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Notation

I Identity Matrix(in appropriate dimensions)

Hn Hilbert space, dimension n

σx, σy and σz Pauli Matrices

Rx, Ry and Rz Rotation operators for X, Y and Z axis respectively
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Abstract

Quantum computer can solve certain problems which are hard for conventional computer.

Due to exponential size of Hilbert space it is intractable to simulate quantum systems

on a conventional computer. Exact solution of Schrodinger equation within a finite one

particle basis set full configuration interaction (FCI) is very computationally hard. Its

complexity scales exponentially with a size of the system. In principle, quantum computers

are capable to carry out such calculations with only polynomial scaling. Situation gets much

harder when we consider solutions of relativistic molecular hamiltonians, so happens due to

larger hamiltonian matrix eigen value problem and symmetry has also lost due to spin-orbit

interaction which causes a significant large no. of integrals to be nonzero in Hamiltonian

matrix. In this work, the simulation of molecular Hamiltonian of SbH molecule in CAS(2, 2)

is discussed. The Hamiltonian matrix is obtained from DIRAC software in Kramer restricted

approach and simulation involved implementation of adiabatic state preparation, iterative

phase estimation which are discussed in detail. We used digital quantum simulation where

controlled-U in phase estimation algorithm is decomposed into smaller unitary operators

governed by local interaction Hamiltonian.
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Nature isn’t classical, dammit, and if you want to make a simulation of nature,

you’d better make it quantum mechanical, and by golly it’s a wonderful

problem, because it doesn’t look so easy.

R.P Feynman

A good idea has a way of becoming simpler and solving problems other than

that for which it was intended.

Robert Tarjan, in the context of QFT.

1



Chapter 1

Introduction of NMR Quantum

Information Processing

Nuclear magnetic resonance (NMR) provides a suitable platform to explore physical imple-

mentations of quantum information processing (QIP)tasks. Firstly, D. Cory, A. Fahmy and

T. Havel[2] proposed some protocols of using liquid-state NMR for quantum information.

1.1 Nuclear Magnetic Resonance

The Nuclei of all elements carry a charge and net magnetic moment when the spins of the

protons and neutrons comprising these nuclei are not paired up, the overall spin of the

charged nucleus generates a magnetic dipole along the spin axis, and the intrinsic magni-

tude of this dipole is a fundamental nuclear property called the nuclear magnetic moment

denoted by µ. The symmetry of the charge distribution in the nucleus is a function of its

internal structure. If charge distribution is completely spherical then whole Nucleus behave

like a positive point charge is surrounded by electrons orbiting it and it is said to have a

corresponding spin angular momentum number of I = 1
2 , of which examples are 1H , 13C ,

19F , etc.

A spin-1
2 nucleus is not lumpy, but behaves as a perfectly smooth, magnetic, billiard ball.

Since the part of the Hamiltonian which comes from the interaction of the nucleus charge

with the external electric field no longer depend on the position and momentum coordinates.

Hence this part can be ignored because it does not contribute in the time evolution the of

the quantum mechanical system[3].

Helec
i = 0 (1.1)
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When the nuclear magnetic moment interacts with external magnetic field, then the

nuclear magnetic energy is given as

H = −~µ. ~B

and the nuclear magnetic moment can be expressed in terms of spin angular momentum as

follows

µj = γjIj

Where IJ and γj are spin angular momentum operator and gyromagnetic ratio respectively.

Similarly, the Hamiltonian of two scaler coupled spins is given by the following equation

HNMR =
ωp

2
σpz +

ωs

2
σsz +

πJps
2

σpzσ
s
z (1.2)

Where ωp

2π and ωp

2π are the Larmor frequencies of probe and system nuclei, and Jps is the scalar

coupling between them. There are two kinds of magnetic fields used in NMR-spectroscopy

to manipulate the spin states. These fields are RF-pulses as well as static homogeneous.

• The superconducting solenoid provides a very strong, very homogeneous, static mag-

netic field, denoted as B0.

• The RF coils in the probe generates an radio-frequency (RF) oscillating field, denoted

as BRF (t). Ideally, the r.f. field BRF is perpendicular to the static field B0.

Figure 1.1: Schematic of an NMR apparatus.

The static homogeneous magnetic field is oriented along Z-axis is carefully trimmed to be

uniform over the entire region. Orthogonal saddle or Helmholtz coils lying in the transverse

plane allow small, oscillating RF fields to be applied along the x and y directions. These fields
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can be rapidly pulsed on and off to in order to rotate nuclear spin. The same coils are also

part of tuned circuits which are simultaneously used to pick up the RF signal generated by

the precessing nuclei which can be understood by Lenz’s law. These two different magnetic

fields interact with nuclear spin and system’s Hamiltonian can be written as

Bnet = B0ẑ +BRF (x̂cos(ωt) + ŷsin(ω)t)

HNMR =
ω0σz

2
+ g(σxcos(ωt) + σysin(ωt))

Where g and ω0 determines the strength of BRF and B0 respectively. Suppose, we define

|ψt〉 = eiωtσz/2|ξt〉, so that Schrödinger equation

∂t|ξ(t)〉 = H|ξ(t)〉 (1.3)

can be re-written as

i∂t|ψ(t)〉 = [eiωtσz/2He−iωtσz/2 − ωσz
2

]|φ(t)〉 (1.4)

eiωtZ/2σxe
−iωtZ/2 = (σxcos(ωt)− σysin(ωt))

By using the above equality equation (1.4) can be simplified by using some commutation

relations of Pauli matrices and Euler equations for spin operators

i∂t|ψ(t)〉 = [
ω − ω0

2
σz + gσx]|ψ(t)〉 (1.5)

In equation (1.4) the Hamiltonian in the right hand side does not have any time dependence

and it can be interpreted as the Hamiltonian in the rotating frame where magnetic fields

are stationary. The solution leads to

i∂t|ψ(t)〉 = ei[
ω−ω0

2
σz+gσx]t|ψ(0)〉

This solution can also be thought as the rotation of single qubit about the n̂ and by an able

|~n|

n̂ =
ẑ + 2g

ω0−ω√
1 + ( 2g

ω0−ω )2

|~n| = t

√
(
ω0 − ω

2
)2 + g2

When ω is far from ω0, the spin is negligibly affected by the BRf field, the axis of its

rotation is nearly parallel to Z-axis, and its time evolution is nearly exactly due to free B0

Hamiltonian. On the other hand, when ω0 ≈ ω, the B0 contribution becomes negligible,

3



and a small BRF field can cause large changes in the state, corresponding to rotations about

the x-axis. Thus, there can be an enormous effect a small perturbation on the spin system,

when tuned to the appropriate frequency, and this phenomena is termed as resonance in

nuclear magnetic resonance.

1.2 Realizing quantum bits and quantum gates

In case of liquid-state NMR QIP spin-1
2 nuclei are considered as qubits who can carry

quantum information. Spin-1
2 nucleus is two states system, when put in the strong magnetic

field, its state space consists of superposition of spin up and spin down state. Spin up is

denoted as logical state |0〉 and spin down is |1〉. An analogy can be set up here between

spin-1
2 nucleus and a tiny magnet which can point either up or down. Since, spin is purely

quantum degree of freedom which allows it to stay in the superposition state |φ0〉 = α|0〉+

β|1〉 with α2 + β2 = 1. In the the presence of external magnetic field, both logical states

have slightly different energies which results in the following state after time evolution has

taken place

|φt〉 = e−iωt/2α|0〉+ eiωt/2β|1〉 (1.6)

Where ω is the precession frequency of nuclear spin the presence of external magnetic field

which depends on energy difference δ = 2πε
~ ~ is the Planck’s constant. Using the Pauli

matrix σz, the time evolution can be expressed as |φt〉 = eiωσzt/2|ψ0〉. From equation (1.2),

we can see that the operator ωσz is the part of internal Hamiltonian, hence can be implement

by letting the system to evolve freely. The next step in implementation is to control the

qubits and change their state in the Bloch sphere according to a quantum algorithm. A

unitary operator can be thought as a rotation operator in the Hilbert space of system. In

modern NMR, modulated external Rf-fields are applied to realize specific unitary evolutions

known as quantum gates and the evolution due to free Hamiltonian allows to implement

two qubit quantum gates. Thus, Rf-fields and evolution due to free Hamiltonian provides

us the universal control.

1.3 Quantum Simulations

Feynman(1982)[4] originally conjectured that Quantum computers can be programmed to

simulate any quantum system Further, Lloyd (1996)[5] in his pioneered work proved that

If the system is governed by Local interaction Hamiltonian, then Trotter’s formula can ap-

proximate the time evolution with a large number of simpler operations acting on subspace

of Hilbert Space.
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Hamiltonian for a system of n particles

H =
L∑
k=1

Hk (1.7)

Where each Hk acts on at most c number of systems and L is Poly(n)

As Trotter expansion suggests:

U = e−iHt ≈ [e−i
H1t
n e−i

H2t
n e−i

H3t
n ......e−i

HLt

n ]n (1.8)

Suppose each Hk acts on a local Hilbert space with dimensions mk. Hence, the number of

operations needed to simulate e−i
Hkt

n is approximately m2
k. We need to simulate each Hk,

n times and there are L operations of these. So total number of operations to simulate the

time evolution e−iHt turns out to be ≈ n(
∑

km
2
k) ≤ nLm2 where m = max{mk}. Each

of these simpler operations grows polynomially with the system size and can be simulated

efficiently by using Poly(n) resources. According to complexity, simulation is efficient if to

simulate a system takes computer time that is Poly(n). So it can be concluded that this

simulation is efficient if L scales polynomially as system size increases.

Quantum simulator which uses this approach of decomposing the whole time evolution of

the system into a sequence of simple local operations are known digital quantum simulators.

These kind of simulator are able to simulate a wide range of quantum system by using the

correct sequence of gates. In the case where any unitary operation can be implemented, i.e.

a general quantum computer, one will be able to simulate any quantum system with local

interactions, this defines a universal quantum simulator.
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Figure 1.2: Analog and Digital quantum simulator

The second type is analog quantum simulator where the simulator is a quantum system

which can be easily controlled and tuned as desired. By tuning the controlling parameters

so that the Hamiltonian is equivalent to that of the model system that we want to simulate.

Once we have matched both the Hamiltonians then by starting this system in a desired

state and let the evolution to happen. After some time measurements are done on simulator

and the obtained results can be mapped to that of the model system. Advantages of this

approach is that it is easier to implement than a digital simulator because we do not have

a standard approach to efficiently decompose any unitary into parts. These simulator can

not act as universal simulator.
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Chapter 2

Quantum Simulation of Molecular

Hamiltonians

This chapter includes all the essential steps required for simulation of molecular Hamiltoni-

ans on quantum computer. We start with mapping between physical system and simulated

system which is followed by starting the quantum computer with the desired state, in our

case it is ground state since we are interested in calculating the ground state energy of SbH

molecule. Next step is the iterative phase estimation algorithm which is necessary in the

sense that it encodes the energy eigen value in the phase of probe qubits and this phase can

be directly detected by phase sensitive NMR spectra.

2.1 Putting the wave function on quantum computer

Quantum simulation requires a mapping between simulating system and a physical system.

There are two kinds of mapping

• Direct mapping: In this mapping Fock space of the molecule is mapped on to Hilbert

space of qubits. Each spin orbital is mapped with a qubit. The qubit state |1〉
corresponds to the presence of one fermion and the qubit state |0〉 suggests that there

is no fermion in the spin orbital. This mapping is less efficient as it requires large

number of qubits to map the whole Fock space.

• Compact mapping: This kind of mapping requires fewer qubits because it maps the

subspace of fixed electron onto Hilbert space of qubits. This kind of mapping is the

most the most economical. For example, we are interested in m electrons occupying

in n spin orbitals, then the dimension of the configuration space is ncm which requires

n′ number of qubits such that

2n
′ ≥ ncm
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Thus, the Hilbert space of quantum computer would be large enough to simulate the full

configuration space. It was proven by Aspuru Guzik et al [6] that number of qubits required

in both mappings scales linearly with number of basis functions.

2.1.1 First quantization method

This method was originally proposed by Zalka [13] in which the time evolution of the wave

function of a quantum mechanical many particle system is simulated on quantum computer.

Firstly, the wave function, here in position space, is discretized into 2n points which can

be represented by the basis set n qubits Hilbert space, ranging from |000..00〉 ⇒ |1111..11〉.
The discretized wave function is stored as the exponentially many amplitudes of classical

basis states of the quantum computer and the time-evolution of the wave function in carried

out in quantum parallelism. Hamiltonian to be simulated is

H = T + V =
P 2

2m
+ V (x) (2.1)

an = ψ(n M x), an+N = an (2.2)

|ψ〉 =
N−1∑
n=1

an|n〉, N = 2l (2.3)

The next step is how to implement the time evolution in ∆t. The time evolution operator

is the following

U(δt) = e−iĤ∆t (2.4)

U(δt) = e−i∆t(
P2

2m
+V (x)) (2.5)

Which can be approximated as:

U(δt) = e−i(
P2

2m
)∆te−iV (x)∆t +O(∆t2) (2.6)

The second term e−iV (x)∆t corresponds to diagonal operator in position space and adds a

phase to quantum computer state |ψ〉 and the first term is e−i(
P2

2m
)∆t diagonal in momentum

space. So by applying quantum Fourier transformation between them we can implement this

too. As we can see that if we use classical computer instead of quantum computer, we would

have to have exponential memory and exponentially more time. The only disadvantage of

this approach is that we have to choose a larger quantum register in order to obtain a better

spatial resolution in representation of wave function.
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2.1.2 Second quantization method

Second quantization is based on the mapping of electronic Fock space and state of M qubits,

qubit i in 0(or 1) state indicates the spin orbital is occupied (or unoccupied)

|0〉i = a†i |vac〉 (2.7)

|1〉i = |vac〉 (2.8)

where |vac〉 is vacuum state with no fermion. Hamiltonian in the second quantization form

is given as:

H =
∑
ij

Eija
†
iaj +

∑
ijkl

Vijkla
†
ia
†
jalak (2.9)

where Eij = 〈i|T + VN |j〉 are single electron integrals and Vijlk = 〈ij|Eijkl|kl〉 are double

electron integrals. Both are precomputed on classical computer while having a proper basis

set, STO-3G for water, to define the system. The Evolution operator corresponding to

Hamiltonian is:

Uij = e−iEija
†
iajδt Or Uijkl = e−iVijkla

†
ia
†
jalakδt

Uij can be implemented by converting a†i and aj to spin operators which is known as Jordan-

Wigner Transformation. It is basically a transformation from fermionic annihilation and

creation operators to spin operators. We define two matrices as raising and lowering matrices

σ+ = 1
2(σx + iσy) and σ− = 1

2(σx − iσy)

An analogy can be set up here in which σ+ acts as creation operator and σ− acts as anni-

hilation. The mapping is given as

a†n = (
∏n−1
k=1 σ

k
z )σn+ and an = (

∏n−1
k=1 σ

k
z )σn−

Here, the creation and annihilation operators on nth spin orbital are of tensor product of

Pauli matrices up n−1 and after that it is identity matrix for remaining spin orbitals. Thus,

Uij = e−iEija
†
iajδt can be expressed in Pauli matrices which can be further converted into one

and two qubits operation. Here is a simple example in which single electron Hamiltonian is

considered with similar value of indices i and j,

a†iai = (
∏i−1
k=1 σ

k
z )σi+ (

∏i−1
k=1 σ

k
z )σi− = σi+σ

i
−

σi+σ
i
− = 1

2(1i + σiz)

Evolution operator due to this part of Hamiltonian,

Uii = e−i(1
i+σiz)Eii∆t = Diag(e−iEii∆t, 1)

9



Which can be implemented by single qubit gate. Likewise, whole evolution operator is

divided into elementary gates and the algorithm scales as O(n5), n = N(spin-orbitals. A

comprehensive study of other part of the Hamiltonian can be found here [20].

2.2 Adiabatic Quantum Computation (AQC)

In adiabatic quantum computation, the quantum computer remains forever in the ground

state of quantum system throughout the computation. The method is extensively used

in optimization problems and large number of the computationally hard problems can be

formulated as optimization problems.The solution of the optimization problem is encoded

in the ground state energies, phases, etc. by using some unitary transformations. The

Hamiltonian H(t) of the computer is changed gradually from a initial simple Hamiltonian Hi

whose ground state is already known, to a final Hamiltonian Hf whose ground state encodes

the solutions we are looking for. The adiabatic theorem suggests that if the variation in

the Hamiltonian is sufficiently slow, the initial prepared ground state will be transformed

to ground state of Hf . In the following example The particle starts out in the ground state

Figure 2.1: (a) Ground state of infinite square well of thickness a. (b) Ground state of
infinite square well of thickness b. (c) When wall expands quickly

of infinite square well of width a, whose wave function is given by

ψix =

√
2

a
sin(

πx

a
) (2.10)

If now the wall is gradually expanded to width 2a, the adiabatic theorem says that particle

will end up in the ground state of the excited well which is shown in the mid of above figure.

ψfx =

√
1

a
sin(

πx

2a
) (2.11)

Unlike the small perturbation theory, here the change in the Hamiltonian is huge, the

system’s energy has changed with a substantial amount. By contrast, if the width of the wall

10



is changed suddenly, the resulting state will still be ψxi , which might be linear combination

of eigenstates of new Hamiltonian. Sudden change can be thought as the free expansion of

a gas into the vacuum when the piston is removed, the free expansion does not require any

external work done on system, hence energy is conserved. Due to limited coherence time of

quantum states, it is desirable to complete the evolution as quick as possible but the rate

of change is determined by the energy gap between ground state and the first excited state

during the evolutions. The application of AQC in quantum simulations becomes important

in the of preparation of quantum states of interest. For example, if our motive is to calculate

the ground state energy of an arbitrary Hamiltonian, then the quantum computer starts with

the ground state which can be efficiently prepared by using AQC.

Suppose, we start with simple Hamiltonian H0 whose ground state is easily prepared,

given by |ψ0〉. The change in the Hamiltonian is governed by following equation

Had = (1− s)H0 + sHf ; s =
t

T
(2.12)

If the variation from H0 (t = 0) to the target Hamiltonian Hf (t = T) is slow enough such

that adiabatic conditions are valid, then the final state |ψ(t)〉 , satisfies the time-dependent

Schrödinger equation

ih
d|ψ(t)〉
dt

= H(t)|ψf 〉 (2.13)

follows the corresponding eigenstate of H(t) adiabatically. It implies that |ψ(T )〉 has a good

overlap with the ground state of the target Hamiltonian Hf . A sufficient condition ensuring

the process as adiabatic for a linear interpolation between two Hamiltonians for the total

evolution time T is

T � ||∂sH(s)||
42
min

(2.14)

Where 4min ≡ (E1(s) − E0(s)) for s ε[0 1] is the minimum value of energy gap between

instantaneous ground state and first excited state. Boixo et al. [8] proposed a new general

bound on T which is also valid for other non-linear interpolations if the rate of change of

instantaneous eigenstate |∂sψ(s)〉 is provided.

T >
L2

4min
(2.15)

Where L is the path integral given as

L =

∫
||ψ(s)〉||ds (2.16)

AQC becomes extremely important when we do not have enough quantum control to phys-

ically implement the unitary evolutions of Hamiltonian H(t). In this case, it is feasible to

implement the adiabatic state preparation first into a quantum algorithm and simulate the
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adiabatic process on a digital quantum computer. Recently, developed D-wave quantum

computer also works on adiabatic model of computation.

2.3 Evolution and Measurements

2.3.1 Phase Estimation Algorithm

The phase estimation algorithm (PEA) is a quantum algorithm for determining the eigen-

value of an arbitrary unitary operator. The relevance of phase estimation algorithm was

originally proposed by Abrams and Lloyd et al for quantum simulations in their phenom-

enal paper [7] and further Aspuru-Guzik et al used it in the quantum simulation of small

molecules in order to calculate the lowest energy eigen values [6]. The algorithm essentially

uses quantum Fourier transformation (QFT) and opens new windows in the quantum simu-

lations of molecular Hamiltonians. The PEA is efficient because it is mainly based on QFT

whose complexity scales as O(n2) [1].

2.3.2 Quantum Fourier Transform

Quantum Fourier transform is the quantum mechanical way of classical Fourier transform

and it takes the advantage of quantum superposition. The classical discrete Fourier trans-

form drives an input which can be considered as a vector of complex numbers (x0, ..., xN1)

and outputs the elements of another vector (y0, ..., yN1) according to the equation

yk ≡
1√
N

N−1∑
j=0

xje
2πijk/N (2.17)

The quantum Fourier transformation on an orthogonal basis |0〉,....,|N − 1〉 is a linear oper-

ator whose action is given as

|j〉 −→ 1√
N

N−1∑
k=0

e2πijk/N |k〉 (2.18)

Equivalently, QFT of an arbitrary quantum state is written as

N−1∑
j=0

xj |j〉 −→
N−1∑
k=0

yk|k〉 (2.19)

Suppose, we assume N = 2n, where n is an integer and the basis |0〉,...|2n − 1〉 is the

computation basis states for quantum computer working with n qubits. We may adopt the

binary representation of basis states as j = j1j2j3...jn and 0.jljl+1...jm = jl
2 +

jl+1

4 +...+
jm

2m−l+1 . With a little calculations Equation (2.18) can be written in the following product

12



representation:

|j1j2...jn〉 −→
1

2n/2
(|0〉+ ei2π0.jn |1〉)(|0〉+ ei2π0.jn−1jn |1〉)......(|0〉+ ei2π0.j1j2j3...jn |1〉) (2.20)

Quantum Fourier transform requires O(n2) no. of gates in order to implement it on quantum

computer while the best classical algorithm for computing the discrete Fourier transform

on 2n elements requires O(n2n) gates. Thus, it requires exponentially more operations to

compute Fourier transform on classical computer than it does on a quantum computer ??

Chuang.

2.3.3 Ground state energy calculation via PEA

The crucial part of evolution is the implementation of the phase estimation algorithm to

generate a phase on probe qubits. Phase estimation algorithm uses two quantum registers

as shown in figure.

|R〉 : |t〉 ⊗ |u〉 (2.21)

Where the system qubit |u〉 is the eigen state of unitary operator and probe qubits |t〉
are used to encode the phase. The algorithm includes the application of unitary operator

U = e−iHτ which has to be efficiently implemented in order to make the algorithm efficient.

Application of U = e−iHτ on the ground state generates the phase ei2πφ, where E = −2πφ
τ

and τ can be an arbitrary number such that phase φ ε01.Suppose, proberegister—t〉 starts

with |0〉⊗n and eigen state |u〉 has the eigen value ei2πφ and phase φ can be exactly expressed

in m binary digits, as φ = 0.φ1φ2φ3...φm Thus, Output state is

1
2t/2

(|0〉 + ei2π0.φm |1〉) (|0〉 + ei2π0.φm−1φm |1〉) ......(|0〉 + ei2π0.φ1φ2....φm |1〉).

The output state is nothing but the quantum Fourier transform 2.20 of |φ1φ2φ3...φm〉. An

inverse QFT is applied at the end and a measurement is computational basis gives φ exactly.

|j〉 =⇒
2n−1∑
k=1

e
2πijk
N |k〉 O(n2) (2.22)

Thus PEA is efficient but it uses large number of qubits in probe register as desired accuracy

increases. To overcome this, the algorithm can be modified such that it uses less resources

but operates iteratively. In the circuit shown above, the upper line is used as probe qubits

and initially set in |0〉 while the lower line represents the physical system to be implemented

which starts with the ground state of the Hamiltonian (Hf ) whose energies are being cal-

culated. As we can see from the circuit, there is a Controlled U operator with U = e−iHf t

and the eigen value of U is ei2πφ. The state before measurement is

|ψm〉 =
1√
2

[(1 + ei2πφ)|0〉+ (1− ei2πφ)|1〉] (2.23)
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Figure 2.3: Iterative Phase Estimation algorithm

When measurements are performed, the probability of collapsing into |0〉 is P0 = cos2(πφ)

and apparently, it has dependence on phase φ. If we repeat the procedure N times, it

determines P0 with an accuracy of 1√
N

. Hence, it has to be repeated N ≈ 22m in order to

obtain m accurate binary digits of phase φ. Each cycle ends up with the measurements,

consequently, we must have 22m measurements. This makes intractable to implement on a

physical system.

To overcome this difficulty, Kitaev [9]proposed a modified PEA which requires less number

of cycles and consequently less number of measurements, provided that we are able to

implement controlled U2k (C U) gates. For 0 ≤ k ≤ m then, C U2k−1
will transform the

probe qubit into

|ψk−1〉 =
1√
2

[|0〉+ ei2π(2k−1φ)|1〉] (2.24)

Firstly, the IPEA determines least significant bits in the binary representation of phase.

Obtained bit is fed back into the algorithm by a Z-rotation gate on probe qubit as shown in

the circuit. The rotation angle for mth iteration is given as ωm = 2π(0.0φkφk+1φk+2...φm).

In the first iteration (k = m), application of C U2m−1
followed by a measurements gives the

|0〉 with the probability P0 = cos2[0.φm] which means P0 is zero if φm is one and P0 is one

if φm is zero. Further, In the second iteration when k = m - 1 the measurement determines

m 1th bit. The phase associated with probe qubit just before Z -rotation is 2π(0.0φm−1φm)

and application of Z - rotation by an angle ωm−1 = 2π(0.0φm) results in the probability P0

to be cos2[0.φm−1]. Thus, using feedback the second bit is also measured deterministically

and likewise, all the remaining bits are obtained.
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Chapter 3

Many electrons system

This chapter involves the basic concepts and terminologies used in quantum chemistry.

We discuss structure of many electron operators and the form of wave functions which are

called as Slater determinants. In subsequent sections Born-Oppenheimer approximation and

schrodinger -Sock approximation are elaborated. Further, we consider relativistic effects in

the case of heavy elements and introduce new approximations to overcome the difficulties

coming due to larger Hamiltonian matrix. At the end, the possibility of simulating relativis-

tic Hamiltonians on quantum computer is considered.

3.1 The electronic problem and Born-Oppenheimer approx-

imation

The Hamiltonian for a system of nuclei and electrons is given as

H = −
N∑
i=1

1

2
42
i −

M∑
A=1

1

2MA
42
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

(3.1)

Where MA is the ration of electron and nucleus masses, ZA and ZB are atomic numbers

of nuclei A and B respectively. The first term in equation 3.1 represents the kinetic en-

ergy operator for electrons, so as the second term for nuclei while the third terms is for

coulomb attaraction between electrons and nuclei; the last two terms are for electron-electron

and nuclei-nuclei repulsion. Our motive is to solve the non-relativistic time independent

Schrödinger equation given below

H|φ〉 = E|φ〉 (3.2)

The analytical solutions are not possible for heavy molecules, not even for triatomic and

demands large computational power which increases exponentially as system size grows. We

employ some approximation in order to solve analytically and an approximation known as

Born-Oppenheimer (BOA) simplifies the equation. BOA is based on the fact that nuclei
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are much heavier that electrons, hence move very slowly. Thus, to a good approximation,

we can consider the motion of electrons independently in the average field of fixed nuclei.

Moreover, the second term in the equation 3.1 can be considered constant and similar goes

with nuclei-nuclei repulsion energy. As a result, the whole Hamiltonian can be approximated

to only electronic Hamiltonian or precisely the Hamiltonian describing the motion of N free

electrons in the field of M charges,

Helec = −
N∑
i=1

1

2
42
i −

N∑
i=1

M∑
A=1

ZA
riA

+

N∑
i=1

N∑
j>i

1

rij
(3.3)

Thus, the solution to a Schrondinger equation involving the electronic Hamiltonian

Helecφelec = Eelecφelec (3.4)

Hence, the electronic wavefunction,

φelec = φelec(ri;RA) (3.5)

Equation (3.5) suggests that wave function depends of electronic coordinates as well as

nuclear coordinates, similar is true for Eelec energy,

Eelec = Eelec(RA) (3.6)

As a result, the total energy for fixed nuclei includes the constant nuclear repulsion.

Etot = Eelec +

M∑
A=1

M∑
B>A

ZAZB
RAB

3.2 Spin-orbitals, configuration and basis functions

An orbital is defined as the wavefunction for a single particle, an electron as we are dealing

with an electronic problem. A spatial orbital ψi(r), is a function of the r vector and the

spatial distribution depends of the probablity |ψi(r)2|dr of finding the electron in dr volume

surrounding r. The spatial orbitals are considered as orthogonal set so that∫
drψi(r)

∗ψj(r) = δij

Since the set of ψi is complete, so any arbitrary function can be written as

f(r) =

∞∑
i=1

aiψi(r)
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The set should be infinite in order to be complete but we consider only a finite set of K

orbitals which span a certain region of the complete space but results can be described exact

within the subspace spanned by finite set of orbitals.

Electron has an intrinsic spin degree of freedom, hence it is necessary to specify this into basis

set. A complete set consists of two orthonormal functions is denoted as αω and βω, where α

and β are for spin up and down states respectively. Now the complete wavefunction has both

spin as well as spatial part and called as spin orbitals, denoted by ξx, where x denotes both

spin and spatial cooridantes. Thus, for each spatial orbital, there would be two different

spin orbitals-one corresponding to spin up and other to spin down. As a result of the whole

spin orbitals is written in the vector form as(
ψ(r)α(ω)

ψ(r)β(ω)

)
For example, K spatial orbitals would lead to 2K spin orbitals {ξi|1, 2, ....2K} whose vector

form would be (
ξ2i−1(x) = ψ(r)α(ω)

ξ2i(x) = ψ(r)β(ω)

)
Where i = 1, 2,...K. Since spatial orbitals are orthogonal which implies that spin orbitals

would also be orthogonal. ∫
drξi(x)∗ξj(x) = δij

3.3 Hartee products, Slater determinants and Hartree-Fock

approximation

So far we have discussed about single electron wave function which is one spin orbital,

we now will study the wavefunction of many electrons. In the simple case, we consider a

system of N noninteracting electrons whose overall Hamiltonian would be sum of the all the

individual Hamiltonians of all the electrons which is given as

H =

N∑
i=1

h(i)

Where h(i) is the sum of kinetic and potential energy operator of ith electron. The operator

h(i) would have eigenfunctions which are given by the set of spin orbitals ξj

h(i)ξj(xi) = Ejξj(xi)

Now we focus on to calculate the eigenfunction of whole Hamiltonian H which would be the

product of spin-orbital wavefunctions for each electron. This happens due to indenpendent
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nature of all the h(i) Hamiltonians and H is the sum of them. Hence, the wavefunction

would be

ψHP (x1, x2, ....xn) = ξi(x1)ξj(x2)....ξk(xN ) (3.7)

ψHP is the solution of following Schrödinger equation whose eigenvalue is just the sum of

spin orbital energies of each spin orbital.

HψHP = EψHP

E = εi + εj + ...+ εk

ψHP is called as Hartree product, with first electron is described by the spin orbital ξi and

second electron is described by the ξj spin orbitals. The Hartree products does not consider

the antisymmetry principle which does not allow to stay two fermions in one spin orbital and

it is also called as Pauli exclusion principle. We can make the wavefunction antisymmetrized

in the following manner. Suppose, there are two electrons occupying two spin orbitals ξi

and ξj . In the first case, electron one occupies in ξi and eletron two occupies in ξj and in

the second case, electron one occupies in ξj and eletron two occupies in ξi. Both of these

cases are denoted by ψHP12 and ψHP21 respectively.

ψHP12 = ξi(x1)ξj(x2)

ψHP21 = ξj(x1)ξi(x2)

If we consider a wave in the superposition state given below where the negative sign in the

superposition ensures that there would be an overall negative sign in the wavefunction if

both the eletrons are interchanged.

ψ(x1, x2) =
1

2
[ξi(x1)ξj(x2)− ξi(x2)ξj(x2)] (3.8)

From this equation, it can also be seen as that if i = j, which means both the electron

occupy same spin orbital then the wavefunction vanishes. Moreover, ψ(x1, x2) can also be

written in the form of determinants that is also called as Slater determinant.

ψ(x1, x2) = |ξ1ξ2〉 =
1√
2

∣∣∣∣∣∣
ξi(x1) ξj(x1)

ξi(x2) ξj(x2)

∣∣∣∣∣∣ (3.9)

Likewise, the ground state of N-electron system is

ψ0〉 = |ξ1ξ2..xiN 〉 (3.10)
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According to variation principle, the optimal wavefunction would be the one which corre-

sponds to minimum possible energy

E0 = 〈ψ0|Hψ0〉 (3.11)

Thus, we have the freedom to chose spin orbitals in equation3.10 and by minimizing the E0,

we obtain the optimal spin orbitals which satify the Hartree-Fock equation

f(i)ξ(xi) = εξ(xi) (3.12)

Where f(i) is the effective one-electron operator, called Fock operator which has the form

f(i) = −1

2

2

i
−

M∑
A=1

ZA
riA

+ VHF (i) (3.13)

Where V i
HF is the effective potential experienced by ith electrons due to presence of other

electrons in the system. This approximation is termed as Hartree-Fock and the essence is

to replace the complex problem by one electron problem.

3.4 Simulation of Relativistic Hamiltonians on QC

It is well understood that an accurate study of molecules with heavy elements needs consid-

eration of electron correlation and relativistic effects. The approach to deal with is based

on four component formalism which also involves no-pair approximation. Dirac-Coulomb

Hamiltonian is

H =
N∑
i=1

[c(αi.pi) + β′imc
2 − φnuc] +

∑
i<j

1

rij
+ VNN (3.14)

α =

[
0 σ

σ 0

]
, β =

[
I2 0

0 −I2

]
.

and β′ = β − I4 Here, we have already considered Born-Oppenheimer approximation which

allows to separate the electronic degrees of freedom from nuclei. The one electron operator

of the electronic Hamiltonian has two terms, one Dirac Hamiltonian and second is electro-

static potential φnuc of nuclei considered at rest under BOA. Dirac-Coulomb Hamiltonian

has no bound solutions due to negative energy solutions of Dirac equation. To overcome this

problem we only take positive energy bi-spinors as N-particle basis of Slater determinants.

This approximation is known as no-pair approximation. No-pair approximation is quite

justifiable because we have already adopted BOA which has larger impact on energy levels

than to neglect the negative energy bi-spinors.

The algorithm to simulate relativistic Hamiltonians start with a mapping of relativistic

19



quantum mechanical wave function onto register qubit. We mostly use direct mapping in

non-relativistic case. With the application of no-pair approximation relativistic case turns

out to be similar to non-relitivistic(NR) because we ignore negative energy solutions of Dirac

equation. We could also take the advantage of time reversal symmetry of Dirac equation

which makes bi-spinors to be degenerate Kramer’s pair denoted as A and B which can be

thought as two spin states α and β in NR approach. Kramer’s pairs are the bi-spinors

related with time-reversal operator and are orthogonal to each other. Thus, direct mapping

is possible by assigning a qubit with one bi-spinor A and one qubit for B

Dealing with 4c relativistic formalism brings additional computational difficulties compared

to non-relativistic.

non-relativistic FCI =⇒ Relativistic four component FCI

Relativistic Full Configuration Interaction

• Large Hamiltonian matrix eigen value problem

• One and two electron integral come out to complex, hence dealing in complex space.

This does not pose difficulties because we are working in complex Hilbert space even

in the NR approach.

To overcome these we adopt some approximations like,

• No pair approximation: N-particle space is build-up from determinants containing

positive-energy spinors

• Loss of symmetry due to spin-orbit interaction makes many integrals nonzero in the

Hamiltonian matrix but situations gets better due to time-reversal symmetry of the

Dirac equation, bispinors occur in Kramers pairs (ψp, ψp̄) denoted as A, B

• Direct mapping is applicable: one qubit is assigned to A bispinor, one qubit for the B

bispinor.
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Chapter 4

Experimental Results

In this chapter we discuss the implementation of adiabatic state preparation method (ASP),

iterative phase estimation algorithm and the calculations of ground state energy from the

phase of obtained spectra. We start with preparing the system into the ground state of

the hamiltonian which intend to simulate using NMR quantum computer. ASP is based

on the fact that the if the Hamiltonian is changed adiabatically from Hi to Hf , then the

system would stay in the ground state of newer Hamiltonian (Hf ) if the system was intially

prepared in the ground state of Hi. Further, implementation protocol of IPEA is elaborared.

IPEA is the crucial part of the whole process because it encodes the enery eigen values into

the phase of probe qubit. The phase can be measured by a mature technology called using

interferometry frequently used in NMR implementations[21].

Adiabatic State Preparation

Liquid state NMR consists of spin-1
2 nuclei, which act as a qubit for quantum information

processing. Due to low energy gap between |0〉 and |1〉 states of nuclear spin compared

to room temperature( KT ), the equilibrium distribution of the ensemble in highly mixed

state. In liquid state samples time taken to reach at equilibrium state is around 10s −
40s in the absence of any RF fields, apparently every quantum computational task starts

with thermal state which is highly mixed state and far from the standard state used for

quantum information processing(QIP). However, it can be used to perform some quantum

computations. The method which transforms thermal state to psuedo pure state, which acts

as pure state for all practical purposes is based on the fact that only the traceless part of

the density matrix contributes to overall transverse magnetization detected by NMR coils.

The thermal state for a single spin is given as

ρthermal =
I
2

+
εZ
2

=
1− ε

2
I + ε|0〉〈0| (4.1)
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If we start with n spin-1
2 in a molecule whose density of state is given as ρ. The expectation

value of the current magnetization would be tr(ρs), where s is the traceless spin operator.

Thus the magnetization turns out to be zero for the part of ρ proportional to identity

matrix I. We define a new matrix called as deviation matrix such that δ - ρ = λI for some

λ. The expectation value of the magnetization (tr(ρs)) results in zero for the identity part in

equation 4.1 due to traceless observables and non-zero for |0〉〈0| part of the density matrix.

In case of one spin system, ε|0〉〈0| is the deviation matrix

tr(ρs) = tr((ρ+ λI)s)

= tr(ρs) + tr(λI)

= tr(ρs)

Thus, both ρ and δ give the same magnetization and considered as equivalent. A state

with the deviation matrix ε|φ〉〈φ| is known as pseudopure state, because this deviation

is proportional to the deviation of pure state |φ〉〈φ|. A pseudopure state is similar to

corresponding pure state for all NMR observations and unitaty evolutions. In general, εδ

can be treated as deviation matrix for a density matrix ρ if εδ = ρ + λI for ∀ λ and ε. In

NMR quantum information processing, we have some techniques which transform the initial

thermal equilibrium state to a standard pseudopure state with deviation |000..00〉〈000..00|
which comes out to be |00〉〈00| in case to two spin-1

2 nuclei acting as two qubits required for

our protocol.

The following pulses transform the equilibrium state of two qubits to psuedo-pure state

where s1
z, s

2
z represent the first and second spin respectively.

s1
z + s2

z

[
π

3
]2x

−−→
s1
z +

1

2
s2
z − s2

y

√
3

2

[grad]z−−−−→
s1
z +

1

2
s2
z

[
π

4
]1x

−−→

s1
z√
2

+
s2
z

2
−
s1
y

2

[1/2J12]
−−−−−→

s1
z√
2

+
s2
z

2
+
√

2s1
xs

2
z

[
−π
4

]1y
−−−→

s1
z√
2

+
s2
z

2
+ s1

xs
2
z + s1

zs
2
z

[grad]z−−−−→
s1
z√
2

+
s2
z

2
+ s1

zs
2
z

22



The final state can be written as:

s1
z + s2

z + 2s1
zs

2
z ⇐⇒ 2|00〉〈00| − 1

2
I (4.2)

As we discussed earlier in our implementation protocol that we start with by preparing the

system in |00〉〈00| where first qubit acts as probe qubit and second acts as system qubit.

Further, we represent the state as |0p0s〉〈0p0s|, where p and s stand for probe and system

qubits respectively.

In adiabatic state preparation, we firstly prepare our system qubit in the ground state of

simpler Hamiltonian whose ground state is easily prepared and then Hamiltonian is gradually

changed so that adiabatic conditions are satisfied, as a result the final state would be the

ground state of the final Hamiltonian (Hf ). Suppose, the system is initially prepared in the

Hamiltonian σsx whose ground state is |ψig〉 is given by

H0 = σx

|ψig〉 =
1

2
(|0〉 − |1〉)

We have already prepared the system qubit in |0〉 which can be transformed to |ψig〉 by

the application of R−sy -rf pulse where the magnitude of angle is π
2 and the direction is

antiparallel to Y axis. Thus,

|0〉 R−sy (
π

2
)

−−−−−→

1

2
(|0〉 − |1〉) (4.3)

The change in Hamiltonian is governed by an interpolation scheme given as

Had(t) = (1− s)H0 +Hf ; s =
t

T
(4.4)

If Had(t) varies adiabatically then the system remains in the ground state(|ψf 〉) of system

hamiltonian (Hf ) after the whole evolution has taken place, i.e t −→ T and s becomes one.

The adiabatic evolution of Had(t) can be approximated by M + 1 discrete steps, where each

step duration is δ = T
M+1 .

U =
∏

Uadm =
M∏
m=0

e−iHmδ

The adiabatic limit is achieved when both M and T goes to infinity which implies δ → 0.

Further, we can approximate the unitary operator for adiabatic steps by using Trotter’s

formulla. Hence, the unitary evolution for each discrete adiabatic step is given by

Uadm = e−i(
δ
2

)(1−sm)σxe−ismHf δe−i(
δ
2

)(1−sm)σx +O(δ3); sm =
mT

M + 1
(4.5)
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In our case H0 is σx and the ground state Hamiltonian(Hf ) of SbH molecule in complete

active space(2,2) can be written in Pauli basis

Hf = c0I + c1σx + c2σz =

[
−0.9035364 0.0388220

0.0388220 −0.8761562

]

After solving above equation, we obtain c1 = 0.038820 and c2 = -0.0137. The diagonal-

ization of Hamiltonian matrix gives -0.9310 a.u as ground state energy. Substituting the

Hamiltonian into Uadm gives

Uadm = e−i(
δ
2

)(1−sm)σxe−i(c1σx+c2σz)smδe−i(
δ
2

)(1−sm)σx +O(δ3)

= e−i(
δ
2

)(1−sm)σxe−ic1sm
δ
2
σxe−ic2smδσze−ic1sm

δ
2
σxe−i(

δ
2

)(1−sm)σx +O(δ3)

The left and right part of the Uadm can be simulated by two -RF pulses along X-axis and mid

part can also be decomposed into X and Y pulses.

e−ic2smδσz = e−i
π
4
σxe−ic2smδσyei

π
4
σx

We can substitute the mid part into Uadm and as a result adiabatic evolution for one discrete

step Uadm can be realized by the pulse sequence Rs−x(φ1) − Rs−y(φ2) − Rsx(φ3) where all φi

are calculated using MATLAB.

The pulse program to implement adiabatic state preparation is

Figure 4.1: Pulse program Adiabatic State Preparation
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φ1 =
π

2
− δ + 0.9612smδ

φ2 = 0.0274smδ

φ3 =
π

2
+ δ − 0.9612smδ

For implementation, M = 10 and T = 7 were chosen and the fidelity for the ground state

was obtained as 0.9759 and the evolution time was taken as π
2 to make the calculations

simpler.

Experimental details

Diethyl fluoromalonate was used as 2-qubit quantum computer where 1H acts as probe qubit

and 19F acts as system qubit. Measured chemical shifts, couplings, T2 relaxation time and

calibrated hard pulses are shown in table below.

1H 19F

1H 3340.725 Hz 47.50 Hz

19F 47.50 Hz -110922.073 Hz

To start an experiment in NMR, we have to calibrated hard pulses for π
2 rotations on

all the nuclei. In case of 1H , the pulse duration comes out to be 10µ s and below is the

calibration curve where intensity is zero at 20µ s.

Figure 4.2: Calibration of hard pulse on 1H nucleus
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Similarly, for 19F , the pulse duration to rotate by π
2 comes out to be 23.75µ s as shown in

figure.

Figure 4.3: Calibration of hard pulse on 19F nucleus

Further, the measured values of spin-spin relaxation (T2) time for 1H and 19F are 4.28s

and 3.87s respectively. The spin-spin relaxation is the mechanism by which transverse

magnetization exponentially decays towards its equilibrium value of zero in NMR. It is

given by

Mxy(t) = Mxy(0)e−t/T2 (4.6)

Where Mxy(0) is the measured transverse magnetization just after a hard pulse.

Figure 4.4: T2 relaxation of 1H Nucleus
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Figure 4.5: T2 relaxation of 19F Nucleus

Implementation of Iterative Phase Estimation Algorithm

The NMR pulse sequence to C − U8k is given by following equantion and rotation along

Z-axis are implemented by decomposing into X and Y-pulses similar as adiabatic state

preparation

CU8k = e−i8
k π

4
c1σsxei8

k π
4
c2σszei8

k π
4
c1σ

p
zσ
s
xe−i8

k π
4
c2σ

p
zσ
s
z (4.7)

It can be further simplied using following equality into X- and Y-pulses.

ei8
k π

4
c1σ

p
zσ
s
x = e−i

π
4
σsxei8

k π
4
c1σ

p
zσ
s
zei

π
4
σsx (4.8)
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Figure 4.6: Pulse program to implement IPEA

In the pulse program shown above D1 and D2 are the delays according to equation 4.7

and values for feedback angle (θ), α and β are given as

α = 8k
πc2

2

β = 8k
πc1

2

θm = 2π(0.0φkφk+1φk+2...φm)

The thermal state of 1H detection is shown below

Figure 4.7: Thermal state of 1H Nucleus

The pseudopure state when 1H was in channel F1
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Figure 4.8: PPS of 1H Nucleus

The acquired phase was measured by setting the phase just before IPEA as a reference.

Thus, for the first iteration, k= 0 the obtained spectra is

Figure 4.9: Obtained spectra after first iteration

Similarly, for the second iteration

Figure 4.10: Obtained spectra after second iteration

Measured phase shifts are in the table below

Iteration Phase Shift(deg.) Binary Digits

1 72 0.00110011

2 178 0.01111110
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For the evolution time t = π
2 , ground state energy value can be obtained by putting the

value into following equation

E =
2πφ

t

After two iterations the extracted phase is (0.0011001101111110)2 corresponds to (0.92)10

a.u energy eigen value for the ground state while the theoretical value after diagonalization

of Hamiltonian matrix is 0.9310 a.u.

30



Chapter 5

Conclusions and future prospects

In this thesis, the quantum algorithms to simulate molecular Hamiltonians on quantum

computer are reviewed. The first paper connecting quantum computation and quantum

chemistry was published by Lidar and Wang [15] in which chemical dynamics is studied and

an algorithm to calculate thermal rate is proposed. This work opened a new door in the field

of computational chemistry. Further, Aspuru-Guzik et al. [6] reduced the number of qubits

required in the Abrams and Lloyds algorithm [7] and calculated the molecular ground state

energy. In case of heavy elements, it becomes necessary to include relativistic effects which

makes quantum full configuration interaction more complicated and a detailed description is

given in Libor et. al [10] where ground state as well as excited state energies are calculated

for SbH molecule.

Recently, there have been few experimental realization in the same direction. Jiangfeng Du.

et al [11] simulated H2 molecule in minimal basis and calculated ground state energy on

NMR quantum computer. This was followed by Deniz et al [16] where quantum simulation

of 2p-π electronic Hamiltonian in molecular ethylene is done by using an NMR quantum

computer. Simulation of H2 molecule in minimal basis was also done on optical quantum

computer by B. P. Lanyon et al. [18] .

In this work, simulation of SbH molecule in complete active space(2,2) was done on NMR

quantum computer. The Hamiltonian matrix is obtained by using DIRAC code [22] in

Kramer restricted approach while using cc-pVTZ basis set. The NMR implementation was

done for ground state and it was prepared using adiabatic state preparation (ASP). In ASP,

the Hamiltonian was varied through linear interpolation which is used in general to start

the quantum computer. The next step was to implement iterative phase estimation al-

gorithm(IPEA) in case of two qubits, 1H and 19F were used as probe and system qubits

respectively. Two iterations of IPEA were implemented and the phase shift was directly

measured while considering the phase before IPEA as reference in NMR phase sensitive

spectra. The experimentally obtained results differ from the expected one in a very insignif-

icant amount which is due to less iterations of IPEA which are yet to be performed. The
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success of ASP implies that there is gap between ground state and first excited state which is

due to spin -orbit splitting and Hence, relativistic effects have impacts on energy spectrum.

There are enough problems in quantum chemistry to be solved on quantum computer. For

example, one can increase the size of complete active space and it would be very fascinating

to implement full configuration interaction calculations on quantum computer which can

not be done on a conventional computer due to requirement of exponential memory and

operations. Thus, many interesting applications of quantum computer are just outside the

window.
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Appendix A

Matlab Codes

#Author: Rajveer

%%Code for adiabatic state preparation.

%%Define Hamiltonian Matrix :

T = 5.52;

M = 5;

T_sb = 7

M_sb = 10

Delta_sb = T_sb/(M_sb+1)

Delta = T/(M+1);

H11= -1.8310;

H22= -0.2537;

H12 = 0.1813;

H21 = H12;

J_HF = 52.65

%% Hamiltonian Matrix for H2 molecule. %%%PLEASE IGNORE THIS%%%

H_H2 = [-1.8310 0.1812; 0.1812 -0.2537];

H11_sb = -0.9035364;

H22_sb = -0.8761562;

H12_sb = 0.0388220;

H_sb = [H11_sb H12_sb; H12_sb H22_sb]

[V,D] = eig(H_sb)

Phi_sb_g =

[V,D] = eig(H_H2);
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%Phi_g_H2 = -0.9932*s0 + 0.1127*s1; %% Ground state in S0 and S1 basis.

%E_g_H2 = Phi_g’*H_H2*Phi_g;

%% Ground State of Hydrogen Molecule. Done.

%%Define Angle Thetas for ASP and Calculate them for 7 Iterations.

%Theta_1 = zeros(7,1)

for m = 0 : M_sb

s_m = m*T_sb/(M_sb+1)

Th_1 = (pi/2 - Delta + 0.8187*Delta*s_m);

Pulse_1 = 2*Th_1/pi;

Th_sb_1 = (pi/2 - Delta_sb + s_m*Delta_sb*0.9612)

Pulse_sb_1 = (2*Th_sb_1)/pi

%if Th_1(Th_1 < 2*pi)

%Th_1 = Th_1;

%else

%EffTh_1 = Th_1/(2*pi)

% EffTh_1_rem = Th_1/(2*pi)-floor(Th_1/(2*pi))

%end

Th_2 = (pi*s_m*Delta/2);

Pulse_2 = 2*Th_2/pi;

Th_sb_2 = 0.0274*s_m*Delta_sb

Pulse_sb_2 = (2*Th_sb_2)/pi

% %if (Th_2 < 2*pi)

% Th_2 = Th_2;

% else

% EffTh_2 = Th_2/(2*pi)

% EffTh_2_rem= Th_2/(2*pi)-floor(Th_2/(2*pi))

% end

Th_3 = (pi/2 + Delta - 0.8187*s_m*Delta);

Pulse_3 = 2*Th_3/pi;

Th_sb_3 = (pi/2 + Delta_sb - 0.9612*s_m*Delta_sb)

Pulse_sb_3 = (2*Th_sb_3)/pi

% if(Th_3 < 2*pi)

% Th_3 = Th_3

% else

% EffTh_3 = Th_3/(2*pi)

% EffTh_3_rem = Th_3/(2*pi) - floor(Th_3/(2*pi))

% end
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end

save adiabaticangle.mat

________________________________________________________________________________________

%Code for simulation of PPS with Alanine and pulse are implemented through GRAPE.

dx=[0 1

1 0];

dy=[0 -i

i 0];

dz=[1 0

0 -1];

E2=eye(2,2);

E4=eye(4,4);

E8=eye(8,8);

E16=eye(16,16);

u = [1 0; 0 0;];

d = [0 0; 0 1;];

X90 = expm(-i*pi/4*dx);

Y90 = expm(-i*pi/4*dy);

ZZ = expm(-i*pi/4*kron(dz,dz));

%pini = kron(dz,E16);

pini = kron(dz, E4) + kron(E2,kron(E2,dz)) + kron(E4,dz);

for k=1:12

ang = (k-1)*pi/3; %X0000

%ang = (k-1)*pi/3+pi/2; %% for Y0000

O = dx*cos(pi/2+ang)+dy*sin(pi/2+ang);

R = expm(i*pi/4*O);

R1 = kron(R,E4);

R2 = kron(kron(E2,R),E2);

R3 = kron(E4,R);

ZZ12 = kron(ZZ,E2);

ZZ23 = kron(E2,ZZ);

U_en = R3*ZZ23*R2*ZZ12*R1;

% U_enk(:,:,k) = U_en;

p0=p0+(-1)^k*U_en*pini*U_en’;

end

p0

%U1 = U_enk(:,:,1); %% output for grape pulse
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U_de = kron(E2,kron(X90,E2))*ZZ12*kron(E2,kron(Y90,X90))*ZZ23*kron(E4,Y90);

p = U_de*p0*U_de’

%p_th = kron(kron(kron(dx,kron(u,u)),u),u); %pps X00

p_th = kron(dx,kron(u,u)) %pps Y000

ptra = trace(p)

fid=trace(p*p_th)/sqrt(trace(p_th^2)*trace(p^2))

%subplot(2,1,1)

%bar3(imag(p))

subplot(2,1,1);

bar3(real(p))

subplot(2,1,2);

bar3(real(p_th))

%%Code for Optimization of adiabatic state preparation.

clear;

clc;

close all;

%%Phase Estimation algorithm:

%% For H2 Simualation in paper:

%% Define the hamiltonian matrix:

s0 = [1;0;];

s1 = [0;1;];

%% Ground State of the Hamiltonian. \Sigma_(x)

Phio = 0.707*(s0 - s1);

dx=[0 1

1 0];

dy=[0 -i

i 0];

dz=[1 0

0 -1];

E2=eye(2,2);

E4=eye(4,4);

E8 = eye(8,8);
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H0 = dx;

H11= -1.8310;

H22= -0.2537;

H12 = 0.1813;

H21 = H12;

J_HF = 52.65

H_H2 = [-1.8310 0.1812; 0.1812 -0.2537];

C2_H2 = (-1.8310+0.2537)*0.5

[V,D] = eig(H_H2)

%Phi_g_H2 = -0.9932*s0 + 0.1127*s1; %% Ground state in S0 and S1 basis. %%% out by JZ, Feb 22, 14

Phi_g_H2 = V(:,1) %%% by JZ

%E_g_H2 = Phi_g’*H_H2*Phi_g;

%% Ground State of Hydrogen Molecule. Done.

%%Similarly for SbH molecule.

T_U_H = 1.941121725;

R = 2*H12/(H11-H22);

T_R = atan(R);

Th_ta = 3.14*0.5 +(T_R);

%%For SbH_Hamiltonian Matrix:

H11_SbH = -0.9035364;

H22_SbH = -0.8761562;

H12_SbH = 0.0388220;

H_sb = [H11_SbH H12_SbH; H12_SbH H22_SbH];

%C2 = 0.5*(-0.9035364+0.8761562)

T_SbH = pi/sqrt(4*H12_SbH*H12_SbH + (H11_SbH - H22_SbH)*(H11_SbH-H22_SbH))

T_H = pi/sqrt(4*H12*H12 + (H11 - H22)*(H11-H22))

%% Ground state of H_sb hamiltonian :

[V, D] = eig(H_sb)

%Phi_g_sb = -0.8163*s0 + 0.5777*s1;

Phi_g_sb = V(:,1)

Rho_g_sb = Phi_g_sb*Phi_g_sb’

Rho_exp = [0.5065 0.2346+i*0.0721; 0.2346 + i*0.0721 0.4935]
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Fid_SbH = sqrt((Phi_g_sb’*Rho_exp*Phi_g_sb))

R_SbH = 2*H12_SbH/(H11_SbH -H22_SbH);

T_R_SbH = atan(R_SbH);

Th_ta_sb = 0.50*3.14 + T_R_SbH;

%%This is gamma defined in the pulse programme.

%%Beta -Bko

for k = 1:10

B_T_H_O_eff(k) = (-8^(k-1) * 0.5* T_U_H *(H11+H22))/(2*pi) - floor((-8^(k-1) * 0.5* T_U_H *(H11+H22))/(2*pi)); %%Working

B_T_H_O_eff(k) = (-8^(k-1) * 0.5* T_U_H *(H11+H22))/(2*pi) - floor((-8^(k-1) * 0.5* T_U_H *(H11+H22))/(2*pi));

end

for k = 1:10

A_T_H(k) = (8^(k-1)*0.5*T_U_H*sqrt(4*H12*H12 + (H11-H22)*(H11-H22))) - floor((8^(k-1)*0.5*T_U_H*sqrt(4*H12*H12 + (H11-H22)*(H11-H22))));;

%% Alpha defined in the paper.

D_T_H(k) = A_T_H(k)/(3.14*J_HF);;

end

%% Matrix is defined.

%Fid = zeros(40,40);

%F = []

%Uadtotal = zeros(10,10);

M = 10;

T = 7;

delta = T/(M+1);

s = 0:delta:T;

% for T = 1:1;

Uadtotal= eye(2,2);

l = length(s)

H1 = (1-delta)*H0 + delta*H_sb

H2 = (1-2*delta)*H0 + 2*delta*H_sb

H3 = (1-3*delta)*H0 + 3*delta*H_sb

U0 = expm(-i*delta*H0)

U1 = expm(-i*H1*delta);

U2 = expm(-i*H2*delta)
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U3 = expm(-i*H3*delta)

U = U3*U2*U1*U0

Ph2 = U0*U1*Phio

for m = 1: length(s)

Hm = (1-s(m))*H0 + s(m)*H_sb

Uadtotal = expm(-i*delta*Hm)*Uadtotal

Phiasp = Uadtotal*Phio

Norm = Phiasp’*Phiasp

Fid(m) = abs((Phi_g_sb’*Phiasp))^2

% plot(Fid(m))

end

save(Orig_JZ.mat)
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