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Abstract

Using simulations, we study the theoretical models of the collective dynamics of the active

particles. These particles constitute a large class of non-equilibrium systems where each

individual takes energy from the environment and moves depending upon interaction with

their neighboring units. We first analyzed the models of polar active particles for both

constant speed and variable speed models. This class is generally characterized by two

phases- ordered state and disordered state. We explore the phase diagrams using noise

intensity and packing fraction as control parameters. We found that transitions occurs from

the ordered to disordered state with the increase in noise intensity. We also studied self

propelled soft repulsive disks in two dimensions similarly for constant speed and variable

speed. These particles have excluded volume interactions and are subject to only rotational

noise, but without any aligning interaction. This system shows a clustered state above a

critical density and self propulsion speed. We investigate the phase diagrams under these

control parameters.
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Chapter 1

Introduction

Active Brownian particles (Fig 1.1) are the particles which can take up energy from the envi-

ronment, may store it and then convert this energy into systematic movement. Examples of

active Brownian particles include moving cells[6],fishes,[8] insects or even non-living matter

such as shaken metallic rods [5] and nano-swimmers. These systems show very interesting

Figure 1.1: (a) Wingless Locusts (b) Rotating colony of army ants (c) A 3D array of Golden
rays (d) Fishes (Reproduced from [1])

patterns in their swarms or collective motion like abrupt formation of uniformly moving

group from totally random moving individuals or vice-versa, swirling motion : abrupt for-

mation of vortices in the flock, etc. The aim of our study is find out how such collective

dynamics emerges from such random motion of individuals units. Before studying the active

collective dynamics, we first look at the passive random motion of the individual units.
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1.1 Passive Brownian Motion

When a tiny particle is put in a fluid it does random motion which is called Brownian

Motion[2]. To model the motion of a single Brownian Particle in 1D, two kinds of forces are

basically considered to be controlling the particles motion. First, there is a force which comes

from its interaction with the medium. This force is the frictional force(−ζv) proportional

to the velocity of the particle. The second one is random force due random collision with

other particles in the fluid. The frequency of these collisions is very high. In order to model

these random forces we use Gaussian white noise.

〈δF (t)〉 = 0, 〈δF (t)δF (t′)〉 = 2Bδ(t− t′); (1.1)

The first equation attributing the property of force which means it’s random hence the

average over time is zero, the second equation explains the no-memory property of these

forces as the forces at two different times can’t have any correlation; the delta function

confirms that these correlation follow the same property.

Therefore, the equation of motion for a passive Brownian Particle is

m
dv

dt
= −ζv + δF (t) (1.2)

This is the Langevin Equation. Solving this equation involves easy methods of solving

differential equations of the form dy/dx+P (x)y = Q(x), which involves finding integration

factor. Multiplying and integrating gives

v(t) = v(0)e−ζt/m + e−ζt/m
∫ t

0
dteζt

′/m δF (t′)

m
. (1.3)

Now in order to find the mean squared velocity we should find 〈(v(t))2〉

〈(v(t))2〉 = v(0)2e−2ζt/m +
B

ζm
(1− e−2ζt/m) (1.4)

In the long time limit the above approaches B/ζm. But mean square velocity should be

kT/m in equilibrium by equipartition theorem. This implies

B = ζkT. (1.5)

This relation is known as Fluctuation-dissipation theorem. This relation basically connects

magnitude of fluctuation i.e. B with the strength of dissipation ζ.

2



1.2 Correlation function

1.2.1 Time correlation function

These functions play an important role in understanding the phenomena in non- equilibrium

statistical mechanics. Suppose there is quantity whose A(t) whose correlation function we

have to find. First we average this quantity over a time interval we need to find this function

〈A〉 =
1

τ

∫ τ

0
A(t)dt (1.6)

Now the fluctuation δA is given by δA = A(t)−〈A〉 This function δA are generally correlated

at different times and this correlation can be measured by the quantity

C(t) =
1

τ

∫ τ

0
dsδA(s)δA(t+ s). (1.7)

1.2.2 Velocity correlation function

This simple time correlation is important as it’s related to diffusion constant of Brownian

motion. An easy way to understand this correlation is through 1-dimensional diffusion

equation.
∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
(1.8)

This can be related to mean square displacement 〈x2〉

∂〈x2〉
∂t

=

∫
dxx2

∂C(x, t)

∂t
(1.9)

using above two equations and integration by parts

∂〈x2〉
∂t

= 2D

∫
dxC(x, t) = 2D (1.10)

where D is diffusion constant. But now position (x) and mean square velocity 〈x2〉 can be

calculated through velocity too.

x(t) =

∫
v(s)ds (1.11)

〈x2〉 = 〈
∫ t

0
ds1v(s1)

∫ t

0
ds2v(s2)〉 =

∫ t

0
ds1

∫ t

0
ds2〈v(s1)v(s2)〉 (1.12)

where 〈〉 represents ensemble average. Taking the time derivative

∂〈x2〉
∂t

= 2

∫ t

0
ds〈v(s)v(t)〉 (1.13)

3



The term of right hand side inside integral is velocity correlation function. This relation

is important as it can be used in both experiment and simulation in calculation diffusion

constant, which is a crucial quantity to characterize a Brownian motion.

1.3 Diffusion coefficient and Temperature

Another application of this relation is that it can be used to find out the relation between

diffusion constant and temperature, as the diffusion constant is directly proportional to the

temperature. Again the displacement can be written as

∆x(t) =

∫ t

0
dt′v(t′). (1.14)

and using velocity relation Eq. 1.3

v(t) = v(0)e−ζt/m +

∫ t

0
dt′e−ζ(t−t

′)/mδF (t′)/m. (1.15)

Using same relation Eq 1.1 and doing the averages the we get

〈∆(x(t))2〉 =
2kT

γ

[
t− m

γ
+
m

γ
e−ζt/m

]
(1.16)

one can easily see at short times the mean square displacement is quadratic function of time,

this is due to effects of initial velocity. But at the larger times noise dominates and relation

becomes linear in time.

〈∆x2〉 = 2
kT t

ζ
(1.17)

where ζ is coefficient viscosity. Hence from Eq 1.10

D = kTγ. (1.18)

Before doing molecular dynamics in presence of Langevin heat bath Eq 1.2, I performed

molecular dynamics of N particles in the constant NV E ensemble.

1.4 Molecular dynamics in the constant NV E ensemble

In the constant NV E ensemble, we start with N = 108 particles in three dimensions. The

particles are initially arranged on a cubic lattice and the density is ρ = 0.8442 [4]. The

initial velocities are chosen randomly and are rescaled to keep the initial temperature as

4



T = 0.728. The interaction between particles is modeled as a Lennard Jones potential :

V (r) = 4ε

(
1

r12
− 1

r6

)
. (1.19)

The force between particles is calculated from this potential. The Lennard Jones potential

has an attractive part (1/r6) which is long ranged and a repulsive part (1/r12). There is

a potential well at ε. We use periodic boundary conditions. The coordinate and velocity

Figure 1.2: Kinetic energy Vs time

updates are done using Verlet’s algorithm. The Taylor series of coordinate after a time ∆t

can be written as

r(t+ ∆t) = r(t) + v(t)(∆t) + (f(t)/2m)(∆t)2 +O((∆)3), (1.20)

where f(t) = mr̈ by Newton’s second law. Similarly

r(t−∆t) = r(t)− v(t)(∆t) + (f(t)/2m)(∆t)2 +O((∆)3), (1.21)

therefore, in coordinate updates we can sum Eq. 1.20 and Eq 1.21 and ignoring the higher

order terms

r(t+ ∆t) = 2r(t)r(t−∆t) + (f(t)/m)(∆t)2 (1.22)

5



Figure 1.3: Radial distribution function of distance between the particles

and for velocity updates subtracting Eq. 1.20 and Eq. 1.21

r(t+ ∆t)− r(t−∆t) = 2v(t)(∆t) +O((∆)3) (1.23)

hence ignoring the higher order terms v(t) = (r(t+ ∆t)− r(t−∆t))/(2∆t)).

1.4.1 Results

The kinetic energy increases first and then fluctuates about an equilibrium value. The tem-

perature calculated from the kinetic energy is T = 1.5± .05 (Fig 1.2). The potential energy

falls and then saturates. The total energy is constant as expected. We also calculate the

radial distribution function which gives information about structural properties (Fig 1.3).
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Chapter 2

Active Brownian particles

2.1 Individual Dynamics

We now introduce “activity” in the dynamics of the passive Brownian particles. Before

looking at a collection of active particles, we first investigate how activity can affect the

dynamics of a single particle. As we have mentioned earlier an active particle absorbs

energy from environment and converts it to kinetic energy in the form of movement. There

are several ways activity can be introduced into passive Brownian motion. Here we discuss

one such model which is called the Depot model.

2.1.1 Depot model

The key features of this model are:

1. The particle take up the energy from the environment where q(x) is space dependent

flux of energy into the depot.

2. Particle dissipates energy which is assumed to be proportional to internal energy rate

of this dissipation, c, is assumed to be constant.

3. Conversion rate of internal energy into kinetic energy is function of velocity, d(v).

Hence, change of internal energy, e, can be written as:

de(t)

dt
= q(x)− ce(t)− d(v)e(t) (2.1)

Example We can make the assumption that

d(v) = d2v
2, d2 > 0 (2.2)

7



The system has total energy of Et as sum of internal energy e(t) and mechanical energy

E0(t), where E0(t) can be written as

E0(t) =
mv2

2
+ U(r) (2.3)

Now, change in the mechanical energy can be found by increase in kinetic energy due to

conversion of internal energy into it and decrease in mechanical energy due to dissipation in

the environment
dE

dt
= [d2e(t)− γ0]v2 (2.4)

γ0 is the dissipative frictional force coefficient and second term of left hand side is written

using power=force×velocity, frictional force is velocity dependent force with coefficient γ.

Now, using Eq. 2.3 we can write

dE

dt
= mvv̇ +∇Uṙ (2.5)

and hence

mvv̇ +∇Uv = [d2e(t)− γ0]v2 (2.6)

factoring the common v out and adding the random force with Gaussian white noise η

mv̇ +∇U ± γ0v = d2e(t)v +m
√

2Dη (2.7)

which is the Langevin equation for this system. Now we can see by comparing Eq. 2.7

and Eq. 1.2 that a new term d2e(t)v, has been added in the active case. This is like an

acceleration in the direction of motion. This term comes about from the conversion of

internal energy into kinetic energy. The system is driven into non-equilibrium in addition

to the stochastic term.

2.2 Collective motion

We will now try to model the collective dynamics of active Brownian Particles. To do this

we need to understand the nature of interaction of the particles. There could be ”polar”

interaction where the particles collectively move in the specific direction - examples are

birds, schools of fishes. There could be apolar interactions such as self propelled rods which

try to align along their long axis but can move parallel or anti parallel directions. Self

propelled rods are examples of the polar particles with polar interactions. In this chapter,

we are going to discuss about the Viscek model which looks at polar particles with polar

interactions.
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2.2.1 Viscek model

The main points incorporated by Vicsek are [9]:

1. Initially, there are large number of point particles having the same velocity v0 and

random directions θ.

2. The particle moves in a direction which is dependent on the direction of its neigh-

bors. However the extent to which a particle feel it’s neighbors is really small (R0)

as compared to total size of the flock (L). Therefore the interaction are purely short

ranged.

3. The following is not prefect, due to collisions or other errors, there is a noise in the

system.

4. The model has complete rotational symmetry: the flock is equally likely, a priori, to

move in any direction.

The simulation steps [10] thus could be chosen according to definition of model. The ith

particle is situated at position r(t) in a two-dimensional plane, at integer time t. These

particles move in the direction which is average of the direction of all the particles within

the radius of R0, including the particle itself, on the previous time step (Eq. 2.8,Eq. 2.9).

The distance R0 is assumed to be appropriately smaller than L, the size of the flock. The

direction the particle actually moves on the next time step differs from the above described

direction by a random angle η(t). This random angle is chosen with a uniform probability

from the interval [−η/2, η/2]. Each particle then, on the next time step, moves in that

direction a distance v0∆t, where the speed v0 is the same for all particles.

θi(t+ ∆t) = 〈θj(t)〉n + ηi(t), (2.8)

ri(t+ ∆t) = ri(t) + v0(cos(θ(t+ ∆t)), sin(θ(t+ ∆t)))〈ηi(t)〉 (2.9)

the 〈〉n symbolizes the average over the neighbors and θi(t) is the angle of the direction of

motion of the ith particle on the time step that ends at t.

2.2.2 Results

The images show how the system is initiated homogeneously with random direction and

after some time the system starts moving in a direction breaking rotational symmetry and

spatial symmetry (Fig2.1). The packing fraction defined by

ρ =
Nπr0
L2

(2.10)

9



Figure 2.1: Vicsek model ρ = 2,v0 = 1(a)Initial state at t = 0(b)State after t = 104

This quantity gives the information about how closely the particles are packed and hence

gives the quantitative idea of amount of particles feeling each other at certain point in

time. The images are shown for a quite low ρ, we can see a big cluster on the top left of

the (Fig 2.1 b). This cluster decides the main polarization of the system at the moment.

However there are small cluster moving in different directions which are decreasing the net

polarization of the system. These small cluster can almost always be seen at low ρ′s, but at

higher a ρ these small cluster are also caught up by the big cluster and the net polarization

is quite high. The phases can be characterized by the mean velocity defined by

vmean =
1

N

N∑
i=1

θi (2.11)

This quantity acts as order parameter. It’s high in a ordered state and almost negligible in

the disordered state. The phase diagram (Fig 2.2) of the system under the control parameter

of noise intensity η shows the transitions happening at around η = 0.62. The diagram also

reveals the fact that at low ρ′s the polarization is low, this can be realized as the mean

velocity is decreasing as we decrease the ρ.

Thus in the Vicsek model, for small ρ and η, the particles move in small groups. At

higher densities but for small noise, the motion becomes ordered and all particles move in

the same direction. This direction is the one that is chosen spontaneously.

10



Figure 2.2: Mean velocity Vs η for constant speed Vicsek model

2.3 Variable Speed Model

In the above system the speed for every particle kept constant. It’s been observed that

in experiments (Fig 2.3), that the speed of the particles vary from particle to particle,

depending on it’s neighborhood polarization [12]. Therefore we define a quantity χ called

as local polarization.

χ =
1

Nj

∣∣∣∣∣∣
N∑
j

vi

∣∣∣∣∣∣ (2.12)

j are particles within radius r0 around the particle.This quantity can have maximum value

of 1 in the case when all the particles in the neighborhood (at a distance less than r0) are

moving in the same direction or would be close to 0 if all the particles in the neighborhood

have random orientations.

The system has N polar particles started from random positions and random orientations

in 2-dimensions moving with direction rule given by

vi(t) = vM (χi(t))
γ (2.13)

where vM is maximum speed that a particle may reach. If the particles within the interaction

radius are moving in the same direction, them χ is close to 1 and the particle move with

speed vM . However, if the particle directions are completely random, then χ ≈ 0 and the

particles become essentially immobile. The particles which are isolated (away from the

clusters) move with the maximum speed as there is no particle in the vicinity to damp it’s

11



Figure 2.3: To see if the above model is sufficient to mimic the real system a group of gold
shiner fishes was used by([13]). Automated video tracking was used to track the movement
of fishes. The white circle shown in the figure shows the chosen interaction radius to find
out the χ.(reproduced from [12])

velocity with.

2.3.1 Simulations

N particles are simulated over 2 dimensional space with periodic boundaries, positions are

updated with the rule

~ri(t+ ∆) = ~ri(t) + vi(t)θ̂i(t) (2.14)

where vi is self propulsion velocity of the ith particle at time t and θ̂i is the direction of this

self propulsion velocity.Time step ∆t is taken to be 1. The direction update is given using

the rule

θ̂i(t+ ∆) =
1

Wi

∑
j

θ̂j(t) +Niηi

 (2.15)

where Wi is normalization constant, which keeps the quantity inside the bracket as unit

vector or direction,j are similar neighborhood particles ηi here are randomly oriented vectors

with ~θi = η(cos(θ)x̂ + sin(θ)ŷ and hence θ is uniformly distributed random variable in the

interval [−π, π] Velocity of particles actually depend on the γ/2 power of the number of

12



particles in the neighborhood of the particle This can be easily proven by the analyzing

relation Eq. 2.13.

vi(t) = vM [

 1

Nj
|
∑
j

θ̂j(t)|

γ

(2.16)

Expanding the modulus terms

|
∑
j

θ̂j(t)| =
√
Nj(θ̂j .θ̂j) +

∑
j 6=j′

θ̂j .θ̂′j (2.17)

as θ′js are unit vectors hence θ̂j .θ̂j is equal to 1. Therefore

vi(t) = vM

 1

N
γ/2
j

[1 +
1

Nj

∑
j 6=j′

θ̂j .θ̂
′
j ]

γ/2

(2.18)

now the term in
∑

j 6=j′ θ̂j .θ̂
′
j is very small as compared to Nj .So to the first order the relations

we obtain

vi(t) =
vM

N
γ/2
j

(2.19)

Hence the more the neighbors less is the velocity of the particle which has been observed in

the results.

Figure 2.4: Mean velocity Vs η at different ρ′s.

2.3.2 Results

Here we choose, N = 2000 ,γ = 6. The system transits from the ordered state (Fig 2.6)

to static state (Fig 2.8) when noise intensity η is increased. When at low noise intensity

13



Figure 2.5: Mean velocity Vs ρ at different η′s.

the particles start moving in same direction as noise is not enough to compete with the

aligning interaction but as the noise increases the velocity of ordered state starts decreasing

and finally at high noises the particles become almost immobile as now aligning interaction

are negligible in comparison to the noise intensity. An interesting phenomenon occurs at

intermediate noise (Fig 2.7) when the transition just starts taking place, the system shows

bistable solution in the distribution of velocity. There are two types of particles that are

present in the system one with low velocity which lie in the static clusters and one with the

high velocity which are away from clusters. This situation can be seen at a vary specific

value of noise. For parameter that we chose, this happens at η = 0.625. At 0.63 the system

is in disordered state and at 0.62, it’s still a ordered state. Finally we use mean velocity

(Eq. 2.11), to show that it act as a order parameter and characterize the transition (Fig 2.5)

and (Fig 2.4), as it reduces to low values when the system is static. The mean velocity can

be seen decreasing as the noise intensity is increased the transitions occurs at around η = .62

similar to constant velocity Vicsek model. Hence transition point is same for both variable

speed and constant speed model (Fig 2.2, Fig 2.4). However it can be observed that the

errors increase as the noise intensity which is evident from the fact that the noise is always

trying to increase the disorderness of the system. The maximum mean velocity which is

reached when noise is low can be seen to be decreasing with the decrease in the ρ, this is

because of same fact explained in the previous section. The system forms smaller groups

moving in random direction decreasing the mean velocity of the system (Fig 2.5). The graphs

of mean velocity vs ρ show that higher density is required for the higher mean velocity or a

proper ordered state.It also shows that change of mean velocity per unit increase in ρ higher

for lower noises(slope of curve initially),therefore it would require higher densities to reach

14



Figure 2.6: After 300000 timesteps at noise intensity 0.1.

a ordered in the case of high noises.
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Figure 2.7: After 300000 timesteps at noise intensity 0.625.

Figure 2.8: After 300000 timesteps at noise intensity 0.7.
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Chapter 3

Active Driven Disks

We now consider another class of active Brownian system where there is interaction is purely

repulsive and without any aligning interactions.Thus the key features of the model are

1. The particles are in form of disks moving in 2 dimensions with repulsive potential.

2. The direction of self propulsion force is same for all the particles is not affected by the

direction of neighboring particles.

3. There is rotational noise in the system but translation noise is ignored,

4. The system is overdamped

Force due to repulsion is modeled by[14]

Fij = k(2a− rij)~rij if rij < 2a (3.1)

= 0, otherwise

where rij is the distance between particles i and j and ~rij is position vector separating the

particles and a is the radius of disk.

and Langevin equation can be written as

∂ri
∂t

= v0v̂i + µ
∑
j 6=i

Fij + ηTi (t) (3.2)

∂θi
∂t

= ηRi (t) (3.3)

where ri is the position, θi is the propulsion direction ,v̂i is representing the unit vector

in self propulsion direction v̂i = (cos(θi), sin(θi)), v0 is the self propulsion speed, η′is are

Gaussian white noise Eq. 1.1, and µ is the mobility.
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3.1 Simulations

First for simulating these systems we needed to non dimensionalize the equations Eq. 3.2

and Eq. 3.3. First we need to look at the delta relation of noise.

〈ηαi (t)ηβj (t′)〉 = 2Dδijδαβδ(t− t′) (3.4)

here δ(t− t′) has a dimension of t−1 and D = µkBT , therefore, it’s obvious to scale time, t,

as 1/µk and length can be scaled by the particle radius a. Hence keeping a = 1, and µk =

1; we can write non dimensionalized equations (without translational noise) in components

as to be used in the simulations.

∂x̃i

∂t̃
=

ṽ0cos(θi) +
∑
j 6=i

(
2

rij
− 1)xij

) (3.5)

∂ỹi

∂t̃
=

ṽ0cos(θi) +
∑
j 6=i

(
2

rij
− 1)yij

) (3.6)

∂θ̃

∂t̃
=
√

2Dη (3.7)

where x̃2ij + ỹ2ij = r̃2ij ,r̃ij = rij/a and t̃ = t/µk.

Cell list algorithm

As the system can consists of many particles(upto 104), and due to particle-particle inter-

actions, this will require N2 operation in calculating forces which is really time expensive.

Therefore, we needed to apply cell list algorithm. In this algorithm we divide the simulation

space into cells with an edge length greater than or equal to the cut-off radius of the inter-

action between particles. The particles are then distributed in the particular cells. When

we choose a particle and find its interaction with neighbors, then it is calculated only with

particles in the same cell and with particles in the nearest neighboring cells (Fig 3.1).

3.1.1 Results

System is simulated on 2-dimensional space with periodic boundaries on densities defined

by ρ = Nπa2/L2, where L is the length of box of simulation box. Simulations are per-

formed for different values of propulsion velocities and different densities. This system is

seen to be showing two different phases one is the clustered(solid-like) and one with the

gas-like at density higher than a critical density ρc and above critical propulsion velocity

(Fig 3.2 , Fig 3.3). Once the cluster is formed it keeps moving by keeping the size almost

constant. However,the cluster don’t move as a whole but some particles on the surface
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Figure 3.1: (a) Comparisons without cell list (b) Comparisons with cell list (Reproduced
from Wikipedia)

Figure 3.2: State after 108 timesteps (a) for ρ = 0.2, S = .0005 (b) for ρ = .3, S = .0012.
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Figure 3.3: State after 108 timesteps (a) for ρ = 0.5, S = .53 (b) for ρ = .7, S = .85.

Figure 3.4: Phase diagram for the active driven disks
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constantly leave the cluster and almost equal number of them are constantly added. Hence

size is kept constant. However, the direction from which they add and leave keep changing,

as a results the cluster moves all over the space. The phase diagram is explored using the

quantity S [16] which is fraction of particles which are at a distance ≤ 2a, averaged over

large timesteps. This value is calculated at discrete points on the propulsion velocity vs

density space, then linearly interploted to calculate the phase diagram shown in (Fig 3.4).

S can be seen to be appropriately characterizing the clustered state in these images.

Figure 3.5: State after 107 timesteps for ρ = 0.1 (a) Spatial distribution (b) Corresponding
spatial distribution of velocity.

3.2 Variable Speed

Similar to Viscek model, these disks can also be modeled with the variable velocity and

mean velocities can be calculated to see if transitions occur.

3.2.1 Results

The system is started with random velocities and the random positions on a periodic bound-

aries. Similar cell listing algorithm is used for θ averaging, to calculate the velocity of particle

in some point in space. It is seen that particle still cluster spatially but the gas phase is less

well defined in variable speed regime. Interestingly, for the variable speed model, the critical

density where phase separation happens is lower than that in the constant speed model. By

comparing the (Fig 3.2 b) and (Fig 3.6 a) we can clearly see that the cluster formation in

the case of variable speed is quite high compared to formation at constant speed.
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Figure 3.6: State after 107 timesteps for ρ = 0.3 (a) Spatial distribution (b) Corresponding
spatial distribution of velocity.

Figure 3.7: State after 107 timesteps for ρ = 0.4 (a) Spatial distribution (b) Corresponding
spatial distribution of velocity.
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Figure 3.8: State after 107 timesteps for ρ=0.6 (a) Spatial distribution (b) Corresponding
spatial distribution of velocity

Figure 3.9: Mean velocity vs η for different ρ values.
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Figure 3.10: Mean velocity Vs ρ for different η values.

Moreover the the particles at the surfaces of the cluster can be seen having high velocity

in the direction opposite to the cluster and there is very low density around the surface of

the cluster. The reason can attributed to these outgoing particles with high velocity as they

escape the cluster. The spatial distribution of velocity shows that particle in the clusters

have a very low velocity and they are mostly immobile; the particles which are away or iso-

lated are moving with high almost at maximum velocity(Fig 3.5 , Fig 3.6 , Fig 3.7 , Fig 3.8).

The mean velocity vs density curves and mean velocity vs noise curves show almost nothing

or no pattern to suggest any transition (Fig 3.10 , Fig 3.9). This is expected because the

particles here are disks without any aligning interactions. The graphs are tried to various

ranges of noises to look for the pattern, but mean velocity keeps fluctuating with high er-

rors(standard deviation). The reason may be attributed to the missing aligning interactions.
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Appendix A

Program codes

Preliminary subroutines required for implementing the cell list algorithm

1. Map subroutine: Decides the 8 neighbors(or 4 in the case of active driven disks) of a

cell to for the comparisons required for interaction calculations.

1 void mapev(void){

2 for(i=1;i<nc1;i++){ \\nc is the number of the cells

3 for(j=1;j<nc1;j++){ \\per side of simulation box

4 int imap =((i-1+nc)%(nc)+((j-1+nc)%nc)*nc)*8;

5 mapv[imap +1]= 1+(i+nc)%(nc)+((j-1+nc)%nc)*nc;

6 mapv[imap +2]= 1+(i+nc)%(nc)+((j+nc)%nc)*nc;

7 mapv[imap +3]= 1+(i-1+nc)%(nc)+((j+nc)%nc)*nc;

8 mapv[imap +4]= 1+(i-2+nc)%(nc)+((j+nc)%nc)*nc;

9 mapv[imap +5]= 1+(i+nc)%(nc) + ((j-2+nc)%nc)*nc;

10 mapv[imap +6]= 1+(i-2+nc)%(nc) + ((j+nc -1)%nc)*nc;

11 mapv[imap +7]= 1+(i-2+nc)%(nc) + ((j-2+nc)%nc)*nc;

12 mapv[imap +8]= 1+(i-1+nc)%(nc) + ((j-2+nc)%nc)*nc;

13 }

14 }

15 }

2. Link subroutine: Required for assigning the cells to the respective particles every time

after coordinates of the cells are changed

1 void link(void){

2 for(i=1;i<nc21;i++) \\nc21 is the total number

3 head[i]=0; \\of cells present

4 for(i=1;i<N1;i++){

5 int icell =1+ int((cord [0][i]+( box1 /2))*( double(nc)/box1 ))..

6 +int((cord [1][i]+( box1 /2))*( double(nc)/box1 ))*nc;

7 list[i]= head[icell ];

8 head[icell ]= i;

9 }

10 }

25



3. Average subroutine: This routine calculates the aligning interactions and local polar-

ization χ within specified radius

1 void average(void){

2 for(i=1;i<nc21;i++){

3 int I= head[i];

4 //loop over all the molecules in the cell

5 while(I>0){

6 for(di=0;di <2;di++)

7 cordH[di]=cord[di][I];

8 thetafc =0;

9 thetafs =0;

10 counti =0;

11 //for particles in the same cell

12 int J= head[i];

13 while(J>0){

14 double r2s =0;

15 if(J<N1){

16 for(di=0;di <2;di++){

17 xd[di]= cordH[di]-cord[di][J];

18 xd[di]=xd[di]-box*round(double(xd[di]/box ));

19 r2=pow(xd[di],2);

20 r2s=r2s+r2;

21 }

22 if(r2s <rC2){

23 thetafc += (thetao [0][J]); // thetao are the propulsion

24 thetafs += (thetao [1][J]); // direction from a timestep back

25 counti ++;

26 }

27 }

28 J= list[J];

29 //for the particles in the neighboring cells

30 int jcell0 =8*(i-1);

31 // looking for all the neighboring cells with present head of cell chosen

32 for(int nabor =1;nabor <9; nabor ++){

33 int jcell= mapv[jcell0 + nabor];

34 J = head[jcell];

35 while(J!=0){

36 double r2s =0;

37 if(J<N1){

38 for(di=0;di <2;di++){

39 xd[di]=cordH[di]-cord[di][J];

40 xd[di]=xd[di]-box*round(double(xd[di]/box ));

41 r2=pow(xd[di],2);

42 r2s=r2s+r2;

43 }

44 if(r2s <rC2){

45 thetafc += (thetao [0][J]);
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46 thetafs += (thetao [1][J]);

47 counti ++;

48 }

49 }

50 J=list[J];

51 }

52 }

53 tot[I]= (double)sqrt(double (( thetafs*thetafs )+( thetafc*thetafc )));

54 double f = 3.142*(2*( rand ()/( double)RAND_MAX )-1);

55 thetafc += nL*counti*cos(f);

56 thetafs += nL*counti*sin(f);

57 double toti=( double)sqrt(double (( thetafs*thetafs )+( thetafc*thetafc )));

58 thetafs= thetafs/toti;

59 thetafc= thetafc/toti;

60 tot[I]=tot[I]/ counti;

61 tot[I]=pow(tot[I],gamma);

62 theta [0][I] = thetafc;

63 theta [1][I] = thetafs;

64

65 }

66 I= list[I];

67

68 }

69 for(i=1;i<N1;i++){

70 thetao [0][i]=theta [0][i];

71 thetao [1][i]=theta [1][i];}

72 }

4. Force subroutine This routine calculates the potential generated force between the

particles in the active disks model.

1 void force(void){

2 for(k=1;k<N1;k++){

3 for(di=0;di <2;di++){f[di][k]=0;}} // zeroing the force

4 for(i=1;i<nc21;i++){

5 int I= head[i];

6 //loop over all the molecules in the cell

7 while(I>0){

8 for(di=0;di <2;di++){

9 cordH[di]=cord[di][I];

10 fH[di]=f[di][I];

11 }

12 int J = list[I];

13 while(J>0){ //for particles in the same cell

14 for(di=0;di <2;di++){

15 xd[di]=cordH[di]-cord[di][J];

16 xd[di]=xd[di]-box*round(double(xd[di]/box ));

17 r2=pow(xd[di],2);
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18 r2s=r2s+r2;

19 }

20 if(r2s <4*a) {

21 r2s=sqrt(r2s);

22 double ff= (2*a-r2s)/r2s;

23 for(di=0;di <2;di++){

24 fH[di]=fH[di]+ff*xd[di]; // change in force by using du/dx

25 f[di][J]=f[di][J]-ff*xd[di];

26 }

27 }

28 J=list[J];

29 r2s =0;

30 }

31 // niegbouring cells

32 int jcell0 =4*(i-1);

33 // looking for all the neighboring cells with present head of cell chosen

34 for(int nabor =1;nabor <5; nabor ++){

35 int jcell= map[jcell0 + nabor];

36 J = head[jcell];

37 while(J!=0){

38 for(di=0;di <2;di++){

39 xd[di]=cordH[di]-cord[di][J];

40 xd[di]=xd[di]-box*round(double(xd[di]/box ));

41 r2=pow(xd[di],2);

42 r2s=r2s+r2;

43 }

44 if(r2s <4*a) {

45 r2s=sqrt(r2s);

46 double ff= (2*a-r2s)/r2s;

47 for(di=0;di <2;di++){

48 fH[di]=fH[di]+ff*xd[di];

49 f[di][J]=f[di][J]-ff*xd[di];

50 }

51 }

52 J= list[J];

53 r2s =0;

54 }

55 }

56 f[0][I]=fH[0];

57 f[1][I]=fH[1];

58 I= list[I];

59 }

60 }

61 }

28



A.1 Simulating the variable speed Vicsek model

Note: A Constant speed model can also be simulated with the same code by putting the

γ = 0

1 #include <iostream >

2 #include <stdlib.h>

3 #include <time.h>

4 #include <stdio.h>

5 #include <math.h>

6 #include <fstream >

7 using namespace std;

8 double ** cord;

9 double ** cordp;

10 double ** theta;

11 double ** f;

12 double ** thetao;

13 int* mapv;

14 int* list;

15 int* head;

16 double* tot;

17 double round(double a){

18 return floor(a+.5);

19 }

20 const int N=2000 ,N1=N+1; //N number of the particles in the system

21 const double a=1,rc=2,rC2=rc*rc , phi=8.61 ,box=sqrt(N*3.142* rc*rc/phi)..

22 ,d=2*a,box1=box+1,vm=.1;

23 const int nc=floor(box1/rc),nc1=nc+1,NC=4* ceil(box/d),Nt=NC+N1 ,gamma =6;

24 const int nc2=nc*nc ,nc21=nc2+1,MV=8*nc2 ,M=4*nc2 ,Nt1= N1;

25 int i,j,t=0,k,n=0,di ,input ,counti;

26 double xd[2],r2,r2s ,dt=1, nL=0.625 , thetafc ,thetafs ,cordH [2],fH[2];

27

28 ** define various subroutine required for the main program **

29

30 int main (){

31 int check;

32 time_t rawtime;

33 struct tm * timeinfo;

34 // memory allocation for different arrays

35 srand(( unsigned)time (0));

36 ofstream krit("File Directory to write data");

37 theta = (double **) malloc (2 * sizeof(double *));

38 thetao = (double **) malloc (2 * sizeof(double *));

39 cord = (double **) malloc (2 * sizeof(double* ));

40 cordp = (double **) malloc (2 * sizeof(double* ));

41 mapv= (int*) malloc(MV* sizeof(int ));

42 tot = (double *) malloc(N1* sizeof(double ));

43 head=(int*) malloc(nc21* sizeof(int ));
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44 f = (double **) malloc (2 * sizeof(double* ));

45 list = (int*) malloc(Nt1* sizeof(int ));

46 for(i=0;i<2;i++)

47 {

48 theta[i] = (double *) malloc(N1 * sizeof(double ));

49 }

50 for(i=0;i<2;i++)

51 {

52 thetao[i] = (double *) malloc(N1 * sizeof(double ));

53 }

54 for(i=0;i<2;i++)

55 {

56 f[i] = (double *) malloc(Nt1 * sizeof(double ));

57 }

58 for(i=0;i<2;i++)

59 {

60 cord[i] = (double *) malloc(Nt1 * sizeof(double ));

61 }

62 mapev (); // deciding the neighbors

63 for(i=1;i<N1;i++){

64 double f=3.142*2*(( rand ()))/( double)RAND_MAX;

65 theta [0][i]=cos(f); theta [1][i]=sin(f);

66 thetao [0][i]=theta [0][i]; thetao [1][i]=theta [1][i];

67 }

68 input =2000;

69 time (& rawtime );

70 timeinfo = localtime (& rawtime );

71 cout <<asctime(timeinfo );

72 for(i=1;i<N1;i++) tot[i]=1;

73 int Sq= sqrt(N)+1;

74 for(i=0;i<Sq;i++){

75 for(j=0;j<Sq;j++){

76 if(n>N1) break;

77 cord [0][n]=(i+.3)*(box -rc)/(Sq);

78 cord [1][n]=(j+.3)*(box -rc)/(Sq);

79 cord [0][n]-=box*round(cord [0][n]/( box ));

80 cord [1][n]-=box*round(cord [1][n]/( box ));

81 n++;

82 }

83 }

84 t=0;

85 while(t<input){

86 link ();

87 for(i=1;i<N1;i++){

88 cord [0][i] += vm*(theta [0][i])* tot[i]*dt;

89 cord [0][i] -=box*round(cord [0][i]/( box ));

90 cord [1][i] += vm*(theta [1][i])* tot[i]*dt;

91 cord [1][i] -=box*round(cord [1][i]/( box ));
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92 }

93 average ();

94 t++;

95 }

96 time (& rawtime );

97 timeinfo = localtime (& rawtime );

98 cout <<asctime(timeinfo );

99 }

A.2 Simulating the Active driven disks

Constant speed

1 ** Define all the variables required globally **

2 ** Define subroutines required for the main program **

3 \\ subroutine for calculating the propulsion force

4 void totforce(void){

5 for(j=1;j<N1;j++){

6 f[0][j]+=Vp*cos(theta[j]);

7 f[1][j]+=Vp*sin(theta[j]);

8 \\Vp is the constant propulsion velocity

9 }

10 }

11 int main(double ){

12 ** define all memory allocations similar to variable velocity vicsek model code **

13 mape ();

14 inputn =2000000;

15 while( t < inputn)

16 {

17 link ();

18 force (); // potential generated force

19 totforce (); // propulsion generated force

20 for(i=1;i<N1;i++){

21 for(di=0;di <2;di++){ // di is looping over the dimension

22 cord[di][i]=cord[di][i]+f[di][i]*dt;

23 cord[di][i]-=box*round(double(cord[di][i]/box ));

24 }

25 }

26

27 for(i=1;i<N1;i++){

28 W=gasdev ();

29 // gasdev is function creating Gaussian distribution

30 theta[i]+=1.414*W*Noi*dt; // Noi is the noise strength

31 }

32 t++;

33 }

34 time (& rawtime );
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35 timeinfo = localtime (& rawtime );

36 cout <<asctime(timeinfo );

37 }

Variable speed:

1 ** Define all the variables required globally **

2 ** Define subroutines required for the main program **

3 // In the average subroutine in the last lines add a random number generated

4 // by gasdev into propulsion direction using the formulas of cos(a+b), sin(a+b)

5 **~ subroutine average

6 double f = nL*gasdev ();

7 double temp;

8 temp = theta [0][I]*cos(f)-sin(f)*theta [1][I];

9 theta [1][I] = theta [1][I]*cos(f)+sin(f)* theta [0][I];

10 theta [0][I]=temp;

11 **

12

13 int main (){

14 ** define all memory allocations similar to variable ..

15 velocity vicsek model code **

16 ** Initialize the system homogeneously or in square lattice mentioned

17 variable velocity vicsek model code **

18 mape (); // required four neighbors for the force calculation

19 mapev (); // required 8 neighbors for the aligning interactions

20

21 for(i=1;i<N1;i++) tot[i]=1;

22 cin >>input;

23 time (& rawtime );

24 timeinfo = localtime (& rawtime );

25 cout <<asctime(timeinfo );

26 t=0;

27 while(t<input){

28 link ();

29 force ();

30 average ();

31 for(i=1;i<N1;i++){

32 cord [0][i] += vm*(theta [0][i])* tot[i]*dt+f[0][i]*dt;

33 cord [0][i] -=box*round(cord [0][i]/( box ));

34 cord [1][i] += vm*(theta [1][i])* tot[i]*dt+f[1][i]*dt;

35 cord [1][i] -=box*round(cord [1][i]/( box ));

36 }

37 time (& rawtime );

38 timeinfo = localtime (& rawtime );

39 cout <<asctime(timeinfo );

40 }
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