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Abstract

Spin waves are low energy collective excitations in exchange coupled mag-

netic systems. They determine the reduction of the order parameter by

quantum fluctuations and constitute the ground state of ordered magnetic

systems. In this thesis, we study the linear spin wave theory with the tech-

niques of Holstein-Primakoff and Dyson-Maleev bosonization with Bogoli-

ubov transformations. Linear spin wave theory is applied to different mag-

netic systems such as Heisenberg model and its anisotropic variants and the

magnon dispersion relations have been derived. We also explore spin wave

theory with a self consistent mean field method to account for higher order

corrections which are not included in its linear variety.

v





Chapter 1

Introduction

1.1 Heisenberg Exchange Interaction

In case of ferromagnetism, the existence of spontaneous magnetic moment can be ex-

plained by postulating the existence of an internal field called the Weiss field (denoted

by HE) which causes the magnetic moments of the atoms to align.

The origin of Weiss field lies in the interaction between electrons on different atoms.

We will derive the expression for this interaction for the case of two electrons (spin-1
2

particles). Consider two neighboring atoms A and B and assume that each electron

has one electron. Let wavefunctions of the electrons on atom A and B be denoted by

Ψa and Ψb respectively.

According to Pauli exclusion principle,

the total wavefunction for the pair of electrons is antisymmetric under the exchange

of the two electrons which means that if the two electrons are labeled as electron 1

and electron 2,

Ψ(1, 2) = −Ψ(2, 1) (1.1)

The wavefunction for an electron consists of two parts:

a spatial part (denoted by Φ) and,

a spin part (denoted by χ).

Let ΦS and ΦA denote the symmetric and antisymmetric spatial parts of the wave-

function respectively. Also, let χS and χA denote the symmetric and antisymmetric

spin parts of the wavefunction. Then the total wavefunction for the pair of electrons

can be written in the following two ways

0This section is adapted from [1]
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ΨI = ΦS(r1, r2)χA(1, 2) (1.2)

ΨII = ΦA(r1, r2)χS(1, 2) (1.3)

such that both ΨI and ΨII are antisymmetric wavefunctions.

For ΨI , the spatial part (which is symmetric) can be written as

ΦS(r1, r2) =
1√
2

[Ψa(1)Ψb(2) + Ψa(2)Ψb(1)] (1.4)

where Ψa(i) (Ψb(i)) denotes that electron i is in state Ψa (Ψb). Similarly for ΨII the

antisymmetric spatial part can be written as

ΦA(r1, r2) =
1√
2

[Ψa(1)Ψb(2)−Ψa(2)Ψb(1)] (1.5)

For ΨI , the antisymmetric spin part can be written as

χA(1, 2) =
1√
2

[η1↑η2↓ − η1↓η2↑] (1.6)

where ηi↑ and ηi↓ denote that the electron i is in spin-up state and spin-down state

respectively. This is wavefunction for the singlet (S = 0) spin state.

Similarly for ΨII , the symmetric spin part can be written as

χS(1, 2) =


η1↑η2↑

1√
2
[η1↑η2↓ − η1↓η2↑]

η1↓η2↓

Note that this is the wavefunction for the triplet (S=1) spin state.

Now, we will consider the Coulombic electron-electron interactions,

V =
e2

r12
(1.7)

where r12 is the distance between the two electrons. The expectation value of V can

be calculated in state ΨI and state ΨII ,

Expectation value of V in state ΨI ,
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〈ΨI |V |ΨI〉 = 〈ΦS|V |ΦS〉

=
1

2
[〈Ψa(1)Ψb(2) + Ψa(2)Ψb(1)|V |Ψa(1)Ψb(2) + Ψa(2)Ψb(1)〉]

=
1

2
[〈Ψa(1)Ψb(2)|V |Ψa(1)Ψb(2)〉+ 〈Ψa(1)Ψb(2)|V |Ψa(2)Ψb(1)〉

+ 〈Ψa(2)Ψb(1)|V |Ψa(1)Ψb(2)〉+ 〈Ψa(2)Ψb(1)|V |Ψa(2)Ψb(1)〉]

= [〈Ψa(1)Ψb(2)|V |Ψa(1)Ψb(2)〉+ 〈Ψa(1)Ψb(2)|V |Ψa(2)Ψb(1)〉](1.8)

where the first equality holds because V is independent of spin.

The first one of these two terms on the RHS is called the direct term and is labeled

Vd. The second term is called the exchange term and is denoted by J .

Similarly, on calculating the expectation value of V in state ΨII , we obtain

〈ΨII |V |ΨII〉 = 〈ΦA|V |ΦA〉

= [〈Ψa(1)Ψb(2)|V |Ψa(1)Ψb(2)〉 − 〈Ψa(1)Ψb(2)|V |Ψa(2)Ψb(1)〉](1.9)

Therefore the expectation value of the Coulomb interaction between two electrons is:

For the ΨI state (in which the spatial part is symmetric and spin part is antisym-

metric)

〈V 〉 = Vd + J for the spin singlet state(S = 0)

= Vd + J(1− S2)

= Vd + J(1− S(S + 1)) (1.10)

For the ΨII state,

〈V 〉 = Vd − J for the spin triplet state(S = 1)

= Vd + J(1− S2)

= Vd + J(1− S(S + 1)) (1.11)

Now consider the following operators,

S = ŝ1 + ŝ2 (1.12)
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and

S2 = (ŝ1 + ŝ2)
2 (1.13)

Using the identity,

(ŝ1 + ŝ2)
2 = ŝ1

2 + ŝ2
2 + 2ŝ1.ŝ2

On rearranging,

ŝ1.ŝ2 =
1

2
[(ŝ1 + ŝ2)

2 − ŝ12 − ŝ22]

=
1

2
[S2 − 1

2
(
1

2
+ 1)− 1

2
(
1

2
+ 1)]

=
1

2
[S(S + 1)− (

3

2
)]

where we have used the eigenvalues of the operator S2 (i.e. S(S + 1)) and operator

ŝi
2 (i.e. s(s+ 1) with s = 1

2
). Therefore, S(S + 1) can be expressed as

S(S + 1) = 2ŝ1.ŝ2 +
3

2
(1.14)

Using this in equations (1.10) and (1.11)

〈V 〉 = Vd + J(1− S(S + 1))

= Vd −
1

2
J − 2Jŝ1.ŝ2 (1.15)

Here, the third term on the RHS represents the contribution to the Coulombic inter-

action energy due to a pair of neighboring atoms (or ions). For a large number of

atoms the total contribution to the interaction energy can be obtained by summing

over all such pairs of electrons,

E = constant term −
∑
<i,j>

(2Jij ŝi.ŝj) (1.16)

This interaction term can be thought of as the source of the Weiss internal field which

gives rise to ferromagnetism.
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1.2 Spin Waves

Consider the isotropic Heisenberg FM Hamiltonian. In the ground state all the spins

are aligned along the same direction. Suppose that the system is in the following

excited state: all the spins S (at each site) are aligned along the same direction

except for one. This state is not the eigenstate of the Hamiltonian. The eigenstate of

the system is the one in which this single spin deviation is coherently distributed over

the entire lattice, and is called a spin wave. Spin Waves are low energy excitations

above the ground state in exchange coupled magnetic systems.

Figure 1.1: Spin waves on a linear ferromagnetic chain

1.2.1 A brief history of spin wave theory 1

Spin wave theory provides a good description of ferromagnetic and antiferromagnetic

substances at low temperatures. In 1930, Felix Bloch [4] invented the concept of

a spin wave and formulated the spin wave theory. He was first to show that low-

lying excitations of a ferromagnet would be of this nature. He also showed that at

low temperatures, the thermodynamic properties of a ferromagnet obtained from this

consideration were consistent with experimental results. It was assumed that the no.

of of spin wave excitations ( or the density of reversed spins) is small and thus the

effects of interactions between spin-waves can be neglected. This assumption is good

at sufficiently low temperatures and becomes less accurate as higher temperatures are

considered. Under this approximation, Bloch’s spin-wave theory becomes linear in

spin wave amplitudes.

Later, in 1940, a new approach to spin-wave theory was introduced by Holstein and

Primakoff[11]. As graduate students, Henry Primakoff and Ted Holstein were studying

the low temperature field dependence of the intrinsic magnetization of a ferromagnet.

They got the clever idea of expressing spin operators of the Heisenberg model in terms

of bosonic creation and annihilation operators. In terms of these new operators, the

Hamiltonian splits into two parts: one part is quadratic and the other is of higher

1From Ref.[6] and Ref.[15]
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order in these operators. The higher order terms of the Hamiltonian represent the

effect of interactions between spin waves and are usually called dynamical interaction

terms. Considering only the quadratic part of the Hamiltonian gives a theory of non-

interacting spin-waves. With some suitable approximations, they could diagonlize the

Hamiltonian. Their approximations turned out to be equivalent to those used by F.

Bloch who originally proposed the concept of spin waves. Their approach is currently

one of the most used approaches to spin wave theory.

1.2.2 Spin Wave Theory

In spin wave theory, the starting point is a classical assumption in which the spin

operators are treated as classical vectors of length S. This classical assumption makes

the Hamiltonian an energy functional that can be minimized to determine the ground

state.[2] The quantum corrections to this classical ground state are then calculated.

There are two ways to apply spin wave theory to ordered magnetic systems with non-

collinear ground states. One method is to use a local rotating coordinate system for

each site such that the local magnetization direction at each site is along the local

z-axis (quantization direction) i.e. a rotating local coordinate system is used in which

the quantization axis is chosen toward the spin directions. in the classical ground state.

The second approach is to consider different types of bosons for different types of sites

such that each type of boson has its own ground state corresponding to the local spin

orientation. The Hamiltonian is then expressed in terms of bosonic operators using

either Holstein-Primakoff transformations or Dyson-Maleev tranformations. It is then

diagonalized, in linear spin wave approximation, with a combination of Fourier and

Bogoliubov tranformations to obtain the dispersion relation for the spin waves. The

diagonalized Hamiltonian can then be used to calculate different physical properties

of interest.
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1.3 Spin wave analysis of isotropic Heisenberg AFM

using two boson approach2

1.3.1 Introduction

Consider the Heisenberg AFM model with nearest neighbour interactions.

H =
∑
<i,j>

(J ~Si.~Sj) (1.17)

Note that J > 0 for antiferromagnetic interaction.

1.3.2 Ground State of Heisenberg AFM

One crucial aspect of Heisenberg AFM is that the classical Néel state is not the

quantum mechanical ground state. It can be demonstrated as follows:

The energy of the Néel state (in which two nearest neighbour spins point in opposite

directions, |S〉i| − S〉j) can be calculated from the energy of the repeating nearest

neighbours spins. Clearly, for two spins, the energy in this state is

Eij = −JS2. (1.18)

Quantum mechanically, the energy of two nearest neighbour spins will be

Eij = J〈Si.Sj〉

Now note that,

〈(Ŝi + Ŝj)
2
〉 = 〈Ŝ2

i 〉+ 〈Ŝ2
j 〉+ 2〈ŜiŜj〉 (1.19)

⇒ 〈Ŝi.Ŝj〉 =
1

2
〈(Ŝi + Ŝj)

2
〉 − 1

2
〈Ŝ2

i 〉 −
1

2
〈Ŝ2

J〉 =
1

2
〈(Ŝi + Ŝj)

2
〉 − S(S + 1)

Therefore, the energy of the bond is:

Eij = −JS(S + 1) +
J

2
〈(Ŝi + Ŝj)

2
〉

2Ref.[7]
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This is minimum when the spins form a singlet pair, i.e. (Ŝi+Ŝj) = 0 and consequently

the minimum energy should be

Emin = −JS(S + 1) (1.20)

This is less than than the energy in (1.18) (by JS). Néel state, therefore, does not

have the lowest energy, i.e. antiparallel spin orientations do not have the lowest energy.

Further, |S〉i| − S〉j can not be the ground state because it is not an eigenstate of

the Hamiltonian.

1.3.3 Linear Spin wave analysis

The classical picture of an antiferromagnet is the Néel state, in which the lattice is

bipartite. This means that all the lattice points can be categorised into one of the

two groups or sublattices(say A and B), such that there are no interactions between

spins in the same sublattice and all the antiferromagnetic interactions are between

spins one from each A and B.

Spin wave theory is based on the notion that continuation from classical spins to

quantum spins is possible. It is expected that the two-sublattice structure persists

even in presence of quantum fluctuations.

The Hamiltonian is

H =
∑
<i,j>

(J ~Si.~Sj)

Writing in terms of spin projection operators,

H = J
∑
<i,j>

[Sxi S
x
j + Syi S

y
j + Szi S

z
j ]

The Hamiltonian can be written in terms of spin raising and lowering operators

which are defined as :

S+ = Sx + iSy

S− = Sx − iSy

8



Then

H = J
∑
<i,j>

[(
1

2
)
2

(S+
i + S−i )(S+

j + S−j ) + (
−i
2

)
2

(S+
i − S−i )(S+

j − S−j ) + Szi S
z
j ]

= J
∑
<i,j>

[(
1

2
){S+

i S
−
j + S−i S

+
j }+ Szi S

z
j ]

(1.21)

Holstein-Primakoff Transformation

Holstein-Primakoff transformations transcribe the spin operators in terms of bosonic

quasi-particle operators. The main idea is that quantum fluctuations (or spin-deviations

from the classical orientation) can be expressed as bosonic quasiparticles (called

magnons). Holstein-Primakoff Transformation equations are:

S−i =
√

2S

√
(1− a†iai

2S
) a†i (1.22)

which under the approximation that number density of magnons is small reduces to

S−i =
√

2Sa†i (1.23)

i.e. decreasing the eigenvalue of Sz operator for a spin corresponds to creating a boson

(called magnon). Further,

S+
i =
√

2S

√
(1− a†iai

2S
) ai (1.24)

can be aproximated as

S+
i =
√

2Sai (1.25)

i.e. increasing the eigenvalue of Sz operator for a spin corresponds to annihilating a

boson.

Szi = S − a†ai (1.26)

states that the total number of magnons at a site is equal to the total number of spin

deviations at that site.

Two types of bosons

In case of AFM, we need to introduce two types of bosonic operators for the two

kinds of spin deviations. First, consider sublattice A. On sublattice A, in classical

9



orientation, spins are pointing 'up' and lowering of eigenvalue of Sz operator (S−)

corresponds to creation (a†) of a magnon and vice versa (as in case of above transfor-

mations).

On the other hand, on sublattice B, in classical configuration, spins are pointing

'down' and increasing of eigenvalue of Sz operator (S+) corresponds to creation (b†)

of a magnon. Therefore,

for sublattice A,

S−i =
√

2Sa†i

S+
i =
√

2Sai

Szi =S − a†ai

(1.27)

and for sublattice B,

S−j =
√

2Sbj

S+
j =
√

2Sb†j

Szj =− S + b†jbj

(1.28)

These transformations can be substituted in (1.21) to obtain

H = J
∑
<i,j>

[
1

2
(2S){aibj + a†ib

†
j}+ (S − a†iai)(−S + b†jbj)]

= J
∑
<i,j>

[−S2] + J
∑
<i,j>

[S(aibj + a†ib
†
j + b†jbj + a†iai)− a

†
iaib

†
jbj]

=
−JNzS2

2
+ J

∑
<i,j>

[S(aibj + a†ib
†
j + b†jbj + a†iai)− higher order term(s)]

(1.29)

Note that the Hamiltonian consists of two parts: quadratic part and higher order

part. The quadratic part gives the theory of non-interacting spin waves. The higher

order part corresponds to theory of interacting spin waves.

Linear spin wave approximation involves neglecting terms of order higher than 2

so that the resultant Hamiltonian describes non-interacting spin waves.

H1 =
−JNzS2

2
+ J

∑
<i,j>

[S(aibj + a†ib
†
j + b†jbj + a†iai)] (1.30)

Fourier Transformation: k-space operators We will use the transformed op-

erators ck, c
†
k, dk, d

†
k. Hamiltonian can be expressed in terms of these operators using

10



the following transformations:

ai =

√
2

N

∑
k

e−i
~k.~rick (1.31)

a†i =

√
2

N

∑
k

ei
~k.~ric†k (1.32)

bj =

√
2

N

∑
k

e−i
~k. ~rjdk (1.33)

b†j =

√
2

N

∑
k

ei
~k. ~rjd†k (1.34)

On substituting these operators in the Hamiltonian along with the identity∑
i

ei(
~k−~k′).~ri = Nδkk′

H1 =
−JNzS2

2
+ JS

∑
k

[
∑
~d

(ei
~k.~dckd−k) +

∑
~d

(e−i
~k.~dc†kd

†
−k) + c†kck) + d†kdk] (1.35)

Let
1

z

∑
~d

(e−i
~k.~d) = γk

where z is the number of nearest neighbour sites.

Bogoliubov Transformation: Diagonalizing a quadratic Hamiltonian

We introduce new operators αk and βk with Bogoliubov Valatin (BV) transformation

to diagonalize the Hamiltonian.

ck = (uk)αk + (vk)β
†
−k (1.36)

dk = (uk)βk + (vk)α
†
−k (1.37)

c†k = (uk)α
†
k + (vk)β−k (1.38)

d†k = (uk)β
†
k + (vk)α−k (1.39)

The conditions that the coefficient of off-diagonal terms be equal to zero and the

transformations should preserve the canonical commutation relations determine the
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values of paramaters uk and vk. The second condition is obtained by making the

coefficient of off-diagonal terms equal to zero. The diagonalized Hamiltonian can be

easily obtained:

H1 =
−JzN

2
S(S + 1) + JzS

∑
k

[√
1− γk2{(αk†αk +

1

2
) + (βk

†βk +
1

2
)}
]

(1.40)

The dispersion relation is then,

ωk = JzS
√

1− γk2 (1.41)

It should be noted that ωk (which represents the energy of bosons) is always positive.

This means that the boson vacuum (of αk and βk bosons) is the ground state.

Figure 1.2: Linear spin-wave result Eq. (1.41) for the magnon spectrum of 2D quan-
tum Heisenberg. antiferromagnet

1.4 Spin wave analysis of Heisenberg AFM using

local rotating coordinate frame approach

1.4.1 Model

Again consider the Heisenberg AFM model with nearest neighbour interactions.

H =
∑
<i,j>

(J ~Si.~Sj) (1.42)

with J > 0 for antiferromagnetic interaction.
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1.4.2 Linear Spin wave analysis

The classical picture of an antiferromagnet is the Néel state. The Hamiltonian is

H =
∑
<i,j>

(J ~Si.~Sj)

Writing in terms of spin projection operators,

H = J
∑
<i,j>

[Sxi S
x′

j + Syi S
y′

j + Szi S
z′

j ]

We will use a local rotated frame for sublattice B, with the following transforma-

tions:

Sx
′
= Sx

Sy
′
= −Sy

Sz
′
= −Sz

(1.43)

This allows us to a single boson representation for the two sublattices. The Hamilto-

nian can be written in terms of spin raising and lowering operators which are defined

as :

S+ = Sx + iSy

S− = Sx − iSy

With the above transformations, the Hamiltonian can be rewritten as:

H = J
∑
<i,j>

[(
1

2
){S+

i S
+
j + S−i S

−
j } − Szi Szj ] (1.44)

Holstein-Primakoff Transformation

Holstein-Primakoff transformations (with ‘small spin-wave density’approximation) are:

S−i =
√

2Sa†i

S+
i =
√

2Sai

Szi =S − a†ai

(1.45)
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These transformations can be substituted in (1.44) to obtain

H = J
∑
<i,j>

[
1

2
(2S){aiaj + a†ia

†
j} − (S − a†iai)(S − a

†
jaj)]

=
−JNzS2

2
+ J

∑
<i,j>

[S(aiaj + a†ia
†
j + a†iai + a†jaj)− higher order term(s)]

(1.46)

Linear spin wave approximation involves neglecting terms which contain products

of more than two bosonic operators,

H1 =
−JNzS2

2
+ J

∑
<i,j>

[S(aibj + a†ib
†
j + b†jbj + a†iai)] (1.47)

Fourier Transformation: We will use the transformed operators ck, c
†
k with the

follwing transformations:

ai =

√
1

N

∑
k

e−i
~k.~rick (1.48)

a†i =

√
1

N

∑
k

ei
~k.~ric†k (1.49)

On substituting these opearators in the Hamiltonian along with the identity∑
i

ei(
~k−~k′).~ri = Nδkk′

we obtain,

H1 =
−JNzS2

2
+ 4JS

∑
k

[(γkckc−k) + (γkc
†
kc
†
−k) + c†kck + c†kck] (1.50)

where

γk =
1

z

∑
~d

(e−i
~k.~d)

with z (= 4 for 2D lattice) being the number of nearest neighbour sites.
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Bogoliubov Transformation: Diagonalizing a quadratic Hamiltonian

We introduce new operators αk and βk with Bogoliubov-Valatin (BV) transformation

to diagonalize the Hamiltonian.

ck = (uk)α−k − (vk)α
†
k (1.51)

c−k = (uk)αk − (vk)α
†
−k (1.52)

c†k = (uk)α
†
−k − (vk)αk (1.53)

c†−k = (uk)α
†
k − (vk)α−k (1.54)

The conditions that the coefficient of off-diagonal terms be equal to zero and the

transformations should preserve the canonical commutation relations determine the

values of paramaters uk and vk. The second condition is obtained by making the

coefficient of off-diagonal terms equal to zero.

H1 =
−JNzS2

2
+zJS

∑
k

[(uk
2γk + vk

2γk − 2ukvk)(α
†
−kα

†
k + α−kαk)]

+zJS
∑
k

[(uk
2 + vk

2 − 2ukvkγk)(α
†
−kα−k + α†kαk)]

+zJS
∑
k

[2vk
2 − 2γkukvk)]

(1.55)

For the Hamiltonian to be diagonal,

uk
2γk + vk

2γk − 2ukvk = 0 (1.56)

i.e. the coefficient of off-diagonal terms should be equal to zero. Further, the ‘new’operators

should obey the bosonic canonical commutation relations. This implies,

uk
2 − vk2 = 0 (1.57)
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Combining the two conditions in eqn.(1.56) and eqn.(1.56), one can easily find

that,

uk =

[
1

2
(

1√
1− γk2

+ 1)

] 1
2

vk =

[
1

2
(

1√
1− γk2

− 1)

] 1
2

(1.58)

The diagonalized Hamiltonian can then be easily obtained:

H1 =
−JzN

2
S(S + 1) + zJS

∑
k

[√
1− γk2{α†kαk + α†−kα−k + 1}

]
(1.59)

The dispersion relation is then,

ωk = JzS
√

1− γk2 (1.60)

These are the same results as obtained with the two boson approach in the previous

section.

16



Chapter 2

Application of SWT to an

AF-DM-field model

2.1 AF-DM-field model

We study the spin-S antiferromagnetic Heisenberg model with nearest-neighbor in-

teractions on a square lattice with the DM interaction in an external magnetic field

following Ref.[12].

H =
∑
<i,j>

(J ~Si.~Sj + ~D.(~Si × ~Sj))−
∑
i

~H.~Si (2.1)

where,
∑
<i,j>

denotes summation over nearest neighbour pairs of spins on the lattice.

This Hamiltonian is written as a sum of three terms:

H = H0 +HDM +HH (2.2)

The different terms in the above Hamiltonian are:

Heisenberg Exchange (H0): Exchange interaction is bilinear in spins and has a

scalar product form. It is isotropic under rotations and is represented by J times ~Si.~Sj,

the scalar product of classical spin angular momentum vectors, with i, j denoting the

indices of two nearest neighbour spins and represents the Heisenberg exchange energy.

The coefficient J denotes the exchange coupling constant. A negative J means parallel

orientation of neighboring spins will be favored and results in ferromagnetic order

while a positive J means antiparallel orientation of neighboring spins will be favored
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and results in antiferromagnetic order.

Dzyaloshinskii-Moriya interaction (HDM): Antisymmetric exchange or Dzyaloshinskii-

Moriya interaction [8, 9, 10] is represented by ~D.(~Si×~Sj), the cross product of classical

spin angular momentum vectors, with i, j denoting the indices of two nearest neigh-

bour spins.
~D is called the DM vector. The direction of DM vector is fixed by the microscopic

arrangement of atoms and orbitals. In the following analysis, we have assumed the

direction of DM vector to be along ẑ with a constant magnitude.

Magnetic feld coupling (HH): An external magnetic field ~H couples as [17]

HH = − ~H.
∑
i

giµB ~Si (2.3)

It is convenient to rewrite HH as

HH = − ~H.
∑
i

~Si (2.4)

absorbing giµB into the magnetic field H, so that the field ~H has the units of

energy.

2.2 Finding the classical ground state

The model Hamiltonian (1) consists of three terms:

• Heisenberg term

• DM term

• Magnetic field coupling

The effect of Heisenberg term alone is that the nearest neighbor spins tend to align

antiparallel to each other and thus tend to produce antiferromagnetic order. There-

fore, in the presence of Heisenberg term alone, the ground state would look like in

Fig. 2.1,

The DM interaction energy is minimized when nearest neighbor spins stay in plane

perpendicular to ~D and make 90 degrees angle with each other. Therefore, in the pres-

ence of DM term alone, the ground state would look like in Fig.2.2, The additional
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Figure 2.1: Classical spin pattern that corresponds to lowest total energy for Heisen-
berg term alone (D = 0 and H = 0). All global rotations of this pattern will also lead
to the same total energy.

Figure 2.2: Classical spin configuration that minimizes the total energy for
Dzyaloshinskii-Moriya interacting term (J = 0 and H = 0). Nearest neighbour spins
are mutually perpendicular and lie in plane perpendicular to DM vector.

effect of DM interaction to pure AFM Heisenberg Hamiltonian would be to make pre-

viously antiparallel nearest neighbor spins cant toward each other so that the angle α

between any two nearest neighbor spins is such that:

π

2
< α < π (2.5)

where the limiting angles α = π
2

and α = π are obtained when J = 0 and D = 0

respectively. In presence of both Heisenberg term and DM term, the classical ground

state would look like in Fig. 2.3

If an external magnetic field is applied to the system, then all the spins will tend

to orient maximally toward the magnetic field direction under the constraint due to

the other two terms. As a result, the above configuration will make a global rotation

toward the direction of external magnetic field, and the angle between any two nearest

neighbor spins will decrease depending on the strength of the applied magnetic field.
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Figure 2.3: In the presence of both exchange interaction (J 6= 0) and Dzyaloshinskii-

Moriya interaction ( ~D 6= 0), the nearest neighbour spins cant toward each other. The
canting angle is determined by the strength of applied magnetic field.

2.3 Application of Spin Wave Theory to this model

The Hamiltonian is:

H =
∑
<i,j>

(J ~Si.~Sj + ~D.(~Si × ~Sj))−
∑
i

~H.~Si (2.6)

It can be rewritten in terms of spin projection operators Sx, Sy, Sz so that:

Figure 2.4: Spin configuration that minimizes the classical energy for AFM-DM-field
model.(Figure from Ref. [12])

H = J
∑
<i,j>

[Sxi .S
x
j + Syi .S

y
j + Szi .S

z
j ] +D

∑
<i,j>

[(Sxi S
y
j − S

y
i S

x
j )]−

∑
i

~H.~Si (2.7)

2.3.1 Transformation from lab frame to rotating frame

• We want to choose quantization axes (z-axis) for spins along their classical GS

directions.

• Every spin on the lattice does not have the same orientation.
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• There are 2 possible orientations.

• Therefore, we need to choose a rotating coordinate frame such that at every

lattice site, the quantization axis (z-axis) points along the local spin direction.

• This allows us to use a single boson operator.

Effectively, there are two sublattices: A and B (say).

To get the required ground state spin orientations:

Spin Rotation Operators:

If (x, y, z) are the axes of the original frame and (x0, y0, z0) are the axes of the rotated

coordinate frame, then we get the following transformation equations:

• For sublattice A:

Sxi = −Sx0i (sin(φ)) + Sz0i (cos(φ))

Syi = Sz0i (sin(φ)) + Sx0i (cos(φ))

Szi = Sy0i

• For sublattice B:

Sxj = −Sx0j (sin(φ))− Sz0j (cos(φ))

Syj = Sz0j (sin(φ))− Sx0j (cos(φ))

Szj = Sy0j

The Hamiltonian (in the original coordinate frame) is:

H =
∑
<i,j>

[J{Sxi Sxj + Syi S
y
j + Szi S

z
j }]−

∑
<i,j>

[D{Sxi S
y
j − S

y
i S

x
j }] +

∑
i

[ ~H.~S]
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On writing original frame projection operators Sx, Sy, Sz in terms of rotated frame

projection operators Sx0 , Sy0 , Sz0 , we get:

H = J
∑
<i,j>

[{−Sx0i (sinφ) + Sz0i (cosφ)}.{−Sx0j (sinφ)− Sz0j (cosφ)}

+{Sz0i (sinφ) + Sx0i (cosφ)}.{Sz0j (sinφ)− Sx0j (cosφ)}+ Sy0i S
y0
j ]

+D
∑
<i,j>

[{−Sx0i (sinφ) + Sz0i (cosφ)}.{Sz0j (sin(φ))− Sx0j (cos(φ))}

+{Sz0i (sin(φ)) + Sx0i (cos(φ))}.{Sz0j (−Sx0j (sin(φ))− Sz0j (cos(φ))}

−
∑
i

~H.~Si

Expanding the products,

H = J
∑
<i,j>

[{Sx0i S
x0
j (sin2 φ) + Sx0i S

z0
j (sinφ cosφ)− Sz0i S

x0
j (cosφ sinφ)− Sz0i S

z0
j (cos2 φ)}

+{Sz0i S
z0
j (sin2 φ)− Sz0i S

x0
j (sinφ cosφ) + Sx0i S

z0
j (cosφ sinφ)− Sx0i S

x0
j (cos2 φ)}

+Sy0i S
y0
j ]

+D
∑
<i,j>

[{−Sx0i S
z0
j (sin2 φ) + Sx0i S

x0
j (sinφ cosφ) + Sz0i S

z0
j (cosφ sinφ)− Sz0i S

x0
j (cos2 φ)}

−{−Sz0i S
x0
j (sin2 φ)− Sz0i S

z0
j (sinφ cosφ)− Sx0i S

x0
j (cosφ sinφ)− Sx0i S

z0
j (cos2 φ)}

−
∑
i

{ ~H.~Si}

Collecting the terms with same spin operators,

H = J
∑
<i,j>

[{Sx0i S
x0
j (sin2 φ− cos2 φ) + Sx0i S

z0
j (2 sinφ cosφ)− Sz0i S

x0
j (2 cosφ sinφ)

−Sz0i S
z0
j (cos2 φ− sin2 φ)}+ Sy0i S

y0
j ]

+D
∑
<i,j>

[{−Sx0i S
z0
j (sin2 φ− cos2 φ) + Sx0i S

x0
j (2 sinφ cosφ) + Sz0i S

z0
j (2 cosφ sinφ)

−Sz0i S
x0
j (cos2 φ− sin2 φ)}

−
∑
i

{ ~H.~Si}
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The above expression is equivalent to,

H = J
∑
<i,j>

[{−Sx0i S
x0
j (cos 2φ) + Sx0i S

z0
j (sin 2φ)− Sz0i S

x0
j (sin 2φ)− Sz0i S

z0
j (cos 2φ)}+ Sy0i S

y0
j ]

+D
∑
<i,j>

[Sx0i S
z0
j (cos 2φ) + Sx0i S

x0
j (sin 2φ) + Sz0i S

z0
j (sin 2φ)− Sz0i S

x0
j (cos 2φ)]

−
∑
i

{ ~H.~Si}

2.3.2 Using Spin raising and lowering operators

Now, spin projection operators can be written in terms of spin raising S+ and lowering

S− operators,

Spin raising and lowering operators are defined as :

S+ = Sx + iSy

S− = Sx − iSy

Using these to write,

Sxi = (1
2
)(S+

i + S−i ) Sxj = (1
2
)(S+

j + S−j )

Syi = (−i
2

)(S+
i − S−i ) Syj = (−i

2
)(S+

j − S−j )

The Hamiltonian can now be written in the following form:

H = J
∑
<i,j>

[−{(1

2
)
2

(S+
i + S−i )(S+

j + S−j )(cos 2φ)}

+{1

2
(S+

i + S−i )Szj (sin 2φ)} − {Szj (
1

2
)(S+

j + S−j )}(sin 2φ)}

−{Szi Szj (cos 2φ)}+ (
−i
2

)
2

(S+
i − S−i )(S+

j + S−j )]

+D
∑
<i,j>

[{(1

2
)(S+

i + S−i )(Szj )(cos 2φ)}+ {(1

2

2

)(S+
i + S−i )(S+

j + S−j )(sin 2φ)}

+{Szi Szj (sin 2φ)} − {Szi (
1

2
)(S+

j + S−j )(cos 2φ)}]−
∑
i

[ ~H.~Si]
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⇒ H = J
∑
<i,j>

[−1

4
{S+

i S
+
j + S+

i S
−
j + S−i S

+
j + S−i S

−
j }(cos 2φ)

+
1

2
{(S+

i + S−i )(Szj )}(sin 2φ)− 1

2
(Szi )(S+

j + S−j )(sin 2φ)

−Szi Szj (cos 2φ)− 1

4
{S+

i S
+
j − S+

i S
−
j − S−i S+

j + S−i S
−
j }]

+D
∑
<i,j>

[{1

2
{(S+

i + S−i )(Szj )}(cos 2φ)}+
1

4
{S+

i S
+
j + S+

i S
−
j + S−i S

+
j + S−i S

−
j }(sin 2φ)

+Szi S
z
j (sin 2φ)− 1

2
(Szi )(S+

j + S−j )(cos 2φ)]−
∑
i

[ ~H.~Si]

2.3.3 Holstein-Primakoff Transformation

Holstein-Primakoff Transformation Holstein-Primakoff Transformation equa-

tions are:

S−i =
√

2Sa†i (2.8)

S+
i =
√

2Sai (2.9)

Szi = S − a†ai (2.10)

Application of H-P tranformations equation gives us the following expression for

Hamiltonian:

H = J
∑
<i,j>

[
−1

4
{(2S)aiaj + (2S)aia

†
j + (2S)a†iaj + (2S)a†ia

†
j}(cos 2φ)

+
1

2
{(
√

2S)(ai + a†i )(S − a
†
jaj)}((sin 2φ))− (

1

2
){(S − a†iai)

√
2S(aj + a†j)}

−{(S − a†iai)(S − a
†
jaj)(cos 2φ)− 1

4
{(2S)aiaj − (2S)aia

†
j − (2S)a†iaj + (2S)a†ia

†
j}]

+D
∑
<i,j>

[
1

2
(cos 2φ){(

√
2S)(ai + a†i )(S − a

†
jaj)}

+
1

4
(sin 2φ){(2S)aiaj + (2S)aia

†
j + (2S)a†iaj + (2S)a†ia

†
j}

+{(sin 2φ)(S − a†iai)(S − a
†
jaj)} − (

1

2
)(cos 2φ){(S − a†iai)

√
2S(aj + a†j)}]

−
∑
i

[ ~H.~Si]
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This gives,

H = J
∑
<i,j>

[
−S
2
{aiaj + aia

†
j + a†iaj + a†ia

†
j}(cos 2φ) +

2S√
2
{Sai − aia†jaj + Sa†i − a

†
iaia

†
j}(sin 2φ)

− S√
2
{Saj + Sa†j − a

†
iaiaj − a

†
iaia

†
j}(sin 2φ)− {S2 − Sa†jaj − Sa

†
iai + a†iaia

†
jaj}(cos 2φ)

−S
2
{aiaj − aia†j − a

†
iaj + a†ia

†
j}

+D
∑
<i,j>

[
S√
2
{Sai − aia†jaj + Sa†i − a

†
ia
†
jaj}(cos 2φ) +

S

2
{aiaj + aia

†
j + a†iaj + a†ia

†
j}(sin 2φ)

+{S2 − Sa†jaj − Sa
†
iai + a†iaia

†
jaj}(sin 2φ)− 2S√

2
{Saj + Sa†j − a

†
iaiaj − a

†
iaia

†
j}(cos 2φ)

− ~H.
∑
i

~Si

Taking the linear spin wave approximation, i.e. neglecting the terms of order 3 or

higher in boson operators,

H = J
∑
<i,j>

[
−1

4
(2S){aiaj + aia

†
j + a†iaj + a†ia

†
j}(cos 2φ)

+
1

2

√
2S{Sai + Sa†i}(sin 2φ)− 1

2

√
2S{Saj + Sa†j}(sin 2φ)

−{S2 − Sa†jaj − Sa
†
iai}(cos 2φ)− 1

4
(2S){aiaj − aia†j − a

†
iaj + a†ia

†
j}

+D
∑
<i,j>

[
1

2

√
2S{Sai + Sa†i}(cos 2φ) +

1

4
(2S){aiaj + aia

†
j + a†iaj + a†ia

†
j}(sin 2φ)

+{S2 − Sa†jaj − Sa
†
iai}(sin 2φ)− 1

2

√
2S{Saj + Sa†j−}(cos 2φ)

− ~H.
∑
i

~Si

2.3.4 Fourier Transformation

The Fourier transformed operators are defined as:

ai =
1√
N

∑
k

e−i~q.~riak (2.11)

a†i =
1√
N

∑
k

ei~q.~ria†k
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Using these operators in the above Hamiltonian along with the identity∑
i

ei(
~k−~k′).~ri = Nδkk′

gives the Hamiltonian in the k-space

H = 4S
∑
k

[(aka−k + a†ka
†
−k)(γk

C3

2
) + (a†kak)(C2γk + C1)]

−J(2NS2)(cos 2φ) +D(2NS2)(sin 2φ)−
∑
i

HSi sinφ
(2.12)

where γk = cos kx+cos ky
2

.

Hamiltonian constitutes of two terms:

H = Ecl +HLSWT (2.13)

where,

HLSWT = 4S
∑
k

[(aka−k + a†ka
†
−k)(γk

C3

2
) + (a†kak)(C2γk + C1)] (2.14)

Ecl = −J(2NS2)(cos 2φ) +D(2NS2)(sin 2φ)−
∑
i

HSi sinφ (2.15)

Ecl is exactly the classical energy which is obtained by substituting classical spin

angular momentum vectors ~S in the original Hamiltonian model expression.

C1 = J(cos 2φ)−D(sin 2φ)

C2 =
J

2
(− cos 2φ+ 1) +

D

2
(sin 2φ)

C3 =
J

2
(− cos 2φ− 1) +

D

2
(sin 2φ)

2.3.5 Diagonalizing the Hamiltonian: Bogoliubov tranforma-

tion

A Hamiltonian expressed as:

H = f()a†kak
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is diagonalized. The Hamiltonian HLSWT above contains terms in which there are

products of the form akak and a†ka
†
k. It is not in diagonal form and can be diagonal-

ized by using Bogoliubov transformation.

Bogoliubov Valatin (B-V) Transformation: A linear transformation to diag-

onalize the quantum quadratic Hamiltonian in creation and annihilation operators.

This tranformation defines new bosonic operators in terms of variable parameters.The

value of these parameters can be found so that when the Hamiltonian is expressed in

terms of these new bosonic operators, it becomes diagonal.

We use the following tranformation:

ak = {(coshθk)α−k − (sinhθk)α
†
k} (2.16)

a−k = {(coshθk)αk − (sinhθk)α
†
−k} (2.17)

a†k = {(coshθk)α†−k − (sinhθk)αk} (2.18)

a†−k = {(coshθk)α†k − (sinhθk)α−k} (2.19)

where the coefficients are determined by two conditions:

• Transformations should preserve canonical commutation relations , and

• Hamiltonian should be diagonal in terms of ‘new’operators.

Now, these transformations can be used in the Hamiltonian. We collect the coef-

ficients of terms containing products of two creation and two annihilation operators

α†kα
†
−k and αkα−k and use the condition that,

coefficients of α†kα
†
−k and αkα−k = 0 (2.20)

We get the following resultant equation:

{−(C2γk + C1)(AkBk) + (γk
C3

2
)(A2

k +B2
k)} = 0 (2.21)

where, Ak = (coshθk) and Bk = (sinhθk).

This condition can be used to find the values of parameters Ak andBk such that the

Hamiltonian when expressed in terms of the new bosonic operators is diagonalized.

The diagonalized Hamiltonian is finally found to be:

HLSWT = δE +
∑
k

(ωkα
†
kαk) (2.22)
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where,

δE =
1

2

∑
k

(ωk − 4SC1) (2.23)

The expression for ωk gives the dispersion relation,

ωk = 4S
√

(C1 + C2γk)2 − (C3γk)2 (2.24)

2.4 Results and Discussion

2.4.1 Spontaneously Broken Symmetry and Goldstone modes1

A pure isotropic Heisenberg Hamiltonian is invariant under rotation, making the en-

semble averages of magnetization equal to zero. But, we know that magnets possess

a non-zero magnetization and therefore this ensemble average does not represent a

physically correct picture. Even though the Hamiltonian exhibits rotational symme-

try, this symmetry is spontaneously broken by the ground state. In the ground state

the system acquires a specific configuration, which no longer has the symmetry present

in the Hamiltonian. There are infinite number of possible degenerate ground states,

which in totality can recover the symmetry. But once the spins are in a particular

configuration, the system can not make transition from one such ground state to an-

other becuase all the spins would have to rotate spontaneously by the same amount in

the same direction, for which the probability is almost zero. The symmetry is restored

by the wave-like excited states in the sense that (local) ground states vary over space.

These are the Goldstone excitations.

2.4.2 Zero anisotropic exchange case ( ~D = 0)

If the DM-term in Hamiltonian (with staggered DM vector) is neglected and J = 1 is

assumed, the following expression for the spin-wave spectrum can be calculated [12]:

ωD=0
k = 4S

√
(1 + γk)(1− cos 2φ0γk) (2.25)

where

cos 2φ0 = 1− 2(
H

HS

)
2

1See Chap.7 in Ref.[13]
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and HS = 8S is the saturation field at which spins become fully polarized in the

direction of the magnetic field.

Magnon spectrum (D = 0) for H = 0, H = 0.707HS and H = HS:

Figure 2.5: ωD=0
k Eq.(2.25) magnon spectrum for H = 0, H = 0.707HS and H = HS

along (0, 0) to (π, π) direction

Figure 2.6: ωD=0
k magnon spectrum Eq.(2.25) for H = 0, H = 0.707HS and H = HS

along (0, 0) to (π, 0) direction

Why k = (π, π) mode remains gapless ?

A mode remains gapless if it corresponds to the Goldstone mode related to the spon-

taneous symmetry breaking (of the Hamiltonian by the ground state). There should

be a continuous symmetry present in the Hamiltonian which should be spontaneously

broken by the ground state. For D = 0 case, i.e. only in presence of Heisenberg term

and field,
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Figure 2.7: ωD=0
k magnon spectrum Eq.(2.25) for H = 0, H = 0.707HS and H = HS

along (π, 0) to (π, π) direction

the continuous symmetry present in the Hamiltonian is the O(2) symmetry of spins

(the symmetry present in Hamiltonian) in plane perpendicular to field. This continu-

ous symmetry is spontaneously broken by the ground state( as a specific orientation

is assumed by the spins in the ground state).

k = (π, π) mode corresponds to the Goldstone mode related to spontaneous symmetry

breaking, k = (π, π) mode remains gapless (even in the presence of field).
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2.4.3 Zero field (H = 0) case

If we neglect the field coupling-term in the Hamiltonian (with staggered DM vector)

and take J = 1, the following expression for the spin-wave spectrum is obtained [12]:

ωH=0
k = 4S

√
1 +D2

√
(1− γk)(1 +

γk√
1 +D2

) (2.26)

H = 0 magnon spectrum for D = 0.04, D = 0.4 and D = 1.0:

Figure 2.8: ωH=0
k magnon spectrum Eq.(2.26) for D = 0.04, D = 0.4 and D = 1.0

along (0, 0) to (π, π) direction

Figure 2.9: ωH=0
k magnon spectrum Eq.(2.26) for D = 0.04, D = 0.4 and D = 1.0

along (0, 0) to (π, 0) direction

Why k = (0, 0) mode remains gapless ?

Again, a mode remains gapless if it corresponds to the Goldstone mode related to
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the spontaneous symmetry breaking (of the Hamiltonian by the ground state). There

should be a continuous symmetry present in the Hamiltonian which should be spon-

taneously broken by the ground state. Here, for H = 0 case, i.e. only in presence of

Heisenberg term and DM interaction,

the continuous symmetry present in the Hamiltonian is related to the choice of the

direction of DM-induced (ferromagnetic) magnetization. This continuous symmetry

is spontaneously broken by the ground state( as a specific orientation is assumed by

the DM-induced magnetization vector in the ground state).

Since here k = (0, 0) mode corresponds to the Goldstone mode related to this spon-

taneous symmetry breaking, k = (π, π) mode remains gapless.

Figure 2.10: ωH=0
k magnon spectrum Eq.(2.26) for D = 0.04, D = 0.4 and D = 1.0

along (π, 0) to (π, π) direction
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Chapter 3

Self Consistent Spin Wave Analysis

of isotropic Heisenberg AFM

3.1 Model Hamiltonian

H =
∑
<i,j>

(J ~Si.~Sj) (3.1)

where,
∑
<i,j>

denotes summation over nearest neighbour pairs of spins on the lattice.

S is the magnitude of the spin. Self consistent spin wave theory is studied following

Ref.[14].

3.2 Dyson-Maleev transformations

The antiferromagnetic Dyson-Maleev transformations [?] are:

For sublattice A,

S−i = a†i (3.2)

S+
i = (2S − aia†i )ai (3.3)

Szi = S − a†ai (3.4)

For sublattice B,

S−j = bj (3.5)

S+
j = b†j(2S − b

†
jbj) (3.6)
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Szj = −S + b†jbj (3.7)

where a†i and ai are respectively the bosonic creation and annihilation operators on

sublattice A, b†j and bj are the corresponding operators on sublattice B.

The two sublattices have different vacuum states such that, in vacuum state, sub-

lattices A and B each have zero bosonic excitations implying Szi = S or a†iai = 0 ,

and Szj = −S or b†jbj = 0.

To use the D-M transformations, the hamiltonian should be expressed in terms of

spin raising (S+) and spin lowering (S−) operators.

H = J
∑
<i,j>

[Sxi S
x
j + Syi S

y
j + Szi S

z
j ] (3.8)

Spin raising and lowering operators are defined as :

S+ = Sx + iSy

S− = Sx − iSy

Using these to write,

Sx = (
1

2
)(S+ + S−)

Sy = (
−i
2

)(S+ − S−)

Substituting into hamiltonian in Eq. (8) ,

H = J
∑
<i,j>

[(
1

2
)
2

(S+
i + S−i )(S+

j + S−j ) + (
−i
2

)
2

(S+
i − S−i )(S+

j − S−j ) + Szi S
z
j ]

= J
∑
<i,j>

[(
1

4
){S+

i S
+
j + S+

i S
−
j + S−i S

+
j + S−i S

−
j }

+(
−1

4
){S+

i S
+
j − S+

i S
−
j − S−i S+

j + S−i S
−
j }+ Szi S

z
j ]

= J
∑
<i,j>

[(
1

2
){S+

i S
−
j + S−i S

+
j }+ Szi S

z
j ]

(3.9)

Now, using the D-M transformations from Eqs. (2)− (8),
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H = J
∑
<i,j>

[
1

2
{(2S − a†iai)aibj + a†ib

†
j(2S − b

†
jbj)}+ (S − a†iai)(−S + b†jbj)]

= J
∑
<i,j>

[−S2] + J
∑
<i,j>

[S(aibj + a†ib
†
j + b†jbj + a†iai)−

1

2
a†i (ai + b†j)

2
bj]

= −JNzS2 + J
∑
<i,j>

[S(aibj + a†ib
†
j + b†jbj + a†iai)−

1

2
a†i (ai + b†j)

2
bj]

(3.10)

where N is the number of sites on each sublattice and z denotes the number of nearest

neighbours.

It can be noted that the last term in the Hamiltonian is not Hermitian, disregarding

this, it is treated as any ordinary Hamiltonian following Ref.[15].

3.3 Mean Field Treatment of quartic term

Now, the last (and non-linear) quartic term in the Hamiltonian Eq.(3.10) will be

treated with a self-consistent MF theory,

a†i (ai + b†j)
2
bj = a†iaiaibj + a†ib

†
jb
†
jbj + 2a†iaib

†
jbj (3.11)

Neglecting higher energy excitations, following Takahashi in Ref.[18],

< aiai >=< b†jb
†
j >= 0, < a†ibj >=< aib

†
j >= 0

.

The higher order terms can be decoupled using Mean Field approximation. The

terms which can be decoupled in more than one way will be decoupled using a La-

grangian multiplier (weight factor) λ. The value of parameter λ signifies the extent

of competition between diagonal and off-diagonal terms. It can be later determined

by minimizing the energy of the ground state.

Term 1

a†iaiaibj '< a†iai > aibj + a†iai < aibj > − < a†iai >< aibj > (3.12)

This term can be decoupled in a single unique way.

Note: All possible ways in which a term can be decoupled can be seen by noting
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the number of ways in which operators can be paired up next to one another in the

four operator term, given that that such a rearrangement of terms is allowed by the

commutation relations[Write eqn number here].

Term 2

a†ib
†
jb
†
jbj '< a†ib

†
j > b†jbj + a†ib

†
j < b†jbj > − < a†ib

†
j >< b†jbj > (3.13)

This term can be decoupled in a single unique way.

Term 3

a†iaib
†
jbj =< a†iai > b†jbj + a†iai < b†jbj > − < a†iai >< b†jbj > (3.14)

This term can be written (and therefore decoupled) in two ways:

• a†iaib
†
jbj '< a†iai > b†jbj + a†iai < b†jbj > − < a†iai >< b†jbj >

• a†ib
†
jaibj '< a†ib

†
j > aibj + a†ib

†
j < aibj > − < a†ib

†
j >< aibj >

These two forms of decouplings can be combined in the following ways using the pa-

rameter λ:

a†iaib
†
jbj '(1− λ)(a†iaib

†
jbj) + λ(a†ib

†
jaibj)

'(1− λ)(< a†iai > b†jbj + a†iai < b†jbj > − < a†iai >< b†jbj >)

+ λ(< a†ib
†
j > aibj + a†ib

†
j < aibj > − < a†ib

†
j >< aibj >)

(3.15)

Now, here onwards the following definitions for averages will be used:

〈D〉 = < a†iai >T=0 = < b†jbj >T=0
(3.16)

〈O〉 = < a†ib
†
j >T=0

= < aibj >T=0 (3.17)

so that the Hamiltonian becomes:

H == −JNzS2+J
∑
<i,j>

[S(aibj+a†ib
†
j+b†jbj+a†iai)−

1

2
(a†iaiaibj+a†ib

†
jb
†
jbj+2a†iaib

†
jbj)]

(3.18)
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Using the notation from (3.16), (3.17) and using the decoupling expressions from

(3.12), (3.13) and (3.15)

H = −JNzS2 + J
∑
<i,j>

[S(aibj + a†ib
†
j + b†jbj + a†iai)]

−1

2
J
∑
<i,j>

[(a†iaiaibj + a†ib
†
jb
†
jbj + 2a†iaib

†
jbj)]

= −JNzS2 + J
∑
<i,j>

[S(aibj + a†ib
†
j + b†jbj + a†iai)]

−1

2
J
∑
<i,j>

[{〈D〉aibj + a†iai〈O〉 − 〈D〉〈O〉}

+{〈O〉b†jbj + a†ib
†
j〈D〉 − 〈O〉〈D〉}

+2{(1− λ)(〈D〉b†jbj + a†iai〈D〉 − 〈D〉〈D〉)

+λ(〈O〉aibj + a†ib
†
j〈O〉 − 〈O〉〈O〉)}

Collecting the coefficients in second term,

H = −JNzS2 + J
∑
<i,j>

[S(aibj + a†ib
†
j + b†jbj + a†iai)]

−1

2
J
∑
<i,j>

[{(〈D〉+ 2λ〈O〉)aibj + (〈D〉+ 2λ〈O〉)a†ib
†
j

+(〈O〉+ 2(1− λ)〈D〉)a†iai + (〈O〉+ 2(1− λ)〈D〉)b†jbj]

H = −JNzS2 + J
∑
<i,j>

[S(aibj + a†ib
†
j + b†jbj + a†iai)]

−1

2
J
∑
<i,j>

[{(P )aibj + (P )a†ib
†
j + (Q)a†iai + (Q)b†jbj]

−2〈D〉〈O〉 − 2(1− λ)〈D〉2 − 2λ〈O〉2]

where 〈D〉+ 2λ〈O〉 = P and 〈O〉+ 2(1− λ)〈D〉 = Q
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This can be further rewritten as:

H = −JNzS2 + J
∑
<i,j>

[(a†iai)(S −
1

2
Q) + (b†jbj)(S −

1

2
Q)

+(aibj)(S −
1

2
P ) + (a†ib

†
j)(S −

1

2
P )]

+J
∑
<i,j>

[〈D〉〈O〉+ (1− λ)〈D〉2 + λ〈O〉2]

The operators in momentum space are defined as follows:

For sublattice A,

ai =
1√
N

∑
k

ei
~k.~riak

a†i =
1√
N

∑
k

e−i
~k.~ria†k

(3.19)

For sublattice B,

bj =
1√
N

∑
k

e−i
~k. ~rjbk

b†j =
1√
N

∑
k

ei
~k. ~rjb†k

(3.20)

where (again), N is the number of sites on each sublattice. The various terms in the

hamiltonian can be written after the Fourier Transformation as:∑
<i,j>

aibj−→z
∑
k

[γkakbk] (3.21)

∑
<i,j>

a†ib
†
j−→z

∑
k

[γka
†
kb
†
k] (3.22)

∑
<i,j>

b†jbj−→z
∑
k

[b†kbk] (3.23)

∑
<i,j>

a†iai−→z
∑
k

[a†kak] (3.24)

where, again z is the no. of nearest neighbours

and γk = 1
z

∑
~d

ei
~k.~d with ~d being the vector connecting to all nn sites.
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Using these operators, the Hamiltonian can be expressed in terms of momentum

space operators

H = −JNzS2 + J
∑
k

[z(a†kak)(S −
1

2
Q) + z(b†kbk)(S −

1

2
Q)

+z(akbk)(S −
1

2
P ) + z(a†kb

†
k)(S −

1

2
P )]

+J
∑
<i,j>

[〈D〉〈O〉+ (1− λ)〈D〉2 + λ〈O〉2]

(3.25)

3.4 Bogoliubov Valatin (BV) transformation

Next, we introduce the new operators αk and βk with Bogoliubov Valatin (BV) trans-

formation

ak = ukαk + vkβk
†

bk = ukβk + vkαk
†

(3.26)

Corresponding expressions for hermitian conjugate operators are:

a†k = ukα
†
k + vkβk

b†k = ukβ
†
k + vkαk

(3.27)

The various terms in the hamiltonian can be written after the BV transformation as

a†kak =(ukα
†
k + vkβk)(ukαk + vkβk

†)

=((uk
2)α†kαk + (ukvk)α

†
kβk
† + (ukvk)βkαk + (vk

2)βkβk
†)

(3.28)

b†kbk =(ukβ
†
k + vkαk)(ukβk + vkαk

†)

=((uk
2)β†kβk + (ukvk)β

†
kαk

† + (ukvk)αkβk + (vk
2)αkαk

†)
(3.29)

akbk =(ukαk + vkβk
†)(ukβk + vkαk

†)

=((uk
2)αkβk + (ukvk)αkαk

† + (ukvk)β
†
kβk + (vk

2)β†kαk
†)

(3.30)
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a†kb
†
k =(ukα

†
k + vkβk)(ukβ

†
k + vkαk)

=((uk
2)α†kβ

†
k + (ukvk)α

†
kαk + (ukvk)βkβ

†
k + (vk

2)βkαk)
(3.31)

Substituting in the hamiltonian,

H = −JNzS2 + J
∑
k

[z((uk
2)β†kβk + (ukvk)β

†
kαk

† + (ukvk)αkβk + (vk
2)αkαk

†)(S − 1

2
Q)

+z((uk
2)β†kβk + (ukvk)β

†
kαk

† + (ukvk)αkβk + (vk
2)αkαk

†)(S − 1

2
Q)

+z((uk
2)αkβk + (ukvk)αkαk

† + (ukvk)β
†
kβk + (vk

2)β†kαk
†)(S − 1

2
P )

+z((uk
2)α†kβ

†
k + (ukvk)α

†
kαk + (ukvk)βkβ

†
k + (vk

2)βkαk)(S −
1

2
P )]

+J
∑
<i,j>

[〈D〉〈O〉+ (1− λ)〈D〉2 + λ〈O〉2]

(3.32)

Gathering the coefficients of different terms

H = −JNzS2 + Jz
∑
k

[(α†kαk){(uk
2)(S − 1

2
Q) + γkukvk(S −

1

2
P )}

+(β†kβk){(uk
2)(S − 1

2
Q) + γkukvk(S −

1

2
P )}

+(αkα
†
k){(vk

2)(S − 1

2
Q) + γkukvk(S −

1

2
P )}

+(βkβ
†
k){(vk

2)(S − 1

2
Q) + γkukvk(S −

1

2
P )}

+(α†kβ
†
k){2(ukvk)(S −

1

2
Q) + γk(vk

2)(S − 1

2
P ) + γk(uk

2)(S − 1

2
P )}

+(αkβk){2(ukvk)(S −
1

2
Q) + γk(uk

2)(S − 1

2
P ) + γk(vk

2)(S − 1

2
P )}]

+J
∑
<i,j>

[〈D〉〈O〉+ (1− λ)〈D〉2 + λ〈O〉2]

(3.33)
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From the commutation relations, we know that: αkα
†
k = 1+α†kαk and βkβ

†
k = 1+β†kβk,

therefore

H = −JNzS2 + Jz
∑
k

[(α†kαk){(uk
2 + vk

2)(S − 1

2
Q) + 2γkukvk(S −

1

2
P )}

+{(vk2)(S −
1

2
Q) + γkukvk(S −

1

2
P )}

+(β†kβk){(uk
2 + vk

2)(S − 1

2
Q) + 2γkukvk(S −

1

2
P )}

+{(vk2)(S −
1

2
Q) + γkukvk(S −

1

2
P )}

+(α†kβ
†
k){2(ukvk)(S −

1

2
Q) + γk(uk

2 + vk
2)(S − 1

2
P )}

+(αkβk){2(ukvk)(S −
1

2
Q) + γk(uk

2 + vk
2)(S − 1

2
P )}]

+JNz[〈D〉〈O〉+ (1− λ)〈D〉2 + λ〈O〉2]

(3.34)

For the hamiltonian to be diagonal,

Coefficient of αkβk = Coefficient of α†kβ
†
k = 0

⇒ 2(ukvk)(S −
1

2
Q) + γk(uk

2 + vk
2)(S − 1

2
P ) = 0 (3.35)

Also, for commutation relations to be satisfied by the new operators,

uk
2 − vk2 = 1

⇒ uk = ±
√

1 + vk2

Using uk = +
√

1 + vk2 here onwards.

From (3.35),

γk(S −
1

2
P )(uk

2 + vk
2) + 2(S − 1

2
Q)(ukvk) = 0

γk(S −
1

2
P )(2vk

2 + 1) + (2S −Q)(
√

1 + vk2vk) = 0

⇒ γk
2

(
2S − P
Q− 2S

)(
2vk

2 + 1

vk
) =

√
1 + vk2

On squaring,

(
γ2k
4

)(
2S − P
2S −Q

)
2

(
2vk

2 + 1

vk
)
2

= 1 + vk
2
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Let, (2S−P
2S−Q) = A (say),

⇒ (
γ2k
4

)(A2)(4vk
4 + 1 + 4v2k) = vk

2 + vk
4

⇒ vk
4(1− A2γ2k) + v2k(1− A2γ2k)−

A2γ2k
4

= 0

⇒ v2k =
−(1− A2γ2k)±

√
(1− A2γ2k)

2 − 4(1− A2γ2k)(−
A2γ2k
4

)

2(1− A2γ2k)

⇒ v2k =
−1±

√
1

1−A2γ2k

2

For v2k to be positive,

v2k =
−1

2
+

1

2
√

1− A2γ2k
=

1

2
(−1 +

1√
1− A2γ2k

) (3.36)

Using uk
2 − vk2 = 1,

uk
2 =

1

2
(1 +

1√
1− A2γ2k

) (3.37)

we obtain,

uk
2v2k = (

1

2
)
2

(1 +
1√

1− A2γ2k
)(−1 +

1√
1− A2γ2k

) =
1

4
(

A2γ2k
1− A2γ2k

) (3.38)

⇒ ukvk = (±)(
1

2
)(

Aγk√
1− A2γ2k

)

(using negative sign)

Then,

H = −JNzS2 + Jz
∑
k

[(α†kαk){(
1√

1− A2γ2k
)(

2S −Q
2

) + 2γk(−
1

2
)(

Aγk√
1− A2γ2k

)(
2S − P

2
)}

+(β†kβk){(
1√

1− A2γ2k
)(

2S −Q
2

) + 2γk(−
1

2
)(

Aγk√
1− A2γ2k

)(
2S − P

2
)}

+{(−1 +
1√

1− A2γ2k
)(S − Q

2
) + γk(−1)(

Aγk√
1− A2γ2k

)(S − 1

2
P )}]

+JNz[〈D〉〈O〉+ (1− λ)〈D〉2 + λ〈O〉2]
(3.39)
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Now, consider the coefficient of (α†kαk + β†kβk) (= hωk (say)) from above expression:

hωk ={( 1√
1− A2γ2k

)(
2S −Q

2
) + 2γk(−

1

2
)(

Aγk√
1− A2γ2k

)(
2S − P

2
)}

=(
1√

1− A2γ2k
)(

2S −Q
2

){1− Aγ2k(
2S − P
2S −Q

)}

=(
1√

1− A2γ2k
)(

2S −Q
2

)[1− A2γ2k]

=(S − Q

2
)(
√

1− A2γ2k)

=S(1− Q

2S
)(
√

1− A2γ2k)

=S(1− 〈O〉
2S
− (1− λ)〈D〉

S
)

1

∆k

(3.40)

where ∆k = 1√
1−A2γ2k

and hωk represents the energy of spin wave with momentum ~k.

Remaining terms from the Hamiltonian

H ′ = −JNzS2 + Jz
∑
k

[{(−1 +
1√

1− A2γ2k
)(S − Q

2
) + γk(−1)(

Aγk√
1− A2γ2k

)(S − 1

2
P )}]

+JNz[〈D〉〈O〉+ (1− λ)〈D〉2 + λ〈O〉2]

= −JNzS2 + Jz
∑
k

[(S(
2−Q/S

2
)(1−

√
1− A2γ2k)]

+JNz[〈D〉〈O〉+ (1− λ)〈D〉2 + λ〈O〉2]

= −JNzS[S +
∑
k

{(1− Q

2S
)(1− 1

∆k

)(
1

N
)} − {〈D〉〈O〉

S
+

(1− λ)〈D〉2

S
+
λ〈O〉2

S
}]

= −JNzS[S+(1− 〈O〉+ 2(1− λ)〈D〉
2S

)(1− 1

N

∑
k

1

∆k

)

−{〈D〉〈O〉
S

+
(1− λ)〈D〉2

S
+
λ〈O〉2

S
}]

= −JNzS(S + θ)

(3.41)

where

θ = (1− 〈O〉+ 2(1− λ)〈D〉
2S

)(1− 1

N

∑
k

1

∆k

)− {〈D〉〈O〉
S

+
(1− λ)〈D〉2

S
+
λ〈O〉2

S
}

(3.42)

43



3.5 Results

The dispersion relation obtained for Heisenberg AFM model is:

hωk = S(1− 〈O〉
2S
− (1− λ)〈D〉

S
)

1

∆k

(3.43)

where ∆k = 1√
1−A2γ2k

and hωk represents the energy of spin wave with momentum ~k.

〈D〉 and 〈O〉 satisfy the following self-consistent equations:

〈D〉 =
1

N

∑
k

v2k =
1

2N

∑
k

(∆k − 1)

〈O〉 =
1

N

∑
k

γkukvk = − 1

2N

∑
k

(A∆kγ
2
k)

and

A =
1− 〈D〉

2S
− λ〈O〉

S

1− 〈O〉
2S
− (1−λ)〈D〉

S

Staggered sublattice magnetization is defined as:

Figure 3.1: Self consistent spin wave theory result with higher order corrections for
spin-wave dispersion (3.43) in HAFM.

m0 = |S − 〈D〉|

In the classical ground state (Néel state), spins on the two sublattices are aligned per-

fectly antiparallel to each other. Therefore, per site staggered magnetization is equal

to the magnitude S of spins. The average value of per site staggered sublattice magne-

tization is lowered from its classical value (S = 0.5) due to the quantum fluctuations

in the form of spin wave excitations (coherently distributed spin deviations).
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Figure 3.2: Staggered sublattice magnetization (m0) with λ

Ground state energy is : E = −JNzS(S + θ) where

θ = (1− 〈O〉+ 2(1− λ)〈D〉
2S

)(1− 1

N

∑
k

1

∆k
)− {〈D〉〈O〉

S
+

(1− λ)〈D〉2

S
+
λ〈O〉2

S
}

Then per-site GS energy e0 is defined with

E = 2JNe0

The energy of ground state decreases as λ increases from 0 to 0.5. At λ = 0.5,

Figure 3.3: Per-site ground state energy (e0) with λ

when the contribution of diagonal and off-diagonal terms of the quartic term in the
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Hamiltonian are equal, the per-site ground state energy is minimized. For λ > 0.5,

non-physical results for energy are obtained and therefore neglected.
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Chapter 4

Conclusions and outlook

In this thesis, we explored spin wave theory and its application to different quantum

Heisenberg models. The techniques of Holstein-Primakoff (Ref.[11]) were employed

to transform the Hamiltonians to bosonic form and subsequent diagonalization was

performed with Bogoliubov tranformations in accordance with conventional spin wave

theories. In particular, we studied the isotropic Heisenberg AFM using two different

approaches namely two boson approach and local rotating coordinate approach. We

obtained the same results with the two methods. We also explored Heisenberg model

with Dzyaloshinskii-Moriya anisotropy in the presence of magnetic field (Ref.[12])

and obtained the magnon spectrum. Further, we discussed the gapless modes in the

spectrum with their correspondence to spontaneous breaking of continuous symmetries

present in different limits of the exchange coupling and DM interaction. In addition,

we studied spin wave theory with a self-consistent mean field method for Heisenberg

AFM (Ref.[14, 18]) and calculated staggered sublattice magnetization and per-site

ground state energy.

The original goals of the project were: (1) to understand spin wave theories with

their application to different systems and (2) to combine the bosonization methods

employed in standard spin wave theories with computational exact diagonalization

to improve the mean field approximation with site-dependent averages and apply the

method to a general frustrated Heisenberg model with nearest neighbour and next-

nearest neighbour interactions. The first part of the project is complete and the

second part is partially complete as most required computational schemes have been

written and analysis of the referred model is partially finished. The project will be

completed by doing the spin wave analysis of the system with the proposed method.
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Appendix A

Appendix

A.1 Canonical Transformations

Def. : Linear Canonical Transformations

Linear transformations of creation and annihilation operators which preserve the

canonical commutation relations are called linear canonical transformations. These

can be categorised on the basis of whether these transformations mix creation and

annihilation operators or not.

1. Linear Transformations that do not mix creation and annihilation opera-

tors correspond to unitary transformations of single particle orbitals( states?).

2. The more general class of linear transformations that mix creation and an-

nihilation operators lead to the important concept of a quasiparticle. A

particular example of such types of transformations is Bogoliubov transforma-

tion.

In case of AFM spin wave theory it leads to the concept of ‘magnon’ quasipar-

ticle.

Suppose that the space of single particle states is of finite dimension n. {a† and

a denote the creation and annihilation operators as usual.} To write expressions in a

compact form, it will be useful to collect the creation and annihilation operators into

a column vector as follows:

0Adapted from Ref.[19]
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α ≡

(
a

a†

)
≡



a1

a2

.

an

a†1

a†2

.

a†n


(A.1)

The corresponding dual vector is the row vector

α† ≡
(
a† a
)
≡
(
a†1 a

†
2 ...a

†
n a1 a2 ... an

)
(A.2)

Consider the (symmetric) matrix γ,

γ =

(
0 1

1 0

)

which will be used to exchange the position of the creation and annihilation operators

in vector α.

As an illustration note that to obtain row vector α† from column vector α (or vice

versa), one needs the matrix γ in addition to performing transpose on α (α†) i.e.,

if α ≡

(
a

a†

)
then α† = (γ(α))T ≡

(
a†

a

)T

=
(
a† a
)

.

Consider the following inhomogeneous transformation(
b

b†

)
=

(
U εV

εY X

)(
a

a†

)
+

(
c

d

)
(A.3)

where b and b† denote 'new' (transformed) boson or fermion operators. Here, ε = −1

for bosons and ε = +1 for fermions. . U , V , X and Y are n × n matrices (as a and

a† are n-element column vectors).

Note that, in general, b and b† are not necessarily Hermitian conjugate operators (of
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each other). We have, for example, from the above transformation,
b1

b2

b†1

b†2

 =


u1 u2 εv1 εv2

u3 u4 εv3 εv4

εy1 εy2 x1 x2

εy3 εy4 x3 x4



a1

a2

a†1

a†2

+


c1

c2

d1

d2

 (A.4)

This gives for b1,

b1 = u1a1 + u2a2 + εv1a
†
1 + εv2a

†
2 + c1 (A.5)

taking the Hermitian conjugate,

b†1 = (u∗1)a
†
1 + (u∗2)a

†
2 + ε(v∗1)a1 + ε(v∗2)a2 + c∗1

Comparing it with the expression for b†1 from the transformation,

b†1 = x1a
†
1 + x2a

†
2 + εy1a1 + εy2a2 + d1

gives the condition for a and a† to be hermitian conjugate operators,

xi = u∗i , vi = y∗i , di = c∗i

or equivalently,

X = U∗, V = Y ∗, d = c∗

Now if we use the following notation,

T =

(
U εV

εY X

)
, δ =

(
c

d

)
, β =

(
b

b†

)
the transformation Eq.(A.3) can be re-written as

β = Tα + δ (A.6)

The corresponding transformation for row vector β† will be

β† = β̃γ = [(α†γ)T̃ γ] + δ̃γ
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where M̃ denotes the transpose of matrix(or vector) M . Note that in above expression,

α†γ =
(
a† a
)
γ =

(
a a†
)

T̃ γ =

(
U εY

εV X

)
γ =

(
εY U

X εV

)

{(α†γ)T̃ γ} =
(
a a†

)(εY U

X εV

)
=
(

(εY )a+ (X)a† (U)a+ (εV )a†
)

and

δ̃γ =
(
c̃ d̃

)
γ =

(
d̃ c̃

)
so that

{(α†γ)T̃ γ}+ δ̃γ = β†

If the transformation matrix T diagonalizes some matrix M , then it consists of the

eigenvectors of the matrix M stored in the columnwise format. Further, the non-zero

elements of the diagonalized matrix D(say) are the eigenvalues.

[
b1 b2 b†1 b†2

]

e1 0 n 0

0 e2 0 n

n 0 e3 0

0 n 0 e4



b†1

b†2

b1

b2


The numerical diagonalization can be achieved by writing a Hamiltonian in matrix

form and diagonalizing the corresponding matrix numerically to solve the eigenvalue

problem.
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