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Abstract

A quantum system is associated with uncertainty in position and momentum space

as given by the Heisenberg uncertainty principle, ∆x∆px ≥ ~. This unbreakable

lower bound is made even more stronger by the information theoretic inequality,

Sρ + Sγ ≥ n(1 + lnπ) [I. Bia lynicki-Birula, and J. Mycielski, Comm. Math. Phys.

44, 2,(1975), 129-132.], where Sρ and Sγ are information entropies due to the

single particle charge densities in position and momentum spaces respectively. In

this work, the question of how close to and in what fashion can this bound be

achieved is addressed. It is numerically shown that this is possible via a high

frequency AC driving of the quantum system. In the prescence of high frequency

AC fields instead of ionization, stabilization happens for certain field parameters.

A minimum in the information entropy sum of dual spaces is numerically shown

for model quantum systems under periodic high frequency driving conditions.The

AC field parameters at which the information entropy sum is minimum, is given

in terms of the classical quiver distance α0 = ε0
meω2 , where ε0, field strength and

ω is the frequency.

A code has been developed for calculating electron momentum densities of atoms

from the electronic wavefunctions calculated using the GAMESS( General Atomic

and Molecular Electronic Structure System ) package. From this information

entropies in position/momentum space have been calculated for the ground state

of closed shell atoms with fully filled orbitals.



Chapter 1

Introduction

1.1 Preamble

At a microscopic level, the quantum system can be described by a wave function.

the wave function itself is not an experimentally measurable quantity. The prob-

ability density corresponding to the wave function is what can be experimentally

measured. How would one extract the necessary chemical and physical information

from the density has always been a problem of interest. In this sense, the infor-

mation entropies are a useful tool to characterize the uncertainty in a quantum

system in conjugate postion and momentum spaces. Given the 4N-dimensional

wave function for an N-particle system, one can condense the information that it

carries, into a physically intuitive three dimensional form called the single par-

ticle charge density. Condensing the 6N-dimensional phase space density could

amount to separately analyzing the behaviour of an N-particle system in position

space and momentum space. It is of relevance that the resultant single particle

densities are experimentally measurable. However, there is still a matter of the

natural quantum uncertainty. To probe a quantum system, using high frequency

and high intensity oscillating fields, has become a norm of the day. In this the-

sis, the information theoretic characterization of conjugate space densities of AC

driven quantum systems is examined. In the forthcoming sections the analyzed

quantities are defined and introduced. In the next section density distributions in

dual spaces are described. [1].

1
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1.2 Electron density in position space

A chemist has always been interested in the quantum mechanical elucidation of

structure, which has an experimental realization through spectroscopic techniques.

The single particle charge density that can be obtained from X-ray diffraction

experiments gives the structure of a chemical system.

For an N-electron system, (discrete spins summed over),

ρ(~r) = N
∑
σ

∫
Ψ∗(~r, ~r2, ~r3, ..., ~rN)Ψ(~r, ~r2, ~r3, ..., ~rN)d3r2d

3r3....d
3rN (1.1)

The N -particle wave function, Ψ, is normalized which implies that the charge

density ρ(~r) integrates out to the total number of electrons N .∫
ρ(~r)d3r = N (1.2)

Given the molecular orbitals {ψa(~r)}, the density is given by,

ρ(~r) =
k∑
a=1

|ψa(~r)|2 (1.3)

Where k is number of filled orbitals. The atomic charge density possesses a finite

maximum at the nuclear position. A spherical average of the charge density at a

nuclear position satisfies Kato’s [2] cusp condition [3–5].

dρ̃

dr

∣∣∣∣∣
r=0

= −2Zρ̃(0) (1.4)

Here Z is the charge of the atomic nucleus and ρ̃(r) is the spherically averaged

charge density.

Asymptotically, the behaviour of the charge denstiy is described by [6–9],

∂ ln[ρ̃(r)]

∂r

∣∣∣∣∣
r→∞

= −2
√

2I (1.5)
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where I is atomic ionization potential. The electron densities decay as e−2Zr near

the nucleus and e−2r
√
2I far away from the nucleus. The intermediate behaviour

between cusp and the asymptotics can only be numerically observed for atomic

densities [10, 11].

1.3 Electron density in momentum space [12]

The discussion of atoms and molecules in momentum space began with the work

of Pauling and Podolsky [13] in 1929, where they applied a Fourier-Dirac trans-

formation as given by Jordan [14] in 1927, to hydrogenic orbitals. Their aim

was to obtain the wave function and thus the probability of an electron being in

a given momentum range. This was also related to Compton line experiments

giving the electron momentum density[15]. There is another technique involving

the measurement of momentum densities called electron momentum spectroscopy

(EMS)[16]. Most of work in chemistry on electron momentum density (EMD) has

been due to Coulson [17–19].

The momentum space wave function is obtained by a Fourier transform of the

position space wave function and is given by,

Φ(~p1, p2, ...., ~pN) =
1

(2π)3N/2

∫
d3r1d

3r2....d
3rNΨ(~r1, ~r2, ..., ~rN) e

−i
N∑
i=1

~ri.~pi
(1.6)

For an N -electron system, the momentum space density is,

γ(~p) = N
∑
σ

∫
Φ∗(~p, ~p2, ~p3, ..., ~pN)Φ(~p, ~p2, ~p3, ...., ~pN)d3p2d

3p3d
3p4....d

3pN (1.7)

The EMD also has additional characteristics of being inversion symmetric i.e

γ( ~−p) = γ(~p) [20]. It has an asymptotic decay of p−8 in the far momentum

range. The EMD for ground state of helium in momentum space shows monotonic

behaviour. On the other hand, EMD for ground state of neon a has minimum

at p = 0 and maximum at p ≈ 9.0 a.u, and hence shows non-monotonicity. A

nonmonotonic behaviour has been first noticed and recorded by Thakkar [21] for

carbon, nitrogen, oxygen, fluorine, neon and argon atoms. The carbon, nitrogen,
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oxygen and fluorine atoms were found to show at most three maxima in their

spherically averaged momentum densities. Later, Koga et al. [22] classified the

103 elements of the periodic table with EMDs of three types: (i) monotonic, (ii)

nonmonotonic, and (iii) those having 2 maxima, one at p = 0 and the other at

p > 0. A characterization of the spread/localization/uncertainty in these distri-

bution is done by information theoretic measures. The next section defines and

introduces these.

1.4 Information Entropies

Since probabilities are fundamental at a microscopic level, the description of the

system is more often represented in terms of uncertainty. Shannon [23] described

uncertainty for a set of possible events in terms of information entropies for a

discrete probability distribution as having following characteristics :

1. The quantity S should be continuous in Pi, where Pi is probability of ith

outcome.

2. If all Pi are equal, Pi = 1
n
, then the quantity S will be maximum and a

monotonic increasing function of n.

3. If a choice is broken down into two successive choices, the original S should

be a weighted sum of the individual values of S.

The only form for S wich satisfies these conditions is given below, Where k is a

positive constant.:

S = −k
∑

Pi lnPi . (1.8)

These information entropies can also be calculated over continuous probability

distributions for model systems and real atoms, where the summation could be

replaced by an integral,

S = −k
∫
P (x) lnP (x) dx . (1.9)

With an n dimensional P (x1, ......, xn) we have
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S = −k
∫

....

∫
P (x1, ......, xn) lnP (x1, ......, xn) dx (1.10)

When one tries to measure conjugate observables, the uncertainty in one space

has an inverse relation to uncertainty in the other space. This means that for a

sharp distribution in position space, there will be a corresponding wide/diffuse

distribution in momentum space and vice-versa. Jaynes [24] in his review article

has related these uncertainties to information entropies in their respective spaces.

A sharp distribution in any space will have a small information entropy value and a

wide distribution will have a large information entropy value. The following curves

show density distributions of a Gaussian and its Fourier transform, describing how

a wide distribution in one space leads to sharp distribution in another space and

vice versa for the following equations [25].

 0
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 0.7

-10 -5  0  5  10

|Ψ
(x

)|
2
 (

b
lu

e
) 

  
 /
  
 |

Ψ
(p

)|
2
  
(b

la
c
k
)

x(a.u)/p(a.u)

Figure 1.1: (a) blue : |Ψ(x)|2
(b) black : |Ψ(p)|2

Ψ(x) =

√
α

π
e−αx

2

@ α = 2.0 Ψ(p) =
1√
4πα

e−
p2

4α @ α = 2.0

From now onwards we will use Sρ and Sγ to denote information entropies in po-

sition space and momentum space respectively. In terms of the single particle

charge density ρ(~r) and γ(~p)

Sρ = −
∫
ρ(~r) ln ρ(~r)d3r Sγ = −

∫
γ(~p) ln γ(~p)d3p (1.11)
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1.5 Generalized uncertainty relations

Heisenberg uncertainty principle, in terms of variances in position and momentum,

is denoted by ∆x.∆px ≥ ~. Later, Kennard and Weyl calculated deviations in

various model problems [26] and came up with a relation σx.σp ≥ ~
2
,σx and σp are

standard deviations in x and p spaces respectively.

The uncertainty in terms of information entropies is an extra bound on the physical

system apart from the fundamental Heisenberg uncertainty priciple [27]. This

uncertainty relation says that Sρ+Sγ ≥ n(1+ln π). One interesting result known

is that, in the ground state, Sρ + Sγ is exactly equal to 1 + lnπ for the harmonic

oscillator model problem. This is because there is a single gaussian representation

of the ground state wave function in position and momentum space.

As given by Bia lynicki-Birula and Mycielski, the (p, q)th norm of the Fourier trans-

form is given by the smallest number k(p, q) for which the following inequality holds

for all ψ ∈ Lp

||ψ̃||q ≤ k(p, q)||ψ||p (1.12)

where ||ψ||p is given by,

||ψ||p = (

∫
dnr|ψ|)1/p (1.13)

and k(p, q) is given by,

k(p, q) =

(
2π

q

)n/2q (
2π

p

)−n/2p
(1.14)

Now re-writing eqn no 1.12 as,

W (q) = k(p, q)||ψ||p − ||ψ̃||q (1.15)

Where p and q are related by the following relation :

1

p
+

1

q
= 1 (1.16)
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Now W (q) ≥ 0. Parseval-Plancheral theorem says that this inequality becomes

equality only for q = 2. Now expanding W (q) and replacing p in terms of q.

W (q) =

(
2π

q

)n/2q (
2π

p

)−n/2p [∫
dnr|ψ|p

]1/p
−
[∫

dnk|ψ̃|q
]1/q

(1.17)

From the previous relation p = q/(q − 1)

W (q) =

(
2π

q

)n/2q (
2π(q − 1)

q

)−nq/2(q−1) [∫
dnr|ψ|(q−1)/q

]q/(q−1)
−
[∫

dnk|ψ̃|q
]1/q

(1.18)

Right derivative of W(q) at q=2 should be non-negative.

n

4
N(1 + ln π)− 1

2N

∫
dnr|ψ(r)|2 ln |ψ(r)|2

− 1

2N

∫
dnk|ψ̃(k)|2 ln |ψ̃(k)|2 +N lnN ≥ 0 (1.19)

Here N = ||ψ|| = ||ψ̃||. For N = 1, the equation reduces to

−〈ln ρ〉 − 〈ln ρ̃〉 ≥ n(1 + ln π) (1.20)

Where ρ(r) = |ψ(r)|2 , ρ̃(k) = | ˜ψ(k)|2 and 〈ln ρ〉 =

∫
dnrρ(r) ln ρ(r)

For real atoms the information entropy sum is expected to be greater than the

equality i.e. Sρ + Sγ > n(1 + ln π) and is expected to come close to the equality

n(1+ln π) in prescence of external AC field with suitable field parameters(intensity

and frequency). For the harmonic oscillator case we can change the system in such

a way such that Sρ+Sγ for the ground state is exactly equal to 1 + ln π. However

in field free conditions, it tends to increase rapidly the with first few quantum

states and then increase very slowly with higher quantum states. In the next

section some aspects of the high frequency AC field will be discussed. On further

reduction, the above bound reduces to the following equation. Gadre [28] has

verified this new relation within Thomas-Fermi framework.

Sρ + Sγ ≥ 3N(1 + ln π)− 2N lnN (1.21)
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1.6 High Frequency AC fields

When any system is in the presence of a very high frequency AC field, at some

particular field parameters (intensity and frequency), instead of destabilization

there is a stabilization of the system. The AC field changes the potential so

rapidly, such that the particle/system will remain localized inside the well. A

decrease in information entropy sum is expected in these type of conditions due to

confinement of bound states inside the well space. Since the bound states are said

to be infinite lifetime states, their information will not change with time. There

are other interesting effects such as, prescence of a nearly-degenerate ground state,

symmetry breaking in the wave function etc. The idea is to study the behaviour

of entropies under high frequency AC field and field free conditions. One can

achieve a system which is minimum in uncertainty by varying the field parameters

(intensity and frequency). Also note that the uncertainty in terms of information

entropies is dependent only on probability densities, which are experimentally

measurable quantities.

Figure 1.2: (a) V (x) (in black) (b) V0 KH (in blue)(effective non-ionizing
potential for an atom)

From the Fig 1.2 one can easily interpret 1-D representation of a Coulombic po-

tential which is infinity at the nuclear position becomes finite in prescence of AC

field. Also the attraction to the electrons comes from two “virtual” nuclei. The

electrons which are in effect of coulombic potential are now in effect of zeroth order
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Kramer-Hanneberger potential [29] (and references therein). In the next section

we will discuss Kramer-Henneberger transformation in detail.

1.7 Kramer-Henneberger transformation

Kramer-Henneberger transformation provides a theoretical framework for descrip-

tion of the system under high frequency AC fields [29] (and references therein).

When system is exposed to any AC field, the potential part of the Hamiltonian

become time dependent due to that AC field. For the Hamiltonian in Coulomb

gauge, TDSE can be written as (a.u)

i
∂

∂t
ψ(x, t) =

[
− ∇

2

2
+ v(x) + εxcos ωt

]
ψ(x, t) (1.22)

U1(x, t) = e
−iεx
ω

sin ωt (1.23)

χ(x, t) = U1(x, t)ψ(x, t) (1.24)

Applying a suitable unitary tranformation and rewriting TDSE converts the Hamil-

tonian to a momentum gauge representation.

i
∂

∂t
χ(x, t) =

[
− ∇

2

2
+ v(x) +

iε

ω
sin(ωt)∇+

1

2
(
ε

ω
sin ωt)2

]
χ(x, t) (1.25)

U2(x, t) = e
−ε
ω2
cos(ωt)∇ (1.26)

ψ(x, t)
′
= U1(x, t).U2(x, t)ψ(x, t) (1.27)

A series of such unitary transformations can take the Hamiltonian to the similar

kind of system present in high frequency AC field conditions.

Similar operations can be applied to momentum space wave function by Fourier

transforming position space wavefunction.

ψ(p, t) =
1√
2π

∫
e−ipxψ(x, t)dx (1.28)
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Once the Hamiltonian and wave function of the system are defined, one can evalu-

ate the energies and information entropies of the system for various states in dual

spaces.

1.8 Motivation and plan of thesis

We have have seen in earlier sections, the potential which is infinite due to pres-

cence of nucleus at the center becomes finite as if the the nucleus is not even

present there in the prescence of high frequency, high intensity AC field and also

in the same case two vitual nuclei come up in the picture equidistant from the

center[29]. Under these conditions, there is stabilization. The chemistry under in-

tense laser fields is entirely different. The information entropy sum in dual spaces

are such that they tend to decrease in these intense laser fields resulting in mini-

mized uncertainty and stabilization of the system. The idea is to figure out field

parameters under which the system stabilizes itself by studying the information

entropies of the various systems which are discussed in detail in the subsequent

chapters.

Not many programs are available that calculate electron momentum densities on

a grid, given a calculate electronic wavefunction in position space. The second

chapter describes the details of a code written that calculates EMD.

In the third chapter, some of the model problems are discussed harmonic oscillator,

Morse potential and Xenon potential. It is shown that they also have same kind of

behaviour and try to minimize their entropy sum under intense laser fields. Also,

an attempt is made to come up with a theoretical explanation for this kind of

behaviour.
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Chapter 2

Program for Electron Density and

Electron Momentum Density

2.1 Introduction

For calculating information entropies of atoms, single particle charge density is

required at each point in 3-dimensional position and momentum spaces. These

densities can not be analytically solved. These have to be numerically evaluated

over a grid. The information entropies can not be analytically integrated as well.

This is evident from the way electron densities are evaluated.

For an N -electron system, the position space single particle charge density is

ρ(~r) = N
∑
σ

∫
Ψ∗(~r, ~r2~r3...~rN)Ψ(~r, ~r2, ~r3...~rN)d3r2d

3r3....d
3rN (2.1)

The momentum space wavefunction is obtained by a Fourier transform of the

position space wavefunction and is given by,

Ψ(~p1, p2, ~p3, ...., ~pN) =
1

(2π)3N/2

∫
d3r1d

3r2....d
3rNΨ(~r1, ~r2~r3...~rN) e

−i
N∑
i=1

~ri.~pi
(2.2)

For an N electrons system, the momentum space density is given by,

γ(~p) = N
∑
σ

∫
Ψ∗(~p, ~p2, ~p3, ..., ~pN)Ψ(~p, ~p2, ~p3, ...., ~pN)d3p2d

3p3d
3p4....d

3pN (2.3)

Computationally, given molecular orbitals {ψa(~r)}, the density is given by,

ρ(~r) =
∑
a

|ψa(~r)|2 (2.4)

13
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It is to be remarked here, that to the best of our knowledge, there exist only 4

or 5 codes that evaluate momentum densities of atoms and molecules, given the

molecular/atomic orbital coefficients of a Gaussian basis.

2.2 Electronic structure calculation

A molecular orbital is given by

ψa(~r) =
N∑
i=1

M(a,i)Ciφi (2.5)

where N is the number of contractions present in the system. Ci is contraction

level normalization and φi is ith the contraction, which is a collection of primitive

gaussians. M(a,i) are coefficients to a molecular orbital and are evaluated by run-

ning an electronic structure package GAMESS [1, 2] by providing φi in a certain

format,

φi =
M∑
k=1

akχk (2.6)

where ith contraction contains M primitive gaussians and ak is coefficient to a

primitive gaussian and is required to be provided as GAMESS input. For position

space,

χk = (2πα)3/4
[

(4α)(lk+mk+nk)/2

(2lk − 1)!! (2mk − 1)!! (2nk − 1)!!

] 1
2

×(x− xa)lk(y − ya)mk(z − za)nke−αk[(x−xa)
2+(y−ya)2+(z−za)2] (2.7)

For momentum space,

χk =
ilk+mk+nk

(2πα)3/4
lk! mk! nk! exp(−P 2/4α + i ~P . ~A)[

(4α)(lk+mk+nk)/2

(2lk−1)!! (2mk−1)!! (2nk−1)!!

]1/2
×

[lk/2]∑
k1=0

(−1)k1 (px/
√
α)lk−2k1

k1!(lk − 2k1)!

×
[mk/2]∑
k2=0

(−1)k2 (py/
√
α)mk−2k2

k2!(mk − 2k2)!

×
[nk/2]∑
k2=0

(−1)k3 (pz/
√
α)mk−2k3

k3!(nk − 2k3)!
(2.8)
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where αk is exponent for a particular primitive Gaussian. lk, mk, nk are compo-

nent of angular momentum in all three directions and xa, ya, za are position of

atoms in three dimensional space. All these variables are required as GAMESS

input. A sample input for the electronic structure calculation of Helium atom is

given here.

$CONTRL SCFTYP=RHF RUNTYP=ENERGY $END

$DATA

HELIUM

C1

HE 2.0 0.0 0.0 0.0

S 3

1 502.89795759 0.0230741

2 76.9896601 0.1681946

3 17.98108986 0.8087312

S 1

1 0.18687559 1.0000000

P 1

1 9.4309800 1.0000000

D 1

1 7.2485900 1.0000000

F 1

1 1.522464995 1.0000000

$END
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2.3 ED and EMD Code description

2.3.1 Primitives

The ED/EMD code developed here starts with accesing an input file in.dat

which contains the following informmation:-

he1.dat

position/momentum

101

1001

a. File Name:- This gives the information of file which needs to extracted from

that particular folder. Which containts coefficient to the wavefunctions and all

basis information for a given atom.

b. Density Type:- Information is passed on whether you are calculating position

density or momentum density.

c. Range:- This will give the range of the density type.

d. No. of points:- This will give number of points in range while integration.

Now the code will read he1.dat which is a GAMESS input file for Helium EMD

calculation. Inside the code one can find a function initnocnpg which access the

file name and calculates number of contraction and number of primitive

gaussians for the wave function from that file

In the next function input it stores the follwing parameters:-

a. Atomic numbers of each element of the molecule.

b. MO coefficient′s in a two dimensional array.

c. K and α values of the primitive gausssians.

d. Number of primitive gaussians with respect to contractions.

e. Angular momentum in all three directions with respect to contractions.

f. Atom centres in all the three directions with respect to the atom

Following are three small functions which one can call anytime :-

a.)combination function for Combination function.

b.)factorial for factorial fucntion.

c.)dfact for double factorial function.
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2.3.2 Contraction level normalization

Inside the code one can find a function cinorm for calculating the contraction level

normalization. For ith contraction that contains M primitive gaussians:-

φi =
M∑
k=1

akNkχk (2.9)

Nk =
(α
π

)3/4[ (4α)(lk+mk+nk)/2

(2lk − 1)!! (2mk − 1)!! (2nk − 1)!!

]1/2
(2.10)

The contraction level normalization is given

Ci =
[ 1

< φi|φi >

] 1
2

(2.11)

within a contraction the χk’s are not orthonormal and 〈φi|φi〉 is given by

〈φi|φi〉 =
M∑
s=1

M∑
t=1

〈asχs|atχt〉 (2.12)

where 〈χs|χt〉 is overlap integral and is given by

〈χ(A, α1, l1, l2)|χ(B, α2, l1, l2)〉 = π3/2σ3/2exp(−α1α2σAB)

×
(l1+l2)/2∑
i=0

f2i(l1, l2, ABx, BP x)(2i− 1)!!(
σ

2
)i

×
(m1+m2)/2∑

i=0

f2i(m1,m2, ABy, BP y)(2j − 1)!!(
σ

2
)j

×
(n1+n2)/2∑

i=0

f2i(n1, n2, ABz, BP z)(2k − 1)!!(
σ

2
)k (2.13)

where σ = 1/(α1 + α2). The expression for fi’s is given by

(x+ a)l1(x+ b)l2 =

l1+l2∑
i=0

fi(l1, l2, a, b)x
i (2.14)

Now, overall wave function of filled orbitals is given by :

Ψi = M(i,1)C1φ1 +M(i,2)C2φ2 +M(i,3)C3φ3 + .......M(i,n)Cnφn
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where Ψi is given by ith filled orbital. The density evaluation on a grid is done

using Eqn. 2.4. There is an analogous equation in momentum space.

The following process not only extracts this information but also generates report

to on separate report file report.txt in the same folder. Now, if one has the overall

wave function which consist of all the filled orbitals of the system whether it is

an atom or a molecule is known, we can extract the following properties of the

system. [3]

From all the properties, three properties are very important in this whole scenario,

namely:-

a. Probability Density(both in position and momentum space)

b. Information Entropy(both in position and momentum space)

c. Kinetic Energy of the system.(for checking the correctness of the code)

Atom Nρ Sρ Nγ Sγ Sρ + Sγ

Helium 1.99999 4.17416 1.99999 6.44125 10.61541

Atom K.E(Actual) KE(Numerical)

Helium 2.86161 2.86152

Atom Sρ + Sγ ≥ 3N(1 + lnπ)− 2NlnN

He 10.61541 10.0957

Sρ + Sγ are denoted as sum of information entropy in dual space and is expected

to come out to higher than Sρ +Sγ ≥ 3N(1 + lnπ)− 2N lnN . Where 3 in number

of dimensions in position and momentum space and N is the number of particles

in the system.
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2.4 Results

The fig 2.1 is the probability densities for Helium in position spaces at Z = 0.0 a.u.

Fig 2.2 is the probability densities for Helium in position spaces at Y = 0.0 a.u

Z = 0.0 a.u.
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Figure 2.1: Helium in position space at Z = 0 (a.u).
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Figure 2.2: Helium in position space at Y = Z = 0.0 (a.u) .
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The fig 2.3 is the probability densities for Helium in momentum spaces at PZ =

0.0 a.u. Fig 2.4 is the probability densities for Helium in momentum spaces at

PY = 0.0 a.u and PZ = 0.0 a.u.
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Figure 2.3: Helium in momentum space at PZ = 0 (a.u).
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Chapter 3

Model Problems

The understanding of a bigger picture is incomplete without simple examples or

model problems. In this chapter, the information entropies of some model quantum

systems have been numerically evaluated as a function of AC field parameters. The

first one is the purely harmonic oscillator in which all the states are bound by the

potential. The second one is the Morse potential which is an approximation to

real vibrational sytems with a limited number of bound states. The Sρ + Sγ for

the ground state is very near to 1 + ln π and continues to remain constant as we

increase α0 which is field parameter for laser intensity and frequency. The third

one is Xenon model potential in which two states are perfectly bound and one

state which is bound but very near to the continuum. For this case, it has been

found that Sρ +Sγ goes through a minimum and then increases as α0 is increased

.

3.1 Harmonic Oscillator

The information entropies found for this kind of system are similar to that of un-

certainty principle given by Heisenberg. A precise measurement in one space will

consequently result in a very large uncertainty in other space. A broad distribu-

tion leads to a higher information entropic value than a sharp distribution. The

following equations represent normalized wavefunctions of the simple harmonic

oscillator in position space

22
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Ψv(x) = (
σ

π
)1/4

1√
2vv!

Hv(
√
σx)e−

σ
2
x2 (3.1)

The corresponding momentum space representation is given by

Ψv(p) = iv(
1

σπ
)1/4

1√
2vv!

Hv(
1√
σ
p)e−

1
2σ
p2 (3.2)

3.1.1 Case 1 : σ > 1

In this case there is a sharp distribution in position space and a wide distribution

in momentum space. Consequently there will be lower information entropy in

position space than in the momentum space w.r.t quantum state. In the Fig 3.1,

the blue lines represent the probability densities in position space |ψ(x)|2 and the

black lines represent the probability densities in momentum space |ψ(p)|2. The

potential is plotted in red.
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Figure 3.1: Probability densities in position and momentum space for σ > 1.

The information entropies in their respective space and total information entropy

sum are plotted w.r.t vibrational state. In the Fig 3.2, the blue lines represent

information entropies in position space Sρ and the black line represents the in-

formation entropies in momentum space Sγ. The red line represent the total

information entropy sum in dual spaces, Sρ + Sγ.
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Figure 3.2: Information entropies in position and momentum space as a func-
tion of vibrational state for σ > 1.

3.1.2 Case 2 : σ < 1

In this case, there is a wide distribution in position space and a sharp distribution

in momentum space. Consequently there will be higher Information entropy in

position space than in the momentum space w.r.t quantum state. In the Fig 3.3,

the blue line represent the probability densities in position and the black line

represent the probability densities in momentum space. The potential is plotted

in red.
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Figure 3.3: Probability densities in position and momentum space for σ < 1.

The information entropies in their respective space and total information entropy

sum is plotted w.r.t vibrational state. In the Fig 3.4, the blue lines represent infor-

mation entropies in position space Sρ and the black line represent the information

entropies in momentum space Sγ. The red line is the total information entropy

sum in dual spaces Sρ + Sγ.
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Figure 3.4: Information entropies in position and momentum space as a func-
tion of vibrational state for σ < 1.

3.1.3 Case 3 : σ = 1

In this case we have equal distribution in position and momentum space. Con-

sequently the values for information entropy in position and momentum will be

equal space w.r.t quantum state. In the Fig 3.5 the green line represents the prob-

ability densities in position and the black lines represents the probability densities

in momentum space. The potential is plotted in red. Since there is an equal

distribution in position and momentum space the probability density plot exactly

overlap each other.
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Figure 3.5: Probability densities in position and momentum space for σ = 1.

The information entropies in their respective space and total information entropy

sum is plotted w.r.t vibrational state. In the Fig 3.6, the blue line represent infor-

mation entropies in position space Sρ and the black line represents the information

entropies in momentum space Sγ. The red line is the total information entropy

sum in dual spaces, Sρ + Sγ.
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Figure 3.6: Information entropies in position and momentum space as a func-
tion of vibrational state for σ = 1 in which there is an equal distribution in

position and momentum space.

In all the above three cases, it is important to note that Sρ and Sγ vary for the

change in σ but Sρ + Sγ is invariant of σ.

3.1.4 KH Transformation on a harmonic oscillator poten-

tial

In this section, a theoretical framework for harmonic oscillator sytem under high

frequency AC field is explained. The TDSE for harmonic oscillator under AC field

is given by

i
∂

∂t
ψ(x, t) =

[
− ∇

2

2
+ V (x) + ε.x.cos ωt

]
ψ(x, t) (3.3)

The last term in this Hamiltonian expression is the interaction of the system

with the AC field. Also, the effective Hamiltonian include dipole interaction in

prescence of AC field. Where V (x) = 1
2
kx2 and ε is the field intensity parameter.

Applying a suitable unitary transformation:

U(x, t) = e
−iεx
ω

sin ωt (3.4)

i
∂

∂t
ψ(x, t) =

[
− ∇

2

2
+ V (x) +

iε

ω
sin(ωt)∇+

1

2
(
ε

ω
sin ωt)2

]
ψ(x, t) (3.5)

where ω is the frequency of the AC field. A further applying of suitable unitary

transformation will take the Hamiltonian to,
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U(x, t) = e
−ε
ω2
cos(ωt)∇ (3.6)

i
∂

∂t
ψ(x, t) =

[
− ∇

2

2
+

ε2

2ω2
sin2 ωt+ V (x+

ε

ω2
cos ωt)

]
ψ(x, t) (3.7)

Now, α0 = ε
ω2 , which is a commonly used laser parameter comprising of both i.e.

intensity and frequency. Expanding out V (x+ α0cos ωt) we get,

i
∂

∂t
ψ(x, t) =

[
− ∇

2

2
+

ε2

2ω2
sin2(ωt) +

kx2

2
+
kα0

2

2
cos2 ωt +

kxα0 cos ωt

]
ψ(x, t) (3.8)

Applying first set of unitary transformations.

U(x, t) = e
−ikxα0

ω
sin ωt (3.9)

i
∂

∂t
ψ(x, t) =

[
ε2

2ω2
sin2(ωt) +

kx2

2
+
kα0

2

2
cos2 ωt− ∇

2

2
+

ikα0

ω
sin ωt∇+

1

2
(
kα0

ω
sin ωt)2

]
ψ(x, t) (3.10)

U(x, t) = e
−kα0
ω2

cos ωt∇ (3.11)

i
∂

∂t
ψ(x, t) =

[
ε2

2ω2
sin2(ωt) +

kα0
2

2
cos2 ωt− ∇

2

2
+

1

2
(
kα0

ω
sin ωt)2 +

kx2

2
+
k2α0x

ω2
cos ωt+

k

2
(
kα0

ω2
cos ωt)2

]
ψ(x, t) (3.12)

The last three terms in equation (3.12) will be again of the form : k
2
(x+ kα

ω2 cos ωt)
2.

Applying second set of unitary transformations,

U(x, t) = e
−ik2xα0

ω3
sin ωt (3.13)
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i
∂

∂t
ψ(x, t) =

[
ε2

2ω2
sin2(ωt) +

kα0
2

2
cos2 ωt+

1

2
(
kα0

ω
sin ωt)2 +

kx2

2
+

k

2
(
kα0

ω2
cos ωt)2 − ∇

2

2
+
ik2α0

ω2
sin ωt∇+

1

2
(
k2α0

ω3
sin2ωt)

]
ψ(x, t) (3.14)

U(x, t) = e
−k2α0
ω4

cos ωt∇ (3.15)

i
∂

∂t
ψ(x, t) =

[
ε2

2ω2
sin2(ωt) +

kα0
2

2
cos2 ωt+

1

2
(
kα0

ω
sin ωt)2 − k

2
(
kα0

ω2
cos ωt)2 −

∇2

2
+

1

2
(
k2α0

ω3
sin2ωt) +

kx2

2
+
k3xα0cos ωt

ω4
+
k

2
(
k2α0cos ωt

ω4
)2

]
ψ(x, t) (3.16)

The nth set of unitary transform will lead to TISE under high frequency AC field

conditions,

i
∂

∂t
ψ(x, t) =

[
ε2

2ω2
sin2(ωt)− ∇

2

2
+
k

2
(α0cos ωt)

2 +
kx2

2
+

1

2

i=n,j=2n∑
i=1,j=1

{
kiα0sin ωt

ωj

}2

+

k

2

i=n,j=2n∑
i=1,j=2i−2

C1

{
ki−1α0cos ωt

ωj

}2

+
iknα0 sin ωt

ω2(n−1)+1
∇

]
ψ(x, t) (3.17)

Where, in the equation (3.17) C1 = 0; i = 1 and C1 = 1; i > 1.

i
∂

∂t
ψ(x, t) =

[
ε2

2ω2
sin2(ωt)− ∇

2

2
+
k

2
(α0cos ωt)

2 +
kx2

2
+

1

2

i=n,j=2n∑
i=1,j=1

{
kiα0sin ωt

ωj

}2

+

k

2

i=n,j=2n∑
i=1,j=2i

{
kiα0cos ωt

ωj

}2

+
kn+1α0x cos ωt

ω2n

]
ψ(x, t) (3.18)

Under high frequency conditions the time dependence vanishes from the problem.

Now if the direction of the AC field is reversed. The TDSE will be given by :

i
∂

∂t
ψ(x, t) =

[
− ∇

2

2
+ v(x)− εxcos ωt

]
ψ(x, t) (3.19)

The initial Coulomb and momentum gauge unitary transformation will lead to:
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i
∂

∂t
ψ(x, t) =

[
− ∇

2

2
− ε2

2ω2
sin2 ωt+ v(x− ε

ω2
cos ωt)

]
ψ(x, t) (3.20)

Expanding out v(x− ε
ω2 cos ωt) we get,

i
∂

∂t
ψ(x, t) =

[
− ∇

2

2
− ε2

2ω2
sin2(ωt) +

kx2

2
+
kα2

2
cos2 ωt −

kxα cos ωt

]
ψ(x, t) (3.21)

For this TDSE, the nth set of Coulomb and momentum gauge unitary transforma-

tions will lead to TISE under high frequency AC field conditions:

i
∂

∂t
ψ(x, t) =

[
−ε2

2ω2
sin2(ωt)− ∇

2

2
+
k

2
(αcos ωt)2 +

kx2

2
− 1

2

i=n,j=2n∑
i=1,j=1

{
kiαsin ωt

ωj

}2

+

k

2

i=n,j=2n∑
i=1,j=2i−2

C1

{
ki−1αcos ωt

ωj

}2

− iknα sin ωt

ω2(n−1)+1
∇

]
ψ(x, t)(3.22)

Where, in the equation (3.22) C1 = 0; i = 1 and C1 = 1; i > 1.

i
∂

∂t
ψ(x, t) =

[
−ε2

2ω2
sin2(ωt)− ∇

2

2
+
k

2
(αcos ωt)2 +

kx2

2
− 1

2

i=n,j=2n∑
i=1,j=1

{
kiαsin ωt

ωj

}2

+

k

2

i=n,j=2n∑
i=1,j=2i

{
kiαcos ωt

ωj

}2

− kn+1αx cos ωt

ω2n

]
ψ(x, t)(3.23)

Under high frequency conditions the time dependence vanishes from the problem.
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3.1.5 Minimum Information Entropy Driving

The Hamiltonian for harmonic oscillator in field free conditions is given by

H =
[
− ∇

2

2
+ V (x)

]
(3.24)

V (x) =
1

2
kx2 (3.25)

The Hamiltonian for harmonic oscillator under intense AC field is given by

HKH

[
− ∇

2

2
+ VKH

]
(3.26)

where VKH is the new effective potential

VKH =
1

2
kx2 + C (3.27)

where C is a constant by which potential is actually shifted up. The constant C

depends upon the intensity and frequency of the AC field. The exact description

is given in next section.

Now the potential VKH can be shifted up in a way such that the ground state

for the VKH matches exactly with excited state of the previous V (x). In this way

we will have a state in which the information entropy is minimun and is equal to

1 + ln π. It should be noted that the energy of the new ground state is no longer

same.

The potential VKH can be shifted up in a way such that any state for the VKH

matches exactly with the any higher excited state of the previous V(x). In this

way we will have a state in which the Information entropy is minimun but will be

higher 1 + ln π.
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Figure 3.7: Ground state driving of VKH(in blue) of harmonic Oscillator to
5th and 10th excited state of previous V(x) (in Red) under Kh Transformation.

Sρ + Sγ is invariant with α. From the Figs 3.2, 3.4, 3.6 it can be seen that the

value of Sρ + Sγ is exactly equal to 1 + lnπ for the ground state of the harmonic

oscillator and continue to increase upto a certain point with vibrational state. Fig

3.7 is the depiction for how one can drive a system such that the ground state

information is still exactly equal to 1 + lnπ but the ground state is no more the

same. This happens because in the KH framework the effective Hamiltonian now

differs by a constant, which is nothing but change in the potential energy of the

system.
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3.2 MORSE POTENTIAL

The tool used is generic DVR under fourier basis 1√
L
ei2nπx/L to solve the Schrödinger

equation. The idea here is to construct the Hamiltonian matrix which comprises of

kinetic and potential energy elements. The only non-zero, diagonal kinetic energy

elements are simply given by, 4n2π2~2
2mL2 .

< T > =
−h2

2m

1

L

∫ L

0

e−i2nπx/L
d2

dx2
ei2nπx/Ldx

=
−h2

2m

1

L

[
i2nπ

L

]2
L

=
h2

2m

1

L

[
2nπ

L

]2
L (3.28)

For setting up the potential energy matrix in this basis, the expectation value

< x̂ >jk calculated as,

< x̂ >jk =
1

L

∫ L

0

e−i2πjx/Lx ei2πkx/Ldx

=
1

L

∫ L

0

x e−i2π(j−k)x/Ldx

=
i L

2(j − k)π
(3.29)

The resultant matrix is diagonalized and finally the effective potential is evaluated

at those grid points. Computationally AC field parameter shows up only in this

potential energy matrix only and does not affect the kinetic energy part.This is

evaluated using Gauss Legendre integration V0 = 1
2π

∫ 2π

0
V (x− α0cos τ)dτ , where

V (x) can be any arbitrary potential which can be analytically defined.
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The corresponding momentum basis function is obtained by Fourier transforming

position space basis funtion.

φn(p) =
1√
2π

∫ L

0

e−ipxφn(x)

=
1√
2π

∫ L

0

e−ipx
1√
L
ei2nπx/L

=
1√
2πL

1

((2nπ/L)− p)
[
ei((2nπ/L)−p)L − 1

]
(3.30)

The following equation is representation of typical one dimensional morse potential

V (x) = De(1− e−β(x−xe))2 (3.31)

The infomation entropies were evaluated as a function of α0 for H2 molecule where

the parameters for the morse potential are

De = 0.1745412844 a.u, β = −1.0213174 a.u, xe = −1.400279678 a.u

Fig 3.8 depict the effective potential under α0. The ground state energy is increas-

ing with α0. The higher states energy will also increase in a certain fashion and is

depicted in the next section.
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Figure 3.8: Morse potential for hydrogen molecule as a function of α0.

The Fig 3.9 shows energy levels in free field conditions i.e. at α0.The Fig 3.10 shows

how first few state energies vary as we increase α0. There are 17 bound states in
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field free conditions for the choices of parameter. The number of bound state are

decreasing and the remaining bound states are squeezing inside the potential as

α0, the AC field parameter is increasing. In the smaller plot, the energy less than

0.17451 a.u. is bound state. The last bound state is the gray one. In the same

smaller plot, the last two states are not bounded by the potential.
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Figure 3.9: Energy levels for morse potential for hydrogen molecule.
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Fig show probability density plot in both spaces for the first two states w.r.t α0.

In the next section, Sρ is increasing with α0, which is here supported by broad

distribution in position space with α0. Sγ was decreasing with α0, which is also

supported here by sharp distribution in momentum space with α0.

Note : In the Fig 3.11 and 3.12 the probability desities are absolute and are not

zero point corrected.
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position space as function of α0
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hydrogen molecule and Probabil-
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in position space as function of α0
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The following curves show how Sρ, Sγ and Sρ+Sγ for ground and the first excited

state vary with α0. For both states, Sρ is increasing with α0 and Sγ is decreasing

with α0. The smaller plot only shows how Sρ + Sγ vary with α0. From these

smaller plots one can clearly see that Sρ + Sγ is increasing very slowly w.r.t α0.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  2  4  6  8  10

S

α0

Ground state

Sρ

S
γ

S
ρ
 + S

γ

 2.148
 2.149
 2.15

 2.151
 2.152
 2.153
 2.154
 2.155
 2.156
 2.157
 2.158

 0  2  4  6  8  10

S
ρ
 +

 S
γ

α0

Figure 3.15: Ground state Information entropies as a function of α0

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  2  4  6  8  10

S

α0

First excited state

Sρ

S
γ

S
ρ
 + S

γ

 2.72

 2.73

 2.74

 2.75

 2.76

 2.77

 2.78

 0  2  4  6  8  10

S
ρ
 +

 S
γ

α0

Figure 3.16: First excited state Information entropies as a function of α0



Chapter 3 Xenon potential 37

3.3 XENON POTENTIAL

The same tool used is generic DVR under fourier basis 1√
L
ei2nπx/L to solve the

Schrödinger equation. For setting up the Hamiltonian matrix which comprises of

kinetic and potential energy elements. The only non-zero, diagonal kinetic energy

elements are simply given by, 4n2π2~2
2mL2 .

< T > =
−h2

2m

1

L

∫ L/2

−L/2
e−i2nπx/L

d2

dx2
ei2nπx/Ldx

=
−h2

2m

1

L

[
i2nπ

L

]2
L

=
h2

2m

1

L

[
2nπ

L

]2
L (3.32)

The potential energy matrix in this basis is evaluated by obtaining the expectation

value < x̂ >jk.

< x̂ >jk =
1

L

∫ L/2

−L/2
e−i2πjx/Lx ei2πkx/Ldx

=
1

L

∫ L/2

−L/2
x e−i2π(j−k)x/Ldx

=
i L

2(j − k)π
(−1)−(j−k) (3.33)

The resultant matrix is diagonalized and then finally the effective potential is

evaluated at those grid points. Computationally the role of AC field parameter

is only in this potential energy matrix and is evaluated using Gauss Legendre

integration V0 = 1
2π

∫ 2π

0
V (x − α0cos τ)dτ . Where V (x) can be any arbitrary

potential which can be analytically defined.

The corresponding momentum basis function is obtained by Fourier transforming

position space basis funtion.

φn(p) =
1√
2π

∫ L/2

−L/2
e−ipxφn(x)

=
2sin

[
L/2((2nπ/L)− p)

]
√

2πL((2nπ/L)− p)
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The following equation are representation of one dimensional Xenon potential [1]

V (x) = −0.64e−0.1424x.
2

(3.34)

Figure 3.17 shows energy levels in free field conditions i.e. at α0. There are three

bound states out which two are perfectly bound and the third one is very close to

continuum. Figure 3.18 shows how first few state energies vary as we increase α0.

In contrast to morse potential, the number of bound state are increasing as we are

increasing the AC field parameter.
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The following Fig 3.19 and 3.20 shows probability density plot in both spaces for

the first two states w.rt α0. In the earlier section Sρ was increasing with α0 and

position space densities are are localized in two potential wells with increasing α0,

which is now supported by broad distribution in position space while increasing

α0. Sγ was decreasing with α0, which is also supported by sharp distribution in

momentum space with α0 in Fig 3.21 and 3.22.
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Figure 3.23, 3.24 shows how Sρ, Sγ and Sρ + Sγ for ground and the first excited

state vary with α0. For both states Sρ is increasing with α0 and Sγ is decreasing

with α0. In Fig 3.23 the smaller plot show, how Sρ + Sγ vary with α0 in a smaller

range. For this case, one can clearly see that Sρ + Sγ goes through a minimum

while increasing α0.
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For Xenon potential, a careful calculations is required to be done beyond α0 >

5.0 a.u.
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