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Abstract

Initial results from the study of dissipation in nanomechanical palladium resonator of width
around 250 nm, thickness 80 nm and length 5 µm suspended over the underlying silicon
substrate are presented. The electromechanical response of the resonator was measured
using the magnetomotive method over the temperature range from 1 K to 145 mK. The
resonator had a fundamental frequency of about 33.83 MHz at low temperature different
.Differential thermal contraction between the palladium beam and the underlying silicon
substrate increases the tension which may have caused this high frequency.Two fold in-
crease the quality factor of the resonator was observed between 1 K and 145 mK. The dissi-
pation follows a weak power law dependence on temperature, T0.47 from approximately 200
mK to 1 K. The relative shift in frequency shows logarithmic dependence on temperature.
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Chapter 1

Introduction

Miniaturization of electromechanical devices in recent years has led to emergence the na-
noelectromechanical systems (NEMS), with even smaller dimensions than its predecessor
microelectromechanical systems (MEMS) .The motivation for miniaturization is the ability
to detect very small physical quantities like the device with a mass sensitivity resolution of
7 zeptograms(7 x 10−21) , equivalent to 30 xenon atoms (Yang et al. 2006) and Single elec-
tron spin detection using Magnetic Resonance Force Microscopy (Rugar et al. 2004) have
been accomplished.Another reason is an opportunity to see quantum effects in macroscopic
devices(Armour, Blencowe, and Schwab 2002) (Cho 2003)(Knobel and Cleland 2003) (La-
Haye et al. 2004). The mechanical motion of nanoscale resonators is expected to approach
the quantum regime by decreasing the size of mechanical devices thus increasing their res-
onant frequency, and cooling them down to mK temperatures (~ω � kBT ).
The performance of nanomechanical resonators for the applications mentioned and for
studying quantum effects is often limited by dissipation (energy loss) in the device. The
dissipation is quantified by a number known as the Q-factor (Q = 1/dissipation), the higher
it is, the smaller the dissipation. Resonators of fundamental frequency of more than 1GHz
have been developed but they yielded poor quality factor of about 500 at low tempera-
ture(Henry Huang et al. 2003).We need to understand the dissipation mechanisms at low
temperatures in order to maximize the potential of NEMS . Few experiments have been
done to understand dissipation in metallic(Venkatesan et al. 2009)(Hoehne et al. 2010) and
carbon(Sazonova et al. 2004) nanoresonators at low temperatures which explained dissipa-
tion using Standard Tunneling Model. Further experiments are required to be able to draw
more firm conclusions about the dissipation mechanisms in such structures.
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Chapter 2

Theoretical Background

2.1 Resonant systems

A mechanical system having natural frequency fo starts to oscillate with f driven by peri-
odic force of frequency f . The condition at which this frequency of driving force matches to
the natural frequency fo of the system due to which the amount of energy absorbed and am-
plitude oscillation is maximum is called resonance. Harmonic oscillator can be considered
as one of the simplest example of mechanical resonant system. Resonant frequency and
the quality factor Q characterize this phenomenon. The basic features of resonance can be
understand through a simple model of simple harmonic oscillator.(French 1971)(Pain 2005)

2.1.1 Harmonic Motion

Consider a mass m attached to a spring that moves along a straight line with coordinate x,
under the action of a force F whose magnitude is proportional with x and represented by

F = −kx (2.1)
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Figure 2.1: A mass m suspended by a spring of spring constant k

where k is the spring constant and negative sign represent that force is in opposite di-
rection to the displacement. The equation of motion can be written as

mẍ+ kx = 0 (2.2)

whose general solution is given by

x = A cos

√
k

m
t+B sin

√
k

m
t (2.3)

where A and B are any constants.The mass oscillates forever with frequency given by

ωo =

√
k

m
and constant amplitude about the equilibrium position without any loss in en-

ergy.

2.1.2 Damped Harmonic Motion

In real system the oscillation of resonator always dies out with passage of time due to some
kind of frictional force. This frictional force is being taken proportional to velocity and it
acts in direction opposite to that of the velocity.The equation of motion then becomes

mẍ+ γẋ+ kx = 0 (2.4)

where γ is the proportionality constant. When the coefficient m, γ and k are constant,a
solution of form x = eωt can always be found, where ω satisfies the characteristic equation
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ω2 + 2γω + ω2
o = 0 where ω2

o =
k

m
.The solutions are given by(French 1971)

ω± = −γ
2
±
√
γ2

4
− ω2

o = −γ
2
± ωo

√
γ2

4ω2
o

− 1 (2.5)

the general solution of the system is given by(French 1971)

x(t) = Ceω+t +Deω−t

= e

−γt
2

Ce
ωo

√√√√√ γ2

4ω2
o

−1

t
+De

−ωo

√√√√√ γ2

4ω2
o

−1

t
 (2.6)

The first term describes the damping envelope that bounds the decaying oscillation and the
second term (in parentheses) defines the oscillatory part. The system behaves different for
following conditions

For
γ2

4ω2
o

− 1 > 0 ,the system is over damped.

For
γ2

4ω2
o

− 1 = 0 ,the system is critically damped.

For
γ2

4ω2
o

< 1 = 0 ,the system is slightly damped and gives oscillatory damped simple

harmonic motion.for this case equation 2.6 can be written as

x(t) = Ae
−
γt

2 sin(ω′t+ φ) (2.7)

where A and φ are constants and ω′ = ωo

√
1− 1

4Q2

Q =
ωo
γ

is called quality factor of the system.

2.1.3 Forced Harmonic Motion

To prevent oscillations from dying out,a periodic force is generally applied to a damped
harmonic oscillator. The amplitude of oscillation can be made large by applying force with
a frequency close to the natural frequency of the oscillator. The amplitude remains small if
the frequency of the applied force is not equal to the natural frequency of the system even
if the force is applied repeatedly. Suppose the harmonic oscillator is driven by a periodic
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force F (t) = Fo cos(ωt). The equation of motion for the system is given by

mẍ+ γẋ+ kx = F (2.8)

The periodic force try to impose its own frequency to the system which wants to oscillates
with its fundamental frequency. The solution for this case has two terms. The first term
corresponds to the solution of the equation for mẍ + γẋ + kx = 0. For time longer than
the damping time, this term can be neglected since the amplitude decays exponentially. The
second describes the behavior of the oscillator after the transient term has died. If motion
is harmonic of same frequency as of the driving force,the steady state solution is(French
1971)

x(t) =

F

m

ω2
o − ω2 + i

ωωo
Q

(2.9)

Figure 2.2: (a) In-phase, (b) quadrature (c) absolute amplitude and (d) phase response of a
driven damped harmonic oscillator as a function of driving frequency ω.
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Real part of x,which is known as ’In-phase’ amplitude is

Re(x) =

F

m
(ω2

o − ω2)

ω2
o − ω2 +

ω2
o

Q2

(2.10)

and imaginary part of x,which is known as ’quadrature amplitude’ is

Re(x) =

F

m
(
ωωo
Q

)

ω2
o − ω2 +

ω2
o

Q2

(2.11)

The solution can also be expressed as x = Ae−iφ,where A is the amplitude and φ is the
phase

A(w) =

F

m√
(ω2

o − ω2)2 + (
ωωo
Q

)2
(2.12)

φ(ω) = arctan
ωωo

Q(ω2
o − ω2)

(2.13)

The amplitude response has the form of a Lorentzian with a peak at ωo. The quality
factor Q is given by Q =

ωo
∆ω

where ∆ω is full width at half maximum of the Lorentzian
curve fig 2.2.

2.2 Natural Frequency

A doubly-clamped beam is considered with length L,width W and thickness h with coordi-
nate system as shown in the figure 2.3.
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Figure 2.3: A beam of length L , width w and thickness t

For a structure with length is much larger than its cross section area, it is possible to
derive a equation for the natural frequencies of oscillations considering linear forces and
ignoring any other complicated mechanical effects,the wave equation for the flexural motion
of such a beam is given by(Cleland and Roukes 2002)

EI
∂4z

∂x4
− To

∂2z

∂x2
+ ρA

∂2z

∂t2
= 0 (2.14)

where E is the Youngs modulus, I =
Wh3

12
is the moment of inertia of the beam, To is

the intrinsic tension in the beam,ρ is the density and A the cross-sectional area .Equation
2.14 is the Euler-Bernoulli Equation with a tension term.The two clamped ends impose the
boundary conditions:

z(0, t) = z(L, t) =
∂z

∂x
(0, t) =

∂z

∂x
(L, t) = 0 (2.15)
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Figure 2.4: First four in-plane flexural resonant mode for studied beam using Comsol

An analytic expression to calculate the mode frequencies is derived in literature:(Bokaian
1990)

fon =
π

8
(2n+ 1)2

1

L2

√
EI

ρA

√
1 +

0.97ToL
2

(n+ 1)2π2EI
(2.16)

Figure 2.4 shows the first four in-plane flexural resonant mode for a palladium beam
with similar dimension to the measured sample calculated using Comsol. The analytic
expression for fundamental mode of a doubly-clamped beam is by (Kozinsky 2007)

fo1 =
2π

L2

√
EI

3ρA

(
1 +

L2To
4π2EI

)
(2.17)

which is similar to equation (2.16) for n = 1

2.3 Dissipation

Dissipation (Q−1) is defined as the energy lost per cycle of oscillation (∆W ) as a fraction
of the total mechanical energy (Wo) of the resonator. When the drive force stops abruptly
dissipation determines the time for which the resonator continues to oscillate.It also deter-
mines the transient time of the dynamic system, the time after which the harmonic response
of the resonator becomes independent of the initial conditions. The quality factor Q ,i.e.
the inverse of the dissipation and the resonant frequency fo, are the two most important
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characteristics of a resonator. Dissipation can be written as

Q−1 =
∆W

Wo

=
γ

ωo
=

∆ωo
ωo

(2.18)

ωo is the resonance frequency; and γ is the friction, or damping, ∆ωo is the full width at half
maximum (FWHM) frequency response. Energy lost through dissipation can be transferred
as elastic energy out of the resonator; converted to non-mechanical energy; or lost to the
thermal bath as heat.Therefore the total dissipation is written as sum of dissipation caused
by different mechanisms.

Q−1 = Q−11 +Q−12 +Q−13 + ... (2.19)

These process are mainly divided in two categories: Extrinsic Dissipation includes dis-
sipative mechanisms that are related to engineering constraints and environmental factors
like clamping and viscous forces.Intrinsic Dissipation considers losses within the material
itself, namely thermoelastic dissipation, surface losses , mechanical defects , and quantum
dissipation occurring through two level systems.

2.3.1 Extrinsic Dissipation

Clamping Loss

From a vibrating resonator, acoustic wave can propagate into the substrate causing the res-
onator to lose energy. If the acoustic waves have wavelength comparable to the beam length,
most of the waves are reflected back and clamping loss is minimum. These losses are ex-
pected to be temperature independent.In the reference a approximation for clamping dissi-
pation for a cantilever is by:(Photiadis and Judge 2004)

Q−1cl =
wt3

3.2l5
(2.20)

where w,t and l are width,thickness and length of the cantilever.

Fluid Friction

Resonators can dissipate energy in gaseous environment due to collision with gas molecules.,
So the dissipation increases if the surrounding pressure is increased. At very low pressures,
where the mean free path of the fluid molecules is much larger than the device dimen-
sions Q−1 v p(Bhiladvala and Wang 2004) however Q−1 v

√
p when the pressure is
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higher.(V.A.Sazonova 2006) A good vacuum can be used to minimize such type of damp-
ing.

Dissipation due to measurement setup

Attempts to measure the mechanical motion typically tend to cause some disturbance of the
motion, and often lead to additional damping.For example,In the magnetomotive technique
used the EMF generated in the device will also give rise to eddy currents that produce
another force opposite to the motion of the beam and has an effect of adding more damping
to the resonator.

2.3.2 Intrinsic Dissipation

Thermoelastic Effect

Local temperature gradient across the resonator can be induced,when subjected to mechan-
ical vibrations due to the rapid expansion and contraction in the structure . hence heat flows
from hot to cold regions. The resonator tries to relax back to equilibrium by coupling to
the thermal modes of the surrounding environment which make it a temperature dependent
process. The temperature dependence of thermoelastic damping for thin vibrating beams is

Q−1 =
EαT 2

Cp
P (2.21)

Where E is the Youngs modulus, α =
1

L

∂L

∂T
is the thermal expansion coefficient, T is the

temperature, Cp the heat capacity at constant pressure and P is a constant which depends on
the beam materials thermal diffusivity.(Lifshitz and Roukes 2000)

Surface Effects

With the change in surface-to-volume ratio of resonator, quality factor also changes which
suggests that the surface of nanomechanical resonator also plays an important role in dissi-
pation.(Ekinci and Roukes 2005) The presence of oxide or water layer or dangling bonds on
the surface of resonator can be the cause of such losses. Methods like annealing or surface
passivation can be implemented to minimized these losses.
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2.3.3 Two-level systems: Standard Tunneling Model

The standard tunneling model was proposed simultaneously by Phillips (Phillips 1972) and
Anderson (Anderson, Halperin, and Varma 1972) to explain the properties of disordered
solid at low temperatures.

The STM predicts that the presence of defects in solids, such as dangling bonds, con-
taminants or dislocations can be the cause of damping due to leads to the existence of
anharmonic excitations . A double well potential model can be applied to these defects
where,at low temperature an atom or group of atoms can occupy one of two possible en-
ergy minima separated by an energy barrier height V as depicted schematically in Figure
2.5.

Figure 2.5: The double well potential model for defects in a solid, with barrier height V ,
width d, asymmetry ∆ and tunnelling energy ∆o.

At low temperatures only the ground states of both wells play a role in the dynamics
hence it is defined as a two-level system (TLS).The TLS can couple to their environment via
strain and electric fields.So initially it absorbs energy from the mechanical motion which
modifies the strain field and then releases the energy through interactions with phonons and
conduction electrons (in the case of metallic structures) via two processes: resonant and
relaxation absorption.when an external acoustic wave excites vibrational mode of the res-

onator with angular frequency ω the mechanism of dissipation depends on the ratio
~ω
kBT

,

14



where ~ω is the energy of the acoustic wave. If
~ω
kBT

≥ 1, then the phonons can be res-

onantly absorbed by those defects and the TLS will undergo a transition from the ground
state into the excited state.In this regime the contribution to the damping is negligible and
a measurable temperature dependence for the shift in frequency of the resonator can be
observed.

In the regime where
~ω
kBT

≤ 1 there can still be dissipation in the vibrating element via

anelastic effects due to the phase delay between the stress and imposed strain. The acoustic
wave couples to the TLS and changes its thermal equilibrium by modifying ∆ or ∆o. The
TLS then tries to relax to a new equilibrium position by absorbing and emitting thermal
phonons,which causes dissipation and a shift in the resonant frequency of the resonator.The
ratio between the mechanical period and the relaxation time τ of the TLS determines the
strength of relaxation damping . Maximum damping occurs when

ωτ ∼ 1 (2.22)

i.e the mechanical period of the resonator matches the relaxation time of the TLS. The broad
distribution of tunnel splittings, ∆o, means that there is a broad range of relaxation rates.
There exists a well-defined minimum,τmin(E) at each energy E ∼ KBT for the relaxation
mechanisms relevant for TLS in amorphous solids .(Hunklinger and Raychaudhuri 2011)
(Phillips 1987) The temperature corrosponding to the condition when ωτmin ∼ 1 is called
crossover temperature T ∗. Below T ∗ i.e. ωτmin � 1 , , the dissipation is proportional to T n

where n = 3(1) depending on whether the relaxation is through phonons (electrons).
Above T ∗ i.e. ωτmin � 1, the damping is given by

Q−1 =
π

2
C (2.23)

where C =
Poη

2

ρv2
is a constant which depends on the density of states of the TLS in the

structure . The parameter η is the change in the TLS asymmetry per unit strain and v is the
speed of sound.
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Figure 2.6: Generic predictions of the STM for the behaviour of dissipation and frequency
shift as a function of temperature in an amorphous solid (Esquinazi 1998)

The frequency shift at temperatures below T ∗ is dominated by the resonant mechanism
(the relaxation mechanism in this regime is negligible compared to the resonant process)
and it increases logarithmically with slope C. Beyond T ∗ relaxation processes start to dom-
inate the frequency shift and a logarithmic decrease with temperature is observed, the gra-
dient of which is determined by the relaxation mechanism.

Above table (Imboden and Mohanty 2013) shows the change in dissipation and fre-
quency shift as described by various models( behavior for glass, single crystal, and Phillips
model)
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Chapter 3

Experimental Techniques

3.1 The Palladium Beam experiments

Pre-fabricated samples of palladium resonators were provide to study dissipation at low
temperature.The SEM imaging (figure 3.1) was done to measure the dimensions of res-
onators to calculate the fundamental mode of resonate frequency .

Figure 3.1: SEM micrograph of the measured palladium nano resonator.The studied sample
is a 5µm long, 250 nm wide and 80 nm thick palladium resonator suspended above the
silicon substrate.

The cryostat used for this investigation was Triton 200 by Oxford Instruments 3He/4He
dilution refrigerator (figure3.5) with a base temperature of (10 ± 1) mK, equipped with a 2
axis 9/1 T magnet with cooling power of 200 µW at 100 mK. The measurements were car-
ried out in transmission mode using R&S ZVB14 Vector Network Analyzer(figure 3.2. The
sample was mounted on a PCB (figure 3.4 and figure 3.6) and placed inside a brass vacuum
can (sealed with an indium O-ring) with electrical feed-through to the sample and resis-
tance thermometers ). The feed-throughs were filled with Stycast 2850FT . The magnetic
field was applied perpendicular to the plane of the wafer in order to study the fundamental
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in-the-plane flexural mode of the beam. Continuous wave magnetomotive scheme (section
3.3) were applied to study the motion of the beams.

Figure 3.2: Schematic of the measurement setup and wiring inside the cryostat

3.2 Calibration of thermometer

A generic based thermometer was calibrated from 1.5 K down to 50 mK for using it to
measure the temperature of the the palladium resonator mounted to sample stage in a brass
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vacuum can. The RuO2 resistance at the sample stage was calibrated against the one at
the mixing chamber stage by letting the fridge stabilize for an hour at several temperatures
between 1.5 K and 50 mK. The resistances of both chip resistors were then measured and
assuming that both stages were at the same temperature, a calibration chart for the sample
stage resistor was produced. The fig 3.3 shows the resistance in zero magnetic field as a
function of T−1/4 in a semi-log scale. The temperature variation of the resistance at lowest
temperature is given by

R(T ) ∝ exp[(To/T )p] (3.1)

where p=1/4.(Watanabe, Morishita, and Ootuka 2001).

Figure 3.3: Calibration curve for a ruthenium Oxide based thermometer.The linear fit of
resistance with T−1/4 shows that the data obtained follows the equation 3.1

The resistance ofRuO2 based thermometer at low has been analyzed in terms of variable-
range hopping(VRH) conduction(Shklovskii and Efros 1984).According to theory of VRH
the value of p depends on the dimensionality d and the shape of the density of states around
the fermi level.
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Figure 3.4: PCB for mounting sample with soldered surface mount super SMP connectors

Figure 3.5: Photograph of Oxford instruments Triton 200 dilution refrigerator showing all
cables and components from the 77 K flange to the sample stage after removing all the
shields.
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Figure 3.6: Copper cold finger thermally anchored from mixing chamber plate to vacuum
can which was placed 370 mm below the plate in the center of 9 Tesla Magnet

3.3 Transduction Technique

Magnetomotive transduction,capacitive coupling to other electronic elements, piezoresis-
tive actuation and optical detection are the few techniques to drive and detect the motion of
nanomechanical resonators.
Magnetomotive technique is used in the experiment performed as it is simplest to imple-
ment.This technique was first developed by A. N. Cleland and M. L. Roukes (Cleland and
Roukes 1999).The technique requires placing a conducting beam of length L in a uniform
magnetic field B perpendicular to its longitudinal axis (figure 3.7). To drive the beam into
motion a RF alternating current I(t) = Ioe

iωt is applied where Io and ω are the amplitude
and frequency of oscillating current, so the beam experience an oscillating Lorentz force
F = LBI(t) of same frequency as applied signal perpendicular to both magnetic field and
longitudinal axis of the beam.The motion of the beam can be described by the equation

z̈ + γż + ω2
oz =

LBI(t)

m
(3.2)
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where z(t) is the displacement of the beam ,m its mass,γ =
ωo
Qo

is the damping coefficient.

Figure 3.7: Schematic diagram of the magnetomotive drive and detection technique.

This motion of beam by Faradays Law,generates an electromotive force (EMF) VEMF (t) =

ξLBdz(t)/dt across it, which opposes the flow of current thereby increasing the impedance
of the beam .The geometric constant ξ depends on the mode shape(0.83 for the fundamental
mode for a doubly clamped beam).Substituting a solution of a form z(t) = zoe

iωt in equa-
tion 3.2,where zo is the amplitude of displacement, the expression for beam displacement
in terms of driving current becomes

z(t) =
LBI(t)

m(ω2
o − ω2) + i

mωωo
Qo

(3.3)

Substituting the value of z(t) from equation 3.3 in equation 3.2 gives

VEMF = iω
ξL2B2I(t)

m(ω2
o − ω2) + i

mωωo
Qo

(3.4)

On resonance the terms for induced EMF becomes

VEMF =
ξL2B2QoI(t)

mωo
(3.5)

Equivalent Circuit A nanomechnichal resonator is electrically equivalent to a parallel
combination of an inductor Lm,a capacitor Cm and a resistor Rm while undergoing magne-
tomotive transduction as shown in fig 3.8.If the external impedence Zext is assumed to be

22



infinite,the voltage across ciruit is given by(Cleland and Roukes 1999)

VEMF = iω

I(t)

Cm

(ω2
LC − ω2) +

iω

RmCm

(3.6)

where ωLC = ωo = 1/
√
LmCm is the resonant frequency of LCR circuit.

Figure 3.8: LCR representation of a mechanical resonator with a external impedance Zext,
which represents the electrical resistance of the sample and measurement ciruit.

Equation 3.4 and 3.6 are analogous to each other where the model parameters in terms
of mechanical properties of resonators are defined as

Lm =
ξL2B2

mω2
o

, Cm =
m

ξL2B2
, Rm =

ξL2B2

mω2
o

Qo (3.7)

If the external impedance is finite,the voltage across the whole circuit is(Cleland and Roukes
1999)

VEMF = iω

I(t)

Cm

(ω2
o +

ωωoZeXext

|Zext|2
)− ω2 + iω(

1

Qo+

ZeRext

|Zext|2
)

(3.8)

where Rext = Re[Zext], Xext = Im[Zext] and Ze =
√
Lm/Cm. In this case the measured

resonant frequency fo and Q factor are not intrinsic,but related to circuit loaded values by

fL = fo

√
1 +

ZeXext

|Zext|2
; Q−1L = Q−1o + αB2 (3.9)
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where α =
ξL2

mωo

Rext

|Zext|2
. At any given temperature Qo and α can be extracted by carrying

out measurements as a function of magnetic field .
Although the magnetomotive technique is the easiest technique to implement for NEMS, it
has some disadvantages. Firstly, it requires the use of magnetic fields generated by large
superconducting coils, which need to be cooled down to cryogenic temperatures.Secondly,it
is only possible to detect the odd flexural modes as the EMF voltages are canceled for the
even modes.

3.4 Resonant Response Analysis

The transmission across resonator and the connecting RF cable is is measured using a Vector
Network Analyzer.The measured response includes a background noise (fig 3.9) .

Figure 3.9: Figure shows the raw data obtained using a VNA.Plots are Log Ampli-
tude,Amplitude, Inphase and quadrature response of the resonator including measurement
setup

At small amplitudes a resonators motion can be modelled as a harmonic oscillator with
a Lorentzian shaped resonant response. The method to fit the resonance curves obtained
from the frequency domain measurements has been adapted from the method described in a
thesis by I. Kozinsky For a Lorentzian superimposed on a background signal, the oscillator
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response R has the following form(Kozinsky 2007):

R(ω) =

Ae
i(θ−

3π

2
)ω2

o

Q

(ω2
o − ω2) +

iωωo
Q

+B0 +B1(ω − ωo) (3.10)

which allows a full 8 parameter fit.(Ax, Ay, ωo, Q,B0x, B0y, B1x, B1y ) A is the resonant
peak amplitude, ωo the resonant frequency of the beam, Q its quality factor, the complex
values B0 and B1 are the constant and frequency varying components of the background
signal, respectively.The raw data are fitted to the above equation, the real and imaginary
parts being fitted separately.The initial step is to fit the x and y components of the data to
trace out a circle in the xy-plane (fig 3.10); this allows an estimate of the peak amplitude A

which is given by the diameter of the circle. The phase factor e
i(θ−

3π

2
)

in the above equation
accounts for the background phase, which shifts the circle from its zero background position
(which is the origin). This phase is incorporated into the complex amplitude A . The next

step is to fit the experimental values of
dθ

dω
which are background free and hence can be

fitted to provide more accurate estimates of the resonant frequency and the Q-factor (fig
3.11).

Figure 3.10: Figure a) A fitted circle to the imaginary vs real raw data b)The circle is
translated such that center of circle coincides with origin,the amplitude is the diameter of
circle and red point correspond to resonant frequency
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Figure 3.11: Real, imaginary ,amplitude and phase response of the typical measured re-
sponse.The red line shows the fitted Lorentzian function after baseline correction
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Chapter 4

Results

4.1 Device Frequency

The resonant frequency of nanomechanical resonators can depend significantly on the ten-
sion, To, in the structure. The tension arises from the difference in the thermal contraction
between the substrate (silicon) and the metal (Pd) when the device is cooled down to low
temperatures. The analytic expression for fundamental mode of a doubly-clamped beam as
already discussed in section 2.2 is

fo1 =
2π

L2

√
EI

3ρA

(
1 +

L2To
4π2EI

)
(4.1)

Using bulk values for the Youngs modulus (E = 124 GPa)(Vaz, Salvadori, and Cattani 2003)
and density (ρ = 12093 kgm−3 ) of Palladium,the expected frequencies without any stress is

33.53 MHz for the measured beam.The tension in beam can be estimated as To = EA(
∆L

L
)

where
∆L

L
= (

∆L

L
)Pd − (

∆L

L
)Si is the difference in the relative thermal contraction of

Palladium and silicon.An estimate or the differential thermal contraction of palladium is
2.378 x 10−3(Arblaster 2012) and 2.0 x 10−4 (Li et al. 2008)for silicon. These values

were used to calculate an estimate for the tensile stress σ =
To
A

in the beams when cooled
from room temperature down to liquid helium temperatures, of about 386 MPa, leading
to predicted resonant frequencies of 38.64 MHz .This is a crude estimate as the width of
resonator does not remain uniform and varied from 180 µm at top to 250 µm at bottom.
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4.2 Magnetic field dependence

Use of the magnetomotive transduction scheme results in a measured Q factor which is
loaded by the external circuitry and the electrical resistance of the sample itself. Measure-
ments of the magnetic field dependence of the resonator response were used to extract the
resonators intrinsic Q-factor.Fig 4.2 shows plots of the dissipation as a function of B2 for
the sample at about 145 mK, which shows that the magnetic field can cause a significant
change in the dissipation. As expected, the behaviour is found to be linear in B2 and the
gradient α allows Q−1o to be obtained by extrapolation to zero field.

Figure 4.1: Response of a Pd beam at T = 145 mK at various Magnetic Field
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Figure 4.2: Plot of loaded dissipation as function of B2.The red line is linear fit to data
obtained.The slope gives value of α to be 5.67 x 10−7 and the intercept 8.122x 10−5 is the
intrinsic dissipation of the resonator.

4.3 Temperature dependence

Measurements were carried out from about 1 K down to 145 mK at B=6 T as it provided an
acceptable signal-to-noise ratio over the whole range of temperatures studie and the intrinsic
quality factor and resonant frequency were extracted from the data.
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Figure 4.3: Response of a Pd beam at B=6 T for various Magnetic Field

4.3.1 Dissipation

Figure 4.4 shows the temperature dependence of the intrinsic dissipation.Two different re-
gions of behavior can be identified. Below 200 mK the dissipation saturates, reaching what
appears to be a plateau.In the region between 200 mk and 1 K, fits to the data show that the
behavior of device is described by a power law T n with n=0.466.

4.3.2 Resonant Frequency

The relative shift in the frequency of the resonators as a function of temperature is shown in
Figure 4.5. There is an increase in frequency with temperature . The behavior here is well

described by a logarithmic dependence
∆f

fo
= Clog T

T ∗ .Using the slope and intercept of the

fit from the data obtained,the value of C and T ∗ are estimated to be 115.6 x 10−6 and 1.134
K respectively.
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Figure 4.4: Intrinsic dissipation as a function of temperature on log-log scale
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Figure 4.5: Relative shift in frequency as a function of temperature

4.4 Discussion

The strong variation seen in the dissipation at such low temperatures suggests that tun-
nelling TLS are the dominant source of dissipation.

Table 4.1 shows the estimated values of dissipation of the measured sample through dif-
ferent mechanism.The dissipation due to clamping plays negligible contribution to overall
damping.The dissipation seen in the palladium fits the pattern predicted by the STM i.e.
power law dependence T 0.47 at lower temperatures down to about 200 mK. However, the
temperature dependence observed here is much lower than those predicted by the standard
theories of acoustic damping in bulk solids.

32



Table 4.1: Estimated values of dissipation of the measured sample through different mecha-
nism.The value of circuit damping was estimated by calculating difference between loaded
and intrinsic dissipation at temperature=200 mK and Field =6 T.

Mechanism Estimated dissipation
Clamping loss(2.20) 1× 10−9

Circuit Damping 2.6× 10−5

Quantum dissipation(at 200 mK) 8× 10−5

Table 4.2 shows the power law dependence for the other metallic resonators which have
been already measured.(Venkatesan et al. 2009) (Hoehne et al. 2010) which are also much
less than the predicted by the standard theories of acoustic damping in bulk solids. A plateau
at higher temperature could not be seen due to lack of data above 1 K since the estimated
value of T ∗ from frequency shift data is 1.134 K.The STM also predicts a frequency shift
that increases logarithmically with temperature for T ≤ T ∗ due to the resonant interaction
between the TLS and the acoustic excitation, with a gradient given by C .The logarithmic
increase in the frequency shift that is seen below 1 K for the device agrees qualitatively with
the STM.

Table 4.2: Summary of metallic resonators with Q−1 ∝ Tα scaling law.

Material Value of α
Palladium(measured) 0.47
Gold 0.5
Aluminium 1

4.5 Frequency Shift as a thermometer

A saturation was seen in the temperature dependence plot of dissipation.One possible reason
may be the thermal decoupling between resonator and vacuum can.The thermometer is
attached to the vacuum can, not the resonator,so it might give wrong estimation at such low
temperature.One way to estimate the real temperature of resonator is by using frequency
shift as it follows the logarithmic dependence even at low temperatures. Fig 4.6 show s
temperature as a function of frequency shift on a semi-log scale,where red line shows the
linear fit,confirming frequency shift follows the logarithmic dependence. So we can write
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temperatures of resonator in terms of relative frequency shift as

T = antilog10(8.0
df

Fmax
− 76.1)× 10−3 (4.2)

Figure 4.6: Temperature as a function of relative shift in frequency

Using equation 4.2 for the frequency shifts of data points below 200 mK, where dissipa-
tion appears to be saturating in figure 4.4 (white points) we can calculate new temperature
and again plot the dissipation as a function of this new temperature and calculate new power
law dependence which comes around to be T 0.41 (figure 4.7)
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Figure 4.7: Modified Dissipation as function of temperature

4.6 Conclusion

In this thesis, the dissipation in palladium resonator at low temperatures have been studied.
Their motion was actuated and detected using the magnetomotive transduction scheme. The
samples were placed in a cryofree dilution refrigerators and all measurements were carried
out at temperatures below 1 K using VNA. The resonance characteristics of the doubly-
clamped palladium beams were measured as a function of magnetic field and temperature.
By fitting the raw data to a Lorentzian function, we extracted the resonant frequency and Q-
factor of the devices. The field dependence study allowed us to extrapolate to the B = 0 limit
and infer the intrinsic quality factor of the resonators at any temperature. The dissipation in
palladium nanomechanical resonators varies with temperature as Q−1 ∼ T 0.47 between 200
mK and 1K and saturates below 200 mK. The resonant frequency of the beams increase
logarithmically with temperature below 1 K.
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The experiments described in this thesis provide initial results to understand the be-
havior of nanomechanical palladium resonators at low temperatures. However, additional
measurements are needed to confirm the saturation below 200 mK and the quantitative value
of temperature power dependence.Measurement above 1 K are also needed to get the full
picture of dissipation behavior in the palladium resonator.The future work will also involve
the study of electromechanical response of palladium beam resonator at low temperature in
the presence of hydrogen gas as the palladium absorb hydrogen,so it alters the mass and ten-
sion of the resonator which can change the resonant frequency and quality factor.A vacuum
can with hermetic DC and RF feedthroughs for cryogenic temperature has been prepared
by another Masters student (Kumar 2014) .
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