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ABSTRACT 

 

Electrical activity in humans has various functional roles starting from neuronal 

communication in the brain to pumping of blood in the heart. The idea of being able to relate 

this activity to certain mathematical and physical systems seems quite intelligent in itself. 

The next step is to model the entire biological system to be able to study it and incorporate 

the required changes through change in parameters and variables.  

In my thesis, I studied the existing model of the neuron – the Hodgkin-Huxley model, and 

two models of the pancreatic beta cells – the Chay Keizer model and the Phantom Burster 

model. I simulated the mathematical models using the mathematical software MATLAB, and 

standardized the programmes by repeating simulation results obtained in the original studies.  

To experiment with the models, the values of various parameters and variables were then 

changed and the relevant results were compared with existing real wet lab experiments 

wherever possible. 
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Chapter 1 

 

INTRODUCTION 

Electrical activity involving charged particles and their movement within the body plays an 

important role in terms of the various body functions. There are many organs and tissues 

within the body like Heart, Brain and islets of Langerhans in the Pancreas, whose functions 

are regulated by the electrical activity of the cells that make them up. 

Human brain cells fire electrical impulses to communicate with one another. Ion channels in 

the cell membranes work together to deliver messages throughout the brain. 

Electroencephalography (EEG) is used to study the electrical activity in the brain. In the 

heart, electrical impulses control the muscles that create the pumping motion. The electrical 

signals travel across the heart, causing muscles to contract and pump blood throughout the 

body. Electrocardiography (ECG) is used to study electrical activity in the heart. Besides, 

electrical activity contributes to various functions like hormonal secretion in different organs. 

An important example is the secretion of insulin by the beta cells of pancreas – malfunction 

of which can lead to Diabetes. 

 

1.1  Electrically-Active Cells 

Electrically active cells are those cells whose functions are based on reception or generation 

of electrical signals in terms of current or voltage change. The reason for the electrical 

activity lies in the presence of different charged ions and their selective permeability across 

the cell membrane. 

Examples of electrically active cells in humans are the neurons, cardiac cells and the 

pancreatic beta cells. Neurons are the epitomes of electrical activity as the basic neuronal 

function, i.e. signal conduction, is based on electric properties of the neurons. Cardiac muscle 

cells and beta cells of the pancreas exhibit electrical activity similar to the neurons but 

different in many aspects. Electrical activity of any type requires current to be flowing in 
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some direction and this requires a driving force. In case of cells, this driving force is provided 

by the electrochemical gradient, which is present due to the unequal distribution of ions on 

both sides of the membrane and the semi-permeability of the membrane. The semi-

permeability of the membrane is essentially due to the presence of ion channels which are 

selectively permeable depending on the types of ions. Table 1 shows the concentration of 

various ions on the inside and outside of the membrane of neurons from different organisms. 

It is clear from the Table that intracellular concentration of potassium ions is much higher 

than its extracellular and the state is opposite for sodium and chloride ions. Also these 

concentrations vary considerably within organisms [1]. 

Table 1: Ionic concentration across membranes 

Ion  
Intracellular 

conc.(mM) 
Extracellular 

conc.(mM) 

Squid neuron   

Potassium  400 20 

Sodium 50 440 

Chloride 40--150 560 

Calcium 0.0001 10 

Mammalian neuron   

Potassium  140 5 

Sodium 5--15 145 

Chloride 4--30 110 

Calcium 0.0001 1--2 
 

Channel Proteins are the proteins that form hydrophilic pores across the membranes (Fig. 

1). There are two types of such pores - gap junctions and ion channels. 

 

Fig1: Cartoon representation of cell membrane [2] 
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Gap junctions are the proteins connecting the cytoplasm of two adjacent cells, the plasma 

membrane of each cell contributing equally to the formation of the junction. Six proteins 

known as connexins form a connexons or hemichannels, two of which make up the gap 

junctions.  

Ion channels are the proteins that connect the cytosol to the cell exterior. The arrangement of 

the different proteins is such that the change in their conformation leads to the opening and 

closing of the channels and hence semi permeability of the membrane, which has an 

important role to play in voltage oscillations of the membrane. Different types of ion-specific 

and non-specific channels - such as, sodium, potassium and calcium channels – are known to 

exist in electrically active cells. 

1.2 The Mathematical Models  

Mathematical modeling of any activity of the living system helps in studying the system in 

its simple form and then experimenting with it virtually before conducting the real 

experiments. Mathematical models have been used in many electrophysiological systems, 

such as in neurophysiology, cardiac physiology, etc. for a long time. They have been 

important in understanding the normal function of cells/tissues and the causes of malfunction 

in physiological disorders, such as epilepsy and cardiac arrhythmias [3]. 

The cell membrane of any living cell is essentially comprised of a lipid bilayer and 

membrane proteins (ion channels and cell receptors). The lipid bilayer is highly hydrophobic 

on the inside with hydrophilic ends on the cytoplasmic and the extracellular sides (Fig. 1). In 

that case the two ends of the bilayer act as charged regions (due to the presence of ions) with 

the inside being completely uncharged. The entire setup can be compared to a parallel plate 

capacitor. Also the ion channels within the membrane allow different ions to flow from one 

side of the membrane to the other offering some amount of resistance in terms of 

conformational and structural changes in the ion channels just like resistors in an RC circuit 

as shown in Fig. 2. 
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Fig 2: Cell membrane compared to an RC circuit [4] 

The mathematical models describe the electrical cells using an RC circuit. In these models, 

the plasma membrane of the cells is compared to an RC circuit, where the lipid bilayer is 

considered analogous to a parallel plate capacitor and the ion channels to the resistors with 

different resistances. Going by this analogy, mathematical models of the electrically active 

cells are developed and studied using the various laws of electric circuitry like Ohm’s law 

and Kirchoff’s law. 

Ohm's Law states that the current through a conductor between two points is directly 

proportional to the potential difference across the two points.  

I = V/R 

where,  I = current,  V = potential difference,  and  R= resistance 

Kirchoff's law is based on the principle of conservation of electric charge, and it states that 

the algebraic sum of currents in a network of conductors meeting at a point is zero. 

��(�)

���

���

= � 

where  n is total number of branches in the network. 

1.3 Objectives and Organization of Work 

Mathematical modeling of biological systems is an interdisciplinary activity. It requires 

biological knowledge to understand the system/process to be modelled, and mathematical 

and computational expertise to analyse and simulate the model. The mathematical and 
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computational results then need to be understood in terms of biology for their relevance and 

application. The primary objective of my MS thesis was two-fold – 

1) to learn the concepts and methods/techniques of mathematical modeling of  electro-

physiological systems; and  

2) to study two specific systems – models of Neurons and Pancreatic Beta cells – having 

different ionic processes,  and carry out various numerical experiments with them by 

changing the parameters and values in the models. The results of these virtual experiments 

were compared with available real experiments wherever possible.  

In this thesis, I present my studies with the Hodgkin-Huxley model for the neuron [4,5] and 

Chay-Keizer model [6] and Phantom Burster model [7] for the beta-cell. I have studied the 

development of the models from the underlying biological processes, learnt the relevant 

mathematical software for developing the programmes for coding the mathematical models, 

performed simulation experiments, and arrived at biologically relevant conclusions.  

In Chapter 2, I describe the details of the theoretical and computational methods used for 

modeling and simulation. A detailed description of the mathematical models for the two 

physiological systems is also given here. 

In Chapter 3, I present the simulation experiment results for the models of the two 

physiological systems, namely the Hodgkin-Huxley model for the neuron, and the Chay-

Keizer and Phantom Burster model for the beta cells.  

Chapter 4 concludes the thesis by summarizing all results and indicating future studies 

necessary to understand tissue level functions of these physiological systems. 
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Chapter 2 

  

MODELS AND METHODS 

2.1 Models 

Model of Neuron: 

Hodgkin Huxley Model [4,5] is a mathematical model named after two scientists Sir 

Andrew Huxley and Sir Alan Hodgkin who in 1952 published a series of five articles 

[4,10,11,12,13] on modelling the electrical activity of the squid giant axon. In 1963, they 

were awarded the Nobel prize in Physiology and Medicine for their work. 

The first time direct measurements were made in the membrane potential of the squid axon 

were in 1939 [8], where a capillary tube filled with sea water was carefully pushed down the 

axon, which served as an electrode to measure potential difference across membrane. Time 

course was indicated by 500 Hz sine wave on oscilloscope screen (Fig. 3). 

 

Fig 3: Action potential measured in squid giant axon for the first time in 1939 [8] 

As mentioned earlier, sodium and potassium ion channels play an important role in the 

electrical activity in the neurons. 
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As is clear from the Table 1, sodium and potassium ion concentrations show great variation 

across the plasma membrane of the neurons both in squid and humans.  

Semi permeability of the ion channels and the concentration gradient of the ions across the 

membrane lead to something known as the resting membrane potential. It is the potential of 

the inside of the cell with respect to the outside when there is no external stimulus or stimuli 

from the neighboring cells. For nerve cells of the squid, it is approximately -70mV. 

With the external stimulus, the neuronal membrane shows a deviation from the resting 

membrane potential depending on the direction of the current. Negative current seems to 

hyperpolarize the membrane and positive current depolarizes it. There is a threshold current 

associated with the depolarization such that after that current, we have something known as 

action potential. It is the phenomenon of rapid change in the potential of the membrane in the 

form of spikes. Higher is the magnitude of the external current, more is the frequency of the 

spikes. 

 

Fig 4: Action potential as a 6 step process. 1-Na (fast) channels open, 2- Na channels close, 

3- K (slow) channels open, 4- Na-K pumps activate, 5- Excess K flows out, 6- Resting 

membrane potential restored [9] 
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Considering the RC circuit of the neuron, the following equations of the Hodgkin Huxley 

model were developed. 

{Kirchoff’s law}       {Ohm’s law} 

 

                                        

Where, 

I - current 

V - potential difference across membrane 

CM - capacitance of the membrane 

gX - conductance of 'X' ion channel 

n,m,h  are probabilities (1 when fully permeable to ions, and 0 for fully non- 

  permeable). Product of the variables yield the percentage of  

  conducting channels.  

n ∝ No. of open K channels 

m ∝ No. of activated Na channels. 

h ∝ No. of deactivated Na channels. 
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The Full model [10,11,12] is: 

 

 

Where, the values of all the parameters are as given below: 

  

 

Models of Beta cell:  

a.  Chay Keizer model [14,15,16]:  It is one of the basic β-cell models which is based on the 

Hodgkin Huxley paradigm. Unlike the voltage oscillations in neurons, oscillations in beta 

cells are characterized by silent and active phases with spiking behavior. 
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Fig 5: Voltage oscillations in the cell membrane of beta cells [17] 

 

Pancreatic -cells secrete insulin, which regulates the concentration of plasma glucose. 

Schematic representation of the model is given below: 

There are 4 types of ion channels that have important roles to play in beta cell electrical 

activities: 

 ATP-gated potassium channels: Close when ATP binds to them. 

 Voltage-gated calcium channels: Open when membrane potential is decreased. 

 Voltage-gated potassium channels: Open when membrane potential is 

decreased. 

 Calcium-gated potassium channels: Open when calcium ions bind to the 

channel. 

 

Fig 6: Schematic representation of Chay Keizer model [18] 



 

With the intake of glucose, it enters the beta cells via the glucose transporters (Fig 6). The 

breakdown of glucose then releases ATP which

This leads to slight depolarization of the membrane which triggers the opening of the voltage 

gated calcium ion channels and hence causes further depolarization of the membrane. Then 

open the voltage gated potassiu

channels which is responsible for the spiking behavior. A particular minimum amount of 

calcium in the cytosol leads to insulin release and opening of calcium gated potassium ion 

channels which leads to restoration of the resting membrane potential, completing the cycle.

Model equations

  

C   capacitance

V  membrane potential

k(Ca)   dissociation constant

g   conductance

n   probability

11 

With the intake of glucose, it enters the beta cells via the glucose transporters (Fig 6). The 

breakdown of glucose then releases ATP which closes ATP gated potassium ion channels. 

This leads to slight depolarization of the membrane which triggers the opening of the voltage 

gated calcium ion channels and hence causes further depolarization of the membrane. Then 

open the voltage gated potassium ion channels whose activity interacts with calcium ion 

channels which is responsible for the spiking behavior. A particular minimum amount of 

calcium in the cytosol leads to insulin release and opening of calcium gated potassium ion 

to restoration of the resting membrane potential, completing the cycle.

Model equations [6]: 

{Kirchoff’s laws}

{Rate of removal of Ca

 

         

 
capacitance 

membrane potential 

dissociation constant 

conductance 

probability of activation of V-gated K+ channel. 

With the intake of glucose, it enters the beta cells via the glucose transporters (Fig 6). The 

closes ATP gated potassium ion channels. 

This leads to slight depolarization of the membrane which triggers the opening of the voltage 

gated calcium ion channels and hence causes further depolarization of the membrane. Then 

m ion channels whose activity interacts with calcium ion 

channels which is responsible for the spiking behavior. A particular minimum amount of 

calcium in the cytosol leads to insulin release and opening of calcium gated potassium ion 

to restoration of the resting membrane potential, completing the cycle. 

{Kirchoff’s laws} 

{Rate of removal of Ca2+} 
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m   probability of activation of V-gated Ca2+ channel. 

h   probability of inactivation of V-gated Ca2+ channel. 

Cai   intracellular Ca2+  concentration. 

Kd   dissociation constant for Ca2+  bound to K channel. 

F   Faraday's constant 

f    ratio of free to bound intracellular Ca ions. 

K(Ca)   glucose dependent rate constant for removal of Ca ions. 

 

b. Phantom Burster Model [7] 

Beta cells do not exist or function in isolation. In intact islets of Langerhans, beta cells 

oscillate with intermediate (10–60s) time periods as opposed to single cells which oscillate 

with either very small (1-5s) or very large (1-2min) time periods. This can be modeled by 

combining very small and very large time periods. Intermediate bursting is known as 

Phantom bursting. 

The new element in Phantom burster model that makes it different from original Chay-Keizer 

model is the essential participation of two distinct slow negative feedback variables, denoted 

by s1 and s2 in the model. In the simulations, s1 drives the fast oscillations, with period ,10 

seconds; s2 drives the slow oscillations, with period .60 s; and the interaction of s1 and s2 

drives the medium oscillations with period between 10 and 60 s. 

 
Model equations: 
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Where,  ICa - Ca2+  current that activates instantaneously 

 IK - rapidly activating K+ current  

 IL - a leak current 

V – membrane potential 

C- capacitance 

gx – conductance 

                 

      

Although the slow currents, Is1 and Is2, are formulated here as K+ currents for concreteness, 

their biophysical identities remain obscure. However, as an illustrative example, one may 

think of Is1 as a K(Ca) current, activated by cytosolic Ca2+, and of Is2 as a K(ATP) current, 

activated by an increase in [ADP] relative to [ATP]. Neither of these currents is voltage-

dependent, but K(Ca) responds to the rise in cytosolic [Ca2+] that follows depolarization, and 

it has been suggested that K(ATP) current might also increase with [Ca2+] as a result of either 

hindered ATP production  or enhanced ATP consumption.  For our purpose it is sufficient 

that Is1 and Is2 are repolarizing, negative feedback currents that turn on when the cell is 

depolarized. Indeed, the model works equally well if either or both are depolarizing inward 

currents that turn off or inactivate when the cell is depolarized.  

 

Where Chay-Keizer model is for single beta cell and, which is rarely the case, as beta cells 

function in groups, Phantom burster model takes care of the latter scenario and we have a 

model mimicking the beta cells functioning in a group.  
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2.2 Methods 

For studying the dynamic behavior of the above-mentioned models for neurons and β-cells 

under different conditions, the scientific software MATLAB  [18] was used. The models 

primarily comprise of coupled differential equations, which can be integrated using the 

ordinary differential equation (ODE) solvers in MATLAB. There are many ode integrators 

for different tpes of differential equations. After working with several of them, I used the  

ode23 and ode45. These solvers use Runge-Kutta method (order 4) for integrating the 

equations, and are specifically used for stiff equations. 

The models were coded in MATLAB script and simulations were run using the above-

mentioned differential equation integrators. On obtaining reasonable time course of electrical 

activity traces from each model, further virtual experiments were carried out. 

MATLAB code for Hodgkin-Huxley model: 

 
function answer= hhfinal (t,x) 

C = 1; 

I = 10; 

Vk= -12; %original -12 

VNa= 115; %original= 115 

Vl=10.6; %original = 10.6 

gk = 36; %original= 36 

gNa= 1000; %original=120 

gl = 0.3; 

answer(1,1)= (I - gk*((x(2))^4)*(x(1)-Vk) - gNa*((x(3))^3)*x(4)*(x(1)-VNa) - gl*(x(1)-Vl))/C; 

answer(2,1)= (.01*(10-x(1))./(exp((10-x(1))/10)-1))*(1-x(2)) - (.125*exp(-x(1)/80))*x(2); 

answer(3,1)= (.1*(25-x(1))./(exp((25-x(1))/10)-1))*(1-x(3)) -  (4*exp(-x(1)/18))*x(3); 

answer(4,1)= (.07*exp(-x(1)/20))*(1-x(4))- (1/(exp((30-x(1))/10)+1))*x(4);  

 

MATLAB code for Chay-Keizer model: 

 
function answer= ckoriginal (t,x)  

kCa=0.02;  

Iapp=0;  

Cm=5;  

gKCa=0.09;  

gKHH=12;  

gCaHH=6.5;  

gL=0.04;  

VK=-75;  

VCa=100;  
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VL=-40;  

Vstar=30;  

Vplus=50;  

Kdiss=1;  

r=8.9e-4;  

f=0.004;  

F=96487;  

temp =20;  

alphan= 0.01*(10-x(1)-Vstar)/(exp((10-x(1)-Vstar)/10)-1);  

betan= 0.125*exp((-x(1)-Vstar)/80);  

alpham= 0.1*(25-x(1)-Vplus)/(exp((25-x(1)-Vplus)/10)-1);  

betam= 4*exp((-x(1)-Vplus)/18);  

alphah=0.07*exp((-x(1)-Vplus)/20) ;  

betah= 1/(exp((30-x(1)-Vplus)/10)+1);  

phi = 3^((temp-6.3)/10);  

g2= gKCa*x(5)/(Kdiss+x(5));  

g3= gKHH*(x(2))^4;  

g1= g2+g3;  

g4= gCaHH*x(3)*x(3)*x(3)*x(4);  

answer(1,1)= (g1*(VK-x(1))+ 2*g4*(VCa-x(1)) + gL*(VL-x(1)) + Iapp)/Cm;  

answer(2,1)= phi*(alphan*(1-x(2))- betan*x(2));  

answer(3,1)= phi*(alpham*(1-x(3))- betam*x(3));  

answer(4,1)= phi*(alphah*(1-x(4))- betah*x(4));  

answer(5,1)= f*(3*g4*((VCa-x(1))/(r*F))-kCa*x(5)); 

 

MATLAB code for Phantom Burster model: 

 
function answer= phantom (t,x)  

lambda= 1.1;  

gca= 280;  

gk= 1300; 

gl= 25;  

vs1= -40;  

taus1=1000;  

vs2= -42;  

taus2= 120000;  

gs2= 32;  

gs1= 12.5;  

vl= -40;  

vca= 100;  

vk= -80;  

cm= 4524;  

tnbar= 9.09;  

vm= -22;  

vn= -9;  

sm= 7.5;  

sn= 10;  

ss1=0.5;  
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ss2= 0.4;  

minf = 1.0/(1.0+exp((vm-x(1))/sm));  

ninf = 1.0/(1.0+exp((vn-x(1))/sn));  

taun = tnbar/(1.0+exp((x(1)-vn)/sn));  

s1inf = 1.0/(1.0+exp((vs1-x(1))/ss1));  

s2inf = 1.0/(1.0+exp((vs2-x(1))/ss2));  

ica = gca*minf*(x(1)-vca);  

ik = gk*x(2)*(x(1)-vk);  

il = gl*(x(1)-vl);  

is1 = gs1*x(3)*(x(1)-vk);  

is2 = gs2*x(4)*(x(1)-vk);  

answer(1,1) = -( ica + ik + il + is1 + is2 )/cm;  

answer(2,1) = lambda*(ninf - x(2))/taun;  

answer(3,1) = (s1inf - x(3))/taus1;  

answer(4,1) = (s2inf - x(4))/taus2; 

 

The code was run in MATLAB (version) and the graphs were plotted using MS Excel. 

Parameter values were taken from existing literature. 
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Chapter 3  

RESULTS AND DISCUSSION 

 

The results of the study are given in two sections – for the Neuron and the Beta cells 

3.1 Electrical activity of Neuron - Hodgkin Huxley model: 

Solution of the model: 

The simulation results for the Hodgkin-Huxley model for the given parameters is shown 

below in Fig 7. 

 

 

Fig 7: Solution of Hodgkin Huxley model 
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Where, n ∝ number of open K channels.

m ∝ number of activated Na channels.

h ∝ number of deactivated Na channels.

Following points were observed from the solution of the model:

 Potassium channels (known as slow channels) take a longer time to open and close as 

compared to the sodium channels.

 Not all the potassium channels are closed at a time unlike the case with sodium 

channels. 

 When sodium channels are in deactivated stage, there is no action potential.

 

1. Effect of external current on neurons:

It is known that as the magnitude of external stimulus is

oscillations of the membrane 

H-H model for different external currents and have obtained the same trend as shown 

in Fig 8(B). 

  

A    

Fig 8: Effect of current mag

A. Experimental data
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number of open K channels. 

f activated Na channels. 

number of deactivated Na channels. 

Following points were observed from the solution of the model: 

Potassium channels (known as slow channels) take a longer time to open and close as 

compared to the sodium channels. 

potassium channels are closed at a time unlike the case with sodium 

When sodium channels are in deactivated stage, there is no action potential.

Effect of external current on neurons:  

s the magnitude of external stimulus is increased, the frequency of 

oscillations of the membrane potential (V) increases (Fig. 8(A)). I have simulated the 

H model for different external currents and have obtained the same trend as shown 

 

    B 

Effect of current magnitude on frequency of oscillations.

Experimental data [1]            B. Simulation results 

Potassium channels (known as slow channels) take a longer time to open and close as 

potassium channels are closed at a time unlike the case with sodium 

When sodium channels are in deactivated stage, there is no action potential. 

increased, the frequency of 

(Fig. 8(A)). I have simulated the 

H model for different external currents and have obtained the same trend as shown 

nitude on frequency of oscillations. 

B. Simulation results  
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2. Effects of changed Na+ conductance on neural oscillations: 

 

As Na+ conductance in the beta cells increases, the simulation results show that both the 

frequency and amplitude of the action potentials increase (as summarized in Fig.9).  

 

A      B 

Fig 9: Both frequency (A) and amplitude (B) of oscillations increase with increase in 

sodium conductance 
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3. Effects of changed K+ conductance on neural oscillations: 

 

 

 

 

A      B 

Fig 10: Both frequency (A) and amplitude (B) of oscillations decrease with an 

increase of potassium conductance 

 

The above mentioned simulation results can be explained in terms of the difference in time 

scales of the ion channel opening/closing in the neurons. 
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3.2 Electrical activity of Beta cells: 
 
a. Chay-Keizer Model 

 
Solution of the model: 

 
Fig 11:Solution of Chay-Keizer model 

 
The simulation results of the Chay-Keizer model gives the above solution with default 

parameters. The frequency of the bursting pattern matches with the experimental values 

as given in their paper. 

 

 
1. Effect of changed glucose concentration on ß-cell oscillations: 

 

Addition of glucose leads to release of insulin. It was experimentally found that more is 

the amount of glucose added, more is the k(Ca) [glucose dependent rate constant for the 

removal of calcium ions from cytosol]. Therefore, in the simulations increased value of 

k(Ca) signifies increased addition of glucose experimentally. 
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A     B 

 
Fig 12: Increased glucose concentration increases insulin release.  

A- Experimental results [20]    B- Simulation results 

 
 
 

2. Effect of addition of quinine on beta cell oscillations: 
 

Quinine blocks calcium gated potassium channels. Theoretically, this should lead to a 

hindrance restoring the hyperpolarized stage during membrane oscillations. This prolongs 

the period of active phase and hence insulin release. Also, some experimental studies [21] 

have found out that addition of quinine leads to an increase in plasma insulin levels and 

decrease in plasma glucose levels. 

 

 
 
 

Fig 13: Addition of quinine increases insulin release (simulation results) 
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F 
3.   Effect of addition of TEA(tetraethyl ammonium ions) on beta cell oscillations: 

 
TEA blocks voltage gated potassium channels. Experimentally [22], it has been found out 

that addition of TEA leads to an increased plasma insulin levels. 

 
 
 

Fig 14: Addition of TEA increases insulin release (simulation results) 
 

 
 
 

b. Phantom Burster model: 
 
Beta cells do not exist or function in isolation. In intact islets of Langerhans, beta cells 

oscillate with intermediate (10–60s) time periods as opposed to single cells which oscillate 

with either very small (1-5s) or very large (1-2min) time periods. This can be modeled by 

combining very small and very large time periods. Intermediate bursting is known as 

Phantom bursting. 

 

 
 

 

Fig 15: A mixture of fast and slow bursting leads to phantom bursting. 
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Chapter 4 

CONCLUSION: 

Modeling the electrical activity in the cells helps in studying the impact of various external 

chemicals and stimulations(like current) on the normal/diseased cells and the same can be 

mimicked in in-vitro systems as well. Impact of change of various internal conditions like 

conductance of cell membrane , etc which might depend on external conditions like 

pharmacological agents and drugs can be studied. Further deep diving & closely analyzing  

the dependence of  changing internal conditions on various external conditions provide useful 

insights on practical implementation in medical science.  

 

The results of the project work are summarized as follows: 

 In case of neurons, the increase in external stimulation (current) leads to an increase 

in frequency of oscillations of action potential in the cell membrane. 

 With the increase in sodium channel conductance, there is an increase in both the 

frequency as well as the amplitude of oscillations of action potential in neuronal cell 

membranes. 

 With the increase in potassium channel conductance, there is a decrease in both the 

frequency as well as the amplitude of action potential oscillations of neuronal cell 

membranes. 

 The amount of insulin secretion from beta cells increases with the increase in the 

amount of plasma glucose levels. 

 Addition of drugs like TEA and quinine increases the secretion of insulin from beta 

cells.  

 

The already existing models that I studied did not take into account all the parameters that are 

present in a living cell. So there is always a scope for improvement to make the models more 

realistic. For example: in the beta cells, the source of calcium ions in the Chay Keizer models 

was just the extracellular, but that is practically not true. There are many other sources of 

calcium ions like ER, mitochondria, etc. within the cell. The more recent models do take care 

of some of these parameters.    
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