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Ĥ : An element 1
H

∑
h∈H h of the group algebra F[G] for a subgroup H of G.



Q(χ) : The field obtained by adjoining χ(g); g ∈ G to Q.

Gal(Q(χ)/Q) : The Galois group of field extension Q(χ) of Q.

e(χ) : The primitive central idempotent of C[G] corresponding to χ.

eQ(χ) : The primitive central idempotent of Q[G] corresponding to χ.

tr(e) : Trace of an idempotent e.

G64 :
The special 2-group associated to q(w, x, y, z) =

(z2 + wx+ wz + xy,wy).

G128 :
The special 2-group associated to q(w, x, y, z) =

(wx+ yz, wy, xy).

G256 :
The special 2-group associated to q(w, x, y, z, t) =

(wx+ wt+ yz, wy,wt+ xy).

G512 :
The special 2-group associated to q(w, x, y, z, t) =

(wx+ yz, wy, xy, wt).





List of Tables

2.1 Arf Invariant for associated quadratic form and type of representation of

degree at least 2 for extraspecial 2-groups. . . . . . . . . . . . . . . . . . . . 30

2.2 ∆(G,G′) for an extraspecial 2-group G. . . . . . . . . . . . . . . . . . . . . 33

3.1 Special 2-group G defined in example 3.2.6 is not real. . . . . . . . . . . . . 39

4.1 Special 2-group G associated to q(x, y, z) = (x2 +xy+y2, xz) is not strongly

real. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 The group D4 is strongly real. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 The group Q2 ◦D(n−1)
4 is strongly real. . . . . . . . . . . . . . . . . . . . . . 48

4.4 The group Q2 is real. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 The group G64 is strongly real. . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 The group G128 is real. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 The group G128 is not strongly real. . . . . . . . . . . . . . . . . . . . . . . 54

4.8 The group G256 is not strongly real. . . . . . . . . . . . . . . . . . . . . . . 56

4.9 The group G256 is real. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.10 The group G512 is not strongly real. . . . . . . . . . . . . . . . . . . . . . . 58

4.11 The group G512 is real. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.12 Totally orthogonal groups which are not strongly real up to order 128. . . . 61

4.13 Strongly real groups which are not totally orthogonal up to order 128. . . . 62

5.1 Character values for characters of degree at least 2 of real special 2-groups. 75

5.2 Conjugacy classes of real special 2-groups. . . . . . . . . . . . . . . . . . . . 77

5.3 The group G defined in the example 5.4.1 is real. . . . . . . . . . . . . . . . 78

5.4 Calculation of rad(bs◦q) for all non zero s ∈ HomF2
(W,F2) and q associated

to group G defined in example 5.4.1. . . . . . . . . . . . . . . . . . . . . . . 79

vii



5.5 Conjugacy classes of group G defined in example 5.4.1. . . . . . . . . . . . . 79

5.6 Characters of degree at least 2 of group G defined in example 5.4.1. . . . . 80

5.7 character table of group G defined in example 5.4.1. . . . . . . . . . . . . . 80

5.8 The group G defined in the example 5.4.2 is real. . . . . . . . . . . . . . . . 81

5.9 Calculation of rad(bs◦q) for all non zero s ∈ HomF2(W,F2) and q associated

to group G defined in example 5.4.2. . . . . . . . . . . . . . . . . . . . . . . 82

5.10 Conjugacy classes of group G defined in example 5.4.2. . . . . . . . . . . . . 83

5.11 Characters of degree at least 2 of group G defined in example 5.4.2. . . . . 83

6.1 Computation of non-commutative part of Wedderburn decomposition of

Q[G] for group G defined in example 5.4.1. . . . . . . . . . . . . . . . . . . 93

6.2 Computation of non-commutative part of Wedderburn decomposition of

Q[G] for group G defined in example 5.4.2. . . . . . . . . . . . . . . . . . . 94

6.3 The group G1 defined in example 6.3.1 is real. . . . . . . . . . . . . . . . . . 95

6.4 Calculation of rad(bs◦q) for all non zero s ∈ HomF2
(W,F2) and q associated

to group G1 defined in example 6.3.1. . . . . . . . . . . . . . . . . . . . . . 95

6.5 Computation of non-commutative part of Wedderburn decomposition of

Q[G1] for group G1 defined in example 6.3.1. . . . . . . . . . . . . . . . . . 96

6.6 The group G2 defined in example 6.3.2 is real. . . . . . . . . . . . . . . . . . 96

6.7 Calculation of rad(bs◦q) for all non zero s ∈ HomF2
(W,F2) and q associated

to group G2 defined in example 6.3.2. . . . . . . . . . . . . . . . . . . . . . 97

6.8 Computation of non-commutative part of Wedderburn decomposition of

Q[G2] for group G2 defined in example 6.3.2. . . . . . . . . . . . . . . . . . 97

6.9 Conjugacy classes and order of their elements of group G1. . . . . . . . . . 98

6.10 Conjugacy classes and order of their elements of group G2. . . . . . . . . . 99



Introduction

In this thesis main objects of study are special 2-groups. A finite 2-group G is called a

special 2-group if its commutator subgroup, the Frattini subgroup and the center, all three

coincide and are isomorphic to an elementary abelian group. Nonabelian groups of order

8 are the simplest examples of special 2-groups. Much sophisticated examples of special

2-groups include Sylow 2-subgroups of Suzuki groups. We derive our interest in special

2-groups for the following reason.

• Special 2-groups can be described in terms of quadratic maps between vector spaces

over fields of characteristic 2. This allows one to use the theory of quadratic forms

over such fields to study special 2-groups. Therefore it is interesting to identify

group theoretic properties which can be studied this way.

Zahinda in [Zah11] used quadratic maps to study totally orthogonal special 2-groups.

In this thesis we explore it further to study various representation theoretic aspects of

special 2-groups.

Study of determining the types of complex representations of groups is related to,

but not equivalent to, the study of strongly real groups. For example in [Gow76], Gow

mentioned that central product of dihedral group of order 8 and quaternion group of

order 8 is a strongly real group with symplectic representation. In this thesis we grossly

generalize this example and produce examples of strongly real special 2-groups which

afford symplectic complex representations. We also tackle the question in the reverse

direction and produce examples of real special 2-groups supporting orthogonal complex

representations only, without being strongly real. These phenomena are not commonly

exhibited by groups. That makes special 2-groups interesting.

ix



It turns out that many representation theoretic properties of special 2-groups can be

studied using the description of such groups in terms of quadratic maps. In particular, in

this thesis we obtain methods to determine complex representations, characters, conjugacy

classes and rational Wedderburn decomposition of real special 2-groups using quadratic

maps between vector spaces over fields of characteristic 2.

Organization of the thesis

This thesis is organized into two parts. In first part we summarize results which were

already known before and in the second part we describe results obtained in the thesis.

There are six chapters, three chapters in each part, altogether.

In chapter 1, we discuss the basic results of theory of quadratic forms over fields of char-

acteristic 2 and representation theory. We also discuss the connection between quadratic

maps over fields of characteristic 2, special 2-groups and second cohomology groups. Since

extraspecial 2-groups are building blocks of real special 2-groups, in chapter 2, we collect

the results for extraspecial 2-groups such as their classification, representations and more.

The chapter 3 deals with characterization of real special 2-groups and characterization of

totally orthogonal special 2-groups.

In chapter 4, we give the infinite class of groups for which neither the notion of strong

reality and total orthogonality implies the other. In chapter 5, we provide a method

to construct the character table of real special 2-groups using only the quadratic map

associated to the group. The chapter 6 concerns with the Wedderburn decomposition of

rational group algebra of real special 2-groups.

Definitions

The aim of this introductory section on definitions is to briefly recall terminology that is

going to be used throughout the thesis. These definitions will be explained in much detail

later in the thesis chapters as and when required. A separate list of notations is provided

soon after table of contents.



Let G be a finite group. A group G is said to be real if every element of G conjugate

to its inverse. An element g ∈ G is called strongly real if either g is of order 2 or equals

the product of two elements of order 2. A group is called strongly real if all its elements

are strongly real. It is evident that every strongly real group is real.

A complex representation ρ : G→ GL(U) is said to be real if its associated character

is real valued. It is said to be realizable over R if the vector space U admits an R-subspace

U0 such that U = U0 ⊗R C and U0 is stable under ρ(G). If a complex representation is

realizable over R then the corresponding character is real valued. A group is real if and only

if all its representations are real. However, a real group may admit complex representations

which are not realizable over R. Such representations of real groups are called symplectic.

A real representation which is realizable over R is called an orthogonal representation. A

group is said to be totally orthogonal if its all representations are orthogonal.

Let K be a field and G be a group. We denote by K[G] the set of all formal finite

linear combinations of the form α =
∑

g∈G αgg for αg ∈ K and g ∈ G. The set K[G], with

component wise addition and with multiplication derived from the multiplication of group

G forms an algebra. We call K[G] the group algebra of G over K.

The element e of K[G] is called idempotent if e2 = e. An idempotent e is called

primitive central idempotent if it lies in the center of K[G] and it can not be written as

e = e′ + e′′, where e′ and e′′ are non zero idempotents such that e′e′′ = 0.

A theorem of Maschke states that for a finite group G and the field K, the group

algebra K[G] is semisimple if and only if char(K) does not divide |G|. The decomposition

of semisimple group algebra K[G] as direct sum of its simple ideals is called the Wedderburn

decomposition of K[G].

Let F be a field of characteristic 2. Let V and W be vector spaces over F. A map

q : V → W is called a quadratic map if q(αv) = α2q(v) for all v ∈ V and α ∈ F and the

map bq : V × V → W given by bq(v, w) := q(v + w) − q(v) − q(w) is F-bilinear for all

v, w ∈ V . The pair (V, q) is called a quadratic space over F. The subspace rad(bq) := {w ∈
V : bq(v, w) = 0 ∀v ∈ V } is called the radical of (V, q). The quadratic space (V, q) is called

regular if rad(bq) = 0.



Main results

In this section we state the main results that have been obtained in this thesis.

It is well known that the number of real irreducible representations of a group equals

the number of its real conjugacy classes [[JL01], Th. 11.12]. However, a natural bijec-

tion between real irreducible representations and real conjugacy classes remains an open

problem.

According to a conjecture of Tiep a finite simple group is strongly real if and only if

it is totally orthogonal. There are many classes of groups which are strongly real as well

as totally orthogonal and those which are neither. For example:

1. A symmetric groups Sn is strongly real as well as totally orthogonal.

2. Alternating groups An are real if and only if n = 1, 2, 5, 6, 10, 14 [Ber69, Th. 1.2].

All real classes of An are strongly real [Sul08, §3, corollary 3]. Moreover its all real

representations are totally orthogonal [Tur92, Th. 1.1].

3. All real classes of general linear group GLn(q) are strongly real [Won66, Th. 1]

and all its real representations are orthogonal [Pra98, Th. 4]. Therefore in GLn(q),

the number of conjugacy classes of strongly real elements is same as the number of

orthogonal characters.

4. The special linear group SL2(q) is strongly real as well as totally orthogonal when

q is even and it is neither strongly real nor totally orthogonal when q is odd [KS11,

5.3].

5. The orthogonal group On(q) is strongly real [Won66] as well as totally orthogonal

[Gow85, Th. 1].

6. A real group whose Sylow 2-subgroups are abelian is strongly real as well as totally

orthogonal. [Arm96, Cor. 11, Th. 12]

In thesis we exhibit an infinite class of groups, for which neither of the notions of

strong reality and total orthogonality imply the other. These examples lie in the class of

special 2-groups.



Let F2 denote the field with two elements and G be a special 2-group. Then the center

Z(G) and the quotient group G
Z(G) are elementary abelian 2-groups. We can therefore

consider them as vector spaces over the field F2. The map q : G
Z(G) → Z(G) given by

q(gZ(G)) = g2 for all g ∈ G is a regular quadratic map [[Zah08], Th. 3.4.11]. This map

is called the quadratic map associated to the special 2-group. Conversely, for a regular

quadratic map q : V → W such that 〈bq(V × V )〉 = W there exist a special 2-group,

unique up to isomorphism, such that V = G
Z(G) and W = Z(G) [[Zah11], Th. 1.4]. This

group is called special 2-group associated to the quadratic map q : V →W .

As a set special 2-group associated to the quadratic map q : V →W is same as V ×W
and its group operation is given in remark 1.3.10.

The theory of quadratic maps over fields of characteristic 2 plays an crucial role in

checking properties of special 2-groups. The one to one correspondence between regular

quadratic maps with special 2-groups is utilized to study the properties of these groups.

The first result obtained in the thesis is the characterization of strongly real special 2-

groups.

Theorem 1. Let q : V →W be a regular quadratic map with 〈bq(V × V )〉 = W and G be

the special 2-group associated to q such that V = G
Z(G) , W = Z(G) and q(xZ(G)) = x2.

Then G is strongly real if and only if for every nonzero v ∈ V there exists a ∈ V with

v 6= a and q(a) = q(a− v) = 0.

In [Zah11], Zahinda gives a characterization of totally orthogonal special 2-groups. We

use this characterization (see Th. 3.2.7) and Th. 1 to get the following results:

Theorem 2. For every m ≥ 5 there exist special 2-groups of order 2m which are strongly

real but not totally orthogonal.

Theorem 3. For every m ≥ 7 there exist special 2-groups of order 2m which are totally

orthogonal but not strongly real.

The following lemma is useful in achieving this result.

Lemma 4. Let G1 and G2 be special 2-groups such that Z(G1) is isomorphic to Z(G2).

Let q1 : V1 → W1 and q2 : V2 → W2 be the regular quadratic maps associated to special 2-

groups G1 and G2, respectively. Let θ : W1 →W2 be an isomorphism of F2-vector spaces.



Then q1 ⊥θ q2 : V1⊕V2 →W2 defined by (q1 ⊥θ q2)(v1, v2) = θ(q1(v1))+q2(v2) is a regular

quadratic map and the group associated to q1 ⊥θ q2 is G1 ◦θ G2, where G1 ◦θ G2 denotes

the central product of G1 and G2 with their centers identified through isomorphism θ.

We notice that the quadratic map associated to special 2-groups gives a lot of in-

formation about the types of representations of these groups. This motivates us to

explore the description of special 2-group as quadratic map to provide a method for

constructing the complex character table of a real special 2-groups. Our methods to

compute representations, characters and conjugacy classes can be implemented directly

on the quadratic maps associated to special 2-groups. These methods are based on the

understanding of representations of extraspecial 2-groups.

Let us fix some notations required to state the result. Let G be a special 2-group and

q : V → W be the quadratic map associated to G. For a non-zero s ∈ HomF2
(W,F2) the

composition s ◦ q is called the transfer of q by s. If s ◦ q vanishes on rad(bs◦q) then s ◦ q
induces a regular quadratic form qs : V/ rad(bs◦q) → F2 [[Zah11] Prop. 1.5]. We denote

by Gs the extraspecial 2-group associated to qs. Following proposition is a refinement in

a result of Zahinda [Zah11, Prop. 3.3].

Proposition 5. Let G be a real special 2-group and q : V → W be the quadratic

map associated to G. Then for every non-zero s ∈ HomF2
(W,F2) there exist exactly

|(rad(bs◦q))| number of inequivalent irreducible representations ϕ of degree at least 2 of G

such that ϕ(G) = Gs.

It is well known result that every extraspecial 2-group has a unique faithful represen-

tation of degree at least 2. We construct |(rad(bs◦q))| number of surjective homomorphism

from real special 2-group G to extraspecial 2-group Gs. Then we compose these homo-

morphisms with unique representation of degree at least 2 of Gs to get the inequivalent

irreducible representations of degree at least 2 of G, whose images are isomorphic to Gs.

Therefore representations of degree at least 2 of real special 2-groups associated to a

quadratic map q : V →W are indexed by (HomF2
(W,F2)\{0})× rad(bs◦q).

For a non-zero s ∈ HomF2
(W,F2), let ϕs,i; 1 ≤ i ≤ | rad(bs◦q)| be inequivalent

irreducible representations ϕ of degree at least 2 such that ϕ(G) = Gs. Let χs,i be

the character afforded by the representation ϕs,i. As a set special 2-group G is same as



V ×W . We denote the elements of G by (v, w) ∈ V ×W . The following theorem computes

the character χs,i at all elements of G.

Theorem 6. Let G be a real special 2-group and q : V → W be the quadratic map

associated to G. Let s ∈ HomF2
(W,F2). Then

1. χs,i(v, w) 6= 0 if and only if v ∈ rad(bs◦q).

2. For (0, w) ∈ G we have

χs,i(0, w) =

{
2l if s(w) = 0

−2l if s(w) = 1

where l is defined by |Gs| = 22l+1.

3. Let {v1, v2, · · · vk} be a basis of rad(bs◦q). Then

χs,i(vj , 0) =

{
−2l if Aj,i = 1

2l if Aj,i = 0

where Aj,i denotes the coefficient of 2j in the binary expansion i− 1 =
∑k−1

j=0 Aj,i2
j.

4. Let g ∈ G be an element with g =
∏r
j=1(vij , 0)(0, w) for 1 ≤ i1 < i2 < · · · < ir ≤ k

then

χs,i(g) =
r∏
j=1

sign(χs,i(vij , 0)). sign(χs,i(0, w)).2l

The proof of above theorem follows from the following two facts:

1. The character χs,i of degree at least 2 of G is composition of the homomorphism

from G to Gs and the unique character of degree at least 2 of extraspecial 2-group

Gs.

2. The character of degree at least 2 of an extraspecial 2-group vanishes outside the

center of the group.

We know that characters of a group are class functions. To complete the character

table of a group, we need to know the conjugacy classes of group. It is good to have

description of conjugacy classes of real special 2-groups in terms of quadratic maps. The

following result gives us the same.



Theorem 7. Let G be real special 2-group and q : V →W be quadratic map associated to

G.

1. Let v ∈ V . If v /∈ rad(bs◦q) for all non-zero linear maps s : W → F2 then {(v, w) :

w ∈W} is a conjugacy class of G.

2. Let v ∈ V and Sv := {s ∈ HomF2
(Z(G),F2) : v ∈ rad(bs◦q)}. Then the conjugacy

class of element (v, w) ∈ G is {(v, w + w′) : s(w′) = 0 for all s ∈ Sv}.

We know that for two element g, h of a group G and for all irreducible characters χ of

G, χ(g) = χ(h) if and only if g and h are conjugate elements in G. We use this fact and

Th. 6 to prove Th. 7.

In the thesis we also establish the utility of the quadratic map associated to a real spe-

cial 2-group in determining the Wedderburn decomposition of its rational group algebra.

It is well known fact that there is one-to-one correspondence between irreducible

characters of a group and primitive central idempotents of its group algebra [Yam74].

The determination of Wedderburn decomposition involves the computation of primitive

central idempotents. We denote the primitive central idempotent of Q[G] by eQ(χ),

where χ is an irreducible character of G. For a finite subgroup H of G, we denote

Ĥ :=
1

|H|
∑
h∈H

h ∈ Q[G].

Proposition 8. Let G be real special 2-group.

1. Let χ be a one dimensional character of G. If χ is trivial character then eQ(χ) = Ĝ,

otherwise eQ(χ) = k̂er(χ)− Ĝ.

2. Let χ be a character of degree at least 2 of G and Z(χ) := {g ∈ G : |χ(g)| = χ(1)}.
Then eQ(χ) = k̂er(χ)− Ẑ(χ).

The proof of above result is very simple. It follows from the definition of primitive

central idempotents using the properties of real special 2-groups and of its characters.

To determine Wedderburn decomposition of rational group algebra of real special 2-

groups, we use Wedderburn decomposition of rational group algebra of extraspecial 2-

groups, which is known [[VL06], Prop. 3.4]. The non-commutative part ∆(G,G′) of



the decomposition is given by Prop. 2.3.6. The following result gives the Wedderburn

decomposition of rational group algebra Q[G] of real special 2-group G.

Theorem 9. Let G be a real special 2-group and |G| = 2n, |Z(G)| = 2m. Let q be quadratic

map associated to group G and sj : Z(G)→ F2, 1 ≤ j ≤ 2m−1 be non-zero linear maps and

qsj is regular quadratic form. Let Gsj , 1 ≤ j ≤ 2m − 1 be extraspecial 2-groups associated

to quadratic forms qsj , 1 ≤ j ≤ 2m − 1 and |Gsj | = 22lj+1. Then

Q[G] ∼= 2n−mQ⊕
2m−1⊕
j=1

2n−m−2li∆(Gsj , Gs′j )

Here ∆(Gsj , G
′
sj ) denotes the non commutative part of Wedderburn decomposition of

Q[Gsj ].

The crucial step in the proof of above theorem is the computation that establishes

that the ideal of Q[G] generated by idempotent eQ(χ) is isomorphic to the ideal of Q[Gsj ]

generated by the idempotent eQ(χsj ). Here eQ(χ) and eQ(χsj ) denote the idempotent

corresponding to character χ of group G and character χsj of degree at least 2 of group Gsj .

Another interesting problem in the theory of group rings is whether the rational group

algebra Q[G] determines up to isomorphism, the group G. In [San81], it is mentioned that

the isomorphism problem was formulated by G. Higman for Integral group rings in his

PhD thesis [Hig40]. The rational group algebra of extraspecial 2-groups determines the

group up to isomorphism [VL06]. As consequence of Th. 9 we show that this is not the

case for real special 2-groups. We explicitly show this by giving the examples of two real

special 2-groups G1 and G2 such that Q[G1] ∼= Q[G2] but G1 � G2.
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Chapter 1

Preliminaries

This chapter is divided into three sections. In §1.1 we discuss basic results of the theory of

quadratic forms over fields of characteristic 2. In §1.2 we collect the definitions and results

concerning basics of representation theory. In §1.3 we discuss the connection between

quadratic maps over fields of characteristic 2, special 2-groups and second cohomology

groups. In the end we obtain the correspondence between central products of special 2-

groups and orthogonal sums of their associated quadratic maps.

1.1 Quadratic forms over fields of characteristic 2

Let F be a field of characteristic 2. Let V and W be finite dimensional vector spaces over

F.

Definition 1.1.1. A map b : V × V → W is called F-bilinear if it satisfies the following

properties:

1. b(αv1 + βv2, w) = αb(v1, w) + βb(v2, w) for all v1, v2, w ∈ V and α, β ∈ F.

2. b(v, αw1 + βw2) = αb(v, w1) + βb(v, w2) for all v, w1, w2 ∈ V and α, β ∈ F

Definition 1.1.2. A map q : V →W is called a quadratic map if

1. q(αv) = α2q(v) for all v ∈ V

2. The map bq : V × V →W given by bq(v, w) := q(v +w)− q(v)− q(w) is F-bilinear.

3
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For a quadratic map q the map bq is called the polar map of q. A bilinear map bq is

called alternating if bq(v, v) = 0 for all v ∈ V .

Definition 1.1.3. A quadratic map q : V → W is said to be a quadratic form if W = F.

A bilinear map bq : V × V → W is said to be a bilinear form if W = F. For a quadratic

form q : V → F, the pair (V, q) is called the quadratic space over F.

Definition 1.1.4. Let V be a 2n-dimensional vector space over F and b : V ×V → F be a

bilinear form. A basis {e1, f1, · · · , en, fn} of V is called symplectic if b(ei, ej) = b(fi, fj) =

0, b(ei, fi) = b(fi, ei) = 1 and b(ei, fj) = b(fi, ej) = 0 for all i 6= j.

Remark 1.1.5 Every alternating bilinear form b : V × V → F has a symplectic basis

(see [Sch85, p. 264, th. 8.1]).

If B = {e1, e2, · · · , en} is a basis of V then any n×n matrix Q satisfying q(x) = xtQx,

where x ∈ V is indeterminate column vector and xt denotes the transpose of x, is called

a matrix of q with respect to basis B.

Every matrix of q with respect to same basis is of the form Q + A, where A is an

alternating matrix and Q is the unique upper triangular matrix of q with respect to basis

B. If we change the basis and T is transition matrix for this change of basis then upper

triangular matrix of q with respect to new basis is T tQT . The matrix of bq is the alternating

matrix Q+Qt.

Definition 1.1.6. Two n-dimensional quadratic spaces (V1, q1) and (V2, q2) over F are

said to be isometric if there exists an F-linear isomorphism T : V1 → V2 such that q1(v) =

q2(T (v)) for all v ∈ V . Isometry between two quadratic spaces is denoted by (V1, q1) '
(V2, q2) or simply q1 ' q2.

Definition 1.1.7. A quadratic space (V, q) is called the orthogonal sum of (V1, q1) and

(V2, q2) if V = V1 ⊕ V2 and q(v) = q1(v1) + q2(v2), where v = (v1, v2) ∈ V is an arbitrary

element of V . In this case we write q = q1⊥q2.

Conversely, let (V, q) be a quadratic space and Vi, 1 ≤ i ≤ m be subspaces of V such

that V = V1⊕ · · · ⊕ Vm and bq(vi, vj) = 0 for vi ∈ Vi, vj ∈ Vj , i 6= j. Then q = q1⊥ · · ·⊥qm
where qi denotes the restriction of q to Vi.
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Definition 1.1.8. Let (V, q) be a quadratic space. The subspace rad(bq) := {w ∈ V :

bq(v, w) = 0 ∀ v ∈ V } is called the radical of (V, q). The quadratic space (V, q) is called

regular if rad(bq) = 0.

The following theorem is analogous to the diagonalisation of quadratic spaces over the

field of characteristic different from 2.

Proposition 1.1.9 ([Pfi95], p. 13, Th. 4.3). Every quadratic space (V, q) has an orthog-

onal decomposition V = U ⊕ rad(bq) such that (U, q|U ) is regular and an orthogonal sum

of 2-dimensional regular quadratic spaces; whereas (rad(bq), q|rad(bq)) is orthogonal sum of

1-dimensional quadratic spaces.

In other words there exists a basis {ei, fi, gj , 1 ≤ i ≤ r, 1 ≤ j ≤ s} of V where

2r + s = dim(V ) and elements ai, bi, cj ∈ F, 1 ≤ i ≤ r, 1 ≤ j ≤ s such that for all

v =
∑

(xiei + yifi) +
∑
zjgj , we have

q(v) =
∑

(aix
2
i + xiyi + biy

2
i ) +

∑
cjz

2
j .

Notation 1.1.10. We denote the quadratic form q(v) =
∑

(aix
2
i + xiyi + biy

2
i ) +

∑
cjz

2
j

by [a1, b1]⊥ · · ·⊥[ar, br]⊥〈c1, · · · , cs〉. This is called normalized form of a quadratic form

q.

A quadratic form q is regular if s = 0. If s 6= 0 then q is said to be singular whereas if

r = 0 then q is said to be totally singular. If s > 0, then regular part of a quadratic form

is generally not determined uniquely up to isometry, whereas the part 〈c1, ...., cs〉 is always

determined uniquely up to isometry. For example [1, 1]⊕〈1〉 ' [0, 0]⊕〈1〉 but [1, 1] ∼= [0, 0]

holds if and only if the quadratic equation x2 + x+ 1 = 0 has a solution in F.

Remark 1.1.11 It immediately follows from Prop. 1.1.9 that every regular quadratic

form over a field of characteristic 2 is even dimensional. Up to isometry, there are only

two regular 2-dimensional quadratic forms over the field containing 2 elements F2, namely

[0, 0] and [1, 1].

A quadratic form is said to be isotropic if there exist 0 6= v ∈ V such that q(v) = 0,

otherwise it is called anisotropic. Quadratic form [0, 0] is the only 2-dimensional regular

isotropic quadratic form up to isometry. It is called the hyperbolic plane and denoted by
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H. A quadratic space is said to be hyperbolic space if it is orthogonal sum of hyperbolic

planes.

As all regular quadratic forms are of even dimension, the dimension invariant e0 given

by q 7→ dim(q) mod 2 is trivial. In char(F) = 2 case an invariant at the next level is

the Arf invariant which is an analogue of the discriminant in char(F) 6= 2 case. It was

defined by Arf in his classical paper [Arf41]. Let q : V → F be a regular 2n-dimensional

quadratic form. As bq is an alternating form, the space (V, q) has a symplectic basis

{ei, fi, 1 ≤ i ≤ n} (see remark 1.1.5). Let ℘(F) = {x2 + x : x ∈ F}. Since we have

x2
1 + x1 + x2

2 + x2 = (x1 + x2)2 + (x1 + x2) ∈ ℘(F) and every element of ℘(F) is its own

inverse under addition. Hence the set ℘(F) is a subgroup of (F,+).

Definition 1.1.12. Let (V, q) be a quadratic space and {ei, fi, 1 ≤ i ≤ n} be a symplectic

basis of (V, q). The class of element
∑n

i=1 q(ei)q(fi) in the quotient F/℘(F), is called the

Arf invariant of q and is denoted by Arf(q). In particular, if q = [a1, b1] ⊥ · · · ⊥ [an, bn]

then Arf(q) = a1b1 + · · ·+ anbn ∈ F/℘(F).

Arf invariant is independent of the choice of symplectic basis [Sch85, p. 340]. Moreover,

for two quadratic forms q1 and q2 we have Arf(q1 ⊥ q2) = Arf(q1) + Arf(q2) ∈ F/℘(F).

1.2 Real representations

Let G be a finite group. Let C be the field of complex numbers and U be a finite

dimensional vector space over C. We denote the group of isomorphisms of U onto itself

by GL(U). A complex representation of G is a homomorphism ρ : G→ GL(U).

Let U ′ be a subspace of U such that for all u ∈ U ′, we have ρ(g)u ∈ U ′ for all g ∈ G.

Then we say that U ′ is stable under the action of G. A representation ρ : G→ GL(U) is

said to be irreducible if U 6= 0 and if U ′ is subspace of U , which is stable under the action

of G, then either U ′ = 0 or U ′ = U .

Let tr denote the trace of a linear transformation. The map χ : G → C defined by

χ(g) = tr(ρ(g)) for all g ∈ G is called the character afforded by the representation ρ.

A map ψ : G → C is called class function if ψ(g) = ψ(hgh−1) for all g, h ∈ G. The

characters of a group are class functions. In fact, the set of all irreducible characters of a
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finite group G forms a basis of the vector space of all class functions on G ([JL01, corollary

15.4]). Thus we have the following result:

Proposition 1.2.1 ([JL01], Prop. 15.5). Let G be a finite group and g, h ∈ G. Then g is

conjugate to h if and only if χ(g) = χ(h) for all irreducible characters χ of G.

Definition 1.2.2. Two representations ρ : G → GL(U1) and φ : G → GL(U2) are called

equivalent if there exists an isomorphism σ : U1 → U2 such that ρ(g) = σ−1(φ(g))σ for all

g ∈ G.

The following proposition provides a criteria for equivalence of representations.

Proposition 1.2.3 ([Ser77],p. 16, Cor. 2). Let ρ1 and ρ2 be two representations of a

group G and χ1 and χ2 denote the characters afforded by ρ1 and ρ2 respectively. The

representations ρ1 and ρ2 are equivalent if and only if χ1(g) = χ2(g) for all g ∈ G.

To find the complete list of distinct irreducible characters of a finite group is the

fundamental problem of character theory of finite groups. The following result gives an

easy method to check that whether a list of distinct irreducible characters is complete.

Theorem 1.2.4 ([JL01], Th. 11.12). Let G be a finite group and χ1, χ2, · · ·χk be the

complete list of distinct irreducible characters of G. Then
k∑
i=1

χi(1)2 = |G|.

Definition 1.2.5. A representation ρ : G → GL(U) is called a real representation of

a group G if χ(g) ∈ R for all g ∈ G , where χ denotes the character afforded by the

representation ρ.

Definition 1.2.6. Let G be a group. An element g ∈ G is called real if there exists h ∈ G
such that g−1 = hgh−1.

Let G be a group and g ∈ G be a real element. By definition there exists h ∈ G such

that g−1 = hgh−1. Since for all k ∈ G, we have

khk−1(kgk−1)khk−1 = k(hgh−1)k−1 = kg−1k−1 = (kgk−1)−1.

Therefore all the conjugates of a real element are also real. A conjugacy class consisting

real elements is called a real conjugacy class .
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It is well known that the number of irreducible representations of a finite group is same

as the number of its conjugacy classes. The following proposition states the similar result

for real representations.

Theorem 1.2.7 ([JL01], Th. 11.12). Let G be a finite group. The number of real

irreducible representations of G is same as the number of real conjugacy classes of G.

Definition 1.2.8. A complex representation ρ : G → GL(U) is said to be realizable over

R if the vector space U admits an R-subspace U0 such that U = U0 ⊗R C and U0 is stable

under ρ(G).

Using Prop. 1.2.3 it is clear that every representation that is realizable over R is a

real representation. In fact depending on whether or not a real representation is realizable

over R, there is further classification of representations as orthogonal and symplectic.

Definition 1.2.9. A real representation ρ : G → GL(U) is called orthogonal representa-

tion if it is realizable over R. Otherwise it is called symplectic representation.

In our discussion, we have three types of representations, namely orthogonal, sym-

plectic and those representations which are not real. Now we define Schur indicator of

a character. The Schur indicator of a character determines the type of representation

afforded by the character.

Definition 1.2.10. Let G be a group and χ : G → C be an irreducible character of G.

The Schur indicator ν(χ) of character χ is defined by

ν(χ) =
1

|G|
∑
g∈G

χ(g2)

The Schur indicator of character χ can take only three values. The values taken by

Schur indicator are 0, 1 and −1.

Proposition 1.2.11 ([JL01], Corollary 23.17). Let ρ be an irreducible representation of

G and χ be the character afforded by ρ. Then

ν(χ) =


0 if ρ is not real

1 if ρ is orthogonal

−1 if ρ is symplectic

Now we give the examples of representations of each type.
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Example 1.2.12

1. Let C4 := 〈a : a4 = 1〉 be the cyclic group of order 4. Let ρ : C4 → C be the

representation of C4 defined by φ(a) = i, where i denotes the primitive fourth root

of unity. Let χ1 be the character afforded by the representation φ. Since

ν(χ1) =
1

4
(χ1(1) +χ1(a2) +χ1(a4) +χ1(a6)) =

1

4
(2χ1(1) + 2χ1(a2)) =

1

4
(2− 2) = 0.

The representation φ of C4 defined above is not real representation.

2. For dihedral group D4 = 〈a, b : a4 = b2 = 1, bab−1 = a−1〉 the homomorphism

ρ : D4 → GL(C2) defined by

ρ(a) =

(
0 1

−1 0

)
, ρ(b) =

(
1 0

0 −1

)
is the unique irreducible representation of degree at least 2 of D4. Let χ2 be the

character afforded by the representation ρ. We compute

ν(χ2) =
1

8

∑
g∈D4

χ2(g2) =
1

8
((6χ2(1) + 2χ2(a2)) =

1

4
(6× 2− 2× 2) = 1.

Therefore χ2 is orthogonal.

3. For quaternion group Q2 = 〈c, d : c4 = 1, d2 = c2, dcd−1 = c−1〉 the homomorphism

σ : Q2 → GL(C2), where

σ(c) =

(
0 1

−1 0

)
, σ(d) =

(
i 0

0 −i

)
is the unique irreducible representation of degree at least 2 of Q2. Let χ3 be the

character afforded by the representation σ. We compute

ν(χ3) =
1

8

∑
g∈Q2

χ3(g2) =
1

8
((2χ3(1) + 6χ3(c2)) =

1

4
(2× 2− 6× 2) = −1.

Therefore χ3 is symplectic.

Since we need to determine representations up to equivalence, using isomorphism

GL(Cn) ∼= GLn(C) between linear transformations and matrices that arises after fixing a

basis, we may take the target group of representations as group GLn(C). Now we define

the tensor product of two representations. We begin with the definition of tensor product

of two matrices.
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Definition 1.2.13. Let A = [aij ]n×n and B be two complex matrices. Then the tensor

product of matrices A and B is defined by

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

an1B an2B · · · annB


Note that tr(A⊗B) = tr(A). tr(B).

Definition 1.2.14. Let G and H be two groups. Let ρ : G → GLn(C) and σ : H →
GLm(C) be the representations of group G and H respectively. The tensor product ρ⊗ σ :

G×H → GLnm(C) of the representations ρ and σ is defined by (ρ⊗σ)(g, h) = ρ(g)⊗σ(h)

for all (g, h) ∈ G×H.

The following theorem illustrates the utility of defining the tensor product of two

representations. It provides a description of representations of direct products of groups

in terms of irreducible representations of direct factors.

Theorem 1.2.15 ([Gor80], Ch. 3, Th. 7.2). Let H and K be two finite groups and

G = H × K be the direct product of H and K. Let ρ : H → GLn(C) and σ : K →
GLm(C) be irreducible representations of H and K, respectively. Then the tensor product

ρ ⊗ σ : G → GLnm(C) of ρ and σ is an irreducible representation of G. Moreover, every

irreducible representation of G = H×K is equivalent to a representation of the form ρ⊗σ
for a suitable choice of ρ and σ.

The above theorem implies that the tensor product of representations is again a

representation. The following proposition helps in determining the type of tensor product

of representations in terms of types of the individual components of the tensor product.

Proposition 1.2.16. Let ρ1 and ρ2 be two representations of groups G and H respectively.

Let χ, χ1 and χ2 be the characters afforded by representations ρ1⊗ρ2, ρ1 and ρ2 respectively.

Then ν(χ) = ν(χ1).ν(χ2).

Proof For two matrices A and B, we have tr(A ⊗ B) = tr(A). tr(B). By definition of

tensor product of representations, it follows that χ = χ1.χ2. Here χ1.χ2 : G ×H → C is
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defined by χ1.χ2(g, h) = χ1(g).χ2(h) for all (g, h) ∈ G×H. Now we compute

ν(χ) = ν(χ1.χ2)

=
1

|G×H|
∑

(g,h)∈G×H

χ1.χ2(g, h)

=
1

|G×H|
∑

(g,h)∈G×H

χ1(g).χ2(h)

=
1

|G| × |H|
∑
h∈H

∑
g∈G

χ1(g).χ2(h)


=

 1

|G|
∑
g∈G

χ1(g)

 .

(
1

|H|
∑
h∈H

χ2(h)

)

= ν(χ1).ν(χ2).

�

Corollary 1.2.17. Let ρ1 and ρ2 be two representations of groups G and H respectively.

The representation ρ1 ⊗ ρ2 of G×H is real if and only if both the representations ρ1 and

ρ2 are real. Moreover, the representation ρ1 ⊗ ρ2 is orthogonal if and only if either both

ρ1 and ρ2 are orthogonal or both ρ1 and ρ2 are symplectic. The representation ρ1 ⊗ ρ2 is

symplectic if and only if exactly one of ρ1 and ρ2 is symplectic.

Proof The proof follows from the Prop. 1.2.11 and Prop. 1.2.16. �

Definition 1.2.18. Let G be a group and ρ : G → GLn(C) a representation of G. Let

N be a normal subgroup of G such that N ⊆ ker(ρ). Then ρ induce a representation

ρ̄ : G
N → GLn(C) of G

N defined by ρ̄(gN) = ρ(g) of G
N for all gN ∈ G

N . It is called the

representation induced by ρ.

Proposition 1.2.19. Let G be a group and ρ : G → GLn(C) be its representation. Let

N be a normal subgroup of G such that N ⊆ ker(ρ). Let ρ̄ : G
N → GLn(C) be the

representation induced by ρ. Let χ and χ̄ be the characters afforded by the representations

ρ and ρ̄ respectively. Then ν(χ) = ν(χ̄).
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Proof Since ρ̄(gN) = ρ(g) for all gN ∈ G
N , we have χ̄(gN) = χ(g) for all gN ∈ G

N .

Using definition of Schur indicator ν(χ), we compute

ν(χ̄) =
1

|GN |

∑
gN∈G

N

χ̄(gN)

=
|N |
|G|

∑
g∈G

1

|N |
χ(g)


=

1

|G|
∑
g∈G

χ(g)

= ν(χ)

�

Corollary 1.2.20. The type of induced representation ρ̄ is same as the type of represen-

tation ρ.

Definition 1.2.21. Let G be a group. Let χ be a character of G.

1. We denote the subgroup {g ∈ G : χ(g) = χ(1)} by ker(χ).

2. The set {g ∈ G : |χ(g)| = χ(1)} forms a subgroup of G. We denote this subgroup

by Z(χ).

Now we state some results related to the subgroup Z(χ).

Lemma 1.2.22 ([Isa69], Lemma 2.27). Let G be a group. Let ρ be a representation of G

and χ be the character afforded by ρ. Then

1. Z(χ) = {g ∈ G : ρ(g) = λI for some λ ∈ C}.

2. Z
(

G
ker(χ)

)
= Z(χ)

ker(χ) .

Lemma 1.2.23 ([Isa69]). Let G be a group and χ be a character of G. The character χ

vanishes outside Z(χ) if and only if χ(1)2 = |G : Z(χ)|.
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1.3 Special 2-groups

In this section F2 denotes the field containing two elements. Here we discuss the connection

between special 2-groups and quadratic maps over the field F2.

For a finite group G, let Z(G) and G′ denote the center and derived subgroup of G,

respectively.

Definition 1.3.1. Let G be a non-trivial finite group. The intersection of maximal

subgroups of G is called the Frattini subgroup of G. It is denoted by Φ(G). For the

trivial group, Frattini subgroup is defined to be trivial.

For a group G, we denote the direct product of n copies of G by (G)n. A p-group G

is called elementary abelian if G is an abelian group of exponent p. The direct product of

some copies of Z
2Z is elementary abelian 2-group.

Remark 1.3.2

1. For a p-group G, the Frattini subgroup Φ(G) is the smallest normal subgroup of G

such that the quotient group G
Φ(G) is elementary abelian 2-group (see [KS04, p. 106,

5.2.8]).

2. For a finite p-group G, the Frattini subgroup Φ(G) = G′Gp, where G′ is derived

subgroup of G and Gp = 〈gp : g ∈ G〉 (see [Rob96, p.140,5.3.2]). Since every

commutator is a product of squares as shown below:

[g, h] = g−1h−1gh = g−1h−2hgh = g−1h−2gg−2ghgh = (g−1hg)−2g−2(gh)2,

for p = 2, we have Φ(G) = G2 = 〈g2 : g ∈ G〉.

Definition 1.3.3. A 2-group G is called a special 2-group if Φ(G) = G′ = Z(G) ∼=
(
Z
2Z
)n

for some n ∈ N. Moreover, a special 2-group G is called extraspecial 2-group if |Z(G)| = 2.

For special 2-group G, note that the quotient G
Z(G) and Z(G) both are elementary

abelian 2-groups. Therefore we may regard them as vector spaces over F2.

Theorem 1.3.4 ([Zah08], Th. 3.4.11). Let G be a special 2-group and q : G
Z(G) → Z(G)

be the map given by q(xZ(G)) = x2 for all x ∈ G. Then q is a regular quadratic map and

bq(xZ(G), yZ(G)) = xyx−1y−1 for all x, y ∈ G.
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Proof Let x, y ∈ G. Since G is a special 2-group, x2, y2 ∈ Z(G) and

bq(xZ(G), yZ(G)) = q(xyZ(G))(q(xZ(G))−1(q(yZ(G))−1

= (xy)2x−2y−2

= x−2xyy−2xy

= x−1y−1xy

Now we check that bq is bilinear map. We recall that Z(G) = G′ as G is a special 2-group.

Let x, y, z ∈ G.

bq(xzZ(G), yZ(G)) = (xz)−1y−1(xz)y

= z−1x−1y−1xzy

= z−1(x−1y−1xy)y−1zy

= (x−1y−1xy)(z−1y−1zy)

= bq(xZ(G), yZ(G))bq(zZ(G), yZ(G))

On similar lines, One can check that bq(xZ(G), yzZ(G)) = bq(xZ(G), yZ(G))bq(Z(G), zZ(G)).

Therefore q : G
Z(G) → Z(G) is a quadratic map. Since x ∈ Z(G) if and only if x−1y−1xy = 1

for every y ∈ G, the quadratic map q : G
Z(G) → Z(G) is regular. �

Note that for the quadratic map q in the above theorem, the image of bq generates

Z(G). This quadratic map q is called the quadratic map associated to the special 2-group

G.

1.3.1 Cocycles, quadratic maps and central extensions

Let V andW denote two vector spaces over F2. Let Quad(V,W ) denote the set of quadratic

maps from V to W . We consider it as a group under the group operation of point wise

addition of maps. In what follows, we discuss the connection between Quad(V,W ) and

H2(V,W ), the second cohomology group of V with coefficients in W . We begin with the

definition of normal 2-cocycle.

Definition 1.3.5. A map c : V×V →W is called a normal 2-cocycle on V with coefficients

in W if for all v, v1, v2, v3 ∈ V it satisfies the following conditions:

i. c(v2, v3)− c(v1 + v2, v3) + c(v1, v2 + v3)− c(v1, v2) = 0.
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ii. c(v, 0) = c(0, v) = 0.

The set of normal 2-cocycles on V with coefficients in W is denoted by Z2(V,W ).

The set Z2(V,W ) forms an abelian group under the operation of point wise addition.

Definition 1.3.6. Let λ : V → W be a linear map such that λ(0) = 0. Then the map

cλ : V ×V →W defined by cλ(v1, v2) = λ(v2)−λ(v1+v2)+λ(v1) is a normal 2-cocycle. The

normal 2-cocycles obtained this way are called normal 2-coboundaries and their collection

is denoted by B2(V,W ).

The set B2(V,W ) forms a subgroup of Z2(V,W ).

Definition 1.3.7. The quotient H2(V,W ) = Z2(V,W )
B2(V,W )

is called the second cohomology

group of V with coefficients in W .

The following proposition gives the correspondence betweenH2(V,W ) and Quad(V,W ).

Proposition 1.3.8 ([Zah11], Prop. 1.2). The map ϕ : Z2(V,W ) → Quad(V,W ) which

maps c ∈ Z2(V,W ) to the quadratic map qc defined by qc(x) = c(x, x) induces a homo-

morphism between H2(V,W ) and Quad(V,W ). If the dimension of V is finite then this

homomorphism is an isomorphism.

Now we define the central extension and discuss the one-one correspondence between

the elements of H2(V,W ) and central extensions of W by V . We consider V and W as

groups under the operation of vector space addition.

Definition 1.3.9. A group G is called a central extension of V by W if there exist a short

exact sequence of groups 1→W → G→ V → 1 such that W ⊆ Z(G).

Two central extensions 1→ W
α1→ G1

π1→ V → 1 and 1→ W
α2→ G2

π2→ V → 1 are said

to be equivalent if there exists an isomorphism ϑ : G1 → G2 such that π2 ◦ϑ = π1 and ϑ is

the identity map on W . The set of equivalent classes of central extension of W by V is in

one to one correspondence with H2(V,W ) [Wei94, §6.6]. We record this correspondence

in the following remark for further reference.
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Remarks 1.3.10

1. The central extension of W by V corresponding to a cocycle class [c] ∈ H2(V,W ) is

isomorphic to the group V ×̇W , where the underlying set of the group V ×̇W is just

the cartesian product V ×W and its group operation is defined by

(v, w)(v′, w′) = (v + v′, c(v, v′) + w + w′)

for all v, v′ ∈ V and w,w′ ∈ W . The identity element this group is (0, 0) and the

inverse of (v, w) is (v, c(v, v) + w).

2. Conversely, let 1 → W
α→ G

π→ V → 1 be a central extension. Let s : V → G be

a map such that s(0) = 1 and π ◦ s is identity map on V . For all v1, v2 ∈ V , we

suppose c(v1, v2) = s(v1)s(v2)s(v1 + v2)−1. We compute

π(c(v1, v2)) = π(s(v1)s(v2)s(v1 + v2)−1)

= π ◦ s(v1)π ◦ s(v2)π ◦ s(v1 + v2)−1

= v1 + v2 − (v1 + v2)

= 0.

Therefore c(v1, v2) ∈ ker(π) = Im(α) ∼= W . From the associativity of the multipli-

cation of G, it follows that c : V × V →W is a normal 2-cocycle.

If the dimension of V is finite then Prop. 1.3.8 and the correspondence of elements

of H2(V,W ) with central extension of V by W gives a useful correspondence between

Quad(V,W ) and central extension of V by W [Zah11].

Let q : V → W be a regular quadratic map and the image of bq generates W .

The following result asserts that the group corresponding to q is a special 2-group. We

reproduce the proof of this result from [Zah11].

Theorem 1.3.11 ([Zah11], Th. 1.4). Let q : V →W be a regular quadratic map. Suppose

that W = 〈bq(V × V )〉. Then there exists a special 2-group G associated with quadratic

map q such that W = Z(G) and V = G
Z(G) . Such a group is unique up to isomorphism.

Proof Recall that Quad(V,W ) denotes the group of quadratic maps under the point wise

addition. It follows from Prop. 1.3.8 that Quad(V,W ) is isomorphic to H2(V,W ) as an

abelian group. Let c ∈ Z2(V,W ) be such that class [c] of c in H2(V,W ) corresponds to the



1.3. SPECIAL 2-GROUPS 17

quadratic map q : V → W . Therefore q(v) = c(v, v) for all v ∈ V . Using cocycle relation

(see definition 1.3.5), we compute the polar map to be bq(v1, v2) = c(v1, v2) + c(v2, v1).

The central extension corresponding to normal 2-cocycle [c] ∈ H2(V,W ) is group G,

where underlying set of G is V ×W and the operation of G is as defined in remark 1.3.10(1).

Let g = (v, w) ∈ G for v ∈ V and w ∈W . We compute

q(v) = c(v, v) = (0, c(v, v)) = (v + v, c(v, v) + w + w) = (v, w)(v, w) = g2.

Moreover for g1 = (v1, w1), g2 = (v2, w2) ∈ G for v1, v2 ∈ V and w1, w2 ∈W , we have

g−1
1 g−1

2 g1g2 = (v1, c(v1, v1) + w1)(v2, c(v2, v2) + w2)(v1, w1)(v2, w2)

= (0, c(v1, v2) + c(v2, v1))

= c(v1, v2) + c(v2, v1)

= bq(v1, v2)

Now we show that W = Z(G). Let g = (v, w) ∈ Z(G) for v ∈ V and w ∈ W . For

all h ∈ G, we have g−1h−1gh = 1. Hence from the above calculation, it follows that

bq(v, v
′) = 0 for all v′ ∈ V . Using the hypothesis that q is a regular quadratic map, we

conclude that v = 0. Therefore g = (0, w) ∈ W . Conversely, let g ∈ W , then g = (0, w)

and bq(0, v
′) = 0 for all v′ ∈ V . Therefore g−1h−1gh = 1 for all h ∈ G and g ∈ Z(G).

Next we claim that W = G′. Since for all g1, g2 ∈ G, g−1
1 g−1

2 g1g2 lies in the image

of bq and the image of bq lies in W , the derived subgroup G′ ⊆ W and bq(V × V ) ⊆ W .

Using hypothesis W = 〈bq(V × V )〉, we get that W ⊆ G′.

Finally we claim that W = Φ(G). Since W is vector space over F2, W is an elementary

abelian 2-group. Also q : V → W is quadratic map defined by q(v) = v2 for all v ∈ V .

Therefore for all g ∈ G, g2 ∈W and order of a non identity element of G is either 2 or 4.

This implies that G is a 2-group.

Using remark 1.3.2(2), we have Φ(G) = 〈g2 : g ∈ G〉. Now from the definition of q, it

follows that Φ(G) ⊆W and 〈q(V )〉 = Φ(G). Using bq(v1, v2) = q(v1)− q(v1 + v2) + q(v2),

we get that 〈bq(V × V )〉 ⊆ 〈q(V )〉. By hypothesis, W = 〈bq(V × V )〉 and it follows that

W ⊆ 〈q(V )〉 = Φ(G).
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Thus G is a special 2-group. Since G is central extension of V by W , the sequence

1→W
α→ G

π→ V → 1 is an exact sequence. Therefore V ∼= G
ker(π) = G

Im(α) = G
Z(G) . �

This group is called the special 2-group associated to the quadratic map q. From Th.

1.3.11 and Th. 1.3.4 we get a one to one correspondence between special 2-groups and

regular quadratic maps q : V ∈W with 〈bq(V ×V ) = W 〉. The quadratic map associated to

a special 2-group is very useful to study the properties of these groups. For an illustration,

we have the following lemma:

Lemma 1.3.12. Let G be a special 2-group and q : G
Z(G) =: V → W := Z(G) be the

quadratic map associated to it. The order of a non-trivial element of G is either 2 or 4.

Moreover if g = (v, w) ∈ G, then g2 = 1 if and only if q(v) = 0.

Proof Since q : G
Z(G) =: V → W := Z(G) is defined by q(gZ(G)) = g2 for all

gZ(G) ∈ G
Z(G) , we have g2 ∈ Z(G) for all g ∈ G. This implies that (g2)2 = g4 = 1

for all g ∈ G as Z(G) is an elementary abelian 2-group.

Let g = (v, w) ∈ G. Since g2 = (v, w)(v, w) = (v + v, c(v, v) + w + w) = (0, q(v)), we

get that g2 = 1 if and only if q(v) = 0. �

1.3.2 The central product of special 2-groups

The aim of this section is to show that the orthogonal sum of quadratic maps corresponds

to central product of corresponding special 2-group. We first define the notion of central

product of two groups.

Definition 1.3.13. Let G1 and G2 be two groups with isomorphic centers. Let Z(G1)

and Z(G2) be their centers and θ : Z(G1) → Z(G2) be an isomorphism of groups. Let N

denote the normal subgroup {(x, y) ∈ Z(G1)×Z(G2) : θ(x)y = 1} of G1×G2. The central

product G1 ◦θG2 of groups G1 and G2 with the identification θ is the quotient of the direct

product G1 ×G2 by N .

The following lemma relates ‘orthogonal sum’ of quadratic maps to central products.

Lemma 1.3.14 ([KK15], Lemma 2.5). Let G1 and G2 be special 2-groups such that

Z(G1) is isomorphic to Z(G2). Let q1 : V1 := G1
Z(G1) → W1 := Z(G1) and q2 : V2 :=
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G2
Z(G2) →W2 := Z(G2) be regular quadratic maps associated to special 2-groups G1 and G2,

respectively. Let θ : W1 →W2 be an isomorphism of groups. Then q1 ⊥θ q2 : V1⊕V2 →W2

defined by (q1 ⊥θ q2)(v1, v2) = θ(q1(v1)) + q2(v2) is a regular quadratic map and the group

associated to q1 ⊥θ q2 is G1 ◦θ G2.

Proof Let q = q1 ⊥θ q2. We first show that q is a quadratic map. For α ∈ F2 and

(v1, v2) ∈ V1 ⊕ V2, we check

q(α(v1, v2)) = q(αv1, αv2),

= θ(q1(αv1)) + q2(αv2),

= θ(α2q1(v1)) + α2q2(v2),

= α2θ(q1(v1)) + α2q2(v2),

= α2(θ(q1(v1)) + q2(v2)),

= α2q(v1, v2).

Now we compute the polar map bq associated to q = q1 ⊥θ q2.

bq((v1, v2), (v′1, v
′
2)) = q((v1, v2) + (v′1, v

′
2))− q(v1, v2)− q(v′1, v′2),

= q(v1 + v′1, v2 + v′2)− q(v1, v2)− q(v′1, v′2),

= θ(q1(v1 + v′1)) + q2(v2 + v′2)− θ(q1(v1))− q2(v2)− θ(q1(v′1))− q2(v′2),

= θ(q1(v1 + v′1)− q1(v1)− q1(v′1)) + q2(v2 + v′2)− q2(v2)− q2(v′2),

= θ(bq1(v1, v
′
1)) + bq2(v2, v

′
2),

where (v1, v2), (v′1, v
′
2) ∈ V1 ⊕ V2 and bq1 , bq2 are the polar maps associated to q1 and q2,

respectively. Now we check that the polar map bq is bilinear.

bq((v1, v2) + (v3, v4), (v′1, v
′
2)) = bq((v1 + v3, v2 + v4), (v′1, v

′
2)),

= θ(bq1(v1 + v3, v
′
1)) + bq2(v2 + v4, v

′
2),

= θ(bq1(v1, v
′
1) + bq1(v3, v

′
1)) + bq2(v2, v

′
2) + bq2(v4, v

′
2),

= θ(bq1(v1, v
′
1)) + θ(bq1(v3, v

′
1)) + bq2(v2, v

′
2) + bq2(v4, v

′
2),

= θ(bq1(v1, v
′
1)) + bq2(v2, v

′
2) + θ(bq1(v3, v

′
1)) + bq2(v4, v

′
2),

= bq((v1, v2), (v′1, v
′
2)) + bq((v3, v4), (v′1, v

′
2)),
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where (v1, v2), (v3, v4), (v′1, v
′
2) ∈ V1 ⊕ V2. On similar lines, one can check that

bq((v1, v2), (v′1, v
′
2) + (v′3, v

′
4)) = bq((v1, v2), (v′1, v

′
2)) + bq((v1, v2), (v′3, v

′
4))

for (v1, v2), (v′1, v
′
2), (v′3, v

′
4) ∈ V1 ⊕ V2 and

bq(α(v1, v2), (v′1, v
′
2)) = αbq((v1, v2), (v′1, v

′
2)) = bq((v1, v2), α(v′1, v

′
2))

for α ∈ F2 and (v1, v2), (v′1, v
′
2) ∈ V1 ⊕ V2.

Now we show that the quadratic map q is regular. Let (v1, v2) ∈ rad(bq) and (v′1, v
′
2) ∈

V1 ⊕ V2. Then 0 = bq((v1, v2), (v′1, v
′
2)) = θ(bq1(v1, v

′
1)) + bq2(v2, v

′
2). Thus θ(bq1(v1, v

′
1)) =

bq2(v2, v
′
2) for every (v′1, v

′
2) ∈ V1 ⊕ V2. In particular for v′2 = 0, we have θ(bq1(v1, v

′
1)) =

bq2(v2, 0) = 0. Since θ is an isomorphism, bq1(v1, v
′
1) = 0 for every v′1 ∈ V1. Thus we

conclude that v1 = 0 as q1 is a regular quadratic map. That v2 = 0 follows from a similar

argument, and it confirms that q is regular.

To show that the regular quadratic map q is associated to G1◦θG2, let c1 ∈ Z2(V1,W1)

and c2 ∈ Z2(V2,W2) be normal 2-cocycles corresponding to quadratic maps q1 and q2,

respectively. Let cθ := θ(c1) ⊥ c2 : (V1 ⊕ V2)× (V1 ⊕ V2)→W2 be the map defined by

cθ((v1, v2), (v′1, v
′
2)) = θ(c1(v1, v

′
1)) + c2(v2, v

′
2).

We check that cθ is a normal 2-cocycle on V1 ⊕ V2 with coefficients in W2. For
(v1, v2), (v′1, v

′
2), (v′′1 , v

′′
2) ∈ V1 ⊕ V2, we compute:

cθ((v′1, v
′
2), (v′′1 , v

′′
2 ))− cθ((v1, v2) + (v′1, v

′
2), (v′′1 , v

′′
2 )) + cθ((v1, v2), (v′1, v

′
2) + (v′′1 , v

′′
2 ))− cθ((v1, v2), (v′1, v

′
2))

= θ(c1(v′1, v
′′
1 )) + c2(v′2, v

′′
2 )− θ(c1(v1 + v′1, v

′′
1 ))− c2(v2 + v′2, v

′′
2 ) + θ(c1(v1, v

′
1 + v′′1 )) + c2(v2, v

′
2 + v′′2 )− θ(c1(v1, v

′
1))− c2(v2, v

′
2),

= θ(c1(v′1, v
′′
1 )− c1(v1 + v′1, v

′′
1 ) + c1(v1, v

′
1 + v′′1 )− c1(v1, v

′
1)) + c2(v′2, v

′′
2 )− c2(v2 + v′2, v

′′
2 ) + c2(v2, v

′
2 + v′′2 )− c2(v2, v

′
2),

= θ(0) + 0 = 0

Now for (v1, v2) ∈ V1 ⊕ V2, we compute:

cθ((v1, v2), (0, 0)) = θ(c1(v1, 0)) + c2(v2, 0) = θ(0) + 0 = 0

cθ((0, 0), (v1, v2)) = θ(c1(0, v1)) + c2(0, v2) = θ(0) + 0 = 0

We also compute that if c1 and c2 are normal 2-coboundaries then cθ also a normal

2-coboundary. Let λ1 : V1 → W1 is a map such that λ1(0) = 0 and c1(v1, v
′
1) = λ1(v′1) −

λ1(v1 + v′1) + λ1(v1) for v1, v
′
1 ∈ V1. Let λ2 : V2 → W2 is a map such that λ2(0) = 0
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and c1(v2, v
′
2) = λ2(v′2) − λ2(v2 + v′2) + λ2(v2) for v2, v

′
2 ∈ V2. Now we show that in this

case cθ is also a normal 2-coboundary. We define a map λ : V1 ⊕ V2 → W2 by λ(v1, v2) =

θ(λ1(v1)) + λ2(v2) for v1 ∈ V1 and v2 ∈ V2. We check that λ(0, 0) = θ(λ1(0)) + λ2(0) = 0.

We compute:

cθ((v1, v2), (v′1, v
′
2)) = θ(c1(v1, v

′
1)) + c2(v2, v

′
2)

= θ(λ1(v′1)− λ1(v1 + v′1) + λ1(v1)) + λ2(v′2)− λ2(v2 + v′2) + λ2(v2)

= θ(λ1(v′1)) + λ2(v′2)− θ(λ1(v1 + v′1))− λ2(v2 + v′2) + θ(λ1(v1)) + λ2(v2)

= λ(v′1, v
′
2)− λ((v1, v

′
1, ) + (v2, v

′
2)) + λ(v1, v2)

The above calculation ensures that the association ([θ(c1)], [c2]) 7→ [cθ] ∈ H2(V1 ⊕
V2,W2) is well-defined. Further, the normal 2-cocycle cθ corresponds to the quadratic

form q as

cθ((v1, v2), (v1, v2)) = θ(c1(v1, v1)) + c2(v2, v2) = θ(q1(v1)) + q2(v2) = q(v1, v2).

The special 2-group associated to q is G := (V1 ⊕ V2)×̇W2, with the group operation

((v1, v2), w) · ((v′1, v′2), w′) = ((v1 + v′1, v2 + v′2), cθ((v1, v2), (v′1, v
′
2)) + w + w′).

We need to show that G ' G1 ◦θ G2. By definition G1 ◦θ G2 is the quotient of G1×G2 by

N where N := {(x, y) ∈ Z(G1)×Z(G2) : θ(x) +y = 0} is a normal subgroup of G1×G2.

Define φ : G1 ×G2 → G by

φ((v1, w1), (v2, w2)) = ((v1, v2), θ(w1) + w2)

where (v1, w1) ∈ G1 and (v2, w2) ∈ G2. We notice that φ is a group homomorphism as for

(v1, w1), (v′1, w
′
1) ∈ G1 and (v2, w2), (v′2, w

′
2) ∈ G2 we have,

φ(((v1, w1), (v2, w2)) · ((v′1, w′1), (v′2, w
′
2)))

= φ(((v1, w1).(v′1, w
′
1)), ((v2, w2).(v′2, w

′
2)))

= φ((v1 + v′1, c1(v1, v
′
1) + w1 + w′1), (v2 + v′2, c2(v2, v

′
2) + w2 + w′2))

= ((v1 + v′1, v2 + v′2), θ(c1(v1, v
′
1)) + θ(w1) + θ(w′1) + c2(v2, v

′
2) + w2 + w′2)

= ((v1 + v′1, v2 + v′2), θ(c1(v1, v
′
1)) + c2(v2, v

′
2) + θ(w1) + w2 + θ(w′1) + w′2)

= ((v1, v2) + (v′1, v
′
2), cθ((v1, v2), (v′1, v

′
2)) + θ(w1) + w2 + θ(w′1) + w′2)

= ((v1, v2), θ(w1) + w2)((v′1, v
′
2), θ(w′1) + w′2)

= φ((v1, w1), (v2, w2))φ((v′1, w
′
1), (v′2, w

′
2)).
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The homomorphism φ is surjective because for an arbitrary ((v1, v2), w) ∈ G we have

φ((v1, 0), (v2, w)) = ((v1, v2), w).

Now we compute ker (φ).

ker (φ) = {((v1, w1), (v2, w2)) ∈ G1 ×G2 : φ((v1, w1), (v2, w2)) = ((0, 0), 0)}

= {((v1, w1), (v2, w2)) ∈ G1 ×G2 : ((v1, v2), θ(w1) + w2)) = ((0, 0), 0)}

= {((v1, w1), (v2, w2)) ∈ G1 ×G2 : v1 = 0, v2 = 0, θ(w1) + w2 = 0}

= {((0, w1), (0, w2)) ∈ G1 ×G2 : θ(w1) + w2 = 0}

= {(w1, w2) ∈ Z(G1)× Z(G2) : θ(w1) + w2 = 0}

= N.

Therefore, finally we have G ' G1×G2
ker(φ) = G1×G2

N = G1 ◦θ G2. �



Chapter 2

Extraspecial 2-groups

This chapter consists of three sections. In §2.1 we record the classification of extraspecial

2-groups using quadratic forms associated with these groups. In §2.2 and §2.3 we describe

the representations of extraspecial 2-groups and Wedderburn decomposition of rational

group algebra of extraspecial 2-groups, respectively. In §2.2 we also recall one dimensional

representations of special 2-groups.

Recall that a special 2-group G is called extraspecial 2-group if |Z(G)| = 2. Let F2

be the field containing two elements. The classification of extraspecial 2-groups using

quadratic forms over F2 is outlined in [Wil09]. Extraspecial 2-groups can also be classified

using group theoretic methods (see [Gor80]). However the classification of extraspecial

2-groups using quadratic forms is a beautiful application of the theory of quadratic forms

over fields of characteristic 2. In the following section, we use the theory of quadratic

forms over F2 to classify extraspecial 2-groups.

2.1 Classification of extraspecial 2-groups

Let V be a vector space over F2 and q : V → F2 be a regular quadratic form. Let G be a

special 2-group associated to q (see Th. 1.3.11). One may regard Z(G) as the field of two

elements and therefore the group G is an extraspecial 2-group. Conversely, Let G be a

extraspecial 2-group. The quadratic map associated to G given by Th. 1.3.4 is a regular

23
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quadratic form over F2.

Proposition 2.1.1. The order of an extraspecial group is 22n+1 for some n ∈ N.

Proof A regular quadratic form over a field of characteristic two is even dimensional

(see remark 1.1.11). Let G be an extraspecial 2-group and q : V → F2 be the quadratic

form associated to it as in Th. 1.3.4. Since the quadratic form q1 is regular, dimF2
V = 2n

for some n ∈ N. From §1.3, G is in bijection with V×F2. Therefore |G| = 22n×2 = 22n+1.

�

From now onwards, D4 will denote the dihedral group of order 8 and Q2 will denote

the quaternion group of order 8 . These groups can be presented as:

D4 = 〈a, b : a4 = b2 = 1, bab−1 = a−1〉
Q2 = 〈c, d : c4 = 1, d2 = c2, dcd−1 = c−1〉

Proposition 2.1.2. Let V be the two dimensional vector space over F2 and q : V → F2

be a regular quadratic form. Then the extraspecial 2-group associated to q is either Q2 and

D4.

Proof The quadratic forms q1 = [0, 0] and q2 = [1, 1] are the only regular 2-dimensional

quadratic forms over F2 up to isometry (see remark 1.1.11). Recall that q1(x, y) = xy and

q2(x, y) = x2 + xy + y2. We show that the dihedral group D4 is the extraspecial 2-group

associated to the quadratic form [0, 0]. From Th. 1.3.11 we have that V ×̇F2 is the group

associated to q1 : V → F2, where the multiplication is defined by

(v, α)·)(v′, α′) = (v + v′, c1(v, v′) + α+ α′)

where v, v′ ∈ V , α, α′ ∈ F2 and c1 ∈ H2(V,F2) is the normal 2-cocycle such that

q1(v) = c1(v, v) for all v ∈ V .

Consider the map ψ : D4 → V ×̇F2 defined by ψ(a) = ((1, 1), 1) and ψ(b) = ((1, 0), 1),

where a and b are generating elements of D4 as in the presentation of D4. Now we claim

that ψ is an isomorphism of groups. Clearly both D4 and V1×̇F2 are groups of order 8.

It is easy to check that the orders of ((1, 1), 1) and ((1, 0), 1) are 4 and 2, respectively.
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Moreover,

((1, 0), 1)((1, 1), 1)−1 = ((1, 0), 1)((1, 1), c1((1, 1), (1, 1)) + 1)

= ((1, 0), 1)((1, 1), q1(1, 1) + 1)

= ((1, 0), 1)((1, 1), 0)

= ((1, 0) + (1, 1), c1((1, 0), (1, 1)) + 1)

= ((0, 1), 1)

= ((1, 1) + (1, 0), c1((1, 1), (1, 0)) + 1 + 1)

= ((1, 1), 1)((1, 0), 1)

Therefore ψ is an isomorphism of groups. On similar lines it can be shown that the

quaternion group Q2 is the group associated with quadratic form q2 = [1, 1]. In that case,

an isomorphism is given by ψ′ : Q2 → V2×̇F2, where ψ′(c) = ((1, 1), 1), ψ′(d) = ((1, 0), 1)

and c, d denote generators of group Q2 as in the given presentation of Q2. �

Proposition 2.1.3. Let q1 = [0, 0]⊥[0, 0] and q2 = [1, 1]⊥[1, 1] be two quadratic forms

over F2. Then q1 is isometric to q2.

Proof We have q1(w, x, y, z) = wx+yz and q2(w, x, y, z) = w2 +wx+x2 +y2 +yz+ z2.

The following map is the isometry between the quadratic forms q1 and q2.

w 7→ x+ y + z

x 7→ w + y + z

y 7→ w + x+ z

z 7→ w + x+ y

�

Proposition 2.1.4. The group D4 ◦ D4 is isomorphic to Q2 ◦ Q2 where ◦ denotes the

central product of groups.

Proof From lemma 1.3.14 and Prop. 2.1.2, the quadratic form associated to D4 ◦ D4

is [0, 0] ⊥ [0, 0] and that the quadratic form associated to Q2 ◦ Q2 is [1, 1] ⊥ [1, 1]. The

quadratic forms [0, 0] ⊥ [0, 0] and [1, 1] ⊥ [1, 1] are isometric ( Prop. 2.1.3). Now the result

follows from Th. 1.3.11. �
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Proposition 2.1.5. For every n ∈ N, there are exactly two extraspecial 2-groups of order

22n+1, namely D4 ◦D4 ◦ · · · ◦D4 (n copies of D4) and Q8 ◦D4 ◦ · · · ◦D4 (n− 1 copies of

D4).

Proof Let G be an extraspecial 2-group and q : V → F2 be the associated regular

quadratic form. Since q is regular, dimF2
(V ) is even (see remark 1.1.11). We assume that

dimF2
(V ) = 2n for some n ∈ N. From Prop.1.1.9, it follows that q is an orthogonal sum

of two dimensional regular quadratic spaces over F2. Since [0, 0] ⊥ [0, 0] ' [1, 1] ⊥ [1, 1]

(see Prop. 2.1.3), we conclude that either q ' [0, 0] ⊥ [0, 0] ⊥ · · · ⊥ [0, 0] or q ' [1, 1] ⊥
[0, 0] ⊥ · · · [0, 0]. By Prop. 2.1.2, we know that the quadratic forms [0, 0] and [1, 1] are

associated with the groups D4 and Q2, respectively. It follows from lemma 1.3.14 that

orthogonal sum of quadratic forms corresponds to the central product of extraspecial 2-

groups. Therefore, we conclude that the group associated to q is either D4 ◦D4 ◦ · · · ◦D4

(n copies of D4) or Q2 ◦D4 ◦ · · · ◦D4 (n−1 copies of D4). This completes the classification

of extraspecial 2-groups. �

Notation 2.1.6. From now onwards, we denote the extraspecial 2-group D4 ◦D4 ◦ · · · ◦D4

(n copies of D4) and Q2 ◦ D4 ◦ · · · ◦ D4 (n − 1 copies of D4) by D(n) and Q2 ◦ D(n−1)
4 ,

respectively.

Remark 2.1.7 The Arf invariant of quadratic form q ' [0, 0] ⊥ [0, 0] ⊥ · · · ⊥ [0, 0]

associated to extraspecial 2-group D
(n)
4 is trivial. The Arf invariant of quadratic form

q ' [1, 1] ⊥ [0, 0] ⊥ · · · ⊥ [0, 0] associated to extraspecial 2-group Q2 ◦D(n−1)
4 is equal to

1.

2.2 Representations of extraspecial 2-groups

The method of writing one dimensional representations of extraspecial 2-groups is exactly

same as that of writing one dimensional representation for special 2-group. We discuss in

general, the method of writing one dimensional representation of special 2-groups.

2.2.1 One dimensional representations of special 2-groups

The representations of degree one are called one dimensional representations. Finding one

dimensional representations of special 2-groups is elementary and is based on the following
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well-known results.

Theorem 2.2.1 ([JL01], Th. 17.11). Let G be a finite group. The one dimensional

representations of G are precisely the lifts to G of the irreducible representations of G
G′ . In

particular, the number of distinct one dimensional representations of G equals the index

of G′ in G, where G′ denotes the derived subgroup of G. �

In view of Th. 2.2.1 and Th. 1.2.15 we make the following remark on the one

dimensional representations of special 2-groups.

Remark 2.2.2 For a special 2-group G the quotient G
Z(G) is isomorphic to a direct

product of copies of Z
2Z . The group Z

2Z has only one non-trivial irreducible representation.

Using Th. 1.2.15 one can write all irreducible representations of G
Z(G) . Now from Th.

2.2.1 and the equality Z(G) = G′ for special 2-groups, one can write all one dimensional

representations of special 2-groups.

The following section concerns the representations of dimension at least 2 of extraspe-

cial 2-groups.

2.2.2 Representations of dimension at least 2 of extraspecial

2-groups

The extraspecial 2-groups are central products of copies of non-abelian groups of order 8

(see Prop. 2.1.5). The following theorem provides a method to write representations of

central products of groups when the irreducible representations of individual components

are known.

Theorem 2.2.3 ([Gor80],Ch. 3, Th. 7.2). Let H and K be two groups and ζ : Z(H) →
Z(K) be a group isomorphism. Let N := {(h, k) ∈ Z(H) × Z(K) : ζ(h)k = 1} and

G = H ◦K ∼= H×K
N be the central product of groups H and K. Let ρ : H ×K → GL(n,C)

be a representation of H ×K. If N ⊆ ker(ρ) then ρ induce representation ρ̂ of G defined

by ρ̂((h, k)N) = ρ(h, k) for all (h, k)N ∈ G. All irreducible representations of G = H ◦K
are of this type. Moreover a representation ρ̂ is irreducible if and only if ρ is irreducible.

�
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We use the above theorem to describe representations of degree at least 2 of extraspecial

2-groups.

Remark 2.2.4

1. For the dihedral group D4 = 〈a, b : a4 = b2 = 1, bab−1 = a−1〉 the homomorphism

ρ : D4 → GL(2,C) defined by

ρ(a) =

(
0 1

−1 0

)
, ρ(b) =

(
1 0

0 −1

)

is the only irreducible representation of degree at least 2.

2. For the quaternion group Q2 = 〈c, d : c4 = 1, d2 = c2, dcd−1 = c−1〉 the

homomorphism σ : Q2 → GL(2,C), where

σ(c) =

(
0 1

−1 0

)
, σ(d) =

(
i 0

0 −i

)

is the only irreducible representation of degree at least 2.

Based on this remark, we have the following :

Proposition 2.2.5. Every extraspecial 2-group has a unique irreducible representation of

degree at least 2.

Proof Let γi : 1 ≤ i ≤ 4 be one dimensional representations of the group D4. From

Th. 1.2.15 the irreducible representations of degree at least 2 of the group D4 × D4 are

ρ ⊗ γi : 1 ≤ i ≤ 4 and ρ ⊗ ρ, where ρ is as in remark 2.2.4(1). The central product

D4 ◦D4 = D4×D4
N , where N := {(1, 1), (a2, a2)} is normal subgroup of the group D4×D4.

The subgroup N is contained in the kernel of ρ ⊗ ρ but not contained in the kernel of

ρ⊗ γi for all 1 ≤ i ≤ 4. From Th. 2.2.3 it is evident that ρ⊗ ρ is the only representation

of degree at least 2 of D4 ×D4, which induces the representation ρ̂⊗ρ of D4 ◦D4. This

generalises to the fact that the representation ̂ρ⊗ ρ⊗ · · · ⊗ ρ (n copies of ρ) is the only

representation of degree at least 2 of D
(n)
4 . Similarly the group Q8 ◦ D(n−1)

4 has unique

irreducible representation of degree at least 2, namely ̂σ⊗ρ⊗ · · ·⊗ρ (n− 1 copies of ρ). �
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Remark 2.2.6 The degree of unique representation of degree at least 2 of extraspecial

2-group of order 22n+1 is 2n. This irreducible representation of degree at least 2 of

extraspecial 2-group is faithful (see [Gor80, p. 208, Th. 5.5]).

Lemma 2.2.7. Let G be an extraspecial 2-group of order 22n+1 and χ be the character of

its unique irreducible representation of degree at least 2. Then

χ(g) =


2n if g is the identity element of G

−2n if g is a non trivial element of Z(G)

0 otherwise.

Proof The extraspecial 2-group G is isomorphic to either D
(n)
4 or Q2 ◦D(n−1)

4 (see Prop.

2.1.5).

Let ϕ : G → GL(2n,C) be the irreducible representation of degree at least 2 of D
(n)
4 .

Then ϕ = ̂ρ⊗ρ⊗ · · ·⊗ρ (n copies of ρ), where ρ is unique representation of degree at least

2 of D4 as in remark 2.2.4(1).

By Th. 1.2.15, we know that ϕ(1̄) = ρ(1)⊗ρ(1)⊗· · ·⊗ρ(1)(n times). Let χϕ and χρ be

the characters afforded by representations ϕ and ρ respectively. Using the fact that for two

matrices A and B, tr(A⊗B) = tr(A) tr(B), we have χϕ(1̄) = χρ(1)⊗ χρ(1)⊗ · · · ⊗ χρ(1).

Since ρ(1) is 2 × 2 identity matrix (see remark 2.2.4(1)) we get χϕ(1̄) = 2n. We know

that order of center of D
(n)
4 is 2. If 1̄ 6= g ∈ Z(G) then g = (a2, 1, · · · , 1), where a2 is the

non-trivial element of Z(D4). We have

χϕ(g) = tr(ρ(a2)⊗ ρ(1)⊗ · · · ⊗ ρ(1))

= tr(ρ(a2)) tr(ρ(1)) · · · tr(ρ(1))

= −2n

If g = (g1, g2, · · · , gl) ∈ G− Z(G), then for some 1 ≤ i ≤ l, we have gi ∈ D4 − Z(D4) and

χρ(gi) = 0. Thus χϕ(g) = 0. This proves the result if G ∼= D4 ◦ D4 ◦ · · · ◦ D4 (l copies

of D4). On the other hand if G ∼= Q2 ◦D(n−1)
4 , then the representation of degree at least

2 of G is ̂σ⊗ρ⊗ρ⊗ · · ·⊗ρ (l − 1 copies of ρ). Here σ and ρ are unique representations of

degree at least 2 of Q2 and D4, respectively as in remark 2.2.4. On similar lines, one can

prove result in this case as well. �

The following proposition gives the type of irreducible representation of degree at least

2 of extraspecial 2-groups.
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Proposition 2.2.8. The irreducible representation of degree at least 2 of extraspecial 2-

group D
(n)
4 is orthogonal, while that of Q8 ◦D(n−1)

4 is symplectic.

Proof It follows from example 1.2.12(2) that the unique irreducible representation ρ of

degree at least 2 of D4 is orthogonal. The irreducible representation of degree at least 2

of D4 ◦ D4 ◦ · · · ◦ D4 (l copies of D4) is induced from the tensor product of n copies of

ρ. From corollary 1.2.17 and corollary 1.2.20, it follows that irreducible representation of

degree at least 2 of D4 ◦D4 ◦ · · · ◦D4 (l copies of D4) is orthogonal.

Example 1.2.12(3) shows that the unique irreducible representation φ of degree at

least 2 of Q2 is symplectic. The irreducible representation of degree at least 2 of Q2 ◦D4 ◦
· · · ◦ D4 (l − 1 copies of D4) is induced from the tensor product of φ with l − 1 copies

of representation ρ of D4. From corollary 1.2.17 and corollary 1.2.20, it follows that the

irreducible representation of degree at least 2 of Q2 ◦ D4 ◦ · · · ◦ D4 (l copies of D4) is

symplectic. �

Proposition 2.2.9. Let G be an extraspecial 2-group and q : V → F2 be quadratic

form associated to G. The unique irreducible representation of degree at least 2 of G

is orthogonal (symplectic) if and only if Arf(q) = 0 (Arf(q) = 1).

Proof It follows from the remark 2.1.7 and the Prop. 2.2.8. �

We summarize the above results regarding the type of representation of degree at least

2 of extraspecial 2-groups in following table for the further reference:

Extraspecial 2-group
Type of representation

of degree at least 2
Arf Invariant

D
(n)
4 Orthogonal 0

Q2 ◦D(n−1)
4 Symplectic 1

Table 2.1: Arf Invariant for associated quadratic form and type of representation of

degree at least 2 for extraspecial 2-groups.
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2.3 Wedderburn decomposition of rational group

algebra of extraspecial 2-groups

Let K be a field and G be a finite group. Let K[G] = {
∑

g∈G λgg, λg ∈ K}. We define

addition and multiplication on K[G] as follows:∑
g∈G

λgg +
∑
g∈G

µgg =
∑
g∈G

(λg + µg)g

∑
g∈G

λgg.
∑
h∈G

µhh =
∑

g∈G,h∈G
(λhµh−1g)g

Under the above defined addition and multiplication, K[G] is K-algebra. It is called the

K-group algebra of G .

The famous theorem of Maschke states that K[G] is semisimple if and only if char(K)

does not divide |G| (see [PMS02], Th. 3.4.7). The following theorem is another celebrated

result in the theory of group rings.

Theorem 2.3.1. Wedderburn Artin Theorem [[PMS02], Th. 3.4.9] Let G be a finite

group and let K be a field such that char(K) does not divide |G|. Then

1. K[G] is a direct sum of a finite number of its two sided ideals Ai; 1 ≤ i ≤ r. Also

for all 1 ≤ i ≤ r, Ai is a simple ring.

2. Each simple component Ai is isomorphic to Mni(Di), where Di is a division ring

containing a copy of K in its center. Also FG ∼= ⊕ri=1Mni(Di) as K-algebras.

The decomposition of group algebra K[G] given in Th. 2.3.1 is called the Wedderburn

decomposition of K[G]. We recall the definition of primitive central idempotent.

Definition 2.3.2. An element e of a ring R is called idempotent if e2 = e. A set of

idempotents {e1, e2, · · · , er} is called a complete set of primitive central idempotents if

1. ei ∈ Z(R) for all 1 ≤ i ≤ r, where Z(R) denotes the center of the ring R.

2. e1 + e2 + · · ·+ er = 1 and eiej = 0 for all 1 ≤ i, j ≤ r and i 6= j.

3. No ei can be written as ei = e′ + e′′, where e′ and e′′ are non zero idempotents with

e′e′′ = 0.
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The decomposition of K[G] ∼= A1⊕A2⊕· · ·⊕Ar as a direct sum of simple components

corresponds to a complete set primitive central idempotents {e1, e2, · · · er} such that

Ai ∼= F[G]ei, 1 ≤ i ≤ r.

The determination of Wedderburn decomposition of a group algebra is one of the

fundamental problems in the theory of group rings. A group algebra K[G] is called rational

group algebra if K = Q.

Notation 2.3.3. Let G be a finite group and H be its subgroup. We denote the element
1
|H|
∑

h∈H h of Q[G] by Ĥ.

Definition 2.3.4. Let Q denote the field of rational numbers. Let G be a finite group and

Q[G] be its rational group algebra. Then we can split the rational group algebra as.

Q[G] = Q[G].Ĝ′ ⊕Q[G].(1− Ĝ′).

The first part Q[G].Ĝ′ is isomorphic to Q[ GG′ ]. It contains all the commutative ideals of

Q[G] and is called commutative part of Q[G]. The second part Q[G].(1 − Ĝ′) is called

non-commutative part and is denoted by ∆(G,G′).

Now we discuss the Wedderburn decomposition of extraspecial 2-groups. We first state

the following well known results:

Remark 2.3.5 Let G be direct product of n copies of cyclic group C2 of order 2.

Then Q[G] is a direct sum of 2n copies of Q (see [PMS02, p. 150, Exercise 3]). For an

extraspecial 2-group G of order 22n+1, the quotient group G
G′ is an elementary abelian 2-

group of order 22n. Thus we get that Q[ GG′ ]
∼= Q⊕Q⊕· · ·⊕Q (22n copies of Q). Therefore

the commutative part of Wedderburn decomposition of extraspecial 2-group G of order

22n+1 consists orthogonal sum of 22n copies of the field of rational numbers.

The following result gives us the non commutative component ∆(G,G′) of Wedderburn

decomposition of extraspecial 2-groups. LetH denote the Quaternion algebra
(
−1,−1

Q
)

over

the field Q. We recall that H can be described as a 4-dimensional vector space over Q[G]

with basis {1, i, j, k} and multiplication defined by i2 = j2 = −1 and ij = −ji = k.

Proposition 2.3.6 ([VL06], Prop. 3.4). Let G be an extraspecial 2-group of order 22n+1, n ≥
2.
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1. If G ∼= D
(n)
4 then ∆(G,G′) = M2n(Q).

2. If G ∼= Q2 ◦D(n−1)
4 then ∆(G,G′) = M2n−1(H).

We conclude this chapter with a table of extraspecial 2-groups of order 22n+1 with

their associated quadratic forms and the non commutative component ∆(G,G′) of their

Wedderburn decomposition. This table will be helpful in Part II of thesis.

Extraspecial 2-group Quadratic form ∆(G,G′)

D
(n)
4

[0, 0] ⊥ [0, 0] ⊥ · · · ⊥ [0, 0]

(n copies of [0, 0])
M2n(Q)

Q2 ◦D(n−1)
4

[1, 1] ⊥ [0, 0] ⊥ [0, 0] ⊥ · · · ⊥ [0, 0]

(n− 1 copies of [0, 0])
M2n−1(H)

Table 2.2: ∆(G,G′) for an extraspecial 2-group G.
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Chapter 3

Totally orthogonal special 2-groups

This short chapter summarizes the results of Zahinda [Zah11]. In this chapter we mainly

discuss a characterization of totally orthogonal special 2-groups based on the associated

quadratic map. This is indeed a nice illustration of the utility of associating a quadratic

map to special 2-groups.

3.1 Real Special 2-groups

Let G be a group. Recall from definition 1.2.6 that an element g ∈ G is called real if there

exist h ∈ H such that g−1 = hgh−1.

Definition 3.1.1. A group is called real if its all elements are real.

All symmetric groups, Dihedral groups and extraspecial 2-groups are examples of real

groups. The following theorem gives a criterion to determine if a special 2-group is real.

Theorem 3.1.2 ([Zah11], Th. 2.1). Let G be special 2-group and q : V → W be the

quadratic map associated to G. The following assertions are equivalent:

i. The group G is real.

ii. For all v ∈ V , there exists a ∈ V such that q(a) = q(v − a).
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3.2 Totally orthogonal special 2-groups

We recall from definition 1.2.9 that a representation is said to be orthogonal if it is

realizable over the field R.

Definition 3.2.1. A group G is said to be totally orthogonal group if its all complex

irreducible representations are of orthogonal type.

To state a criterion for checking total orthogonality of a special 2-group, we need the

following definition:

Definition 3.2.2. Let V and W be vector spaces over F2 and q : V → W be a quadratic

map. Let s ∈ HomF2
(W,F2). The map s ◦ q : V → F2 is a quadratic form with polar form

bs◦q := s ◦ bq : V × V → F2. The quadratic form s ◦ q is called the transfer of q by s.

The quadratic form s ◦ q may not be regular. For example, consider the regular

quadratic map q : V → W defined by q(x, y, z) = (xy, xz) for all (x, y, z) ∈ V . We take

the linear map s : W → F2 defined by s(w1, w2) = w1 for (w1, w2) ∈W . Now the transfer

of q by s is given by s ◦ q(x, y, z) = xy, which is not a regular quadratic form. However,

taking a suitable quotient of V may yield a regular quadratic form. This is explained in

the following lemma.

Lemma 3.2.3 ([Zah11], Prop. 1.5(i)). Let V and W be vector spaces over F2 and q :

V →W be a quadratic map. Let s ∈ HomF2
(W,F2) and s ◦ q be the transfer of q by s. If

s◦ q(rad(bs◦q)) = 0 then s◦ q induces a regular quadratic form qs from Vs := V
rad(bs◦q)

to F2

defined by qs(εs(v)) = s ◦ q(v) for all v ∈ V . Here εs : V → Vs is the canonical surjection.

Proof Since s ◦ q(rad(bs◦q) = 0, we have rad(bs◦q) ⊆ ker(s ◦ q). Therefore, s ◦ q induces

a quadratic form qs : Vs := V
rad(bs◦q)

→ F2 defined by qs(εs(v)) = s ◦ q(v) for all v ∈ V ,

where εs : V → Vs is the canonical surjection. We first check that the quadratic form qs

is well defined.

Let v, w ∈ V such that εs(v) = εs(w). Let r ∈ rad(bs◦q) be such that v = w + r. We

compute:

qs(εs(v))− qs(εs(w)) = s ◦ q(v)− s ◦ q(w)

= s ◦ q(w + r)− s ◦ q(w)

= s ◦ q(w + r)− s ◦ q(w)− s ◦ q(r)
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= bs◦q(w, r)

= 0.

We now show that the quadratic form qs : Vs → F2 is regular. For v, w ∈ V , we compute

bqs(εs(v), εs(w)) = qs(εs(v)) + qs(εs(w))− qs(εs(v) + εs(w))

= s(q(v)) + s(q(w))− s(q(v + w))

= s(q(v) + q(w)− q(v + w))

= s(bq(v, w))

= bs◦q(v, w)

Let εs(v) ∈ rad(bqs). Then from the above computation, we conclude that bs◦q(v, wi) = 0

for a set {wiri=1} of coset representing of V in rad(bs◦q). Let w ∈ V be any arbitrary

element. Then we write w = wi + w′ for a suitable w′ ∈ rad(bs◦q) and 1 ≤ i ≤ r. Then

bs◦q(v, w) = bs◦q(v, wi) + bs◦q(v, w
′) = 0

Therefore v ∈ rad(bs◦q) and εs(v) = 0. Thus rad(bqs) is the trivial subspace of Vs and the

quadratic form qs is regular. �

The following lemma is implicit in the proof of Proposition 3.3 of [Zah11]

Lemma 3.2.4. Let G be a special 2-group and q : V →W be the quadratic map associated

to group G. If G is real then for all s ∈ HomF2
(W,F2), the radical rad(bs◦q) vanishes under

s ◦ q, the transfer of q by s.

Proof Let G be the real special 2-group associated to a quadratic map q : V := G
Z(G) →

Z(G) =: W . We recall that q(gZ(G)) = g2 for all gZ(G) ∈ G
Z(G) and the polar map

bq : G
Z(G) ×

G
Z(G) → Z(G) of q is bq(g1Z(G), g2Z(G)) = g−1

1 g−1
2 g1g2 for g1Z(G), g2Z(G) ∈

G
Z(G) (see Th. 1.3.4). Let s ∈ HomF2

(W,F2). The polar map bs◦q := s ◦ bq : G
Z(G) ×

G
Z(G) → F2 of the transfer s ◦ q turns out to be bs◦q(g1Z(G), g2Z(G)) = s(g−1

1 g−1
2 g1g2)

for g1Z(G), g2Z(G) ∈ G
Z(G) . We prove that quadratic form s ◦ q vanishes on the radical

rad(bs◦q). That will finish the proof in the view of lemma 3.2.3. Let r ∈ G be such that

rZ(G) ∈ rad(bs◦q). For all g ∈ G,

1 = bs◦q(gZ(G), rZ(G)) = s(g−1r−1gr).
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As G is real group, there exists h ∈ G such that r−1 = h−1rh. In particular for g = h, we

have

1 = bs◦q(hZ(G), rZ(G)) = s(h−1r−1hr) = s(r2) = s(q(rZ(G)) = s ◦ q(rZ(G)).

Thus s ◦ q (rad(bs◦q)) is trivial. �

Remark 3.2.5 The above lemmas imply that for a real special 2-group G associated

to a quadratic map q : V →W and s ∈ HomF2
(W,F2), the quadratic form s ◦ q : V → F2

induces a regular quadratic form qs : Vs → F2 as defined in the statement of lemma 3.2.3.

Now through an example of special 2-group we show that the transfer of quadratic

map by some linear map may not vanish on the radical if the corresponding group is not

real.

Example 3.2.6 We consider the group G defined by

G = 〈a, b, c : a2 = b4 = c4 = 1, bc = cb, aba−1 = bc2, aca−1 = cb2〉.

We make following observations about G.

• The center of G is Z(G) := 〈b2, c2 : b4 = c4 = 1, bc = cb〉, and the quotient by the

center is G
Z(G) := 〈ā, b̄, c̄ : ā2 = b̄2 = c̄2 = ¯(ab)

2
= ¯(ac)

2
= ¯(bc)

2
= 1̄〉. Both Z(G)

and G
Z(G) are elementary abelian 2-groups.

• The group G is a special 2-group as |G| = 32 and Z(G) = Φ(G) = G′ = 〈b2, c2 :

b4 = c4 = 1, bc = cb〉.

We identify G
Z(G) with a 3-dimensional vector space V and Z(G) with a 2-dimensional

vector space W over the field F2. Therefore, as a set, the group G gets identified with

V × W . Let {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} be a basis of V and {f1 =

(1, 0), f2 = (0, 1)} be a basis of W over F2. The quadratic map q : V → W associated to

the special 2-group G is defined by

q(x, y, z) = (z2 + xy, y2 + xz); (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) ∈ V.

We use the Th. 3.1.2 to show that group G is not real. The following table shows that

for v = (0, 1, 0), there does not exist a ∈ V such that q(a) = q(v − a).
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a v − a q(a) q(v − a)

(0, 0, 0) (0, 1, 0) (0, 0) (0, 1)

(1, 0, 0) (1, 1, 0) (0, 0) (1, 1)

(0, 1, 0) (0, 0, 0) (0, 1) (0, 0)

(0, 0, 1) (0, 1, 1) (1, 0) (1, 1)

(1, 1, 0) (1, 0, 0) (1, 1) (0, 0)

(1, 0, 1) (1, 1, 1) (1, 1) (0, 0)

(0, 1, 1) (0, 0, 1) (1, 1) (1, 0)

(1, 1, 1) (1, 0, 1) (0, 0) (1, 1)

Table 3.1: Special 2-group G defined in example 3.2.6 is not real.

Consider the linear map s : W → F2 defined by s(w1, w2) → w1. The transfer

s◦q : V → F2 of q by s is given by s◦q(x, y, z) = z2+xy. We compute rad(bs◦q) = 〈(0, 0, 1)〉.
Since s ◦ q(0, 0, 1) = 1, we conclude that s ◦ q does not not vanish on rad(bs◦q).

The following theorem states a criterion to check the total orthogonality of a real

special 2-group. The outline of the proof that we indicate here is due to Zahinda [Zah11].

We reproduce it here for the sake of brevity.

Theorem 3.2.7 ([Zah11], Th. 3.5). Let G be the special 2-group associated to a quadratic

map q : V →W . If G is real then the following are equivalent:

i. The group G is totally orthogonal.

ii. For all non-zero s ∈ HomF2
(W,F2) the Arf invariant Arf(qs) is trivial.

Proof (i) ⇒ (ii) Since G is real, for any non zero linear map s : W → F2, the remark

3.2.5 implies that the quadratic form s ◦ q induces a regular quadratic form qs as defined

in lemma 3.2.3.

Let Gs be the extraspecial 2-group associated to regular quadratic form qs (Th. 1.3.11).

There is a surjective group homomorphism fs from G to extraspecial 2-group Gs.

The extraspecial 2-group Gs has unique irreducible representation ρs of degree at

least 2 (Prop. 2.2.6). The composition of these two maps ρ := ρs ◦ fs is an irreducible

representation of special 2-group G.

Since G is totally orthogonal special 2-group, the representation ρ of G is orthogonal.

This implies the representation ρs of group Gs is orthogonal. Since qs is quadratic form
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associated to Gs, using Prop. 2.2.9 we get Arf(qs) = 0.

(ii)⇒ (i) The outline of the proof of converse part is as follows: For any representation

ρ of degree at least 2 of group G, the group ρ(G) is an extraspecial 2-group. Let qρ be the

quadratic form associated to the group ρ(G) as defined in Th. 1.3.4. Note that ρ(Z(G) is

a cyclic group of order 2.

The restriction of ρ on Z(G) is a linear map from Z(G) to F2. We denote this by s.

Since the group G is real, the transfer of quadratic map q by s induces a regular quadratic

form qs (see remark 3.2.5). Then one can show that qs ' qρ.
The representation ρ induces an irreducible representation ρ′ of extraspecial 2-group

ρ(G). The degree and type of both the representations ρ and ρ′ is same. Therefore

ρ′ is unique irreducible representation of degree at least 2 of extraspecial 2-group ρ(G).

Now using the fact that qρ ∼= qs and the hypothesis Arf(qs) = 0 for all non zero s ∈
HomF2

(W,F2), we conclude, using Prop. 2.2.9 that ρ′ is orthogonal. Therefore the

representation ρ of G is orthogonal. �



Part II

Results obtained in the thesis
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Chapter 4

Strong reality and symplectic

representations

The aim of this chapter is to exhibit an infinite class of strongly real finite groups with

symplectic representations and conversely, totally orthogonal groups which are not strongly

real. All examples exhibited here are special 2-groups. It is conjecture of Tiep that such

examples are not possible in the case of finite simple groups. The results of this chapter

indicates that the analogue of Tiep’s conjecture is false in a strong sense for special 2-

groups.

This chapter is divided in to two sections. In §4.1, we obtain a criterion for strong

reality of special 2-group using the associated quadratic maps. Next section is devoted to

exhibit an infinite class of finite groups for which neither the notion of strong reality and

total orthogonality implies the other. At the end of this chapter we tabulate the lists of all

groups up to order 128, which are strongly real and afford symplectic representations and

conversely, totally orthogonal groups which are not strongly real. These lists have been

obtained using the computer algebra system GAP [GAP08].

There are plenty of examples of groups which are both strongly real and totally

orthogonal. The symmetric group Sn is both strongly real and totally orthogonal. The

alternating group An is real if and only if n = 1, 2, 5, 6, 10, 14 [Ber69, Th. 1.2]. All real

classes of An are strongly real [Sul08, §3, corollary 3]. Moreover its all real representations
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are totally orthogonal [Tur92, Th. 1.1].

All real classes of general linear group GLn(q) are strongly real [Won66, Th. 1] and all

its real representations are orthogonal [Pra98, Th. 4]. Therefore in GLn(q), the number of

conjugacy classes of strongly real elements is same as the number of orthogonal characters.

The special linear group SL2(q) is strongly real as well as totally orthogonal when q is

even and it is neither strongly real nor totally orthogonal when q is odd [KS11, 5.3].

The orthogonal group On(q) is strongly real [Won66] as well as totally orthogonal

[Gow85, Th. 1]. A real group whose Sylow 2-subgroups are abelian is strongly real as well

as totally orthogonal. [Arm96, Cor. 11, Th. 12]

This motivates us to compare the two notions for arbitrary groups.

4.1 Strongly real special 2-groups

We begin with the definition of strongly real elements. In the following definitions, G

denotes a group.

Definition 4.1.1. An element g ∈ G is called strongly real if there exists an element

h ∈ G such that h2 = 1 and g−1 = hgh−1.

An element h ∈ G is called an involution if the order of h is 2. Every involution

is a strongly real element, since for every involution h, the identity element 1 ∈ G

satisfies h−1 = 1h1−1. Let g be a strongly real element in G which is not an involution.

Then by definition, there exists h ∈ G such that h2 = 1 and g−1 = hgh−1. Since

gh−1gh−1 = (gh−1g)h−1 = h−2 = 1, an strongly real element g is either a involution

or a product of two involutions.

We show that if an element is strongly real then all its conjugates are strongly real.

Let g ∈ G be a strongly real element. By definition, there exists h ∈ G be such that h2 = 1

and g−1 = hgh−1. Let g′ ∈ G, since h2 = 1, we have (g′hg′−1)2 = 1 and

(g′hg′−1)g′gg′−1(g′hg′−1)−1 = g′hgh−1g′−1 = g′g−1g′−1 = (g′g−1g′−1)−1.

Definition 4.1.2. A group G is called strongly real if all its elements are strongly real.

We now record a few lemmas.

Lemma 4.1.3 ([KK15], Lemma 3.5). The direct product of strongly real groups is strongly

real.
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Proof Let G and G′ be strongly real groups. Let (g, g′) ∈ G × G′. Then there exists

h ∈ G and h′ ∈ G′ such that h2 = 1 = h′
2
, g−1 = h−1gh and g′

−1 = h′
−1
g′h′. Now

(h, h′)2 = (1, 1) and

(h, h′)−1(g, g′)(h, h′) = (h−1gh, h′
−1
g′h′) = (g−1, g′

−1) = (g, g′)−1.

Thus G×H is strongly real. �

Lemma 4.1.4 ([KK15], Lemma 3.4). The central product of two strongly real groups is a

strongly real group.

Proof The direct product of two strongly real groups is a strongly real group (see lemma

4.1.3). Central products are quotients of direct products. Thus to prove the lemma,

we need to show that a quotient of a strongly real group is strongly real. Let G be a

strongly real group and N be a normal subgroup of G. Let G
N be the quotient group and

gN ∈ G
N . Let h ∈ G be such that h2 = 1 and g−1 = hgh−1. Then hN ∈ G

N is such that

hNhN = h2N = N and hNgN(hN)−1 = hgh−1N = g−1N = (gN)−1. Therefore central

product of two strongly real groups is strongly real. �

The following theorem gives a characterization of strongly real special 2-groups. We

use the quadratic map associated to special 2-group to check the strong reality of these

groups.

Theorem 4.1.5 ([KK15], Th. 3.1). Let G be the special 2-group associated to quadratic

map q : V → W . Then G is strongly real if and only if for every non-zero v ∈ V there

exists a ∈ V with v 6= a and q(a) = q(a− v) = 0.

Proof We first suppose G to be strongly real. Let x ∈ G and we write xZ(G) = v ∈ V .

Since G is strongly real there exists y ∈ G such that y2 = 1 and yx−1 = xy. We take

a = yZ(G). We know that q(a) = q(yZ(G)) = y2 = 1. Now we compute

q(a− v) = q(yZ(G)(xZ(G))−1)

= q(yx−1Z(G))

= (yx−1)2

= yx−1xy

= y2 = 1 ∈ G
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Thus we have q(a− v) = q(a) = 0.

For the converse part, we recall that G = V ×̇W where the group operation is defined

by

(v, w)(v′, w′) = (v + v′, c(v, v′) + w + w′)

(v, w)−1 = (v, c(v, v) + w).

where c is a normal 2-cocycle and q(x) = c(x, x). Let x = (v, w) ∈ V ×̇W = G. By

hypothesis there exists a ∈ V such that q(a) = q(a−v) = 0. We choose y = (a−v, 0) ∈ G.

We first check that y2 = 1 ∈ G, whose image in V ×̇W is (0, 0).

y2 = (a− v, 0) + (a− v, 0) = (2(a− v), c(a− v, a− v)) = (2(a− v), q(a− v)) = (0, 0)

Moreover

y−1xy = (a− v, 0)(v, w)(a− v, 0) = (2a− v, c(a− v, v) + c(a, a− v) + w)

= (v, c(v, v) + c(a, a) + w)

= (v, q(a) + c(v, v) + w)

= (v, c(v, v) + w)

= (v, w)−1 = x−1.

Therefore yxy = x−1. Further since y2 = 1, we conclude that yxy−1 = x−1 and G is

strongly real. �

A quadratic map q : V → W is said to be isotropic if there exists a non-zero element

v ∈ V such that q(v) = 0. From above theorem, it is clear that the quadratic map

associated to a strongly real special 2-group is always isotropic. However the converse is

not true. For example, consider the special 2-group G associated to the quadratic map

q : V → W defined by q(x, y, z) = (x2 + xy + y2, xz). This quadratic map is isotropic

because q(0, 0, 1) = (0, 0). But we claim that the group G is not strongly real. We use

the Th. 4.1.5 to establish our claim. We first find all a ∈ V such that q(a) = 0. Let

a := (x, y, z) ∈ V such that q(a) = 0. This gives us x2 + xy+ y2 = xz = 0. It implies that

x = y = 0 and z may take any value. Hence the value of a is either (0, 0, 0) or (0, 0, 1).

We consider v = (1, 1, 1) ∈ V . The following table confirms that there does not exist any

a ∈ V such that q(a) = q(a− v) = 0.
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a v − a q(v − a)

(0, 0, 0) (1, 1, 1) (1, 1)

(0, 0, 1) (1, 1, 0) (1, 0)

Table 4.1: Special 2-group G associated to q(x, y, z) = (x2 + xy + y2, xz) is not

strongly real.

We use Th. 4.1.5 to the study strong reality of extraspecial 2-groups. The notations

are same as defined in notation 2.1.6.

Proposition 4.1.6 ([KK15], Prop. 4.1). All extraspecial 2-groups except Q2 are strongly

real.

Proof We first show that the Dihedral group D4 is strongly real. The quadratic form

associated to Dihedral group D4 is [0, 0]. We recall that [0, 0] is 2-dimensional quadratic

form q : V → F2 defined by q(x, y) = xy. We use Th. 4.1.5 to show that D4 is strongly

real group. For each v ∈ V we have to exhibit some a ∈ V such that q(a) = q(a− v) = 0.

The following table demonstrates that it is indeed possible.

v a

(0, 0), (1, 0), (0, 1) (0, 0)

(1, 1) (1, 0)

Table 4.2: The group D4 is strongly real.

By lemma 4.1.4, the groups D
(n)
4 , n ∈ N are strongly real. Now we proof that groups

Q2 ◦D(n−1)
4 are strongly real. We again use Th. 4.1.5. The quadratic form associated to

Q2 ◦D4 is q = [0, 0] ⊥ [1, 1]. As a map q : V → F2 is given by

q(w, x, y, z) = w2 + wx+ x2 + yz

For each v ∈ V , the following table gives the a ∈ V such that q(a) = q(a− v) = 0.
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v a

(0, 0, 0, 1), (0, 0, 1, 0), (1, 1, 1, 1), (1, 0, 1, 1), (0, 1, 1, 1), (0, 0, 0, 0) (0, 0, 0, 0)

(0, 0, 1, 1) (0, 0, 0, 1)

(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 1, 0), (1, 1, 0, 1) (1, 1, 1, 1)

(0, 1, 1, 0), (0, 1, 0, 1), (1, 1, 0, 0) (0, 1, 1, 1)

(1, 0, 1, 0), (1, 0, 0, 1) (1, 0, 1, 1)

Table 4.3: The group Q2 ◦D(n−1)
4 is strongly real.

By repeated use of lemma 4.1.4, we get that groups Q2 ◦D(n−1)
4 for n ≥ 2 are strongly

real.

The only left out extraspecial 2-group is Q2, which is not strongly real. This is because

there is only one involution in Q2, which is central. �

Lemma 4.1.7. The Quaternion group Q2 is real.

Proof The quadratic form associated to quaternion group Q2 is [1, 1]. We recall that

[1, 1] is a 2-dimensional quadratic form q : V → F2 defined by q(x, y) = x2 + xy + y2. We

use Th. 3.1.2 to show that Q2 is a real group. For each v ∈ V , the following table exhibits

a ∈ V such that q(a) = q(a− v).

v a

(0, 0), (0, 1) (1, 0)

(1, 0), (1, 1) (0, 1)

Table 4.4: The group Q2 is real.

�

It is clear that every strongly real group is real. Therefore Prop. 4.1.6 and lemma

4.1.7 imply that all extraspecial 2-groups are real.

4.2 Examples

In this section, we give the examples of strongly real groups which are not totally orthogo-

nal and vice-versa. The examples of such groups shall be built up on other such examples
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of groups of smaller orders. The following lemmas are useful in the building of infinite

series of such examples.

Lemma 4.2.1 ([KK15], Lemma 3.5). The direct product of totally orthogonal groups is

totally orthogonal.

Proof Since the representations of a direct product are the tensor products of repre-

sentations of the individual components [Gor80, Ch. 3, Th. 7.2] and the tensor product

of two orthogonal representations is orthogonal (see corollary 1.2.17), the lemma follows. �

Lemma 4.2.2 ([KK15], Lemma 3.6). Let G and H be special 2-groups. Then

1. The direct product G×H is a special 2-group.

2. If H is totally orthogonal and if there is an isomorphism θ : Z(G)→ Z(H) between

the centers of G and H then G is totally orthogonal if and only if G ◦θ H is totally

orthogonal.

Proof

1. We know that Z(G×H) = Z(G)× Z(H) and (G×H)′ = G′ ×H ′. Also

Φ(G×H) = {(g, h)2 : (g, h) ∈ G×H} = {(g2, h2) : g ∈ G, h ∈ H} = Φ(G)×Φ(H).

Where Φ(G×H) denotes the Frattini subgroup of G×H. Since Z(G) and Z(H) are

elementary abelian 2-groups and Z(G×H) = Z(G)×Z(H), the center Z(G×H) is

also an elementary abelian 2-group. This gives Z(G×H) = (G×H)′ = Φ(G×H)

and these are elementary abelian 2-groups. Thus G×H is a special 2-group.

2. Let q1 and q2 be the quadratic maps associated to special 2-groups G and H

respectively. It is easy to check that (q1 ⊥θ q2)s = θ(q1)s ⊥ (q2)s for a non zero

linear map s : Z(H)→ F2. Also Arf((q1 ⊥θ q2)s) = Arf(θ(q1)s) + Arf((q2)s). Since

H is totally orthogonal, Arf((q2)s) = 0 for all non zero linear maps s : Z(H) → F2

(Th. 3.2.7). Therefore Arf((q1 ⊥θ q2)s) = 0 if and only if Arf(θ(q2)s) = 0 for all

non zero linear maps s : Z(H)→ F2. Now again using Th. 3.2.7, we have that the

group G is totally orthogonal if and only if G ◦θ H is totally orthogonal.

�
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4.2.1 Totally orthogonal but not strongly real groups

This section is devoted to give examples of strongly real special 2-groups with symplectic

representations. We begin with such examples in class of extraspecial 2-groups. The

notations are same as defined in notation 2.1.6.

Proposition 4.2.3 ([KK15], Example 4.2). All extraspecial 2-groups Q2 ◦D(n−1)
4 , n ≥ 2

are examples of strongly real groups which are not totally orthogonal.

Proof LetG be an extraspecial 2-group associated to a quadratic form q. The HomF2
(F2,F2)

consists only of one non zero element, namely the identity map. Now by Th. 3.2.7

the group G is totally orthogonal if and only if Arf(q) is trivial. Extraspecial 2-groups

Q2◦D(n−1)
4 are not totally orthogonal because the Arf invariant of the associated quadratic

form q = [1, 1] ⊥ [0, 0] · · · ⊥ [0, 0] is not trivial. From the Prop. 4.1.6, we know that

all extraspecial 2-groups expect Q2 are strongly real. Thus all extraspecial 2-groups

Q2 ◦D(n−1)
4 , n ≥ 2 are strongly real groups which are not totally orthogonal. �

In the view of Th. 3.2.7, we mention that for all n ∈ N, extraspecial 2-groups

D
(n)
4 are totally orthogonal. This is because the Arf invariant of the quadratic form

q = [0, 0] ⊥ [0, 0] · · · ⊥ [0, 0] associated to the group D
(n)
4 is trivial.

The computer algebra system GAP [GAP08] confirms that the extraspecial 2-group

Q2 ◦ D4 is smallest strongly real group which is not totally orthogonal. We give GAP

[GAP08] code to check this in the appendix. The order of group Q2 ◦D4 is 32 and it is the

only such group of order 32. The next order in which an example of strongly real group

with symplectic representations is found is 64. We record strongly real special 2-group of

order 64 which is not totally orthogonal group in the following example.

Example 4.2.4 ([KK15], Example 4.3) Let V (resp. W ) be a vector space of dimension

4 (resp. 2) over the field F2. Consider the regular quadratic map q(w, x, y, z) = (z2 +

wx + wz + xy,wy) from V to W . We show that the special 2-group associated to q is

strongly real but not totally orthogonal. We use the Th. 4.1.5 to show that the special

2-group G is strongly real. In the following table we give a ∈ V for every v ∈ V such that

q(a) = q(v − a) = 0.
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v a

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 1) (0, 0, 0, 0)

(0, 0, 0, 1), (1, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 1) (1, 0, 0, 0)

(0, 1, 1, 0), (0, 1, 0, 1) (0, 0, 1, 0)

(0, 0, 1, 1) (0, 1, 0, 0)

(1, 1, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1) (1, 0, 0, 1)

Table 4.5: The group G64 is strongly real.

We know that every strongly real group is also real. We use Th. 3.2.7 to check that

the special 2-group associated to q is not totally orthogonal. Let s : W → F2 be the linear

map given by s(w1, w2) = w1 + w2 for (w1, w2) ∈ W . The quadratic form s ◦ q : V → F2

given by s ◦ q(w, x, y, z) = (z2 + wx+ wz + xy + wy) is regular. Therefore the quadratic

forms s ◦ q and qs are same. The following change of variables in s ◦ q converts it to the

form [1, 1] ⊥ [0, 0]:

w 7→ w + x+ z

x 7→ x+ y

y 7→ y + w

z 7→ y + z

The Arf Invariant of [1, 1] ⊥ [0, 0] is equal to 1. Thus we have a linear map s : W → F2

for which the Arf invariant of the quadratic form qs is not trivial. Hence by Th. 3.2.7 this

group G is not totally orthogonal.

Remark 4.2.5 We have checked using GAP [GAP08] that special 2-group associated

to q is only special 2-group of order 64 which is strongly real and not totally orthogonal.

The GAP [GAP08] coding need to check this is given in the appendix.

Notation 4.2.6. We denote the unique strongly real special 2-group of order 64 which

is not totally orthogonal by G64. The quadratic map associated to G64 is q(w, x, y, z) =

(z2 + wx+ wz + xy,wy).
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The groups G64 and G = C2× (Q2 ◦D4), where C2 is the group of order 2 are the only

strongly real groups of order 64 which are not totally orthogonal. �

We now have all the ingredients to prove the following theorem.

Theorem 4.2.7 ([KK15], Th. A). For every m ≥ 5 there exist special 2-groups of order

2m which are strongly real but not totally orthogonal.

Proof Let m ∈ N. We first suppose that m is odd and m = 2n + 1. By Prop. 4.2.3

the extraspecial 2-groups Q2 ◦D(n−1)
4 for n ≥ 2 are strongly real groups with symplectic

representation.

Now we consider the case when m is even and the two sub cases: m = 6 + 4n and

m = 8 + 4n. First suppose that m = 6 + 4n. The groups G64 ◦ (D4 ×D4)(n) are strongly

real but not totally orthogonal of order 6 + 4n, where G64 is the group as in example 4.2.4

and (D4×D4)(n) denotes the n-fold central product of D4×D4. The group D4 is strongly

real and totally orthogonal special 2-group, whereas G64 is strongly real special 2-group

which is not totally orthogonal. Now the proof follows from lemma 4.2.2, lemma 4.1.4 and

example 4.2.4.

Finally we consider the case m = 8 + 4n. The group ((Q2 ◦D4)×D4) ◦ (D4 ×D4)(n)

are strongly real but not totally orthogonal of order 8 + 4n. It follows from lemma 4.2.2,

lemma 4.1.4 and Prop. 4.2.3 as the group Q2 ◦ D4 is strongly real extraspecial 2-group

which is not totally orthogonal. This completes the proof. �

4.2.2 Strongly real but not totally orthogonal groups

This section is devoted to construct examples of special 2-groups which are totally or-

thogonal but not strongly real. We construct such examples by finding a quadratic map

q : V → W between vector spaces over field F2 such that the Arf invariant Arf(qs) is

trivial for all non-zero s ∈ HomF2
(W,F2) and there exists a non-zero v ∈ V for which no

a ∈ V satisfies q(a) = q(a − v) = 0. The Th. 4.1.5 and Th. 3.2.7 imply that the special



4.2. EXAMPLES 53

2-groups associated to such quadratic maps are totally orthogonal but not strongly real.

Example 4.2.8 ([KK15], Example 5.1) Let V be the 4-dimensional vector space over F2

and W be the 3-dimensional vector space over F2. We define a quadratic map q : V →W

by

q(w, x, y, z) = (wx+ yz, wy, xy); (w, x, y, z) ∈ V (4.1)

The polar map bq of q is given by

bq((w1, x1, y1, z1), (w2, x2, y2, z2)) = (w1x2 + x1w2 + y1z2 + z1y2, w1y2 + y1w2, x1y2 + y1x2)

where (w1, x1, y1, z1), (w2, x2, y2, z2) ∈ V .

We check that rad(bq) = 0. Let (w, x, y, z) ∈ rad(bq). Then for all (w1, x1, y1, z1) ∈ V ,

we have bq((w, x, y, z), (w1, x1, y1, z1)) = 0. This implies wx1 + xw1 + yz1 + zy1 = wy1 +

yw1 = xy1 + yx1 = 0 and hence ((w, x, y, z) = 0 ∈ V . Since bq((1, 0, 0, 0), (0, 1, 0, 0)) =

(1, 0, 0), bq((1, 0, 0, 0), (0, 0, 1, 0)) = (0, 1, 0) and bq((0, 1, 0, 0), (0, 0, 1, 0)) = (0, 0, 1) we have

〈bq(V × V )〉 = W . From Th. 1.3.11 there exist a unique special 2-group whose associated

quadratic map is q. We denote this group by G128. The order of this group is |V | × |W | =
128.

To check that special 2-group associated to the quadratic map q is real, for each v ∈ V ,

we give a ∈ V such the criteria of Th. 3.1.2 is satisfied.

v a q(a) = q(a− v)

(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),

(0, 0, 0, 1), (1, 0, 0, 1), (0, 1, 0, 1)
(0, 0, 0, 0) (0, 0, 0)

(1, 1, 0, 0), (1, 1, 0, 1), (1, 0, 1, 0) (1, 0, 0, 0) (0, 0, 0)

(0, 1, 1, 0), (0, 0, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1) (0, 0, 1, 0) (0, 0, 0)

(0, 0, 0, 1), (1, 1, 1, 1) (0, 0, 1, 1) (1, 0, 0)

Table 4.6: The group G128 is real.

To show that G128 is not strongly real, we consider v = (1, 1, 1, 1) ∈ V . Then for every

a ∈ V with q(a) = 0 we claim that q(v − a) 6= 0. We first identify all a ∈ V such that

q(a) = 0. Let a = (w, x, y, z) ∈ V be a vector such that q(w, x, y, z) = 0. This implies

wx+ yz = wy = xy = 0
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If y 6= 0 then the above condition forces x = w = z = 0. Thus we have a = (0, 0, 1, 0).

If y = 0 then above condition implies that either w = 0 or x = 0. Therefore we

conclude that a ∈ {(0, 0, 0, 0), (0, 1, 0, 0), (1, 0, 0, 0), (0, 0, 0, 1), (0, 1, 0, 1), (1, 0, 0, 1)}. In the

following table, we compute that for every such a, q(a− v) 6= 0.

a a− v q(a− v)

(0, 0, 1, 0) (1, 1, 0, 1) (1, 0, 0)

(0, 0, 0, 0) (1, 1, 1, 1) (0, 1, 1)

(0, 1, 0, 0) (1, 0, 1, 1) (1, 1, 0)

(1, 0, 0, 0) (0, 1, 1, 1) (1, 0, 1)

(0, 0, 0, 1) (1, 1, 1, 0) (1, 1, 1)

(0, 1, 0, 1) (1, 0, 1, 0) (0, 1, 0)

(1, 0, 0, 1) (0, 1, 1, 0) (0, 0, 1)

Table 4.7: The group G128 is not strongly real.

The above table and the Th. 4.1.5 confirm that G128 is not strongly real.

Now we show that the special 2-group G128 associated to the quadratic map q as in

equation (4.1) is totally orthogonal. Since dimF2
(W,F2) = 3, there exist exactly 7 non-zero

F2-linear maps from W to F2, which are the following

sn(x, y, z) = ix+ jy + kz; (x, y, z) ∈W, 1 ≤ n ≤ 7,

where n = 4i + 2j + k is the binary expansion of n ∈ {1, 2, · · · , 7}. We write various

transfer maps of q:

s1 ◦ q(w, x, y, z) = xy,

s2 ◦ q(w, x, y, z) = wy,

s3 ◦ q(w, x, y, z) = wy + xy = (w + x)y,

s4 ◦ q(w, x, y, z) = wx+ yz,

s5 ◦ q(w, x, y, z) = wx+ yz + xy = wx+ (z + x)y,

s6 ◦ q(w, x, y, z) = wx+ yz + wy = wx+ (z + w)y,

s7 ◦ q(w, x, y, z) = wx+ yz + wy + xy = wx+ (z + w + x)y,
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where (w, x, y, z) ∈ V . By the linear change of variables, the quadratic forms s1◦q and s3◦q
are isometric to s2 ◦ q : V → F2 defined by s2 ◦ q(w, x, y, z) = wy. Whereas the remaining

quadratic forms are isometric to s4 ◦ q : V → F2 defined by s4 ◦ q(w, x, y, z) = wx+ yz by

suitable linear changes of variables.

Now rad(bs2◦q) = 〈(0, 1, 0, 0), (0, 0, 0, 1)〉 and V
rad(bs2◦q)

= 〈(1, 0, 0, 0), (0, 0, 1, 0)〉. There-

fore s2 ◦ q induces regular quadratic form qs2 : V
rad(bs2◦q)

→ F2 defined by qs2(α, β) = αβ,

where (α, β) ∈ V
rad(bs2◦q)

. Since the quadratic form qs2 is isometric to [0, 0], Arf(qs2) = 0.

On the other hand, the subspace rad(bs4◦q) is trivial. Therefore quadratic form s4 ◦ q is

regular. The quadratic form qs4 is same as s4◦q, which is [0, 0] ⊥ [0, 0]. Hence Arf(qs4) = 0.

As a consequence, for all s ∈ HomF2
(W,F2) the Arf invariant of the quadratic form qs

is trivial and by Th. 3.2.7 the group G128 is totally orthogonal. �

Now we give examples of totally orthogonal special 2-groups of order 28 and 29 which

are not strongly real. These examples are building blocks for constructing such examples

in order 2m for every m ≥ 7.

Example 4.2.9 ([KK15], Example 5.2) Let V and W be vector spaces over the field

F2 with dimF2
(V ) = 5 and dimF2

(W ) = 3. We check that the special 2-group associated

to the quadratic map q : V →W defined by

q(w, x, y, z, t) = (wx+ wt+ yz, wy,wt+ xy); (w, x, y, z, t) ∈ V (4.2)

is totally orthogonal but not strongly real group of order 28. We show that this group is

not strongly real using Th. 4.1.5. Let a := (w, x, y, z, t) ∈ V such that q(a) = 0 implies

that wx+wt+ yz = wy = wt+ xy = 0. If w = 0, this condition forces that yz = xy = 0.

If we further suppose that y = 0, we get the following set of values of a.

{(0, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1), (0, 1, 0, 1, 0), (0, 0, 0, 1, 1)(0, 1, 0, 1, 1)}.

On the other hand if we consider w = 0 and y 6= 0, then we get x = z = 0. Thus in this

case values of a are (0, 0, 1, 0, 0) and (0, 0, 1, 0, 1). Now we consider the case w 6= 0, then by

condition q(a) = 0 we have y = t = x = 0 and the values of a in this case are (1, 0, 0, 0, 0)

and (1, 0, 0, 1, 0). This completes the list of a ∈ V with property q(a) = 0. Consider
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v = (1, 1, 1, 1, 1) ∈ V . The calculation in the following table shows that q(v − a) 6= 0, for

all a ∈ V for which q(a) = 0.

a a− v q(a− v)

(0, 0, 0, 0, 0) (1, 1, 1, 1, 1) (1, 1, 0)

(1, 0, 0, 0, 0) (0, 1, 1, 1, 1) (1, 0, 1)

(0, 1, 0, 0, 0) (1, 0, 1, 1, 1) (0, 1, 1)

(0, 0, 1, 0, 0) (1, 1, 0, 1, 1) (0, 0, 1)

(0, 0, 0, 1, 0) (1, 1, 1, 0, 1) (0, 1, 0)

(0, 0, 0, 0, 1) (1, 1, 1, 1, 0) (0, 1, 1)

(1, 0, 0, 1, 0) (0, 1, 1, 0, 1) (0, 0, 1)

(0, 1, 0, 1, 0) (1, 0, 1, 0, 1) (1, 1, 1)

(0, 1, 0, 0, 1) (1, 0, 1, 1, 0) (1, 1, 0)

(0, 0, 1, 0, 1) (1, 1, 0, 1, 0) (1, 0, 0)

(0, 0, 0, 1, 1) (1, 1, 1, 0, 0) (1, 1, 1)

(0, 1, 0, 1, 1) (1, 0, 1, 0, 0) (0, 1, 0)

Table 4.8: The group G256 is not strongly real.

By Th. 4.1.5 we conclude that the special 2-group associated with quadratic map

defined in equation (4.2) is not strongly real. Now we use Th. 3.1.2 to show that this group

is real. In the following table, for every v ∈ V , we find a ∈ V such that q(a) = q(v − a).

v a q(a) = q(a− v)

(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0),

(1, 0, 0, 1, 0), (0, 1, 0, 1, 0), (0, 1, 0, 0, 1), (0, 0, 0, 1, 1),

(0, 0, 0, 1, 0), (0, 0, 0, 0, 1), (0, 1, 0, 1, 1), (0, 0, 1, 0, 1)

(0, 0, 0, 0, 0) (0, 0, 0)

(1, 1, 0, 0, 0), (1, 0, 1, 0, 0), (1, 0, 0, 0, 1), (1, 0, 0, 1, 1),

(1, 0, 1, 0, 1), (1, 1, 0, 0, 1), (1, 1, 0, 1, 0), (1, 1, 0, 1, 1)
(1, 0, 0, 0, 0) (0, 0, 0)

(0, 1, 1, 0, 0), (0, 0, 1, 1, 0), (0, 0, 1, 1, 1), (0, 1, 1, 0, 1),

(0, 1, 1, 1, 0), (1, 0, 1, 1, 0), (0, 1, 1, 1, 1)
(0, 0, 1, 0) (0, 0, 0)

(1, 1, 1, 0, 0), (1, 1, 1, 1, 0) (0, 0, 1, 1, 0) (1, 0, 0)

(1, 1, 1, 1, 1), (1, 1, 1, 0, 1) (0, 1, 1, 1, 0) (1, 0, 1)

(1, 0, 1, 1, 1) (0, 1, 1, 0, 0) (0, 0, 1)

Table 4.9: The group G256 is real.

Now we explicitly make a calculation to show that special 2-group associated to the
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quadratic map as defined in the equation (4.2) is totally orthogonal. Since dimF2
(W,F2) =

3, there exist exactly 7 non-zero F2-linear maps from W to F2, which are the following

sn(x, y, z) = ix+ jy + kz; (x, y, z) ∈W, 1 ≤ n ≤ 7,

where n = 4i + 2j + k is the binary expansion of n ∈ {1, 2, · · · , 7}. We write various

transfer maps of q:

s1 ◦ q(w, x, y, z, t) = wt+ xy,

s2 ◦ q(w, x, y, z.t) = wy,

s3 ◦ q(w, x, y, z, t) = wy + wt+ xy = wt+ (w + x)y,

s4 ◦ q(w, x, y, z, t) = wx+ wt+ yz = yz + (x+ t)w,

s5 ◦ q(w, x, y, z, t) = wx+ wt+ yz + wt+ xy = yz + (w + y)x,

s6 ◦ q(w, x, y, z, t) = wx+ wt+ yz + wy = yz + (x+ t+ y)w,

s7 ◦ q(w, x, y, z, t) = wx+ wt+ yz + wy + wt+ xy = wx+ (z + w + x)y.

where (w, x, y, z) ∈ V . We first consider the quadratic form s2 ◦q : V → F2 defined by s2 ◦
q(w, x, y, z, t) = wy. Now we compute that rad(bs2◦q) = 〈(0, 1, 0, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)〉
and V

rad(bs2◦q)
= 〈(1, 0, 0, 0, 0), (0, 0, 1, 0, 0)〉. Therefore s2◦q induces regular quadratic form

qs2 : V
rad(bs2◦q)

→ F2 defined by qs2(α, β) = αβ, where (α, β) ∈ V
rad(bs2◦q)

. Now the quadratic

form qs2 is isometric to [0, 0], so Arf(qs2) = 0.

Except s2 ◦ q all the other transfer maps are isometric to s1 ◦ q : V → F2 defined

by s1 ◦ q(w, x, y, z) = wt + xy by suitable linear changes of variables. Here rad(bs1◦q) =

〈(0, 0, 0, 1, 0)〉 and V
rad(bs1◦q)

= 〈(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 0, 1)〉. There-

fore s1 ◦ q induces regular quadratic form qs1 : V
rad(bs1◦q)

→ F2 defined by qs1(α, β, γ, ω) =

αβ + γω, where (α, β, γ, ω) ∈ V
rad(bs1◦q)

. Now the quadratic form qs1 is isometric to

[0, 0] ⊥ [0, 0], so Arf(qs1) = 0.

Thus we conclude that for all s ∈ Hom(W,F2) the quadratic form qs is isometric to

either [0, 0] or [0, 0] ⊥ [0, 0], therefore Arf(qs) = 0 for all s ∈ Hom(W,F2). Thus by Th.

3.2.7, the special 2-group associated with quadratic map defined in equation (4.2) is totally

orthogonal. �
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Example 4.2.10 ([KK15], Example 5.3) We consider two vector spaces V and W over

F2 with dimF2
(V ) = 5 and dimF2

(W ) = 4. We check that the special 2-group associated

to the quadratic map q : V →W defined by

q(w, x, y, z, t) = (wx+ yz, wy, xy, wt); (w, x, y, z, t) ∈ V. (4.3)

is totally orthogonal but not strongly real group of order 29.

To show that the special 2-group associated to quadratic map as defined in equation

(4.3) is not strongly real, we take v = (1, 1, 1, 1, 1) ∈ V . We first compute all a :=

(w, x, y, z, t) ∈ V such that q(a) = 0. The condition q(a) = 0 implies that wx+yz = wy =

xy = wt = 0. If w = 0, this condition forces that yz = xy = 0. If we further suppose that

y = 0, we get the following set of

{(0, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1), (0, 1, 0, 1, 0), (0, 0, 0, 1, 1)(0, 1, 0, 1, 1)}.

On the other hand if we consider w = 0 and y 6= 0, then we get x = z = 0. Thus in

this case values of a are (0, 0, 1, 0, 0) and (0, 0, 1, 0, 1). Now we consider the case w 6= 0,

then by condition q(a) = 0 we have y = t = x = 0 and the values of a in this case are

(1, 0, 0, 0, 0) and (1, 0, 0, 1, 0). This completes the list of a ∈ V with property q(a) = 0.

From the following table, we have that q(v − a) 6= 0 for all a ∈ V with q(a) = 0.

a a− v q(a− v)

(0, 0, 0, 0, 0) (1, 1, 1, 1, 1) (0, 1, 1, 1)

(1, 0, 0, 0, 0) (0, 1, 1, 1, 1) (1, 0, 1, 0)

(0, 1, 0, 0, 0) (1, 0, 1, 1, 1) (1, 1, 0, 1)

(0, 0, 1, 0, 0) (1, 1, 0, 1, 1) (1, 0, 0, 1)

(0, 0, 0, 1, 0) (1, 1, 1, 0, 1) (1, 1, 1.1)

(0, 0, 0, 0, 1) (1, 1, 1, 1, 0) (0, 1, 1, 0)

(1, 0, 0, 1, 0) (0, 1, 1, 0, 1) (0, 0, 1, 0)

(0, 1, 0, 1, 0) (1, 0, 1, 0, 1) (0, 1, 0, 1)

(0, 1, 0, 0, 1) (1, 0, 1, 1, 0) (1, 1, 0, 0)

(0, 0, 1, 0, 1) (1, 1, 0, 1, 0) (1, 0, 0, 0)

(0, 0, 0, 1, 1) (1, 1, 1, 0, 0) (1, 1, 1, 0)

(0, 1, 0, 1, 1) (1, 0, 1, 0, 0) (0, 1, 0, 0)

Table 4.10: The group G512 is not strongly real.
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In view of Th. 4.1.5, the above table confirms that special 2-group associated to

quadratic map as defined in equation (4.3) is not strongly real. The special 2-group

associated to quadratic map as defined in equation (4.3) is real (Th. 3.1.2). The following

table gives the value of a ∈ V for all v ∈ V such that q(a) = q(v − a).

v a q(a) = q(a− v)

(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0),

(1, 0, 0, 1, 0), (0, 1, 0, 1, 0), (0, 1, 0, 0, 1), (0, 0, 0, 1, 1),

(0, 0, 0, 1, 0), (0, 0, 0, 0, 1), (0, 1, 0, 1, 1), (0, 0, 1, 0, 1)

(0, 0, 0, 0, 0) (0, 0, 0, 0)

(1, 1, 0, 0, 0), (1, 0, 1, 0, 0), (1, 0, 0, 0, 1), (1, 0, 0, 1, 1),

(1, 0, 1, 0, 1), (1, 1, 0, 0, 1), (1, 1, 0, 1, 0), (1, 1, 0, 1, 1)
(1, 0, 0, 0, 0) (0, 0, 0, 0)

(0, 1, 1, 0, 0), (0, 0, 1, 1, 0), (0, 0, 1, 1, 1), (0, 1, 1, 0, 1),

(0, 1, 1, 1, 0), (1, 0, 1, 1, 0), (0, 1, 1, 1, 1)
(0, 0, 1, 0) (0, 0, 0, 0)

(1, 1, 1, 1, 1), (1, 1, 1, 1, 0) (1, 1, 0, 0, 0) (1, 0, 0, 0)

(1, 0, 1, 1, 1) (1, 0, 0, 1, 0) (0, 0, 0, 0)

(1, 1, 1, 0, 0) (0, 0, 1, 1, 0) (1, 0, 0, 0)

(1, 1, 1, 0, 1) (0, 0, 1, 1, 1) (1, 0, 0, 0)

Table 4.11: The group G512 is real.

Now we make the calculations to show that special 2-group associated to quadratic

map as defined in equation (4.3) is totally orthogonal. Since dimF2
(W,F2) = 4, there exist

exactly 15 non-zero F2-linear maps from W to F2, which are the following

sn(x, y, z, w) = ix+ jy + kz + lw; (x, y, z, w) ∈W, 1 ≤ n ≤ 15,

where n = 8i+ 4j + 2k+ l is the binary expansion of n ∈ {1, 2, · · · , 15}. We write various

transfer maps of q:

s1 ◦ q(w, x, y, z, t) = wt,

s2 ◦ q(w, x, y, z.t) = xy,

s3 ◦ q(w, x, y, z, t) = wt+ xy,

s4 ◦ q(w, x, y, z, t) = wy,
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s5 ◦ q(w, x, y, z, t) = wy + wt = (y + t)w,

s6 ◦ q(w, x, y, z, t) = wy + xy = (w + x)y,

s7 ◦ q(w, x, y, z, t) = wy + wt+ xy = xy + (t+ y)w,

s8 ◦ q(w, x, y, z, t) = wx+ yz,

s9 ◦ q(w, x, y, z, t) = wx+ yz + wt = yz + (x+ t)w,

s10 ◦ q(w, x, y, z, t) = wx+ yz + xy = yz + (w + y)x,

s11 ◦ q(w, x, y, z, t) = wx+ yz + wt+ xy = (x+ z)y + (x+ t)w,

s12 ◦ q(w, x, y, z, t) = wx+ yz + wy = yz + (x+ y)w,

s13 ◦ q(w, x, y, z, t) = wx+ yz + wy + wt = yz + (x+ y + t)w,

s14 ◦ q(w, x, y, z, t) = wx+ yz + wy + xy = wx+ (z + w + x)y,

s15 ◦ q(w, x, y, z, t) = wx+ yz + wy + xy + wt = (x+ t)w + (z + w + x)y.

where (w, x, y, z) ∈ V . The quadratic forms s1 ◦ q, s2 ◦ q, s5 ◦ q and s6 ◦ q are iso-

metric to the quadratic form s4 ◦ q : V → F2 defined by s2 ◦ q(w, x, y, z, t) = wy.

Now we compute rad(bs4◦q) = 〈(0, 1, 0, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)〉 and V
rad(bs4◦q)

=

〈(1, 0, 0, 0, 0), (0, 0, 1, 0, 0)〉. Therefore s4◦q induces a regular quadratic form qs4 : V
rad(bs2◦q)

→
F2 defined by qs4(α, β) = αβ, where (α, β) ∈ V

rad(bs4◦q)
. Now the quadratic form qs4 is

isometric to [0, 0], so Arf(qs4) = 0.

All the other transfer maps are isometric to s3 ◦ q : V → F2 by suitable linear changes

of variables. Here rad(bs3◦q) = 〈(0, 0, 0, 1, 0)〉 and s3 ◦ q induces regular quadratic form

qs3 : V
rad(bs3◦q)

→ F2 defined by qs3(α, β, γ, ω) = αβ + γω, where (α, β, γ, ω) ∈ V
rad(bs3◦q)

.

Now the quadratic form qs3 is isometric to [0, 0] ⊥ [0, 0], so Arf(qs3) = 0.

Therefore for all s ∈ Hom(W,F2), Arf(qs) = 0. Now by Th. 4.1.5 and by Th. 3.2.7,

the special 2-group associated to quadratic map defined in the equation (4.3) is a totally

orthogonal group which is not strongly real. �

Notation 4.2.11. We denote the special 2-groups associated to quadratic maps as defined

by the equations (4.1), (4.2) and (4.3) by G128, G256 and G512 respectively.

We now have all the ingredients to prove the following theorem.

Theorem 4.2.12 ([KK15], Th. B). For every m ≥ 7 there exist special 2-groups of order

2m which are totally orthogonal but not strongly real.
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Proof We consider the groups G128×Dn
4 , G256×Dn

4 and G512×Dn
4 , where Dn

4 denotes

the n-fold direct product of D4. It is computed that the groups G128, G256 and G512

are strongly real groups which are not totally orthogonal in examples 4.2.8, 4.2.9, 4.2.10,

respectively. Whereas the group D4 is strongly real as well as totally orthogonal. Now

using lemma 4.2.2, we conclude that the groups are G128×Dn
4 , G256×Dn

4 and G512×Dn
4

are totally orthogonal special 2-groups which are not strongly real. Their orders are

27+3n, 28+3n and 29+3n. This completes the proof of the Theorem. �

Remark 4.2.13 We remark that the smallest totally orthogonal special 2-group which

is not strongly real is of order 128. We have checked using GAP [GAP08] that the smallest

totally orthogonal group which is not strongly real is of order 64. That group, though, is

not a special 2-group. We give GAP [GAP08] code to check this in the appendix.

In the following table we record all totally orthogonal groups of order at most 128

which are not strongly real. Here Cn, Dn, QDn and Qn denote the cyclic group of order n,

dihedral group of order 2n, quasidihedral group of order n and quaternion group of order

4n, respectively and G×H, GoH and G◦H denote the direct product, semidirect product

and central product of groups G and H respectively. This table has been obtained using

GAP [GAP08]. We give GAP [GAP08] code used to make this table in the appendix.

SmallGroups library ID Structure description Order Special group

(64, 177) (C2 ×D8) : C2 64 No

(128, 453) ((C8 × C4) : C2) : C2 128 No

(128, 931) (((C8 × C2) : C2) : C2) : C2 128 No

(128, 932) ((C4 × C2 × C2) : C4) : C2 128 No

(128, 982) (C2 ×QD32) : C2 128 No

(128, 1345) ((C2 × C2 × C2 ×D4) : C2 128 Yes

(128, 1389) (C2 × ((C4 × C4) : C2)) : C2 128 Yes

(128, 1544) (C2 × ((C2 × C2 × C2 × C2) : C2)) : C2 128 Yes

(128, 1550) (C2 × ((C4 × C4) : C2)) : C2 128 Yes

(128, 1880) (C2 × (C2 ×D8) : C2) 128 No

(128, 1924) (C2 × ((C4 × C2 × C2) : C2)) : C2 128 No

(128, 1949) (C2 × ((C4 × C4) : C2)) : C2 128 No

Table 4.12: Totally orthogonal groups which are not strongly real up to order 128.

In the following table, we record all strongly real groups up to order 128 which are
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not totally orthogonal. Again, this table has been obtained using GAP [GAP08]. We give

GAP [GAP08] code used to make this table in the appendix.

SmallGroups library ID Structure description Order Special group

(32, 50) Q2 ◦D4 32 Extraspecial

(64, 218) (C2 × (C4 × C2) : C2)) : C2 64 Yes

(64, 265) C2 × ((C2 ×Q2) : C2) 64 No

(128, 1347) (C2 × C2 × ((C4 × C2) : C2)) : C2 128 Yes

(128, 1388) (C2 × ((C4 × C2) : C4)) : C2 128 Yes

(128, 1407) (C2 × ((C4 × C2 × C2) : C2)) : C2 128 Yes

(128, 2180) C2 × ((C2 × (C4 × C2) : C2)) : C2) 128 No

(128, 2318) (C2 × ((C2 ×Q2) : C2))) : C2 128 No

(128, 2324) C2 × (C2 × ((C2 ×Q2) : C2) 128 No

(128, 2327) Q2 ◦D4 ◦D4 128 Extraspecial

Table 4.13: Strongly real groups which are not totally orthogonal up to order 128.



Chapter 5

Representations of real special

2-groups

The aim of this chapter is to utilize the description of special 2-groups in terms of quadratic

maps to construct the conjugacy classes, irreducible representations and complex character

tables of real special 2-groups.

This chapter consists of four sections. In the first section we describe irreducible

representations of real special 2-groups. In §5.2 and §5.3 we describe a method to construct

the character table of real special 2-groups. These two sections deal with the characters and

conjugacy classes of real special 2-groups. In §5.4, we illustrate our method of constructing

character tables of real special 2-groups through examples.

Realization of abstract groups as groups of linear transformations is known as repre-

sentation theory. In the theory of representations, there are number of ways of getting new

representations from already known representations. In this chapter, we describe a method

to write representations of real special 2-groups using the well known representations

of extraspecial 2-groups. A large portion of the chapter is devoted to patch together

the information of extraspecial 2-groups. This is done by converting quadratic maps

associated to real special 2-groups to quadratic forms associated to extraspecial 2-groups

by composing them with suitable linear maps.

Recall from example 3.2.6 that conversion of quadratic map to regular quadratic forms

63
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is indeed possible if the corresponding group is real. For this reason, we deal only with

those special 2-groups which are real. A major part of this chapter concerns refining the

Prop. [[Zah11], Prop. 3.3]. Before stating this proposition, we recall the notations from

§3.2. Let G be a real special 2-group and q : V → W be the quadratic map associated to

it. Let s ∈ HomF2
(W,F2) be a non-zero linear map. The map s◦ q is called the transfer of

quadratic map q by s. If the group G is real, then s ◦ q induces a regular quadratic form

from Vs := V
rad(bs◦q)

to F2 (see remark 3.2.5). We denote this form by qs. We denote the

extraspecial 2-group associated to the quadratic form qs by Gs.

Proposition 5.0.14 ([Zah11], Prop. 3.3). Let G be a real special 2-group and q : V :=
G

Z(G) → Z(G) =: W be the quadratic map associated to G. Then

1. For every non-zero s ∈ HomF2
(W,F2), there exists an irreducible representation ϕ

of degree at least 2 of G such that ϕ(G) = Gs.

2. Conversely, for all irreducible representations ϕ of degree at least 2 of G, there exists

a non-zero s ∈ HomF2
(W,F2) such that ϕ(G) = Gs.

5.1 Representations

This section is devoted to describe all irreducible representations of real special 2-groups.

We first record a useful lemma:

Lemma 5.1.1. Let G be a real special 2-group and q : V → W be the quadratic map

associated to G. For 0 6= s ∈ HomF2
(W,F2) let qs : Vs := V

rad(bs◦q)
→ F2 be the regular

quadratic form induced from transfer map s◦q. Let Gs denote the special 2-group associated

to qs. Then Vs ' Gs
Z(Gs)

.

Proof We recall from remark 1.3.10 that the group Gs has underlying set Vs × F2 and

its group operation is given by (v, w)(v′, w′) = (v + v′, cs(v, v
′) + w + w′), where cs is the

normal 2-cocycle corresponding to quadratic form qs (see Prop. 1.3.8). We consider Vs as

a group under addition and define ξ : Gs → Vs by ξ(v, w) = v. Clearly ξ is a surjection.

Therefore Gs
ker(ξ)

∼= Vs. Now to prove the result, we need to show that ker(ξ) = Z(Gs). If

(v, w) ∈ ker(ξ) then v = 0. For all (v′, w′) ∈ Gs, we have

(0, w)(v′, w′) = (0 + v′, cs(0, v
′) + w + w′) = (v′ + 0, cs(v

′, 0) + w + w′) = (v′, w′)(0, w)



5.1. REPRESENTATIONS 65

Thus Z(Gs) contains ker(ξ). Now for the reverse inclusion let (v, w) ∈ Z(Gs). Then

for all (v′, w′) ∈ Gs, we have

(v, w)(v′, w′) = (v′, w′)(v, w)

⇒ (v + v′, cs(v, v
′) + w + w′) = (v′ + v, cs(v

′, v) + w + w′)

⇒ cs(v, v
′) = cs(v

′, v).

By [Zah11, Prop. 1.2], we have bqs(v, v
′) = cs(v, v

′)−cs(v′, v). From the above calculation,

we have bqs(v, v
′) = 0 for all v′ ∈ Vs. Thus v ∈ rad bqs . Since qs is a regular quadratic

form, v = 0 and therefore (v, w) ∈ ker(ξ). �

We refine of the first part of Prop. 5.0.14 by observing that for every non-zero

s ∈ HomF2
(W,F2), there are exactly | rad(bs◦q)| number of inequivalent irreducible repre-

sentations φ of degree at least 2 of G such that φ(G) = Gs. Here | rad(bs◦q)| denotes the

size of the radical rad(bs◦q).

Before stating next proposition, we record some definitions, which will be used later.

Definition 5.1.2. 1. Let c : V ×V →W be a normal 2-cocycle and s ∈ HomF2
(W,F2).

Then s ◦ c : V × V → F2 defined by s ◦ c(v, v′) = s(c(v, v′)) for all v, v′ ∈ V is a

normal 2-cocycle. It is called the transfer of c by s .

2. Let εs : V → Vs be the canonical surjection and cs : Vs × Vs → W be a normal

2-cocycle. Then Inf(cs) : V × V → F2 defined by Inf(cs)(v, v
′) = cs(εs(v), εs(v

′)) for

v, v′ ∈ V is a normal 2-cocycle. It is called the inflation of cs .

Proposition 5.1.3. Let G be a real special 2-group and q : V := G
Z(G) → Z(G) =: W

be the quadratic map associated to G. Then for every non-zero s ∈ HomF2
(W,F2) there

exist at least | rad(bs◦q)| number of surjective homomorphisms from G to the extraspecial

2-group Gs.

Proof Let s ∈ HomF2
(W,F2) be a non-zero map. We have | rad(bs◦q)| = 2k for some

k ∈ N as rad(bs◦q) is a subspace of V . Since the order of HomF2
(rad(bs◦q),F2) is same

as that of rad(bs◦q), we have 2k linear maps from rad(bs◦q) to F2. We enumerate these

linear maps as ti; 1 ≤ i ≤ 2k. For rest of the proof we fix a vector space complement V ′

of rad(bs◦q) in V . Thus we write V = rad(bs◦q)⊕ V ′. Define hi : V → F2 by hi(v) = ti(x),
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where v = (x, y) ∈ V with x ∈ rad(bs◦q) and y ∈ V ′.

Let [c] denote the class of normal 2-cocycle c in H2(V,W ). Using Prop. 1.3.8, we

have a normal 2-cocycle c such that φ([c]) = q, where φ is the isomorphism between

H2(V,W ) and Quad(V,W ) as in Prop. 1.3.8. Let s ∈ HomF2
(W,F2) be a non zero map

and s ◦ c : V × V → F2 be the transfer of c by s. Let cs be a normal 2-cocycle such that

φ([cs]) = qs, where φ is the isomorphism between H2(Vs,F2) and Quad(Vs,F2) defined in

Prop. 1.3.8.

Let Inf(cs) : V × V → F2 denote the inflation of cs. Now we compute

Inf(cs)(v, v) = qs(εs(v)) = s(q(v)) = s ◦ c(v, v)

This implies that under the isomorphism φ : H2(V,F2)→ Quad(V,F2), both [Inf(cs)] and

[s ◦ c] are preimages of the same quadratic map.

Therefore Inf(cs) and s ◦ c are cohomologous [Zah11, Prop. 3.3] and there exists a

coboundary λ : V → F2 such that λ(0) = 0 and

Inf(cs)(v, v
′) = s ◦ c(v, v′)− λ(v + v′) + λ(v) + λ(v′). (5.1)

We have now all the ingredients to define surjective homomorphisms from G to Gs for

each i ; 1 ≤ i ≤ 2k. Define fs,i : G→ Gs by

fs,i(v, w) = (εs(v), s(w)− λ(v)− hi(v))

for v ∈ V,w ∈W . It follows from the following direct computation that each fs,i : G→ Gs

is a group homomorphism.

fs,i((v, w)(v′, w′)) = fs,i(v + v′, c(v, v′) + w + w′)

= (εs(v + v′), s(c(v, v′) + w + w′)− λ(v + v′)− hi(v + v′))

= (εs(v) + εs(v
′), cs(εs(v), εs(v

′) + s(w) + s(w′)− λ(v)− λ(v′)− hi(v)− hi(v′))

= (εs(v), s(w)− λ(v)− hi(v))(εs(v
′), s(w′)− λ(v′)− hi(v′))

= fs,i((v, w))fs,i((v
′, w′))

for (v, w), (v′, w′) ∈ G.

Now we check that the homomorphisms fs,i for each i; 1 ≤ i ≤ 2k are surjective. Let

(vs, ws) ∈ Gs where vs ∈ Vs and ws ∈ F2. The surjectivity of maps εs and s provides
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v ∈ V and w ∈W such that εs(v) = vs and s(w) = ws. Further, since λ(v), hi(v) ∈ F2 and

s is surjective, there exist w1, w2 ∈W such that λ(v) = s(w1) and hi(v) = s(w2). Now we

compute:

fs,i(v, w + w1 + w2) = (εs(v), s(w + w1 + w2)− λ(v)− hi(v))

= (εs(v), s(w) + s(w1) + s(w2)− λ(v)− hi(v))

= (vs, ws)

This calculation confirms that fs,i is surjective for each i; 1 ≤ i ≤ 2k. Further fs,i ; 1 ≤ i ≤
2k are distinct homomorphisms. If i 6= j, then there exists v ∈ V such that hi(v) 6= hj(v),

this implies fs,i 6= fs,j . Hence there are at least | rad(bs◦q)| = 2k number of surjective

homomorphisms form G to the extraspecial 2-group Gs. �

Proposition 5.1.4. Let G be a real special 2-group and q : V := G
Z(G) → Z(G) =: W be

the quadratic map associated to G. Then for every non-zero s ∈ HomF2
(W,F2) there exist

at least |(rad(bs◦q))| number of inequivalent irreducible representations ϕ of degree at least

2 of G such that ϕ(G) = Gs.

Proof Let s ∈ HomF2
(W,F2) be a non-zero linear map and | rad(bs◦q)| = 2k. The group

Gs is extraspecial 2-group, it has a unique irreducible faithful representation of degree at

least 2 (see remark 2.2.5). Let ϕs denote the unique irreducible faithful representation of

degree at least 2 of Gs. Then we define ϕs,i := ϕs ◦ fs,i for 1 ≤ i ≤ 2k, where fs,i is as

in the proof of Prop. 5.1.3. Clearly ϕs,i are irreducible representations of G of the degree

same as that of ϕs. Moreover we have ϕs,i(G) = ϕs(fs,i(G)) = ϕs(Gs) ∼= Gs as the map

fs,i : G→ Gs is surjective and ϕs is faithful.

Let χs,i and χs,j be the characters of representations ϕs,i and ϕs,j , respectively. Now

using Prop.1.2.3, we show that ϕs,i and ϕs,j are equivalent if and only if i = j. For this if

i 6= j, we need to find g ∈ G such that χs,i(g) 6= χs,j(g).

Let χs be the character afforded by the representation ϕs of group Gs. From the

definition of representations ϕs,i and ϕs,j , it follows that χs,i = χs◦fs,i and χs,j = χs◦fs,j .

If |(rad(bs◦q))| = 1 then there is nothing to prove. If |(rad(bs◦q))| > 1, then for i 6= j

there exists (v, 0) ∈ G where v ∈ rad(bs◦q) such that hi(v) 6= hj(v). For the homomorphism
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fs,i as defined in Prop. 5.1.3, we have

fs,i(v, 0) = (0,−λ(v)− hi(v)), fs,j(v, 0) = (0,−λ(v)− hj(v))

It implies that one of fs,i(v, 0) and fs,j(v, 0) is the identity element of the group Gs,

while the other is the non-trivial element of Z(Gs). Without loss of generality we assume

that

fs,i(v, 0) = (0, 0) ∈ Z(Gs), fs,j(v, 0) = (0, 1) ∈ Z(Gs).

Let the order of Gs be 22m+1. Then by lemma 2.2.7

χs,i(v, 0) = χs ◦ fs,i(v, 0) = χs(0, 0) = 2m

χs,j(v, 0) = χs ◦ fs,j(v, 0) = χs(0, 1) = −2m

This proves that ϕs,i and ϕs,j are inequivalent if i 6= j. �

The following theorem implies that all irreducible representations of degree at least 2

of real special 2-groups are of the form ϕs,i for suitable s ∈ HomF2
(W,F2) and 1 ≤ i ≤

|(rad(bs◦q))|.

Theorem 5.1.5. Let G be a real special 2-group and q : V := G
Z(G) → Z(G) =: W be

the quadratic map associated to G. Then {ϕs,i : s ∈ HomF2
(W,F2), 1 ≤ i ≤ 2k} is the

complete list of irreducible representations of degree at least 2 of G; where ϕs,i are as in

Prop. 5.1.4 and 2k is the size of the radical rad(bs◦q).

Proof Let |G| = 2n and |Z(G)| = 2m. Since the order of HomF2
(Z(G),F2) and Z(G)

are same, the number of non-zero linear maps from Z(G) to F2 is |Z(G)| − 1 = 2m − 1.

We denote these linear maps by s1, s2, · · · , s2m−1.

First we use Prop. 1.2.3 to prove that ϕsp,i and ϕsq ,j are inequivalent representations

of G if either p 6= q or i 6= j. If p = q then it follows from the proof of Prop. 5.1.4 that

ϕsp,i is not equivalent to ϕsq ,j if i 6= j.

Suppose p 6= q. From Prop.5.1.4, it follows that ϕsp,i(G) ∼= Gsp and ϕsq ,j(G) ∼= Gsq .

If Gsp � Gsq then ϕsp,i is not equivalent to ϕsq ,j .

Suppose that Gsp
∼= Gsq and |Gsp | = |Gsq | = 22l+1. Since sp and sq are distinct linear

maps, there exist w ∈ W such that sp(w) 6= sq(w). Then fsp,i(0, w) = (0, sp(w)) and

fsq ,j(0, w) = (0, sq(w)). Therefore one of fsp,i(0, w) and fsq ,j(0, w) is the identity element

of group Gsp
∼= Gsq while other is non identity element of the center of group. Let χs, χsp,i
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and χsq ,j be the characters afforded by representations ϕs, ϕsp,i and ϕsq ,j , respectively. By

the description of ϕsp,i and ϕsq ,j as in the proof of Prop. 5.1.4, it follows that

χsp,i(0, w) = χs(fsp,i(0, w)) χsq ,j(0, w) = χs(fsq ,j(0, w))

without loss of generality, using lemma 2.2.7 we assume that χsp,i(0, w) = 2l and χsq ,j(0, w) =

−2l. Now from Prop. 1.2.3, it follows that the representations ϕsp,i and ϕsq ,j are

inequivalent if either p 6= q or i 6= j.

We know that sum of squares of degrees of all the inequivalent irreducible represen-

tations of a finite groups is equal to the order of the group (Th. 1.2.4). We now prove

the result by showing that squares of degrees of representations ϕs,i and one dimensional

representations of group G adds up to 2n, which is the order of group G.

Let |Gsj | = 22lj+1 for some non-zero linear map sj ∈ HomF2
(W,F2). Also we have

|Z(Gsj )| = 2 as Gsj are extraspecial 2-groups. By lemma 5.1.1, it follows that

| G
Z(G) |

| Gsj
Z(Gsj ) |

= | rad bsj◦q|

Therefore | rad bsj◦q| = 2n−m

22lj
. By Prop. 5.1.4, there are at least | rad bsj◦q| number of

irreducible inequivalent representations ϕ of degree at least 2 of G such that ϕ(G) ∼= Gsj .

The degree of these representations is same as the degree of the faithful representation

ϕsj of Gsj . It follows from remark 2.2.6 that the degree of the faithful representation of

degree at least 2 of extraspecial 2-groups of order 22lj+1 is 2lj . Using the Th. 2.2.1 and

the fact that G′ = Z(G), we have that apart from the representations of degree at least

2, G has | G
Z(G) | number of one dimensional representations. Now we compute the sum of

squares of degrees of irreducible representations of G.

| G

Z(G)
|.12 +

2m−1∑
j=1

| rad(bsj◦q)|.(2lj )2 = | G

Z(G)
|.12 +

2m−1∑
j=1

| G
Z(G) |

| Gsj
Z(Gsj ) |

.(2lj )2
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= 2n−m +

2m−1∑
j=1

2n−m

22lj
.(2lj )2

= 2n−m +
2m−1∑
j=1

2n−m

= 2n−m + (2m − 1)2n−m

= 2n

= |G|.

Therefore G can not afford representations of degree at least 2 except ϕs,i and {ϕs,i : s ∈
HomF2

(W,F2)} where 1 ≤ i ≤ 2k is the complete list of irreducible representations of

degree at least 2 of G. �

We now record a lemma for further reference with all the notations same as above.

Lemma 5.1.6. Let χs,i be a character of degree at least 2 of real special 2-group G then
G

ker(χs,i)
∼= Gs.

Proof Let φs,i be the representation afforded by the character χs,i then from Prop. 5.1.4

we have φs,i(G) ∼= Gs. Now φs,i is a group homomorphism, so φs,i(G) ∼= G
ker(φs,i)

. Also we

know that ker(φs,i) = ker(χs,i). Therefore G
ker(χs,i)

∼= Gs. �

5.2 Characters

The aim of this section is to provide a method to write the characters of degree at least 2

of real special 2-groups. With the notations of Prop. 5.1.4, we have the following:

Proposition 5.2.1. Let G be a real special 2-group. Let χs,i be the character of the

representation ϕs,i, as described in the proof of Prop. 5.1.4. Let the order of Gs be 22l+1.

Then

χs,i(g) =


2l if fs,i(g) = 1

−2l if fs,i(g) is non-trivial element of Z(Gs)

0 otherwise
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Proof Let ϕs be the irreducible representation of degree at least 2 of the extraspecial

2-group Gs and χs be the character afforded by ϕs. It follows from lemma 2.2.7 that for

g ∈ Gs, we have

χs(g) =


2l if g = 1

−2l if g is the non-trivial element of Z(Gs)

0 otherwise

From Prop. 5.1.4, we know that ϕs,i = ϕs ◦ fs,i. Thus we have χs,i = χs ◦ fs,i. Now the

result follows by using lemma 2.2.7 and the fact that χs,i(g) = χs(fs,i(g)) for all g ∈ G.

�

Lemma 5.2.2. Let ϕs,i be the irreducible representation of degree at least 2 of real special

2-group G. Let diag(1, 1, · · · , 1) denote the identity matrix of order 2l and diag(−1,−1, · · · ,−1)

denote the diagonal matrix of order 2l with diagonal entries equal to −1. Then for all

g ∈ G :

ϕs,i(g) =

{
diag(1, 1, · · · , 1) if χs,i(g) = 2l

diag(−1,−1, · · · ,−1) if χs,i(g) = −2l

Proof It follows from Prop. 5.2.1 that if χs,i(g) = 2l then fs,i(g) is the identity element

of extraspecial 2-group Gs. Let ϕs be the unique irreducible representation of degree at

least 2 of Gs. Form Prop. 5.1.4, we know that ϕs,i = ϕs ◦ fs,i. Thus if fs,i(g) = 1 then

ϕs,i(g) = ϕs(fs,i(g)) = ϕs(1) = diag(1, 1, · · · , 1).

On the other hand if χs,i(g) = −2l then fs,i(g) is the non identity element of Z(Gs)

(Prop. 5.2.1). The representation ϕs of group Gs is either equivalent to ̂ρ⊗ ρ⊗ · · · ⊗ ρ(l

copies of ρ) or ̂σ ⊗ ρ⊗ ρ⊗ · · · ⊗ ρ(l− 1 copies of ρ) depending on whether Gs ∼= D
(l−1)
4 or

Gs ∼= Q2 ◦D(l)
4 (see remark 2.2.5). Here ρ and σ are irreducible representations of degree

at least 2 of group D4 and Q2, respectively.

Suppose Gs ∼= D
(l)
4 and g = (a2, 1, 1, · · · , 1) be the non identity element of Z(Gs),

where a2 denotes the non identity element of Z(D4). We know that ρ(a2) = diag(−1,−1)
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(see remark 2.2.4(1)). We compute

ϕs(g) = ϕs((a2, 1, 1, · · · , 1))

= ̂ρ⊗ ρ⊗ · · · ⊗ ρ((a2, 1, 1, · · · , 1))

= ρ(a2)⊗ ρ(1)⊗ · · · ⊗ ρ(1)

= diag(−1,−1, · · · ,−1)

Now the result follows from the fact ϕs,i = ϕs ◦ fs,i. On similar lines, one can prove the

result for the case Gs ∼= Q2 ◦D(l−1)
4 . �

For a character χ of a group G, we recall that Z(χ) = {g ∈ G : |χ(g)| = χ(1)}.

Definition 5.2.3. For the character χs,i of real special 2-group G and for g ∈ Z(χs,i), we

define

sign(χs,i(g)) =

{
−1 if χs,i(g) is negative

1 if χs,i(g) is positive

Theorem 5.2.4. Let G be a real special 2-group and q : V → W be the quadratic map

associated to G. Let s ∈ HomF2
(W,F2). Then

1. χs,i(v, w) 6= 0 if and only if v ∈ rad(bs◦q).

2. For (0, w) ∈ G we have

χs,i(0, w) =

{
2l if s(w) = 0

−2l if s(w) = 1

where l is defined by |Gs| = 22l+1.

3. Let {v1, v2, · · · vk} be an ordered basis of rad(bs◦q). Then

χs,i(vj , 0) =

{
−2l if Aj,i = 1

2l if Aj,i = 0

where Aj,i denotes the coefficient of 2j in the binary expansion i− 1 =
∑k−1

j=0 Aj,i2
j.

4. Let g ∈ G be an element with g =
∏r
j=1(vij , 0)(0, w) for 1 ≤ i1 < i2 < · · · < ir ≤ k

then

χs,i(g) =

r∏
j=1

sign(χs,i(vij , 0)). sign(χs,i(0, w)).2l
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Proof

1. Let χs is the irreducible character of degree at least 2 of the extraspecial 2-group

Gs and fs,i is homomorphism defined in Prop. 5.1.3. From the Prop. 5.1.4, we have

χs,i = χs ◦ fs,i. Let (v, w) ∈ G, then

χs,i(v, w) = χs(fs,i(v, w))

= χs(εs(v), s(w)− λ(v)− hi(v))

By lemma 2.2.7, it follows for g ∈ Gs, we have χs(g) 6= 0 if and only if g /∈ Z(Gs).

Now (x, y) ∈ Z(Gs) if and only if x = 0. Thus χs,i(v, w) = 0 if and only if εs(v) = 0.

Here εs : V → Vs is the canonical surjection. Therefore εs(v) = 0 precisely when

v ∈ rad(bs◦q). Hence the result follows.

2. Let (0, w) ∈ Z(G) then

χs,i(0, w) = χs(fs,i(0, w))

= χs(εs(0), s(w)− λ(0)− hi(0))

= χs(0, s(w))

Let l be defined by |Gs| = 22l+1. From lemma 2.2.7 and the above calculation, we

have

χs,i(0, w) =

{
2l if s(w) = 0

−2l if s(w) = 1

3. Let {v1, v2, · · · vk} be a basis of rad(bs◦q). Let Aj,i be defined by the binary expansion

i− 1 = A0,i2
0 +A1,i2

1 + · · ·+Ak−1,i2
k−1,

where 1 ≤ i ≤ 2k. Consider a map λ : V → F2 as in equation 5.1 in the proof of

Prop. 5.1.3. We define a map θ : rad(bs◦q)→ F2 by

θ

 r∑
j=1

vij

 =

r∑
j=1

λ(vij ) for 1 ≤ i1 < i2 < · · · < ir ≤ k

Notice that the map θ is nothing but the linear extension of v 7→ λ(v) to rad(bs◦q).

Thus θ ∈ HomF2
(rad(bs◦q),F2). We recall from the proof of Prop. 5.1.3 the

description of maps hi : V → F2 ; 1 ≤ i ≤ 2k. By definition, hi(vj) = ti(vj) as
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vj ∈ rad(bs◦q). Let t′i ∈ HomF2
(rad(bs◦q),F2) be defined by t′i(vj) = Aj,i. Since

both {ti : 1 ≤ i ≤ 2k} and {θ − t′i : 1 ≤ i ≤ 2k} denote the same set, namely the

set of all the linear maps from rad(bs◦q) to F2, by a suitable permutation we may

assume that ti = θ − t′i. Thus we have

χs,i(vj , 0) = χs(fs,i(vj , 0))

= χs(εs(vj), s(0)− λ(vj)− hi(vj))

= χs(0,−λ(vj)− ti(vj))

= χs(0, λ(vj)− θ(vj) + t′i(vj))

= χs(0, λ(vj)− λ(vj) + t′i(vj))

= χs(0, t
′
i(vj))

= χs(0, Aj,i)

Therefore

χs,i(vj , 0) =

{
χs(0, 1) if Aj,i = 1

χs(0, 0) if Aj,i = 0
=

{
−2l if Aj,i = 1

2l if Aj,i = 0

4. Let {v1, v2, · · · , vk} be a basis of rad(bs◦q). Take g =
∏r
j=1(vij , 0)(0, w) ∈ G; where

1 ≤ i1 < i2 < · · · < ir ≤ k. Since ϕs,i is a group homomorphism, we have

ϕs,i(g) = ϕs,i

 r∏
j=1

(vij , 0)(0, w)


=

r∏
j=1

ϕs,i(vij , 0)ϕs,i(0, w)

Now it follows from from Th. 5.2.4(2) and Th. 5.2.4(3) that the value of χs,i(vj , 0)

and χs,i(0, w) is either 2l or −2l. Using Lemma 5.2.2, we get that ϕs,i(vj , 0) and

ϕs,i(0, w) is equal to diag(1, 1, · · · , 1) or diag(−1,−1, · · · ,−1). Now using above

calculation and definition 5.2.3, we have

χs,i

 r∏
j=1

(vij , 0)(0, w)

 =

r∏
j=1

sign(χs,i(vij , 0)). sign(χs,i(o, w)).2l.

Hence the result follows. �
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The following table summarizes the Th. 5.2.4. Notations of table are same as Th.

5.2.4. Let |G| = 2n, |Z(G)| = 2m and |Gs| = 22l+1. We recall from the proof of Th.

5.1.5 that in this case | rad(bs◦q| = 2n−m−2l. We fix an ordered basis {v1, v2, · · · , v2k} of

rad(bs◦q).

Type of element χs,i(v, w) Number of elements

{(v, w) : v 6= 0, v /∈ rad(bs◦q} 0 2n − 2n−2l

{(0, w) : s(w) = 0} 2l

{(0, w) : s(w) = 1} −2l 2m

{(vj , 0) : Aj,i = 1} −2l

{(vj , 0) : Aj,i = 0} 2l (n−m− 2l).2m

{(vj , w) : 0 6= (0, w) ∈ Z(G)} sign(χs,i(vj , 0)). sign(χs,i(0, w)).2l∏r
j=1(vij , 0)(0, w) where 1 ≤ i1

∏r
j=1 sign(χs,i(vij , 0)). (2n−m−2l−

< i2 < · · · < ir ≤ k and j ≥ 2 sign(χs,i(0, w)).2l (n−m− 2l)− 1).2m

Table 5.1: Character values for characters of degree at least 2 of real special 2-groups.

Corollary 5.2.5. Every irreducible character χ of degree at least 2 of real special 2-groups

vanishes outside Z(χ).

Proof Let χ be the character afforded by the representation φ. From lemma 1.2.22, it

follows that Z(χ) = {g ∈ G : φ(g) = λI for some λ ∈ C}. Thus we have Z(χ) = {g ∈
G : χ(g) = λχ(1) for some λ ∈ C}. Now the result follows from Th. 5.2.4. �

5.3 Conjugacy classes

To write the character table of a group, we need to know its conjugacy classes. In this

section, we form the conjugacy classes of real special 2-groups using the quadratic map

associated to it. To distinguish two conjugacy classes, we use the well known fact that

two elements g, h of a group G are conjugate if and only if χ(g) = χ(h) for all irreducible

characters χ of G (Prop. 1.2.1). The aim of this section is to prove the following theorem:

Theorem 5.3.1. Let G be real special 2-group and q : G
Z(G) =: V → W := Z(G) be the

quadratic map associated to G. Let v ∈ V .
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1. If v /∈ rad(bs◦q) for all non-zero linear maps s : W → F2 then {(v, w) : w ∈W} is a

conjugacy class of G.

2. Consider the set Sv := {s ∈ HomF2
(Z(G),F2) : v ∈ rad(bs◦q)}. Then the conjugacy

class of element (v, w) ∈ G is {(v, w + w′) : s(w′) = 0 for all s ∈ Sv}.

Proof We know that the elements of W = Z(G) form conjugacy classes containing only

one element. We claim that for v1 6= v2 ∈ V and v1 6= 0, v2 6= 0 in V , the elements of the

set {(v1, w) : w ∈W} are not conjugate to any element of set {(v2, w) : w ∈ Z(G)}. Since

Z(G) = G′, the one dimensional characters of G are the lifts of irreducible characters of
G

Z(G) = V (Th. 2.2.1). Therefore for all one dimensional characters χ of G, χ(v, w) =

χ(v, 0) for all w ∈W = Z(G). It follows from Prop. 1.2.1 and the fact that V is a abelian

group that for v1 6= 0, v2 6= 0 in V , there exist a character χ̄ of V such that χ̄(v1) 6= χ̄(v2).

We denote the lift of the character χ̄ by χ. Then for all w ∈W ,

χ(v1, w) = χ(v1, 0) = χ̄(v1) 6= χ̄(v2) = χ(v2, 0) = χ(v2, w)

Again using Prop. 1.2.1 we conclude that the elements of the set {(v1, w) : w ∈W} are not

conjugate to any element of set {(v2, w) : w ∈ Z(G)}. Therefore the sets {(v, w) : w ∈W}
indexed by non-zero v ∈ V are mutually disjoint. This way, we divide the non-central

elements of G into | G
Z(G) | − 1 number of sets each containing |Z(G)| elements.

We now prove the part 1 of the statement: Let v /∈ rad(bs◦q) for all non-zero linear

maps s : W → F2. From above discussion, we know that all the one dimensional characters

takes same value on all the elements of the set {(v, w) : w ∈ W}. Now suppose that χ is

character of degree at least 2. Since v /∈ rad(bs◦q), by Th. 5.2.4(1) χ(v, w) = 0 for all the

elements of set {(v, w) : w ∈ Z(G)}. Thus in this case all the characters of group G takes

same values on the elements of set {(v, w) : w ∈W}. Now it follows from the Prop. 1.2.1

that {(v, w) : w ∈W} is a conjugacy class of G.

We now prove the part 2 of the statement: Let w1 ∈ Z(G) be such that s(w1) = 1

for some non-zero s ∈ Sv. We know that χs,i = χs ◦ fs,i, where χs is unique irreducible

character of degree at least 2 of extraspecial 2-group Gs and fs,i is the homomorphism

from G to Gs as given in Prop. 5.1.3.

χs,i(v, w) = χs(εs(v), s(w)− λ(v)− hi(v)) = χs(0, s(w)− λ(v)− hi(v))
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χs,i(v, w + w1) = χs(εs(v), s(w + w1)− λ(v)− hi(v)) = χs(0, s(w) + 1− λ(v)− hi(v))

It is clear that one of χs,i(v, w) and χs,i(v, w + w1) is χs(0, 0) = 2l, while the other

one is χs(0, 1) = −2l, where 2l is the degree of the character χs,i. Thus χs,i(v, w1) 6=
χs,i(v, w1+w) and it follows from Prop. 1.2.1 that (v, w) and (v, w+w1) are not conjugates.

Let v ∈ rad(bs◦q) and w′ ∈ W be such that s(w′) = 0 for all non-zero linear maps in

Sv. We know that for one dimensional characters χ we have χ((v, w)) = χ((v, w + w′)).

Let χs,i be a character of degree at least 2 such that v /∈ rad(bs◦q), then χs,i((v, w)) =

χs,i((v, w + w′)) = 0.

Finally we consider the characters χs,i of degree at least 2 such that v ∈ rad(bs◦q).

Then as earlier

χs,i(v, w) = χs(0, s(w)− λ(v)− hi(v))

χs,i(v, w + w′) = χs(0, s(w) + s(w′)− λ(v)− hi(v)) = χs(0, s(w)− λ(v)− hi(v))

Thus again in this case χs,i((v, w)) = χs,i((v, w+w′)). By Prop. 1.2.1, (v, w) is conjugate

to (v, w + w′). �

We summarize the types of conjugacy classes of special 2-group G in the following

table. The notations in the table are same as that of Th. 5.3.1.

Type of element Conjugacy class

v /∈ rad(bs◦q) for all

0 6= s ∈ Hom(Z(G),F2)
{(v, w) : w ∈ Z(G)}

v ∈ rad(bs◦q) for all

s ∈ Sv
{(v, w + w′) : s(w′) = 0 ∀ s ∈ Sv}

Table 5.2: Conjugacy classes of real special 2-groups.

5.4 Examples

In this concluding section we demonstrate through examples that the results proved in

earlier sections can be used to construct the character table of a real special 2-groups.
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Example 5.4.1 The first example that we consider is of the group G defined by

G = 〈a, b, c, d, f : a2 = b2 = (ab)2 = d, c2 = (ac)2 = f, d2 = f2 = (bc)2 = (df)2 = 1〉.

We make following observations about G.

• The center of G is Z(G) := 〈d, f : d2 = f2 = (df)2 = 1〉, and the quotient by the

center is G
Z(G) := 〈ā, b̄, c̄ : ā2 = b̄2 = c̄2 = ¯(ab)

2
= ¯(ac)

2
= ¯(bc)

2
= 1̄〉. Both Z(G)

and G
Z(G) are elementary abelian 2-groups.

• The group G is a special 2-group as |G| = 32 and Z(G) = Φ(G) = G′ = 〈d, f : d2 =

f2 = (df)2 = 1〉.

We identify G
Z(G) with a 3-dimensional vector space V and Z(G) with a 2-dimensional

vector space W over the field F2. Therefore, as a set, the group G gets identified with

V × W . Let {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} be a basis of V and {f1 =

(1, 0), f2 = (0, 1)} be a basis of W over F2. The quadratic map q : V → W associated to

the special 2-group G is defined by

q(x, y, z) = (x2 + xy + y2, z2 + xz); (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) ∈ V.

We claim that the group G is real. We use Th. 3.1.2 to justify this claim. Let v ∈ V .

We find a ∈ V such that q(a) = q(v − a) to show that G is indeed real. The following

table explicitly exhibits such a ∈ V for a given v ∈ V .

v a q(a) = q(v − a)

(0, 0, 0, ), (0, 1, 0)

(0, 0, 1), (0, 1, 1)
(1, 0, 0) (1, 0)

(1, 0, 0, ), (1, 1, 0)

(1, 0, 1), (1, 1, 1)
(0, 1, 0) (1, 0)

Table 5.3: The group G defined in the example 5.4.1 is real.

It follows therefore that G is real.

Since dimF2
(W,F2) = 2, there are exactly three non zero linear maps s : W → F2.

In the following table we compute the radical rad(bsi◦q) for each non-zero linear map

si : W → F2.
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Linear map (s) s ◦ q bs◦q rad(bs◦q) | rad(bs◦q)|

s1(w1, w2) = w1
q(x, y, z) =

x2 + xy + y2
bs1◦q((x, y, z), (x′, y′, z′))

= xy′ + x′y
〈e3〉 2

s2(w1, w2) = w2
q(x, y, z) =

z2 + xz

bs2◦q((x, y, z), (x′, y′, z′))

= xz′ + x′z
〈e2〉 2

s3(w1, w2) = w1 + w2

q(x, y, z) =

x2 + x(y + z)

+(y + z)2

bs3◦q((x, y, z), (x′, y′, z′))

= x(y′ + z′) + x′(y + z)
〈e2 + e3〉 2

Table 5.4: Calculation of rad(bs◦q) for all non zero s ∈ HomF2
(W,F2) and q

associated to group G defined in example 5.4.1.

We compute the conjugacy classes of G using Th. 5.3.1. Since e3 ∈ rad(bs1◦q), the set

{(e3, w) : w ∈W} splits into two conjugacy classes {(e3, 0), (e3, f2)} and {(e3, f1), (e3, f1+

f2)}. Similarly for e2 ∈ rad(bs2◦q) and e2 + e3 ∈ rad(bs3◦q), the sets {(e2, w) | w ∈ W}
and {(e2 + e3, w) | w ∈ W} also split in to more than one conjugacy classes. Whereas

the remaining elements of V do not belong to any rad(bs◦q) for all non zero linear map

s : W → F2. Therefore the set {(v, w) : w ∈W} for v ∈ V and v /∈ {e3, e2, e2 + e3} forms

one conjugacy class. We write all the conjugacy classes of G in the following table:

C1 = {(0, 0)} C2 = {(0, f1)}
C3 = {(0, f2)} C4 = {(0, f1 + f2)}

C5 = {(e1, 0), (e1, f1), (e1, f2), (e1, f1 + f2)} C6 = {(e2, 0), (e2, f1)}
C7 = {(e2, f2), (e2, f1 + f2)} C8 = {(e3, 0), (e3, f2)}

C9 = {(e3, f1), (e3, f1 + f2)} C10 = {(e1, 0)(e2, 0), (e1, 0)(e2, 0)(0, f1),

(e1, 0)(e2, 0)(0, f2), (e1, 0)(e2, 0)(0, f1 + f2)}
C11 = {(e1, 0)(e3, 0), (e1, 0)(e3, 0)(0, f1),

(e1, 0)(e3, 0)(0, f2), (e1, 0)(e3, 0)(0, f1 + f2)}
C12 = {(e2, 0)(e3, 0), (e2, 0)(e3, 0)(0, f1 + f2)}

C13 = {(e2, 0)(e3, 0)(0, f1), (e2, 0)(e3, 0)(0, f2)}

C14 = {(e1, 0)(e2, 0)(e3, 0),

(e1, 0)(e2, 0)(e3, 0)(0, f1),

(e1, 0)(e2, 0)(e3, 0)(0, f2),

(e1, 0)(e2, 0)(e3, 0)(0, f1 + f2)}

Table 5.5: Conjugacy classes of group G defined in example 5.4.1.

Now, for each non-zero linear map s : W → F2 we compute the regular quadratic
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forms qs up to isometry and determine the extraspecial 2-groups Gs associated to these

quadratic forms using remark 2.1.5.

Linear map (s) s ◦ q qs Gs |Gs| Characters Degree

s(w1, w2) = w1 q(x, y, z) = x2 + xy + y2 [1, 1] Q2 8 χs1,1, χs1,2 2

s(w1, w2) = w2 q(x, y, z) = z2 + xz [0, 0] D4 8 χs2,1, χs2,2 2

s(w1, w2) = w1 + w2
q(x, y, z) =

x2 + x(y + z) + (y + z)2
[1, 1] Q2 8 χs3,1, χs3,2 2

Table 5.6: Characters of degree at least 2 of group G defined in example 5.4.1.

For each non-zero linear map s : W → F2 we compute | rad(bs◦q)| number of irreducible

characters χs,j of degree at least 2 using Th. 5.2.4. The one dimensional characters of

group G are determined using the remark 2.2.2.

This summarizes to the following character table of G.

G C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 1 1 1 1 1 −1 −1 1 −1 −1 −1 −1

χ3 1 1 1 1 1 −1 −1 1 1 −1 1 −1 −1 −1

χ4 1 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 1

χ5 1 1 1 1 −1 1 1 1 1 −1 −1 1 1 −1

χ6 1 1 1 1 −1 1 1 −1 −1 −1 1 −1 −1 1

χ7 1 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 1

χ8 1 1 1 1 −1 −1 −1 −1 −1 1 1 1 1 −1

χs1,1 2 −2 2 −2 0 0 0 2 −2 0 0 0 0 0

χs1,2 2 −2 2 −2 0 0 0 −2 2 0 0 0 0 0

χs2,1 2 2 −2 −2 0 2 −2 0 0 0 0 0 0 0

χs2,2 2 2 −2 −2 0 −2 2 0 0 0 0 0 0 0

χs3,1 2 −2 −2 2 0 0 0 0 0 0 0 2 −2 0

χs3,2 2 −2 −2 2 0 0 0 0 0 0 0 −2 2 0

Table 5.7: character table of group G defined in example 5.4.1.
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Example 5.4.2 The next example that we consider is of the group G = 〈a, b, c, d : a4 =

b4 = c4 = d2 = 1, c2 = a2, aca = bcb = dcd = c, bab = dadb2 = a, dbd = b〉.
We make following observations about G.

• The center of G is Z(G) := 〈a2, b2 : a4 = b4 = 1, bab = a〉, and the quotient by the

center is G
Z(G) := 〈ā, b̄, c̄, d̄ : ā2 = b̄2 = c̄2 = d̄2 = ¯(ab)

2
= ¯(ac)

2
= ¯(ad)

2
= ¯(bc)

2
=

¯(bd)
2

= ¯(cd)
2

= 1̄〉. Both Z(G) and G
Z(G) are elementary abelian 2-groups.

• The group G is a special 2-group as |G| = 64 and Z(G) = Φ(G) = G′ = 〈a2, b2 :

a4 = b4 = 1, bab = a〉.

We identify G
Z(G) with a 4-dimensional vector space V and Z(G) with a 2-dimensional

vector space W over the field F2. Therefore, as a set, the group G gets identified with

V ×W . Let {e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1)} be a basis of

V and {f1 = (1, 0), f2 = (0, 1)} be a basis of W over F2. The quadratic map q : V → W

associated to the special 2-group G is defined by

q(x, y, z, w) = (y2 + xy + yz + xw, x2 + z2 + xz);

where (x, y, z, w) = x(1, 0, 0, 0) + y(0, 1, 0, 0) + z(0, 0, 1, 0) + w(0, 0, 0, 1) ∈ V.
We claim that the group G is real. We use Th. 3.1.2 to justify this claim. Let v ∈ V .

We find a ∈ V such that q(a) = q(v − a) to show that G is a real group. The following

table explicitly exhibits such a ∈ V for a given v ∈ V .

v a q(a) = q(v − a)

(0, 0, 0, 0), (0, 1, 0, 0), (1, 0, 1, 1), (1, 1, 1, 0)

(0, 0, 1, 0), (1, 0, 1, 0), (0, 1, 1, 1), (1, 1, 1, 1)
(1, 0, 0, 0) (0, 1)

(1, 0, 0, 0), (1, 1, 0, 1) (1, 1, 0, 1), (0, 0, 0, 1) (0, 0, 1, 0) (0, 1)

(0, 1, 1, 0, ), (0, 0, 1, 1) (1, 1, 0, 0) (0, 1)

(1, 0, 0, 1), (1, 1, 0, 0) (0, 1, 1, 0) (0, 1)

Table 5.8: The group G defined in the example 5.4.2 is real.

It follows therefore that G is real.
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Since dimF2
(W,F2) = 2, there are exactly three non zero linear maps s : W → F2.

In the following table we compute the radical rad(bsi◦q) for each non-zero linear map

si : W → F2.

s s ◦ q bs◦q rad(bs◦q)

s1(w1, w2)

= w1

q(x, y, z, w) =

y2 + xy + yz + xw

bs1◦(q)((x, y, z, w), (x′, y′, z′, w′))

= y(x′ + z′) + y′(x+ z)

+xw′ + x′w

〈1〉

s2(w1, w2)

= w2

q(x, y, z, w) =

x2 + z2 + xz

bs2◦(q)((x, y, z, w), (x′, y′, z′, w′))

= xz′ + x′z
〈e2, e4〉

s3(w1, w2) =

w1 + w2

q(x, y, z, w) =

x(y + w) + z2+

z(x+ y) + (x+ y)2

bs3◦(q)((x, y, z, w), (x′, y′, z′, w′))

= x(y′ + w′) + x′(y + w)

+z(x′ + y′) + z′(x+ y)

〈1〉

Table 5.9: Calculation of rad(bs◦q) for all non zero s ∈ HomF2(W,F2)
and q associated

to group G defined in example 5.4.2.

We compute the conjugacy classes of G using Th.5.3.1. Except the elements in the set

{e2, e4, e2 + e4}, no other non trivial element of V belongs to any rad(bs◦q). Therefore the

sets {(v, w) : w ∈ W} for v ∈ V and v /∈ {e2, e4, e2 + e4} form a conjugacy classes in G.

Since {e2, e4, e2 +e4} ⊆ rad(bs2◦q), the sets {(v, w) : w ∈W} for v ∈ {e2, e4, e2 +e4} split

into two conjugacy classes, namely {(v, 0), (v, f1)} and {(v, f2), (v, f1 + f2)}. We give the

conjugacy classes of G is the following table:

C1 = {(0, 0)} C2 = {(0, f1)}
C3 = {(0, f2)} C4 = {(0, f1 + f2)}

C5 = {(e1, 0), (e1, f1), (e1, f2), (e1, f1 + f2)} C6 = {(e2, 0), (e2, f1)}
C7 = {(e2, f2), (e2, f1 + f2)} C8 = {(e3, 0), (e3, f1)}, {(e3, f2), (e3, f1 + f2)}
C9 = {(e4, 0), (e4, f1)} C10 = {(e4, f2), (e4, f1 + f2)}

C11 = {(e1, 0)(e2, 0), (e1, 0)(e2, 0)(0, f1),

(e1, 0)(e2, 0)(0, f2), (e1, 0)(e2, 0)(0, f1 + f2)}
C12 = {(e1, 0)(e3, 0), (e1, 0)(e3, 0)(0, f1),

(e1, 0)(e3, 0)(0, f2), (e1, 0)(e3, 0)(0, f1 + f2)}
C13 = {(e1, 0)(e4, 0), (e1, 0)(e4, 0)(0, f1),

(e1, 0)(e4, 0)(0, f2), (e1, 0)(e4, 0)(0, f1 + f2)}
C14 = {(e2, 0)(e3, 0), (e2, 0)(e3, 0)(0, f1),

(e2, 0)(e3, 0)(0, f2), (e2, 0)(e3, 0)(0, f1 + f2)}
C15 = {(e2, 0)(e4, 0), (e2, 0)(e4, 0)(0, f1)} C16 = {(e2, 0)(e4, 0)(0, f2), (e2, 0)(e4, 0)(0, f1 + f2)}
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C17 = {(e3, 0)(e4, 0), (e3, 0)(e4, 0)(0, f1),

(e3, 0)(e4, 0)(0, f2), (e3, 0)(e4, 0)(0, f1 + f2)}

C18 = {(e1, 0)(e2, 0)(e3, 0),

(e1, 0)(e2, 0)(e3, 0)(0, f1),

(e1, 0)(e2, 0)(e3, 0)(0, f2),

(e1, 0)(e2, 0)(e3, 0)(0, f1 + f2)}
C19 = {(e1, 0)(e2, 0)(e4, 0),

(e1, 0)(e2, 0)(e4, 0)(0, f1),

(e1, 0)(e2, 0)(e4, 0)(0, f2),

(e1, 0)(e2, 0)(e4, 0)(0, f1 + f2)}

C20 = {(e1, 0)(e3, 0)(e4, 0),

(e1, 0)(e3, 0)(e4, 0)(0, f1),

(e1, 0)(e3, 0)(e4, 0)(0, f2),

(e1, 0)(e3, 0)(e4, 0)(0, f1 + f2)}
C21 = {(e2, 0)(e3, 0)(e4, 0),

(e2, 0)(e3, 0)(e4, 0)(0, f1),

(e2, 0)(e3, 0)(e4, 0)(0, f2),

(e2, 0)(e3, 0)(e4, 0)(0, f1 + f2)}

C22 = {(e1, 0)(e2, 0)(e3, 0)(e4, 0),

(e1, 0)(e2, 0)(e3, 0)(e4, 0)(0, f1),

(e1, 0)(e2, 0)(e3, 0)(e4, 0)(0, f2),

(e1, 0)(e2, 0)(e3, 0)(e4, 0)(0, f1 + f2)}

Table 5.10: Conjugacy classes of group G defined in example 5.4.2.

Now, for each non-zero linear map s : W → F2 we compute the regular quadratic forms qs

up to isometry and determine the extraspecial 2-groups Gs associated to these quadratic

forms using remark 2.1.5.

Linear map (s) s ◦ q qs Gs |Gs| Characters Degree

s(w1, w2)

= w1

q(x, y, z) =

y(y + x+ z) + xw
[0, 0] ⊥ [0, 0] D4 ◦D4 32 χs1,1 4

s(w1, w2)

= w2

q(x, y, z) =

x2 + z2 + xz
[1, 1] Q2 8

χs2,1, χs2,2,

χs2,3, χs2,4

2

s(w1, w2)

= w1 + w2

q(x, y, z) =

x(y + w) + z2+

z(x+ y) + (x+ y)2
[0, 0] ⊥ [1, 1] D4 ◦Q2 32 χs3,1 4

Table 5.11: Characters of degree at least 2 of group G defined in example 5.4.2.

For each non-zero linear map si : W → F2 we compute | rad(bsi◦q)| number of

irreducible characters χs,j of degree at least 2 using Th.5.2.4. The one dimensional

characters of G are determined using remark 2.2.2.
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Chapter 6

Wedderburn decomposition of

rational group algebra of real

special 2-groups

The aim of this chapter is to describe a method to write the Wedderburn decomposition of

rational group algebra of real special 2-groups. We make use of quadratic maps associated

to these groups to obtain this decomposition.

This chapter is divided into three sections. The first section is devoted to the compu-

tation of primitive central idempotents of rational group algebra of real special 2-groups.

In §6.2 we obtain the Wedderburn decomposition of rational group algebra Q[G] of a real

special 2-group G using the associated quadratic map. In §6.2.1 we illustrate our method

of determining the Wedderburn decomposition through examples. In §6.3 we show that

rational group algebra of real special 2-groups does not determine the group. This is in

contrast with the case of extraspecial 2-groups [VL06].

Let G be a finite group and Q[G] be the rational group algebra of G. The problem

of determining a complete set of primitive central idempotents and the Wedderburn

decomposition of Q[G] is one of the fundamental problems of group rings. Apart from

various classical methods of finding explicit expressions of primitive central idempotents,

there are character free methods or methods without involving computation in extensions

85
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of the rationals such as using subgroup structure as in [JLP03] and [BP12].

In this chapter, for a real special 2-group G, we demonstrate a new approach to

determine the Wedderburn decomposition of Q[G]. We determine the Wedderburn de-

composition of Q[G] using the theory of quadratic forms over fields of characteristic 2.

6.1 Primitive central idempotents

We begin by recalling the theorem of Maschke for a field K and group G, the group

algebra K[G] is semisimple if and only if char(K) does not divide |G|. Let char(K) does

not divide |G|, the decomposition of K[G] as the direct sum of simple ideals is called the

Wedderburn decomposition of K[G]. An element e of K[G] is called idempotent if e2 = e.

Moreover an idempotent e of K[G] is called primitive central if it lies in center of K[G]

and can not be written as e = e′+ e′′, where e′ and e′′ are non zero idempotents such that

e′e′′ = 0. We say that the set {e1, e2, · · · , es} of primitive central idempotents is complete

if e1 + e2 + · · · + es = 1. and eiej = 0 for all 1 ≤ i, j ≤ s and i 6= j. It is well known

that the decomposition K[G] ∼= A1 ⊕A2 ⊕ · · · ⊕As as a direct sum of simple components

corresponds to a complete set of primitive central idempotents {e1, e2, · · · es} such that

Ai ∼= K[G]ei, 1 ≤ i ≤ s. Thus the problem of determining Wedderburn decomposition

involves the computation of primitive central idempotents. This section is devoted to

compute a complete set of primitive central idempotents of a real special 2-group.

For a finite group G, the set of primitive central idempotents of complex algebra C[G]

corresponds to set of its irreducible complex characters of G. Let χ denote an irreducible

character of group G. The primitive central idempotent of complex algebra C[G] of group

G corresponding to χ is given by

e(χ) =
χ(1)

|G|
∑
g∈G

χ(g)g−1.

We now describe the primitive central idempotents for Q[G]. Let χ be a complex

character of G. Let Q(χ) denote the field obtained by adjoining all character values

χ(g); g ∈ G toQ. To obtain eQ(χ), the primitive central idempotent ofQ[G] corresponding

to χ, we add idempotents e(σ ◦ χ) with σ ∈ Gal(Q(χ)/Q). Thus it is given by eQ(χ) =∑
σ∈Gal(Q(χ)/Q) e(σ ◦ χ) [Yam74].
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Remark 6.1.1 For a real special 2-group G, it follows from remark 2.2.2 and Th.

5.2.4 that for all irreducible characters χ of G, χ(g) ∈ Z for all g ∈ G. Thus in

case of real special 2-groups, Gal(Q(χ)/Q) is trivial for all irreducible characters and

eQ(χ) = e(χ) = χ(1)
|G|
∑

g∈G χ(g)g−1 = χ(1)
|G|
∑

g∈G χ(g)g.

We will make use of this remark in the computation of primitive central idempotents of

rational algebra Q[G] for real special 2-group G. We begin with computation of primitive

central idempotents corresponding to one dimensional characters. Recall that for a finite

subgroup H of G, Ĥ = 1
|H|
∑

h∈H h denotes an element of the group algebra Q[G].

Lemma 6.1.2. Let χ be a one dimensional character of a real special 2-group G. If χ is

a trivial character then eQ(χ) = Ĝ, otherwise eQ(χ) = k̂er(χ)− Ĝ.

Proof Let χ be a one dimensional character of real special 2-group. If ker(χ) = G then

χ(g) = 1 for all g ∈ G. In this case eQ(χ) = χ(1)
|G|
∑

g∈G χ(g)g−1 = 1
|G|
∑

g∈G g = Ĝ.

Now we consider the case ker(χ) 6= G. The one dimensional characters of G are the lifts

of irreducible characters of G
G′ . In case of special 2-groups, G

G′ is an elementary abelian

2-group so χ̄( GG′ ) = {±1} for all characters χ̄ of G
G′ . Since χ : G → C is defined by

χ(g) = χ̄(gG′), we have χ(G) = {±1}. Further χ : G→ {±1} is a group homomorphism,

therefore G
ker(χ)

∼= {±1}. Hence | G
ker(χ) | = 2. Also χ(g) = 1 for all g ∈ ker(χ) and χ(g) = −1

for all g ∈ G− ker(χ). Since the group G is real, χ(g) = χ(g−1). Thus we have

eQ(χ) =
χ(1)

|G|
∑
g∈G

χ(g)g−1

=
1

|G|

 ∑
g∈ker(χ)

g −
∑

g∈G−ker(χ)

g


=

1

|G|

2
∑

g∈ker(χ)

g −
∑
g∈G

g


=

2

|G|
∑

g∈ker(χ)

g − 1

|G|
∑
g∈G

g

= k̂er(χ)− Ĝ.

�
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Before computing the primitive central idempotents corresponding to characters of

degree at least 2, we recall the notations of chapter 5. Let G be a real special 2-group

and q : V → W be the quadratic map associated to it. Let s ∈ HomF2
(W,F2) be non

zero linear maps and s ◦ q be the transfer of q by s. Then s ◦ q induce regular quadratic

forms qs from Vs := V
rad(bs◦q)

to F2 (see remark 3.2.5). We denote the extraspecial 2-groups

associated to the quadratic forms qs by Gs. From Prop. 5.1.4 and Th. 5.1.5, it is clear that

for every non-zero s ∈ HomF2
(W,F2), G has exactly |(rad(bs◦q))| number of inequivalent

irreducible representations ϕ of degree at least 2 of G such that ϕ(G) = Gs. We denote

the characters associated to these representations by χs,i : 1 ≤ i ≤ |(rad(bs◦q))|.

We recall from definition 1.2.21 that Z(χ) = {g ∈ G | χ(g) 6= 0}.

Proposition 6.1.3. Let χ be a character of degree at least 2 of real special 2-group G then

eQ(χ) = k̂er(χ)− Ẑ(χ).

Proof It follows from corollary 5.2.5 that χ vanishes outside Z(χ). Therefore χ(1)2 =

|G : Z(χ)| using lemma 1.2.23. Let χ = χs,i for non zero linear map s : Z(G) → F2 and

1 ≤ i ≤ |(rad(bs◦q))|. From lemma 5.1.6, we get that G
ker(χ)

∼= Gs, thus Z( G
ker(χ)) ∼= Z(Gs).

Also lemma 1.2.22(2) gives that Z( G
ker(χ)) = Z(χ)

ker(χ) . Therefore | Z(χ)
ker(χ) | = |Z(Gs)| = 2 as Gs

is an extraspecial 2-groups.

By definition of ker(χ) we have that χ(g) = χ(1) for all g ∈ ker(χ). From Th. 5.2.4,

it follows that χ(g) = −χ(1) for all Z(χ) − ker(χ). Since G is real, χ(g) = χ(g−1) for all

g ∈ G. Now we compute the primitive central idempotent eQ(χ) using remark 6.1.1.

eQ(χ) =
χ(1)

|G|
∑
g∈G

χ(g)g

=
χ(1)

|G|

 ∑
g∈ker(χ)

χ(1)g −
∑

g∈Z(χ)−ker(χ)

χ(1)g


=
χ(1)2

|G|

 ∑
g∈ker(χ)

g −
∑

g∈Z(χ)−ker(χ)

g


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=
1

|Z(χ)|

 ∑
g∈ker(χ)

g −
∑

g∈Z(χ)−ker(χ)

g


=

1

|Z(χ)|

2
∑

g∈ker(χ)

g −
∑

g∈Z(χ)

g


=

2

|Z(χ)|
∑

g∈ker(χ)

g − 1

|Z(χ)|
∑

g∈Z(χ)

g

= k̂er(χ)− Ẑ(χ).

�

Corollary 6.1.4. Let χ be the character of degree at least 2 of an extraspecial 2-group G

then eQ(χ) = 1− Ẑ(G).

Proof Let G be extraspecial 2-group. The unique character χ of degree at least 2 of

G is faithful (see remark 2.2.6). From lemma 2.2.7, it follows that Z(χ) = Z(G). Using

Prop. 6.1.3, we have eQ(χ) = 1− Ẑ(G). �

The primitive central idempotents of extraspecial 2-groups given by the above corollary

are also computed in [BP12, 3.1].

6.2 Wedderburn decomposition

In this section we determine the Wedderburn decomposition of rational group algebra

Q[G] of a real special 2-group G. Let G be a group and G
H be a quotient of G. Let

φ̄ : G→ G
H be the canonical map defined by φ̄(g) = gH for all g ∈ G. Let Q[G] and Q[GH ]

be rational group algebras of groups G and G
H , respectively. Then φ : Q[G]→ Q[GH ] is the

linear expansion of the map φ̄. The algebra homomorphism φ : Q[G] → Q[GH ] is defined

by φ(
∑
αgg) =

∑
αgφ(g) =

∑
αggH for g ∈ G and αg ∈ Q.

Lemma 6.2.1. Let φ : Q[G] → Q[GH ] be the canonical map and K be a normal subgroup

of G containing H then φ(K̂) = K̂/H.
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Proof Let K be a normal subgroup of G such that H ⊂ K then

φ(K̂) = φ

(
1

|K|
∑
k∈K

k

)
=

1

|K|
∑
k∈K

kH =
|H|
|K|

∑
kH∈K

H

kH = K̂/H.

�

Definition 6.2.2. Let e denote an idempotent in rational group algebra Q[G]. The trace

tr(e) of e is defined to be the coefficient of 1 in e.

Remark 6.2.3 The Q-vector space dimension of ideal Q[G]e is |G|. tr(e). To see this

let e =
∑

g∈G agg be a central idempotent and P : Q[G] → Q[G] be the map defined

by P (
∑

g∈G bgg) =
(∑

g∈G bgg
)
e for all

∑
g∈G bgg ∈ Q[G]. Let tr(P ) denote the trace

of linear map P . Since Q[G] = Im(P ) ⊕ ker(P ) we have dim(Im(P )) = dim(Q[G]e) =

tr(P ). We take G as a basis of Q[G], we compute tr(P ) = |G|.a1 = |G|. tr(e). Therefore

dim(Q[G]e) = |G|. tr(e).

Proposition 6.2.4. Let G be a real special 2-group and χs,i be the character of degree at

least 2 of G as described in section §5.2. Then Q[G].eQ(χs,i) ∼= Q[Gs](1− Ẑ(Gs)).

Proof Let φ : Q[G] → Q[ G
ker(χs,i)

] be the canonical map. Let eQ(χs,i) be the primitive

central idempotent corresponding to the character χs,i of degree at least 2 of group G.

Then from Prop. 6.1.3 we have eQ(χs,i) = ̂ker(χs,i)− Ẑ(χs,i). Now using lemma 6.2.1 and

the fact that Z(χ)
ker(χ)

∼= Z( G
ker(χ)) (see lemma 1.2.22) we compute

φ(eQ(χs,i)) = φ( ̂ker(χs,i)− Ẑ(χs,i)) = 1̂− ̂Z(χs,i)/ ker(χs,i) = 1̂−
̂

Z(
G

ker(χs,i)
).

Now using φ, we define a map φ′ : Q[G].eQ(χs,i)→ Q[ G
ker(χs,i)

].(1̂− ̂Z( G
ker(χs,i)

) by

φ′(
∑
g∈G

αgg.eQ(χs,i)) =
∑
g∈G

αgφ(g).(1̂−
̂

Z(
G

ker(χs,i)
)).

Since the map φ is surjective, the map φ′ is also a surjective map. Now we show that

vector space dimension of ideal Q[G].eQ(χs,i) and Q[ G
ker(χs,i)

].(1̂− ̂Z( G
ker(χs,i)

)) over Q are

same.
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We compute the dimension of ideals using remark 6.2.3, we first calculate

tr(eQ(χs,i)) =
1

| ker(χs,i)|
− 1

|Z(χs,i)|
=

1

| ker(χs,i)|
− 1

2| ker(χs,i)|
=

1

2| ker(χs,i)|
.

Hence dimension of Q[G].eQ(χs,i) is equal to |G|
2| ker(χs,i)| . Now by lemma 5.1.6, the group

G
ker(χs,i)

∼= Gs. This gives that |Z( G
ker(χs,i)

)| = 2. Hence the dimension of Q[ G
ker(χs,i)

](1 −
̂Z( G
ker(χs,i)

)) is |G|
2| ker(χs,i)| . Now using lemma 5.1.6, we get Q[G].eQ(χs,i) ∼= Q[Gs](1 −

Ẑ(Gs)). �

Recall from definition 2.3.4 that ∆(G,G′) denotes the non-commutative part Q[G].(1−
Ĝ′) of the group algebra Q[G] of G.

Theorem 6.2.5. Let G be a real special 2-group and q be the associated quadratic map.

Let s : Z(G) → F2 be a non-zero linear map and qs is be the regular quadratic form

as defined in the statement of lemma 3.2.3. Let Gs be extraspecial 2-group associated to

qs. Then ∆(Gs, G
′
s) appears |(rad(bs◦q)| many times in the Wedderburn decomposition of

Q[G].

Proof It follows from Prop. 5.1.4 and Th.5.1.5 that for every non-zero s ∈ HomF2
(Z(G),F2),

there exist exactly |(rad(bs◦q))| number of inequivalent irreducible representations φ of

degree at least 2 of G such that φ(G) = Gs. Let χs,i; where 1 ≤ i ≤ |(rad(bs◦q))| be

irreducible character associated to these representations and eQ(χs.i); where 1 ≤ i ≤
|(rad(bs◦q))| be primitive central idempotents corresponding to these characters. Now

from Prop. 6.2.4, the left ideal generated by each of these idempotents is isomorphic to

Q[Gs](1− Ẑ(Gs)). Since Gs is extraspecial 2-group, we have Z(Gs) ∼= G′s. This gives that

Q[Gs](1− Ẑ(Gs)) ∼= Q[Gs](1− Ĝ′s) = ∆(Gs, G
′
s). �

Theorem 6.2.6. Let G be a real special 2-group and |G| = 2n, |Z(G)| = 2m. Let q be

the quadratic map associated to G and sj : Z(G) → F2, 1 ≤ j ≤ 2m − 1 be non-zero

linear maps. Let qsj be regular quadratic forms as defined in the statement of lemma

3.2.3. Let Gsj , 1 ≤ j ≤ 2m − 1 be extraspecial 2-groups associated to quadratic forms

qsj , 1 ≤ j ≤ 2m − 1 and |Gsj | = 22lj+1. Then

Q[G] ∼= 2n−mQ⊕
2m−1⊕
j=1

2n−m−2lj∆(Gsj , G
′
sj )
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Proof Since G is a special 2-group, G′ = Z(G) and the quotient group G
G′ is an

elementary abelian 2-group. Using remark 2.3.5, the rational group algebra Q[ GG′ ] is a

direct sum of | GG′ | copies of Q. Now |G| = 2n and |G′| = |Z(G)| = 2m. Therefore Q[G]

contains direct sum of 2n−m copies of Q.

The group associated to the quadratic form qsj :
G

Z(G)

rad(bsj◦q)
→ F2 is the extraspecial

2-group Gsj . Using lemma 5.1.1, we have
G

Z(G)

rad(bsj◦q)
∼=

Gsj
Z(Gsj ) . Therefore | rad(bsj◦q)| =

| G
Z(G)

|

|
Gsj
Z(Gsj

|
. Since Gsj is an extraspecial 2-group, | rad(bs◦q)| = 2n−m−2lj . From Th.6.2.5, it

follows that
2m−1⊕
j=1

2n−m−2lj∆(Gsj , G
′
sj ) is direct summand in the Wedderburn decompo-

sition of Q[G]. Adding the 2n−m copies of the field of rational numbers corresponding

to linear part, we get that 2n−mQ ⊕
2m−1⊕
j=1

2n−m−2lj∆(Gsj , G
′
sj ) is a direct summand in

the Wedderburn decomposition of Q[G]. Now the proof follows from dimension count

over field of rational numbers Q. The dimension of Q[G] over Q is |G| = 2n. Since

|Gsj | = 22lj+1, the dimension of ∆(Gsj , G
′
sj ) is 22lj (see Prop.2.3.6. Hence the dimension

of 2n−mQ⊕
⊕2m−1

j=1 2n−m−2lj∆(Gsj , G
′
sj ) is 2n−m × 1 + 2m − 1× 2n−m−2lj × 22lj = 2n. �

Note that Gsj are extraspecial 2-groups and the non-commutative part ∆(Gsj , G
′
sj )

of the Wedderburn decomposition of their rational group algebra has been described by

Prop. 2.3.6 and summarized in table 2.2 in §2.3.

6.2.1 Examples

In this section, we explicitly compute the Wedderburn decomposition of two real special

2-groups using the method developed in this chapter.

1. Consider the group G = 〈a, b, c, d, f : a2 = b2 = (ab)2 = d, c2 = (ac)2 = f, d2 = f2 =

(bc)2 = (df)2 = 1〉. We know from example 5.4.1 that the group G is real special

2-group of order 32. The quadratic map q : G
Z(G) → Z(G) associated to G is given

by

q(x, y, z) = (x2 +xy+ y2, z2 +xz); (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) ∈ V.
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The extraspecial 2-groups Gs corresponding to the regular quadratic forms qs in-

duced from the transfers s ◦ q of q by s for all non-zero linear maps s : W → F2

are summarized in the following table. The non-commutative part ∆(Gs, G
′
s) of

Wedderburn decomposition of Q[Gs] is given in table 2.2. The detailed calculation

is done in example 5.4.1.

Linear map (s) qs Gs |Gs| ∆(Gs, G
′
s)

s1(w1, w2) = w1 [1, 1] Q2 23 H
s1(w1, w2) = w2 [0, 0] D4 23 M2(Q)

s1(w1, w2) = w1 + w2 [1, 1] Q2 23 H

Table 6.1: Computation of non-commutative part of Wedderburn decomposition of

Q[G] for group G defined in example 5.4.1.

Now using Th. 6.2.6, the Wedderburn decomposition of rational group algebra Q[G]

is

Q[G] ∼= 8Q⊕ 2M2(Q)⊕ 4H.

2. For the next example, we consider the group G = 〈a, b, c, d : a4 = b4 = c4 = d2 =

1, c2 = a2, aca = bcb = dcd = c, bab = dadb2 = a, dbd = b〉. From example 5.4.2, it

follows that the group G is real special 2-group of order 64. The map q : G
Z(G) →

Z(G) defined by q(x, y, z, w) = (y2 + xy + yz + xw, x2 + z2 + xz); (x, y, z, w) =

x(1, 0, 0, 0) + y(0, 1, 0, 0) + z(0, 0, 1, 0) + w(0, 0, 0, 1) ∈ V is the quadratic map

associated to group G.

The extraspecial 2-groups Gs corresponding to the regular quadratic forms qs in-

duced from the transfers s ◦ q of q by s for all non-zero linear maps s : W → F2

are summarized in the following table. The non-commutative part ∆(Gs, G
′
s) of

Wedderburn decomposition of Q[Gs] is given in table 2.2. For a detailed calculation,

see example 5.4.2.



94 CHAPTER 6. WEDDERBURN DECOMPOSITION

Linear map (s) qs Gs |Gs| ∆(Gs, G
′
s)

s1(w1, w2) = w1 [0, 0] ⊥ [0, 0] D4 ◦D4 25 M4(Q)

s1(w1, w2) = w2 [1, 1] Q2 23 H
s1(w1, w2) = w1 + w2 [1, 1] ⊥ [0, 0] Q2 ◦D4 25 M2(H)

Table 6.2: Computation of non-commutative part of Wedderburn decomposition of

Q[G] for group G defined in example 5.4.2.

Now using Th. 6.2.6, the Wedderburn decomposition of rational group algebra of

group G is

Q[G] ∼= 16Q⊕M4(Q)⊕ 4H⊕M2(H).

6.3 Isomorphism Problem

An interesting problem in the theory of group rings is the Isomorphism problem. In

[San81], it is mentioned that the isomorphism problem was formulated by G. Higman for

Integral group rings in his PhD thesis of [Hig40]. The isomorphism problem asks whether a

group algebra determines the group. It means whether the ring isomorphism R[G] ∼= R[H]

implies that G ∼= H for some ring R, for some groups G and H. It is shown in [VL06,

Corollary 3.5] that for extraspecial 2-groups, Q[G] ∼= Q[H] if and only if G ∼= H. In this

section, we show that this is not the case for special 2-groups.

We exhibit two examples to show that the isomorphism Q[G] ∼= Q[H] does not imply

that the isomorphism of G and H, where G and H are real special 2-groups.

Example 6.3.1 G1 := 〈a, b, c, d, f : a2 = b2 = c4 = d2 = f2 = dcd−1c = a−1b−1ab =

b−1c−1bc = a−1d−1ad = a−1c−1ac = 1, faf = ac2, fbf = b, fcf = c−1, fdf = bd〉.
The order of group G1 is 26. The center of G1 is Z(G1) := 〈b, c2 : b2 = c4 =

1, bc2 = c2b〉 and |Z(G)| = 22. The group G1 is a special 2-group. We identify G1
Z(G1)

with a 4-dimensional vector space V1 and Z(G1) with a 2-dimensional vector space W1

over the field F2. Therefore, as a set, the group G1 gets identified with V1 ×W1. Let

{e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1)} be a basis of V1 and

{f1 = (1, 0), f2 = (0, 1)} be a basis of W1 over F2. The quadratic map q1 : V1 → W1
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associated to G1 is given by q1(x, y, z, w) = (y2 + xw + yz + xy, xz). For every v ∈ V1,

the following table gives an element a ∈ V1 such that q1(v − a) = q1(a). Thus Th. 3.1.2

confirms that G1 is a real group.

v a

(0, 0, 0, 0), (0, 1, 0, 0), (1, 0, 1, 1), (1, 1, 1, 0), (1, 1, 1, 1) (1, 0, 0, 0)

(0, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 1, 0, 1) (0, 0, 0, 1)

(0, 0, 0, 1), (1, 0, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1) (0, 0, 1, 0)

(1, 1, 0, 0) (1, 0, 0, 1)

(1, 0, 0, 0) (0, 1, 0, 1)

Table 6.3: The group G1 defined in example 6.3.1 is real.

Since dimF2
(W1,F2) = 2, there are exactly three non zero linear maps s : W1 → F2.

In the following table we compute the radical rad(bsi◦q)) for these linear maps.

s s ◦ q bs◦q rad(bs◦q)

s1(w1, w2)

= w1

q(x, y, z, w) =

y2 + xy + yz + xw

bs1◦(q)((x, y, z, w), (x′, y′, z′, w′))

= y(x′ + z′) + y′(x+ z)

+xw′ + x′w

〈1〉

s2(w1, w2)

= w2

q(x, y, z, w) =

xz

bs2◦(q)((x, y, z, w), (x′, y′, z′, w′))

= xz′ + x′z
〈e2, e4〉

s3(w1, w2) =

w1 + w2

q(x, y, z) =

y(y + z)+

x(w + y + z)

bs3◦(q)((x, y, z, w), (x′, y′, z′, w′))

= y(y′ + z′) + y′(y + z)

+x(w′ + y′ + z′) + x′(w + y + z)

〈1〉

Table 6.4: Calculation of rad(bs◦q) for all non zero s ∈ HomF2
(W,F2) and q

associated to group G1 defined in example 6.3.1.

The extraspecial 2-groups Gs corresponding to the regular quadratic forms qs induced

from the transfers s ◦ q1 of q1 by s for all non-zero linear maps s : W1 → F2 are

summarized in the following table. The non-commutative part ∆(Gs, G
′
s) of Wedderburn

decomposition of Q[Gs] is given in table 2.2.
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Linear map (s) qs Gs |Gs| ∆(Gs, G
′
s)

s1(w1, w2) = w1 [0, 0] ⊥ [0, 0] D4 ◦D4 25 M4(Q)

s1(w1, w2) = w2 [0, 0] D4 23 M2(Q)

s1(w1, w2) = w1 + w2 [0, 0] ⊥ [0, 0] D4 ◦D4 25 M4(Q)

Table 6.5: Computation of non-commutative part of Wedderburn decomposition of

Q[G1] for group G1 defined in example 6.3.1.

Now using Th. 6.2.6, the Wedderburn decomposition of rational group algebra Q[G1]

is

Q[G1] ∼= 16Q⊕ 2M4(Q)⊕ 4M2(Q).

Example 6.3.2 G2 := 〈a, b, c, d, f : a2 = b2 = c4 = d2 = f2 = dcd−1c = a−1b−1ab =

b−1c−1bc = a−1d−1ad = a−1c−1ac = 1, faf = ac2, fbf = b, fcf = bc−1, fdf = c2d〉.
The order of group G2 is 26. The center of G2 is Z(G2) := 〈b, c2 : b2 = C4 =

1, bc2 = c2b〉 and |Z(G2)| = 22. The group G2 is special 2-group. We identify G2
Z(G2)

with a 4-dimensional vector space V2 and Z(G2) with a 2-dimensional vector space W2

over the field F2. Therefore, as a set, the group G2 gets identified with V2 ×W2. Let

{e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1)} be a basis of V2 and

{f1 = (1, 0), f2 = (0, 1)} be a basis of W2 over F2. The quadratic map q2 : V2 → W2

associated to G2 is given by q(x, y, z, w) = (xw + yz + xy, xz). For every v ∈ V2, the

following table gives an element a ∈ V2 such that q2(v − a) = q2(a). Thus Th. 3.1.2

confirms that G2 is a real group.

v a

(0, 1, 0, 0), (1, 1, 0, 0), (0, 1, 0, 1), (0, 0, 1, 0), (1, 0, 0, 1), (0, 0, 1, 1) (0, 0, 0, 1)

(0, 0, 0, 1), (0, 1, 1, 0), (1, 0, 1, 0), (0, 1, 1, 1), (1, 1, 1, 1) (0, 0, 1, 0)

(0, 0, 0, 0), (1, 0, 1, 1), (1, 1, 0, 1) (1, 0, 0, 0)

(1, 0, 0, 0), (1, 1, 1, 0) (1, 1, 0, 1)

Table 6.6: The group G2 defined in example 6.3.2 is real.

Here dimF2
(W2,F2) = 2. Therefore there are exactly three non zero linear maps
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s : W2 → F2. In the following table we compute the radical rad(bsi◦q)) for these linear

maps.

s s ◦ q bs◦q rad(bs◦q)

s1(w1, w2)

= w1

q(x, y, z, w) =

xy + yz + xw

bs1◦(q)((x, y, z, w), (x′, y′, z′, w′))

= y(x′ + z′) + y′(x+ z)

+xw′ + x′w

〈1〉

s2(w1, w2)

= w2

q(x, y, z, w) =

xz

bs2◦(q)((x, y, z, w), (x′, y′, z′, w′))

= xz′ + x′z
〈e2, e4〉

s3(w1, w2) =

w1 + w2

q(x, y, z, w) =

x(y + w) + z2+

z(x+ y) + (x+ y)2

bs3◦(q)((x, y, z, w), (x′, y′, z′, w′))

= yz′ + z′y

+x(w′ + y′ + z′) + x′(w + y + z)

〈1〉

Table 6.7: Calculation of rad(bs◦q) for all non zero s ∈ HomF2
(W,F2) and q

associated to group G2 defined in example 6.3.2.

The extraspecial 2-groups Gs corresponding to the regular quadratic forms qs induced

from the transfers s ◦ q2 of q2 by s for all non-zero linear maps s : W2 → F2 are

summarized in the following table. The non-commutative part ∆(Gs, G
′
s) of Wedderburn

decomposition of Q[Gs] is given in table 2.2.

Linear map (s) qs Gs |Gs| ∆(Gs, G
′
s)

s1(w1, w2) = w1 [0, 0] ⊥ [0, 0] D4 ◦D4 25 M4(Q)

s1(w1, w2) = w2 [0, 0] D4 23 M2(Q)

s1(w1, w2) = w1 + w2 [0, 0] ⊥ [0, 0] D4 ◦D4 25 M4(Q)

Table 6.8: Computation of non-commutative part of Wedderburn decomposition of

Q[G2] for group G2 defined in example 6.3.2.

Now using Th. 6.2.6, the Wedderburn decomposition of rational group algebra is

Q[G2] ∼= 16Q⊕ 2M4(Q)⊕ 4M2(Q).

Proposition 6.3.3. The groups G1 defined in example 6.3.1 and G2 defined in example

6.3.2 are not isomorphic.
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Proof We prove that the groups G1 and G2 are not isomorphic by showing that the

group G1 has 11 conjugacy classes with elements of order 2, while the group G2 has 13

conjugacy classes with elements of order 2. We compute the conjugacy classes of these

groups by using Th. 5.3.1. From lemma 1.3.12, we recall that the order of a non trivial

element g of special 2-group is 2 if and only if q vanishes on gZ(G), where q is quadratic

map associated to group G. If q does not vanish gZ(G) then order of g is 4. We use

this to compute the order of elements of groups G1 and G2. For a conjugacy class C, let

◦(C) denotes the order of its elements. With the notations same as in example 6.3.1, we

compute conjugacy classes of G1 and order of its element in the following table:

Conjugacy class ◦(C) Conjugacy class ◦(C)
C1 = {(0, 0)} 2 C2 = {(0, f1)} 2

C3 = {(0, f2)} 2 C4 = {(0, f1 + f2)} 2

C5 = {(e1, 0), (e1, f1), (e1, f2), (e1, f1 + f2)} 2 C6 = {(e2, 0), (e2, f1)} 4

C7 = {(e2, f2), (e2, f1 + f2)} 4 C8 = {(e3, 0), (e3, f2), (e3, f1), (e3, f1 + f2)} 2

C9 = {(e4, 0), (e4, f1)} 2 C10 = {(e4, f2), (e4, f1 + f2)} 2

C11 = {(e1, 0)(e2, 0), (e1, 0)(e2, 0)(0, f1),

(e1, 0)(e2, 0)(0, f2), (e1, 0)(e2, 0)(0, f1 + f2)}
2

C12 = {(e1, 0)(e3, 0), (e1, 0)(e3, 0)(0, f1),

(e1, 0)(e3, 0)(0, f2), (e1, 0)(e3, 0)(0, f1 + f2)}
4

C13 = {(e1, 0)(e4, 0), (e1, 0)(e4, 0)(0, f1),

(e1, 0)(e4, 0)(0, f2), (e1, 0)(e4, 0)(0, f1 + f2)}
4

C14 = {(e2, 0)(e3, 0), (e2, 0)(e3, 0)(0, f1),

(e2, 0)(e3, 0)(0, f2), (e2, 0)(e3, 0)(0, f1 + f2)}
2

C15 = {(e2, 0)(e4, 0), (e2, 0)(e4, 0)(0, f1)} 4 C16 = {(e2, 0)(e4, 0)(0, f2), (e2, 0)(e4, 0)(0, f1 + f2)} 4

C15 = {(e3, 0)(e4, 0), (e3, 0)(e4, 0)(0, f1),

(e3, 0)(e4, 0)(0, f2), (e3, 0)(e4, 0)(0, f1 + f2)}
2

C16 = {(e1, 0)(e2, 0)(e3, 0),

(e1, 0)(e2, 0)(e3, 0)(0, f1),

(e1, 0)(e2, 0)(e3, 0)(0, f2),

(e1, 0)(e2, 0)(e3, 0)(0, f1 + f2)}

4

C16 = {(e1, 0)(e2, 0)(e4, 0),

(e1, 0)(e2, 0)(e4, 0)(0, f1),

(e1, 0)(e2, 0)(e4, 0)(0, f2),

(e1, 0)(e2, 0)(e4, 0)(0, f1 + f2)}

4

C16 = {(e1, 0)(e3, 0)(e4, 0),

(e1, 0)(e3, 0)(e4, 0)(0, f1),

(e1, 0)(e3, 0)(e4, 0)(0, f2),

(e1, 0)(e3, 0)(e4, 0)(0, f1 + f2)}

4

C16 = {(e2, 0)(e3, 0)(e4, 0),

(e2, 0)(e3, 0)(e4, 0)(0, f1),

(e2, 0)(e3, 0)(e4, 0)(0, f2),

(e2, 0)(e3, 0)(e4, 0)(0, f1 + f2)}

2

C16 = {(e1, 0)(e2, 0)(e3, 0)(e4, 0),

(e1, 0)(e2, 0)(e3, 0)(e4, 0)(0, f1),

(e1, 0)(e2, 0)(e3, 0)(e4, 0)(0, f2),

(e1, 0)(e2, 0)(e3, 0)(e4, 0)(0, f1 + f2)}

4

Table 6.9: Conjugacy classes and order of their elements of group G1.

With the notations same as in example 6.3.2, we compute conjugacy classes of G2 and

order of its element in the following table:
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Conjugacy class ◦(C) Conjugacy class ◦(C)
C1 = {(0, 0)} 2 C2 = {(0, f1)} 2

C3 = {(0, f2)} 2 C4 = {(0, f1 + f2)} 2

C5 = {(e1, 0), (e1, f1), (e1, f2), (e1, f1 + f2)} 2 C6 = {(e2, 0), (e2, f1)} 2

C7 = {(e2, f2), (e2, f1 + f2)} 2 C8 = {(e3, 0), (e3, f2), (e3, f1), (e3, f1 + f2)} 2

C9 = {(e4, 0), (e4, f1)} 2 C10 = {(e4, f2), (e4, f1 + f2)} 2

C11 = {(e1, 0)(e2, 0), (e1, 0)(e2, 0)(0, f1),

(e1, 0)(e2, 0)(0, f2), (e1, 0)(e2, 0)(0, f1 + f2)}
4

C12 = {(e1, 0)(e3, 0), (e1, 0)(e3, 0)(0, f1),

(e1, 0)(e3, 0)(0, f2), (e1, 0)(e3, 0)(0, f1 + f2)}
4

C13 = {(e1, 0)(e4, 0), (e1, 0)(e4, 0)(0, f1),

(e1, 0)(e4, 0)(0, f2), (e1, 0)(e4, 0)(0, f1 + f2)}
4

C14 = {(e2, 0)(e3, 0), (e2, 0)(e3, 0)(0, f1),

(e2, 0)(e3, 0)(0, f2), (e2, 0)(e3, 0)(0, f1 + f2)}
4

C15 = {(e2, 0)(e4, 0), (e2, 0)(e4, 0)(0, f1)} 2 C16 = {(e2, 0)(e4, 0)(0, f2), (e2, 0)(e4, 0)(0, f1 + f2)} 2

C17 = {(e3, 0)(e4, 0), (e3, 0)(e4, 0)(0, f1),

(e3, 0)(e4, 0)(0, f2), (e3, 0)(e4, 0)(0, f1 + f2)}
2

C18 = {(e1, 0)(e2, 0)(e3, 0),

(e1, 0)(e2, 0)(e3, 0)(0, f1),

(e1, 0)(e2, 0)(e3, 0)(0, f2),

(e1, 0)(e2, 0)(e3, 0)(0, f1 + f2)}

4

C19 = {(e1, 0)(e2, 0)(e4, 0),

(e1, 0)(e2, 0)(e4, 0)(0, f1),

(e1, 0)(e2, 0)(e4, 0)(0, f2),

(e1, 0)(e2, 0)(e4, 0)(0, f1 + f2)}

2

C20 = {(e1, 0)(e3, 0)(e4, 0),

(e1, 0)(e3, 0)(e4, 0)(0, f1),

(e1, 0)(e3, 0)(e4, 0)(0, f2),

(e1, 0)(e3, 0)(e4, 0)(0, f1 + f2)}

4

C21 = {(e2, 0)(e3, 0)(e4, 0),

(e2, 0)(e3, 0)(e4, 0)(0, f1),

(e2, 0)(e3, 0)(e4, 0)(0, f2),

(e2, 0)(e3, 0)(e4, 0)(0, f1 + f2)}

4

C22 = {(e1, 0)(e2, 0)(e3, 0)(e4, 0),

(e1, 0)(e2, 0)(e3, 0)(e4, 0)(0, f1),

(e1, 0)(e2, 0)(e3, 0)(e4, 0)(0, f2),

(e1, 0)(e2, 0)(e3, 0)(e4, 0)(0, f1 + f2)}

4

Table 6.10: Conjugacy classes and order of their elements of group G2.

�

We conclude the chapter with the following remark:

Remark 6.3.4 The computation in example 6.3.1 and example 6.3.2 shows thatQ[G1] ∼=
Q[G2] and by Prop.6.3.3 groups G1 and G2 are not isomorphic.

This establishes that rational group algebras of real special 2-groups do not determine

the group.
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Appendix A

GAP Codes

We record our GAP code to check whether a group is special 2-group, extraspecial 2-group,

real, strongly real or totally orthogonal.

Program 1

#Checks if G is a real group.

G;

"real";

output := 0;

N := NrConjugacyClasses(G);

T := CharacterTable(G);

R := RealClasses(T);

if N = Size(R) then

output := "real";

fi;

103
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Program 2

#Checks if G is a special 2-group or extraspecial 2-group.

G;

"2-Group";

"special";

"extraspecial";

output := 0;

if IsPGroup(G) = True and Order(G) mod(2) = 0 then

output := "2-Group";

fi;

if output = "2-Group" then

D := DerivedSubgroup(G);

C := Centre(G);

F := FrattiniSubgroup(G);

l := Elements(C);

j := [];

for g in l do

if g*g = l[1] then

Add( j, g );

fi;

od;

H := Group( j );

if D = C and C = F and F = H then

output := "special";

fi;

fi;

if

output = "special" and Size(C) = 2 then

output := "extraspecial";

fi;
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Program 3

#Checks if G is a strongly real group.

G;

"stronglyreal";

output := 0;

ccsize := NrConjugacyClasses(G);

involutions := [];

tested := [];

Add(tested, ConjugacyClass(G,Identity(G)));

for g in G do

if Order(g) = 2 then

Add(involutions, g);

fi;

od;

Add(involutions, Identity(G));

for g in involutions do

for h in involutions do

if ((Size(tested) = ccsize) = false) then

Add(tested, ConjugacyClass(G, g*h));

Add(tested, ConjugacyClass(G, h*g));

fi;

tested := Set(tested);

od;

od;

if Size(tested) = ccsize then

output := "stronglyreal";

fi;
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Program 4

#Check if G is a totally orthogonal group.

G;

"real";

"totallyorthogonal";

output := 0;

output1 := 0;

T := CharacterTable(G);

N := NrConjugacyClasses(T);

R := RealClasses(T);

I := Indicator(T,2);

if N = Size(R) then

output1 := "real";

fi;

if output1 = "real" and -1 in I then

output := 0;

else

output := "totallyorthogonal";

fi;

In the following, we provide our GAP code used to make table 4.12 and table 4.13.

This GAP code returns a list of totally orthogonal groups that are not strongly real up

to order 128 and a list of strongly real groups with symplectic representations up to order

128.
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# Returns a list of real groups up to order 128.

real := [];

for i in [1..128] do

m := Size(AllSmallGroups(i));

for j in [1..m] do

G := SmallGroup(i,j);

Run Program 1

if output = "real" then

Add(real, G);

fi;

od;

od;

#Returns a list of strongly real groups up to order 128.

stronglyreal := [];

for G in real do

Run Program 3

if output = "stronglyreal" then

Add(stronglyreal,G);

fi;

od;

#Returns a list of totally orthogonal groups up to order 128.

totallyorthogonal := [];

for G in real do

Run Program 4
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if output = "totallyorthogonal" then

Add(totallyorthogonal,G);

fi;

od;

#Returns a list of totally orthogonal groups up to order 128

which are not strongly real.

k := [];

TNS := [];

final1 := [];

for G in totallyorthogonal do

if G in stronglyreal then

Add(k,G);

else

Add(TNS,G);

fi;

od;

for G in TNS do

I:=IdSmallGroup(G);

D:=StructureDescription(G);

Run Program 1

Add(final1, I);

Add(final1, D);

Add(final1, output);

od;

#Returns a list of strongly real groups up to order 128

which are not totally orthogonal.

l := [];

SNT := [];
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final2 := [];

for G in stronglyreal do

if G in totallyorthogonal then

Add(l,G);

else

Add(SNT,G);

fi;

od;

for G in SNT do

I:=IdSmallGroup(G);

D:=StructureDescription(G);

Run Program 1

Add(final2, I);

Add(final2,D);

Add(final2, output);

od;

Now we discuss the output of above program. The following list contains totally

orthogonal groups which are not strongly real up to order 128. It is clear from the list

that the smallest totally orthogonal group which is not strongly real is of order 64 whereas

smallest such special 2-group is of order 128 as mentioned in remark 4.2.13.

gap> final1;

[ [ 64, 177 ], "(C2 x D16) : C2", "2-Group",

[ 128, 453 ], "(C2 x D16) : C2", "2-Group",

[ 128, 931 ], "(((C8 : C2) : C2) : C2) : C2", "2-Group",

[ 128, 932 ], "((C4 x C2 x C2) : C4) : C2", "2-Group",

[ 128, 982 ], "((C4 x C2 x C2) : C4) : C2", "2-Group",

[ 128, 1345 ], "(C2 x C2 x C2 x D8) : C2", "special",

[ 128, 1389 ], "(C2 x ((C4 x C4) : C2)) : C2", "special",

[ 128, 1544 ], "(C2 x ((C2 x C2 x C2 x C2) : C2)) : C2", "special",

[ 128, 1550 ], "(C2 x ((C4 x C4) : C2)) : C2", "special",

[ 128, 1880 ], "C2 x ((C2 x D16) : C2)", "2-Group",
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[ 128, 1924 ], "(C2 x ((C4 x C2 x C2) : C2)) : C2", "2-Group",

[ 128, 1949 ], "(C2 x ((C4 x C4) : C2)) : C2", "2-Group" ]

The following list contains strongly real groups which are not totally orthogonal up

to order 128. It is clear from the list that the smallest strongly real group which is not

totally orthogonal is of order 32 which is isomorphic to extraspecial 2-group Q2 ◦D4. As

mentioned in remark 4.2.5 there is only one special 2-group of order 64 which is strongly

real but not totally orthogonal.

gap> final2;

[ [ 32, 50 ], "(C2 x Q8) : C2", "extraspecial",

[ 64, 218 ], "(C2 x ((C4 x C2) : C2)) : C2", "special",

[ 64, 265 ], "(C2 x ((C4 x C2) : C2)) : C2", "2-Group",

[ 128, 1347 ], "(C2 x C2 x ((C4 x C2) : C2)) : C2", "special",

[ 128, 1388 ], "(C2 x ((C4 x C2) : C4)) : C2", "special",

[ 128, 1407 ], "(C2 x ((C4 x C2 x C2) : C2)) : C2", "special",

[ 128, 2180 ], "C2 x ((C2 x ((C4 x C2) : C2)) : C2)", "2-Group",

[ 128, 2318 ], "(C2 x ((C2 x Q8) : C2)) : C2", "2-Group",

[ 128, 2324 ], "C2 x C2 x ((C2 x Q8) : C2)", "2-Group",

[ 128, 2327 ], "(C2 x ((C2 x Q8) : C2)) : C2", "extraspecial" ]
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