

)
+ . . .+ a′0.

Since α ∈ F , above expression implies a′m = 0 for m > 1 and if(
mam

a′

a
+ a′m−1

)
= 0(

mamt+ a′m−1
)

= 0,

thenmamt+a
′
m−1 is a constant in F which is not possible since t is transcendental

over F . For m = 1, a′ = 0 and hence by above discussion we have shown

v = a0t+ d with a0 and d being constants in F . Now

α =
n∑
i=1

ci
u′i
ui

+ (a0t+ d)′

=
n∑
i=1

ci
u′i
ui

+ a0
a′

a
+ d′

setting un+1 =
a′

a
and v = d, we have

α =
n+1∑
i=1

ci
u′i
ui

+ d′,

which is the desired form.

Case II Now, let t is exponential over F . Then lemma 3.2 suggests that v ∈ F [t] and

also, we can write ui = ait
ni with ai ∈ F and integers ni. Observe

u′i
ui

=
a′i (t

ηi)

ai (tηi)
+
ηiait

ηia′

aitηi

=
a′i
ai

+ ηia
′
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Thus, we simplify α in the form

α =
∑

ci
a′i
ai

+ (a(η1 + . . .+ ηn) + v)′ .

Now, we only need to show that v ∈ F , given the fact that v′ ∈ F . Now write

v = bmt
m + . . .+ b0 and after differentiation , we obtain

v′ = b′mt
m +mbmt

m−1at+ bm−1t
m−1 + . . .+ b′0

= tm(b′m +mbma
′) + . . .+ b′0

if m 6= 0, then b′m + mbma
′ = 0 and thus (bmt

m)′ = 0 which is a contradiction.

Hence, v = b0 and

α =
∑

ci
a′i
ai

+ (b0 + a(η1 + . . .+ ηn))′ ,

is the required form.

Case III Finally, let t is algebraic over F andK be the smallest normal algebraic extension

of F containing F1. For each σ ∈ Aut(K/F )

α =
n∑
i=1

ci
σ(ui)

′

σ(ui)
+ σ(v)′

[K : F ]α =
n∑
i=1

ci
∑
σ

(σui)
′

σui
+
∑
σ

(σv)′

[K : F ]α =
n∑
i=1

ci
(
∏

σ σui)
′∏

σ σui
+

(∑
σ

σv

)′

α =
1

[K : F ]

[
n∑
i=1

ci
(
∏

σ σui)
′∏

σ σui
+

(∑
σ

σv

)′]

and we have the required result.

Theorem 3.5. Let f 6= 0 and g is a non constant rational function in C(z). Then

the function, feg has an elementary integral if and only if there is a rational function

q ∈ C(z) such that

f = q′ + qg′,

and then the integral is qeg.
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Proof Write eg = t and F = C(z) for brevity. If the integral is elementary, then by

Liouville’s theorem.

ft = v′0 +
n∑
i=1

ci
u′i
ui
∈ F (t),

with c1, . . . , cn constants in F and u1, . . . , un, v ∈ F (t). We may assume c1, . . . , cn

are linearly independent over Q. Then by lemma 3.2, v ∈ F [t] and uj = ait
mi where

a ∈ F and m ∈ Z. Observe

u′i
ui

=
(ait

mi)′

aitmi

=
a′it

mi

aitmi
+
aimit

mi−1g′t

aitmi

=
a′i
ai

+mig
′ = r ∈ F,

and it follows that ft = v′0 + r. Let v0 = bmt
m + . . . + b0 ∈ F and then after

differentiation we obtain

v′0 = b′mt
m +mbmg

′tm + . . .+ b′0

= tm(b′m +mbmg
′) + . . .+ b′0

On comparing coefficients in ft = u′0 + r, for m > 1 we obtain

b′m +mbmg
′ = 0

b′m
bm

= −mg′(g′ 6= 0)

which is not possible, since RHS has no poles of order 1 while LHS has poles of

order 1. This means bm = 0 for m > 1. Hence, v = bt+ b0 which implies

ft = t(b′ + bg′) + b′0 + r

ft = b′ + bg′

Converse is obvious.
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3.3 Examples

In this section, we provide some important examples and also prove one of the famous

result, that is,
∫
ex

2
is not elementary.

Example
∫
ez

2
is not elementary.

Using the notation from the previous theorem, we see f = 1 and g = z2. If
∫
ez

2
is

elementary, then above theorem suggests for some q ∈ C(z)

1 = q′ + qg′

1 = q′ + q(2z)

let q =
u

v
, (u, v) = 1 and v be monic, then

1 =
u′v − v′u

v2
+
u

v
2z

v2 = u′v − v′u+ 2zuv

(v − 2zu− u′)v = −uv′,

it follows that v|uv′. Since (u, v) = 1, we have v|v′ which is not possible. Hence

no such q exists and
∫
ez

2
is not elementary.

Example
∫ ez
z

is not elementary.

Similarly in this case, f = 1/z and g = z. If
∫ ez
z

is elementary, then there exist

q ∈ C(z) such that
1

z
= q′ + q.

From earlier example we write,

1

z
=
u′v − v′u

v2
+
u

v

v2 = z(u, v − v′u) + uvz

zv′u = zu′v − v2 + uvz

zuv′ = v(zu′ − v + uz)
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which implies v|z but (u, v) = 1 and thus, either v = 1 or v = z. In both cases, we

get the contradiction. Therefore,
∫ ez
z

is not elementary.
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Chapter 4

Risch Algorithm

In this chapter, Risch algorithm will be discussed in detail. But, before we move to

the integrand involving logarithms and exponential, we see how integration is dealt

in field of rational function. Throughout this chapter, we work with field of rational

function K(x) over an arbitrary constant field with characteristic zero. Field K(x) is

equipped with differential structure with derivation satisfying x′ = 1.

4.1 Integration of rational function

Hermite’s method is an effective procedure to work with the integral of rational func-

tion without introducing any algebraic extensions. For p/q ∈ K(x), it reduces the

problem of integration to ∫
p

q
=
c

d
+

∫
a

b
,

with c, d, a, b ∈ K(x), deg(a) < deg(b) and b is monic and square-free(see appendix B).

Here, c/d is called the rational part of the integral and
∫
a/b is called the logarithmic

part of the integral. We discuss each part in different sections.

Following theorem will be used for computing the rational part of the integral. For

the proof see [4].

Theorem 4.1. Let F [x] be the Euclidean domain of univariate polynomials over

a field F . Let a(x), b(x) ∈ F [x] be given non zero polynomials and let g(x) =

gcd(a(x), b(x)) ∈ F [x]. Then, for any given polynomial c(x) ∈ F [x] such that g(x) |
c(x), there exist unique polynomials σ(x), τ(x) ∈ F [x] such that

σ(x)a(x) + τ(x)b(x) = c(x),
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and deg(σ(x)) < deg(b(x))− deg(g(x)).

Moreover, if deg(c(x)) < deg(a(x)) + deg(b(x))− deg(g(x)), then τ(x) satisfies

deg(τ(x)) < deg(a(x))− deg(g(x)).

4.1.1 Rational Part

Observe that for any p/q ∈ K(x), we have the normalised form i.e we can write

each element of K(x) in the form p/q with gcd(p, q) = 1 and q monic. By Euclidean

division, we can find s, r ∈ K[x] such that p = qs + r with r = 0 or deg(r) < deg(q).

Then ∫
p

q
=

∫
s+

∫
r

q
. (4.1)

First integral appearing on the right hand side is called polynomial part which is

easy to compute. It also contributes to the rational part c/d. For
∫
r/q, compute the

square-free factorisation of denominator q

q =
k∏
i=1

qii,

where each qi is monic and square-free with gcd(qi, qj) = 1 for i 6= j and deg(qk) > 0.

Now, compute the partial fraction expansion of the integrand r/q using square-free

factorisation of q.

r

q
=

k∑
i=1

i∑
j=1

rij

qji
,

for 1 ≤ i ≤ k and 1 ≤ j ≤ i, rij ∈ K[x] and deg(rij) < deg(qi) when deg(qi) > 0 and

rij = 0 if qi = 1. Then on substitution for integral
∫
r/q (4.1), we obtain

∫
r

q
=

k∑
i=1

i∑
j=1

∫
rij

qji
.

Now consider a particular non zero integrand rij/q
j
i with j > 1. Since qi is square-free,

we have gcd(qi, q
′
i) = 1. Now we can find s, t ∈ K[x] by theorem 4.1 such that

sqi + tq′i = rij,
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where deg(s) < deg(qi)− 1 and deg(t) < deg(qi). Then∫
rij

qji
=

∫
s

qj−1i

+

∫
tq′i
qji
.

Apply integration by parts on the second integral on right hand side∫
rij

qji
=

∫
s

qj−1i

+
−t

(j − 1)qj−1i

+

∫
t′

(j − 1)qj−1i

,

=
( −t
j−1)

qj−1i

+

∫ s+ ( t′

j−1)

qj−1i

.

After this process, we see a term appearing on the right hand side which will contribute

to the rational part c/d. Also notice that the remaining integral has power one less

in denominator. At any step if numerator of the integrand happens to be zero, then

reduction process terminates. Otherwise, we have following two cases:

j − 1 = 1 Then this integral simply contributes to the logarithmic part to be considered

in the next section.

j − 1 > 1 In this case, we can continue the reduction process until the denominators of all

remaining integrands are square-free.

After the complete reduction process we obtain the rational part c/d of the integral

and now we are left with only the logarithmic part. But before we proceed with

the logarithmic part, an important result is in order which plays an essential role in

proving the Risch Algorithm.

Theorem 4.2. Let p/q ∈ K(x) be such that gcd(p, q) = 1, q monic and deg(p) <

deg(q). Let the rational part of the integral
∫
p/q be c/d and a/b be the logarithmic

part. Then

d = gcd(q, q′),

and

b =
q

d
.

Furthermore, deg(a) < deg(b) and deg(c) < deg(d)

Proof Let the square-free factorisation of q be

q =
k∏
i=1

qii.
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After applying Hermite’s reduction, we obtain∫
p

q
=
c

d
+

∫
a

b
,

where

b =
k∏
i=1

qi, d =
k∏
i=2

qi−1i ,

with deg(a) < deg(b) and deg(c) < deg(d).

It follows from the square-free factorisation (see appendix B)

gcd(q, q′) =
k∏
i=2

qi−1i = d,

and

q

gcd(q, q′)
=

k∏
i=1

qi = b.

4.1.2 Logarithmic Part

We started with ∫
p

q
=
c

d
+

∫
a

b
.

In the previous section we computed the rational part c/d. Now we see how to compute

the logarithmic part
∫
a/b.

After Hermite’s reduction, b is square free and let the complete factorisation of b over

it’s splitting field be

b =
m∏
i=1

(x− βi),

where βi are m distinct elements. Then after writing the partial fraction expansion,

integral
∫
a/b can be expressed as

∫
a

b
=

m∑
i=1

ci log(x− βi).

At this point, the problem of integration for rational function is completely solved. But

there are various practical difficulties in this method e.g. factorisation of denominator.
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Fortunately complete factorisation is not needed always. To see look at the following

example

Example ∫
1

x3 + x
= log(x)− 1

2
log(x− ι)− 1

2
log(x+ ι),

= log(x)− 1

2
log(x2 + 1),

where we used product rule for logarithms in the second step. We see, to express the

integral we do not require complete factorisation.

The problem of expressing an integral using minimum algebraic extensions was solved

independently by Rothstein and Trager. In the following theorem, resx(A,B) is used

to denote the resultant of the polynomials A(x) and B(x) with respect to the variable

x (see appendix C.1). We drop x and simply write res(A,B) where there is no

confusion.

Theorem 4.3. Let K(x) be a differential field over some constant field K. Let a, b ∈
K[x] be such that gcd(a, b) = 1 with b monic and square-free and deg(a) < deg(b).

Suppose that ∫
a

b
=

n∑
i=1

ci log(vi),

where ci are distinct non zero constants and vi are monic, square-free, pairwise rel-

atively prime polynomials of positive degree. Then ci are the distinct roots of the

polynomial

R(z) = resx(a− zb′, b) ∈ K[z],

and vi are the polynomials

vi = gcd(a− cib′, b).

Proof By assumption ∫
a

b
=

n∑
i=1

ci log(vi).

On differentiating both sides, we obtain

a

b
=

n∑
i=1

ci
v′i
vi
.
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For the rest of the proof, we write ui =
∏n

j 6=i vj. Then

a

n∏
j=1

vj = b

n∑
i=1

civ
′
iui. (4.2)

Now, we claim that

b =
n∏
j=1

vj. (4.3)

Since gcd(a, b) = 1, it follows that b |
∏n

i=1 vi. Similarly for the other direction, each

vj | b
n∑
i=1

civ
′
iui,

vj | bv′juj.

Since vj are square-free, we have gcd(vj, v
′
j) = 1 and also gcd(vj, uj) = 1. This implies

n∏
j=1

vj | b.

where b and all vi are all assumed to be monic, we conclude that

b =
n∏
j=1

vj.

As a consequence, it follows that

a =
n∑
i=1

civ
′
iui.

Now consider the quantity

a− cjb′ =
n∑
i=1

civ
′
iui − cj

n∑
i=1

v′iui,

=
n∑
i=1

(ci − cj)v′iui.
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For i = j, above sum vanishes while for i 6= j, vj | ui, which implies

vj | (a− cjb′).

Also, vj divides b, therefore we can say vj is a common divisor of b and (a − cjb
′).

Now we compute the gcd(a− cjb′, vh) using the fact gcd(a+ nb, b) = gcd(a, b)

gcd(a− cjb′, vh) =

(
n∑
i=1

(ci − cj)v′iui, vh

)
,

= gcd((ch − cj)v′huh, vh),

= 1 or vh

where in the last step we used gcd(v′h, vh) = 1 and gcd(vh, uh) = 1 Now notice

gcd(a− cjb′, b) = gcd(a− cjb′,
n∏
i=1

vi),

=
n∏
i=1

gcd(a− cjb′, vi),

= vj.

This implies that res(a− cjb′, b) = 0, since vj is a common factor. Thus, cj is a root

of R(z) = res(a− zb′, b).
Conversely, let c be any root of R(z) (assume c ∈ KR, the splitting field of R(z)) then

res(a− cb′, b) = 0. Therefore, we can assume

gcd(a− cb′, b) = G, deg(G) > 0.

Let g be any irreducible factor of G. Since g | b, and g | (a− cb′), we see

g |
n∑
i=1

(ci − c)v′iui.

But g | ui for each i 6= j (as g | vj) and therefore

g | (cj − c)v′juj,
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which can happen only when cj = c. Therefore, c is one of the constants appearing

in the integral. We have also proved, under the hypothesis R(z) splits over K.

In the above theorem, if vi are not square-free, then do the square-free factorisation

vi =
k∏
j=1

vjj ,

and use the replacement

log(vi) =
k∑
j=1

j log(vj).

Also, we can always assume that they are relatively prime without introducing new

algebraic extensions, using

c1 log pq + c2 log qr = c1 log p+ (c1 + c2) log q + c2 log r.

To understand the above procedure look at the following example.

Example We wish to compute
∫ 1

x3 + x
. From earlier notation, here a = 1 and

b = x3+x. Since b is square-free and deg(a) < deg(b), the integral has only logarithmic

part.

By Rothstein-Trager method, we can write∫
1

x3 + x
=

n∑
i=1

ci log(vi),

where ci are distinct roots of resx(a− cb′, b)

resx(a− cb′, b) = resx
(
1− c(3x2 + 1), x3 + x

)
= resx(1− 3x2c− c, x3 + x)

= resx
(
(−3c)x2 − (1− c), x3 + x

)
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=

∣∣∣∣∣∣∣∣∣∣∣∣

−3c 0 1− c 0 0

0 −3c 0 1− c 0

0 0 −3c 0 1− c
1 0 1 0 0

0 1 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
= −4c3 + 3c+ 1

= −4(c− 1)(c+
1

2
)2

thus, we get c1 = 1 and c2 = −1/2 as distinct roots of R(z). Now we find the values

for corresponding vi.

v1 = gcd(a− c1b′, b)

= gcd(−3x2, x3 + x)

= x,

v2 = gcd

(
3

2
x2 +

3

2
, x3 + x

)
= gcd

(
3

2
(x2 + 1), x(x2 + 1)

)
= x2 + 1,

which implies, ∫
1

x3 + x
= c1 log(v1) + c2 log(v2)

= log x− 1

2
log(x2 + 1)

4.2 The Risch Integration Algorithm

After examining the rational function case, now we are ready to deal with the integra-

tion of transcendental elementary functions through an effective decision procedure.
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We consider functions f ∈ K(x, θ1, . . . , θn) where K is the field of constants and each

θi is transcendental logarithmic or exponential over K(x, θ1, . . . , θi−1). The decision

procedure computes
∫
f if it exists or prove that

∫
f is not elementary. We view

integrand f as a rational function in the extension θ = θn and can write

f(θ) =
p(θ)

q(θ)
∈ Fn−1(θ),

with gcd(p, q) = 1 and q monic. We discuss logarithmic and exponential extensions

in different sections.

4.2.1 Logarithmic extension

First consider the case when θ is logarithmic over Fn−1. We proceed similarly as in

Hermite’s method. For simplicity we drop θ in notation and write f(θ) = f only. By

Euclidean division, we can write

p = qs+ r,

with r = 0 or deg(r) < deg(q). Then∫
f =

∫
s+

∫
r

q
.

Here we refer
∫
s as polynomial part of f and

∫
r/q as rational part of f . However, in

this case computing polynomial part is not trivial, in fact it is harder than computing

rational part.

Integration of the Rational Part

We continue with the Hermite’s method. First we find the square-free factorisation

of the denominator

q =
k∏
i=1

qii,

where each qi is monic, square-free and realtively prime, also deg(qk) > 0. But notice,

here square-free implies

gcd

(
qi,
d(qi)

dθ

)
= 1.

But, we need the stronger condition

gcd(qi, q
′
i) = 1,
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where ′ =
d

dx
. Fortunately, we find that this condition also holds.

Theorem 4.4. Let F be a differential field with x′ = 1 where x ∈ F . Let F (θ) be

a differential extension field of F having the same subfield of constants where θ is

transcendental logarithmic over F . Let a ∈ F [θ] be a monic polynomial with deg(a) >

0 such that

gcd(a,
da

dθ
) = 1.

Then

gcd(a, a′) = 1.

Proof From chapter 3(see 3.1), we know a′ ∈ F [θ]. Let

a =
N∏
i=1

(θ − ai),

with each ai ∈ Fa (splitting field of a). Since a is square-free, all ai are distinct. Then

a′ =
N∑
i=1

(
u′

u
− a′i

)∏
j 6=i

(θ − aj),

for some u ∈ F . Observe if

u′

u
− a′i = 0

i.e (θ − ai)′ = 0, which would mean θ − ai is a constant but θ is transcendental over

F . Hence, not possible.

Now, for a particular factor θ−ai, there is exactly one term in a′ which is not divisible

by θ − ai. This implies

gcd(a, a′) = 1.

Now, we can continue with Hermite’s method and after complete reduction we

obtain ∫
r

q
=
c

d
+

∫
a

b
,
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where a, b, c, d ∈ Fn−1[θ], deg(a) < deg(b), b is monic and square-free. From theorem

4.2, we have

d = gcd

(
q,
dq

dθ

)
b =

q

d

with deg(a) < deg(b) and deg(c) < deg(d).

Now it remains to compute the integral
∫
a/b. With the help of following theorem

rational part is computed completely. We don’t present the full proof as many things

are similar to what we did for rational function case. We will prove only those which

are non-trivial and refer to the previous section at appropriate places.

Theorem 4.5. Let F be a field of elementary functions with constant field K. Let

θ be transcendental and logarithmic over F and suppose that the transcendental ele-

mentary extension F (θ) has the same constant field K. Let a/b ∈ F (θ) with a, b ∈
F [θ], gcd(a, b) = 1, deg(a) < deg(b) and b is monic and square-free.

i)
∫ a
b

is elementary if and only if all the roots of the polynomial

R(z) = resθ(a− zb′, b),

are constants.

ii) If
∫ a
b

is elementary, then

a

b
=

n∑
i=1

ci
v′i
vi
, (4.4)

where ci are the distinct roots of R(z) and vi are defined by

vi = gcd(a− cib′, b).

iii) Let L be the minimal algebraic extension field of F such that a/b can be expressed

in the form 4.4 with constants ci ∈ L and vi ∈ L[θ]. Then L = F (c1, . . . , cm)

where ci are distinct roots of R(z).
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Proof Suppose
∫
a/b is elementary, then by Liouville’s theorem we can write

a

b
= v′0 +

m∑
i=1

ci
v′i
vi
, (4.5)

with c ∈ K∗ and vi ∈ F ∗(θ) where K∗ denotes the minimal algebraic extension of K

required to express the integral and F ∗ denotes F with its constant field extended to

K∗.

Observe that if we can prove v′0 = 0, then same proof will hold as in the case for

rational function field K(x). But, converse for part i) requires extra work.

Notice, with the help of rules for logarithms, we can always assume for vi(1 ≤ i ≤
m) are square-free, relatively prime polynomials in F ∗[θ].

Let

v0 =
p

q
,

with gcd(p, q) = 1 and deg(q) > 0. Then

v′0 =
p′q − q′p

q2
,

which implies v′0 has a factor in its denominator which is not square-free. Since b

is square-free, we conclude deg(q) = 0 and v0 ∈ F ∗[θ]. But if v′0 is any non-zero

polynomial, then right hand side of 4.13 will have a numerator of degree greater than

or equal to degree of its denominator where on the other hand, deg(a) < deg(b). Thus,

we can say v′0 = 0 and now we can proceed similarly as in the case of K(x) in earlier

section.

Now, it remains to prove the converse for part i).

Suppose all the roots of R(z) are constants. Let ci be the distinct roots of R(z) and

define

vi = gcd(a− cib′, b).

Suppose for i 6= j

gcd(vi, vj) = w,

then

w | (a− cib′), w | (a− cjb′) and w | b,
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which also implies

w | (ci − cj)b′.

Thus, w | b and w | b′. But b is square-free and hence we conclude w = 1.

Since each vi | b, it follows that

r | b.

where r =
∏m

i=1 vi and then b = rs for some s ∈ F (c1, . . . , cm)[θ]. Suppose deg(s) > 0,

then resθ(a − zb′, s) is a polynomial of positive degree, so let z0 be a root of this

polynomial. Then we have

gcd(a− z0b′, s) | gcd(a− z0b′, b) (4.6)

since left hand side is non trivial, we conclude resθ(a − zb′, b) = 0. But, then by

assumption z0 is one of ci, say c1 = z0. We see that right hand side of 4.6 is v1 which

implies s and v1 have a non trivial common divisor and hence gcd(s, r) 6= 1. But b

is square-free , therefore it is not possible and hence deg(s) = 0. Since b and vi are

monic, we see s = 1 and

b =
m∏
i=1

vi (4.7)

Now define

a =
m∑
i=1

civ
′
iuj (4.8)

where uj =
∏

j 6=i vj. Since b′ =
∑m

i=1 v
′
iuj, we have for 1 ≤ k ≤ m

a− ckb′ =
m∑
i=1

(ci − ck)v′iuj,

for i = k, above sum vanishes and it follows that

vk | a− ckb′.

By definition

vk | a− ckb′.

From above two expressions, we conclude that

vk | a− a.
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Now this holds for each k and since gcd(vi, vj) = 1 for i 6= j, we can say

b | a− a (b =
m∏
i=1

vi), (4.9)

from 4.7 and 4.8, it follows that

deg(a) < deg(b),

also, deg(a) < deg(b). Then

deg(a− a) < deg(b). (4.10)

Finally, 4.9 and 4.10 implies a = a and from 4.7 and 4.8 it follows that

a

b
=

m∑
i=1

ci
v′i
vi
,

and then clearly
∫
a/b is elementary.

Following example is presented to understand how theorem works.

Example The logarithmic integral
∫

1/ log(x) is not elementary.

Suppose integral is elementary, then from above theorem it follows that

1

θ
=

m∑
i=1

ci
v′i
vi
,

where θ = log(x) and ci are distinct constants of R(z). We find that

R(z) = resθ(1− zθ′, θ)

= resθ(1−
z

x
, θ)

= 1− z

x
∈ Q(x)[z].

Since R(z) has a non constant root, we conclude that the integral
∫

1/ log(x) is not

elementary.
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Integration of the Polynomial Part

Now it remains to compute the the polynomial part
∫
s. Let the integrand be

p = plθ
l + . . .+ p0,

where pi ∈ Fn−1. If
∫
p is elementary, then by Liouville’s theorem, we can write

p = v′0 +
m∑
i=1

ci
v′i
vi
,

where ci ∈ K and vi ∈ F n−1(θ) for 1 ≤ i ≤ m. Arguing as in Liouville’s theorem,

we can conclude that v0 ∈ F n−1[θ] and vi ∈ F n−1. From lemma 3.1, it follows that

deg(v0) ≤ l + 1, so we write as

plθ
l + . . .+ p0 = (ql+1θ

l+1 + . . .+ q0)
′ +

m∑
i=1

ci
v′i
vi
,

where pi ∈ Fn−1, ql+1 ∈ K and qi ∈ F n−1(0 ≤ i ≤ l). On differentiation, the right

hand side becomes
l∑

i=0

((i+ 1)qi+1θ
′ + q′i) θ

i +
m∑
i=1

ci
v′i
vi
.

On comparing coefficients, we obtain

0 = q′l+1,

pi = (i+ 1)qi+1θ
′ + q′i (1 ≤ i ≤ l),

p0 = q1θ
′ + q′0 +

m∑
i=1

ci
v′i
vi
.

First equation simply means

ql+1 = bl+1,

for some bl+1 ∈ K. On substituting ql+1 in the second equation for i = l, we obtain

pl = (l + 1)pl+1θ
′ + q′l.

On integration, we have ∫
pl = (l + 1)bl+1θ + ql.
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In order to solve this equation ,
∫
pl must satisfy following conditions:

i)
∫
pl is elementary.

ii) there is at most one log extension of F n−1 appearing in the integral.

iii) if a log extension of F n−1 appears in the integral, then it must be the particular

one θ = log u.

If all the conditions are satisfied, then∫
pl = clθ + dl,

for some cl ∈ K and dl ∈ F n−1, which implies

bl+1 =
cl

l + 1
, ql = dl + bl,

where bl ∈ K is an arbitrary constant of integration. Now by recursion, for 1 ≤ i ≤ l

we find that ∫
pi = ciθ + di,

bi+1 =
ci

i+ 1
, qi = di + bi.

Thus, our final equation becomes

p0 = (d1 + b1)θ
′ + q′0 +

m∑
i=1

ci
v′i
vi
.

On rearranging and applying integration, we obtain∫
(p0 − d1θ′) = b1θ + q0 +

m∑
i=1

ci log vi.

This time we require only one condition that
∫

(p0 − d1θ′) is elementary. So, let∫
(p0 − d1θ′) = d0,

this implies b1 (possibly zero) is the coefficient in d0 of θ and

q0 +
m∑
i=1

ci log vi = d0 − b1θ.
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Thus, after the whole process, we obtain∫
p = bl+1θ

l+1 + . . .+ q1θ + d0 − b1θ.

Now, we present an example in order to grasp the computation mentioned above.

In general, to integrate log(x), we simply use by− parts method, but in the following

example we use the above theory.

Example Consider the integral
∫

log(x).

Write θ = log(x), then we are required to compute
∫
θ. If the integral is elementary,

then from the above discussion, it follows that∫
θ = b2θ

2 + q1θ + q0,

where q0 = d0 − b1θ. After differentiation and comparing coefficients, we obtain

b′2 = 0,

1 = 2b2θ
′ + q′1,

0 = q1θ
′ + q′0.

From first equation, we see b2 is some undetermined constant in the closure of rational

Q. From integration of second equation, it follows that

b2 = 0, q1 = x+ b1.

Finally on substitution in the third equation, we obtain,

−xθ′ = b1θ
′ + q′0.

Using θ′ =
1

x
and taking integration yields

−x = b1θ + q0,

which implies b1 = 0 and q0 = −x. Notice, we ignored the constant of integration in

the final step and hence our desired result is∫
log(x) = x log(x)− x
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4.2.2 Exponential extension

We use the same notation as in previous sections but θ being exponential (θ′/θ = u′)

this time. Similarly, here for any f ∈ Fn−1(θ), after euclidean division we have

f = s+
r

q
, (4.11)

where r, q, s ∈ Fn−1[θ].
If we proceed with the Hermite’s process, then we encounter following problem in this

case. For square-free factorisation of the denominator q =
∏k

i=1 q
i
i

gcd(qi,
dqi
dθ

) = 1 does not imply gcd(qi, q
′
i) = 1,

where ′ = d/dx. We check this by substituting qi = θ. For this, gcd(θ, 1) = 1

whereas, gcd(θ, θu′) = θ. Thus, in order to avoid this problem, we try to modify the

decomposition 4.11. Write q = θlq where θ - q. Then, gcd(θl, q) = 1 and now we can

apply theorem 4.1 to find r, w ∈ Fn−1[θ] such that

rθl + wq = r,

where deg(r) ≤ q and deg(w) ≤ l. Then, equation 4.11 becomes

f = s+
w

θl
+
r

q

= s+
r

q
,

which is the required decomposition, where s = s+θ−lw is the new “polynomial” and∫
r/q is the new rational part.

Integration of the Rational Part

Theorem 4.6. Let F be a differential field with x′ = 1 where x ∈ F . Let F (θ) be

a differential extension field of F having the same subfield of constants where θ is

transcendental and exponential over F . Let a ∈ F [θ] be a monic polynomial with

deg(a) > 0 and θ - a such that

gcd

(
a,
da

dθ

)
= 1.

Then, gcd(a, a′) = 1.
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Proof From chapter 3 (see 3.1), we know a′ ∈ F [θ]. Let

a =
N∏
i=1

(θ − ai),

with each ai ∈ Fa (splitting field of a). Since a is square-free, all ai are distinct. Then

a′ =
N∑
i=1

(u′θ − a′i)
∏
j 6=i

(θ − aj),

where u ∈ F . Now, for a particular factor θ− ai there is exactly one term in a′ which

might be divisible by θ − ai i.e it may happen

(θ − ai) | (u′θ − a′i),

this implies for some p ∈ F [θ], we have

u′θ − a′i = p(θ − ai),

u′θ − a′i = pθ − pai.

On comparing, we get p = u′ which means u′ai = a′i. Since ai is non zero, we can

consider the following expression(
θ

ai

)′
=
aiθ
′ − aiθ
a2i

,

=
ai(u

′θ)− (u′ai)θ

a2i
,

= 0.

So we infer, θ/ai is a constant in Fa(θ) which contradicts the transcendency of θ.

Thus, we get our desired result

gcd(a, a′) = 1

.

Now, we can continue with the Hermite’s reduction process to obtain∫
r

q
=
c

d
+

∫
a

b
,
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where a, b, c, d ∈ Fn−1[θ], deg(a) < deg(b) and b is a monic, square-free polynomial

with θ - b. We use following theorem, in order to compute
∫
a/b.

Theorem 4.7. Let F be a field of elementary functions with constant field K. Let

θ be transcendental and logarithmic over F and suppose that the transcendental ele-

mentary extension F (θ) has the same constant field K. Let a/b ∈ F (θ) with a, b ∈
F [θ], gcd(a, b) = 1, deg(a) < deg(b) and b is monic and square-free with θ - b.

i)
∫ a
b

is elementary if and only if all the roots of the polynomial

R(z) = resθ(a− zb′, b),

are constants.

ii) If
∫ a
b

is elementary, then

a

b
= g′ +

n∑
i=1

ci
v′i
vi
, (4.12)

where ci are the distinct roots of R(z) and vi are defined by

vi = gcd(a− cib′, b)

and g ∈ F (c1, . . . , cm) is defined by

g = −

(
m∑
i=1

cideg(vi)

)
u′.

iii) Let L be the minimal algebraic extension field of F such that a/b can be expressed

in the form 4.12 with constants ci ∈ L and vi ∈ L[θ]. Then, L = F (c1, . . . , cm)

where ci are distinct roots of R(z).

Proof Notice, as we did in logarithmic case, we only need to prove part i). Suppose∫
a/b is elementary, then by liouville’s theorem we can write

a

b
= v′0 +

m∑
i=1

ci
v′i
vi
, (4.13)

with c ∈ K∗ and vi ∈ F ∗(θ), where K∗ denotes the minimal algebraic extension of

K required to express the integral and F ∗ denotes F with its constant field extended
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to K∗. With the help of theorem 3.4 (see case II for detailed explanation), we can

simplify it to
a

b
= h′0 +

m∑
i=1

ci
v′i
vi
, (4.14)

where h0 ∈ F ∗. By similar argument presented in theorem 4.3, we can conclude that

b =
m∏
j=1

vj.

Notice in equation 4.14, the left hand side a/b is a proper rational function. But this

time deg(v′i) = deg(vi), therefore we need to arrange some terms accordingly. In order

to do this, write h0 in the form

h0 = g + h,

for some h ∈ F ∗ and g as defined above in the statement of the theorem. On substi-

tution, we obtain
a

b
= h′ +

m∑
i=1

ci

(
v′i
vi
− deg(vi)u

′
)
.

Here, second term on the right hand side is a proper rational function. On comparing,

we see h′ = 0 and thus we have proved the “if” part.

For the converse, Suppose all the roots of R(z) are constants. Let ci be the distinct

roots of R(z) and define

vi = gcd(a− cib′, b).

Suppose, for i 6= j

gcd(vi, vj) = w.

With the same reasoning as in theorem 4.5, we have

b =
m∏
i=1

vi,

where vi are monic and gcd(vi, vj) = 1 for i 6= j. Now define,

a = g′b+
m∑
i=1

civ
′
iuj,
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where uj =
∏

j 6=i vj. Since b′ =
∑m

i=1 v
′
iuj, we have for 1 ≤ k ≤ m

a− ckb′ = g′b+
m∑
i=1

(ci − ck)v′iuj,

it follows that

vk | a− ckb′.

By definition, vk | a − ckb′, consequently vk | a − a. Now, we are following the same

procedure as in theorem 4.5. After routine process, we finally obtain

a

b
= g′ +

m∑
i=1

ci
v′i
vi
,

and then clearly
∫
a/b is elementary.

Integration of the Polynomial Part

Here, we have “extended polynomial” rather than a simple polynomial as in earlier

cases i.e p =
∑l

j=−k pjθ
j. If

∫
p is elementary, then by Liouville’s theorem, we can

write

p = v′0 +
m∑
i=1

ci
v′i
vi
,

where ci ∈ K and vi ∈ F n−1(θ). From the discussion in Liouville’s theorem and

lemma 3.1, we can conclude that

p =

(
l∑

j=−k

qjθ
j

)′
+

m∑
i=1

ci
v′i
vi
, (4.15)

where qj ∈ F n−1, ci ∈ K and vi ∈ F n−1. Notice that

(qjθ
j)′ = (q′j + ju′qj)θ

j,−k ≤ j ≤ l.

On equating coefficients in equation 4.15, we obtain following system of differential

equations

pj = q′j + ju′qj,

p0 = q′0,
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where q0 = q0+
∑
i = 1mci log vi, pj ∈ F n−1, qj ∈ F n−1 and q0 ∈ F n−1(log v1, . . . , log vm).

From second equation, we have q0 =
∫
p0. If

∫
p0 is not elementary, then so is

∫
p.

Otherwise, we have our required q0. Now, for each j 6= 0, we solve a particular

differential equation (Risch differential equation) of the form

y′ + fy = g,

where f, g are given functions in Fn−1 and we are required to determine a solution

y ∈ F n−1. If any of the Risch differential equation fails to have a solution, then we

conclude that
∫
p is not elementary. Otherwise, we have found∫

p =
∑
j 6=0

qjθ
j + q0.

Example Consider the integral
∫
xx. Write

xx = ex log(x),

and then, we have ∫
θ2 = q1θ2,

with θ1 = log(x), θ2 = exθ1 and q1 ∈ Q(x, θ1). On differentiation, we obtain

θ2 = q′1θ2 + q1(θ1 + 1)θ2.

On comparing, we see

1 = q′1 + (θ1 + 1)q1.

Moreover,

1 = q′1 + q1, 0 = q1

which has no solution. Therefore, we infer
∫
xx is not elementary.

Example We want to compute the integral of

f =
−ex − x+ ln(x)x+ ln(x)xex

x(ex + x)2
.
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The elementary field we obtain is Q(x)(θ1, θ2) with θ1 = ex, θ2 = ln(x), and so the

integrand becomes

−θ1 − x+ θ2x+ θ2xθ1
x(θ1 + x)2

= − 1

x(θ1 + x)
+ θ2

1 + θ1
(θ1 + x)2

.

We set A0 = − 1

x(θ1 + x)
and A1 =

1 + θ1
(θ1 + x)2

and now we wish to compute

∫
A0 + A1θ2 = B0 +B1θ2 +B2θ

2
2.

After differentiation we obtain following equations:

0 = B′2

A1 = B′1 + 2B2θ
′
2 = B′1 + 2B2

1

x

A0 = B′0 +B1θ
′
2

Thus B2 is a constant. Integrating the second equation gives us that∫
A1dx− 2B2θ2 = B1 − b1,

where b1 is a constant. From our notation, we obtain∫
A1 =

∫
1 + θ1

(θ1 + x)2
=

∫
1 + ex

(ex + x)2
= − 1

ex + x
= − 1

θ1 + x
.

As no θ2 term is involved we find that B2 = 0 and we set B1 = B1 + b1 with

B1 = − 1

θ1 + x
, and b1 is an unknown constant.

Now we integrate the third equation. We get:∫
A0 −B1θ

′
2dx =

∫
A0 −B1θ

′
2dx− b1θ2 = B0 + c.

(where we ignore the constant of integration c). Substituting values, we get

A0 −B1θ
′
2 = − 1

x(θ1 + x)
−
(
− 1

(θ1 + x)

)
1

x
= 0.
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This shows that b1 = 0 and also B0 = 0. The integral thus is∫
f = θ2B1 = −θ2

1

(θ1 + x)
= −ln(x)

1

ex + x
.
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Appendix A

Simple Extension

Here, we will prove a basic result on finite separable field extensions that was used in

Chapter 2.

Theorem A.1. Every finite separable extension is simple.

Proof We prove the result when field k is infinite. Let K be an algebraic extension

of k of degree n. Suppose K = k(α1, α2, ..., αn) and let φi be the minimal polynomial

of αi over k, then f =
∏n

i=1 φi ∈ k[X] = K[X]. Let N be the splitting field of f(x)

over k, then N will be a normal extension of k containing K as a subfield.

We know K over k is separable, therefore there exists n distinct k-isomorphism

σ1, σ2, ..., σn of K into N . Let Vi,j = {x ∈ K | σi(x) = σj(x)} for i 6= j. Vi,j is a

proper subspace of k-vector space of K. For a vector space V over an infinite field K,

we know that V cannot be the union of finite number of proper subspaces. Therefore,⋃
Vi,j 6= K, hence there exists an element α ∈ K such that σi(α) 6= σj(α) for all

i, j; i 6= j. Since, K over k is algebraic extension, there exists a monic irreducible

polynomial f(x) ∈ k[x] such that f(α) = 0. Say, f(x) = xm + am−1x
m−1 + ... + a0

where a0, a1, ..., am−1 ∈ k. We have,

f(α) = 0

αm + am−1α
m−1 + ...+ a0 = 0

Apply σi on both the sides

σi(α
m) + am−1σi(α

m−1) + ...+ σi(a0) = 0

σi(α)m + am−1σi(α)m−1 + ...+ σi(a0) = 0
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σi(α) also satisfies f(x) for all; hence, f(x) has n distinct roots and therefore k(α) =

K.
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Appendix B

Square Free Factorisation

We observed that polynomial factorisation plays a crucial role in symbolic integration.

However, factoring a polynomial is not trivial and requires a lot of work. In this

section, an algorithm for square-free factorisation is presented. This process reduces

the factorisation problem to one of factoring those polynomials which are known to

have no repeated factors.

Definition B.1. Let p(x) be a polynomial in F (x) where F is any unique factorisation

domain. Then p(x) is square-free if it has no repeated roots.

Definition B.2. A square-free factorisation of p is a factorisation p =
∏k

i=0(pi)
i such

that all pi are square-free and gcd(pi, pj) = 1 for i 6= j.

Theorem B.1. A polynomial p in a differential field F (x) is square-free if and only

if gcd(p, p′) = 1.

Proof If p is square-free, with irreducible factorisation

p = p1p2 . . . pk

Since p is square-free, we notice all pi are distinct, on differentiation

p′ = p′1

k∏
i=2

+ . . .+
k−1∏
i=1

p′k

Now suppose on the contrary gcd(p, p′) 6= 1, then any non trivial divisor of p and p′

must be a multiple of some pi. Without loss of generality we can assume p1 is such

a pi. Then p1 must divide p′1 which is not possible, since deg(p1) > deg(p′1). Thus,
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gcd(p, p′) = 1. For the converse, assume p has some repeated factor, so we can write

p = qnh for n > 1 with some q and h ∈ F (x). Then p′ = nqn−1q′h + qnh, so qn−1 is

the common factor for p and p′ which contradicts our hypothesis.

For a polynomial p, it is difficult to compute the full factorisation in to irreducibles,

However, we will present that it is not so difficult to compute the square-free factori-

sation.

Let p ∈ F (x) with square-free factorisation p = p11p
2
2 . . . p

k
k, now we will present a

method to compute all pi. We have,

p′ =
k∑
i=1

(
ipi−1i p′i

∏
i 6=j

pjj

)

Let

a1 = gcd(p, p′) = p2p
2
3 . . . p

k−1
k

Divide p by a1

b1 =
p

a1
= p1p2 . . . pk

find

c1 = gcd(a1, b1) = p2p3 . . . pk

this implies

p1 =
b1
c1

In similar manner, define

a2 =
a1
c1

b2 = c1

Now, we can iterate

ci = gcd(ai, bi)

ai+1 =
ai
ci

bi+1 = ci

Thus, the square-free factors pi are given by pi =
bi
ci

.
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Appendix C

Resultant

In this section, we provide essential background knowledge required for computations

carried out in Chapter 4. We define the resultatnt of polynomials and state few

important theorems that have been used earlier in this thesis. Throughout this section,

R is an UFD.

Definition C.1. Let A(x) =
∑m

i=0 aix
i and B(x) =

∑n
i=0 bix

i be non-zero polynomials

in R[x]. Then the Sylvester matrix of A and B is the m+ n by m+ n matrix

am am−1 . . . a1 a0

am am−1 . . . a1 a0

. . . . . . . . .

am . . . a0

bn . . . . . . . . . b1 b0

bn . . . . . . . . . b1 b0

. . . . . . . . . . . .

bn . . . . . . . . . b0


where the first n rows consists of coefficients of A(x) and the remaining m rows

consists of coefficients of B(x) while the missing entries are zero. The determinant of

the Sylvester matrix is defined as the resultant of A(x) and B(x) and is denoted by

res(A,B).

Theorem C.1. Let f(x) = am
∏m

i=1(x−αi) and g(x) = bn
∏n

i=1(x−βi) be polynomials

over an integral domain D with indeterminates αi, βi. Then

res(f, g) = anmb
m
n

m∏
i=1

n∏
j=1

(αi − βj)
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We omit the proof here. The interested reader may consult [4] for the proof and

more elaborate reading on the resultant. The following corollary is an immediate

consequence of the theorem C.1

Corollary C.1. (Sylvester’s Criterion) Let A(x) and B(x) ∈ R[x]. Then A(x) and

B(x) have a non trivial common factor if and only of res(A,B) = 0.
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