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Abstract

The evolution and development of spatial patterns in both living and non-living ob-

jects has been the subject of study for many evolutionary and developmental biol-

ogists. Alan Turing’s “The Chemical Basis of Morphogenesis” in 1952 was a major

breakthrough in which he theorized a system of two different interacting molecules,

called morphogens, which could establish chemical gradients through a “reaction-

diffusion system.” . Here we give a concise description of some of the interesting

mathematical aspects of Turing’s Reaction-Diffusion (RD) mechanism and give an

overview of some popular reaction models incorporated into it. We tried to assimi-

late the idea of Turing’s RD mechanism and utilize it to study the pattern formation

in Passiflora Incarnata (Passion Flower) , which has non-uniform alternate bands of

violet and white coloured pattern on each of its fibrils. We study the pattern using

“Gierer-Meinhardt” model.
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Chapter 1

Introduction

Mother nature provides us with several beautiful patterns which can be associated

with living as well as non-living objects. These patterns are nothing but a visual

recurring of a peculiar form and can be modelled mathematically. These patterns

can be thought of as a simple or complex based on their formation. This formation

may contain repetition of color, shapes or other variations. In chemistry also there

are many patterns which can be categorized in spatial and spatio-temporal pattern.

Among the best known pattern the Belousov-Zhabotinskii(BZ) reaction4 is the finest

example of oscillatory reaction. In BZ reaction bromate ions oxidise malonic acid

which is catalysed by cerium (Ce3+/Ce4+). Sustained periodic oscillations are ob-

served in cerium ions concentrations. If instead of cerium if one uses the Fe2+/Fe3+

and phenanthroline, the pattern is visualized as color changes between reddish-orange

and blue.5 Now question arises that how does the pattern formation occur?

One of the major issues that developmental biology deals with is to understand the

morphogenesis i.e. the emergence of structure and shape from an almost uniform mass

of dividing cells that constitutes the early embryo. Although genes play a essential

role, genetics says nothing about the mechanism responsible for pattern formation.

Therefore many questions arise such as: What exactly happens during embryo genesis

which leads to an organism’s shape? How do living organisms convert the detailed

one-dimensional genetic information into a three-dimensional map, the shape of the

living organism?

There are many models which explain that how do the different processes come to-

gether and generate patterns.They are categorised in two ways such as: the gradient-

1



(a) Sand dunes (b) Waves in water

(c) Butterfly wings (d) Symmertry in flower

Figure 1.1: Exemplary patterns in nature; Source: Internet

type models which involves a simple source-sink mechanism,6 the cellular automata

models in which the tissue is discretised and rules are introduced as to explain how

different elements interact with each other7 and more complicated models which in-

corporate more sophisticated chemistry and biology. Here we shall focus on the model

from the latter category.

The first person to put forward the kinetic preconception of pattern formation on

a firm mathematical basis was ”Alan Turing”. In 1952 he published a paper entitled

”The Chemical Basis Of Morphogenesis”.8 He proposed a mathematical model in

which he explained how different morphogens react together and diffuse through the

tissues. During this process a spatial pattern is set up which in turn determines

the cell differentiation. Thus whatever pattern we observe in nature is because of this

pre-pattern formed during cell differentiation. Turing named this model as ”Reaction-

Diffusion” model. More specifically he considered those morphogens as activator and

inhibitor. The activator stimulated and enhanced the production of the inhibitor,

2



(a) Target patterns (b) Spiral patterns

Figure 1.2: Spatio-temporal patterns in the Belousov-Zhabotinskii reaction

while inhibitor inhibited the formation of the activator. A more general and refined

form of the reaction diffusion equation, derived from its original form proposed by

Turing is

∂u

∂t
= D∇2u + f(u, p), (1.1)

where u is a vector of chemical concentrations, D is the matrix of diffusion coefficients

and f represents chemical coupling with kinetic parameters p.

In late 1960s, Prigogine and co-workers9–11 pointed out clearly that the direct spon-

taneous transition from a uniform state to a stationary patterned state (the Turing

bifurcation) requires that the system involves at least one positive (e.g. auto-catalysis)

and one negative feedback (inhibition) process, includes chemical species with appro-

priately different diffusion coefficients and, last but not the least, operates far from

thermodynamic equilibrium. Various scientists extended Turing’s approach to pat-

tern formation in the 1970s and 1980s. Among them Hans Meinhardt12 and James

Murray13,14 are particularly very popular.

The RD model mentioned above (1.1) basically consists of a set of coupled partial

differential equations with first order temporal derivatives on the left hand side and

second order spatial derivatives on the right hand side. This RD model can contain any

3



number of concentration variables. According to Turing’s activator-inhibitor model

the RD equation looks like following:

∂u

∂t
= Du∇2u+ f(u, v) (1.2a)

∂v

∂t
= Dv∇2v + g(u, v) (1.2b)

The f(u, v) and g(u, v) are basically kinetic coupling parts which contains coupled

kinetic parameters. Turing proposed these two coupling parts to be linear so that

it can be analytically solvable. Several non-linear kinetics have been also proposed

subsequently. A few proposed non-linear versions of kinetic parts are cited below:

Schnakenberg kinetics15 :

f(u, v) = k1 − k2u+ k3u
2v (1.3a)

g(u, v) = k4 − k3u2v (1.3b)

Thomas kinetics (adopted by Murray)16 :

f(u, v) = k1 − k2u− h(u, v) (1.4a)

g(u, v) = k3 − k4v − h(u, v) (1.4b)

h(u, v) =
k5uv

k6 + k7u+ k8u2
(1.4c)

Meinhardt kinetics17 :

f(u, v) = k1 − k2u+
k3u

2

v
(1.5a)

g(u, v) = k4u
2 − k5v (1.5b)

Out of the above set of three non-linear kinetic equations, kinetics (1.4) and (1.5)

are most extensively employed in the RD model for biological pattern generation such

as cartilage formation in vertebrate limbs, coloured patterns of butterfly wings, alli-

gator teeth, head regeneration in Hydra, spots of cheetah, stripes of Zebra and many

more1,12,18 . Since the kinetic terms f(u, v) and g(u, v) involve non-linear coupling

terms, the equations are not analytically solvable. One has to resort to numerical

methods. It is worth mentioning here that the RD equation is analogous to the

4



TDSE, except for the imaginary part in the latter.

(a) Computed patterns of alligator teeth (b) Observed patterns on tails of various or-
ganisms, and computed pattern in rectangu-
lar domain

(c) Pattern of cheetah spots by mathematical modelling

Figure 1.3: Some of the computed biological patterns using RD equations1

The stepwise procedure for solving the RD eq. (1.2) to generate pattern is to first

find the uniform steady state values for u and v. It is the solution of f(u, v) = 0

and g(u, v) = 0 yielding u0 and v0, which are constant with respect to time and

space. Such a uniform steady state which is stable in the absence of diffusion, can be

made unstable in the presence of diffusion and a spatial pattern can evolve. according

to Turing this chemical pattern can serve as the required pre-pattern and cells will

respond in such a way that a spatial heterogeneous structure would be formed.

5



Figure 1.4: Example of computed patterns by Gierer-Meinhardt kinetics in RD equa-
tions : (A-E) Experimental gene expression for tentacle formation in Hydra; (F-I)
Computed patterns of the same gene expression (brown).2

Passion flower (Passiflora Incarnata) exhibits a beautiful pattern of alternate violet

and white colour on each of its fibrils. Last year, Agastya P. Bhati (MS09010) also

worked on this project. Bhati tried to analyse the pattern in one single fibril. But,

because of the radially symmetric positions of the coloured bands, this time we have

decided to analyse the pattern formation in polar co-ordinates. In this project we have

focused on Gierer-Meinhardt model to generate the desired pattern in the Passion

Flower using the RD theory. We have used finite difference method as a numerical

method.

6



Chapter 2

Fluid dynamics

2.1 Introduction to the diffusion equation

Let Rn with n > 1 be the nth dimensional real space. In particular, we are interested

in the cases of n = 2 and 3. We assume that Ω is small region in this space. Let

P(t, r) be the density function of the constituent particles, where t is the time, and

r ∈ Ω is a point in the nth dimensional space. The dimension of density is number of

particles per unit area (if n = 2) or unit volume (if n = 3).

We need to study the change in function P(t, r) with time t and location r. It can

happen in two ways: one being diffusion, that is the individual particles move, and

the second is production of new particles and/or consumption of existing particles.

This may happen due to several reasons, for example, chemical reaction. We model

both of these possibilities separately.

We first deal with diffusion. The amount of a substance which passes through a

point in space per unit area per unit time is called its flux at that point. According

to Fick’s law of diffusion,19 the flux of density function P(t, r) is a vector pointing

from high density region to low density region and with its magnitude proportional

to density gradient. Mathematically it can be represented as below:

J(t, r) = −D(r)∇rP (t, r), (2.1)

where J is the flux of P, D(r) is the diffusion constant at r, ∇r is the gradient

operator ∇rf(r) =

(
∂f

∂r1
,
∂f

∂r2
, ...,

∂f

∂rn

)
.

7



The production and/or consumption of constituent particles at any point per unit

time, that is the rate of change of the density function, which may occur due to

reasons like physical transformation or chemical reactions, is assumed to be given by

f(t, r, P), which is called the reaction rate. Let O be region in space, then the

total number of constituent particles in O is
∫
O
P (t, r)dr, where dr is the infinitesimal

volume element. Thus, the rate of change of the total number of particles is

d

dt

∫
O

P (t, r)dr. (2.2)

Now we apply the law of mass conservation on this system to derive the Reaction-

Diffusion equation. The net production of particles inside the region O is∫
O

f(t, r, P (t, r))dr (2.3)

and the total out-flux is ∫
δO

J(t, r).n(r)dS, (2.4)

where δO is the boundary of O and n(r) is the outer normal direction at r.

Therefore on conserving the total number of particles we get

d

dt

∫
O

P (t, r)dr = −
∫
δO

J(t, r).n(r)dS +

∫
O

f(t, r, P (t, r))dr. (2.5)

From the Divergence Theorem in multi-variable calculus we have∫
δO

J(t, r).n(r)dS =

∫
O

∇.(J(t, r))dr. (2.6)

Combining eq. (2.1), (2.5) and (2.6), and interchanging the order of differentiation

and integration we obtain∫
O

∂P (t, r)

∂t
dr =

∫
0

[∇.(D(r)∇rP (t, r)) + f(t, r, P (t, r))]dr (2.7)

Since the choice of region O is arbitrary, the differential equation

∂P (t, r)

∂t
= ∇.(D(r)∇rP (t, r)) + f(t, r, P (t, r)) (2.8)

8



holds for any (t, r). The equation (2.8) is called a reaction diffusion equation.

Here, ∇.(D(r)∇rP (t, r) is the diffusion term, which describes the movement of the

particles under their density gradient and f(t, r, P (t, r)) is the reaction term which

describes the reaction occurring in the domain.

The diffusion coefficient D(r) may not be a constant always as many systems are

heterogeneous. But when the region of the diffusion is approximately homogeneous,

we can assume that D(r) ≡ D, then eq. (2.8) can be simplified to

∂P

∂t
= D4 P + f(t, r, P ), (2.9)

where 4P = ∇.(∇rP ) =
n∑
i=1

∂2P

∂r2i
is the Laplacian operator. When there is no

reaction, the equation is the diffusion equation, as follows

∂P

∂t
= D4 P. (2.10)

In classical mathematical physics, the equation Tt = 4T is called the heat equa-

tion, where T is the temperature function. Conduction of heat can be considered as

a form of diffusion of heat.

9



2.2 Laplacian (∆) in polar coordinates

In Cartesian Coordinate, The laplacian is as follows

∆P = ∇2P =
∂2P

∂x2
+

∂2P

∂y2

Now, let’s assume, x = r cos θ and y = r sin θ

Figure 2.1: polar co-ordinate in 2-D

Then

r2 = x2 + y2 (2.11a)

cos θ =
x√

x2 + y2
(2.11b)

sin θ =
y√

x2 + y2
(2.11c)

Now if we differentiate the above three equations with respect to r and θ then,
∂r

∂x
= cos θ ,

∂r

∂y
= sin θ

∂θ

∂x
= −sin θ

r
,
∂θ

∂y
=

cos θ

r

Now calculate separately for
∂2P

∂x2
and

∂2P

∂y2

∂P

∂x
=

∂P

∂r

∂r

∂x
+

∂P

∂θ

∂θ

∂x
(2.12a)

⇒ ∂P

∂x
= cos θ(

∂P

∂r
) − sin θ

r
(
∂P

∂θ
) = f (2.12b)

∂2P

∂x2
=

∂f

∂x
=

∂f

∂r

∂r

∂x
+

∂f

∂θ

∂θ

∂x
(2.12c)

10



⇒ ∂2P

∂x2
= [(

∂2P

∂r2
) cos θ +

sin θ

r2
(
∂P

∂θ
) − sin θ

r
(
∂2P

∂r ∂θ
)] cos θ + [(

∂2P

∂θ ∂r)
cos θ − sin θ(

∂P

∂r
)

− cos θ

r
(
∂P

∂θ
) − sin θ

r
(
∂2P

∂θ2
)](− sin θ

r
) (2.13a)

⇒ ∂2P

∂x2
= (

∂2P

∂r2
) cos2 θ +

sin 2θ

r2
(
∂P

∂θ
) − sin 2θ

r
(
∂2P

∂r ∂θ
) +

sin2 θ

r
(
∂P

∂r
) +

sin2 θ

r2
(
∂2P

∂θ2
)

(2.14)

Similarly

∂2P

∂y2
= (

∂2P

∂r2
) sin2 θ − sin 2θ

r2
(
∂P

∂θ
) +

sin 2θ

r
(
∂2P

∂r∂θ
) +

cos2 θ

r
(
∂P

∂r
) +

cos2 θ

r2
(
∂2P

∂θ2
)

(2.15)

Now adding eq. (1.4) and eq. (1.5)

∂2P

∂x2
+

∂2P

∂y2
=

∂2p

∂r2
+

1

r
(
∂P

∂r
) +

1

r2
(
∂2P

∂θ2
) (2.16)

⇒ ∆P =
∂2p

∂r2
+

1

r
(
∂P

∂r
) +

1

r2
(
∂2P

∂θ2
) (2.17)

So, this is how the laplacian (∆) transform from 2-D Cartesian co-ordinate to polar co-

ordintes . This transformation of laplacian (∆) will be used in our Geirer-Meinhardt

model to generate the desired pattern.
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Chapter 3

Theory of Reaction-Diffusion

model

3.1 The Origin Theory Behind Pattern Formation

In this chapter we will briefly discuss about the theory of pattern formation in living

organism. In his seminal paper ”The Chemical Basis of Morphogenesis”8 Turing

addressed the issue of how an embryo from its blastula stage, when it is a spherically

symmetric mass of cells, gives rise to an organism which is spherically non-symmetric.

As he proposed in his paper that the morphogens, which he considered to be activators

and inhibitors react together and diffuse through the cells/tissues, they set up a

chemical pre-pattern within the uniform homogeneous mass of cells and the cells then

differentiate following this pre-pattern. Thus leading to the patterns/forms in the

initial uniform mass of cells. Turing proposed a mathematical form to this idea. He

used following two equations in his original paper for studying RD of two morphogens

X and Y in a linear array of N cells:

dxr
dt

= axr + byr + µ(xr+1 − 2xr + xr−1) (3.1a)

dyr
dt

= cxr + dyr + ν(yr+1 − 2yr + yr−1) (3.1b)

where xr and yr are perturbations in the steady state concentrations of X and Y in

the rth cell, a, b, c, d are ‘marginal reaction rates’, µ and ν are cell to cell diffusion

constants for X and Y, respectively, r = 1 to N.

Using the above set of equations Turing actually demonstrated, under certain condi-

tions of parameters, an initially homogeneous distribution of concentrations of X and
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y at their steady state could lead to spatially heterogeneous patterns of concentra-

tions stable with time, in response to random perturbations about the steady state.

He gave a counter intuitive concept of diffusion driven instability which means,

the system would be resistant to any random perturbation about the steady state in

the absence of diffusion. i.e diffusion has to be there in the system to make the system

unstable and to generate pattern. He also suggests that diffusion rate of inhibitor has

to be more than that of activator.

Turing actually made linearity assumption by which he means that the system

never deviated far from the original homogeneous condition. This linearity assumption

actually permitted him to replace the general reaction rate by linear ones so that the

RD equations become analytically solvable.. He believed that the chemical pre-pattern

is formed during the early stages of embryogenesis when such an assumption is valid.He

mentioned in his paper, “Its justification lies in the fact that the patterns produced in

the early stages when it is valid may be expected to have strong qualitative similarity

to those prevailing in the later stages when it is not.” (Turing, 1952, p.66). But the

linearization led to some stability problems. Turing had also mentioned the possibility

of numerically solving non-linear equations using digital computers.

There are various forms of non-linear kinetics have been proposed which differ in

their derivation. Each has its own advantage as well as disadvantage and yield different

results. Next we are going to discuss few of them in the following chapter.

3.2 Different non-linear kinetics

Since the publication of Turing’s paper several RD models have been considered with

different kinetic terms. These models are more realistic and are derived in three

different ways: (i) empirically, (ii) phenomenologically and (iii) through a hypothetical

reaction. Thomas model is based on type(i), Gierer and Meinhardt model is an

example of type(ii) and the Schnakenberg model belongs to type(iii). Each of them

is discussed one by one.

3.2.1 Thomas Kinetics3

In these empirical type models, kinetics are fitted to experimental data. The immobilized-

enzyme substrate-inhibition mechanism of Thomas16 involves the reaction of uric acid
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(concentration u) with oxygen (concentration v). Both reactants diffuse from a reser-

voir maintained at constant concentrations u0 and v0, respectively, on to a membrane

containing the immobilized enzyme uricase. They react in the presence of the enzyme

at the empirical rate
k5uv

k6 + k7u+ k8u2
so that

f(u, v) = α(u0 − u)− k5uv

k6 + k7u+ k8u2
(3.2a)

g(u, v) = β(v0 − v)− k5uv

k6 + k7u+ k8u2
, (3.2b)

where k2 = α, k4 = β, k1 = αu0, k3 = βv0, k5, k6, k7 and k8 are positive constants.

3.2.2 Meinhardt kinetics3

In phenomenological models, the chemicals are considered as activators and inhibitor.

f(u, v) = k1︸︷︷︸
source

− k2u︸︷︷︸
linear degradation

+
k3u

2

v︸︷︷︸
autocatalysis in u/inhibition from v

(3.3a)

g(u, v) = k4u
2︸︷︷︸

activation by u

− k5v︸︷︷︸
linear degradation

(3.3b)

In Gierer-Meinhardt model17 as shown above, u is the activator; it is produced by

autocatalysis and it activates the production of v, which is the inhibitor, inhibiting

the production of u.

3.2.3 Schnakenberg Kinetics3

Schnakenberg (1979)15 proposed a series of trimolecular autocatalytic reactions in-

volving two chemicals as follows:

X
k2−⇀↽−
α1

A, B
β1−→ Y, 2X + Y

k3−→ 3X

Using the Law of Mass Action, which states that the rate of a reaction is directly

proportional to the product of the active concentrations of the reactants, and denoting
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the concentrations of X, Y, A and B by u, v, α and β, respectively, we have

f(u, v) = α1α− k2u+ k3u
2v (3.4a)

g(u, v) = β1β − k3u2v, (3.4b)

where α1, β1, k2 and k3 are (positive) rate constants, k1 = α1α and k4 = β1β.

Assuming that there is an abundance of A and B, α and β can be considered to be

approximately constant, and so are k1 and k4.

Remark: To verify Turing structures, a variation in diffusion coefficients is essen-

tially required. For a general two-species RD system as shown below, the ratio may

be changed as follows:20

∂u

∂t
= Du∇2u+ f(u, v)

∂v

∂t
= Dv∇2v + g(u, v).

We additionally assume that the activator is involved in a reaction of the form:

U + S
r1−⇀↽−
r2
C·

Assuming that both S and C are immobile, the RD system is now modified to:

∂u

∂t
= Du∇2u+ f(u, v)− r1us+ r2c

∂v

∂t
= Dv∇2v + g(u, v)

∂c

∂t
= r1us− r2c,

where s and c are the concentrations of S and C, respectively, and r1, r2 are rate

constants. If r1 and r2 are large, then using a singular perturbation, c can be ap-

proximated in terms of u by c ≡ ru, where r =
s0r1
r2

and we have assumed that the

concentration of S remains close to its initial value, s0.

c = ru ⇒ ∂c

∂t
= r

∂u

∂t
.

On the addition of the first and fourth equations above, we obtain the following
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equation for the activator:

(1 + r)
∂u

∂t
= Du∇2u+ f(u, v).

Thus when r >> 1 the diffusion of the activator is greatly reduced.

This demonstrates one way of reducing the effective diffusion rate of the chemical

activator by the formation of an immobile complex.

3.3 Dimensionless RD System

To make our life simpler we can always reduce the number of parameters in a model

by using appropriate dimensionless quantities. In general, any RD system can be

dimensionless and scaled to take the general form18

∂u

∂t
= γf(u, v) +∇2u (3.5a)

∂v

∂t
= γg(u, v) + d∇2v, (3.5b)

where d is the ratio of diffusion coefficients and γ can have any of the following inter-

pretations Based on its definition and appearance in the dimensionless equations.18

1. γ1/2 is proportional to the linear size of the spatial domain in one dimension and

in two dimensions γ is proportional to the area. That is, it can be used as a

handle to increase or decrease the size/volume of the domain.

2. γ represents the relative strength of the reaction terms which means, for ex-

ample, that an increase in γ may represent an increase in the activity of some

rate-limiting step in the reaction sequence.

3.4 Diffusion-Driven Instability Conditions: Lin-

ear Stability Analysis

Definition: Any state (u, v) = (u0, v0) where u0 and v0 are constants in time and

space, will be called a uniform steady state if it satisfies the eq. (3.5) and the boundary

conditions. We take zero flux boundary conditions.
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Zero flux boundary conditions are satisfied by any (u0, v0), and eq. (3.5) are satisfied

by

f(u0, v0) = g(u0, v0) = 0.

As u and v represent chemical concentrations.

Definition: Diffusion-driven instability (DDI), sometimes called Turing instability,

occurs when a uniform steady state is stable to small perturbations in the absence

of diffusion, but becomes unstable to small spatial perturbations when diffusion is

present.

to attain DDI, any steady state has to fulfill certain conditions and those conditions

are3

fu + gv < 0, fugv − fvgu > 0,

dfu + gv > 0, (dfu + gv)
2 − 4d(fugv − fvgu) > 0.

(3.6)

where xi =
∂x

∂i
for x =f , g and i = u, v. and

D =

(
1 0

0 d

)
.

Remark: The conditions eq. (3.6) for DDI yield that fu > 0 and gv < 0. This

further implies that there are two possible cases for fv and gu since the only restriction

on these terms is that fvgu < 0. So, we can either have fv < 0 and gu > 0 or the other

way round. These correspond to qualitatively different reactions. In the former case,

u is the activator, and is also self-activating, while v is inhibitor, which inhibits both

u and itself. In the latter case, u is the inhibitor, but is self-activating, while, v is the

activator, and self-inhibiting. In both cases, v diffuses more quickly. Another notable

point is that in the former case, concentrations of the two species are in phase, that

is, both are at high or low density in the same region as the pattern grows, while in

the latter case, they are out of phase, that is, u is at a high density where v is low and

vice-versa. Figure 3.1 below illustrates these features. An example of the first case is

the Geirer-Meinhardt kinetics.
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Figure 3.1: Schematic illustration of the two qualitatively different cases of diffu-
sion driven instability. (a) self-activating u also activates v, which inhibits both the
reactants. The resulting initially growing pattern is shown in (c). (b) Here the self-
activating u inhibits v but is itself activated by v with the resulting pattern illustrated
in (d). The matrices give the signs of fu , fv , gu , gv evaluated at the steady state.
(e) and (f) The reaction phase planes near the steady state. The arrows indicate the
direction of change due to reaction (in the absence of diffusion). Case (e) corresponds
to the interactions illustrated in (a) and (c), while that in (f) corresponds to the in-
teractions illustrated in (b) and (d). Reproduced from Murray, J. D. Mathematical
Biology 2002; Vol. II.
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Chapter 4

Measured colour pattern of Passion

flower

The Passiflora Incarnata, commonly known as Passion flower exhibits a very unique,

very fascinating pattern. As shown in figure, the passion flower has a large number of

beautiful coloured fibrils. each fibril has alternate bands of violet and white colours

and the very uniqueness about the pattern is that each coloured band is non-uniform.

If one looks at the flower from top then it can be seen that all the fibrils altogether

generate concentric circles of alternate violet and white colours and the radial sym-

metry that it exhibits is actually the main motive for us to analyse the system in

polar co-ordinates. In this project, we have devoted to RD theory, as discussed in

the earlier chapters to understand the possible mechanism of the pattern formation

in Passion Flower.

Figure 4.1: Picture of the Passion flower (top view)
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Table 4.1: Measured pattern in Passion flower; W: White, V: Violet

Tip of the colour band Distance from the centre (cm) Width of the band (cm)

Violet 1.0 1.0
W1 1.6 0.6
V1 1.8 0.2
W2 1.9 0.1
V2 2.1 0.2
W3 2.3 0.2
V3 2.6 0.3
W4 2.9 0.3
V4 3.2 0.3
W5 3.6 0.4
V5 4.1 0.5
W6 4.4 0.3
V6 5.0 0.6
W7 5.2 0.2
V7 8.8 3.6
W8 9.0 0.2

Last year Bhati measured the width of each successive coloured band until the tip

of the fibril, using a centimeter ruler (least count = 0.1 cm), for 21 fibrils. The average

width of each coloured band was plotted in figure 4.2. Bhati also measured the actual

length of 10 fibrils and calculated the average length of the fibrils so as to know the

scaling factor of the measured pattern. The average actual length of a fibril is 3.1 cm.

The measured average length of a fibril in the printout is 8.8 cm. Measured data are

listed in Table 4.1 and a plot of the measured data is shown in Figure 4.2.

Scaling factor =
Actual length

Measured length
=

3.1

8.8
= 0.35

The measured length should be multiplied by 0.35 to get the actual length of the

pattern/width of bands.

From the table 4.1 one can see the non-uniformity of the pattern. The width of

the violet colour keeps on increasing towards the tip of the fibril and the width of

white colour increases initially upto a point , then it starts decreasing and eventually

it vanishes on moving towards the tip of the fibril. Beyond a certain point only violet
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Figure 4.2: Alternation of white and violet colour bands in a Passion flower

colour sustains on the fibril. But the tail end of each fibril exhibits only white colour

of very small width.
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Chapter 5

Methods and Tools

As mentioned in the previous chapters we studied the system of pattern formation

in Passion Flower (Passiflora Incarnata) using the ”Meinhardt Model” in polar co-

ordinate. But before coming to polar co-ordinates here is the overview of Bhati’s

work.

5.1 Summary of Agastya P. Bhati’s Work

Bhati analysed the system in 1-D Cartesian co-ordinate. He considered a linear array

of N cells (along X-direction) in a single fibril of the passion flower. He assumed

this array of cells to be part of its embryo, during some stage of its embryogenesis,

when the chemical pre-pattern is responsible for the colour bands of the fibril is to

set up through interactions(reactions and diffusions) of morphogens. The RD model

employed to Bhati’s system is as follows:

∂u

∂t
=

ρu2

v
− µu+Du

∂2u

∂x2
+ ρ0 (5.1a)

∂v

∂t
= ρ

′
u2 − νv +Dv

∂2v

∂x2
(5.1b)

where u is the activator concentration, v is the inhibitor concentration, ρ, µ and ν are

first order rate constants, ρ
′

is a second order rate constant, Du and Dv are diffusion

coefficients of activator and inhibitor respectively.
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Bhati then solved the above equations for uniform steady state solutions using zero

flux boundary conditions which are satisfied by any (u0, v0) and are satisfied by

f(u0, v0) = g(u0, v0) = 0 (5.2a)

⇒ ρu2

v
− µu+ ρ0 = 0 = ρ

′
u2 − νv (5.2b)

⇒ u0 =
νρ

µρ′ +
ρ0
µ

= v0 =
ρ

′
u20
ν
. (5.2c)

Bhati found realistic values of the parameters in appropriate units. In a study

conducted jointly by the U.S. Fish and Wildlife Service and the U.S. Atomic Energy

Commission,21 he found that the average concentration of Chlorophyll a in Phyto-

plankton (a type of microalgae) over an year’s span was of the order of few µg L−1,

which is equivalent to few nmol L−1. The colour in PI is also likely to arise from

similar pigments. Therefore, the values of u and v are taken in nmol L−1 (nM). The

diffusion coefficient of Rhodamine 6G (a dye) in 50/50 methanol/water solution is

known to be of the order of 10−6 cm2 s−1.22 The diffusion coefficient of protein, DNA

or other biological molecules in cellular media is expected to be few orders of mag-

nitude smaller than this. The diffusion coefficient of a DNA molecule in E. coli is

found to be of the order of 10−9 cm2 s−1.23 he used the values of Du and Dv of the

order of 10−2 to 10−1 µm2 s−1. It is worth mentioning here that Dv is taken to be 20

times larger than Du as the inhibitor needs to diffuse faster than the activator to yield

concentration patterns. Experimentally, the value of the first order rate constant for

protein-DNA reaction in E. coli is known to be of the order of 10−2 s−1 and that of

the second order diffusion-controlled rate constant is of the order of 107 M−1 s−1.23

Therefore, we have taken these values in the range of 10−2 s−1 and 10−2 nM−1 s−1

respectively.

Bhati took a linear array of 3000 cells (along x direction with x ranging from 1 to

3000 microns), with cell number 1 considered to be at the stalk (centre) of the flower.

He considered constantly growing domain, starting with 300 microns, increasing it by

300 microns after every 7000 s, up to maximum of 3000 microns. The same domain

is considered for polar co-ordinates also.

Bhati studied the evolution of activator and inhibitor concentrations for two differ-

ent sets of initial conditions (see below). Values of parameters taken were as follows:

µ = 0.01 s−1, ν = 0.02 s−1, ρ = 0.01 s−1, ρ
′

= 0.01 s−1 nM−1, ρ0 = 0.00001 nM
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s−1, Du = 0.02 µm2 s−1, Dv = 0.4 µm2 s−1 (20 times Du). Using equation (5.2) the

uniform steady state for these set of parameters is u0 = 2.001 nM and v0 = 2.002 nM.

Bhati, hereafter, denote the activator and inhibitor concentrations in cell number i

as u[i] and v[i] respectively. Initial Condition 1 (IC1) has a very high concentration at

one end of the array of cells with a uniform steady state over the rest of the domain as

follows: u[1] = 2001 nM (1000u0), u[i] = u0 (i = 2 to 3000), v[i] = v0 (i = 1 to 3000).

Initial condition 2 (IC2) has a slightly higher concentration at one end, gradually

approaching the uniform steady state with increasing cell number as follows: u[1] =

v[i] = 15 nM, thereafter gradually decreasing in steps of 1 nM with increasing cell

number up to u[13] = v[13] = 3 nM, and then uniform steady state u[i] = u0, v[i] =

v0 (i = 14 to 3000). He used 3-point finite difference formula to evaluate the second

order spatial derivative and crank-Nicholson scheme for time evolution.

5.2 Meinhardt’s Model In Polar Co-ordinates

∂u(r,θ)
∂t

=
ρu2

v
− µu+Du

[
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

]
+ ρ0 (5.3a)

∂v(r,θ)
∂t

= ρ
′
u2 − νu+Dv

[
∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2
∂2v

∂θ2

]
(5.3b)

Then, we made few assumptions as following:

u(r,θ) = ur uθ v(r,θ) = vr vθ

uθ = c eι̇ m θ vθ = c
′
eι̇ m

′
θ

Here c and c
′

are normalizing constants. Now putting all these assumptions in

equations (5.3), we get

∂ur
∂t

+ ι̇urm
∂θ

∂t
=
ρu2r(ce

ι̇mθ)

vr(c
′eι̇m

′θ)
− µur +Du

[
∂2ur
∂r2

+
1

r

∂ur
∂r
− m2cur

r2

]
+

ρ0
ceι̇mθ

(5.4a)

∂vr
∂t

+ ι̇vrm
′ ∂θ

∂t
= ρ

′
u2r(ce

ι̇mθ)− νvr +Dv

[
∂2vr
∂r2

+
1

r

∂vr
∂r
− m

′2
c
′
vr

r2

]
(5.4b)

Now we have taken two cases such as m = m
′

= 0 and m = m
′

= 1. Therefore

24



• FOR m = m
′

= 0

In this case c = c
′

= 1

∂ur
∂t

=
ρ u2r
vr
− µ ur + Du

[
∂2ur
∂r2

+
1

r

∂ur
∂r

]
+ ρ0 (5.5a)

∂vr
∂t

= ρ
′
u2r − ν vr + Dv

[
∂2vr
∂r2

+
1

r

∂vr
∂r

]
(5.5b)

• FOR m = m
′

= 1

In this case c = c
′

=
1√
2π

∂ur
∂t

+ ι̇ur
∂θ

∂t
=
ρu2r
vr
− µur +Du

[
∂2ur
∂r2

+
1

r

∂ur
∂r
− c ur

r2

]
+

ρ0
ceι̇θ

(5.6a)

∂vr
∂t

+ ι̇vr
∂θ

∂t
= ρ

′
u2r(ce

ι̇θ)− νvr +Dv

[
∂2vr
∂r2

+
1

r

∂vr
∂r
− c

′
vr
r2

]
(5.6b)

Because of the ι̇ factor we have to separate the equations into real part and imaginary

part. So,

• REAL PART

∂ur
∂t

=
ρ u2r
vr
− µ ur + Du

[
∂2ur
∂r2

+
1

r

∂ur
∂r
− c ur

r2

]
+

ρ0 cos θ

c
(5.7a)

∂vr
∂t

= ρ
′
u2r c cos θ − ν vr +Dv

[
∂2vr
∂r2

+
1

r

∂vr
∂r
− c

′
vr
r2

]
(5.7b)

• IMAGINARY PART

∂θ

∂t
= − ρ0 sin θ

c ur
(5.8a)

∂θ

∂t
=

ρ
′
u2r c sin θ

vr
(5.8b)

Now both m = m
′

= 0 and m = m
′

= 1 parts are solved to get uniform steady

state value for (u, v) = (u0, v0) where u0 and v0 are constants in time and space. we

take zero flux boundary conditions, which are satisfied by any (u0, v0).
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• For m = m
′

= 0

f(u0, v0) = g(u0, v0) = 0 (5.9a)

⇒ ρu2

v
− µu+ ρ0 = 0 = ρ

′
u2 − νv (5.9b)

⇒ u0 =
νρ

µρ′ +
ρ0
µ

= v0 =
ρ

′
u20
ν
. (5.9c)

• For m = m
′

= 1

f(u0, v0) = g(u0, v0) = 0 (5.10a)

⇒ ρu2r
v
− µur +

ρ0 cos θ

c
= 0 = ρ

′
u2r cos θ − νvr (5.10b)

⇒ u0 =
νρ

µρ′c cos θ
+
ρ0 cos θ

µc
= v0 =

ρ
′
u20c cos θ

ν
(5.10c)

Here also we have considered the same values for the parameters as Bhati did. In our

case, the uniform steady state values (u0, v0) are:

• For m = m
′

= 0, u0 = 2.001 nM and v0 = 2.002 nM.

• For m = m
′

= 1 , u0 = 5.791 nM and v0 = 5.793 nM.

These equations are same as the heat equation, mentioned as (2.10) in chapter 2,

except for the additional non-linear coupling terms. The standard heat equation is

analytically solvable with known solutions for Dirichlet, Neumann as well as mixed

boundary conditions. But because of the non-linear coupling terms the heat equation

is not analytically solvable. Therefore we have to resort to numerical methods for

solving our equations. We chose finite difference method here. a description of FD

method is provided in appendix A. 3-point finite difference formula was used to eval-

uate the second order spatial derivative and Crank-Nicholson scheme was employed

for time evolution.
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Chapter 6

Results and Discussions

We evolve our system both spatially and temporally using ”Finite-Difference” method

for 150000 time steps (4t = 1). Lets look at summary of Bhati’s results.

6.1 Overview of Agastya P. Bhati’s results:

(a) t = 1 s (b) t = 1000 s (c) t = 10000 s

(d) t = 80000 s

Figure 6.1: Evolution of the system along x-axis for initial condition IC1 with con-
centration (nM) along y-axis
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In the case of IC1, the concentration of the activator in cell number 1 is 1000 times

larger than that in other cells. Due to such a high concentration of the activator,

more activator is produced due to self activation and The concentration of the in-

hibitor also increases rapidly. Due to the higher diffusivity of the inhibitor, it inhibits

the production of the activator, and itself in the vicinity. This feature is clearly visi-

ble in figure 6.1 as a long valley between the first two peaks in the concentration profile.

(a) t = 1 s (b) t = 1000 s (c) t = 10000 s

(d) t = 80000 s

Figure 6.2: Evolution of the system along x-axis for initial condition IC2 with con-
centration (nM) along y-axis

In the case of IC2, the feature of the valley between the first two peaks he got

is not much pronounced as the initial concentration in the cells at one end is not

very high as compared to nearby cells. In general, the higher initial concentration

at one end quickly spreads over the whole width. This feature is expected due to

coupling terms in the Meinhardt’s model. Another consequence of such a coupling is

the concentration pattern oscillating in space, which is a characteristic of activator-

inhibitor models.

In general, Bhati got oscillating concentration values for both activator and in-

hibitor. Notably, the amplitude of the oscillation of the activator is higher than that
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(a) t = 1000 s (b) t = 5000 s (c) t = 10000 s

(d) t = 80000 s

Figure 6.3: Evolution of the system in (x,y) axis for initial condition IC1

(a) t = 1000 s (b) t = 5000 s (c) t = 10000 s

(d) t = 80000 s

Figure 6.4: Evolution of the system in (x,y) axis for initial condition IC2

of the inhibitor. This is the reason of activator concentration being higher at crests

and lower at troughs than inhibitor concentration. He represented excess activator as

violet in colour and excess inhibitor as white in colour.
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Bhati was able to get concentric ring pattern from his calculations but of uniform

width, which is not the exact pattern that the passion flower exhibits.

6.2 Meinhardt’s Model in Polar co-ordinates

In polar co-ordinates also we evolve our system for the same time steps as Bhati did.

But, this time we stick to the ”initial condition 1” only. First we will look at the

system for m = m
′

= 0 and then for m = m
′

= 1.

6.2.1 m = m
′

= 0

(a) t = 1 s (b) t = 800 s (c) t = 1000 s

(d) t = 2000 s (e) t = 5000 s (f) t = 10000 s

(g) t = 80000 s

Figure 6.5: Evolution of the system along x-axis with concentration (nM) along y-axis
for m = m

′
= 0
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As we can see from 6.5, there is not much different in the oscillation pattern of

both activator and inhibitor concentration from Bhati’s result (6.1). But we can see

the non-uniformity in the widths of concentric bands (6.6) as the system evolves.

(a) t = 1 s (b) t = 100 s (c) t = 369 s

(d) t = 800 s (e) t = 1000 s (f) t = 5000 s

(g) t = 10000 s (h) t = 150000 s

Figure 6.6: Evolution of concentric circular pattern for m = m
′

= 0, violet =
activator and white = inhibitor

We also have changed the values of the parameters and tried to generate the

pattern. We did see a change in the pattern while varying the values of µ, ν, ρ and

ρ
′
.

On increasing the values of µ and ν by 10 percent we can see form 6.7 that the

concentric rings evolve in a different way. At t = 3000s we can see a circular ring

emerging from boundary, merges with the concentric rings evolving from center and

then evolve like the usual way. Same effect we can also see if we change the values of
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(a) t = 1000 s (b) t = 2000 s (c) t = 3000 s

(d) t = 4000 s (e) t = 5000 s (f) t = 10000 s

Figure 6.7: Evolution of concentric circular pattern for m = m
′

= 0, µ =
0.0110, ν = 0.0220, violet = activator and white = inhibitor

ρ and ρ
′
.

(a) t = 1000 s (b) t = 4000 s (c) t = 7000 s

(d) t = 50000 s

Figure 6.8: Evolution of concentric circular pattern for m = m
′

= 0, ρ =
0.0100, ρ

′
= 1.0000, violet = activator and white = inhibitor
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Here also the pattern evolves the same way as on changing the values of µ and ν

(6.7) upto t = 7000s. But after that we can see uniformity in the widths.

(a) t = 1000 s (b) t = 3000 s (c) t = 4000 s

(d) t = 6000 s (e) t = 10000 s (f) t = 50000 s

(g) t = 150000 s

Figure 6.9: Evolution of concentric circular pattern for m = m
′

= 0, ρ =
0.0020, ρ

′
= 0.0010, violet = activator and white = inhibitor

In this case the evolution is somewhat different. As we can see in (6.9) at t = 1000s

there is violet colour in the center which is not the case in former case (6.8). Also we

have non-uniformity in the widths as the system evolves with time.
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6.2.2 m = m
′

= 1

(a) t = 1 s (b) t = 800 s (c) t = 1000 s

(d) t = 2000 s (e) t = 3000 s (f) t = 6000 s

(g) t = 150000 s

Figure 6.10: Evolution of the system along x-axis with concentration (nM) along
y-axis for m = m

′
= 1

For m = m
′

= 1 we can see lot of fluctuation in the oscillation of activator-

inhibitor concentration (6.10). Also at t = 2000s it starts to oscillate from the other

end and merge with each other at t = 6000s, then move forward, which is very

different from the earlier cases. Also in the evolution of circular pattern we can see

lots of fluctuations (see 6.11). We can see bright violet and white colour in center at

t = 268s and at t = 522s it disappears. May be we can attribute this bright violet

colour to that part of the fibrils where only violet colour sustains (see 4.1 ) (4.2). This

fluctuations continue upto t = 1000s and after that it evolves as usual.
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(a) t = 1 s (b) t = 100 s (c) t = 260 s

(d) t = 268 s (e) t = 522 s (f) t =808 s

(g) t = 979 s (h) t = 1000 s (i) t = 3000 s

(j) t = 5000 s (k) t = 10000 s (l) t = 150000 s

Figure 6.11: Evolution of concentric circular pattern for m = m
′

= 1, violet =
activator and white = inhibitor
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Chapter 7

Conclusions and Outlook

We have discussed about the Gierer-Meinhardt Model kinetics in detail by employing

the model successfully in Turing’s RD model and tried to apply the model to get the

beautiful but complicated pattern of the Passion flower. There are lots of fluctuations

we can see in the circular pattern in first few hundred time steps, but Yet we are

not able to generate our measured pattern. but still qualitatively we have been able

to generate the concentric bands of alternate violet and white colour of non-uniform

widths using this activator-inhibitor model.

We have also varied the values of µ, ν, ρ, ρ
′

for m = m
′

= 0. Here also we have

seen the non-uniformity in the concentric coloured pattern but not the exact pattern

of the flower. One possibility may be the initial condition that we have considered

is not sufficient enough to make the system unstable. May be we can play with

the initial condition also. Another possibility to generate the measured pattern may

be the selection of right numerical method. We can also resort to other numerical

methods like ”Runge-Kutta”. We can also try Fast-Fourier transform.

We plan to continue our work to explore the above mentioned possibilities. We first

need to properly analyse their effects and come up with a mathematical framework for

the same. Then using it we hope to be able to logically choose the parameter values

and vary them accordingly with time and/or space so as to arrive at our desired

pattern.
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Appendix A

Finite Difference methods

Let’s consider a rectangular domain D: 0 ≤ x ≤ a and 0 ≤ y ≤ b and draw straight

lines parallel to x-axis and y-axis as shown in the figure A.1 such that xi = i ∗4x for

i = 1, 2, 3, · · · n-1 and yj = j ∗ 4y for j = 1, 2, 3, · · · m-1 where 4x and 4y are

small positive steplengths obtained by 4x =
a

n
and 4y =

b

m
.

Figure A.1: Discretised rectangular domain

Let Pi,j = P (xi, yj) be any point in the region D then the co-ordinates xi and yj
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can be obtained by

xi = x0 + i ∗ 4x

yj = y0 + j ∗ 4y,
(A.1)

where (x0, y0) are the coordinates of the left bottom most point of the rectangle, that

is (0,0) in the present case. If u(x, y) is any continuous function with all necessary

derivatives existing in D then

ui±1,j = u(xi ±4x, yj) = ui,j ±4x
∂ui,j
∂x

+
4x2

2!

∂2ui,j
∂x2

± · · · · · · (A.2a)

ui,j±1 = u(xi, yj ±4y) = ui,j ±4y
∂ui,j
∂y

+
4y2

2!

∂2ui,j
∂y2

± · · · · · · (A.2b)

From eq. (A.2), partial derivatives can be approximated as follows:

∂ui,j
∂x

=
ui+1,j − ui−1,j

24 x
+O(4x2), (Central difference)

=
ui+1,j − ui,j
4x

+O(4x), (Forward difference)

=
ui,j − ui−1,j
4x

+O(4x). (Backward difference)

∂ui,j
∂y

=
ui,j+1 − ui,j−1

24 y
+O(4y2), (Central difference)

=
ui,j+1 − ui,j
4y

+O(4y), (Forward difference)

=
ui,j − ui,j−1
4y

+O(4y). (Backward difference)

∂2ui,j
∂x2

=
ui+1,j − 2ui,j + ui−1,j

4x2
+O(4x4).

∂2ui,j
∂y2

=
ui,j+1 − 2ui,j + ui,j−1

4y2
+O(4y4).

(A.3)

Now we can convert the partial differential equations into difference equations by

using these approximations and the resultant system of algebraic equations can be

solved using any direct or iterative method. Since the analytical methods for finding

solution of second order partial differential equations depend on the type of PDE, the

numerical schemes also depend on the type of PDE. For example now we will try to

solve a PDE as shown below which is similar to the differential part in Meinhardt
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model in polar co-ordinates for m = m
′

= 0 and m = m
′

= 1. (see 5.5 and 5.6)

∂u

∂t
= C[

∂2u

∂x2
+
∂u

∂r
] (A.4)

A.1 Forward Time and Central Space (FTCS) Scheme

In this method the time derivative term in the one-dimensional heat eq. (A.4) is

approximated with forward difference and space derivatives are approximated with

second order central differences. Thus, it gives:

un+1
i − uni
4t

= C[
uni−1 − 2uni + uni+1

4x2
+
uni+1 − uni−1

24 x
] (A.5)

where xi = i4 x (i = 0, 1, 2, 3, · · · N) and tn = n4 t (n = 0, 1, 2, 3, · · · · · · ).
To distinguish between space and time coordinates superscript index n is used for the

time coordinate whereas a subscript i is used to represent the space position along x

direction. N is the number of points along the x-direction excluding zeroth point.

At any typical node (i, n), the finite difference eq. (A.5) can be rearranged as

un+1
i = uni + r(uni−1 − 2uni + uni+1) +R(uni+1 − uni−1) (A.6)

where r =
c4 t

4x2
and R =

c4 t

24 x
. It gives a formula to compute the unknown

concentrations in the domain at various positions at various times. For n=1, the

unknown u is first calculated using the initial conditions at t=0 and boundary values

at x=0 and x=L (where L is the length of the domain). Once the solution at time

step 1 is obtained, the solution at n=2 is calculated in the same manner by making

use of the solution at n=1 and the boundary conditions at x=0 and x=L. The same

procedure is repeated until the solution reaches a steady state or until the desired

time step.

Since eq. (A.6) has only one unknown for any i and n, it is called an explicit scheme.

The FTCS scheme is illustrated in Figure A.2.
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Figure A.2: Sketch for the FTCS scheme

A.2 Backward Time Central Space (BTCS) scheme

If the forward difference approximation for time derivative in the one dimensional

heat eq. (A.4) is replaced with the backward difference and the central difference

approximation for space derivative is used, then eq. (A.4) can be written as

uni − un−1i

4t
= C[

uni−1 − 2uni + uni+1

4x2
+
uni+1 − uni−1

24 x
(A.7)

where i = 1, 2, 3, · · · N and n = 1, 2, 3, · · · · · ·
Alternatively,

un+1
i − uni
4t

= C[
un+1
i−1 − 2un+1

i + un+1
i+1

4x2
+
un+1
i+1 − un+1

i−1

24 x
(A.8)

for i = 1, 2, 3, · · · N and n = 0, 1, 2, · · · · · ·
Rearranging the above equation, we obtain

un+1
i − uni = r(un+1

i−1 − 2un+1
i + un+1

i+1 ) +R(un+1
i+1 − un+1

i−1 )

⇒ (R− r)un+1
i−1 + (1 + 2r)un+1

i − (R + r)un+1
i+1 = uni

(A.9)

for i = 1, 2, 3, · · · N and n = 0, 1, 2, · · · · · ·

Since there are three unknown terms in eq. (A.9), the scheme so obtained is referred

to as an implicit method. The main drawback of having more than one unknown

coefficient in any equation, unlike FTCS method, is that the value of the dependent

variable at any typical node say (i, n) cannot be obtained from a single finite difference

equation of the node (i, n), and one has to generate a system of equations for each

time step separately by varying i. Then for each time step there will be a system

of equations equivalent to the number of unknowns in that time step (say N in the
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present case). This linear system of algebraic equations in N unknowns has to be

solved to obtain the solution for each time step . This process has to be repeated

until the desired time step is reached. The scheme (A.9) is called the fully implicit

method.

A.3 Crank-Nicholson

Schemes (A.5) and (A.8) are two different methods to solve the one dimensional heat

equation (A.4). Crank-Nicholson scheme is obtained by taking an average of these

two schemes, that is

un+1
i − uni
4t

=
C

2

[
un+1
i−1 − 2un+1

i + un+1
i+1

4x2
+
uni+1 − uni−1

24 x

]
+
C

2

[
uni−1 − 2uni + uni+1

4x2
+
un+1
i+1 − un+1

i−1

24 x

]

for i = 1, 2, 3, · · · N and n = 0, 1, 2, · · · · · ·

⇒ (
R

2
− r

2
)un+1

i−1 + (1 + r)un+1
i − (

R

2
+
r

2
)un+1

i+1 = (
r

2
− R

2
)uni−1 + (1− r)uni + (

r

2
+
R

2)
uni+1

(A.10)

Where r =
c4 t

4x2
and R =

c4 t

24 x
.

Since more than one unknown is involved for each i in eq. (A.10) Crank-Nicholson

scheme is also an implicit scheme. Therefore, one has to solve a system of linear

algebraic equations for every time step to get the field variable u. The Crank-Nicholson

scheme is illustrated in Figure A.3.

Figure A.3: Sketch for the Crank-Nicholson scheme

The linear algebraic system of equations generated by the Crank-Nicholson method

for the time step tn+1 are sparse because the finite difference equation obtained at any

44



space node, say i and at time step tn+1 has only three unknown coefficients involving

space nodes i-1 , i and i+1 at tn+1. In matrix notation, these equations can be written

as AU=B , where U is the unknown vector of order N at any time level tn+1 , B

is the known vector of order N , which involves the values of U at the nth time step

and A is the coefficient square matrix of order N × N with a tri-diagonal structure

as follows:

A =



b1 c1 0 0 · · · 0 0

a2 b2 c2 0 · · · 0 0

0 a3 b3 c3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 · · · 0 aN−1 bN−1 cN−1

0 0 · · · 0 0 aN bN


Such a matrix is called a tri-diagonal matrix and the system of equations with

tridiagonal coefficient matrix is called tridiagonal system. Though direct solvers like

Gauss elimination and LU decomposition can be used to solve these systems there are

some special schemes available to solve tridiagonal systems. One of them is Thomas

algorithm which exploits the tridiagonal nature of the coefficient matrix. Thomas

algorithm is similar to Gauss elimination. However, the novelty in the method is that

the forward elimination and back substitution parts of Gauss elimination are used

only for the non-zero positions of the system AU=B.

A.4 Thomas algorithm for tridiagonal system of

equations

Let us call the three non-zero diagonals of the above coefficient matrix A as a, b and

c, where b is the element of the principal diagonal, a is the element of the diagonal

before the principal diagonal with zero as the first element and c is the element of the

diagonal that lies after the principal diagonal with a zero as the last element. Then

the order of a, b and c is equal to the number of unknowns for any time step with the

known vector B (with elements di). Then the Thomas algorithm can be written as:
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Do i = 2 to N (if N is the number of unknowns)

bi = bi − ai
ci−1
bi−1

di = di − ai
di−1
bi−1

end Do

uN =
dN
bN

Do i = N-1 to 1

ui =
di − ciui+1

bi

end Do

A.5 Alternate Direction Implicit method

The heat equation in two dimensions is as follows:

∂u

∂t
= C

(
∂2u

∂x2
+
∂2u

∂y2

)
(A.11)

Applying Crank-Nicholson scheme to the above equation we get:

un+1
i,j − uni,j
4t

=
C

2

[
un+1
i−1,j − 2un+1

i,j + un+1
i+1,j

4x2
+
uni−1,j − 2uni,j + uni+1,j

4x2

]

+
C

2

[
un+1
i,j−1 − 2un+1

i,j + un+1
i,j+1

4y2
+
uni,j−1 − 2uni,j + uni,j+1

4y2

]
⇒ − r1

2

(
un+1
i−1,j + un+1

i+1,j

)
+ (1 + r1 + r2)u

n+1
i,j −

r2
2

(
un+1
i,j−1 + un+1

i,j+1

)
=
r1
2

(
uni−1,j + uni+1,j

)
+ (1 + r1 + r2)u

n
i,j −

r2
2

(
uni,j−1 + uni,j+1

)
where r1 =

C 4 t

4x2
and r2 =

C 4 t

4y2
,

for i = 1, 2, 3, · · · N , j = 1, 2, 3, · · · M and n = 0, 1, 2, · · · · · ·

This is certainly a viable scheme; the problem arises in solving the coupled linear
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equations. Whereas in one dimension the system was tridiagonal, that is no longer

true, though the matrix is still very sparse.

Alternate Direction Implicit (ADI) provides a slightly different way of generalizing

the Crank-Nicholson algorithm. It is still second-order accurate in time and space,

and unconditionally stable, but the equations are easier to solve than in the above

case. Here, the idea is to divide each timestep into two steps of size
4t
2

. In each

substep, a different dimension is treated implicitly. The equations can be written as

follows:

First half time step: implicit along x direction

u
n+ 1

2
i,j − uni,j
4 t/2

= C

[
u
n+ 1

2
i−1,j − 2u

n+ 1
2

i,j + u
n+ 1

2
i+1,j

4x2
+
uni,j−1 − 2uni,j + uni,j+1

4y2

]
(A.12)

Second half time step: implicit along y direction

un+1
i,j − u

n+ 1
2

i,j

4 t/2
= C

[
u
n+ 1

2
i−1,j − 2u

n+ 1
2

i,j + u
n+ 1

2
i+1,j

4x2
+
un+1
i,j−1 − 2un+1

i,j + un+1
i,j+1

4y2

]
(A.13)

for i = 1, 2, 3, · · · N , j = 1, 2, 3, · · · M and n = 0, 1, 2, · · · · · ·
Rewriting eq. (A.12):

−r1
2
u
n+ 1

2
i−1,j + (1 + r1)u

n+ 1
2

i,j −
r1
2
u
n+ 1

2
i+1,j =

r2
2
uni,j−1 + (1− r2)uni,j +

r2
2
uni,j+1 (A.14)

This is a tridiagonal system which can be solved using Thomas algorithm for the

unknown ui,j at the time step n+ 1
2
. Similarly eq. (A.13) can be rewritten as:

−r2
2
un+1
i,j−1 + (1 + r2)u

n+1
i,j −

r2
2
un+1
i,j+1 =

r1
2
u
n+ 1

2
i−1,j + (1− r1)u

n+ 1
2

i,j +
r1
2
u
n+ 1

2
i+1,j (A.15)

Since u terms on the right hand side of eq. (A.15) have already been calculated by

solving eq. (A.14), eq. (A.15) is again a tridiagonal system which can also be solved

using Thomas algorithm for ui,j at time step n+1. This completes one iteration in

time direction and the same is repeated until the desired time step is reached. The

advantage of this method is that each substep requires only the solution of a simple

tridiagonal system.
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Appendix B

C-programs

In this chapter we list our C-programs used for solving the RD equation numerically

(both in Cartesian co-ordinate3 and polar co-ordinates)

B.1 Crank-Nicholson scheme on Meinhardt’s model

in 1d Cartesian co-ordinate3

Following are the programmes for numerical solution of Bhati’s one-dimensional Mein-

hardt’s model(both ic1 and ic2) using Crank-Nicholson scheme.

B.1.1 Initial condition 1

ic1.c

1 #include <stdio.h>
2 #include <math.h>
3 #include <stdlib.h>
4
5 #define Da 0.02
6 #define Db 20*Da
7 #define nx 3000
8 //#define ny 100
9 #define dx 1.0

10 //#define dy 0.01
11 #define dt 1.0
12 #define timeSteps 150000
13
14 //void dmatrix_initial (double A[nx][ny]);
15 void fprintmatrix (double p[nx+2], FILE *f);
16 void pattern (double p[nx+2], double q[nx+2], FILE *f);
17 void tridag(double a[], double b[], double c[], double r[], double ←↩

u[], int n);
18 void neumannbc(double a[nx+2]);
19 double r1, r3 ;// r2 , r4;
20
21 int main(void)
22 {
23 /* defining required parameters and variables */
24
25 int i, n, nxx =300;
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26 double ra, rb, a0, b0, rho , rho1 , ba;// bb; gamma , a, b, alpha , ←↩
u0, v0;

27 double a[nx+2], b[nx+2], f[nx], g[nx];
28 double a1[nx], b1[nx], c1[nx], d1[nx], t1[nx];
29 // double a2[ny], b2[ny], c2[ny], d2[ny], t2[ny];
30 double x, t;
31 FILE *fp, *fpo , *fpa , *fpb;
32
33 /* initializing the parameters and variables */
34
35 ba = 0.00001; //rho0 constant term activator
36 //bb = 0.0000; //rho’ constant term inhibitor
37 ra = 0.0100; //mu
38 rb = 0.0200; //nu
39 rho = 0.0100; // source density activator
40 rho1 = 0.0100; // source density inhibitor
41
42 a0 = (rb*rho)/(ra*rho1) + ba/ra;
43 b0 = (a0*a0*rho1)/rb;
44
45 r1 = Da*dt/(dx*dx); //r2 = dt/(dy*dy);
46 r3 = Db*dt/(dx*dx); //r4 = d*dt/(dy*dy);
47
48 /* Initialize concentration arrays and coupling terms*/
49
50 for(i=1; i<nx+1; i++)
51 {
52 //s[i-1] = 0.01*(1. + qc*(( double) rand()/RAND_MAX));
53 a[i] = a0;// + 0.1*(( double) rand()/( RAND_MAX /2) - 1.0);
54 b[i] = b0;// + 0.1*(( double) rand()/( RAND_MAX /2) - 1.0);
55 }
56
57 a[1] = 1000*a[1];
58 // a[nx] = 1000*a[nx];
59 /* initializing boundary values of concentrations using neumann ←↩

boundary conditions */
60
61 a[0] = a[2]; a[nxx+1] = a[nxx -1];
62 b[0] = b[2]; b[nxx+1] = b[nxx -1];
63 // neumannbc(a);
64 // neumannbc(b);
65
66 fp=fopen("a_initial.dat","w");
67
68 if(fp==NULL)
69 {
70 puts("cannot open file\n");
71 exit (1);
72 }
73
74 fpo=fopen("b_initial.dat","w");
75
76 if(fpo==NULL)
77 {
78 puts("cannot open file\n");
79 exit (1);
80 }
81
82 x = 1.0;
83 for(i=1; i<nx+1; i++)
84 {
85 fprintf(fp ,"%d\t%f\n",(int) x, a[i]);
86 fprintf(fpo ,"%d\t%f\n",(int) x, b[i]);
87 x += dx;
88 }
89
90 fclose(fp);
91 fclose(fpo);
92
93 for(i=1; i<nxx+1; i++)
94 {
95 // h[i-1] = rho*u[i][j]*v[i][j]/(1+u[i][j]+K*u[i][j]*u[i][j]);
96 f[i-1] = rho*a[i]*a[i]/b[i] - ra*a[i] + ba;
97 g[i-1] = rho1*a[i]*a[i] - rb*b[i];// + bb;
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98 }
99

100 fp=fopen("evolve_a.dat","w");
101
102 if(fp==NULL)
103 {
104 puts("cannot open file");
105 exit (1);
106 }
107
108 fpo=fopen("evolve_b.dat","w");
109
110 if(fpo==NULL)
111 {
112 puts("cannot open file");
113 exit (1);
114 }
115
116 fpa=fopen("a_1000.dat","w");
117
118 if(fpa==NULL)
119 {
120 puts("cannot open file");
121 exit (1);
122 }
123
124 fpb=fopen("b_1000.dat","w");
125
126 if(fpb==NULL)
127 {
128 puts("cannot open file");
129 exit (1);
130 }
131
132 /* Begin time loop*/
133
134 for (n=1; n<= timeSteps; n++)
135 {
136 t = n*dt;
137 /* Printing concentrations at intermediate times*/
138
139 if(n%1000==0)
140 {
141 x = 1.0;
142 for(i=1; i<nx+1; i++)
143 {
144 fprintf(fp ,"%d\t%d\t%f\t0\t0\t%f\n",(int) x,(int) ←↩

t,a[i],a[i]-b[i]);
145 x += dx;
146 }
147
148 fprintf(fp ,"\n\n");
149
150 x = 1.0;
151 for(i=1; i<nx+1; i++)
152 {
153 fprintf(fpo ,"%d\t%d\t%f\t0\t0\n",(int) x,(int) t,b[i]);
154 x += dx;
155 }
156
157 fprintf(fpo ,"\n\n");
158 }
159
160 // Printing concentrations at first 1000 timesteps
161
162 if(n <= 1000)
163 {
164 x = 1.0;
165 for(i=1; i<nxx +1; i++)
166 {
167 fprintf(fpa ,"%d\t%d\t%f\t0\t0\t%f\n",(int) x,(int) ←↩

t,a[i],a[i]-b[i]);
168 x += dx;
169 }
170
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171 fprintf(fpa ,"\n\n");
172
173 x = 1.0;
174 for(i=1; i<nxx +1; i++)
175 {
176 fprintf(fpb ,"%d\t%d\t%f\t0\t0\n",(int) x,(int) t,b[i]);
177 x += dx;
178 }
179
180 fprintf(fpb ,"\n\n");
181 }
182
183
184 /* Thomas algorithm to update concentration values */
185
186
187 /* Initializing tridiagonal coefficients */
188
189 for(i=0; i<nxx; i++)
190 {
191 a1[i] = -0.5*r1;
192 b1[i] = 1 + r1;
193 c1[i] = -0.5*r1;
194 d1[i] = 0.5*r1*a[i] + (1-r1)*a[i+1] + 0.5*r1*a[i+2] + ←↩

dt*f[i];
195 }
196
197 /* update boundary coefficients for neumann bc*/
198
199 c1[0] = -r1;
200 a1[nxx -1] = -r1;
201
202 /* Solving for tridiagonal matrix equation */
203
204 tridag(a1 ,b1 ,c1 ,d1 ,t1 ,nxx);
205
206 /*Back substitution: updating concentration a*/
207
208 for(i=0; i<nxx; i++)
209 a[i+1] = t1[i];
210
211 /* repeating the above procedure for concentration b*/
212
213 for(i=0; i<nxx; i++)
214 {
215 a1[i] = -0.5*r3;
216 b1[i] = 1 + r3;
217 c1[i] = -0.5*r3;
218 d1[i] = 0.5*r3*b[i] + (1-r3)*b[i+1] + 0.5*r3*b[i+2] + ←↩

dt*g[i];
219 }
220
221 c1[0] = -r3;
222 a1[nxx -1] = -r3;
223
224 tridag(a1 ,b1 ,c1 ,d1 ,t1 ,nxx);
225
226 /*Back substitution: Updating concentrations b*/
227
228 for(i=0; i<nxx; i++)
229 b[i+1] = t1[i];
230
231 /*End of first half time step*/
232
233 /* Update coupling terms*/
234
235
236 for(i=1; i<nxx+1; i++)
237 {
238 //q = s[i-1]*a[i]*a[i];
239 f[i-1] = rho*a[i]*a[i]/b[i] - ra*a[i] + ba;
240 g[i-1] = rho1*a[i]*a[i] - rb*b[i];// + bb;
241 }
242
243 /* Update boundary values */
244
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245 a[0] = a[2]; a[nxx+1] = a[nxx -1];
246 b[0] = b[2]; b[nxx+1] = b[nxx -1];
247 // neumannbc(a);
248 // neumannbc(b);
249
250 if(n%7000==0 && nxx < nx)
251 nxx += 300;
252
253 }
254
255 fclose(fp);
256 fclose(fpo);
257
258 fpo=fopen("finala.dat","w");
259
260 if(fpo==NULL)
261 {
262 puts("cannot open file");
263 exit (1);
264 }
265
266 fp=fopen("finalb.dat","w");
267
268 if(fp==NULL)
269 {
270 puts("cannot open file");
271 exit (1);
272 }
273
274 fprintmatrix(a,fpo);
275 fprintmatrix(b,fp);
276
277 fclose(fpo);
278 fclose(fp);
279
280 fp=fopen("pattern_final.dat","w");
281
282 if(fp==NULL)
283 {
284 puts("cannot open file");
285 exit (1);
286 }
287
288 pattern(b,a,fp);
289
290 fclose(fp);
291
292 return 0;
293 }
294
295 void fprintmatrix (double p[nx+2], FILE *f)
296 {
297 int i;
298 double x;
299
300 x = 1.0;
301 for(i=1; i<nx+1; i++)
302 {
303 fprintf(f,"%d\t%f\t0\t0\n",(int) x,p[i]);
304 x += dx;
305 }
306 }
307
308 void pattern (double p[nx+2], double q[nx+2], FILE *f)
309 {
310 int i;
311 double x, y;
312
313 x = 1.0;
314 for(i=1; i<nx+1; i++)
315 {
316 y = p[i] - q[i];
317 if(y > 0)
318 fprintf(f,"%d\t%f\t0\t0\n",(int) x, y);
319 else
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320 fprintf(f,"%d\t0 .000000\ t0\t0\n",(int) x);
321
322 x += dx;
323 }
324 }
325
326 void tridag(double a[], double b[], double c[], double r[], double ←↩

u[], int n)
327 {
328 int j;
329
330 double bet , gam[n];
331
332 // gam=dvector(1,n);
333 if (b[0] == 0.0) printf("Error 1 in tridag\n");
334 u[0]=r[0]/( bet=b[0]);
335 for (j=1;j<n;j++) {
336 gam[j]=c[j-1]/ bet;
337 bet=b[j]-a[j]*gam[j];
338 if (bet == 0.0) printf("Error 2 in tridag\n");
339 u[j]=(r[j]-a[j]*u[j-1])/bet;
340
341 }
342
343 for (j=(n-2);j>=0;j--)
344 u[j] -= gam[j+1]*u[j+1];
345 // free_dvector(gam ,1,n);
346 }
347
348 void neumannbc(double a[nx+2])
349 {
350
351 a[0]=a[2];
352 a[nx+1]=a[nx -1];
353 }

B.1.2 Initial condition 2

ic2.c

1 #include <stdio.h>
2 #include <math.h>
3 #include <stdlib.h>
4
5 #define Da 0.02
6 #define Db 20*Da
7 #define nx 3000
8 //#define ny 100
9 #define dx 1.0

10 //#define dy 0.01
11 #define dt 1.0
12 #define timeSteps 150000
13
14 //void dmatrix_initial (float A[nx][ny]);
15 void fprintmatrix (float p[nx+2], FILE *f);
16 void pattern (float p[nx+2], float q[nx+2], FILE *f);
17 void tridag(float a[], float b[], float c[], float r[], float u[], ←↩

int n);
18 void neumannbc(float a[nx+2]);
19 float r1 , r3;// r2 , r4;
20
21 int main(void)
22 {
23 /* defining required parameters and variables */
24
25 int i, n, nxx =300;
26 float ra , rb , a0 , b0 , rho , rho1 , ba;// bb; gamma , a, b, alpha , ←↩

u0, v0;
27 float a[nx+2], b[nx+2], f[nx], g[nx];
28 float a1[nx], b1[nx], c1[nx], d1[nx], t1[nx];
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29 // float a2[ny], b2[ny], c2[ny], d2[ny], t2[ny];
30 float x, t;
31 FILE *fp, *fpo , *fpa , *fpb;
32
33 /* initializing the parameters and variables */
34
35 ba = 0.00001; //rho0 constant term activator
36 //bb = 0.0000; //rho’ constant term inhibitor
37 ra = 0.0100; //mu
38 rb = 0.0200; //nu
39 rho = 0.0100; // source density activator
40 rho1 = 0.0100; // source density inhibitor
41
42 a0 = (rb*rho)/(ra*rho1) + ba/ra;
43 b0 = (a0*a0*rho1)/rb;
44
45 r1 = Da*dt/(dx*dx); //r2 = dt/(dy*dy);
46 r3 = Db*dt/(dx*dx); //r4 = d*dt/(dy*dy);
47
48 /* Initialize concentration arrays and coupling terms*/
49
50 for(i=1; i<nx+1; i++)
51 {
52 //s[i-1] = 0.01*(1. + qc*(( float) rand()/RAND_MAX));
53 a[i] = a0;// + 0.1*(( float) rand()/( RAND_MAX /2) - 1.0);
54 b[i] = b0;// + 0.1*(( float) rand()/( RAND_MAX /2) - 1.0);
55 }
56
57 n=15;
58 for(i=1; n > (int) a0; i++)
59 {
60 a[i] = (float) n;
61 n--;
62 }
63
64 n=15;
65 for(i=1; n > (int) b0; i++)
66 {
67 b[i] = (float) n;
68 n--;
69 }
70 //a[1] = 1000*a[1];
71 // a[nx] = 1000*a[nx];
72 /* initializing boundary values of concentrations using neumann ←↩

boundary conditions */
73
74 a[0] = a[2]; a[nxx+1] = a[nxx -1];
75 b[0] = b[2]; b[nxx+1] = b[nxx -1];
76 // neumannbc(a);
77 // neumannbc(b);
78
79 fp=fopen("a_initial.dat","w");
80
81 if(fp==NULL)
82 {
83 puts("cannot open file\n");
84 exit (1);
85 }
86
87 fpo=fopen("b_initial.dat","w");
88
89 if(fpo==NULL)
90 {
91 puts("cannot open file\n");
92 exit (1);
93 }
94
95 x = 1.0;
96 for(i=1; i<nx+1; i++)
97 {
98 fprintf(fp ,"%d\t%f\n",(int) x, a[i]);
99 fprintf(fpo ,"%d\t%f\n",(int) x, b[i]);

100 x += dx;
101 }
102
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103 fclose(fp);
104 fclose(fpo);
105
106 for(i=1; i<nxx+1; i++)
107 {
108 // h[i-1] = rho*u[i][j]*v[i][j]/(1+u[i][j]+K*u[i][j]*u[i][j]);
109 f[i-1] = rho*a[i]*a[i]/b[i] - ra*a[i] + ba;
110 g[i-1] = rho1*a[i]*a[i] - rb*b[i];// + bb;
111 }
112
113 fp=fopen("evolve_a.dat","w");
114
115 if(fp==NULL)
116 {
117 puts("cannot open file");
118 exit (1);
119 }
120
121 fpo=fopen("evolve_b.dat","w");
122
123 if(fpo==NULL)
124 {
125 puts("cannot open file");
126 exit (1);
127 }
128
129 fpa=fopen("a_1000.dat","w");
130
131 if(fpa==NULL)
132 {
133 puts("cannot open file");
134 exit (1);
135 }
136
137 fpb=fopen("b_1000.dat","w");
138
139 if(fpb==NULL)
140 {
141 puts("cannot open file");
142 exit (1);
143 }
144
145 /* Begin time loop*/
146
147 for (n=1; n<= timeSteps; n++)
148 {
149 t = n*dt;
150 /* Printing concentrations at intermediate times*/
151
152 if(n%1000==0)
153 {
154 x = 1.0;
155 for(i=1; i<nx+1; i++)
156 {
157 fprintf(fp ,"%d\t%d\t%f\t0\t0\t%f\n",(int) x,(int) ←↩

t,a[i],a[i]-b[i]);
158 x += dx;
159 }
160
161 fprintf(fp ,"\n\n");
162
163 x = 1.0;
164 for(i=1; i<nx+1; i++)
165 {
166 fprintf(fpo ,"%d\t%d\t%f\t0\t0\n",(int) x,(int) t,b[i]);
167 x += dx;
168 }
169
170 fprintf(fpo ,"\n\n");
171 }
172
173 // Printing concentrations at first 1000 timesteps
174
175 if(n <= 1000)
176 {
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177 x = 1.0;
178 for(i=1; i<nxx +1; i++)
179 {
180 fprintf(fpa ,"%d\t%d\t%f\t0\t0\t%f\n",(int) x,(int) ←↩

t,a[i],a[i]-b[i]);
181 x += dx;
182 }
183
184 fprintf(fpa ,"\n\n");
185
186 x = 1.0;
187 for(i=1; i<nxx +1; i++)
188 {
189 fprintf(fpb ,"%d\t%d\t%f\t0\t0\n",(int) x,(int) t,b[i]);
190 x += dx;
191 }
192
193 fprintf(fpb ,"\n\n");
194 }
195
196
197 /* Thomas algorithm to update concentration values */
198
199
200 /* Initializing tridiagonal coefficients */
201
202 for(i=0; i<nxx; i++)
203 {
204 a1[i] = -0.5*r1;
205 b1[i] = 1 + r1;
206 c1[i] = -0.5*r1;
207 d1[i] = 0.5*r1*a[i] + (1-r1)*a[i+1] + 0.5*r1*a[i+2] + ←↩

dt*f[i];
208 }
209
210 /* update boundary coefficients for neumann bc*/
211
212 c1[0] = -r1;
213 a1[nxx -1] = -r1;
214
215 /* Solving for tridiagonal matrix equation */
216
217 tridag(a1 ,b1 ,c1 ,d1 ,t1 ,nxx);
218
219 /*Back substitution: updating concentration a*/
220
221 for(i=0; i<nxx; i++)
222 a[i+1] = t1[i];
223
224 /* repeating the above procedure for concentration b*/
225
226 for(i=0; i<nxx; i++)
227 {
228 a1[i] = -0.5*r3;
229 b1[i] = 1 + r3;
230 c1[i] = -0.5*r3;
231 d1[i] = 0.5*r3*b[i] + (1-r3)*b[i+1] + 0.5*r3*b[i+2] + ←↩

dt*g[i];
232 }
233
234 c1[0] = -r3;
235 a1[nxx -1] = -r3;
236
237 tridag(a1 ,b1 ,c1 ,d1 ,t1 ,nxx);
238
239 /*Back substitution: Updating concentrations b*/
240
241 for(i=0; i<nxx; i++)
242 b[i+1] = t1[i];
243
244 /*End of first half time step*/
245
246 /* Update coupling terms*/
247
248
249 for(i=1; i<nxx+1; i++)
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250 {
251 //q = s[i-1]*a[i]*a[i];
252 f[i-1] = rho*a[i]*a[i]/b[i] - ra*a[i] + ba;
253 g[i-1] = rho1*a[i]*a[i] - rb*b[i];// + bb;
254 }
255
256 /* Update boundary values */
257
258 a[0] = a[2]; a[nxx+1] = a[nxx -1];
259 b[0] = b[2]; b[nxx+1] = b[nxx -1];
260 // neumannbc(a);
261 // neumannbc(b);
262
263 if(n%7000==0 && nxx < nx)
264 nxx += 300;
265
266 }
267
268 fclose(fp);
269 fclose(fpo);
270
271 fpo=fopen("finala.dat","w");
272
273 if(fpo==NULL)
274 {
275 puts("cannot open file");
276 exit (1);
277 }
278
279 fp=fopen("finalb.dat","w");
280
281 if(fp==NULL)
282 {
283 puts("cannot open file");
284 exit (1);
285 }
286
287 fprintmatrix(a,fpo);
288 fprintmatrix(b,fp);
289
290 fclose(fpo);
291 fclose(fp);
292
293 fp=fopen("pattern_final.dat","w");
294
295 if(fp==NULL)
296 {
297 puts("cannot open file");
298 exit (1);
299 }
300
301 pattern(b,a,fp);
302
303 fclose(fp);
304
305 return 0;
306 }
307
308 void fprintmatrix (float p[nx+2], FILE *f)
309 {
310 int i;
311 float x;
312
313 x = 1.0;
314 for(i=1; i<nx+1; i++)
315 {
316 fprintf(f,"%d\t%f\n",(int) x,p[i]);
317 x += dx;
318 }
319 }
320
321 void pattern (float p[nx+2], float q[nx+2], FILE *f)
322 {
323 int i;
324 float x, y;
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325
326 x = 1.0;
327 for(i=1; i<nx+1; i++)
328 {
329 y = p[i] - q[i];
330 if(y > 0)
331 fprintf(f,"%d\t%f\t0\t0\n",(int) x,y);
332 else
333 fprintf(f,"%d\t0 .000000\ t0\t0\n",(int) x);
334
335 x += dx;
336 }
337 }
338
339 void tridag(float a[], float b[], float c[], float r[], float u[], ←↩

int n)
340 {
341 int j;
342
343 float bet , gam[n];
344
345 // gam=dvector(1,n);
346 if (b[0] == 0.0) printf("Error 1 in tridag\n");
347 u[0]=r[0]/( bet=b[0]);
348 for (j=1;j<n;j++) {
349 gam[j]=c[j-1]/ bet;
350 bet=b[j]-a[j]*gam[j];
351 if (bet == 0.0) printf("Error 2 in tridag\n");
352 u[j]=(r[j]-a[j]*u[j-1])/bet;
353
354 }
355
356 for (j=(n-2);j>=0;j--)
357 u[j] -= gam[j+1]*u[j+1];
358 // free_dvector(gam ,1,n);
359 }
360
361 void neumannbc(float a[nx+2])
362 {
363
364 a[0]=a[2];
365 a[nx+1]=a[nx -1];
366 }

B.2 Crank-Nicolson scheme on Meinhardt’s model

in polar co-ordinates

C-programmes to numerically solve the Meinhardt’s model in polar co-ordinates using

Finite difference methods are listed below:

B.2.1 m = m
′

= 0

m0.c

1 #include <stdio.h>
2 #include <math.h>
3 #include <stdlib.h>
4
5 #define Da 0.02
6 #define Db 20*Da
7 #define nx 3000
8 //#define ny 100
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9 #define dx 1.0
10 //#define dy 0.01
11 #define dt 1.0
12 #define timeSteps 150000
13
14 //void dmatrix_initial (float A[nx][ny]);
15 void fprintmatrix (float p[nx+2], FILE *f);
16 void pattern (float p[nx+2], float q[nx+2], FILE *f);
17 void tridag(float a[], float b[], float c[], float r[], float u[], ←↩

int n);
18 void neumannbc(float a[nx+2]);
19 float r1 , r3 , R1 , R3;// r2, r4;
20
21 int main(void)
22 {
23 /* defining required parameters and variables */
24
25 int i, n, nxx =300;
26 float ra , rb , a0 , b0 , rho , rho1 , ba;// bb; gamma , a, b, alpha , ←↩

u0, v0;
27 float a[nx+2], b[nx+2], f[nx], g[nx];
28 float a1[nx], b1[nx], c1[nx], d1[nx], t1[nx];
29 // float a2[ny], b2[ny], c2[ny], d2[ny], t2[ny];
30 float x, t;
31 FILE *fp, *fpo , *fpa , *fpb;
32
33 /* initializing the parameters and variables */
34
35 ba = 0.00001; //rho0 constant term activator
36 //bb = 0.0000; //rho’ constant term inhibitor
37 ra = 0.0100; //mu
38 rb = 0.0200; //nu
39 rho = 0.0100; // source density activator
40 rho1 = 0.0100; // source density inhibitor
41
42 a0 = (rb*rho)/(ra*rho1) + ba/ra;
43 b0 = (a0*a0*rho1)/rb;
44
45 r1 = Da*dt/(dx*dx); //r2 = dt/(dy*dy);
46 r3 = Db*dt/(dx*dx); //r4 = d*dt/(dy*dy);
47
48 /* Initialize concentration arrays and coupling terms*/
49
50 for(i=1; i<nx+1; i++)
51 {
52 //s[i-1] = 0.01*(1. + qc*(( float) rand()/RAND_MAX));
53 a[i] = a0;// + 0.1*(( float) rand()/( RAND_MAX /2) - 1.0);
54 b[i] = b0;// + 0.1*(( float) rand()/( RAND_MAX /2) - 1.0);
55 }
56
57 a[1] = 1000*a[1];
58 // a[nx] = 1000*a[nx];
59 /* initializing boundary values of concentrations using neumann ←↩

boundary conditions */
60
61 a[0] = a[2]; a[nxx+1] = a[nxx -1];
62 b[0] = b[2]; b[nxx+1] = b[nxx -1];
63 // neumannbc(a);
64 // neumannbc(b);
65
66 fp=fopen("a_initial.dat","w");
67
68 if(fp==NULL)
69 {
70 puts("cannot open file\n");
71 exit (1);
72 }
73
74 fpo=fopen("b_initial.dat","w");
75
76 if(fpo==NULL)
77 {
78 puts("cannot open file\n");
79 exit (1);
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80 }
81
82 x = 1.0;
83 for(i=1; i<nx+1; i++)
84 {
85 fprintf(fp ,"%d\t%f\n",(int) x, a[i]);
86 fprintf(fpo ,"%d\t%f\n",(int) x, b[i]);
87 x += dx;
88 }
89
90 fclose(fp);
91 fclose(fpo);
92
93 for(i=1; i<nxx+1; i++)
94 {
95 // h[i-1] = rho*u[i][j]*v[i][j]/(1+u[i][j]+K*u[i][j]*u[i][j]);
96 f[i-1] = (rho*a[i]*a[i])/b[i] - ra*a[i] + ba;
97 g[i-1] = rho1*a[i]*a[i] - rb*b[i];// + bb;
98 }
99

100 fp=fopen("evolve_a.dat","w");
101
102 if(fp==NULL)
103 {
104 puts("cannot open file");
105 exit (1);
106 }
107
108 fpo=fopen("evolve_b.dat","w");
109
110 if(fpo==NULL)
111 {
112 puts("cannot open file");
113 exit (1);
114 }
115
116 fpa=fopen("a_1000.dat","w");
117
118 if(fpa==NULL)
119 {
120 puts("cannot open file");
121 exit (1);
122 }
123
124 fpb=fopen("b_1000.dat","w");
125
126 if(fpb==NULL)
127 {
128 puts("cannot open file");
129 exit (1);
130 }
131
132 /* Begin time loop*/
133
134 for (n=1; n<= timeSteps; n++)
135 {
136 t = n*dt;
137 /* Printing concentrations at intermediate times*/
138
139 if(n%1000==0)
140 {
141 x = 1.0;
142 for(i=1; i<nx+1; i++)
143 {
144 fprintf(fp ,"%d\t%d\t%f\t0\t0\t%f\n",(int) x,(int) ←↩

t,a[i],a[i]-b[i]);
145 x += dx;
146 }
147
148 fprintf(fp ,"\n\n");
149
150 x = 1.0;
151 for(i=1; i<nx+1; i++)
152 {
153 fprintf(fpo ,"%d\t%d\t%f\t0\t0\n",(int) x,(int) t,b[i]);
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154 x += dx;
155 }
156
157 fprintf(fpo ,"\n\n");
158 }
159
160 // Printing concentrations at first 1000 timesteps
161
162 if(n <= 1000)
163 {
164 x = 1.0;
165 for(i=1; i<nxx +1; i++)
166 {
167 fprintf(fpa ,"%d\t%d\t%f\t0\t0\t%f\n",(int) x,(int) ←↩

t,a[i],a[i]-b[i]);
168 x += dx;
169 }
170
171 fprintf(fpa ,"\n\n");
172
173 x = 1.0;
174 for(i=1; i<nxx +1; i++)
175 {
176 fprintf(fpb ,"%d\t%d\t%f\t0\t0\n",(int) x,(int) t,b[i]);
177 x += dx;
178 }
179
180 fprintf(fpb ,"\n\n");
181 }
182
183 R1 = Da*dt/(2*x*dx);
184 R3 = Db*dt/(2*x*dx);
185
186 /* Thomas algorithm to update concentration values */
187
188
189 /* Initializing tridiagonal coefficients */
190
191 for(i=0; i<nxx; i++)
192 {
193 a1[i] = -0.5*r1 +0.5*R1;
194 b1[i] = 1 + r1;
195 c1[i] = -0.5*r1 -0.5*R1;
196 d1[i] = (0.5*r1 -0.5*R1)*a[i] + (1-r1)*a[i+1] + ←↩

(0.5*r1 +0.5*R1)*a[i+2] + dt*f[i];
197 }
198
199 /* update boundary coefficients for neumann bc*/
200
201 c1[0] = -r1 -R1;
202 a1[nxx -1] = -r1+R1;
203
204 /* Solving for tridiagonal matrix equation */
205
206 tridag(a1 ,b1 ,c1 ,d1 ,t1 ,nxx);
207
208 /*Back substitution: updating concentration a*/
209
210 for(i=0; i<nxx; i++)
211 a[i+1] = t1[i];
212
213 /* repeating the above procedure for concentration b*/
214
215 for(i=0; i<nxx; i++)
216 {
217 a1[i] = -0.5*r3 +0.5*R3;
218 b1[i] = 1 + r3;
219 c1[i] = -0.5*r3 -0.5*R3;
220 d1[i] = (0.5*r3 -0.5*R3)*b[i] + (1-r3)*b[i+1] + ←↩

(0.5*r3 +0.5*R3)*b[i+2] + dt*g[i];
221 }
222
223 c1[0] = -r3-R3;
224 a1[nxx -1] = -r3+R3;
225
226 tridag(a1 ,b1 ,c1 ,d1 ,t1 ,nxx);
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227
228 /*Back substitution: Updating concentrations b*/
229
230 for(i=0; i<nxx; i++)
231 b[i+1] = t1[i];
232
233 /*End of first half time step*/
234
235 /* Update coupling terms*/
236
237
238 for(i=1; i<nxx+1; i++)
239 {
240 //q = s[i-1]*a[i]*a[i];
241 f[i-1] = (rho*a[i]*a[i])/b[i] - ra*a[i] + ba;
242 g[i-1] = rho1*a[i]*a[i] - rb*b[i];// + bb;
243 }
244
245 /* Update boundary values */
246
247 a[0] = a[2]; a[nxx+1] = a[nxx -1];
248 b[0] = b[2]; b[nxx+1] = b[nxx -1];
249 // neumannbc(a);
250 // neumannbc(b);
251
252 if(n%7000==0 && nxx < nx)
253 nxx += 300;
254
255 }
256
257 fclose(fp);
258 fclose(fpo);
259
260 fpo=fopen("finala.dat","w");
261
262 if(fpo==NULL)
263 {
264 puts("cannot open file");
265 exit (1);
266 }
267
268 fp=fopen("finalb.dat","w");
269
270 if(fp==NULL)
271 {
272 puts("cannot open file");
273 exit (1);
274 }
275
276 fprintmatrix(a,fpo);
277 fprintmatrix(b,fp);
278
279 fclose(fpo);
280 fclose(fp);
281
282 fp=fopen("pattern_final.dat","w");
283
284 if(fp==NULL)
285 {
286 puts("cannot open file");
287 exit (1);
288 }
289
290 pattern(b,a,fp);
291
292 fclose(fp);
293
294 return 0;
295 }
296
297 void fprintmatrix (float p[nx+2], FILE *f)
298 {
299 int i;
300 float x;
301
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302 x = 1.0;
303 for(i=1; i<nx+1; i++)
304 {
305 fprintf(f,"%d\t%f\t0\t0\n",(int) x,p[i]);
306 x += dx;
307 }
308 }
309
310 void pattern (float p[nx+2], float q[nx+2], FILE *f)
311 {
312 int i;
313 float x, y;
314
315 x = 1.0;
316 for(i=1; i<nx+1; i++)
317 {
318 y = p[i] - q[i];
319 if(y > 0)
320 fprintf(f,"%d\t%f\t0\t0\n",(int) x, y);
321 else
322 fprintf(f,"%d\t0 .000000\ t0\t0\n",(int) x);
323
324 x += dx;
325 }
326 }
327
328 void tridag(float a[], float b[], float c[], float r[], float u[], ←↩

int n)
329 {
330 int j;
331
332 float bet , gam[n];
333
334 // gam=dvector(1,n);
335 if (b[0] == 0.0) printf("Error 1 in tridag\n");
336 u[0]=r[0]/( bet=b[0]);
337 for (j=1;j<n;j++) {
338 gam[j]=c[j-1]/ bet;
339 bet=b[j]-a[j]*gam[j];
340 if (bet == 0.0) printf("Error 2 in tridag\n");
341 u[j]=(r[j]-a[j]*u[j-1])/bet;
342
343 }
344
345 for (j=(n-2);j>=0;j--)
346 u[j] -= gam[j+1]*u[j+1];
347 // free_dvector(gam ,1,n);
348 }
349
350 void neumannbc(float a[nx+2])
351 {
352
353 a[0]=a[2];
354 a[nx+1]=a[nx -1];
355 }

B.2.2 m = m
′

= 1

m1.c

1 #include <stdio.h>
2 #include <math.h>
3 #include <stdlib.h>
4
5 #define Da 0.02
6 #define Db 20*Da
7 #define nx 3000
8 //#define ny 100
9 #define dx 1.0

10 //#define dy 0.01
11 #define dt 1.0
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12 #define PI 3.14159265
13 #define timeSteps 150000
14
15 //void dmatrix_initial (float A[nx][ny]);
16 void fprintmatrix (float p[nx+2], FILE *f);
17 void pattern (float p[nx+2], float q[nx+2], FILE *f);
18 void tridag(float a[], float b[], float c[], float r[], float u[], ←↩

int n);
19 void neumannbc(float a[nx+2]);
20 float r1 , r3 , R1 , R3;// r2, r4;
21
22 int main(void)
23 {
24 /* defining required parameters and variables */
25
26 int i, n, nxx =300;
27 float ra , rb , a0 , b0 , rho , rho1 , ba;// bb; gamma , a, b, alpha , ←↩

u0, v0;
28 float a[nx+2], b[nx+2], f[nx], g[nx];
29 float a1[nx], b1[nx], c1[nx], d1[nx], t1[nx];
30 // float a2[ny], b2[ny], c2[ny], d2[ny], t2[ny];
31 float x, t, e, m, c;
32 FILE *fp, *fpo , *fpa , *fpb;
33
34 /* initializing the parameters and variables */
35
36 ba = 0.00001; //rho0 constant term activator
37 //bb = 0.0000; //rho’ constant term inhibitor
38 ra = 0.0100; //mu
39 rb = 0.0200; //nu
40 rho = 0.0100; // source density activator
41 rho1 = 0.0100; // source density inhibitor
42 e = cos(PI/6);
43 m = sin(PI/6);
44 c = 1/sqrt (2*PI);
45 a0 = (rb*rho)/(ra*rho1*c*e) + (ba*e)/(ra*c);
46 b0 = (a0*a0*rho1*c*e)/rb;
47
48 r1 = Da*dt/(dx*dx); //r2 = dt/(dy*dy);
49 r3 = Db*dt/(dx*dx); //r4 = d*dt/(dy*dy);
50
51 /* Initialize concentration arrays and coupling terms*/
52
53 for(i=1; i<nx+1; i++)
54 {
55 //s[i-1] = 0.01*(1. + qc*(( float) rand()/RAND_MAX));
56 a[i] = a0;// + 0.1*(( float) rand()/( RAND_MAX /2) - 1.0);
57 b[i] = b0;// + 0.1*(( float) rand()/( RAND_MAX /2) - 1.0);
58 }
59
60 a[1] = 1000*a[1];
61 // a[nx] = 1000*a[nx];
62 /* initializing boundary values of concentrations using neumann ←↩

boundary conditions */
63
64 a[0] = a[2]; a[nxx+1] = a[nxx -1];
65 b[0] = b[2]; b[nxx+1] = b[nxx -1];
66 // neumannbc(a);
67 // neumannbc(b);
68
69 fp=fopen("a_initial.dat","w");
70
71 if(fp==NULL)
72 {
73 puts("cannot open file\n");
74 exit (1);
75 }
76
77 fpo=fopen("b_initial.dat","w");
78
79 if(fpo==NULL)
80 {
81 puts("cannot open file\n");
82 exit (1);
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83 }
84
85 x = 1.0;
86 for(i=1; i<nx+1; i++)
87 {
88 fprintf(fp ,"%d\t%f\n",(int) x, a[i]);
89 fprintf(fpo ,"%d\t%f\n",(int) x, b[i]);
90 x += dx;
91 }
92
93 fclose(fp);
94 fclose(fpo);
95
96 for(i=1; i<nxx+1; i++)
97 {
98 // h[i-1] = rho*u[i][j]*v[i][j]/(1+u[i][j]+K*u[i][j]*u[i][j]);
99 f[i-1] = (rho*a[i]*a[i])/b[i] - ra*a[i] - (Da*c*a[i])/(x*x) ←↩

+ (ba*e)/c - (ba*m)/(c*a[i]);
100 g[i-1] = rho1*a[i]*a[i]*c*e - rb*b[i] - (Db*c*b[i])/(x*x) + ←↩

(rho1*a[i]*a[i]*c*m)/b[i];// + bb;
101 }
102
103 fp=fopen("evolve_a.dat","w");
104
105 if(fp==NULL)
106 {
107 puts("cannot open file");
108 exit (1);
109 }
110
111 fpo=fopen("evolve_b.dat","w");
112
113 if(fpo==NULL)
114 {
115 puts("cannot open file");
116 exit (1);
117 }
118
119 fpa=fopen("a_1000.dat","w");
120
121 if(fpa==NULL)
122 {
123 puts("cannot open file");
124 exit (1);
125 }
126
127 fpb=fopen("b_1000.dat","w");
128
129 if(fpb==NULL)
130 {
131 puts("cannot open file");
132 exit (1);
133 }
134
135 /* Begin time loop*/
136
137 for (n=1; n<= timeSteps; n++)
138 {
139 t = n*dt;
140 /* Printing concentrations at intermediate times*/
141
142 if(n%1000==0)
143 {
144 x = 1.0;
145 for(i=1; i<nx+1; i++)
146 {
147 fprintf(fp ,"%d\t%d\t%f\t0\t0\t%f\n",(int) x,(int) ←↩

t,a[i],a[i]-b[i]);
148 x += dx;
149 }
150
151 fprintf(fp ,"\n\n");
152
153 x = 1.0;
154 for(i=1; i<nx+1; i++)
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155 {
156 fprintf(fpo ,"%d\t%d\t%f\t0\t0\n",(int) x,(int) t,b[i]);
157 x += dx;
158 }
159
160 fprintf(fpo ,"\n\n");
161 }
162
163 // Printing concentrations at first 1000 timesteps
164
165 if(n <= 1000)
166 {
167 x = 1.0;
168 for(i=1; i<nxx +1; i++)
169 {
170 fprintf(fpa ,"%d\t%d\t%f\t0\t0\t%f\n",(int) x,(int) ←↩

t,a[i],a[i]-b[i]);
171 x += dx;
172 }
173
174 fprintf(fpa ,"\n\n");
175
176 x = 1.0;
177 for(i=1; i<nxx +1; i++)
178 {
179 fprintf(fpb ,"%d\t%d\t%f\t0\t0\n",(int) x,(int) t,b[i]);
180 x += dx;
181 }
182
183 fprintf(fpb ,"\n\n");
184 }
185
186 R1 = Da*dt/(2*x*dx);
187 R3 = Db*dt/(2*x*dx);
188
189 /* Thomas algorithm to update concentration values */
190
191
192 /* Initializing tridiagonal coefficients */
193
194 for(i=0; i<nxx; i++)
195 {
196 a1[i] = -0.5*r1 +0.5*R1;
197 b1[i] = 1 + r1;
198 c1[i] = -0.5*r1 -0.5*R1;
199 d1[i] = (0.5*r1 -0.5*R1)*a[i] + (1-r1)*a[i+1] + ←↩

(0.5*r1 +0.5*R1)*a[i+2] + dt*f[i];
200 }
201
202 /* update boundary coefficients for neumann bc*/
203
204 c1[0] = -r1 -R1;
205 a1[nxx -1] = -r1+R1;
206
207 /* Solving for tridiagonal matrix equation */
208
209 tridag(a1 ,b1 ,c1 ,d1 ,t1 ,nxx);
210
211 /*Back substitution: updating concentration a*/
212
213 for(i=0; i<nxx; i++)
214 a[i+1] = t1[i];
215
216 /* repeating the above procedure for concentration b*/
217
218 for(i=0; i<nxx; i++)
219 {
220 a1[i] = -0.5*r3 +0.5*R3;
221 b1[i] = 1 + r3;
222 c1[i] = -0.5*r3 -0.5*R3;
223 d1[i] = (0.5*r3 -0.5*R3)*b[i] + (1-r3)*b[i+1] + ←↩

(0.5*r3 +0.5*R3)*b[i+2] + dt*g[i];
224 }
225
226 c1[0] = -r3-R3;
227 a1[nxx -1] = -r3+R3;
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228
229 tridag(a1 ,b1 ,c1 ,d1 ,t1 ,nxx);
230
231 /*Back substitution: Updating concentrations b*/
232
233 for(i=0; i<nxx; i++)
234 b[i+1] = t1[i];
235
236 /*End of first half time step*/
237
238 /* Update coupling terms*/
239
240
241 for(i=1; i<nxx+1; i++)
242 {
243 //q = s[i-1]*a[i]*a[i];
244 f[i-1] = (rho*a[i]*a[i])/b[i] - ra*a[i] - ←↩

(Da*c*a[i])/(x*x) + (ba*e)/c - (ba*m)/(c*a[i]);
245 g[i-1] = rho1*a[i]*a[i]*c*e - rb*b[i] - (Db*c*b[i])/(x*x) ←↩

+ (rho1*a[i]*a[i]*c*m)/b[i];// + bb;
246 }
247
248 /* Update boundary values */
249
250 a[0] = a[2]; a[nxx+1] = a[nxx -1];
251 b[0] = b[2]; b[nxx+1] = b[nxx -1];
252 // neumannbc(a);
253 // neumannbc(b);
254
255 if(n%7000==0 && nxx < nx)
256 nxx += 300;
257
258 }
259
260 fclose(fp);
261 fclose(fpo);
262
263 fpo=fopen("finala.dat","w");
264
265 if(fpo==NULL)
266 {
267 puts("cannot open file");
268 exit (1);
269 }
270
271 fp=fopen("finalb.dat","w");
272
273 if(fp==NULL)
274 {
275 puts("cannot open file");
276 exit (1);
277 }
278
279 fprintmatrix(a,fpo);
280 fprintmatrix(b,fp);
281
282 fclose(fpo);
283 fclose(fp);
284
285 fp=fopen("pattern_final.dat","w");
286
287 if(fp==NULL)
288 {
289 puts("cannot open file");
290 exit (1);
291 }
292
293 pattern(b,a,fp);
294
295 fclose(fp);
296
297 return 0;
298 }
299
300 void fprintmatrix (float p[nx+2], FILE *f)
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301 {
302 int i;
303 float x;
304
305 x = 1.0;
306 for(i=1; i<nx+1; i++)
307 {
308 fprintf(f,"%d\t%f\t0\t0\n",(int) x,p[i]);
309 x += dx;
310 }
311 }
312
313 void pattern (float p[nx+2], float q[nx+2], FILE *f)
314 {
315 int i;
316 float x, y;
317
318 x = 1.0;
319 for(i=1; i<nx+1; i++)
320 {
321 y = p[i] - q[i];
322 if(y > 0)
323 fprintf(f,"%d\t%f\t0\t0\n",(int) x, y);
324 else
325 fprintf(f,"%d\t0 .000000\ t0\t0\n",(int) x);
326
327 x += dx;
328 }
329 }
330
331 void tridag(float a[], float b[], float c[], float r[], float u[], ←↩

int n)
332 {
333 int j;
334
335 float bet , gam[n];
336
337 // gam=dvector(1,n);
338 if (b[0] == 0.0) printf("Error 1 in tridag\n");
339 u[0]=r[0]/( bet=b[0]);
340 for (j=1;j<n;j++) {
341 gam[j]=c[j-1]/ bet;
342 bet=b[j]-a[j]*gam[j];
343 if (bet == 0.0) printf("Error 2 in tridag\n");
344 u[j]=(r[j]-a[j]*u[j-1])/bet;
345
346 }
347
348 for (j=(n-2);j>=0;j--)
349 u[j] -= gam[j+1]*u[j+1];
350 // free_dvector(gam ,1,n);
351 }
352
353 void neumannbc(float a[nx+2])
354 {
355
356 a[0]=a[2];
357 a[nx+1]=a[nx -1];
358 }
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