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Abstract 

Most of the previous studies on four-membered rings of boron and nitrogen like 

B2N2H4 have been concerned with their Hückel analysis and to understand their 

aromaticity or antiaromaticity character. Synthesis of this type of ring is still very 

difficult and only a few have been isolated with some sterically hindered ligands. In 

this project, different isomers of diazadiboretine have been examined at first. 

Calculations have been performed to understand the stability, frequency and ring 

puckering of different isomers of diazadiboretidine. The most stable conformer has 

been determined followed by a comparative study between HF, MP2 and CCSD 

and an extensive basis set study. Comparative studies with other straight chain B-N 

systems have also been performed and B-N bond length, charge on B and N, 

deviation of geometry at B from planarity and at N from pyramidalisation etc. have 

been analyzed thoroughly. H‟s bonded to B‟s of the most stable form of 

diazadiboretidine have been substituted by different electron withdrawing and 

electron donating groups and substitutions have even been performed in the core 

B2N2 ring to check whether in any of the systems, the geometry around B atom 

deviates from planarity by a large amount. All the cases have been investigated 

thoroughly. However, it was not possible to achieve that in any of the boron based 

cases until we used phosphorus based 4-membered rings. Monoanion of BH3 have 

also been investigated to see whether the inclusion of an electron can distort the 

geometry around B and our study suggests that it is not possible. Dianion of 1,3-

diazadiboretidine have been examined. Monoanion and dianion of BCl3 have also 

been investigated and found to be non-planar with a large deviation from planarity, 

but to confirm the results of this particular case and the dianion of 1,3-

diazadiboretidine, more calculations need to be performed.     
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Chapter 1 

Introduction 

1.1. Introduction to Diazadiboretidine 

Synthesis of B2N2 type of four-membered ring is very difficult and only a few have 

been isolated with some sterically hindered ligands. The main purpose of this 

project is to find out the stability and geometry of the B2N2 rings and to find out if 

there are some substituent which can make these rings stable enough so that we can 

make macro cycles from that using possibly more than one of these rings and the 

same number of linkers. The following (Fig. 1.1) is an example of a possible 

macro-cycle which can be formed using ethylenediamine as a linker.  

 

Fig. 1.1: Hypothetical macro-cycle (optimized in Gaussian09
1
 using two B2N2 rings 

and two ethylenediamine (H2N- CH2- CH2-NH2) linkers) 
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The most important aspect to look for is to see if the substituent at B (co-ordination 

no. 3) bends sufficiently a large amount breaking the planar geometry around a 3- 

coordinated B atom, for any of the systems that we will study. It is important 

because it will facilitate the formation of stable macro-cycles. To study the B2N2 

rings, we started with the simplest of these rings, different isomers of cyclo-B2N2H4 

or diazadiboretidine. It has an 1,2-conformation (Fig. 1.2) and a 1,3-conformation 

(Fig. 1.3) and there can be planar and puckered forms among them too which we 

will encounter later on. 

  

 

              Fig. 1.2: 1,2-diazadiboretidine     Fig. 1.3: 1,3-diazadiboretidine 

                                    

1.2. Literature Survey 

Most earlier work on diazadiboretidine was related to the boron-nitrogen analogue of 

cyclobutadiene and the level of aromaticity or antiaromaticity was an important 

aspect that was looked at. The synthesis  of  four-member rings like B2N2H4 are in 

some way difficult and only a few rings with sterically hindered ligands have been 

isolated so far.
2
  

Previously in an old study by Baird et al.
3
, STO-2G calculations have been 

performed on the 1,3-isomer of diazadiboretidine. For the square ring, the optimum 

distance between B-N has been found to be 1.47 Å. For a rectangular ring using BN 

average separation of 1.47 Å, it have been found out that the D2h form is the most 

stable with respect to all the displacements. These calculations also revealed that the 

optimum NBN angle for the D2h form is 93
0
 and these predictions agreed well with 

X-ray data.  
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Baird and Whitehead
4
, also looked at the hückel analysis of the 1,3-isomer and 

compared its energy to straight chain B-N compounds and tried to understand its 

aromaticity.  

Armstrong et al. and Baird
5
 calculated the combined strain and antiaromaticity 

energies. 

Kiran et al.
6
, calculated the protonation energy of the 1,3-isomer at B3LYP/6-

311G(d,p) level of theory. Their conclusion was that this isomer is antiaromatic but 

less so than cyclobutadiene. 

Later in another study to quantify aromaticity by Rehman et al.
7
, calculations 

revealed that the ground state structure of the 1,3-isomer of diazadiboretidine  has a 

puckering of 17.3
0
 with respect to planarity. These calculations have been done in 

higher level of theory - Density Functional Theory (DFT) level using B3LYP 

functional and 6-311G++g(d,p) basis set. The B-N bond lengths came out to be 

equal. The planar structure of the 1,3-isomer was also optimized and it was found out 

that it was 1 Kcal/mol higher in energy than the puckered structure and it had an 

imaginary frequency corresponding to out of plane bending mode of atoms. But this 

difference of energy between the two structures is comparable to thermal energy at 

room temperature (0.6 Kcal/mol) which suggested that the molecule could be present 

in both planar (although this is not actually ground state) and puckered polymorphs. 

A search in Cambridge Crystallographic Database also showed the presence of two 

crystals of these kinds. In the end, they concluded that 1,3-diazadiboretidine 

(puckered) is slightly aromatic, not anti aromatic.   

Tricamo et al.
8 

in a effort to find potential high energy density material (HEDM) 

optimized both 1,3-isomer and 1,2-isomer of diazadiboretidine using composite 

methods such as G2, G3 and complete basis set methods (CBS) and also found out 

their enthalpy of formation. The ground state of neither isomer has been found to be 

planer. 1,2-isomer  was trapezoidal with a ring pucker of 5
0
-7

0
, B-N bond being the 

shortest bond among N-N,B-N and B-B, the ring angles deviating from 90
0
 and 

hydrogen atom dihedral angles deviating from 180
0
. 1,3-isomer had a ring pucker of 

about 20
0 

and the B-N bond length was equal suggesting a delocalization of 

electrons. Ultimately they researched mainly about their potential as HEDM and 

found out that the combustion energies of these compounds are higher than other  

4 



small ringed compounds making them better HEDMs but still lesser than methane in 

a per gram basis. 

 

1.3. Aim of Our Study 

In this project, first of all, the equilibrium geometry and structure of cyclo-B2N2H4 

have been given the most importance. We considered verifying what previous 

studies
7,8

 have found about different forms of diazadiboretidine. Most of the 

calculations have been done using single reference methods such as HF, MP2 and 

CCSD level of theory. After verifying and finding the most stable form of 

diazadiboretidine, we concentrated totally in this most stable conformation. 

Comparative studies have been performed by changing substituents at B atoms and 

also substituting atoms on the core B2N2 ring to see whether the planarity 

surrounding 3-coordinated B atom distorts by a large amount or not. In this respect, 

we also became interested in the anion of BH3, anion and dianion of BCl3 and 

dianion of the most stable conformation of diazadiboretidine and multireference 

methods have been used to investigate them. Even in these cases, our main aim was 

to see whether there is a large deviation from planarity around B atoms so that it can 

facilitate the formation of macro cycles.   
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Chapter 2 

Theoretical and Computational Methods 

A lot of geometry optimizations and frequency analysis have been done in our study 

using both single reference methods and multireference methods. Although, all of 

them are explained in detail in books 
9, 10, 11

, I will give a brief account of them.  

 

2.1. Potential Energy Surface and Equilibrium Geometry 

If we have a nonlinear molecule with N nuclei, its geometry is defined by 3N-6 

independent nuclear coordinates which are q1, q2,..., q3N-6. Actually, the total no of 

nuclear coordinates is 3N and 6 is subtracted from that as the three translational and 

three rotational degrees of freedom do not change E (say), the electronic energy of 

the molecule which is a function of these 3N-6 coordinates. This electronic energy E 

provides us with what we call a potential energy surface (PES) for the molecule. It is 

called so as E is actually the potential energy in the Schrӧdinger equation for nuclear 

motion. If E depends on two variables only, say, q1 and q2, then a plot of E (q1, q2) in 

3D will provide us a surface in 3D space. Similarly, if E depends on only one 

variable, then a plot of E in 2D will provide us a surface in ordinary 2D space. An 

example of E depending on only one variable can be found in Fig. 3.20 of our study 

later. In reality, E depends on a large number of variables and so, it represents a 

surface in a higher dimensional abstract space consisting of 3N-5 dimensions. If we 

want to find PES of a molecule, we need to solve the electronic Schrӧdinger equation 

at many different nuclear arrangements. Calculating E for a particular nuclear 

configuration of the molecule gives a single-point calculation which refers to a single 

point on the PES of the molecule. The equilibrium geometry of a molecule 

corresponds to that nuclear arrangement of the molecule for which the molecular  
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potential energy E is minimum.  

2.2. Geometry Optimization 

The process of minimizing molecular potential energy E is called geometry 

optimization or energy minimization. There exist a lot of algorithms which can find 

the local minimum of a function which depends on several variables. These 

algorithms can find a local minimum of E in the neighbourhood of the initial 

geometry provided. Geometry optimizations are needed to be performed carefully. If 

a molecule has more than one conformation, all of them must be optimized carefully 

so as to locate the structure with global minimum.  

 

2.2.1. The Computational Part 

To optimize the geometry of a molecule, we start with a guess structure for the 

equilibrium geometry. This guess geometry that we provide is based on the typical 

values of bond lengths and bond angles available from earlier experimental studies or 

estimated from methods such as the VSEPR method. The dihedral angles that we 

provide are based on our experience with similar type of compounds. After providing 

guess geometry, one searches for the minimum nearest geometry in its 

neighbourhood. A basis set is chosen and SCF MO or some other method is 

performed to solve the electronic Schrӧdinger equation to get E and its gradient at 

that guess geometry. After that, the geometry optimization program creates a new set 

of values for the 3N-6 coordinates making use of the calculated E and its gradient 

∇E. This new set will likely to be closer to the minimum geometry structure and the 

program calculates the E and ∇E at the new set of values. Again, using the calculated 

value of E and its gradient, another improved set is generated and SCF calculation is 

repeated. This process is repeated until and unless we get a value of ∇E which differs 

negligibly from zero (the threshold is decided beforehand and can be changed). It 

indicates that a minimum geometry may have been found.  

 

2.2.2. The Theory Part 

There are different algorithms to find out minimum geometry of a molecule. Some  
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algorithms do it by repeating calculation of potential energy E at various values of its 

variables to find a minimum in E, but these methods are very inefficient. However, 

there are more efficient procedures which make use of repeated calculation of not 

only E, but also its derivatives. The set of 3N-6 first partial derivatives of E with 

respect to its variables is what constitutes a vector which is called the gradient of E. 

At a local minimum, gradient has to be zero. The point on the PES where the 

gradient is zero is called a stationary point or a critical point. It can be a minimum, a 

maximum or a saddle point. Along with E and its gradient, some other procedures 

use the second partial derivatives of E too. These set of 3N-6 second partial 

derivatives of E with respect to its variables constitutes a matrix when arranged in a 

square array. It is called a force-constant matrix or a Hessian matrix. The Newton-

Raphson method uses both first derivatives and second derivatives of E to locate a 

minimum of a function of several variables. There is also a modification of the 

Newton-Raphson method, called quasi-Newton method which instead of calculating 

Hessian directly, starts with a guess for the Hessian. It gradually improves this guess 

Hessian using the information of the calculated gradient at each step of optimization. 

I will explain the quasi-Newton method here as this and its modifications are the 

most used geometry optimization algorithm nowadays.  

To explain the method, we will pretend E to be depending on only two variables X 

and Y which denote the guess geometry. The Taylor series for a function of two 

variables, neglecting terms higher than quadratic, is  

𝐸 𝑋,𝑌 ≈

𝐸 𝑋1,𝑌1 +  
𝜕𝐸

𝜕𝑋
 
 𝑋1 ,𝑌1 

 𝑋 − 𝑋1 +  
𝜕𝐸

𝜕𝑌
 
 𝑋1 ,𝑌1 

 𝑌 − 𝑌1 +
1

2
.  

𝜕2 𝐸

𝜕𝑋2
 

(𝑋1 ,𝑌1)
(𝑋 −

               𝑋1)2 +  
𝜕2𝐸

𝜕𝑋  𝜕𝑌
 
 𝑋1 ,𝑌1 

 𝑋 − 𝑋1  𝑌 − 𝑌1 +
1

2
.  

𝜕2 𝐸

𝜕𝑌2 
(𝑋1 ,𝑌1)

(𝑌 − 𝑌1)2        (2.1) 

Say, 

 𝐸𝑋  ≡  
𝜕𝐸

𝜕𝑋
, 𝐸𝑌 ≡  

𝜕𝐸

𝜕𝑌
, 𝐸𝑋𝑋  ≡  

𝜕2 𝐸

𝜕𝑋2
, 𝐸𝑌𝑌 ≡  

𝜕2 𝐸

𝜕𝑌2
, 𝐸𝑋𝑌  ≡  

𝜕2𝐸

𝜕𝑋  𝜕𝑌
 

If we denote the evaluation at (𝑋1,𝑌1) by subscript 1, the equation 2.1 becomes 

𝐸 𝑋,𝑌 ≈ 𝐸1 + 𝐸𝑋 ,1 𝑋 − 𝑋1 + 𝐸𝑌,1 𝑌 − 𝑌1 +
1

2
.𝐸𝑋𝑋 ,1(𝑋 − 𝑋1)2 + 𝐸𝑋𝑌 ,1 𝑋 −

𝑋1  𝑌 − 𝑌1 +
1

2
.𝐸𝑋𝑋 ,1(𝑌 − 𝑌1)2                                   (2.2) 

As ab initio SCF calculation of second derivatives is very time consuming, in this  
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method one starts with an approximation of the Hessian and improves it as the 

optimization procedure proceeds. So, if we denote the first approximation to the 

Hessian matrix elements at or near the equilibrium geometry by superscript (1), we 

can write 

𝐸 𝑋,𝑌 ≈ 𝐸1 + 𝐸𝑋 ,1 𝑋 − 𝑋1 + 𝐸𝑌,1 𝑌 − 𝑌1 +
1

2
.𝐸𝑋𝑋

(1)
(𝑋 − 𝑋1)2 + 𝐸𝑋𝑌

(1) 𝑋 −

                                      𝑋1  𝑌 − 𝑌1 +
1

2
.𝐸𝑌𝑌

(1)
(𝑌 − 𝑌1)2                                          (2.3)                                                  

If we do partial differentiation of equation 2.3 with respect to X and Y, we get the 

following respectively. 

 𝐸𝑋 𝑋,𝑌 ≈  𝐸𝑋,1 +  𝐸𝑋𝑋
(1)

  𝑋 − 𝑋1 + 𝐸𝑋𝑌
(1)

  𝑌 − 𝑌1                         (2.4) 

 𝐸𝑌 𝑋,𝑌 ≈  𝐸𝑌,1 +  𝐸𝑋𝑌
(1)

  𝑋 − 𝑋1 + 𝐸𝑌𝑌
(1)

  𝑌 − 𝑌1                         (2.5) 

 𝐸𝑋 𝑋,𝑌  and  𝐸𝑌 𝑋,𝑌  are zero at minimum. Say, (𝑋𝑎 ,𝑌𝑎) be the point for which the 

estimated first derivatives 𝐸𝑋  and  𝐸𝑌 on the left sides of equations 2.4 and 2.5 are 

zero. Equation 2.4 becomes 

0 =  𝐸𝑋,1 +  𝐸𝑋𝑋
(1)

  𝑋𝑎 − 𝑋1 + 𝐸𝑋𝑌
(1)

  𝑌𝑎 − 𝑌1                                (2.6)  

And equation 2.5 becomes 

0 =  𝐸𝑌,1 +  𝐸𝑋𝑌
(1)

  𝑋𝑎 − 𝑋1 + 𝐸𝑌𝑌
(1)

  𝑌𝑎 − 𝑌1                                (2.7)  

When we solve these two equations for 𝑋𝑎  and 𝑌𝑎 , we get 

𝑋𝑎 =  𝑋1 +  
𝐸𝑋𝑌

(1)
𝐸𝑌 ,1−𝐸𝑌𝑌

(1)
𝐸𝑋 ,1

𝐸𝑋𝑋
(1)

𝐸𝑌𝑌
(1)

−(𝐸𝑋𝑌
(1)

)2
                                                          (2.8) 

𝑌𝑎 =  𝑌1 +  
𝐸𝑋𝑌

(1)
𝐸𝑋 ,1−𝐸𝑋𝑋

(1)
𝐸𝑌 ,1

𝐸𝑋𝑋
(1)

𝐸𝑌𝑌
(1)

−(𝐸𝑋𝑌
(1)

)2
                                                           (2.9) 

We started at (𝑋1,𝑌1 ) and used calculated gradient at (𝑋1,𝑌1 ) and initial guess 

Hessian to get (𝑋𝑎 ,𝑌𝑎 ). But, E is not an exact quadratic function and the Hessian 

matrix that we have used is just a guess Hessian and not an accurate one. So, (𝑋𝑎 ,𝑌𝑎 ) 

is only an approximation to the point towards the minimization of E. Now, we use ab 

initio SCF MO for calculating E and its gradient at point (𝑋𝑎 ,𝑌𝑎 ). The point (𝑋𝑎 ,𝑌𝑎 ) 

could be used as the new starting geometry for the next cycle of optimization.  
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However, convergence will be faster if we use the new starting point as 𝑋2 =  𝑋1 +

 𝛼(𝑋𝑎 − 𝑋1),  𝑌2 =  𝑌1 +  𝛼(𝑌𝑎 − 𝑌1). Here, E is expressed as a polynomial whose 

coefficients are determined such that E will have values that were calculated for E at 

(𝑋1,𝑌1) and (𝑋𝑎 ,𝑌𝑎 ) and the gradient of E will also have the calculated gradient 

values at (𝑋1,𝑌1) and (𝑋𝑎 ,𝑌𝑎 ). α is then varied to minimize the polynomial E which 

gives the new predicted geometry (𝑋2,𝑌2) which is called a line search. We could 

now do a SCF calculation on E at (𝑋𝑎 ,𝑌𝑎 ) and also it‟s gradient at that point. 

However, it is accurate enough to use the interpolated values of those quantities 

which we have found from the polynomial E fitted to the data at (𝑋1,𝑌1) and (𝑋𝑎 ,𝑌𝑎). 

Now, the estimate of Hessian needs to be improved. For that, we use the values of 

gradient of E at points (𝑋1,𝑌1 ) and (𝑋2,𝑌2 ). The improved Hessian must satisfy 

equations 2.4 and 2.5. We use a superscript (2) too denote the improved matrix 

elements. The requirement is  

 𝐸𝑋 ,2 =  𝐸𝑋,1 +  𝐸𝑋𝑋
(2)

  𝑋2 − 𝑋1 + 𝐸𝑋𝑌
(2)

  𝑌2 − 𝑌1                          (2.10) 

 𝐸𝑌,2 =  𝐸𝑌,1 + 𝐸𝑋𝑌
(2)

  𝑋2 − 𝑋1 + 𝐸𝑌𝑌
(2)

  𝑌2 − 𝑌1                          (2.11) 

As there are 3 Hessian matrix elements and only two equations, so there is no unique 

solution for E
(2)

 . There are several procedures to find the improved E
(2)

‟s that satisfy 

equations 2.10 and 2.11 like the BFGS method. However, I will not concentrate on 

that. Now, we replace E
(1)

‟s by E
(2)

‟s and also (𝑋1,𝑌1)  by  (𝑋2,𝑌2) in equations 2.8 

and 2.9 and calculate new coordinates. To check convergence, we see if the absolute 

values of the predicted coordinate changes are less than some tiny amount fixed 

beforehand. We do the same thing for gradients also. If these conditions are met, then 

the optimization is finished and (𝑋2,𝑌2) is the predicted geometry. Otherwise, we 

calculate E and ∇E at the new coordinates, then do a line search like earlier to locate 

point (𝑋3,𝑌3)  and continue doing this until the convergence criteria is met. There are 

other modifications to quasi-Newton method and also some other procedures for 

optimizations, but they will not be discussed here further. 
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2.3. Molecular Vibrational Frequencies 

Calculation of molecular vibrational frequencies allows one to understand if a 

stationary point on the PES found by geometry optimization is a local minimum or a 

saddle-point. When a stationary point on the PES has all real vibrational frequencies, 

it is a local minimum. If it has n number of imaginary frequencies, it is an nth-order 

saddle-point. 
 
The theoretical calculation of vibrational frequencies of a molecule is 

also very helpful while analyzing an infrared spectrum of that molecule. Also, by 

knowing molecular vibrational frequencies, one can calculate vibrational zero point 

energies too. Now, we know that the total energy of a molecule is approximately the 

sum of rotational, translational, vibrational and electronic energies of it. From the 

harmonic-oscillator approximation, we know that the vibrational energy (Evib) of an 

N-atom molecule is the sum of the vibrational energies of its 3N-6 normal modes 

(3N-5 if it is a linear molecule). So, we can write                   

 𝐸𝑣𝑖𝑏 ≈    𝜐𝑘 +
1

2
 ℎ𝜈𝑘

3𝑁−6
𝑘=1                                                 (2.12) 

Here, 𝜈𝑘  is the harmonic vibrational frequency for kth normal mode. Each of the 

vibrational quantum number 𝜈𝑘  has possible values 0,1,2,... They are independent of 

the values of all the other vibrational quantum numbers. As all the 3N-6 vibrational 

quantum numbers are zero for the ground vibrational state the zero point energy is  

𝐸𝑍𝑃𝐸  =  
1

2
  ℎ𝜈𝑘

3𝑁−6
𝑘=1                                                        (2.13) 

 To find the harmonic vibrational frequencies of a molecule, the equilibrium 

geometry of the molecule is taken and the second derivatives of the molecular 

electronic energy E are calculated at this equilibrium geometry (using the same level 

of theory and basis set that was used for optimization). The mass-weighted Hessian 

(or force constant) matrix elements are formed. 

 𝐹𝑖𝑗 =  
1

 𝑚 𝑖𝑚 𝑗  
1

2 
 .  

𝜕2𝐸

𝜕𝑋𝑖  𝜕𝑋𝑗
 
𝑒

                                               (2.14) 

Here, 𝑖, 𝑗 = 1,2,… , 3𝑁 and 𝑚𝑖  is the mass of the atom 𝑋𝑖 .  

Next, 3N linear equations of 3N unknowns are solved. The set of equations are 

  𝐹𝑖𝑗 − 𝛿𝑖𝑗 𝜆𝑘 𝑙𝑗𝑘 = 03𝑁
𝑗=1                                                  (2.15) 
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Here, 𝛿𝑖𝑗  is the Kronecker delta function. For, this set of equations to have a 

nontrivial solution, we need to have, 

det 𝐹𝑖𝑗 − 𝛿𝑖𝑗 𝜆𝑘 = 0                                                      (2.16) 

This determinant is of the order of 3N. When it is expanded, it gives a polynomial 

where the highest power of 𝜆𝑘  is 3N. The vibrational frequencies are then calculated 

from  

𝜈𝑘 =
𝜆𝑘

1 2 

2𝜋
                                                                     (2.17) 

Among the 3N values that we get, six of them will be zero which corresponds to the 

rotational and translational degrees of freedom of the molecule. However, in 

practice, as the equilibrium geometry is never found with infinite accuracy, we never 

get the six vibrational frequencies as zero. These values come out very close to zero 

and when we visualize them using some software, we can confirm that those 

represent rotations and translations of the molecule. The remaining 3N-6 vibrational 

frequencies correspond to the molecular vibrational frequencies.  

 

2.4. Theories That Have Been Used in Our Calculations 

We have performed geometry optimization of a lot of molecules. The optimizations 

are performed from the ab-initio principles of quantum chemistry and there are a few 

methods
9,10,11,12

 to do that. I will explain the methods that have been used in our 

study qualitatively in brief in this section.   

 

2.4.1. Single-Configuration Based Theories 

Most of the widely used methods to understand geometry and energy of a molecule 

starts from a single configuration, mainly from a Hartree-Fock self consistent field 

wave function.  
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2.4.1.1. Hartree-Fock Theory 

In this theory, the wave function Ψ0  is a product of one electron wave functions 

which are referred to as molecular spin orbitals. The wave function is antisymmetric 

with respect to electron coordinate interchange and this is called a Slater determinant 

form of the wave function. The molecular spin orbitals are expanded in terms of 

linear combination of atom centred basis functions. In HF method, each electron 

moves in the average field due to all other electrons. The expansion coefficients of 

molecular orbitals are determined in a self consistent way. The molecular orbitals 

that result from this calculation are the eigen functions of Fock operator. But, HF 

theory is unable to take care of the correlation due to motions of different electrons. 

Although, the inherent antisymmetry property of this type of wave function takes 

care of the correlation of electron of the same spin partially, the correlation due to 

motions of opposite spin electrons is completely neglected in HF theory. So, HF is 

able to account for the most of the total energy of a molecule, but it misses out a 

certain component of energy which is important to understand bonding and 

geometry. Here come the electron correlation techniques. The electron correlation 

energy is defined as the difference between the exact nonrelativistic energy and the 

HF energy of a system. Electron correlation is required to be taken into account for 

the accurate understanding of molecular geometries and energies. 

 

2.4.1.2. Perturbation Theory  

Perturbation is a way to treat the electron correlation. Møller-Plesset or many body 

perturbation theory is the one which treats the electron correlation as a perturbation 

on the HF problem. In this case, the zeroth order Hamiltonian is the Fock operator 

which is derived from the HF wave function. In this theory, the energy and the wave 

function are expanded in terms of power series of the perturbation. HF energy is 

correct to the first order and the MP perturbations start correcting from second order. 

We denote corrections up to second, third, fourth ... order by MP2, MP3, MP4 ... 

respectively. In this theory, the correlation contributions come up though their 

interactions with the starting HF wave function. As the Hamiltonian contains only 

one and two electron integrals, only single and double excitation can contribute 

through direct mixing with the HF wave function in case of second and third order  
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energies. But, the direct mixing between single excitation and the HF wave function 

is not possible because of the self-consistent optimization of the HF wave function. 

So, second and third order energies contain contribution from only double 

excitations. However, for higher orders, indirect mixing is there through the double 

excitations. So, the fourth and fifth order energies contain contribution from single, 

double, triple and quadrupole excitations. Double excitations are the only 

contributions till the third order energies and so they are very important.  

This theory is size consistent. The computational scaling increases as the order of the 

theory increases. So, MP2, MP3 and MP4 scale as fifth, sixth and seventh power of 

the size of the system. We have used MP2 method mostly as it gave a very good 

understanding of the systems that we have studied and also it is computationally less 

costly.  

 

2.4.1.3. Configuration Interaction 

One of the simplest methods to treat electron correlation is configuration interaction 

(CI).  CI is an application of linear variational method to calculate the electronic 

wave function. A linear combination of different configurations or Slater 

determinants is used which provides a better variational solution to the exact many 

electron wave function.  CI wave function is formed by mixing the HF wave function 

with single, double, triple, quadrupole ... excitations. The coefficients which 

determine the amount of mixing are found variationally.  If all the possible excited 

configurations can be included in the wave function, it would give us the exact 

solution within the space spanned by any given basis set. This is called full 

configuration interaction method (FCI). However, it is not practical to use this 

method for many electron problems with large basis sets. Thus, truncation of 

configuration space is required for practical purposes which lead to limited CI 

methods. CISD is the most widely used CI method where only single and double 

excitations are taken into account and the rest are neglected.  CISD method works in 

an iterative way. The computational dependence of each iteration of CISD scales as 

the sixth power of the size of the system. Still, this method has been used widely in 

literature. However, the major deficiency of this method is that CISD energy is not 

size-consistent. Many techniques have been proposed to correct the CISD energies.  
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Along with that other size consistent treatments such as perturbation and coupled 

cluster theory came up and because of them, CISD is no longer a good choice for 

doing calculations in the ground state.  However, for excited states, CI is still a 

widely used technique for doing quantum chemical calculations because of its ease 

of definition for any state of interest.  

 

2.4.1.4. Coupled Cluster Theory 

In coupled cluster theory, first we start with an exponential form of wave function, 

Ψ =  𝑒𝑇 Ψ0 . Here, the cluster operator is𝑇 = 𝑇 1 + 𝑇 2 + 𝑇 3 + ⋯ . This exponential 

form of the operator provides an efficient way to include effects of higher excitations 

and also keeps the size consistency of the energy.  Earlier, CCD (coupled cluster 

doubles) was used with the wave function, Ψ =  𝑒𝑇 2Ψ0. Nowadays, CCSD method is 

used widely where all the single and double excitations are taken into account and 

the rest are neglected. The wave function for CCSD is Ψ =  𝑒(𝑇 1+𝑇 2)Ψ0. This method 

is size-consistent and within the basis set space of two electrons, it is exact. In this 

method, a set of projection equations (one set for the correlation energy and another 

set for the unknown coefficients in 𝑇  operators) are solved iteratively to get the wave 

function and energy of the system. Triple excitations are also very important for 

better description of electronic structure. So, CCSDT theory has been developed 

which takes into account the triple excitations. However, this method has eighth-

order dependence on the size of the system and so it is not practical to use it.   There 

are other modifications of CCSDT method such as CCSDT-n and CCSD(T), which 

are also in use. We have used CCSD method as it is computationally less costly than 

CCSDT and all other modifications of it, but still gives a very good description of the 

structure and other properties of a system.  

 

2.4.2. Multiconfiguration-Based Theories 

All the methods that have been discussed in the last section are single-configuration 

based i.e. the starting HF configuration is the dominant component of the correlated 

wave function. In those methods, a large number of configurations with relatively 

small amount of contributions give rise to the correlation energies and this is called  
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dynamical electron correlation. But, there are certain cases where these methods will 

not be very useful as in those cases, starting with the HF wave function is not correct 

even qualitatively. There are cases where the gap between bonding and antibonding 

orbitals of a system may become so small that the excitations involving antibonding 

orbitals may become very important and to do calculations on that system starting 

with a single HF configuration with occupied bonding orbitals may lead to huge 

error. It is better to treat such systems by keeping the bonding and antibonding 

orbitals on an equal footing and start with a small number of configurations that 

arrive from that treatment. So, this type of correlation involves large contributions 

coming from a few orbitals and is called nondynamical electron correlation.  

To treat nondynamical type of correlation, MCSCF wave functions are used. Instead 

of starting with a single HF configuration, here we start with a relatively small 

number of selected configurations.  Using variational procedures, weights of these 

configurations are optimized along with the orbitals. MCSCF wave function gives a 

qualitatively correct picture in many cases where single configuration leads to a large 

error.   However, the configurations that are selected in this method depend on one‟s 

chemical insight and understanding of the orbitals of the system of interest and that 

may lead to a bias in the calculation. This type of bias in selection of configurations 

can be removed by using CAS approach.  In this approach, a set of active orbitals are 

selected and all possible configurations of the active electrons in that active space are 

taken into account in the expansion of MCSCF wave function while all of the other 

orbitals are kept doubly occupied or empty. If we include all electrons and orbitals in 

active space that will be identical to the FCI technique and that is not practical. So, 

orbitals are needed to be selected for active space which still depends on one‟s 

chemical insight and understanding of the orbitals.  

Although, MCSCF methods take into account the nondynamical correlations, it is not 

adequate to describe some systems. The dynamical correlations are also needed for 

quantitatively correct understanding of those cases. The multireference CI is a 

method that has been successful in this type of cases like the treatment of excited 

states of molecules.  In MRSDCI method, all the single and double excitations are 

considered with respect to a modest number of MCSCF configurations. Along with 

that, some other configurations exceeding a certain threshold are also considered for 

the final variational treatment. This method is widely used nowadays. There are other  

16 



cases, where some multireference CI procedures based on CASSCF wave function 

have also been used. There are even multireference perturbation theories like RS2, 

RS2C etc. I will not go into anymore details. Next chapter onwards, I will provide all 

the details of our study using the theories mentioned in this chapter.  
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Chapter 3 

Computational Study and Analysis of 

Diazadiboretidine (Cyclo-B2N2H4)  

3.1. Ab initio Study on Cyclo-B2N2H4 

At first, the previous results about the most stable conformation of Cyclo-B2N2H4 

have been thoroughly verified. 

3.1.1. Computational Details 

1,2-diazadiboretidine(puckered) (Fig. 3.1) and 1,3-diazadiboretidine (both puckered 

and planar) (Fig. 3.2) have been optimized in aug-cc-pVDZ basis set.  The molecules 

contain lone pair of electrons on nitrogen atom and to make the orbitals diffuse, the 

basis set aug-cc-pVDZ has been used. They have been optimized on the level of HF, 

MP2 and CCSD using the above mentioned basis set. Frequency calculations have 

also been performed for confirming the ground state equilibrium geometries. All the 

calculations have been performed using Molpro (Version 2012.1).
13

 A comparative 

study between HF, MP2 and CCSD has also been done for the most stable 

conformation to justify using MP2 method for all the systems of this type. Another 

comparative study has been done between different basis sets to set aug-cc-pVDZ as 

benchmark for this type of systems. It has also been investigated if the most stable 

conformation of diazadiboretidine is really a global minimum or not. 
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 Fig. 3.1: 1,2-diazadiboretidine    Fig. 3.2: 1,3-diazadiboretidine 

                                           

3.1.2. Results and Discussion 

3.1.2.1. Most Stable Conformation of Diazadiboretidine 

First, we show the Z-matrix of the 1,3-isomer (both puckered and planar) in Fig. 3.3. 

 

Fig. 3.3: Z-matrix of 1,3-diazadiboretidine (both puckered and planar) 

 

Fig 3.4, 3.5 and 3.6 are the optimized geometries of 1,3-diazadiboretidine (puckered) 

at HF, MP2 and CCSD level respectively at aug-cc-pVDZ basis set. 

 

 

 

 

19 



 

Fig 3.4: Optimized geometry of 1,3-diazadiboretidine (puckered) at HF/aug-cc-

pVDZ level 

 

Fig 3.5: Optimized geometry of 1,3-diazadiboretidine (puckered) at MP2/aug-cc-

pVDZ level 
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Fig 3.6: Optimized geometry of 1,3-diazadiboretidine (puckered) at CCSD/aug-cc-

pVDZ level 

Variable values for optimized 1,3-puckered form is given in the following Table 3.1. 

(All the distances are in angstroms and angles in degrees). 

Table 3.1: Variable values for optimized 1,3-diazadiboretidine (puckered) 

Variables             HF              MP2             CCSD 

rBN1            1.45              1.47              1.47 

rNB1            1.45              1.47              1.47 

rBN2            1.45              1.47              1.47 

rNH1            0.99              1.01              1.01 

rNH2            0.99              1.01              1.01 

rBH1            1.19              1.20              1.20 

rBH2            1.19              1.20              1.20 

aNBN            94.7              95.4              95.1 

aBNB            85.3              81.3              82.0 

aHNB1           134.6             130.8             131.2 

aHNB2           134.5             130.8             131.2 

aHBN1           132.6             132.0             132.2 

aHBN2           132.6             132.0             132.2 

dBNBN            -11.0             -19.4              -18.1 

dHNBB           164.0             157.3              157.7 

dHNBN          -164.0            -157.3             -157.7 

dHBNB1          -164.7            -152.5             -154.1 

dHBNB2           164.7             152.5              154.1 
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For, 1,3-diazadiboretidine (puckered), theory at all the levels reveal that the all the B-

N bond lengths, all the N-H bond lengths and all the B-H bond lengths are equal. The 

B-N bond lengths are 1.45Å, 1.47Å and 1.47Å, N-H bond lengths are 0.99Å, 1.01Å 

and 1.01Å, and B-H bond lengths are 1.19Å, 1.20Å and 1.20Å at HF, MP2 and 

CCSD level respectively. Here the dihedral angle dBNBN represents the ring 

puckering (ignoring sign.). The ring puckering is almost 11.0
0 

at HF level while it is 

19.4
0
 at MP2 level and 18.1

0
 at CCSD level. So, the electron correlation does really 

change the ring puckering a lot and also change the bond lengths and angles by small 

amount. With increase in puckering in MP2 level, NBN angle increased and BNB 

angle decreased while again with decrease in puckering in CCSD level, NBN angle 

decreased slightly and BNB angle increased slightly.  It can also be seen that none of 

the hydrogen atom dihedral angles are 180.0
0
-all of them are lesser than 180.0

0
 and 

so they are actually in one side of the ring. It is like a cis conformation. The equal B-

N bond length may suggest delocalization of electrons in the ring but because of 

puckering it is not possible.       

Fig 3.7, 3.8 and 3.9 are the optimized geometries of 1,3-diazadiboretidine (planar) at 

HF, MP2 and CCSD level respectively at aug-cc-pVDZ basis set. 

 

Fig 3.7: Optimized geometry of 1,3-diazadiboretidine (planar) at HF/aug-cc-pVDZ 

level 
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Fig 3.8: Optimized geometry of 1,3-diazadiboretidine (planar) at MP2/aug-cc-pVDZ 

level 

 

Fig 3.9: Optimized geometry of 1,3-diazadiboretidine (planar) at CCSD/aug-cc-

pVDZ level 
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Variable values for optimized 1,3-planar form is given in the following Table 3.2. 

(All the distances are in angstroms and angles in degrees). 

Table 3.2: Variable values for optimized 1,3-diazadiboretidine (planar) 

Variables             HF            MP2          CCSD 

rBN1            1.45            1.46            1.46 

rNB1            1.45            1.46            1.46 

rBN2            1.45            1.46            1.46 

rNH1            0.99            1.01            1.00 

rNH2            0.99            1.01            1.00 

rBH1            1.19            1.20            1.20 

rBH2            1.19            1.20            1.20 

aNBN            94.3            94.6            94.4 

aBNB            85.7            85.4            85.6 

aHNB1          137.2          137.3          137.2 

aHNB2          137.2          137.3          137.2 

aHBN1          132.8          132.7          132.8 

aHBN2          132.8          132.7          132.8 

dBNBN            0.0            0.0           0.0 

dHNBB          180.0          180.0         180.0 

dHNBN          180.0          180.0         180.0 

dHBNB1          180.0          180.0         180.0 

dHBNB2          180.0          180.0         180.0 

 

For, 1,3-diazadiboretidine (planar), theory at all the levels reveal that the all the B-N 

bond lengths, all the N-H bond lengths and all the B-H bond lengths are equal. The 

B-N bond lengths are 1.45Å, 1.46Å and 1.46Å, N-H bond lengths are 0.99Å, 1.01Å 

and 1.00Å, and B-H bond lengths are 1.19Å, 1.20Å and 1.20Å at HF, MP2 and 

CCSD level respectively. Here, the dihedral angle dBNBN represents the ring 

puckering.
7,8 

Here, constrained optimizations were performed in Cs symmetry 

keeping dBNBN as 0
0 

as we wanted the planar geometry. It can also be seen that all 

the hydrogen atom dihedral angles are 180.0
0 

placing them in the same plane. The 

equal B-N bond length may suggest delocalization of electrons in the ring. 

 

Next, we show the Z-matrix of the 1,2-conformation in Fig. 3.10. 
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Fig. 3.10: Z-matrix of 1,2-diazadiboretidine 

 

Fig 3.11, 3.12 and 3.13 are the optimized geometries of 1,3-diazadiboretidine 

(planar) at HF, MP2 and CCSD level respectively at aug-cc-pVDZ basis set. 

 

Fig. 3.11: Optimized geometry of 1,2-diazadiboretidine at HF/aug-cc-pVDZ level 
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Fig. 3.12: Optimized geometry of 1,2-diazadiboretidine at MP2/aug-cc-pVDZ level 

 

Fig. 3.13: Optimized geometry of 1,2-diazadiboretidine at CCSD/aug-cc-pVDZ level 

 

Variable values for optimized 1,2-diazadiboretidine is given in the following Table 

3.3. (All the distances are in angstroms and angles in degrees). 
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Table 3.3: Variable values for optimized 1,2-diazadiboretidine 

 

Theory at all the levels reveals that the B-N bond lengths are smaller than N-N and 

B-B bond lengths. All the N-H bond lengths and all the B-H bond lengths are equal. 

The B-N bond lengths are 1.42Å, 1.43Å and 1.43Å, N-N bond lengths are 1.44Å, 

1.47Å and 1.47Å, B-B bond lengths are 1.77Å, 1.78Å and 1.78Å, N-H bond lengths 

are 1.00Å, 1.02Å and 1.02Å, and B-H bond lengths are 1.19Å, 1.20Å and 1.20Å at 

HF, MP2 and CCSD level respectively. Here, the dihedral angle dBNBN represents 

the one of the four ring puckering (ignoring sign.) angles. The actual ring puckering 

varies in a range. None of the hydrogen atom dihedral angles are 180.0
0
-all of them 

are lesser than 180.0
0
. 

 

The energy of the molecules, their ring puckering and presence or absence of 

imaginary frequency was all tabulated in the following Table 3.4. 
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Variables             HF           MP2          CCSD 

rBN1           1.42           1.43           1.43 

rBB1           1.77           1.78           1.78 

rBN2           1.42           1.43           1.43 

rBH1           1.19           1.20           1.20 

rNH1           1.00           1.02           1.02 

rBH2           1.19           1.20           1.20 

rNH2           1.00           1.02           1.02 

aBBN           83.3           83.8           83.7 

aNBB           83.3           83.8           83.7 

aHBN1         126.7          125.5         125.8 

aHNN1         117.2          117.9         117.5 

aHBN2         126.7          125.5         125.7 

aHNN2         117.3          118.0         117.6 

dNBBN          -6.6           -5.9          -6.2 

dHBNN1        -170.6         -171.7         -171.5 

dHNNB1        -149.0         -153.3         -151.8 

dHBNN2         -170.5         -171.6         -171.3 

dHNNB2         -149.8         -153.9         -152.4 



Table 3.4: The energy, the ring puckering and presence or absence of imaginary 

frequency for all the conformations of diazadiboretidine 

                                                      

1,3-

diazadiboretidine 

(puckered) 

   Energy              

(Hartree)                             

         HF        MP2       CCSD 

 -160.71127173  -161.22222041      -161.25202989 

Puckering 

Angle 

(degree) 

          10.958         19.404          18.095 

Imaginary   

freq. ( cm
-1

) 

              -               -                - 

                                                      

1,2-

diazadiboretidine 

(puckered) 

   Energy              

(Hartree)                             

         HF        MP2       CCSD 

  -160.56611194  -161.07882849    -161.11547367 

Puckering 

Angle 

(degree) 

    6.499-8.083    5.757-7.152        5.988-7.448 

Imaginary   

freq. ( cm
-1

) 

               -              -               - 

                                                      

1,3-

diazadiboretidine 

(planer) 

   Energy              

(Hartree)                             

         HF        MP2        CCSD 

 -160.71101030 -161.21985244    -161.25016429 

Puckering 

Angle 

(degree) 

           0.0           0.0              0.0 

Imaginary 

freq.(cm
-1

) 

      -129.90       -218.02         -206.73 

  

From the optimized energy values, it can be easily seen that 1,3-diazadiboretidine 

puckered form is the most stable of them and the 1,2-diazadiboretidine is the least 

stable of them.  Although, we have been able to optimize the planar conformation of 

1,3-diazadiboretidine but the presence of an imaginary frequency in all levels of 

theory suggests that it is not a minima in the potential energy surface of the molecule 

(rather a maxima) while the puckered 1,3-conformation is. The ring puckering for 

1,2-conformation is in a range of say,3
0
 as said earlier. The Energy difference 

between the molecules is shown in the following Fig 3.14. 
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Fig. 3.14: The energy difference between the conformations of diazadiboretidine 

 

The 1,2-conformation has a lot (approx. 90 Kcal/mol.) more energy than the 1,3 –

conformations (both). So, this 1,2-diazaboretidine is not of much importance in our 

work. But the planer form of 1,2-diazadiboretidine is very little higher in energy than 

its puckered form (approx. 1 Kcal/mol.) which is very close to thermal energy at 

room temperature. But, the planar form is not a local minimum on the PES of the 

molecule as it has an imaginary frequency. So, it may be a first order saddle point on 

the PES.  

 

 

 

 

 

29 



3.1.2.2. Establishing MP2 Method for Studying 1,3-diazadiboretidine 

(puckered) and Similar Type of Systems 

Table 3.5 shows the percentage difference for different variables of 1,3-

diazadiboretidine (puckered) between HF, MP2 and CCSD methods in aug-cc-pVDZ 

basis set. Percentage differences have been calculated taking the variable values 

rounding up to sixth digit after the decimal place. However, the variable values 

shown here are rounded accordingly to show the difference between them.  

Table 3.5: The percentage difference for different variables of 1,3-diazadiboretidine 

(puckered) between HF, MP2 and CCSD methods in aug-cc-pVDZ basis set 

 

It can be seen that the percentage difference from HF to MP2 is a lot more than that 

from MP2 to CCSD for all the important variables specially the puckering angle. 

Introducing correlation does really change the variables a lot from HF to MP2 while 

the variables do not change much with introduction of another correlation i.e. from 

MP2 to CCSD.  Also, the computational cost of CCSD is more than that of MP2. So, 

all the later calculations on 1,3-diazadiboretidine (puckered) or similar type of 

molecules will be performed using MP2 level of theory. 

 

3.1.2.3. Establishing aug-cc-pVDZ Basis Set for Studying 1,3-

diazadiboretidine (puckered) and Similar Type of Systems 

Table 3.6 shows the percentage difference for different variables of 1,3-

diazadiboretidine (puckered) between cc-pVDZ, aug-cc-pVDZ, cc-pVTZ and aug-

cc-pVTZ basis sets at MP2 level of theory. 1,3-diazadiboretidine (puckered) has been 

optimized at MP2 level of theory using the above said basis sets in Gamess-US.
14

 

Percentage differences have been calculated taking the variable values rounding up 

to sixth digit after the decimal place. However, the variable values shown here are 

rounded accordingly to show the difference between them.  
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Table 3.6: The percentage difference for different variables of 1,3-diazadiboretidine 

(puckered) between cc-pVDZ, aug-cc-pVDZ, cc-pVTZ and aug-cc-pVTZ basis sets 

at MP2 level of theory 

Variables 

cc-

pVDZ %difference 

aug-

cc-

pVDZ %difference 

cc-

pVTZ %difference 

aug-

cc-

pVTZ 

rBN(Å) 1.463 0.200 1.466 -0.84 1.454 0.082 1.455 

rBH(Å) 1.201 -0.319 1.197 -0.946 1.1862 0.010 1.1863 

rNH(Å) 1.012 -0.0012 1.010 -0.0088 1.0020 0.0005 1.0025 

aNBN(deg) 95.78 -0.438 95.37 0.591 95.93 -0.230 95.71 

aBNB(deg) 80.23 1.35 81.31 -0.921 80.56 0.586 81.04 

dHBNN(deg) 171.39 0.323 171.95 -0.388 171.28 0.184 171.60 

puckering(deg) 21.207 -8.554 19.393 -0.005 19.392 -0.938 19.21 

 

It can be seen that the percentage difference is more mainly from cc-pVDZ to aug-

cc-pVDZ and from aug-cc-pVDZ to cc-pVTZ basis sets. However, puckering is a 

very important aspect in this study and the percentage difference in puckering angle 

is most between cc-pVDZ and aug-cc-pVDZ basis sets. Also, the molecule has lone 

pairs on nitrogen and aug-ccpvdz basis set is computationally less costly than cc-

pVTZ basis set. So, all the later calculations on 1,3-diazadiboretidine (puckered) or 

similar type of molecules have been performed using aug-cc-pVDZ basis set. 

 

3.1.2.4. Concentrating on the Optimized Geometry of 1,3-puckered 

Conformation: Checking if it is the Global Minimum 

We have provided reasons for why MP2/aug-cc-pVDZ level of theory will be used to 

study 1,3-diazadiboretidine (puckered) and similar type of molecules. Now, we 

concentrate totally on 1,3-diazadiboretidine (puckered) to see if the optimized 

geometry is actually a global minimum or a local minimum.  If we look at the 

molecule carefully (Fig. 3.15), we will understand that it belongs to C2v point group 

i.e. it has E, C2 axis and two σ planes.   

 

Fig. 3.15: C2v symmetry of 1,3-diazadiboretidine (puckered) 
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So, we have considered performing the optimization in C2v point group. The initial 

geometry that was provided is shown in Fig. 3.16. As shown, dummies have been 

used to form the initial geometry and when it has been optimized, it gave us the same 

earlier structure (Fig. 3.17). Along with that, some other optimizations have also 

been performed to find the global minimum. Four different initial geometries have 

been considered and they are as following: 

1. Geometry of Fig. 3.16. 

2. Both the H‟s attached to B in Fig. 3.17 were flipped. 

3. Both the H‟s attached to N in Fig. 3.17 were flipped. 

4. All the H‟s in Fig. 3.17 were flipped.  

 

Fig. 3.16: Initial geometry using dummies to be optimized in C2v symmetry 
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Fig. 3.17: Final optimized geometry in C2v symmetry 

From the optimized geometry of case (1), C2V restriction was taken off and some 

distorted geometries (case 2-4) were optimized in C1 symmetry to confirm that the 

C2V optimized geometry is the minimum. The energies of all the optimized 

geometries are shown in Table 3.17.  

Table 3.7: The energies of optimized geometries of all the cases of the section 

3.1.2.4   

 

 

 

 

The energies of all the four cases have showed that all of them are the same structure 

i.e. the optimized C2v structure and also none of them had any imaginary frequencies. 

So, it can be concluded that the C2v optimized geometry is the global minimum of 

1,3-diazadiboretidine (puckered).  
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    Case E(MP2/aug-cc-pVDZ) (Hartree) 

       1               -161.22222042 

       2               -161.22222038 

       3               -161.22222040 

       4               -161.22222040 



Fig 3.18 shows the HOMO (14
th

 MO as there are total 28 electrons) and the 12
th

 MO 

of the molecule where we can see that the two lone pairs localized on two nitrogen 

atoms (there is some linear combination of one of the same symmetry lobes in case 

of the 12
th

 MO).  

 

Fig 3.18: HOMO (left) and 12
th

 MO (right) of 1,3-diazadiboretidine (puckered) 

The energy of the HOMO is -375392 H i.e. -10.2148 eV whereas the energy of 

LUMO is 0.038331 H i.e. 1.0430 eV.  The energy difference between LUMO and 

HOMO is 11.258 eV. 

Next, we considered plotting a PES with respect to puckering of the molecule. So, 

we defined puckering angle on our own way.  

Referring to Fig. 3.19, the puckering angle = aBXX - 90
0 

= θ-90
0  

 

Fig. 3.19: Our definition of puckering angle in 1,3-diazadiboretidine (puckered) 
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We have varied the angle θ and optimized all other variables of 1,3-diazaboretidine 

(puckered) at MP2/aug-cc-pVDZ level. The angle θ was varied at a difference of 2
0
 

from -60
0
 to 60

0
. The energies have all been plotted with respect to the puckering 

angle. The minimum energy geometry was taken to be zero and all other energies 

have been plotted relative to that in Kcal/mol. Fig. 3.20 shows the plot of relative 

energy with respect to puckering angle (-30
0
 to 30

0
).      

Fig. 3.20: Relative Energy vs puckering angle of 1,3-diazadiboretidine (puckered) 

It can be easily seen that at -14
0
 and 14

0
 puckering angle, we get the global minima 

which have been taken as zero energy. It can be easily understood that both the 

structures are the same. The puckering angle for minimum energy structure in this 

case is not exactly the same as that of the earlier case because previously the 

definition of puckering was different. There exists a local maximam at 0
0
 i.e. the 

planar conformation of 1,3-diazadiboretidine is actually a local maximum on the 

PES. As, the puckering angle is increased, the energy only increases and there are 
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no other stationary point on the PES.  So, in conclusion, this plot validated all the 

previous studies that we have been doing on 1,3-diazadiboretidine.  
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Chapter 4 

Analysis of Straight Chain B-N Compounds, 

Substituent Effect on Cyclo-B2N2 Rings and 

Effect of Substituting Atoms of the Core Ring  

4.1. Straight Chain B-N Moieties: B-N Bond Distance and 

Mulliken Population on B and N 

Before replacing other substituents in place of H‟s attached to B‟s in 1,3-

diazadiboretidine (puckered), we considered some straight chain B-N moieties to 

understand what happens to the B-N bond distance in those moieties, the charge on B 

and N in them and whether they are planar or not.  

 

    4.1.1. The Computational Details 

First, optimization of borane (BH3) and ammonia (NH3) have been performed in 

MP2/aug-cc-pVDZ level. As expected, optimized structure of BH3 (Fig.4.1) came out 

to be planar and that of NH3 (Fig. 4.2) came out to be pyramidal. We have replaced 

the H‟s attached to B by -NH2 in BH3 one by one to form BH2-NH2, BH-(NH2)2 and 

B-(NH2)3 respectively. We have also replaced the H‟s attached to N by -BH2 in NH3 

one by one to form NH2-BH2, NH-(BH2)2 and N-(BH2)3 respectively. All of these 

moieties have been optimized at MP2/aug-cc-pVDZ level of theory. Along with that, 

the BH3-NH3 Lewis acid adduct has also been optimized at the same level of theory. 

Mulliken populations have also been found out for all the above mentioned 

optimized geometries at CISD/aug-cc-pVDZ level. All the calculations have been 

performed in Molpro (version 2012.1).
13 
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Fig. 4.1: Optimized geometry of BH3 at MP2/aug-cc-pVDZ level 

 

Fig. 4.2: Optimized geometry of NH3 at MP2/aug-cc-pVDZ level 

    

    4.1.2. Results and Discussion 

Fig. 4.3-4.8 shows the optimized geometry of all the above mentioned moieties.  
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Fig. 4.3: Optimized geometry of BH2-NH2 (or NH2-BH2) at MP2/aug-cc-pVDZ level 

 

Fig. 4.4: Optimized geometry of BH-(NH2)2 at MP2/aug-cc-pVDZ level 

 

Fig. 4.5: Optimized geometry of B-(NH2)3 at MP2/aug-cc-pVDZ level 
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Fig. 4.6: Optimized geometry of NH-(BH2)2 at MP2/aug-cc-pVDZ level 

 

Fig. 4.7: Optimized geometry of N-(BH2)3 at MP2/aug-cc-pVDZ level 

 

Fig. 4.8: Optimized geometry of BH3-NH3 Lewis acid adduct at MP2/aug-cc-pVDZ 

level 
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Table 4.1 shows all the average B-N bond lengths and the Mulliken population on B 

and N 

Table 4.1: The average B-N bond lengths and the Mulliken population on B and N 

of the straight chain moieties  

 

We have seen that for 1,3-diazadiboretidine (puckered), the average B-N bond length 

is 1.466 Å. Here, we can see that for all the moieties, the average bond distance of B-

N varies a lot between average B-N single bond (1.51 Å) and double bond (1.31 Å). 

However, it can be seen that as we have replaced H‟s of BH3 by -NH2 groups one by 

one, the average BN length has increased and the same has happened when we have 

replaced H‟s of NH3 by -BH2 groups. It is as if, that the average B-N bond length 

increased when the number of B-N bonds increased. There is probably some level of 

delocalization happening between B and N and depending on that the BN lengths are 

changing. Also, as we replace H‟s of BH3 by -NH2 groups one by one, charge on B 

increases. It is because with increasing number of -NH2 groups, the negative charge 

increases in the moieties and so, the positive charge on B also increases to make it 

neutral. Similarly when we replace H‟s of NH3 by -BH2 groups, to counter the 

positive charge introduced by -BH2 groups, the negative charge on N increases. 

However, a very different picture is seen for the Lewis adduct. It has a B-N bond 

length which is a lot larger than the average B-N single bond (1.51 Å) and double 

bond (1.31 Å) and it is because it actually does not have a real B-N bond as it is just 

an adduct where the N of NH3 donates its lone pair of electrons completely to B of 

BH3. It is because of the same reason that the charge on B is negative and the charge 

on N is positive in this Lewis adduct. 
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4.2. Substituent Effect: Average B-N length and Mulliken 

Population of B and N 

From the optimized geometry of 1,3-diazadiboretidine (puckered), we have realized 

that the geometry around 3-coordinated B atom in this molecule is slightly distorted 

from its planar form and that is because of the B2N2 ring and its puckering. Albeit cis 

to one another, the deviation from planarity for both the H‟s attached to B‟s are very 

small. So, we considered replacing H‟s attached to B‟s by some other electron 

donating and electron withdrawing groups in order to see their effect on the 

geometrical parameters. Here, we have used electron donating groups such as -NH2, -

CH3 and -SH. While -NH2 is a strong electron donating group, -CH3 is a weak one 

and -SH is very weak. -Cl and -CN were used as electron withdrawing groups and 

they are both very strong electron withdrawing groups (-CN is stronger among the 

two as –Cl is slightly electron donating). The issue of average B-N bond length and 

Mulliken population of B and N will be addressed in this section while the deviation 

from planarity and pyramidalization will be addressed in detail in section 4.3.     

 

4.2.1. Computational Details  

As mentioned earlier, we have substituted the H‟s attached to B‟s in the optimized 

geometry of 1,3-diazadiboretidine (puckered) by -NH2, -CH3, -SH, -Cl and -CN. All 

the new structures have been optimized at MP2/aug-cc-pVDZ level of theory. These 

particular calculations have been performed in Gamess-US.
14

  

 

4.2.2. Results and Discussions 

In each of the substitutions, the optimized geometry that we have gotten consists of 

no imaginary frequencies i.e. we have located the local minima in all the cases. Other 

than -NH2, all other substitutions have led to almost the same kind of geometry as the 

parent molecule and so, I have not shown any figure of them. In case of -NH2 

substitution, the optimized geometry (Fig. 4.9) was almost planar. The ring 

puckering came out to be zero degree and the deviation from planarity was also 

negligible. Although, this could also be an interesting aspect to study, we have not  
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investigated this molecule as its planarity is not an important aspect in our study.    

 

Fig. 4.9: Optimized Geometry when H‟s attached to B‟s are replaced by -NH2 groups 

at MP2/aug-cc-pVDZ level 

Table 4.2 shows all the average B-N bond lengths and the Mulliken population on B 

and N 

Table 4.2: The average B-N bond lengths and the Mulliken population on B and N 

for the molecules formed by replacing H‟s attached to B‟s by electron donating and 

withdrawing groups. 

 

In all the above cases, the average B-N bond length is almost same and varies very 

little. However, for substitutions with electron withdrawing groups –Cl (-Cl is acting 

as an electron withdrawing group here) and -CN, it can be seen that the average B-N 

length decreases a little from that of 1,3-diazadiboretidine (puckered). Even for the 

electron donating groups -NH2 and -CH3, a small increase in the average B-N bond 

length than that of 1,3-diazadiboretidine (puckered) is noted. As expected from the 

trend, for -SH substitution, the average B-N bond length should have increased a 

little than that of the H substituted parent molecule but it is actually slightly lesser 

than that. It may be because there are some other effects involved also other than the 

effect of electron donation and electron withdrawal. A sharp increase of charge on B 

is noted for -Cl and -CN substitution from that of the parent molecule. As -Cl and – 
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CN withdraw electrons from their bond with B, the charge on B also increases. In a 

similar way, -NH2 donates electrons in its bonding with B, and so the charge on B 

decreases than that of the parent molecule. However, by this logic the charge should 

also decrease on B for the weakly electron donating groups, -CH3 and -SH. But, 

contrary to that, it can be seen that the charge on B has increased a little for -CH3 and 

-SH substitution which suggests that may be some other factor is in play too.  

 

4.3. Solid Angle as Measure of Deviation from Planarity and 

Pyramidalization 

We know from geometry that Solid angle is the 2D angle in 3-dimensional space 

which an object subtends at a point. In the SI system, a dimensionless unit called 

a steradian (sr) is used to express a solid angle. It is a measure of how large an object 

appears to an observer when looking from a point. So, even a small object near a 

point may subtend the same solid angle as a larger object farther away at that same 

point. The solid angle of a sphere is defined as  

𝛺 =  
𝐴

𝑟2 sr                                                          (4.1)      

For a sphere, Area,𝐴 = 4𝜋𝑟2, so, 𝛺 = 4𝜋 sr = 720
0
                         

Our interest here was to quantify the deviation from planarity at B and the deviation 

from pyramidalization at N, for all the straight chain B-N moieties and the 

substituted molecules. We know that for a 3-coordinated B (say, BH3), the stable 

geometry is planar and for a 3-coordinated N (say, NH3), the stable geometry is 

pyramidal. So, the idea was to look for the deviation in those geometries around 3-

coordinated B and N for all the moieties and molecules. Here, we have quantified the 

deviation by calculating the solid angle subtended at O by the area ABC (Fig 4.10). 

 

Fig. 4.10: Definition of solid angle 
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An efficient algorithm to measure the solid angle of this type is well known in 

literature
15

 which have been used to write a program and calculate the necessary 

solid angles. The formula to calculate the solid angle Ω subtended by a triangular 

area ABC where 𝑎     , 𝑏   and 𝑐  are the vector positions of vertices A,B and C.  

tan (
1

2
𝛺) =  

 𝑎  𝑏  𝑐  

𝑎𝑏𝑐 + 𝑎  .𝑏   𝑐+ 𝑎  .𝑐  𝑏+ 𝑏  .𝑐  𝑎
                                  (4.2) 

Here  𝑎 𝑏  𝑐   denotes the determinant of the matrix which results when writing the 

vectors together in a row and this is also equivalent to scalar triple product of the 3 

vectors.  

We have calculated the solid angle of BH3 at B subtended by the 3 H atoms which 

came out as 360.0
 0

 and that of NH3 at N subtended by 3 H atoms which came out as 

158.9
0
. These two values will be our references when calculating the deviations. The 

deviation from planarity at B = 360.0
 0 

- Solid angle of the moiety/molecule at B 

subtended by the 3 linked atoms. The deviation from pyramidalisation at N = Solid 

angle of the moiety/molecule at N subtended by the 3 linked atoms – 158.9
0
.
 
 

 

4.3.1. Straight Chain B-N Moieties: Deviation from Planarity and 

Pyramildalisation 

Table 4.3 shows the solid angles at B and N and deviations from planarity at B and 

pyramidalisation at N for straight chain B-N moieties. The solid angle at B for all the 

straight chain B-N moieties are almost 360
0
 and the deviation from planarity at B is 

almost negligible. The solid angles at N for all the straight chain moieties are also 

around 360
0
. However, for B-(NH2)3, the geometry around N is slightly distorted 

from planarity. All of these moieties have a huge deviation from pyramidalisation 

around N.  For the Lewis acid adduct BH3-NH3, the situation is quite different.  The 

N donates its lone pair of electrons to B and in the process distorts the geometry 

around B. The solid angle at B becomes 219.6
0
 which is more closer to a pyramidal 

geometry than a planar geometry. The geometry at N also deviates a little towards 

planarity but it is only 8.9
0
.   

44 



Table 4.3: The solid angles at B and N and deviations from planarity at B and 

pyramidalisation at N for straight chain B-N moieties 

 

4.3.2. Substituent Effect: Deviation from Planarity and 

Pyramildalisation 

Table 4.4 shows the solid angles at B and N and deviations from planarity at B and 

pyramidalisation at N for the molecules formed by replacing H‟s attached to B‟s by 

electron donating and withdrawing groups.  

Table 4.4: The solid angles at B and N and deviations from planarity at B and 

pyramidalisation at N for the molecules formed by replacing H‟s attached to B‟s by 

electron donating and withdrawing groups 

 

The solid angle at B for 1,3-diazadiboretidine (puckered) is 333
0
 and for all the 

substitutions, it is more than that which means that the deviations from planarity at B 

is lesser than that of the parent molecule. We can also see that for -NH2 substitution, 

the solid angle is 359.9
0
 making the geometry around B almost planar.  
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However, no trend can be seen for the solid angles around N. In all the cases, the 

solid angles at N are somewhere between the planar geometry and pyramidal 

geometry.  

So, it can be concluded that substituting the H‟s attached to B‟s is probably not going 

to help much in our study because we have seen in our calculations that as we do 

that, deviations from planarity at B decreases (which is not interesting for the 

problem) instead of increasing.  

 

4.4. Substituting Atoms in the Core Four-Membered Ring  

We have seen in the previous section that even after substituting H‟s attached to B‟s 

of our molecule of interest by different electron donating and electron withdrawing 

groups, the geometry around three coordinated B atom did not deviate much from 

planarity. So, we opted for a new way. We decided to replace atoms of the core B2N2 

ring by other atoms to see whether a large deviation from planarity is possible at all 

or not. Here, either one or both the –NH‟s have been replaced by other atoms. These 

will be explained in detail at the results section. Our experimentalist collaborators 

were interested in having Cl as the substituent at B as it is synthetically more suitable 

and energetically more favoured. So, for most of the calculations that we have 

performed in this section; we have used both H and Cl as the substituent at B.  

 

4.4.1. Computational Details 

All the geometry optimizations and frequency calculations have been performed at 

MP2/aug-cc-pVDZ level of theory. The Mulliken populations have been calculated 

at CISD/aug-cc-pVDZ level. The calculations have been done using Molpro (version 

2012.1).
13
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4.4.2. Results and Discussions 

The following substitutions have been performed on the core B2N2 ring of 1,3-

diazadiboretidine (puckered) (and its analogue where H‟s attached to B‟s are 

replaced by Cl): (1) the two –NH‟s have been replaced by two oxygen atoms, (2) 

only one –NH has been replaced by an O atom (3) both the –NH‟s have been 

replaced by two Sulfur atoms and (4) only one –NH has been replaced by a S atom. 

All the cases will be discussed one by one. 

For case (1), the optimized geometry of cyclo-1,3-B2O2H2 (Fig. 4.11) and cyclo-1,3-

B2O2Cl2 (Fig. 4.12) came out to be planar. The B-O bond length in both the 

molecules is in the range of single B-O bonds. The B-H bond length is same as the 

experimental B-H single bond length while the B-Cl bond length is a little less than 

the average single B-Cl bond (which is 1.75 Å). The HOMO‟s in both the molecules 

show that there is no delocalization of electrons in the B2O2 ring. Fig. 4.13 shows the 

HOMO in cyclo-1,3-B2O2H2, where we can see that it is the lone pair of electrons 

localized on the O atoms. Fig. 4.14 shows the HOMO in cyclo-1,3-B2O2Cl2, where it 

is the lone pair of electrons localized on the O atoms and the unpaired electrons 

localized at Cl atom. There is no delocalisation taking place. The ring puckering is 

also negligible i.e. there is no puckering involved. Similarly, the deviation from 

planarity at B atom is also negligible.  

Table 4.5: Energy, imaginary Frequency, puckering and deviation from planarity at 

B for Case (1)   

   Molecule E(MP2/aug-

cc-pVDZ) 

(H) 

Imaginary 

Freq.(cm
-1

) 

Puckering 

(degree) 

Solid 

angle 

at B 

(deg.) 

Deviation from 

planarity at B 

(degree) 

Cyclo-1,3- 

B2O2H2 

  -200.963483           -     0.005  359.9            0.1 

Cyclo-1,3-

B2O2Cl2 

-1119.200859           -     0.007  359.7            0.3 
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Fig. 4.11: Optimized geometry of cyclo-1,3-B2O2H2 at MP2/aug-cc-pVDZ level 

 

Fig. 4.12: Optimized geometry of cyclo-1,3-B2O2H2 at MP2/aug-cc-pVDZ level 

 

Fig. 4.13: HOMO of cyclo-1,3-B2O2H2 
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Fig. 4.14: HOMO of cyclo-1,3-B2O2Cl2 

For case (2), Fig. 4.15 and Fig. 4.16 show the optimized geometry of cyclo-B2ONH3 

and cyclo-B2ONHCl2.  The B-O bond length in both the molecules is in the range of 

single B-O bonds. The B-H, N-H and B-Cl bond lengths are also very close to the 

experimental values. The HOMO‟s in both the molecules show that there is no 

delocalization of electrons in the B2ON ring. Fig. 4.17 shows the HOMO in cyclo-

B2ONH3, where we can see that it is the lone pair of electrons localized on the O 

atom and N atom. Fig. 4.18 shows the HOMO in cyclo-B2ONHCl2, where it is the 

lone pair of electrons localized on the O atoms, N atoms and the unpaired electrons 

localized at Cl atom. There is no delocalisation taking place. The ring puckering is 

almost negligible for cyclo-B2ONHCl2 while there is an approximate 8
0
 ring 

puckering for cyclo-B2ONH3. The deviation from planarity at B atom is also very 

small.  

Table 4.6: Energy, imaginary frequency, puckering and deviation from planarity at 

B for Case (2)   

   Molecule E(MP2/aug-

cc-pVDZ) 

(H) 

Imaginary 

Freq.(cm
-1

) 

Puckering 

(degree) 

Solid 

angle 

at B 

(deg.) 

Deviation from 

planarity at B 

(degree) 

Cyclo- 

B2ONH3 

  -181.092617           -     8.029  349.2          10.8 

Cyclo-

B2ONHCl2 

-1099.334383           -     0.047  359.9           0.1   
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Fig. 4.15: Optimized geometry of cyclo-B2ONH3 at MP2/aug-cc-pVDZ level 

 

Fig. 4.16: Optimized geometry of cyclo-B2ONHCl2 at MP2/aug-cc-pVDZ level 

 

Fig. 4.17: HOMO of cyclo-B2ONH3 
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Fig. 4.18: HOMO of cyclo-B2ONHCl2 

For case (3), Fig. 4.19 and Fig. 4.20 show the optimized geometry of cyclo-1,3-

B2S2H2 and cyclo-1,3-B2S2Cl2. The B-S bond length in both the molecules is in the 

range of single B-S bonds. The B-H and B-Cl bond lengths are also very close to the 

experimental values. The HOMO‟s in both the molecules show that there is no 

delocalization of electrons in the B2S2 ring. Fig. 4.21 shows the HOMO in cyclo-1,3-

B2S2H2 and Fig. 4.22 shows the HOMO in cyclo-1,3-B2S2Cl2.  In both the cases, we 

can see that it is the lone pair of electrons localized on the S atoms which means that 

there is no delocalisation taking place. Although there is quite enough puckering in 

cyclo-1,3-B2S2H2, the puckering in cyclo-1,3-B2S2Cl2 is almost negligible.  The 

deviation from planarity at B is negligible for cyclo-1,3-B2S2Cl2. However, the 

deviation from planarity at B for cyclo-1,3-B2S2H2 is 30.8
0
. But, as the puckering is 

also little high for the system, that also contributes to the deviation from planarity.  

Table 4.7: Energy, imaginary frequency, puckering and deviation from planarity at 

B for Case (3)   

   Molecule E(MP2/aug-

cc-pVDZ) 

(H) 

Imaginary 

Freq.(cm
-1

) 

Puckering 

(degree) 

Solid 

angle 

at B 

(deg.) 

Deviation 

from 

planarity at B 

(degree) 

Cyclo-1,3-

B2S2H2 

  -846.123076           -    19.005   329.2          30.8 

Cyclo-1,3-

B2S2Cl2 

-1764.364676           -     0.013  359.97          0.03 
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Fig. 4.19: Optimized geometry of cyclo-1,3-B2S2H2 at MP2/aug-cc-pVDZ level 

 

Fig. 4.20: Optimized geometry of cyclo-1,3-B2S2Cl2 at MP2/aug-cc-pVDZ level 

 

Fig. 4.21: HOMO of cyclo-1,3-B2S2H2 
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Fig. 4.22: HOMO of cyclo-1,3-B2S2Cl2  

For case (4), Fig. 4.23 and Fig. 4.24 show the optimized geometry of cyclo-B2SNH3 

and cyclo-B2SNHCl2.  The B-S bond length in both the molecules is in the range of 

single B-S bonds. The B-H, N-H and B-Cl bond lengths are also very close to the 

experimental values. The HOMO‟s in both the molecules show that there is no 

delocalization of electrons in the B2SN ring. Fig. 4.25 shows the HOMO in cyclo- 

B2SNH3, where we can see that it is the lone pair of electrons localized on the S atom 

and N atom. Fig. 4.26 shows the HOMO in cyclo-B2SNHCl2, where also the 

situation is same i.e. there is no delocalisation taking place. Although there is quite 

enough puckering in cyclo-B2SNH3, the puckering in cyclo-B2SNHCl2 is very small. 

The deviation from planarity at B for cyclo-B2SNHCl2 is negligible while that for 

cyclo-B2SNH3 is 23.6
0
. But, still the deviation is not sufficient enough.  

Table 4.8: Energy, imaginary frequency, puckering and deviation from planarity at 

B for Case (4)   

   Molecule E(MP2/aug-

cc-pVDZ) 

(H) 

Imaginary 

Freq.(cm
-1

) 

Puckering 

(degree) 

Solid 

angle 

at B 

(deg.) 

Deviation 

from 

planarity at 

B (degree) 

Cyclo- 

B2SNH3 

  -503.679083           - 13.042-15.521   336.4        23.6 

Cyclo-

B2SNHCl2 

-1421.922159           -    0.159-0.191      359.8         0.2 
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Fig. 4.23: Optimized geometry of cyclo-B2SNH3 at MP2/aug-cc-pVDZ level 

 

Fig. 4.24: Optimized geometry of cyclo-B2SNHCl2 at MP2/aug-cc-pVDZ level 

 

Fig. 4.25: HOMO of cyclo-B2SNH3 
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Fig. 4.26: HOMO of cyclo-B2SNHCl2 

Table 4.9 shows the charge on B atoms for each of the cases considered in this 

section. The charge on B for each of the molecules came out to be positive as 

expected. However, it can be easily observed that in each of the case, when H‟s 

attached to B‟s were replaced by Cl‟s, the positive charge on B atom increased 

slightly. It is the electron withdrawing nature of Cl that increased the positive charge 

on B in those molecules.  

Table 4.9:  Charge on B atoms for each of the above mentioned cases 

      Case              Molecule     Charge on B 
          1       Cyclo-1,3- B2O2H2             0.303 

      Cyclo-1,3- B2O2Cl2             0.327 

          2          Cyclo- B2ONH3             0.236 

        Cyclo-B2ONHCl2             0.273 

          3        Cyclo-1,3-B2S2H2             0.112 

       Cyclo-1,3-B2S2Cl2             0.183 

          4          Cyclo- B2SNH3             0.146 

        Cyclo-B2SNHCl2             0.196 

All the substitutions at B and substitutions in the core ring were unable to distort the 

geometry around B much from planarity. Another aspect that we have noted is that 

Cl substitution at B actually makes the molecule more stable than all other 

substitutions. So, from experimentalist point of view, Cl substituted ones will be 

relatively easier to isolate than others if it is possible at all to isolate them. However, 

the deviation from planarity at B is highest for H‟s attached to B‟s only. So, we 

decided to concentrate on boron‟s electron affinity and performed multireference 

calculations of anions and dianions related to that which is reported in details in 

chapter 5.      
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4.5. Different System Altogether 

We also considered changing the whole system. The core B2N2 ring has been 

replaced with P2N2 ring. Our interest was in systems like [Cyclo-1,3-P2N2R2]
2+

. We 

have performed calculations with R = -H, -CH3. After we found the optimized 

geometries of this type of rings, we went on to calculate the optimized geometries of 

these rings where we attached Cl at P atom and made 3-coordinated phosphorus. It is 

known that P forms a pyramidal structure in PCl3. Our interest was to see if the same 

thing happens in these rings too. All the calculations have been done at MP2/aug-cc-

pVDZ level for these systems in Molpro (version 2012.1).
13

  

Fig. 4.27 and Fig.4.28 shows the optimized geometries of cyclo-1,3-P2N2Cl2H2  and 

cyclo-1,3-P2N2Cl2(CH3)2 .  For, both the optimized geometries, P-N and P-Cl are 

both single bonds. The N-H bond length also suggests a single bond in cyclo-1,3-

P2N2Cl2(CH3)2 . Even the C-N bond (1.45 Å) in cyclo-1,3-P2N2Cl2(CH3)2  is forming 

a single bond.  The HOMOs of both the molecules show that the electrons are 

localized on P, N and Cl atoms. Both the rings are quite puckered in case of the 

neutral molecules. There is a large deviation from planarity at P for both the neutral 

molecules (which is because of the localised electrons on P) that we have not seen 

earlier in our study in B based rings. The geometry around P is more inclined 

towards pyramidal and the P-Cl bonds are cis to each other and bent a huge amount 

with respect to the core P2N2 ring.    

  Table 4.10: Energy, imaginary frequency, puckering and deviation from planarity 

at P for cyclo-1,3-P2N2Cl2H2  and cyclo-1,3-P2N2Cl2(CH3)2     

   Molecule E(MP2/aug-

cc-pVDZ) 

(H) 

Imaginary 

Freq.(cm
-1

) 

Puckering 

(degree) 

Solid 

angle 

at B 

(deg.) 

Deviation 

from 

planarity at 

B (degree) 

Cyclo-1,3-

P2N2Cl2H2   

-1711.521068             -    12.208  255.0      105.0 

Cyclo-1,3-

P2N2Cl2(CH3)2     

-1789.886499           -     7.181  252.9      107.1 
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Fig. 4.27: Optimized geometry of cyclo-1,3-P2N2Cl2H2  at MP2/aug-cc-pVDZ level 

 

Fig. 4.28: Optimized geometry of cyclo-1,3-P2N2Cl2(CH3)2  at MP2/aug-cc-pVDZ 

level 
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Fig. 4.29: HOMO of cyclo-1,3-P2N2Cl2H2   

 

Fig. 4.30: HOMO of cyclo-1,3-P2N2Cl2(CH3)2 

 

4.6. Conclusion and Future Outlook 

We have seen the effect of substituting different electron donating and electron 

withdrawing groups at B of our parent molecule and also substituting different atoms 

in the core B2N2 ring. However, it was not possible, in boron based rings, to achieve 

a large deviation from planarity around B atom which may facilitate the formation of 

macro cycle. There is still a way to look at the problem which was not investigated 

properly because of the time constraint. We can replace the H‟s attached to N atoms 

in 1,3-diazadiboretidine (puckered) by sterically hindered ligands [for example, 

methyl (-Me), tertiary butyl (-tBu), phenyl (-Ph) etc] and perform calculations to see 

if the steric bulk of these ligands can deviate the geometry around B by a large 

amount.  
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Fig. 4.31: Optimized geometry a hypothetical molecule where one H attached to N is 

replaced by an –Ad (adamantane) group and the other by methyl group at HF/6-31G* 

level 

Fig. 4.31 shows the optimized geometry a hypothetical molecule of this type where 

one H attached to N is replaced by an –Ad (adamantane) group and the other by 

methyl group. The optimization has been performed at HF/6-31G* level of theory as 

MP2 level would have been a lot costly from computational point. The molecule has 

a ring puckering in the range 3.083
0
-3.106

0
. But, the deviation from planarity at B is 

small and also the presence of an imaginary frequency suggests that it is actually a 

local maximum.   

However, this view has not been investigated properly as the systems of interest are 

large and the calculations in MP2/aug-cc-pVDZ level of theory will be 

computationally a lot costly. Although a few of these systems have been investigated 

using the aforementioned level of theory where H‟s attached to N‟s have been 

replaced by methyl groups, the deviations from planarity at B were found to be small 

and similar to the values found in section 4.3.2. So, this is something that needs to be 

looked at properly in future and probably the best way to investigate this type of 

systems is to use DFT.     
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Chapter 5 

Study on Monoanions and Dianions 

5.1. Boron: Its Electron Deficiency and Electron Affinity 

Boron is electron deficient in terms of octet. So, it should have a high electron 

affinity. But, contrary to that, B has a very low electron affinity value with respect to 

other electron deficient atoms of the same period. As can be seen from the Table 5.1, 

B has lesser electron affinity values than Li, C, O and F in the second period.  

Table 5.1: Electron affinity values of 2
nd

 period (KJ/mol) 

 

So, not only B is electron deficient, it also is such an atom that does not want to 

accept electrons. This is a very important aspect for our study. Our main aim was to 

find a way to bend or pyramidalize the 3-coordinated geometry around B, which we 

have tried with different electron withdrawing and electron donating substituents. 

Substitutions were also performed on the core ring to do the same. As the results 

were not promising, a different approach has been tried.  

 

5.2. Study on the Monoanion of BH3 

It is known that borane (BH3) has a planar geometry and the B atom is 3-coordinated.  

Our interest was to see the effect of introducing a negative charge i.e. an electron in 

the BH3 system. We wanted to see whether BH3 has the capability of accepting an 

electron or not and if it can, whether the structure becomes pyramidal or prefers to 

stay planar.  
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5.2.1. Computational Details  

The initial geometry has been generated using dummy atom as shown in Fig. 5.1. 

The angle θ shown in the Fig. 5.1 was the variable that was varied and all other 

variables have been optimized.  This constrained optimization has been performed at 

MRSDCI/aug-cc-pVDZ level of theory in Molpro (2012.1).
13

 In this calculation, the 

reference wave function was CAS (10o,8e).  

 

Fig. 5.1: Definition of angle θ in the initial guess geometry of BH3- 

 

5.2.2. Results and Discussion 

The energy of the BH3 monoanion have been plotted at different values of θ to 

generate a PES. Fig. 5.2 shows the PES scans of S0 and S1 state of BH3
-
. The 

minimum energy was scaled to zero and all other energy values were plotted with 

respect to that. S0 and S1 were the two lowest lying states of BH3
-
. Although, both the 

PES‟s were flat, the minimum was achieved at 90
0
 for both the states which suggest 

that even the single anion of BH3 prefers a planar geometry. The extra negative 

charge is unable to distort or pyramidalize it.  

We have also been interested in electron affinity of BH3. Electron Affinity of BH3
 

can be defined as the difference between the total electronic energy of BH3 and that 

of BH3
-
. We looked at the literature and found out that there had been some 

important work in this aspect. Gutsev et al. found out that at the CCSD(T) level of 

theory, the difference in the total electronic energy of BH3 and that of BH3
-
 is -0.05 

eV. However, when they corrected their calculations for the zero-point energies  
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(ZPE) of nuclear motions, the adiabatic electron affinity (EA-ad) of BH3 came out to  

 

Fig. 5.2: PES scans of S0 and S1 state of BH3
-
 

be 0.01 eV, which was in nice agreement with the experimental value 0.038(+/-) 

0.015.
16

 Grant et al. also calculated electron affinities of different molecules at 0 K at 

the CCSD(T)/CBS level of theory.
17

 In one case, they studied electron affinity of 

BH3 and along with that, they substituted Cl‟s in place of H‟s of BH3 one by one and 

calculated their electron affinities too. The calculations showed that as Cl‟s were 

substituted one after another, the electron affinities increased, BCl3 having the 

highest EA among them. Table 5.2 shows the calculated electron affinites at 0 K at 

CCSD(T)/CBS level.  

Table 5.2: The calculated electron affinites at 0 K at CCSD(T)/CBS level
17

 

 

So, from these studies, it was understood that not only boron, even BH3 molecule 

does not like to accept a single electron and even if it accepts, the single anion 

prefers to be in planar geometry.  
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5.3. Future Outlook 

5.3.1. Study on the Dianion of cyclo-1,3-B2N2H4  

We have also been interested to see if placing two negative charges on 1,3-

diazadiboretidine (puckered) can distort the geometry around B atoms. In case of 

dianions, computational studies are a lot harder than the neutral molecules and 

cations and very careful multireference calculations are needed. We took the 

optimized geometry of the above mentioned molecule at MP2/aug-cc-pVDZ level, 

added two negative charges and performed MRSDCI single point energy calculation. 

The reference wavefunction was CAS (6o,4e). On top of that single point MRSDCI 

single point calculation has been done. In Fig. 4.3, we have shown the energy 

difference between the four lowest lying states S0, S1, S2 and S3 in both MCSCF and 

MRSDCI method. The two lowest lying states have been optimized at MRSDCI/aug-

cc-pVDZ level. The calculations have been performed in Molpro (2012.1)
13

. The 

energy difference between S0 and S1 states (Fig. 5.4) were found to be 13.016 

Kcal/mol.    

 

Fig. 5.3: The energy difference between the four lowest lying states S0, S1, S2 and S3 

in both MCSCF (left) and MRSDCI (right) method for the dianion of 1,3-

diazadiboretidine (puckered) 
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Fig. 5.4: The energy difference between the lowest lying states S0 and S1 for 1,3-

diazadiboretidine (puckered) 

 

Because of the two negative charges, it is important investigate whether the dianion 

has a diradical character or not. Diradicals are molecules where two electrons occupy 

two near degenerate orbitals.
18

 The natural occupation numbers of HOMO and 

LUMO of a molecule determine the extent of diradical character of a molecule. In a 

purely closed shell system, the occupation numbers of HOMO and LUMO are 2 and 

0 respectively. When the occupation numbers of HOMO and LUMO are both equal 

and 1, then, the system is a pure diradical.
19, 20

 In our case, for the dianion, the 

occupation number of HOMO and LUMO came out to be 1.208 and 0.792 

respectively for the lowest lying S0 state. This suggests that there may be a certain 

amount of diradical charater associated with our system. The deviation from 

planarity at B is also small for the S0 state of the dianion just like the neutral 

molecule. However, this calculation was just performed for an active space and we 

cannot trust these results yet. A few more calculations need to be performed by 

changing the active space and then we can confirm if it has a diradical character or 

not.      

 

5.3.2. Study on the Monoanion and Dianion of BCl3 

We have also been interested to study the monoanion and dianion of BCl3 as 

reactions are easier to perform with Cl. BCl3 has a planar geometry and it was in our 

interest to see if it can deviate from its planar geometry when we introduce one or 

two electrons in the system. We defined θ the same way as in Fig. 5.1. We have 

optimized the neutral BCl3, anion and dianion of BCl3 in Molpro (version 2012.1)
13

. 

Table 5.3 shows the data needed to analyze them. 
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Table 5.3: Level of theory, energy and variables for BCl3, BCl3
-
 and BCl3

2-
 

System Level of Theory    Energy (H) B-Cl bond (Å) θ (degree) 

BCl3 CCSD/aug-cc-pVDZ -1403.883414       1.760      90.0 

BCl3
- 

RCCSD/aug-cc-pVDZ -1403.901335       1.880     107.0 

BCl3
2-

 CISD/aug-cc-pVDZ -1403.647010       2.197     118.5 

BCl3
2-

 CCSD/aug-cc-pVDZ -1403.749968       2.193     118.5 

BCl3
2-

 RS2C/aug-cc-pVDZ -1403.719348       2.197     118.3 

BCl3
2-

 MRSDCI/aug-cc-pVDZ -1403.657255       1.932     111.9 

 

BCl3, as we know it, is planar as θ=90.0
0
 (deviation from planarity in terms of solid 

angle=0.1
0
) and has a B-Cl bond which is a normal single bond. When we added an 

electron in BCl3 and minimized the energy, we have found that it accepted the 

electron and got lowered in energy. It also got deviated from planarity as θ=107.0
0
 

(deviation from planarity in terms of solid angle at B=161.4
0
). However, the bond 

length B-Cl got distorted to a larger 1.88 Å. When we placed two electrons in the 

system and did the calculations, then the energy increased. The geometry of the 

dianion gets more distorted or bend as θ increases, and along with that the B-Cl bond 

length also increases.  The added electrons in the dianion goes to the vacant p orbital 

of B (becomes closed shell) and thus, make it pyramidal. This is really an interesting 

point for our study. We are able to show that it is possible to deviate the geometry 

around B in BCl3 when we add one or two electrons in it. Now, in the gascious state, 

the monoanion is most stable and so, the dianion will autoionize back to monoanion.  

 

Fig. 5.5: First and second adiabatic electron affinities for BCl3 
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However, things may change a lot in case of solution phase. In solution phase, if we 

can do some substitutions which will force two electrons to the vacant p orbital of B, 

we might be able to get a stable molecule with highly distorted geometry around B. 

In all of our study done in Chapter 4 for B based rings, we were unable to find that 

kind of systems. But, this study shows that we probably need to investigate more on 

that. Fig. 5.5 shows the first and second adiabatic electron affinities for BCl3.   

Even, more studies need to be done to understand what actually happens to the 

variables in the dianion of BCl3. The two single-reference methods and one 

multireference (RS2C) method optimization converges to the same point for the 

dianion which has approximately 237.4
0 

deviation from planarity (in terms of solid 

angle). However, in the MRSDCI method optimization, the deviation decreases by 

some amount and becomes 197.0
0 

as θ decreases and the B-Cl bond length also 

decreases. More calculations need to be done in future to understand the optimized 

geometry of the dianion. 
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Chapter 6 

Conclusion 

 

In our study, we have verified that puckered conformation of 1,3-diazadiboretidine is 

the most stable among all the three conformations. We have also performed a 

detailed study on the above mentioned molecule and confirmed that the optimized 

structure that we have found is the global minimum of the molecule and it has a C2v 

symmetry. We replaced the H‟s attached to B‟s on the above mentioned molecule by 

different electron withdrawing and electron donating groups and also replaced the 

atoms (other than B‟s) inside the core ring in an effort to see if it is possible to 

deviate the planar geometry surrounding B atom by a large amount. We were unable 

to get that in any of the boron based cases until we used a phosphorus based core 

ring. The B-N bond lengths, Mulliken populations of B (N also in some cases), 

deviation from planarity at B (and deviation from pyramidalisation at N at some 

cases) have been analysed thoroughly. We have also found out that even after adding 

a negative charge to borane, it still prefers to stay planar. However, when we studied 

the monoanion and dianion of BCl3, we found that they prefer non-planar geometries 

and the deviation from planarity is also huge. This is very promising for our study. 

Our conclusion is that if we can find proper substituents in solution phase, which can 

force two electrons in the vacant orbitals of B, we might be able to find stable 

geometries where the two Cl‟s attached to B‟s are cis to one another and bent by a 

large amount which will probably facilitate formation of macro cycles. We still have 

not tried the problem properly by replacing H‟s attached to N‟s of the 1,3-

diazadiboretidine (puckered) by sterically hindered groups. This approach needs be 

investigated carefully before we can confirm anything.     
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