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Abstract

This work is a development on a previous EPL paper of KP Singh, R Kapri
and S Sinha (2012) on the dynamics of a globally coupled system of multi-stable
elements. In this work we have investigated the sensitivity of small world networks
to heterogeneity. Specifically, we consider a network of bi-stable elements coupled to
four neighbours under different connection topologies. We show that as global bias
tends to 0− the network becomes hypersensitive to heterogeneity, even though the
elements are connected to only a few other elements. Additionally we find that as the
fraction of random links increases, the transition in the collective field gets sharper,
for both static and dynamic links. Lastly, as we increase system size, we find again
that the transition gets sharper. So it is evident that even a small coupling range,
when randomized, can exhibit ultra-sensitivity to heterogeneity, similar to globally
coupled systems.
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1. Introduction

Figure 1.1: Small world network in the increasing order of random links from left to
right.

Spatio temporal patterns are widely found in complex interactive systems [1] which
can be described through networks. Study of networks can help in better under-
standing of systems, as microscopic as neurons in the brain, or as macroscopic as
socio-economic interactions of humans or the growth of the internet [2]. All these
systems have some set of variables that describe the state of the system. These may
be as concrete as ion concentrations, or as abstract as information flow in human
populations. The change of state of complex systems is marked by very complicated
dynamical behavior of these variables.

Different kinds of network try to model one or more aspects of large coupled
systems [6]. A popular model of connections is the small world network, interpolating
between the completely regular lattice [1] and a completely random network[2]. Such
a network consists of N nodes arranged in a ring where fraction 1 − p of the nodes
are connected to their nearest neighbors, while fraction p are connected to random
nodes. We show the schematic of such networks for varying p in Figure 1.1. These
random connections provide shortcut paths for the spatial flow of information, leading
to more efficient synchronization[5, 4, 7].

The starting point of the work in this thesis are the results of KP Singh, R Kapri
and S Sinha (2012) [3] on the dynamics of a globally coupled system of multi-stable
elements. The system they explored was heterogeneous, and consisted of a set of
nonlinear elements that evolved to different stable states when uncoupled. The focus
of that study was the role of heterogeneity in the emergent spatio-temporal patterns.

Specifically, this earlier work studied a collection of N dynamical elements with
two distinct stable states x∗

+ and x∗
−. The equation governing the temporal evolution

of each node were as follows:

ẋi = G(xi) + ai + C(〈x〉 − xi) + b (1.1)
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where i = 1, 2, . . . , N , with N being system size. G(xi) was a generic nonlinear
function that gives rise to a multi-stable potential. The local parameter ai may differ
from element to element, leading to heterogeneity in the system. It determines the
stable state x∗

i of the nodal dynamics in the uncoupled case, by giving a local bias to
the dynamical element. Parameter b is a global bias, common to the elements, and can
be used as a control to obtain different patterns. The elements are coupled through
the mean field 〈x〉 = 1

N

∑n
i=1 xi, which is a good indicator of the collective behaviour

of the system. Lastly, C gives the strength of coupling.
The heterogeneous system in Ref. [3] consisted of two types of elements: N0

elements with ai = 0, and these elements were attracted to a stable state x∗
− when

uncoupled, and the rest of the elements N1 = N −N0 had ai = 1, and were attracted
to the stable state x∗

+. Intuitively, one would think that contribution by each node is
of the order of O(1/N). Thus to draw the entire system towards a certain set, that
set would have to be in the majority. However, very interestingly it was found, that
under certain conditions, all the elements in the system evolved to the stable state of
the minority population, namely the natural state of the set with a smaller number of
elements. The underlying reason for this counter-intuitive behavior was the interplay
of the relative depths of the different local steady states due to heterogeneity, and the
strong global coupling of the system which leads to synchronization.

Further, for suitable global bias b this system could be made ultra-sensitive to
heterogeneity in the system, and the collective field reflected the presence of the
smallest deviation from uniformity in the local parameter ai. In fact it was observed
that in certain systems, even if one element had a different ai, it could lead the entire
system to its natural state. Thus, in these conditions the collective field of the system
is any extremely sensitive detector of heterogeneity.
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2. Model

In the present work we focus on the specific follow-up questions: How sensitive are
small world networks to heterogeneity? More specifically, can one find conditions
for bi-stable elements connected in small world topologies, where the coupled sys-
tem becomes ultra-sensitive to any non-uniformity in the constituent elements? The
ultra-sensitive system in earlier studies occurred under global coupling. Can one ob-
tain similar sensitivity for systems where the coupling is confined to much smaller
neighbourhoods? When coupling is not global, do the relative sizes of the coupled set
to the full system size matter?

To answer all these interesting questions, we study the evolution of N dynamical
elements, coupled to four neighbours each (namely a degree k = 4 network) evolving
as follows:

ẋi = G(xi) + ai + C(
1

4

∑
k

xk − xi) + b (2.1)

with G(xi) = xi − x3
i for i = 1, . . . N . In the interaction term, Σxk is a sum over the

four neighbors of the ith node. Note that the “neighbours” can be the local nearest
and next nearest neighbours, or random non-local sites, depending on the topology of
the underlying network.In order to probe the effect of local heterogeneity, we consider
a network with N0 nodes with ai = 0, and N1 = N −N0 nodes with ai = 1.

In order to understand the effect of the global bias better, we examine the potential
wells for a system that evolves according to the dynamical equation:

ẋi = (xi − x3
i ) + ai + b (2.2)

Such nodal dynamics describes a system with no coupling (i.e. C = 0) or an uniform
synchronized system where 〈x〉 = xi.

Figures 2.1 - 2.4 show representative cases of the effective potential V (x) =
−
∫
ẋ dx for different global bias b, and it is clear from the figures that positive and

negative global bias swings the potential in favour of the positive and negative well
respectively. Namely when (a+ b) < 0 , the well at x < 0 has greater depth than that
at x > 0, and vice-versa for (a + b) > 0.
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Figure 2.1: Effective potential for a single dynamical element i with b = −0.5 with
ai = 0 (violet) and ai = 1 (green).
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Figure 2.2: Effective potential for a single dynamical element i with b = −0.1 with
ai = 0 (violet) and ai = 1 (green).
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Figure 2.3: Effective potential for a single dynamical element i with b = 0 with ai = 0
(violet) and ai = 1 (green).

-1

-0.5

 0

 0.5

 1

-1.5 -1 -0.5  0  0.5  1  1.5

b=0.2

a=0

a=1

V
(x

)

x
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2.1 Study of Spatio Temporal dynamics

The work started with the study of spatio temporal patterns in a small world network
of 100 nodes. We simulated the system governed by equation 2.1 for different param-
eter values. Specifically we consider ai for N1 sites and ai = 0 for N0 = N −N1 sites.
We study the strong coupling limit here, with C = 1 without any loss of generality.
We vary parameter p, namely fraction of random links, from 0 to 1 and global bias b,
from -1 to +1.

There is no synchronization when fraction of randoms links is zero (see Figure
2.5). This clearly indicates that when coupling is only restricted to neighbours the
network does not synchronize. As fraction of random links increase, there are more
shortcut paths for information flow, and global synchronization emerges.

We consider two classes of networks, with fraction p of random links:

1. Static Networks where the connections remain unchanged, namely the case of
frozen or quenched links.

2. Dynamic Networks where the links switch at regular intervals of time, namely
the connectivity matrix changes from time to time.

It was observed that synchronization occurred faster when the network has dy-
namic links rather than static links. The above observation was confirmed by plotting
average value of nodes as a function of time (〈x〉 vs time as displayed in Figure 2.8)

When there are no random links (i.e. p = 0) the system does not synchronize,
while a system with a large fraction of random connections (e.g. p = 0.8) synchronizes,
as is evident in Figures 2.6 and 2.7).

It is evident that dynamical links lead to faster approach to the steady state,
namely shorter transience (cf. comparative times taken to reach the synchronized
state in Figure 2.8).

As we observe in the next section (see Figure 2.12) that for certain value of N1(
where transition is taking place, i.e. between N1 = 0.05 and N1 = 0.2 in Figure 2.12
) there is high dependence on initial conditions, we study the spacetime variation of
x in detail for these parameter values(see Figures 2.9 and 2.10).
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Figure 2.5: Time evolution of coupled bi-stable elements xi (i = 1, . . . , N) governed
by equation 2.1, where the number of sites with ai = 1 is N1 = 10 (up) and N1 = 30
(down). Here we consider completely regular network without any random links,
namely p = 0 and the network of size N = 100, global bias b = −0.2 .
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Figure 2.6: Time evolution of coupled bi-stable elements xi (i = 1, . . . , N) in a network
with quenched random links,governed by equation 2.1. Here the number of sites with
ai = 1 is N1 = 10 (up) and N1 = 30 (down) and the network of size N = 100, global
bias b = −0.2, and the fraction of random links p = 0.8.
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Figure 2.7: Time evolution of coupled bi-stable elements xi (i = 1, . . . , N) in a dy-
namically rewired network, where the number of sites with ai = 1 is N1 = 10 (up)
and N1 = 30 (down). Here the network of size N = 100, global bias b = −0.2, and
the fraction of random links p = 0.8.
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Figure 2.9: Field in a static (left) network and dynamic (right) network for different
random realizations with N1 = 10 sites with ai = 1, global bias b = −0.1, fraction of
random links p = 0.5 and system size N = 100. Here
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Figure 2.10: Field in a static (left) network and dynamic (right) network for different
random realizations with N1 = 15 sites with ai = 1, global bias b = −0.1, fraction of
random links p = 0.5 and system size N = 100
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2.2 Study of average value of nodes vs N1

We examine how collective features such as the mean field 〈x〉 is affected by the
majority and the minority elements, namely by the relative magnitudes of N0 and
N1, in the heterogeneous networks.

1. Effect of varying global bias :

First we vary the global bias b of the system and examine its effect on the
transitions in the collective field with respect to changing fraction N1/N . Note
that the global bias changes the nature of the effective local potential at each
node. The result of the simulations are represented in Figures 2.11 - 2.14.

If global bias is positive(i.e. b > 0), then we can observe in Figure 2.4 that the
nodes with ai = 0 have more stable well on positive side and less stable one
on negative side. While for ai = 1 the only stable well is on the positive side.
Thus with increasing N1, more and more nodes are pulled to the stable state
on positive side and as shown in Figure 2.11 we get direct proportionality of
increment of 〈x〉 with increasing N1.
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Figure 2.11: Collective field in a static network averaged over 100 random realizations
as a function of N1 (number of sites with ai = 1) for global bias b = 0.1, 0.2, 0.3,
fraction of random links p = 0.3 and system size N = 100

On the other hand when global bias is negative, then nodes with ai = 0 has
more stable node on negative side of x axis than positive side of x axis(see figure
2.2 ). While nodes with ai = 1 still has the only stable node on the positive side
of x axis. So if there is no coupling, the nodes with ai = 0 would preferentially
end up on negative side while the ones with ai = 1 would end up on positive
side of x-axis after the transients are over.
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Figure 2.12: Collective field in a static network for 200 random realizations as a
function of N1 (number of sites with ai = 1) for global bias b = −0.1, fraction of
random links p = 0.3 and system size N = 500

So, when the network is evolving with equation 2.1, the effect of coupling comes
into play and pulls the nodes with ai = 1 from negative side to positive side of
x axis(as observed in Fig 2.6 and 2.7).

When we study the 〈x〉 vs. N1 we see that the steady state of 〈x〉 is almost
constant for very low values of N1 and very high values of N1, but the transition
values show high dependence on initial condition. Figure 2.12 shows the spread
of 〈x〉 for different initial condition.

We also studied the standard deviation of 〈x〉(average value of sites after com-
plete time evolution) averaging over 200 initial condition in order to investigate
if there is any difference in static and dynamic networks during transition. The
results do not reflect very convincing dependence on the type of network namely
static and dynamic(Figure. 2.13).

It is evident that with negative global bias very close to zero (b → 0−) the
transition shifts to N1 → 1 (Figs.2.14), indicating hypersensitivity of the system.
Note that N1 = 1 indicates a situation where the collective field reflects the
presence of even a single different element in the network.
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2. Effect of varying fraction of random links:

Further, the fraction of random links p in the system is varied and its effect
on the sensitivity of the collective field to N1 (number of nodes with ai = 1) is
studied.

Figure 2.15 represent the result obtained. For a fixed negative b value, with
increasing probability of a link to be random (i.e. increasing number of sites
with random connections) the transition becomes sharper, indicating better
synchronization.

3. Effect of varying system size:

Larger system sizes give rise to sharper transitions with respect to N1, as seen
in Figure 2.16.
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3. Conclusions

To sum up, the significant results obtained are the following:

• Dynamic networks show faster transition than static network in time.

• Decreasing the negative global bias increases the sensitivity of network towards
heterogeneity.

• Dynamic networks and static networks do not show appreciable difference in
standard deviation of average value of nodes with respect to heterogeneity.

• Increasing the fraction of random links makes the transition sharper, indicating
further sensitivity to heterogeneity.

• Increasing the size of system also makes the transition sharper, suggesting that
the relative size of coupled elements to the size of system does not influence the
systems sensitivity to heterogeneity.

In conclusion, even though the system has such small coupling range (i.e. k = 4)
which is much smaller than the global limit (k = N), it still yields ultra-sensitivity
to heterogeneity. We deduce this from investigations of the swing in the collection
field as a function of global bias under varying sizes of the minority population.
Further, increasing system size makes the transition sharper with the swing occurring
at N1/N → 0 for b −→ 0−. This also show that the relative size of the couple elements
to the size of the system does not influence the ability of the system to respond to
small non-uniformity.

Future directions

With the above mentioned results, further interesting investigations can be followed.
Some of them are the following:

• How would the system behave if we change the function G(x) in equation 2.1,
i.e. how general is the bi-stable potential that we have considered in out work.

• Effect of heterogeneity on a system coupled to two neighbors and then to one
neighbor(the limiting case). This will help us gauge the minimum coupling nec-
essary to obtain ultra-sensitivity to non-uniformity in the constituent elements
of the coupled system.
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A. Programs

The section contains the programs that were used for generating the results shown
everywhere. The program consist of two files : one containing the Network class
which contains all the variables and functions needed to operate on network, another
file imports this file and creates its objects to generate data and get various plots like
space-time plot or 〈x〉vsN1 plots.

The variables(or identifiers) used throughout the programs are following:

#--------Parameters---------

n #No of nodes

n1 #No of sites with a0=1

p #Probablity of random links

c #Coupling constant

b #Global bias

k #No of neighbors for regular sites

kr #No of neighbors for random sites

et #evolution time

dt #Time step size

sle #steps of link evolution for dynamic network

#---------------------------
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1. The ”classes.py” file containing class:

from random import *

class Nodes:

def __init__(self,x=0.0, Dx=0.0, a=0.0, nb=[]):

self.x = x

self.Dx = Dx

self.a = a

self.nb = nb

def details(self):

s= ’a=%s    nb -\t’%self.a

for i in self.nb:

s+= str(i) + ’\t’

return s

class Network:

# Initializing

def __init__( self, n=10,n0=2, k=1,kr=2,p=0.0 ):

self.node = [Nodes( x=(2*random()-1) ) for i in range(n)]

for i in sample( range(n), n0 ):

self.node[i].a = 1.0

self.evolveLinks(p=p,k=k,kr=kr)

#function to evolve links

def evolveLinks(self, p=0.0 ,k=1, kr=2):

n=len(self.node)

for i in range( len(self.node) ):

r=random()

if r>p:

#regular neighbours

ion=range(-k,k+1) #ion - index of neighbours

ion.remove(0)

index=[]

for j in ion:

index+= [((i+j)%n) ]

self.node[i].nb=index

else:

#site with random neighbours

s= range(n)

s.remove(i)

s=sample(s,kr)

self.node[i].nb=s

#function to evolve sites

def evolveNodes(self, dt=0.01,c=1,b=0.1 ):

#calculating derivatives at sites

for i in range( len(self.node) ):
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nf=0.0

for nbr in self.node[i].nb :

nf=nf+ self.node[nbr].x

nf=nf/ len(self.node[i].nb)

self.node[i].Dx = ( self.node[i].x - \

self.node[i].x**3.0 ) + \

c*( nf - self.node[i].x ) + \

b+ self.node[i].a

#evolving sites

for i in range( len(self.node) ):

self.node[i].x += self.node[i].Dx * dt

#function to return average value at nodes

def avgx():

avg=0.0

for i in range( len(self.node) ):

avg += self.node[i].x

avg = avg/len(self.node)

return s
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2. Spacetime data is produced by calling the following functions with proper argument

from classes import *

def dynamic_spacetime( n,n0, k,kr, p,b,c, dt,et,sle):

filename=’dynamic p=%s n1=%s b=%s.txt’%(p,n0,b)

f = open(filename,’w’)

swn = Network(n=n, n0=n0, k=k, kr=kr, p=p)

t=0.0

while t<=et:

if (int(t/dt))%sle==0:

swn.evolveLinks(p=p,k=k, kr=kr)

for i in range(n):

f.write( str(t) +’\t’+str(i) +’\t’+ \

str(swn.node[i].x) +’\n’ )

f.write(’\n’)

swn.evolveNodes(dt,c,b)

t+=dt

f.close()

return filename

def static_spacetime( n,n0, k,kr, p,b,c, dt,et):

filename=’static p=%s n1=%s b=%s.txt’%(p,n0,b)

f = open(filename,’w’)

swn = Network(n=n, n0=n0, k=k, kr=kr, p=p)

t=0.0

while t<=et:

for i in range(n):

f.write( str(t) +’\t’+str(i) + \

’\t’+str(swn.node[i].x) +’\n’ )

f.write(’\n’)

swn.evolveNodes(dt,c,b)

t+=dt

f.close()

return filename
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3. Function to generate data for 〈x〉 vs N1 is following :

(a) For Static Networks:

from classes import *

#-----------------------------------

n = 10 #Total nodes

n0Range = [i for i in range(0,n)]

#-----------------------------------

#function to create one network and

#return average after time evolution

def main(n0, p, c, b ):

#--------Parameters---------

els= 10 #Evolution link steps

k = 2 #No of neighbors for regular sites

kr = 2*k #No of neighbors for random sites

et = 2.0 #evolution time

dt = 0.01 #Time step size

lp = 100 #No of last time steps

# over which avgerage is taken

#---------------------------

lt = et-lp*dt

swn = Network(n=n, n0=n0, k=k, kr=kr, p=p)

avls=0.0

i=0

t=0.0

while t<=et:

swn.evolveNodes(dt,c,b)

if t>lt:

avls += swn.avgx()

t+=dt

i+=1

avls = avls/lp

return avls

count=0

#function to produce average values file for n0 vs x

def n0vsX( p, c, b, avgfn ):

global count

if avgfn == 0:

avgfn=’average b=%0.2f p=%0.1f c=%0.1f’%(b,p,c)

avfile = open(avgfn+’.txt’,’w’)
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for n0 in n0Range:

avls = main(n0=n0, p=p , c=c, b=b)

avfile.write( ’%s\t%s\n’%(n0,avls) )

#----displaying progress----

print "\r count=%s \t p=%0.2f \t b=%0.2f \t n0=%s " \

%(count,p,b,n0),

count+=1

#---------------------------

avfile.close()
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(b) For Dynamic Networks:

from classes import *

#-----------------------------------

n = 10 #Total nodes

n0Range = [i for i in range(0,n)]

#-----------------------------------

#function to create one network and

#return average after time evolution

def main(n0, p, c, b ):

#--------Parameters---------

els= 10 #Evolution link steps

k = 2 #No of neighbors for regular sites

kr = 2*k #No of neighbors for random sites

et = 2.0 #evolution time

dt = 0.01 #Time step size

lp = 100 #No of last time steps

# over which avgerage is taken

#---------------------------

lt = et-lp*dt

swn = Network(n=n, n0=n0, k=k, kr=kr, p=p)

avls=0.0

i=0

t=0.0

while t<=et:

if i%els ==0:

swn.evolveLinks(p ,k , kr)

swn.evolveNodes(dt,c,b)

if t>lt:

avls += swn.avgx()

t+=dt

i+=1

avls = avls/lp

return avls

count=0

#function to produce average values file for n0 vs x

def n0vsX( p, c, b, avgfn ):

global count

if avgfn == 0:

avgfn=’average b=%0.2f p=%0.1f c=%0.1f’%(b,p,c)

avfile = open(avgfn+’.txt’,’w’)
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for n0 in n0Range:

avls = main(n0=n0, p=p , c=c, b=b)

avfile.write( ’%s\t%s\n’%(n0,avls) )

#----displaying progress----

print "\r count=%s \t p=%0.2f \t b=%0.2f \t n0=%s "\

%(count,p,b,n0),

count+=1

#---------------------------

avfile.close()

The data produced with above programs are not averaged over initial condition.
Thus to reproduce the graphs presented in this literature one would have to run
the program several times and average the data produced.
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