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Synopsis

Nonlinear dynamical systems exhibit many counterintuitive phenomenon and exotic spa-

tiotemporal patterns. On one hand, phenomenon like chaos and stochastic resonance

in individual nonlinear dynamical units challenge our everyday intuitions, on the other,

complex systems consisting of interacting nonlinear dynamical units provide us a frame-

work to model many physical, biological, social and engineering systems thereby enabling

us to get deeper insights into wide ranging complex phenomena.

The work in this thesis is divided into two broad categories. First, we explore the ap-

plication of nonlinear systems in the design of computing devices. Second, we attempt to

broaden our understanding of nonlinear systems in general by investigating the emergence

of spatiotemporal patterns in complex networks with time-varying connections.

Specifically in the first part, we study the possibility of utilizing the phenomenon of

stochastic resonance in bistable or multi-stable nonlinear dynamical systems to implement

memory and logic function. This phenomenon has commonly been referred to as “Logical

Stochastic Resonance (LSR)”. We demonstrate how noise enables a bistable system to

behave as a memory device, as well as a logic gate for sub−threshold input signals. It

is shown how this system can implement memory using noise constructively to store

information. Namely, in some optimal range of noise, the system can operate flexibly,

both as a AND/OR gate and a Set−Reset latch, on variation of an asymmetrizing bias.

Then we examine the intriguing possibility of obtaining dynamical behavior equivalent

to LSR in a noise-free bistable system, subjected only to periodic forcing, such as a

sinusoidal driving or rectangular pulse trains. We find that such a system, despite having

no stochastic influence, also yields phenomenon analogous to LSR, in an appropriate

window of frequency and amplitude of the periodic forcing. The results are corroborated

by electronic circuit experiments.

Next we demonstrate how width of the optimal noise window can be increased by

utilizing the constructive interplay of noise and periodic forcing, namely, noise in con-

junction with a periodic drive enables the system to yield consistent logic outputs for

all noise strengths below a certain threshold. Thus we establish that in scenarios where

noise level is below the minimum threshold required for LSR (or stochastic resonance

in general), we can add a periodic forcing to obtain the desired effects. We have also
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shown that the periodic forcing results in lower latency effects and reduces the switching

time, leading to faster operation of the devices. Further, if a LSR element is coupled to

another LSR element with a lower potential barrier, then it is able to adapt to varying

noise intensity, so that its operation remains robust even under high noise conditions.

Lastly, we test these concepts in vertical-cavity surface-emitting lasers (VCSELs)

which are widely used for high-bit-rate data transmission because of their various advan-

tages over conventional edge emitting lasers like low threshold current, single-longitudinal-

mode operation, higher modulation bandwidth and circular output beam profile. We

attempt to enhance the the operational range of VCSEL based stochastic logic gate by

adding a periodic signal. The enhancement is observed in form of decrease in the mini-

mum bit time necessary for successful operation or increase of size of the optimal noise

window.

In the second part of this thesis, we study the behaviour of nonlinear dynamical

elements coupled with each other. Firstly, we study the impact of small heterogeneity in

signals applied to globally coupled nonlinear bistable elements. In absence of coupling, the

collective response is simply the average of response to all the uncorrelated signals. When

the elements are coupled and a bias is applied, we find that even a very small number

of heterogeneous inputs are able to drag the collective response towards the stable state

of the minority inputs. In our explicit demonstration we have taken Schmitt triggers as

the nonlinear bistable elements, and the inputs are encoded as voltages applied to them.

The average of the output voltages of all Schmitt triggers corresponds to the output of

the system. We also observe that the minimum heterogeneity that can be detected scales

with the ratio of threshold voltage to the source voltage of the Schmitt triggers, and can

be be brought down to the limit of single bit detection.

In last two works, we focus on changes in emergent phenomenon when the under-

lying interaction network is dynamic and the connections evolve with time. Such time

variations represent the evolution of interactions over time or any discontinuities in in-

teractions, i.e. when the nodes interact only for limited time. These evolving interaction

patterns are commonly found in social networks, communication, biological systems,

spread of epidemics, computer networks, world wide web etc and have been shown to

result in significantly different emergent phenomena in complex systems.

In the first problem, we study the impact of time varying network topology in epi-

demic spreading. We study a simple model mimicking disease spreading on a network

with dynamically varying connections, and investigate the dynamical consequences of

x



switching links in the network. Our central observation is that the disease cycles get

more synchronized, indicating the onset of epidemics, as the underlying network changes

more rapidly. This behavior is found for periodically switched links, as well as links

that switch stochastically in time. We find that the influence of changing links is more

pronounced in networks where the nodes have lower degree, and the disease cycle has a

longer infective stage. Further, in periodically switching links, we observe finer dynamical

features, such as beating patterns in the emergent oscillations and resonant enhancement

of synchronization, arising from the interplay between the time-scales of the connectivity

changes and that of the epidemic outbreaks.

In the second problem, we study the stability of the synchronous state in evolving

networks. Many earlier studies have analyzed the stability of the synchronous state by

linearizing the dynamical equations. But this approach is valid only in case of small

perturbations of the synchronous state. In general, the dynamical equations governing

the dynamics over the nodes are nonlinear and the higher order terms no longer remain

negligible in case of large perturbations. In such cases, the basin stability approach may

be used to complement the linear stability analysis. The basin stability paradigm is

particularly useful in case of time varying networks as it can be applied to a large class

of systems whereas the linear stability analysis can be done only in some specific cases.

In our study, we consider synchronization of chaotic Rössler oscillators over Watts−Strogatz

networks. We vary the fraction of random links, p, to cover broad range of networks vary-

ing from regular ring topology for p = 0 to random networks for p = 1. We find that

for sufficiently fast re-wirings, the time varying networks can be approximated by static

time averaged networks. Using the basin stability framework, we are able to estimate

the rewiring frequency at which the network can be approximated by the static time

average. Further we are also able to get insight into how the transition from a static to

a time averaged case takes place and show how the stability range changes at different

rewiring timescales. We find that not only the basin stability of small world networks

highest in static cases as reported earlier, but they approach the time averaged coupling

case fastest. Further, we find that faster rewiring networks synchronize quickly and the

impact of rewiring is maximum when the number of neighbours is less. Lastly, we show

that linear stability analysis alone is not sufficient to accurately predict the stability of

synchronized states in time varying networks and the basin stability analysis should also

be used to complement the analysis.

In the last chapter of the thesis, we conclude our findings and summarize the important

results of all the chapters. We also list some possible extensions of the works presented
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in this thesis.
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Chapter 1

Introduction

A system that evolves with time is called a dynamical system and such dynamical systems

are often modeled by differential equations

Ẋ = F (X) (1.1)

where X(t) = {x1(t), x2(t).....xn(t)} is a vector of state variables, t is time and F (X) =

{f1(X), f2(X).....fn(X)} is vector of functions that encode the dynamics[1]. If time is

discrete, then the evolution is given by a map

Xn+1 = F (Xn) (1.2)

where X is state vector and F is a set of functions determining the flow of the phase

point. If F is a nonlinear function in these coupled differential/difference equations then

the system is referred to as nonlinear dynamical system.

Such nonlinear dynamical systems are hard to solve analytically, but the rapid rise

in computing power has helped us to understand their behavior by employing numerical

analysis techniques. Through numerical simulation of the dynamical equations, it has

been found that even very simple dynamical systems can exhibit a range of dynami-

cal behaviours from fixed points and limit cycles to very complex and counterintuitive

behaviours like chaos and fractals [2].
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1.1 Interplay of noise and nonlinearity

An ubiquitous feature of real systems is the presence of noise. Noise has traditionally

been considered a nuisance and something which one should get rid off. Lately, noise has

been shown to play not only beneficial but crucial role in many biological and engineering

systems. The cooperative interplay of noise and nonlinearity in dynamical systems has

attracted the attention of researchers from diverse fields ranging from electronic systems

to geologists. Phenomenon such as stochastic resonance (SR), that is, the enhancement

of response of a nonlinear system to a weak signal with the assistance of noise have been

studied extensively [3, 4].

Stochastic resonance has been observed in a large variety of systems, including bistable

ring lasers [5], semiconductor devices [6, 7, 8], chemical reactions [9], neuronal ensembles

[10], vertical cavity surface emitting lasers [11], delayed feedback systems [12], geomag-

netic polarity reversals [13] models of opinion formation [14] and mechano-receptor cells

in the tail fan of a crayfish [15]. The phenomenon of stochastic resonance has been utilized

in realizing logic gates [16], information transmission and storage [17, 18], harvesting vi-

brational energy and genetic switches [19]. It has also been observed with different types

of noise like colored noise [20, 21, 22, 23], combination of multiplicative and additive noise

[24, 25], pinning noise [26] and in periodic potentials [27, 28].

Stochastic Resonance in double-well potential

The standard equation of a double-well potential is:

V (x) = −a1x2/2 + a2x
4/4 (1.3)

where a1, a2 > 0. The height and width of the energy barrier are h = a21/4a2 and

w = 2
√
a1/a2 respectively. The force field corresponding to this potential barrier is

F (x) = −dV (x)/dx = a1x − a2x
3. If we neglect inertia and consider the overdamped

limit, then the stochastic differential equation (SDE) governing the dynamics is

ẋ = F (x) + Asin(Ωt) +Dη(t) (1.4)

where η(t) is Gaussian noise and sin(Ωt) is the driving force with amplitude A. In

numerical integration schemes, the Gaussian noise is band-limited by the integration
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time step dt to a Nyquist frequency fNQ = 1/(2dt). Noise is quantified by its mean

squared amplitude or noise power σ2 = 2DfNQ where 2D is the height of the one sided

noise spectrum. In absence of driving force (A = 0), the mean escape time from either

potential well is given by:

1/τK = rK = (ωbω0/2π)exp(−h/D) (1.5)

where rK is the Kramer’s rate and ω2
0 = 2a1 and ω2

b + a1 represent the angular

frequencies at the potential minima and at the top of the barrier.

At very low noise strength, mean escape time τK is very large, so the effective frequency

1/2τK << Ω and the periodic part is not detectable. Similarly, for large D, 1/2τK >> Ω

and periodic part is not perceptible. SR takes place when both frequencies are close, i.e.

TΩ ≡ 2π/Ω = 2τK(D) = (2
√

2π/k21)exp(k21/4Dk2) (1.6)

In this case even when A < h, the inter-well switching frequency is close to the

frequency of the driving force and this resonance of the two frequencies is called as SR.

So the output signal-to-noise ratio (SNR) is maximum for some nonzero noise[29].

Stochastic Resonance in computing systems

Noise in physical systems is one of the biggest challenge for people engaged in design

and development of computing devices. The rapid shrinking of computing platforms with

smaller power supplies has brought with it problems of smaller noise margins and higher

error rates. So wide ranging research efforts in recent years have focused on the issue of

reliable operations in the presence of a noise floor[18, 30].

In this context, it was shown that a noisy nonlinear system, when driven by two

square waves encoding two logical inputs, consistently goes to a state that mirrors a

logical combination of the two inputs (such as AND/NAND and OR/NOR logic) in some

optimal range of noise. That is, the probability of getting the correct logical response

increases to unity with increase in the intensity of noise and then decreases again when

noise exceeds the optimal range. Further one can vary the threshold (or bias) and morph

the output into different logical functions.

This concept, named “Logical Stochastic Resonance” (LSR) [16, 31], helps one gain

understanding of the counter-intuitive interplay between noise and nonlinearity [3, 32, 4].

3



Further, from the applied viewpoint, this idea can potentially lead to the design of flexible

logic gates with enhanced performance in noisy environments. The main feature of LSR is

the capability of the nonlinear device to work optimally in a range of environmental noise;

hence LSR is a practical and reasonable answer for computational devices wherein the

noise-floor cannot be suppressed. The relevance of LSR has been established in physical

systems, ranging from electrical [33] and nanomechanical [34] to optical systems [35, 36].

It has also been found to occur in chemical [37] and biological [38, 39] scenarios.

Now we briefly discuss the general principle of LSR. Consider a general nonlinear

system,

ẋ = F (x) + b+ Iin +Dη(t) (1.7)

where F (x) is a generic nonlinear function obtained via the negative gradient of a

potential with two distinct stable wells. Iin is the input signal which encodes the logic

inputs, b is bias to asymmetrize the two potential wells, and η(t) is an additive zero-mean

Gaussian noise with unit variance, with D being the amplitude(intensity) of the noise.

A logical input-output can be obtained by driving the system with two trains of

aperiodic square pulses: I1 + I2, encoding the two logic inputs. For logic operations such

as OR/NOR and AND/NAND, we consider the inputs to take value I when the logic

input is 1, and value −I when the logic input is 0, where input strength I is: 0 < I < 1.

Since, the binary logic inputs can be either 0 or 1, they produce 4 sets of binary input:

(0, 0), (0, 1), (1, 0), (1, 1). These four input conditions give rise to three distinct values of

Iin. Hence, the input signal Iin generated, is a 3-level aperiodic wave form.

The state of this system, can be interpreted as logic output 1 when x > x∗ and

logic output 0 when x < x∗, where x∗ is roughly given by the position of the barrier

between the two wells. Such an interpretation allows one to consistently obtain logical

responses, such as OR and AND (see Table 1.1, when noise intensity D is in an optimal

band. Complementary gates, NOR and NAND, can also be obtained in a straight-forward

manner, by the alternate output determination : x < x∗ corresponding to logic output

1, and 0 otherwise.

In the first part of this thesis, we extend the theoretical and applied aspects of LSR

and demonstrate how stochastic resonance in bistable or multi-stable nonlinear dynamical

systems can be utilized to implement memory and logic function. We show how a general

nonlinear dynamical system can operate flexibly, both as a NAND/AND gate and a

4



Logic inputs OR AND NOR NAND

0,0 0 0 1 1
0,1 1 0 0 1
1,0 1 0 0 1
1,1 1 1 0 0

Table 1.1: Relationship between the two logic inputs and the output of the fundamental
OR, AND, NOR and NAND logic operations. On addition, the four distinct possible
input sets (0, 0), (0, 1), (1, 0) and (1, 1) reduce to three conditions, as (0, 1) and (1, 0) are
symmetric. Note that any logical circuit can be constructed by combining the NOR (or
the NAND) gates [40, 41].

SetReset latch, by variation of an asymmetrizing bias. We also examine the possibility of

obtaining dynamical behavior equivalent to LSR in a noise-free bistable system, subjected

only to periodic forcing, such as sinusoidal driving or rectangular pulse trains.

Then we demonstrate how the width of the optimal noise window can be increased

by utilizing the constructive interplay of noise and periodic forcing, namely noise in

conjunction with a periodic drive yields consistent logic outputs for all noise strengths

below a certain threshold. Thus we establish that in scenarios where noise level is below

the minimum threshold required for logical stochastic resonance (or stochastic resonance

in general), we can add a periodic forcing to obtain the desired effects.

We also verify our concepts in Vertical-cavity surface-emitting lasers (VCSELs) which

are widely used for high-bit-rate data transmission because of their various advantages

over conventional edge emitting lasers like low threshold current, single-longitudinal-mode

operation, higher modulation bandwidth and circular output beam profile.

1.2 Spatiotemporal patterns in Complex Systems

In the second part of this thesis, we attempt to broaden our understanding of nonlinear

dynamical systems in general by investigating the emergence of spatiotemporal patterns

in complex systems.

Complex interactive systems provide the framework to model a wide class of phe-

nomena and have been widely used to model spatially extended physical, chemical and

biological systems, neural networks, social systems, world wide web and Internet etc. We

are ourselves, as individuals, the units of a network of social relationships of different

kinds and, as biological systems, the delicate result of a network of biochemical reactions

5



[42].

Developing models that can mimic the structural properties of real networks and

understanding how the dynamical units on such complex networks behave collectively

are the two major goals in study of complex systems. Since the seminal papers by Watts

and Strogatz on small-world networks[43], and that by Barabási and Albert on scale-free

networks [44], many unifying principles and statistical properties common to most of the

real networks have been identified.

A prototypical dynamical network involves equations describing the time variation

of state variables at the nodes or sites, and a set of links capturing the essence of the

connection of a node with subsets of nodes in the system. Empirical results from various

networks suggest that the degree distribution of a node, that is the distribution of the

number of its direct connections to other nodes significantly deviates from the Poisson

distribution expected for a random graph and, in many cases, exhibits a power law (scale-

free) tail with an exponent taking a value between 2 and 3. They are also characterized

by correlations in the node degrees, relatively short paths between any two nodes (small-

world property), and by the presence of a large number of short cycles or specific motifs

[42].

Small-World Networks

The small-world (SW) concept describes the fact that despite the large size of certain

networks, the distance between any two nodes i.e. the number of edges along the shortest

path connecting them, can be quite small. A popular manifestation of SW networks is the

six degrees of separation concept, uncovered by the social psychologist Stanley Milgram

(1967), who concluded that there was a path of acquaintances with a typical length

of about six between most pairs of people in the United States [45]. Another common

property of complex networks is clustering which is quantified by the clustering coefficient

[43, 45]. For a node i with degree ki, the clustering coefficient is given by:

Ci = 2Ei/ki(ki − 1) (1.8)

where Ei is the number of edges connecting the node ki with its k nearest neighbours.

As this ith node has degree k, the total number of possible edges is k(k − 1)/2. The

clustering coefficient of the whole network is the average of all individual Cis. The SW

networks are characterized by small path lengths and large clustering coefficient which is

also observed in case of many real networks.
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Disorder either in form of static or quenched inhomogeneities, or coherent driving

forces, have yielded a host of interesting, often counter-intuitive, behaviours. For in-

stance, stochastic resonance [3] in coupled arrays [46, 47, 48, 49, 50, 51, 52], diversity

induced resonant collective behaviour in ensembles of coupled bistable or excitable sys-

tems [53],[54] demonstrated how the response to a sub-threshold input signal is optimized.

It was recently shown that the collective response of strongly coupled bistable elements

can reflect the presence of very few non-identical inputs in a large array of otherwise

identical inputs [55].

As the first problem in the second part of the thesis, we verify the finding of [55] in an

array of globally coupled Schmitt triggers. Schmitt trigger is a simple electronic system

that can be easily made from commonly available electronic elements like an op-amp, and

a few resistors and has been widely used to model bistable systems [56, 6]. In our explicit

demonstration we have taken Schmitt triggers as the basic nonlinear bistable elements,

and the inputs are encoded as voltages applied to them. The average of output voltages

of all the Schmitt triggers corresponds to the global output of the system.

Time varying networks

The links in a complex network could be static or dynamic. Static or annealed links

imply that the connectivity is invariant or quenched throughout the evolution of the

system [57, 58]. Dynamic links on the other hand imply that the underlying connections

may switch around, and so the nodes couple to changing environments. Studying the

implications of such dynamic links is relevant, for example, in a socio-economic network,

where the connectivity matrix generically changes over time. In the next two problems

of this part of the thesis, we explore how changing the underlying web of connections at

different rates influences the emergent spatiotemporal patterns in extended interactive

systems.

In the first problem, we focus on a problem of considerable relevance, namely, the

nature of infection spreading in a population of individuals connected by links that vary

over a large range of time scales. At the level of individuals in the population, we

consider the class of communicable diseases that progress as follows: at the outset an

individual is susceptible to infection (a stage denoted by S); on infection through contact

with other infected people, the individual moves to the infectious stage (I). In this stage

of the disease, an individual may infect susceptible members of the population it comes

into contact with. The infectious period is followed by a refractory stage (denoted by

R), where the individual is immune to the disease and also does not infect others. So
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the temporal evolution of the stages of the disease at the nodes of the network will

be modeled by the well known epidemiological model of disease progression: the SIRS

cycle. This model is appropriate for diseases like small pox, tetanus, influenza, typhoid

fever and cholera [59]. We incorporate changes in the underlying connectivity at varying

time-scales, ranging from fast to slow vis-a-vis the nodal disease dynamics. The important

consequence of disease spreading on time varying networks that we will demonstrate is the

following: quick changes in the connections enhance synchronization, as compared with

slow network changes. Namely, epidemic outbreaks emerge in rapidly varying networks,

while slowly changing links result in a low fluctuating state of endemic infection.

Synchronization of dynamical units at the nodes has attracted researchers from diverse

fields like biology, ecology, sociology, power grids, climatology etc. [60, 61, 62, 63, 64].

Most of the earlier approaches have studied the stability of the synchronized state by

linearising the dynamical equations [65, 66]. Such approaches have enabled the analysis

of stability of large class of synchronized oscillators. However, there have been studies[67]

where local stability predictions do not corroborate with the actual dynamical response

of the system. Jost et al.[68], have proved that linear stability provides conditions for

stability of synchronized solution that are necessary but not sufficient. Detailed studies of

these cases reveal that local stability results can only be valid for small perturbations and

here “small” could actually be “infinitesimal” in some cases. Thus to correctly predict

the dynamical response to any kind of perturbation, one should have a clear idea about

complete landscape of the coupled system. By complete landscape we mean that one

should know the size of basin of attraction[69, 70] for all local minimas present in the

system.

To probe the stability of the synchronized state in case of large perturbations, it was

proposed that the basin of attraction of the synchronized state be also estimated [69].

In this regard, Menck et al. [71] propounded the concept of Basin Stability (BS) based

on the volume of basin of attraction and showed that the linear stability and BS may

be quite different and both approaches should be considered to evaluate the stability of

the synchronized state. They argued that the optimization of synchronizability and the

simultaneous optimization of BS act as two opposing forces and their contest results in

a topological trade-off: small-worldness [43].

In the last work of this thesis, we study the stability of the synchronized state when

the underlying connection network evolves in time. The BS paradigm is particularly

useful in case of time varying networks as it can be applied to large class of systems,

whereas the linear stability analysis can be done exactly only in some specific cases. We
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consider Watts-Strogatz (WS) networks and vary the fraction of random links p to cover

broad range of networks varying from regular ring topology for p = 0 to random networks

for p = 1. The time varying character is considered by assuming that each link rewires

with a rewiring frequency f . Using the BS framework, we estimate the rewiring frequency

at which the network can be approximated by the static time average. Further, we show

how the stability range changes at different rewiring timescales and also get insights into

how the transition from a static to a time averaged case takes place.

Now we start with the first part of thesis where we explore the application of nonlinear

dynamics in the design of computing systems. In chapter 2 we shall see how LSR elements

can be used as memory devices and demonstrate noise-free LSR in chapter 3. In chapters

4 and 5 enhancement of optimal noise window using a periodic forcing is shown.
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Chapter 2

Noise assisted morphing of memory

and logic function

2.1 Introduction

In this chapter we examine the possibility of utilizing a noisy nonlinear system, not just

as a logic gate, but also directly as a memory device, i.e., we explore if the system can

behave as a latch in some optimal range of noise1.

A latch is a system that has two stable states and can be used to store state informa-

tion. The system can be made to change state by signals applied to one or more control

inputs, as shown in the truth table (Table 2.1). Latches are fundamental building blocks

of a computing machine, and is omnipresent in computers and communication systems.

So proposals of implementations of a latch, that are more efficient from the point of view

of space or operational time, have far-reaching consequences.

Now latches can be built around a pair of cross-coupled inverting elements, such as

vacuum tubes, bipolar transistors, field effect transistors, inverters, and inverting logic

gates. Specifically, for instance, conventional latches are constructed out of two cross

coupled NAND or alternately NOR gates. Here, unlike traditional latches built by con-

catenating two logic elements, we will use only one element to implement the latch truth

table. Our proposal does not necessitate cross-coupling the logic gates, nor does it involve

many clock cycles. So the direct realization of the latch here has the potential to save

1Results have been published in [72]
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both space and time costs.

In the next sections, we shall demonstrate how the Set-Reset latch operation can be

obtained consistently in an optimal window of noise i.e. when the noisy bistable system

is fed with a low amplitude input signal, consisting of two aperiodic pulses encoding

two logic inputs, the output consistently mirrors a latch output (as displayed in Table

2.1). We also show how one can use a bias to get different types of responses from the

same system, thereby obtaining an element that is easily reconfigurable to yield, not only

gates, but a memory device as well. That is, in an optimal range of noise, by varying the

bias, the same system will yield logic functions like AND, OR etc. as well as give latch

operations directly.

2.2 General Principle

Consider the general nonlinear system,

ẋ = F (x) + b+ Iin +Dη(t) (2.1)

where F (x) is a generic nonlinear function representing the force field of a potential

with two distinct stable wells. Iin is the input signal which encodes the logic inputs, b is

bias to asymmetrize the two potential wells, and η(t) is an additive zero-mean Gaussian

noise with unit variance, with D being the amplitude(intensity) of the noise.

A logical input-output correspondence is obtained by driving the system with two

trains of aperiodic square pulses: I1 + I2, encoding the two logic inputs. For logic

operations such as OR/NOR and AND/NAND, we consider the inputs to take value I

when the logic input is 1, and value −I when the logic input is 0, where input strength

I is: 0 < I < 1. Since, the binary logic inputs can be either 0 or 1, they produce 4 sets

of binary input: (0, 0), (0, 1), (1, 0), (1, 1). These four input conditions give rise to three

distinct values of Iin. Hence, the input signal Iin generated, is a 3-level aperiodic wave

form.

The state of this system, is interpreted as logic output 1 when x > x∗ and logic output

0 when x < x∗, where x∗ is roughly given by the position of the barrier between the two

wells. Such an interpretation allows one to consistently obtain logical responses, such

as OR and AND, when noise intensity D is in an optimal band. Complementary gates,
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Set (I1) Reset (I2) Latch

0 0 No change(maintain the previous state)
0 1 0
1 0 1
1 1 Restricted Set

Table 2.1: Relationship between the two inputs and the output of Set-Reset latch.

I1 I2 Latch

0 0 0
0 1 No change(maintain the previous state)
1 0 No change(maintain the previous state)
1 1 1

Table 2.2: Relationship between the two inputs and the output of a Stochastic Resonance
latch.

NOR and NAND, can also be obtained in a straight-forward manner, by the alternate

output determination : x < x∗ corresponding to logic output 1, and 0 otherwise.

Now, to use this element as a Set-Reset latch, we need to modify the encoding of

input values, so that we can distinguish between (0, 1) and (1, 0) states, as the latch

truth table is asymmetric with respect to inputs unlike the usual logic gates. A simple

way to accomplish this is to have the following asymmetric input encoding: the first input

I1 takes the value −I when the logic input is 0 and I when the logic input is 1, while the

second input I2 takes the value I when the logic input is 0 and −I when the logic input

is 1, where 0 < I < 1.

Equivalently, instead of the asymmetric input association described above, we can

consider symmetric input associations (as in the logic operations), and apply a NOT

operation to the second input I2. This will also yield the same physical input signal Iin.

Namely, corresponding to the 4 sets of binary inputs (I1, I2): (0, 0), (0, 1), (1, 0), (1, 1),

the input signal Iin takes the values 0, −1, 1, and 0 respectively. Out of these four sets,

the input corresponding to (1, 1) is a restricted set and does not occur in the truth table.

So we are left with three input sets, each one giving rise to a distinct value of Iin. Hence

the input signal Iin generated, is again a 3-level aperiodic wave form. The other way is to

implement a latch with different input-output correspondence. The truth table of such a

latch is shown in Table 2.2. We call it a Stochastic Resonance Latch and this latch can

be implemented with same input encoding as for the logic gates.

Logic response from output can be obtained, as in logic operations, by defining a
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Operation Bias

Set-Reset Latch 0
AND/NAND -0.5

OR/NOR 0.5

Table 2.3: Representative values of the asymmetrizing bias b in Eqn. 2 that yields the Set-Reset
latch operation, OR/NOR logic operation and AND/NAND logic operation. Here I = 0.5.

threshold value x∗. If x > x∗, i.e., when the system is in the potential well x+, then the

logic output is taken to be 1, and 0, if x < x∗ and the system is in other well. Thus, the

logic output toggles as the state of the system switches from one well to another.

2.3 Explicit Example

We now explicitly demonstrate latch functionality, using a simple nonlinear system:

ẋ = 2x− 2x3 + b+ Iin +Dη(t) (2.2)

where D is amplitude of the Gaussian noise, b is asymmetrizing bias and the potential

energy function is bistable (see Fig. 2.1). The input signal, Iin = I1 + I2, where I1 and I2

encode the two logic inputs, with the encoding associations for the logic operations and

the set-reset latch being different. The bias b, for different operations, is set as displayed

in Table 2.3.

Also note that the nonlinear function above, is efficiently realized by a linear resistor,

linear capacitor, and a small number of CMOS transistors [33]. Further, it is capable of

operating in very high frequency regimes, and such a system may be implemented with

integrated circuits and nanoelectronic devices. Other forms of the nonlinear function

F (x) in Eqn. 1 may be realized in optical [35, 73, 36], nanomechanical [34], chemical [37]

and biological systems [38, 38].

Input pulses are given to the system in such a way that all possible combination

of transitions are presented to the system, in random sequence (see the top 3 panels of

Fig.2.2). The threshold for output determination, x∗, is 0 here. So to obtain the desired

logic response, we interpret the state x > 0 as logic output 1 and x < 0 as the logic output

0. It is clearly evident from Fig. 2.2, that for moderate noise the system consistently

yields the Set-Reset latch input-output association, while it fails to do so for very small
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Figure 2.1: For the system described by Eqn.2: (left) the function F (x) = 2x− 2x3 with
b = 0 and (right) the effective potential obtained by integrating the function F (x) in
Eqn.2, with bias b = 0 (red solid line) and b = −0.5 (dashed blue line).

noise and large noise.

Note that the system holds its output steady, while the input signal is held constant,

over long times (∼ 103 in our simulations). Namely, the system manages to maintain its

state, which is in a local equilibrium of the potential, for reasonably small noise intensity

D and large barrier height ∆V . This is because the Kramer’s rate for escaping from

the potential well (i.e., the inverse of the average switching rate induced by noise alone),

given by ∼ exp (−∆V/D), is very small here. So the system does not switch wells under

the influence of noise alone. Rather it needs both signal and noise to effect a change.

However, it is evident (for instance from Fig. 2.2) that as noise increases, the probability

of random noise-induced well hopping increases, leading to loss of robustness for noise

levels beyond the optimal window.

We can quantify the consistency (or reliability) of obtaining a given logic output

by calculating the probability of obtaining the desired logic output for different sets of

inputs, namely the ratio of successful runs where the desired logic output is obtained

(after transience), to the total number of runs.

The system was simulated by keeping the value of one input set constant over 1000

time units, and we simulated the system over a sequence of 500 such sets. Unless otherwise

stated, we allow a latency of 100 in the calculation of P (logic). The values of inputs I1

and I2 were chosen to be randomly distributed so that Iin = I1 + I2 switched levels in

an uncorrelated aperiodic manner. Thus the probability is one only if we get the desired

response for all the 500 input sets.
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Figure 2.2: Panels 1 and 2 show streams of the two inputs. The input strength is 0.35.
The logical value of the input is shown as a solid red line and the actual value as a dashed
green line. For I1 we have −0.35 when logic input is 0 and 0.35 when logic input is 1. For
I2 we have 0.35 when logic input is 0 and −0.35 when logic input is 1. Panels 3-5 show
the outputs x(t) corresponding to D = 0.05, D = 0.25, D = 0.5. Here bias b = 0, and
the input signal Iin = I1 + I2 is indicated by the green line. Clearly, we get the desired
output only when noise is within some optimal range (in this case panel 4 i.e. D = 0.25)

It is evident from Fig. 2.3 that we obtain consistent memory operation in an optimal

window of noise. So the system behaves as a Set-Reset latch even for sub-threshold input

signals, utilizing noise to store the information. This can lead to development of low

power consuming memory devices. Further, one can manipulate the potential function

to obtain robust operation in any given noise window (see Fig. 2.4)

We also observed reduction in latency with increasing noise. This is evident in Fig.

2.5. Clearly, the system responds faster to inputs when noise intensity is higher. That is,

the desired hopping between wells happens more rapidly under the influence of stronger

noise. This is yet another feature where noise aids performance (see Fig.2.6).

Further, it is evident from Fig. 2.7 that this system can also yield the logic response
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Figure 2.3: Probability for obtaining the Set-Reset latch operation for different values of
noise strength, with bias b = 0 (left). Right panel shows the region for different bias (y
axis) and noise strength (x axis). Evidently we get the Set-Reset latch operation only
within an optimal window of noise strength.

of a AND/NAND gate and a OR/NOR gate, by changing the bias b in Eqn. 2. This

suggests that within an optimal window of noise strength, we can morph the circuit to

act either as a logic gate or as a memory device, by simply adjusting the value of bias,

i.e., one can easily switch from Set-Reset latch operation to AND/NAND or OR/NOR

logic operation (see Table 2.3). This is made possible by the change in the symmetry and

depths of the potential wells with change of bias b.

Note that the noise region of optimal operation depends on the form of the nonlinear

function F (x) in Eqn. 1, as well as on the input signal strength, as displayed in Figs.

2.8. In order to obtain an overlapping window of optimal noise strength for the different

operations, one can adjust the input strength appropriately or choose a nonlinear function

that yields the desired operational window for the given noise floor.

2.4 Discussions

In this work, we have explicitly shown that a nonlinear system functioning in a noisy

environment, can produce a completely consistent Set-Reset latch operation on two in-

puts, streaming in any random sequence. We observed that for very small or very large

noise strengths the system does not yield a reliable output. However, in a reasonably

wide band of moderate noise strength, the system produces the desired output very con-

sistently. Furthermore, the response of the system could be easily switched from memory

to logic operations by varying the bias in the system. Lastly, it was observed that noise

reduced latency in the response of the system.
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Figure 2.4: Size of the noise window of optimal Set-Reset latch operation for nonlinear
function F (x) = 2x− 2x3 (red) and F (x) = 2x− 4x3 (blue), for different values of input
signal.

So it is evident that “LSR Elements” can reliably function as memory devices even for

sub-threshold signals, thus consuming very low power. Further, the same elements can

be used to produce outputs corresponding to, not only latches, but logic gates as well.

Thus these “LSR Elements” can potentially act as building blocks of futuristic “Smart

Computing Devices”.

Potentially, such devices will not only operate robustly in noisy environments, but

will also be capable of optimal utilization of their resources by configuring their “LSR

Elements” into latches, or any of the logic gates, depending on the requirements of the task

being performed. For example, if we are performing tasks requiring more computational

power like running a program, then these computing devices will morph most of the LSR

elements to logic gates, whereas in case of tasks requiring memory like plotting large values

of data, LSR elements will be morphed into memory enabling efficient use of resources.

Furthermore, it is conceivable that devices based on such elements can potentially help

in reducing boot times thus achieving what is commonly called “instant boot”. This can

be accomplished by morphing large number of LSR elements into memory at the time of

shut down and start up. This significant increase in memory will enable us to keep most

of the data required for the applications readily accessible, paving way for faster boot

times.
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Figure 2.5: Panels 1-3 display the output x(t) corresponding to D = 0.10, D = 0.12 and
D = 0.15 (from top to bottom). The stream of inputs Iin = I1 + I2, with I = 0.35, is
indicated by the green line in the figures. Clearly panel 3 has the shortest transients after
input switches.
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Figure 2.6: Latency (averaged over a random stream of inputs) as a function of noise
strength. Here latency has been defined as the time taken to reach the barrier from a
well, upon change in the input necessitating a change in the output.
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Figure 2.8: Points marking the region where the Set-Reset latch operation (blue),
OR/NOR logic (red) and AND/NAND logic (green) are obtained with probability 1,
for nonlinear function F (x) = 2x − 2x3 (left) and F (x) = 2x − 4x3 (right), with input
signal strength 0.5 (left), and 0.75 (right) for different values of bias (x axis) and noise
strength (y axis).
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Chapter 3

Noise free logical stochastic

resonance

3.1 Introduction

In this chapter we examine the possibility of “noise-free LSR”, by driving a two-state

system with periodic forcing instead of random noise. The central question is this: if

the driving is completely regular, such as sinusoidal forcing, or a periodic train of pulses,

would we still observe LSR? Namely, is noise a necessary ingredient of LSR?

Here we will demonstrate how noise-free LSR is indeed possible, i.e. we will show that

when a nonlinear bistable system is presented a low amplitude input signal, consisting of

(aperiodic) pulses encoding logic inputs, accompanied with periodic forcing, the state of

the system accurately and consistently mirrors the output of a logic gate. We also show

how one can reconfigure the type of logic response obtained by variation of a readily

adjustable bias 1.

3.2 General Principle

First we lay out the general principle. Consider a nonlinear system under periodic forcing:

1Results of this chapter have been published in [74]
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ẋ = F (x) + b+ I +Df(ωt) (3.1)

where F (x) is a generic nonlinear function obtained via the negative gradient of a

potential with two distinct stable energy wells at x+ and x−. The bias b has the effect of

asymmetrizing the two potential wells. I is the low amplitude input, typically aperiodic,

signal. The functional form of the periodic forcing is f , with ω being the frequency and

D being the amplitude (intensity) of the forcing.

As before, a logical input-output association (cf. Table 1.1) can be obtained by feeding

the system with an input signal I = I1 + I2, where I1 and I2 are two (aperiodic) trains

of square pulses encoding the two logic inputs. Without loss of generality, consider the

inputs to take value 0.5 when the logic input is 1, and value −0.5 when the logic input

is 0. The logic inputs being 0 or 1, produce 4 sets of binary inputs (I1, I2): (0, 0), (0, 1),

(1, 0), (1, 1). These four distinct input conditions give rise to three distinct values of I.

Hence, the input signal I = I1 + I2, is a 3-level aperiodic wave form.

The logic output is determined by the state x, and can be defined by a threshold value

x∗, obtained from the position of the barrier between the two potential wells. If x > x∗,

i.e., when the system is around the potential well x+, then logic output is 1. The logic

output is 0 if x < x∗, i.e. when the system is in the other well. Thus the output toggles

as the state of the system switches between wells.

3.3 Explicit Example

We now explicitly demonstrate noise-free LSR, under sinusoidal forcing, for a system

with cubic nonlinearity:

ẋ = 2x− 4x3 + b+ I1 + I2 + r(t) (3.2)

where r(t) = D sin(ωt).

For this system the threshold value x∗, defining the output, is 0. So, we interpret the

state x > 0 as logic output 1 and x < 0 as the logic output 0. Alternately, complementary

gates can be obtained by interpreting the output as 1 when x < 0, and as 0 when x > 0.
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Figure 3.1: (Color online) Panels top to bottom show (a) streams of inputs I1 and (b) I2
(which take value −0.5 when logic input is 0 and value 0.5 when logic input is 1), and
output x(t) for forcing frequencies (cf. Eq. 3.2): (c) ω = 2, (d) ω = 10 and (e) ω = 20.
Here, b = 0.5 and D = 2. The dashed blue line in panels (c-e) indicates the expected
OR logic output (with state x > 0 being logic output 1, and x < 0 being logic output
0). Clearly, only when ω = 10, we get the desired OR gate consistently.

3.4 Results

The response of the system under different angular frequencies of sinusoidal forcing is

displayed in Fig.3.1. Interestingly we observe, that in order to produce a robust logical

combination of the inputs, the system requires an appropriate forcing frequency, which

is neither too small nor too large. Namely, for a given value of bias b and amplitude of

forcing D, we get the desired logical output only for some suitable range of ω.

Note that by simply changing the bias we can easily switch to another logic operation.

In this case, when bias b is changed from 0.5 to −0.5, we morph from OR logic to AND

logic. This is clearly evident from the timing sequences displayed in Fig.3.2. This effect
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arises from the change in the symmetry and depths of the potential wells due to changing

b. The complementary logic gates, namely NOR and NAND, can be straight-forwardly

obtained by the alternate output interpretation.

We can quantify the consistency of obtaining a given logic output as follows: first we

calculate the probability of obtaining the desired logic output for different sets of input,

i.e. the ratio of the number of successful runs (namely a run where the desired logic

output is obtained) to the total number of runs. We then define a very stringent measure

P reflecting the reliability of the system as a logic gate: when the probability defined

above is ∼ 1 (i.e. when the logic operation is correctly obtained for all given input sets)

we take P to be 1, and 0 otherwise. Namely, partial success, where certain combinations

of inputs fail to give the correct logic output, leads to P = 0, since we want the logic

response to be obtained for all random combinations of inputs. From the point of view

of applications, anything less is not useful, and our measure of successful gate operation

P reflects this stringent requirement.

Fig.3.3 shows the variation of P for logic operations AND and OR with respect

to drive frequency. It is clearly evident that we obtain a window of angular frequency

for which our system consistently gives the desired logic response as output, i.e. for

ωlow < ω < ωhigh the system yields perfect gate operations. Forcing at angular frequencies

lower than ωlow acts like a quasi-static “signal”, akin to a bias, as the timescale of the

drive is too slow and does not vary much vis-a-vis the natural timescale of the system.

Frequencies larger than ωhigh do not achieve the desired response, as the drive then varies

so fast that the system effectively responds to an averaged force field. Variation of optimal

window of sinusoidal frequency and noise strength for various input strengths is shown

in Fig. 3.4. We see that as we increase the input strength, the size of optimal window

increases and saturates afterwards. Further, we observe in Fig.3.5 that by increasing the

amplitude of sinusoidal forcing (D) the optimal window we get for ω, widens and shifts

to the higher end. Namely, the lower and upper thresholds of optimal angular frequency

(ωlow and ωhigh) increases for increased value of D.

In order to demonstrate the generality of our results, we now drive the system with

a periodic rectangular waveform, and show that this too allows us to obtain a LSR

like response. So consider the system in Eq.2 above, now forced with a rectangular

wave, where r(t) switches periodically between the values 1 and −1, with time period

T = 2π/ω, where ω is the angular frequency, D is amplitude of rectangular pulse, and

b is the asymmetrizing bias. In this system too, we observe that reliable logic output is

obtained for intermediate frequencies.
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Figure 3.2: Waveform of x(t) (cf. Eq. 3.2) with angular frequency ω = 10, b = −0.5 and
D = 2. The bold blue line indicates the expected AND logic output. By changing bias
b from 0.5 to −0.5, we were able to switch from OR (cf. Fig.3.1) to AND gate.

Further it is evident from Fig. 3.5 that driving with rectangular pulses is more efficient,

as the system can function as a logic gate for lower amplitudes D, as well as over larger

ranges of forcing frequencies for fixed D. We also investigated the logic response under

increasingly low input strengths. We found that rectangular forcing allows logic behaviour

for lower input strengths than sinusoidal forcing, again demonstrating the efficiency of

driving with rectangular waveforms.

In the examples above, we have thus shown that noise is not a necessary condition to

obtain a consistent logic response. It is possible to have phenomena completely analogous

to LSR, without noise. So the forcing that induces the desired hopping in response to

inputs does not have to be random noise, but can be a sine wave or even a cyclic set of

pulses. The system needs only appropriate pushes sufficiently often, in order to change

its state to the desired well. The timescale of the forcing is crucial, while its form can

range from noise to sinusoidal forcing or rectangular pulses.

An explanation for the optimal band of frequencies is obtained by examining the time

taken by the system to cross over the barrier from the bottom of the wells under the input

signal encoding the logic inputs (0, 1) or (1, 0), which is the most difficult and sensitive

case to satisfy consistently. The inverse of this time is analogous to the Kramer’s rate

representing the characteristic escape rate from a stable state of a potential, and deter-
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Figure 3.3: The shaded areas indicate where the probability P of obtaining the OR (top
blue) and AND (bottom green) logic operation is 1, as functions of angular frequency
(x-axis) and bias (y-axis). In both the cases, D = 2.

mines the band of forcing frequencies and amplitudes that allow robust logic response.

Now, in order to obtain a consistent logic response, the system must simultaneously sat-

isfy certain conditions. First, the driving frequency should be more than the frequency

at which the stream of inputs switch. Secondly, for a fixed value of amplitude D, the

following has to be ensured: when the input signal encodes the logic input set (0, 1) or

(1, 0) (i.e. I = I1 + I2 = 0), the system should be in the appropriate well. For instance,

for OR logic, under net zero input signal the system should be in the higher well. So it

should be able to cross the barrier from the lower to the upper side. At the same time,

the reverse crossing should not occur. These two conditions set the two limits on forcing

frequency (see Fig. 3.6).

Further, the forcing frequency should not be so high that system is unable to respond

to it, i.e. the time for which the driving force pushes the system in the requisite direction

should be more than the time that the system takes to shift from one well to other.

The amount of time taken by the system to cross over to the desired well in response
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Figure 3.4: The shaded areas indicate where the probability P of obtaining the logic
operation is 1, as functions of angular frequency (left) and noise intensity (right) with
input strength for fixed noise intensity D (left) and angular frequency ω(right)

to a new input signal, namely the transience (which determines latency), should also be

sufficiently high so that system has enough time to make the passage. Further, for very

low frequency forcing, the system may have long transience as the transient period must

include at least one full cycle of forcing.

Lastly, we present the realization of these results in electronic circuit experiments. In

Fig.3.7, the analog simulation circuit for Eq.(2) is depicted. The input sinusoidal signal is

denoted as f(t). The amplitude of the sinusoidal signal is fixed at 2V and the frequency

values range from 500 Hz to 30 KHz. I(t) corresponds to logic input signal (I1 + I2),

where the logic input signals I1 and I2 take value −0.5V when logic input is 0 and value

0.5V when logic input is 1. The bias voltage Vc corresponds to bias b in Eq.(2). We set

Vc equal to 0.5V and −0.5V for the different logic operations. The output node voltage

(VO) of operational amplifier OA2 correspond to x(t) of Eq.(2).

Representative results of circuit realizations of sinusoidal forcing are displayed in

Fig.3.8. Comparison with Fig.3.1 clearly shows that the same phenomenon is observed in

these experiments. Namely, only with sinusoidal forcing with moderate frequency, equal

to 10 KHz, do we get the desired logic gate operation reliably.
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Figure 3.5: The curves indicate the limiting forcing frequencies ωlow and ωhigh, for varying
amplitude D, for sinusoidal forcing (red solid line) and rectangular forcing (green dashed
line). Here b = 0.5 and the probability of obtaining the OR logic operation (leaving small
transience after the switching of inputs) is 1 for the values of D and ω lying between the
two lines, i.e. the lines mark the highest and lowest forcing frequencies yielding robust
logic for different forcing amplitudes (and analogously the highest and lowest driving
amplitudes for different frequencies).

3.5 Conclusion

In summary, we have explicitly shown through numerics and circuit experiments, that

it is possible to obtain a logic response exactly similar to LSR, without the presence of

noise. Using only a periodically driven bistable system, we are able to produce a logical

combination of two inputs streaming in any random sequence. For very small or very

large forcing frequencies the system does not yield any consistent logic output, but in a

wide band of moderate frequencies the system produces the desired logical output very

reliably. Furthermore, the logic response of the system can be easily switched from one

logic gate to another by varying the bias in the system. Thus it is evident that “Noise

Free LSR” indeed exists, and noise is not a necessary ingredient to facilitate changes of

state that reliably mirror logical outputs.
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Figure 3.6: Lines indicating the limiting forcing frequencies for which the system crosses
the barrier, when driven by a rectangular wave of amplitude D. Specifically for all
frequencies ω and amplitudes D above the lines, the system crosses over with probability
1, within 100 time steps, from upper to lower well (solid red line), and from lower well to
upper well (dashed green line). Here bias b = 0.5 (appropriate for OR logic) and input
signal I = 0 (namely encoding logic input set (1, 0)/(0, 1)). The area inside these curves
give the allowed forcing frequency and amplitude band, as it allows the crossing from the
lower to the upper well, but not the reverse. These curves mirror the ones displayed in
Fig.3.5.
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Figure 3.7: Circuit diagram: here OA1, OA2 and OA3 are operational amplifiers
(AD712). M1 and M2 are analog multipliers(AD633). The resistor values are fixed
as R1 = R3 = R4 = R5 = R6 = R8 = 100 kΩ. R2 = 50 KΩ, R7 = 10 KΩ, R9 = 400
kΩ. The capacitor value is fixed as C1 = 0.01 µF .

Figure 3.8: From top to bottom: panels a-b show streams of inputs I1 and I2, which take
value −0.5 when logic input is 0V and value 0.5V when logic input is 1; panels c-e show
the waveforms of the output voltage, with angular frequencies: ω = 2 KHz, ω = 10 KHz
and ω = 20 KHz. Here, b = 0.5V , D = 2V . The bold blue line indicates the expected OR
logic output. Clearly, only when ω = 10 KHz, we get the desired OR gate consistently.
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Chapter 4

Periodic signal enhanced logical

stochastic resonance

4.1 Introduction

In the previous chapters, the phenomena of logical stochastic resonance (LSR) was demon-

strated: namely, when a bistable system is driven by two inputs it consistently yields a

response mirroring a logic function of the two inputs in an optimal window of moderate

noise. In chapter 2, it was shown that the same LSR elements can also be morphed into

memory devices in a reasonably wide band of noise.

The noise in a system doesn’t stay at the same level. Since LSR works in an optimal

range, it is possible that the noise in the system is not sufficient to drive the system, i.e.

the noise is below the minimum threshold of the optimal noise window. For instance, in

case of thermal noise fluctuations in the environment such as ambient temperature, or

certain internal processes, such as the work load of the device, may change the level of

noise present in the system. So under weak load or in cold environments the system may

not operate robustly.

In chapter 3, it was shown that dynamical behavior equivalent to LSR can be obtained

in a noise-free bistable system, subjected only to periodic forcing, such as sinusoidal driv-

ing or rectangular pulse trains. This opens up the possibility of studying the behavior of

bistable elements subjected to both a periodic signal, as well as noise. In this chapter, we

will demonstrate how periodic forcing and noise interact constructively, thereby allowing

us to obtain consistent logic and memory operations over a much larger noise window.
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Thus, by adding a periodic signal to a noisy nonlinear system we can obtain LSR con-

sistently even if noise level is lower than the minimum threshold required to obtain LSR.

Further, we can use two coupled bistable systems in which the output of one bistable

system controls the amplitude of the periodic forcing fed into the other system. This

suggests a way in which to adaptively adjust the strength of periodic forcing depending on

the noise level present in the system1

4.2 General Principle

Consider the general nonlinear dynamical system,

ẋ = F (x) + b+ I +Dη(t) + A f(ωt) (4.1)

where F (x) is a generic non linear function obtained via the negative gradient of a

potential with two distinct stable energy wells. I is the input signal which is the sum

of two square pulses encoding the two logic inputs, b is bias to asymmetrize the two

potential wells, η(t) is an additive zero-mean Gaussian noise with unit variance and D is

the amplitude(intensity) of noise. The functional form of the periodic forcing is f , with

ω being the frequency and A being the amplitude of the forcing.

A logical input- output correspondence can be obtained by driving the system with

two trains of aperiodic square pulses: I = I1 + I2, where I1 and I2 encode the two logic

inputs. Logic output can be obtained from the state x by defining a threshold value x∗.

If x > x∗, then the logic output is interpreted to be 1, and 0 otherwise.

4.3 Explicit Example

We now explicitly demonstrate this phenomena in the system given by:

ẋ = a1(x− a2x3) + b+ I1 + I2 + A sin(ωt) +Dη(t) (4.2)

where D is the amplitude of noise, b the asymmetrizing bias and the functional form

1Results of this chapter have been published in [75]
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of periodic forcing is sinusoidal with A being the amplitude of the sinusoidal forcing.

The parameters a1 and a2 control the height of the potential barrier and the location of

potential minima. In absence of other terms, the height of potential barrier is a1/4a2 and

the wells are at ±
√

1/a2 as shown in figure 4.1. Here we have taken a1 = 4, and a2 = 5.

This function F (x) is reasonably insensitive to noise and its two stable states are close to

the encoded values of inputs. This helps to cascade the gates, and feed the output directly

as input, without any scaling factors.
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Figure 4.1: For the system (2): (left) the function F (x) and (right) the effective potential
obtained by integrating the function F (x), for different bias: (a) b = 0 (red solid) and
(b) b = −0.5 (blue dashed line).

The logic inputs are presented to the system with I1 and I2 switching levels in an

uncorrelated aperiodic manner. The inputs being 0 or 1, produce 4 sets of binary inputs

(I1, I2): (0, 0), (0, 1), (1, 0), (1, 1). These four distinct input conditions gives rise to three

distinct values of I. Without loss of generality, consider the inputs to take value 0.5 when

the logic input is 1, and value −0.5 when the logic input is 0. Hence, the input signal I,

generated is a 3-level aperiodic wave form.

We choose 0 as our output determination threshold. If x > 0, i.e., when the system is

in the positive potential well, then the logic output is interpreted to be 1, and 0 otherwise.

Thus the logic output toggles as the system switches wells.
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4.4 Results

We simulated the system in equation 4.2 for various possible frequencies and amplitude

of the sinusoidal forcing and at various noise strengths. We used b = −0.5, so the system

is biased to function as AND gate. We know that by changing the bias, we can easily

switch to another logic operation. In this case, when bias is changed from −0.5 to 0.5, we

obtain the OR gate. When bias is reduced to zero, we get a memory device. This effect

arises from change in the symmetry and depths of the potential wells due to changing b.

For brevity, we will show the results only for the representative AND gate.

We observe that for low noise strengths the system doesn’t give the correct logical

response in absence of periodic forcing as expected. However, as we apply some periodic

forcing, the system gives the desired response. Notice that this response is obtained

through interplay of noise and periodic forcing, as in absence of any one of these the

system does not yield the desired response. Only when both are present simultaneously,

do we get the requisite output, as shown in figure 4.2.

So when the noise level is low, it is not sufficient to induce the desired switch from one

well to the other. Similarly, for high frequency or low amplitude, the sinusoidal forcing

cannot drive the required hopping. However, when both are present, they aid each other

to give the appropriate switching. Thus at low noise, the periodic forcing helps the system

to switch wells in the desired fashion, in response to the inputs.

We can quantify the consistency (or reliability) of obtaining a given logic output by

calculating the probability of obtaining the desired logic output for different states of

input. The probability, here, is the ratio of number of successful runs, i.e. when the

desired logic output is obtained, to the total number of runs. In every run, we simulate

the system for 7 different possible combinations of I1 and I2 such that we get all possible

transitions of the inputs. Thus, any run is counted as successful only if the system is

in the desired well for all seven possible combinations of the inputs, allowing for a small

transience. Here we have chosen the transience time to be equal to 10 percent of the

time for which an input is applied. Thus the system must remain in for 90 percent of the

input time.

Now we vary the noise strength and amplitude of periodic forcing keeping the fre-

quency of the sinusoidal forcing constant. We observe that when the amplitude of sinu-

soidal forcing is low, we get the correct logical response only when there is some noise

in the system. For very low or very high values of the noise intensity, we get erroneous
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Figure 4.2: The panels show the waveforms of x(t) obtained from simulating the system
(2). In the top panel the amplitude of periodic forcing is zero and there is only noise
in the system, with the noise intensity being below the minimum threshold required for
LSR. In the middle panel the system is driven by periodic forcing only, and its amplitude
and frequency are such that it alone can’t drive the system to act as a robust logic gate.
Only when there are both noise and periodic forcing, we get the desired AND gate (panel
3). The specific values of inputs used are b = −0.5, D = 0.08, ω = 4 and A = 0.5.
Dashed blue line shows the input I (I1 + I2) and red line shows x(t).

results. For higher amplitudes of sinusoidal forcing, periodic forcing alone can drive the

system to the desired well, even in absence of noise. Notice that as we keep on increasing

the amplitude of sinusoidal forcing, the maximum noise intensity for which we obtain

correct logical response decreases slightly. This is expected as the interplay of noise and

periodic forcing is likely to worsen the response at higher values of noise strengths, as

now the state of the output starts hopping randomly between the two wells as shown in

figure 4.3.

Next we keep the amplitude of periodic forcing constant, and vary the frequency of

the sine wave. We observe that for low frequencies we obtain the desired response for low

noise levels and as the frequency is increased the optimal window reduces and slowly shifts
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upwards as seen in figure 4.4. One can rationalize this as follows: when the frequency is

higher, the system gets little time to respond to the sinusoidal forcing, thus limiting its

effect. This is also evident from the bottom panel of figure 4.4 which clearly shows that

if the noise level is constant, then as the frequency of periodic forcing is increased, we

need higher and higher values of its amplitude to get the desired response.
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Figure 4.3: This figure shows how decreasing the frequency of periodic forcing to very
low value ω = .01 (top panel) or increasing the amplitude of periodic forcing to very high
value A = 2.0 (middle panel) or very high noise intensity D = 0.40 can result in random
hopping between the wells, leading to erratic response. Red line is the output of the
system and dashed blue line is the sum of the two inputs that was fed into the system as
defined in eq. 4.2.

Further, the addition of periodic forcing also results in lower switching times. We

calculated the time the output takes to switch from low to high levels, or vice versa,

in response to change in the input signal, and averaged it over 1000 such switches. We

observed that for low noise intensities there is sharp reduction in the average switching

time when a periodic signal is added (see figure 4.5). For faster operation of the logic

gate, it is desirable that time of an input or bit time be as low as possible. This can

be done by setting the bit time equal to the minimum switching time plus time required
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Figure 4.4: Probability of obtaining the AND logic operation with b = −0.5. Here ω = 4
for left panel, A = 0.5 for middle panel and D = 0.08 for right panel. The system was
simulated for 100 random combinations of the two inputs. The transience was set at 10
percent of the input timescale.

for reading the state of the output. This gives us the minimum time for which an input

should be applied so that we get robust operation of the logic gate. We explored the

minimum switching time for various combinations of modulation frequencies, modulation

amplitude and noise strengths. We found that systems driven by a periodic forcing of

appropriate frequency and amplitude can function robustly for bit times as low as one

time unit (e.g by setting A = 1 and ω = 2.7).
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Figure 4.5: Switching time averaged over 1000 switches of output for the AND gate
operation, over a range of noise strengths, amplitudes and frequencies. Here b = −0.5,
ω = 2.7 (left) and A = 0.5 (right). Note that for low amplitudes we don’t get robust
AND operation for low noise intensities. In the density plots, the colors represent the
switching time, the white area corresponds to the range where the operation of the logic
gate is not robust, and the frequency is plotted on a log scale in the density plot on the
right.

4.5 Adaptive Logical Stochastic Resonance

In the above results we have seen that noise and a periodic forcing interfere constructively

and aid the switching of the system between the two wells. This on one hand, helps to

obtain desired responses at lower noise strengths but at the same time the response dete-

riorates slightly at higher values of noise intensity. This deterioration is not so significant

and is at the higher noise boundary where one typically does not operate. Still, if we

want to ensure robust operation even in the higher noise window, one way to accomplish

this would be to keep monitoring the noise levels in the system and then adjusting either

the frequency or amplitude of periodic forcing, if the noise level crosses some threshold

level. That is to say, we switch off the periodic forcing if the noise level is within the
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optimal window.

This approach will work fine if the changes in the noise strengths occur only occa-

sionally. On the other hand, if the fluctuations in noise levels are quite frequent, then it

will be better if the system could automatically adapt itself to the changing noise levels

for robust operation.

Now we will show that by coupling two bistable systems we can enable robust oper-

ation of LSR elements over large spectrum of noise intensities. Here one of the bistable

systems will be used to control the amplitude or frequency of the periodic forcing that is

fed to the other system.

Consider the coupled systems:

ẋ = a1(x− a2x3) + b+ I1 + I2 + Ay sin(ωt) +Dη(t) (4.3)

ẏ = a3(y − a4y3) +Dη(t) (4.4)

Here the output of second system modulates the sinusoidal forcing applied to the first

system. The working principle in this form of coupling is that the second system has a

lower potential barrier as compared to the first. When the noise is very low, the output

of the second system will stay in the same well. Thus it will act as a constant signal

and the sinusoidal forcing will simply be scaled by a factor, and the frequency of periodic

forcing fed into first system will be same as that of the sinusoidal signal. This sinusoidal

forcing then enables the operation of LSR elements even in low noise conditions, as was

shown in chapter 3.

When the noise level increases, y jumps between the two wells according to the

Kramer’s rate, essentially behaving like a signal of high frequency as shown in figure

4.6 . As the modulating signal has a high frequency, the signal fed into the first sys-

tem has a frequency much greater than the frequency of the sinusoidal signal. Thus

the system doesn’t get sufficient time to respond to this signal and hence the sinusoidal

forcing doesn’t lead to random hops. The minimum frequency that we can choose for

the sinusoidal forcing is governed by the transience time in which the system must reach

the desired state. This is so because within this time the system should receive at least

one full cycle of the periodic forcing. As mentioned earlier, we set the potential barrier

for the second system much lower compared to first by selecting appropriate values of a3

and a4. Further, the parameters chosen are such that the frequency of sinusoidal forcing

is lower than the frequency obtained from Kramer’s rate for noise strengths where noise
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alone is sufficient for robust operation of the LSR elements.

We simulated the system as given by equations 4.3 and 4.4 for 100 different initial

conditions. In particular, we choose a1 = 4, a2 = 5, a3 = 2, a4 = 8, ω = 0.05, A = 0.6

and calculate the range of D over which we get the robust logic operation. As before,

in each run we took 7 different possible combinations of I1 and I2. A run was counted

as successful if and only if the time series matched the desired output 100 percent of the

time, leaving out a small transient period. Then the ratio of successful runs to the total

number of runs was defined as the probability of obtaining the correct logic. As shown in

figure 4.7, we find that the probability of correct logic is 1 for much larger noise windows.

Specifically, it is one for all noise intensities less than the maximum noise intensity for

which correct logic was obtained in the absence of periodic forcing. Additionally the lower

limit on noise intensity now no longer exists, and we can obtain robust logic operations

even in noise-free case.

Moreover, if we use a slightly relaxed criteria for correct logic, that is, if we assume

that logic is correct even if time series matches for a little less than 100 percent, then the

critical noise intensity upto which correct logic is obtained increases further, as seen in

the second and third panel of figure 4.7.

It is evident from figure 4.7 that the noise intensity upto which we get robust opera-

tions is slightly lower than that obtained in absence of periodic forcing. This arises from

the enhancement of random hopping due to the added effect of periodic drive and noise.

Lastly, we consider adaptively changing the amplitude of sinusoidal forcing instead of

the frequency. For this, consider the system given by:

ẋ = a1(x− a2x3) + b+ I1 + I2 + A 〈y〉 sin(ωt) +Dη(t) (4.5)

ẏ = a3(y − a4y3) +Dη(t) (4.6)

where 〈y〉 is the average of y over a short interval of time. This kind of coupling is

particularly relevant in chemical and biological systems, where the instantaneous state

of the system is not easily detectable, but a short-time average is more accessible. Here

instead of instantaneous value of y, its average over previous few values is fed back to the

coupled system. When the noise in the system is low, the average value of its state will be

equal to that of the potential well in which it is lying. When the noise level increases, the

system jumps between the two wells according to the Kramer’s rate. As the two wells are

symmetric about zero, the average value approaches zero as the hopping rate increases,
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Figure 4.6: Time series for y (blue) and output (red) for the system given by eq. 4.3 and
eq. 4.4 for noise intensities D = 0 (top), D = 0.15 (middle) and D = 0.3 (bottom).

as shown in figure 4.8. Thus the amplitude of sinusoidal signal is reduced to zero.

We simulated the coupled systems given by equations 4.5 and 4.6 by averaging the

value of y over 100 time units (the time for which an input is applied). Further, when

the average is taken over a larger time interval, the response of these coupled systems

will be better, provided that this time is smaller than the timescale over which the noise

strength itself changes. The results are shown in figures 4.9. We see that in this case, not

only does the lower limit on optimal noise window vanish, but for higher noise intensities

too the results match with those obtained in absence of a periodic forcing.

The results are qualitatively the same even if there is some delay in propagation of

〈y〉, provided it not so large that noise intensity itself changes in this time. Additionally,

similar results were obtained if we use a moving or running average of y. This is particu-

larly helpful in electronic systems where a running average is far more easy to implement

vis-a-vis a normal average which may involve a lot more computations and consequently

result in delays.
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Figure 4.7: Probability of obtaining the AND logic operation with b = −0.5 Here ω =
0.05, A = 0.6. The red line corresponds to simulations as given by eq. 4.3 and 4.4.
Dashed orange and blue lines are obtained taking A = 0 and A = 0.35 in eq. 4.2. The
system was simulated for 100 runs where each run was combination of seven different
possible input sets of the two inputs. A run was taken to be successful if the time series
matched the expected output 100 percent (top), 98 percent (middle) and 95 percent
(bottom) of the time, after leaving out transience.

4.6 Conclusion

In conclusion, we have explicitly shown that by utilizing the constructive interplay of noise

and periodic forcing it is possible to obtain a logic response similar to LSR even when

the strength of noise is lower then the minimum threshold. This enables us to use the

LSR elements in sub-threshold noise conditions. Further, by coupling the LSR element

to another LSR element with a lower potential barrier we can make the systems adapt to

varying noise intensity, so that its operation is robust even in high noise conditions. The

results presented here are quite general, and can potentially be extended to other systems

which show enhanced performance in the presence of noise, such as typically observed in

generalized stochastic resonance phenomena.
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Chapter 5

Performance enhancement of

VCSEL based stochastic logic gates

5.1 Introduction

Vertical-cavity surface-emitting lasers (VCSELs) are widely used for high-bit-rate data

transmission because of their various advantages over conventional edge emitting lasers

like low threshold current, single-longitudinal-mode operation, higher modulation band-

width and circular output beam profile. They emit linearly polarized light whose direction

can change with change in operating conditions like temperature or the injection current

[76]. It involves switching between the two orthogonal linearly polarized modes. More

dynamical features emerge when there is optical feedback, current modulation or optical

injection [77]. This polarization-bistability of VCSELs has been used to build optical

buffer memories [78].

Zamora-Munt et al demonstrated the phenomenon of LSR in VCSEL by encoding

the logic inputs in an aperiodic signal which directly modulates the laser bias current

[35]. The probability of correct response was observed to be ∼ 1 in a wide region of

noise strengths. They associated LSR with optimal noise-activated polarization switch-

ings (the so-called inter-well dynamics if one considers the VCSEL as a bistable system

described by a double-well potential) and optimal sensitivity to spontaneous emission in

each polarization (the intra-well dynamics in the double-well potential picture).

In another work [73], by encoding the logic inputs in the strength of the light injected

into the suppressed polarization mode of the VCSEL (the so-called orthogonal injection),
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and by decoding the output logic response from the polarization state of the emitted

light, Perrone et al demonstrated an all-optical stochastic logic gate. It was observed

that correct logic output response can be obtained for as short as 5 ns bit times thus

lowering the the minimum bit time for successful operation from 30-40 ns observed in the

opto-electronic stochastic logic gate [35],[73].

In chapter 3 of this thesis, it was shown that in absence of noise a behaviour similar

to LSR can be observed by addition of a periodic forcing (sinusoidal or rectangular).

As in case of LSR, robust operation is obtained only when the amplitude and frequency

of the periodic forcing is within an optimal range. Further, when noise is also present,

this periodic forcing interacts cooperatively and in situations when noise is below the

minimum threshold of optimal range, the periodic forcing allows us to operate successfully

even under sub threshold noise conditions. At the higher end of optimal noise window,

this periodic forcing leads to slight deterioration in performance. We can then couple

another bistable system to control the effective amplitude or frequency of the periodic

forcing so that we obtain robust operation for all noise intensities below the maximum

threshold (see chapter 4).

In this chapter, we explore the possibility of enhancing the operational range of VC-

SEL based stochastic logic gate by addition of a periodic signal. The enhancement can

be either in form of decrease in the minimum bit time necessary for successful operation

or in terms of increasing the optimal window of noise in which this logic gate can function

robustly. We try this with both opto-electronic as well as the all optical configuration.

Specifically, we try by adding periodic forcing as Einjection in the opto-electronic config-

uration. In the all optical configuration, we explore the effect of periodic forcing in two

ways: firstly, by modulating the bias current and secondly, by adding it as Einjection as

in the opto-electronic configuration.

We discuss the model rate equations used to simulate the VCSEL in the next section

and report our results in the subsequent section and then discuss the results and the

conclusions drawn in the last section.

5.2 Model Equations

We use the spin-flip model [79] to simulate the polarization dynamics of VCSELs. This

model is a set of six ordinary differential equations describing the evolution of the real

and imaginary parts of two complex optical fields (associated with two orthogonal polar-
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izations) as well as two carrier densities with opposite spin. The model has been extended

to take into account Y-polarized optical injection. The equations are

dEx/dt = κ(1 + iα)[(N − 1)Ex + inEy]− (γa + i(γp + ∆ω))Ex

+
√
βspγNNξx

dEy/dt = κ(1 + iα)[(N − 1)Ey − inEx] + (γa + i(γp −∆ω))Ey

+
√
βspγNNξy + κEinj

dN/dt = γN [µ−N(1 + |Ex|2 + |Ey|2)− in(EyE
∗
x − ExE∗

y)]

dn/dt = −γsn− γN(n|Ex|2 + |Ey|2) + iN(EyE
∗
x − ExE∗

y)]

where Ex and Ey are linearly polarized slowly-varying complex amplitudes, N is the

total carrier population, and n is the population difference between the carrier densities

with positive and negative spin values, k is the field decay rate, γN is the decay rate of the

total carrier population, γs is the spin-flip rate, α the linewidth enhancement factor, γa

and γp are linear anisotropies representing dichroism and birefringence, µ is the injection

current parameter normalized such that the threshold in the absence of anisotropies is

at µth = 1, and ξx,y are uncorrelated Gaussian white noises with zero mean and unit

variance[73].

The optical power injected into the Y polarization is represented by Pinj = E2
inj. The

model equations are written in the reference frame of the injected field, and thus the

detuning ∆ω is the difference between the optical frequency of the injected field and the

frequency intermediate between the X and the Y polarization. Without optical injection

and with γa = 0, the angular optical frequencies of the X and the Y polarizations are

−γp and γp respectively, and therefore, ∆ω = −γp (+ γp) means that the injected field

is resonant with the X (Y) polarized mode of the solitary VCSEL [73].

5.3 Results

5.3.1 Optoelectronic Configuration

We use the opto-electronic configuration as in [35] for using VCSEL as a stochastic logic

gate. In this configuration, the two logic inputs are encoded in a three-level aperiodic
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modulation directly applied to the laser pump current. The laser response is determined

by the polarization of the emitted light. The parameters are chosen such that the laser

emits either the x or the y polarization and the parameter regions where there is anti-

correlated polarization coexistence or elliptically polarized light are avoided. The laser

response is considered a logical 1 if, for instance, the x polarization is emitted, and a

logical 0, if the y polarization is emitted. One can obtain the complementary logic gate

by detecting the orthogonal polarization.

In fig 5.1 we plot Ex vs µ for different rates of change of µ.
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Figure 5.1: Intensities of x and y polarizations when the injection current increases
and decreases linearly from µi = 0.9 to µf = 1.4 slowly (top) and fast (bottom). The
parameters are κ = 300ns−1, α = 3, γN = 1ns−1, γa = 0.5ns−1, γp = 50radns−1 and
D = 10−6ns−1.

We observe hysteresis in both the cases. Further, as µ varies at a fast rate we observe

oscillations.

In fig 5.2, we find that this system functions as a stochastic logic gate for optimal values

of noise intensity. For low or high noise strengths, the percentage of power emitted in

specific polarization doesn’t switch with changes in the input signal. When noise intensity

is low, polarization switching is delayed whereas a high noise intensity results in emission

in both polarization modes.

We calculate the probability of correct logical response by evaluating the response

of this gate for large number of input bits. To decide whether the response is right or

wrong, we calculate the fraction of power emitted in any one polarization state. If the

polarization state corresponds to correct response and percentage of power emitted in

this polarization is more than the threshold Pmax
th value, we call it as correct response.

Alternately, we also define Pmin
th as the minimum threshold and power emitted should be
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Figure 5.2: Time traces of the x polarization (solid green), y polarization (dotted blue),
and the injection current µ − 1 for different noise intensities (a) D = 5 × 10−7 (b)
D = 4 × 10−4 and (c) D = 6 × 10−3. The parameters are T = 31.5ns, µ0 = 1.3,
∆µ = 0.27, κ = 300ns−1, α = 3, γN = 1ns−1, γa = 0.5ns−1 and γp = 50radns−1.

lower than this threshold if this is wrong polarization. In our simulations, we evaluate

the responses at three different thresholds, 70%, 80% and 90%. The results are displayed

in fig. 5.3. It can be seen that for relaxed criteria i.e. 70%, the probability of correct

operation is higher. Further, we get P = 1 for intermediate values of noise strength.

Next, we apply a periodic forcing as Einj to the opto-electronic configuration to see if

the performance of VCSEL based stochastic logic gate can be improved. As we can see in

fig. 5.3, the performance of the stochastic logic gate is enhanced for low noise intensities

and decreases for high noise intensities when periodic forcing is added. Again from fig.

5.3, we can see that noise free morphing is also possible.

As we can see that at low noise intensities, orthogonal injection improves the perfor-

mance of this system. So the next logical question is to see if the logic operations can be

realized even in absence of noise and using only the orthogonal injection as shown in fig.

5.4.

Now we study the effect of orthogonal injection on the minimum bit time necessary

for successful operation. As can be seen in fig. 5.5, for low noise intensities, there is

marked decrease in the minimum bit time necessary for successful operation. At higher

noise intensities, the orthogonal injection doesn’t affect much.
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Figure 5.3: The probability of correct operation of stochastic logic gate vs noise intensity
in the optoelectronic configuration when periodic forcing is added as Einj in the orthog-
onal LP mode. Left figure shows the results in absence of periodic forcing. Clearly there
is performance enhancement of the gate for low noise intensities. Here Tbit = 31.5ns−1

These observed behaviours can be explained by considering that just like the noise,

periodic forcing also facilitates the switchings between the polarizations and when noise

is low or insufficient to result in polarization switching by itself, then periodic frequency

aids the polarization switchings in such cases.

5.3.2 All-optical configuration

In this section, we analyze the performance of the stochastic logic gate in the all optical

configuration. In this configuration, the logic inputs are encoded in the strength of the

light injected into the suppressed polarization mode of the VCSEL and the output logic

response is decoded from the polarization state of the emitted light[73]. We consider

addition of periodic forcing in two ways: first by small fluctuations in modulation current

µ and secondly by adding a small periodic forcing to Einj. We explored the minimum bit

times for different values of modulation current and when the modulation current varied

between two levels. The results are displayed in fig 5.6. We can see that by adjusting the

current modulation, we can obtain robust operations in different noise conditions. The

results for injection current modulation are presented next.

First we plot the probability of correct response vs noise intensity (see fig 5.7) and

then vs bit time (see fig 5.8) for the all optical configuration. From the figures, it is

clear that probability of correct response increases for the 80% threshold criteria. At

higher noise intensities, the performance degrades for all the cases. Similarly, the bit

times improve for 70% criteria but degrade for 90% threshold criteria. So we can tune
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Figure 5.4: Noise Free morphing i.e. when D = 0 and (a) No sinusoidal forcing (b) With
sinusoidal forcing with ω = 0.5 and A = 0.02 and (c) With a sinusoidal forcing of low
frequency ω = 0.2 and A = 0.01. The sinusoidal forcing has been added as the Einj. All
other parameters are same as in fig 5.2

the periodic frequency to obtain best response in the desired noise window and under the

particular threshold criteria.

5.4 Conclusion

In this work we have demonstrated that the performance of a VCSEL based stochastic

logic gate can be enhanced by addition of a periodic signal in the orthogonal LP mode.

This enhancement was observed for both the optoelectronic configuration as well as the

all optical configuration and both in form of increase in the optimal noise window as

well as decrease in minimum bit time. By tuning the amplitude and frequency of the

periodic forcing we can have better control over the stochastic logic gate and can improve

its response in the desired noise window with a particular threshold criteria.
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Figure 5.5: The probability of correct operation of stochastic logic gate vs bit time in
the optoelectronic configuration when periodic forcing is added as Einj in the orthogonal
LP mode. Left figure shows the results in absence of periodic forcing. Clearly there is
performance enhancement of the gate for low noise intensities. Here D = 0.00 for (a),
(b) D = 10−7 for (c), (d) and D = 0.0004 for (e), (f). In (a) the probability is zero at all
points.
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Figure 5.6: Minimum bit time required for successful operation for the all optical config-
uration for various noise intensities and pump currents.
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Figure 5.7: The probability of correct operation of stochastic logic gate vs noise intensity
in the all optical configuration when periodic forcing is added as Einj in the orthogonal
LP mode. Left figure shows the results in absence of periodic forcing. The performance
is enhanced for low noise intensities for the 80 percent criteria.Here Tbit = 5.5ns−1
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Figure 5.8: The probability of correct operation of stochastic logic gate vs bit time in
the all optical configuration when periodic forcing is added as Einj in the orthogonal LP
mode. Left figure shows the results in absence of periodic forcing. Here D = 10−5 for
(a), (b) and D = 0.1 for (c), (d).
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Part II

Spatiotemporal patterns in Complex

Systems
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Chapter 6

Verification of scalable

ultra-sensitive detection of

heterogeneity in an electronic circuit

6.1 Introduction

Complex interactive systems have been widely used to model spatially extended physical,

chemical and biological phenomena. The effect of heterogeneity in the evolution of spa-

tiotemporal patterns has attracted the attention of researchers in recent times. Disorder

either in form of static or quenched inhomogeneities, and coherent driving forces, have

yielded a host of interesting, often counter-intuitive, behaviours. For instance, stochas-

tic resonance [3] in coupled arrays [46, 47, 48, 49, 50, 51, 52], diversity induced resonant

collective behaviour in ensembles of coupled bistable or excitable systems [53],[54] demon-

strated how the response to a sub-threshold input signal is optimized.

In this direction, it was recently shown that the collective response of strongly coupled

bistable elements can reflect the presence of very few non-identical inputs in a large array

of otherwise identical inputs [55]. Here we verify these findings in an array of globally

coupled Schmitt triggers 1. Schmitt trigger is a simple electronic system that can be easily

made from commonly available electronic elements like an op-amp, and a few resistors.

It has been widely used to model bistable systems and one of the earliest demonstrations

of the phenomena of stochastic resonance was realized in this system [56, 6].

1These results have been published in [80]
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6.2 Coupled bistable elements

We consider N globally coupled Schmitt triggers, where the input voltage to each element

n (n = 1, . . . N) is given by:

V n
i = V n

a + C〈Vo〉+ Vb (6.1)

where V n
i is the input voltage to nth element, V n

a is the encoded voltage corresponding to

input signal an applied to the nth element, Vb is the bias and 〈Vo〉 is the average output

of all the elements given by

〈Vo〉 =
1

N

∑
n=1,N

V n
o (6.2)

Now, we apply V n
i to the non-inverting terminal of an opamp through a resistance

R1. The feedback voltage is fed into the non-inverting terminal through the resistor R2

as shown in figure 6.1. The inverting terminal is grounded. In this configuration, the

threshold voltages for the Schmitt trigger are VT = ±R1

R2
Vs where Vs is the supply voltage.

So, if V n
i < −VT , then V n

o = −Vs where V n
o is the output of nth Schmitt trigger. Now as

we increase V n
i , V n

o will remain −Vs till V n
i ≤ VT . As V n

i exceeds VT , V n
o will become Vs.

Now when we decrease V n
i , the output will remain Vs till V n

i ≥ −VT , at which point it

will become −Vs. Thus, this element has a hysteresis as shown by its transfer function

given in figure 6.1.

Figure 6.1: Individual Schmitt trigger and its transfer function

The heterogeneity in this collection of bistable elements occurs in the diversity of the

input signal V n
a in Eqn. 6.1. Here we consider that these inputs can have any value in

between the two stable states. Without any loss of generality, we can encode one of the

states as −Va and other state as Va. Thus the inputs can be randomly distributed about
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zero average, i.e. the inputs are encoded as voltages randomly distributed between −Va
to Va.

6.3 Collective response in the presence of hetero-

geneity

In an uncoupled system, if we take voltages encoding the inputs such that |Va| > |VT |
then the output state of the element will depend on the value of the input. If the input

is in the low state the output of the element will be −Vs, and the output will be Vs if the

input is in high state. Now when these elements are strongly coupled via average voltage

i.e. average voltage of the output of all the Schmitt triggers, 〈Vo〉, the dynamics of the

elements gets correlated.

Consider now the output of this coupled system as 〈Vo〉. If all inputs are identical, and

such that |V n
a | > |VT |, then every element will go to the state corresponding to that input.

However, if |V n
a | < |VT | the final state of element will depend on the initial state of that

particular element. Given randomly distributed initial conditions, the average voltage

will stay close to zero as no element will be able to change its state in this configuration.

If the inputs are not identical, then depending on the distribution of V n
a , and the

initial state of the elements, the elements whose inputs are closer to the low state will

tend to move towards −Vs, and vice versa. As the states of the elements will also be

distributed uniformly, and so in some cases the element will go to lower state whereas

in other cases it will go to the upper state. Assuming a uniform random distribution of

initial states of the elements we expect that average voltage of the elements will either

go to −Vs or Vs. On averaging over different initial configurations the average voltage

will again approach zero. If the inputs are not identical and are such that the number

of inputs is not distributed uniformly about zero average, then the majority dictates

the average voltage. Thus in this case it is not possible to detect the presence of small

heterogeneity in the inputs, nor can one infer the number of inputs that were different.

Now consider that the inputs are not distributed over the entire range of voltages

between −Va to Va, but are two state instead i.e. they take only one of two values. Such

systems are very relevant and can, for instance, represent logic 0 and 1. We will show

below how to detect the number of nonidentical inputs directly in such systems. Further

we will demonstrate that the average voltage of the system approaches the stable state
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corresponding to the minority population, up to the limit of a single nonidentical input.

To accomplish this, in addition to 〈Vo〉 we also apply a bias Vb to all the bistable

elements. The value of this bias is decided by the type of minority we wish to detect. If

the minority corresponds to the low state, we apply a negative bias and vice versa. This

bias essentially brings the elements to which majority input is applied, near the tipping

point. As the state of a few inputs change, the elements corresponding to those inputs

shift their state. This moves the average voltage away from the stable state of the majority

input towards the stable state of the minority input. As the elements corresponding to the

majority input were already close to the tipping point, this reduction in average voltage

causes a few of them to slip over the barrier towards the stable state of the minority

input. This further reduces the average voltage and creates a cascading effect so that in a

few steps all the elements corresponding to the majority input are dragged to the stable

state of the minority input.

Suppose we start with a state in which all inputs are in same state, let us say, in

the lower state. Further the encoded voltage Va satisfies the condition |Va| > |VT |. So

when inputs are in lower state they are encoded as −Va which satisfies the condition

−Va < −VT . Thus initially all the elements will go to the lower state. Now we want

to find out what is the minimum fraction of elements of a different state necessary such

that we can detect the heterogeneity. To do so, we first apply a bias to the system. The

value of the bias is such that it alone cannot drive the system. So, in the beginning

when all elements are in lower state, the average voltage is −Vs. Now on application

of bias, the state of the system should not change in absence of heterogeneity. Or the

input voltage to bistable elements should remain lower than the threshold voltage i.e.

Vb−CVs− Va < VT or Vb < (CVs + VT + Va). Now let us assume that some of the inputs

change their state. In this configuration let the number of inputs in the lower state be N0,

and so N −N0 inputs will be in the upper state. This change in state of N −N0 inputs

should allow those N −N0 to change their state. So we should have Vb −CVs + Va > VT

or Vb > (CVs + VT − Va). From above two conditions we have

(CVs + VT − Va) < Vb < (CVs + VT + Va) (6.3)

At this stage N0 elements go to −Vs and N − N0 elements go to Vs. So the average

voltage 〈Vo〉 is (N−2N0)
N

Vs. When N0 ∼ N , 〈Vo〉 will approach −Vs and we will not be able

to detect the heterogeneity. Note that the elements are coupled with the global mean field

and the individual output state of the elements are not accessible. The only observable
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quantity is the global mean field. If there is no bias then the majority will always drag

the average voltage to its stable point.

When a bias voltage Vb is applied, then in order that the average voltage of the

coupled system switches to the stable point of minority, we need that this reduction in

average voltage should be sufficient to drive the other elements to the stable state of

the minority. So let us consider an element on which the input signal corresponding to

majority input is applied. So we require that the voltage acting on this element should

exceed the threshold voltage. Namely,

− Va + Vb + CVs(1−
2N0

N
) > VT (6.4)

This is satisfied if

N −N0 >
N

2
(1− Vb − (VT + Va)

CVs
) (6.5)

This gives the minimum number of inputs of the minority type needed for successful

detection. In the limiting case when we require that a single different input should be

detected, the following condition must be satisfied

Vb − (VT + Va)

CVs
>
N − 2

N
(6.6)

6.4 Explicit demonstration of ultra-sensitivity

In this section we will explicitly show the detection of a single heterogeneous input in

an array of 20 inputs. Initially all the 20 inputs are zero. Then after sometime one

input changes its state and we will show how the collective response of the whole system

changes its state in response to this change.

As explained in previous sections, we use Schmitt trigger as the bistable element. The

voltage applied to nth Schmitt trigger is given by equation 6.1. We apply voltage V n
i to

the non inverting terminal of a comparator through a resistance R1. The feedback voltage

is fed into the non-inverting terminal through the resistor R2. The inverting terminal is

grounded. Thus the threshold voltages for this Schmitt trigger are ±R1

R2
Vs where Vs is the

supply voltage. We take R1 = 1kΩ and R2 = 47kΩ and thus the threshold voltages are

±0.255V . The output voltage obtained with this Schmitt trigger is ±10V .
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With no loss of generality, we encode the inputs as ±Va where Va = 1.5V i.e. if input

is in low state we apply −1.5V and if it is in high state we apply 1.5V . Note that we can

also encode the inputs as 0V and VaV . In that case, we just have to shift VT by applying

a bias.

In this case, as we have minority of low states and a single heterogeneity of high state,

so we apply a positive bias to our system. Specifically we choose Vb = 11V . Note that

these values of the variables satisfy the criterion given by equations 6.3 and 6.6. Thus

the detection of even a single heterogeneity is possible. The schematic diagram of the

same is shown in figure 6.2.

Figure 6.2: Schematic of the electronic circuit model

Here the block on left side has all the bistable elements, namely the Schmitt triggers.

The internal diagram of this block is shown in figure 6.3. Each Schmitt trigger is the

same as that shown in figure 6.1. This block receives V n
i from the block on the right and
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these are fed to the Schmitt triggers.

Figure 6.3: Array of Schmitt triggers and the averaging circuit represented by left block
in figure 6.2

The output of all Schmitt triggers is averaged and this is fed to the opamp shown in

the figure. The opamp adds the bias to this averaged value and the output is sent to

the block on the right. The block on the right has 20 adder circuits which add the input

received from the opamp and V n
a and send the 20 different outputs so obtained to the

block on the left. The internal block diagram of this block is shown in figure 6.4. Figure

6.5 shows the circuit diagram of an individual adder.

We display the following representative result in Fig. 6.6: initially we apply −Va
voltage to all the inputs (i.e. there is no heterogeneity in the system, and all elements are

identical). Then after some time, one element is changed, i.e. we have a system with 19

identical elements (with the majority having input −Va) and only one different element

with input changed to Va. We find that the average voltage of the circuit is −Vs initially,

as expected, when the system has no diversity. However, after one element changes, the
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Figure 6.4: Array of adder circuits for each input represented by right block in figure 4.1

average jumps to Vs. This clearly indicates the extreme sensitivity to diversity in the

coupled system.

Further note, that the circuit can be reset at any time by applying a pulse of high

magnitude negative voltage. Also, importantly, by varying the bias we can infer the

number of elements that differ from the majority, as evident through equation 6.5.

6.5 Conclusion

We have studied the impact of small heterogeneity in signals applied to globally coupled

nonlinear bistable elements. In the absence of coupling, the output of the nonlinear

elements swings towards the signal applied to that element and the collective response

mirrors the state corresponding to average of all the signals. When the elements are

coupled and a bias is applied, we find that even a very small number of different inputs

are able to drag the collective response towards the stable state of the minority inputs. In

our explicit demonstration we have taken Schmitt triggers as the basic nonlinear bistable

elements, and the inputs are encoded as voltages applied to them. The average of output
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Figure 6.5: Circuit diagram of a single adder

voltages of all the Schmitt triggers corresponds to the global output of the system. We

also observe that the minimum heterogeneity that can be detected scales with ratio of

threshold voltage to source voltage of the Schmitt triggers, and can be be brought down

to the limit of single bit detection.
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Figure 6.6: Time series of the input to one element (light blue), and the average of output
voltage of 20 coupled elements (red). The input to other 19 elements is held constant at
the same value as was applied to first input in first half of time series. We observe that
as the input changes for just this one particular element, the average voltage, which is
the collective response of the whole system, jumps to the high state. Y axis shows the
voltage with each grid element representing 2V and X axis represents time with each grid
element representing 1ms.
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Chapter 7

Emergence of epidemics in rapidly

varying networks

In this work, we shall explore how changing the underlying web of connections at different

rates influences the emergent spatiotemporal patterns in an extended interactive system.

Specifically, we will focus on a problem of considerable relevance, namely, the nature of

infection spreading in a population of individuals connected by links that vary over a

large range of time scales1.

At the level of individuals in the population, we consider the class of communicable

diseases that progress as follows: at the outset an individual is susceptible to infection

(a stage denoted by S); on infection through contact with other infected people, the

individual moves to the infectious stage (I). In this stage of the disease, an individual may

infect susceptible members of the population it comes into contact with. The infectious

period is followed by a refractory stage (denoted by R), where the individual is immune

to the disease and also does not infect others. The immunity in this class of disease

is temporary and after a while the individual is again susceptible (S). So the temporal

evolution of the stages of the disease at the nodes of the network will be modeled by the

well known epidemiological model of disease progression: the SIRS cycle. This model is

appropriate for diseases like small pox, tetanus, influenza, typhoid fever and cholera [59].

Now, we consider such individuals linked together in a web of connections. Various

approaches have been employed to analyze such disease dynamics on networks. While

some studies have focused on different network topologies [82, 83, 84, 85] others have

1Results of this chapter have been published in [81]
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analyzed using different rules for dynamics of diseases on the nodes. For example, Girvan

et. al. studied how the variation in recovery times can result in different dynamical

behaviours [86]. In [87], Nagy studied the impact of varying contagion scheme, time de-

lay and infection probability on uncorrelated networks in the fast rewiring and annealed

limits. Other studies have focused on adaptive networks, where the evolution of the topol-

ogy of the network depends on the dynamics on the nodes. Gross et. al. [88] observed

assortative degree correlation, oscillations, hysteresis, and first order transitions in SIS

model of epidemics employing an adaptive strategy in which susceptible are able to avoid

contact with the infected by rewiring their network connections. Similar strategy leads to

bistability of the endemic and disease free states in the SIRS model [89]. Segbroeck et. al

considered disease spreading as a stochastic contact process embedded in a Markov chain

and found that adaptive networks in which information about health status of others is

available, can be considered as well mixed population with a rescaled effective disease

infectiousness [90].

In contrast to earlier studies [82, 90], we incorporate changes in the underlying con-

nectivity at varying time-scales, ranging from fast to slow vis-a-vis the nodal disease

dynamics. Further, at a time, not all links get rewired; rather, a fraction of the regular

contacts are replaced by random interactions. This is most relevant, as some of our con-

nections change rarely, like family and close friends, whereas others change much more

rapidly, such as strangers in our work place or in public spaces. The important conse-

quence of disease spreading on time varying networks that we will demonstrate in the

subsequent sections is the following: quick changes in the connections enhance synchro-

nization, as compared with slow network changes. Namely, epidemic outbreaks emerge in

rapidly varying networks, while slowly changing links result in a low fluctuating state of

endemic infection.

We describe our model of the disease cycle and infection spreading in the next section.

Then we present the results obtained from extensive simulations of this dynamical net-

work. We also present the phenomena arising in a probabilistic rewiring model, namely

the scenario where the connections switch to random sites randomly in time. We conclude

with discussions in last section.
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7.1 Model of infection spreading

We consider a network of N nodes on a ring, where each node (vertex) has 2K directed

connections (edges). Consider first a completely regular network with each site i con-

nected to sites i±1, i±2, . . . i±K on either side. On this regular network we incorporate

random rewiring, with probability p. That is, when p > 0, we shuffle the connections

with probability p, replacing some regular connections with a few random links. With

probability p, site i will then be coupled to a randomly chosen site j on the ring. So

large p implies that there will be many “short-cuts” connecting neighbourhoods, with

parameter p interpolating between the regular lattice at p = 0 and a random network at

p = 1 [43].

Now each node in this network represents an individual whose disease progression is

described by a cellular automata model of the SIRS cycle [82]. The details of this model

are as follows: each node i is assigned a value τi(t), which evolves over time t. The

variable τi(t) can take integer values from 0 to τ0. If τi(t) = 0, the site i is susceptible at

time t. If τI ≥ τi(t) ≥ 1, it is infected and if τi(t) > τI it is in the refractory stage at time

t. So τI is the time during which a node remains infected after inception of infection,

and τ0 is the total length of the full disease cycle. For sites which are not susceptible, i.e.

τi(t) 6= 0, dynamics is given as:

τi(t+ 1) = τi(t) + 1 if 1 ≤ τi(t) ≤ τ0 − 1 (7.1)

and

τi(t+ 1) = 0 if τi(t) = τ0 (7.2)

The dynamics does not depend on the neighbours if the site is not susceptible. Neigh-

bours come into play only while infecting the susceptible site. The model considers

that only infected sites infect their neighbours. Thus a site susceptible at time t, will

be infected at time t + 1 with probability proportional to the fraction of infected sites

in its neighborhood. In other words, if τi(t) = 0, τi(t + 1) = 1 with the probability

q = kinf/ki where ki are total number of neighbours of site i, of which kinf are infected.

With probability 1− q, the susceptible site does not change state.
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τi(t+ 1) =

1 with probability q,

0 with probability 1− q
if τi(t) = 0

It is schematically shown in Fig. 7.1

Figure 7.1: Evolution of the disease cycle.

We also introduce a small quenched disorder in the system, namely ∼ 1 % of the total

number of sites is always kept in the infectious state i.e. τi(t) = τi(0) for all these sites

for all times and τi(0) = 1. This prevents the system from falling into fully synchronized

state, after which there can be no further evolution. The schematic of the model is shown

in Fig. 7.2.

So this system has both deterministic and probabilistic features. The disease progres-

sion for the infected site is deterministic, with the infected site slowly becoming refractory

and then eventually becoming susceptible again, thus going through a prescribed cycle.

However, the inception of the disease cycle is a random event, as the infection of suscep-

tible nodes occur with a certain probability that depends on the state of the neighbours.

Simulations of the above model on a small world lattice [82] showed that the fraction
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Figure 7.2: SIRS disease model. The individual at Susceptible sate can be affected by
its neighbors which themselves may be in susceptible, infected or recovered state. The
percentage of infected individuals gives the probability that an individual will become
infected at the next step. Once it becomes infected, it passes through the infected and
recovered stages deterministically.

of infected sites at a given time t shows oscillations in time for a large random rewiring

probability p. One can view the system as an union of many interacting clusters. When

p is large these clusters get synchronized to each other, giving rise to large amplitude

collective oscillations, which can be identified as epidemic outbreaks.

However, it is obvious that the connectivity of the individuals will most likely vary

over time, even if the average number of connections and types of links remain the same.

In order to investigate this issue, we consider the underlying connection matrix to switch

between different realizations, having the same fraction of random links. We consider two

types of varying networks: periodically rewired networks and probabilistic link switching.

So we simulate the SIRS disease cycle on networks of sizes upto N = 105, and we

looked for the effects of switching links on the emergence of synchronized infection. First

the system dynamics is investigated qualitatively, through inspection of the time series of
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the size of the infected set in the network. Then, we go on to characterize quantitatively

the transition to large scale disease outbreak, through an order parameter reflecting the

degree of synchronization of the individual disease cycles at the nodes, defined as [82]:

σ(t) = | 1
N

ΣN
j=1 expiφj(t) | (7.3)

where φj = 2π(τj−1)/τ0 is a geometrical phase corresponding to τj. Now, the occurrence

of large oscillations corresponds to a spontaneous synchronization of a significant fraction

of the elements in the system, implying that the phases τi(t) in the nodal disease cycles

become synchronized and individuals progress through the disease together, becoming ill

at the same time and recovering at the same time. Thus in this case σ will be large,

with σ = 1 when all nodes are completely synchronized. On the other hand, when the

system is not synchronized, the phases are widely distributed. So the value of the complex

numbers expiφ will be spread widely over the unit circle, leading to small σ.

We present in the sections below, the infection patterns emerging from our extensive

simulations on different kinds of rewired networks.

7.2 Periodically Switched Links

First we consider the scenario where the network changes occur periodically, at some time

period denoted by R. We study the influence of different rates of network change, ranging

from links switched at every step in the disease cycle, to networks changing after several

disease cycles. As we scan the full range of random rewiring probability p and time period

of network change R, we look for the emergence of large oscillations in the number of

infected nodes in the network, suggestive of epidemic outbreaks in the population. Our

observations are presented in the subsections below.

7.2.1 Enhancement of Synchronization in rapidly varying net-

works

The principal observation, from our extensive simulations, is the following: for any given

fraction of random links, when the network varies fast, the oscillations in the total number

of infected sites have large amplitude, indicative of more synchronized disease outbreaks.

This is evident in the time evolution of the fraction of infected nodes in the population,
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shown for representative cases in Fig. 7.3.
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Figure 7.3: Evolution of the number of infected sites in a network of 104 nodes with
K = 1, with network rewiring periods r = 1 (top), r = 3 (middle) and r = 5 (bottom).
Here the random rewiring probability p = 0.4, and τI = 4, τ0 = 13 in the SIRS disease
cycle.

Further, quantitatively, it is evident from inspection of this synchronization order

parameter, that when the frequency of network change is low, the rewiring probability

at which transition to large oscillatory behaviour occurs, increases. For instance, in Fig.

7.4, the transition to large-scale synchronization occurs around p = 0.2 when the network

varies with time period r ∼ 1. In contrast, when the network changes slowly (r ∼ 10)

then the transition to synchronized disease outbreak occurs only for much larger random

rewiring probabilities (p > 0.4). For very slow rewiring (r ∼ 50) the transition doesn’t

occur at all.

For small R there is a clearly defined transition to the synchronized state as the

fraction of random links increases. We obtain the transition point from the sharpest

change in the slope of the curve of the synchronization order parameter as a function of

rewiring probability p. The critical rewiring probability pc thus obtained, with respect to
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Figure 7.4: Variation of the synchronization order parameter with rewiring probability
p, for a network of size N = 104, and K = 1, for different network rewiring periods. Here
τI = 4, τ0 = 13 in the SIRS disease cycle.

the network rewiring time period R, is displayed in Fig.7.5. It is evident that pc increases

with increasing network rewiring period R. Namely, for rapidly changing networks, i.e.

with small R, we obtain synchronization at smaller values of rewiring probability p.

7.2.2 Interplay of nodal dynamics and network rewiring

The significant nodal time-scale here is τI , namely the time over which a node can infect

others. If the network connections change rapidly compared to τI , it strongly aids syn-

chronization. However, if the underlying web of links changes slower than τI , the effect

on the emergence of synchronized cycles is much lower. So while a node is in the infective

stage, if the network changes often, short-cuts are provided to many different non-local

nodes in the network. Thus the infection can spread much faster, assisting the emergence

of large-scale synchronization.

The above also implies that the effect of rewiring is more evident when the infective
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Figure 7.5: Variation of critical rewiring probability pc, with respect to network rewiring
time period R, for a network of size N = 104, and K = 1. Here τI = 4, τ0 = 13 in the
SIRS disease cycle. Inset shows the curve on a log-log scale, for low R values, indicating
power-law scaling at small R.

stage is longer. This is demonstrated in Fig. 7.6, which displays the synchronization

order parameter for networks that rewire at different frequencies, with respect to the

probability of random rewiring p. It is clear that for the larger τI the onset of large scale

synchronization is most affected by the rate of change of the underlying connections.

Interestingly, we observe that the time period of the emergent oscillations in infected

nodes, Tepidemic, is larger than the length of the disease cycle τ0. For instance, for r = 1,

if τ0 is 13, then the time period of the collective infection is around 18 (as evident from

Fig. 7.7), and when τ0 is 26, Tepidemic is around 32.

Further, if the length of the infective stage τI increases, Tepidemic decreases slightly

and the magnitude of oscillations increases, indicating the emergence of faster and more

pronounced oscillatory infection outbreaks (see Fig. 7.7). Tepidemic also decreases slightly

with increase in rewiring probability p. Lastly, the time period of the collective infection

oscillations is weakly dependent on the size of the network. For instance, for a network
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Figure 7.6: Variation of the synchronization order parameter with rewiring probability p
for a network of size N = 104, K = 1, τ0 = 26, and infectious period τI = 8 (left), τI = 16
(right) for network different rewiring periods.

with 100 nodes the period is approximately 18, while for a network of 104 nodes Tepidemic ∼
23.

We simulated the system for various possible combinations of τI and τ0, by varying

τI from 2 to 40, and τ0 from 10 to 50. The results were found to be qualitatively similar

over the entire spectrum.

7.2.3 Influence of neighbours

Now we investigate the effect of increasing number of neighbours on disease outbreaks. If

the number of neighbours is large, namely K is large, then the effect of changing links on

synchronization is less significant. This is evident in representative examples displayed in

Fig. 7.8, from where it is clear that the system with larger number of neighbours is less

sensitive to network changes.
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Figure 7.7: Evolution of the number of infected sites in a network of 104 nodes with
K = 1, p = 0.4 and network rewiring period r = 1, for nodal SIRS cycles with: τI = 16,
τ0 = 26 (top), τI = 4, τ0 = 26 (middle) and τI = 8, τ0 = 13 (bottom).

One can argue that this arises from the fact that the loss in information spreading

speed due to slower rewiring has been compensated by large number of links. One can also

rationalize this by considering the limit of very large number of neighbours (K → N/2),

where the connectivity matrix has no effect on the dynamics, as the coupling is all-to-all.

At the level of nodal dynamics note that the time period decreases as the number of

neighbours increases, or if the fraction of random links increases. This trend is antici-

pated, as more random neighbours will increase the probability of infection.

In order to demonstrate the generality of this, we show results from a very different

network, namely a collection of logistic maps. We observe the same phenomena there as

well (Fig. 7.9), i.e. when K is small the effects of the time variation of the network is con-

siderable. However, for networks where nodes are connected to a large set of neighbours,

this effect is not so significant.

79



0 0.2 0.4 0.6 0.8 1

Rewiring Probability

0

0.2

0.4

0.6

0.8
S

y
n
ch

ro
n
iz

at
io

n
 P

ar
am

et
er

R=1
R=4
R=7
R=10
R=50
R=100

Figure 7.8: Variation of the synchronization order parameter with rewiring probability
for a network of size N = 104 and K = 5, for various network rewiring periods. Here
τI = 4, τ0 = 13 in the nodal SIRS disease cycle.

7.2.4 Fine structure in emergent oscillations

Interestingly, over and above the broad trends mentioned above, we also observe some

fine structure in the oscillations. These arise from the complex interplay of the chang-

ing the random links and the emergent epidemic cycles Tepidemic. The competition and

cooperation between the underlying processes of infection and interaction gives rise to

“resonances” in the system.

For instance, these different simultaneous periodic influences lead to beating patterns

in the oscillations in infected population. This is clearly observable in the representative

example displayed in Fig. 7.10, where the frequency of the envelope of the amplitude

modulation is proportional to the difference in the emergent infection outbreak frequency

and the network rewiring frequency. At specific values of p, the two periodic influences

become comparable in strength, and so the beating patterns are most pronounced at

these values. Such emergent beating patterns have bearing on the phenomenology of

dynamically changing networks in general.
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Figure 7.9: The effect of network rewiring period on the synchronization of nodes in a
network of logistic maps. The figures on the top are for K = 5, and r = 1 (left), r = 100
(right). The figures at the bottom are for K = 1, and r = 1 (left), r = 100 (right).

Further we find quantitative evidence of resonant increase in synchronization occurring

when the network rewiring time period is multiples of the oscillatory epidemic outbreak

time period Tepidemic (see Fig. 7.11 and 7.12). So, while we may generally expect that

as we keep on decreasing the frequency of switching links, the epidemic outbreak will

reduce, there may be a sudden increase in the number of infected individuals when the

network rewiring period R comes close to the frequency of emergent oscillations Tepidemic.

To demonstrate this explicitly we took two different disease cycle lengths τ0: 13 and

26. For the case of τ0 = 13, an increase in the amplitude of oscillations was observed

around network rewiring period 17 (Fig. 7.11), which is close to the time period of the

emergent epidemic oscillations Tepidemic (∼ 17). For the case of the longer disease cycle

τ0 = 26 (Fig. 7.12), where Tepidemic is larger (∼ 30), increased synchronization occurred

at multiples of a larger network rewiring period (namely r ∼ 30, 60, 90). Further, we

checked the generality of these qualitative features over a range of network sizes and

varying lengths of the complete disease cycle and the infective stage of the disease cycle.

81



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 f
ra

c
ti

o
n

 o
f 

in
fe

c
te

d
 n

o
d

e
s

time/disease cycle period

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 

Figure 7.10: Evolution of the number of infected sites in a network of 104 nodes, with
K = 1, for network rewiring period r = 23 and rewiring probability p = 0.5 (top), p = 0.7
(bottom). Here τI = 4, τ0 = 13 in the SIRS disease cycle.
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Figure 7.11: Variation of the synchronization order parameter with network rewiring
period R, for a network of size N = 104, with K = 1, τI = 8, τ0 = 13 and different
rewiring probabilities.

7.3 Probabilistic Switching of Links

Now, we expect to see the resonance-like fine structure only in scenarios where the links

are switched together at regular time intervals, for instance in a situation where the

connections are determined by a global external periodic influence. However this is not

always the most realistic scenario for disease spreading, as the interaction patterns usually

don’t change periodically in time. Rather we must consider a probabilistic model of link

switching, such as in [91]- [92]. So in this section we study such randomly switched

networks in order to determine which emergent features are robust to the manner in

which links change, and which phenomena are specific to periodically switched links.

Namely, we verify the generality of our observations above by investigating the SIRS

dynamics on a network whose underlying links switch randomly asynchronously in time.

Specifically now, at each instant of time, a node has the probability pr (the “link

rewiring probability”) of its connections being rewired. Further, as above, a node rewires
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Figure 7.12: Variation of the synchronization order parameter with network rewiring
period R, for a network of size N = 104, with K = 1, τI = 16 and τ0 = 26 for different
rewiring probabilities.

to its nearest neighbours with probability 1 − p and to some random neighbour with

probability p (the “small world rewiring probability”).

We observe transitions to synchronized epidemic cycles here as well. Further, when

the link rewiring probability is increased, namely when the links change more frequently

we obtain greater synchronization amongst the disease cycles in the system (Fig. 7.13).

This indicates the generality of the central observation: changing links induces stronger

synchronization in the SIRS disease progression, leading to the emergence of epidemics.

The only significant difference between connections varying periodically and proba-

bilistically, is the absence of resonance-like features in the synchronization order param-

eter. This is expected, as there is no time scale in the random switching case that may

interplay with the periodicity of the disease cycle to create “resonances”.

So we conclude that the enhancement of synchronization under varying links is a

robust and general phenomena. However, resonances may be observed only when there
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is regularity in the link switching, perhaps driven by external periodic influences.
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Figure 7.13: Variation of the synchronization order parameter in the parameter space
of small world rewiring probablity (p) and link rewiring probablity (pr) for a network of
size N = 104, with K = 1 and τI = 4, τ0 = 13 (top left), τI = 8, τ0 = 13 (top right),
τI = 8, τ0 = 26 (bottom left) and τI = 16, τ0 = 26 (bottom right). Again notice that
the enhanced synchronization due to rewiring is more evident when the infective stage is
longer.

7.4 Discussions

Here we discuss some broad, and possibly speculative, potential applications of these

results. Our observations above suggest an adaptive strategy where individuals need

not be quarantined for long periods, nor isolated till they fully recover. Rather, as is

intuitively obvious, infected individuals just need to be quarantined during their infective

phase, namely over the time during which they can infect others. More importantly, our

85



study suggests that large scale epidemics in the population can be prevented by simply

ensuring that the infected do not swap their links for some time i.e. the infected set can

retain the small set of contacts they already have, and just not be allowed to change their

contacts.

Such a strategy is in contrast to most prevalent strategies which entail full quarantine

and complete deactivation of links with the infected, which in real networks is difficult to

implement and prone to failure due to inaccurate real time information on the infection

status of the individuals [93]. On the other hand, if the infected can retain their set of

existing contacts, it will have a positive effect on their well being, as they will be able

to maintain some interactions, such as with close family, while diseased. Such a scenario

will have positive implications for the psychological health of the infected, which in turn

is likely to have a positive effect on their physical health, as suggested by many studies

on the close interaction between the two. Also, it is easier to simply not change existing

links, rather than obtain real time information of other individuals and deactivate links

accordingly.

Notice that small local neighbourhoods that change rapidly, as modeled by fast switch-

ing networks with nodes of low degree, may also mimic real life scenarios better than large

fixed neighbourhoods. The reason for this is that generically we come in close proximity

to only few individuals at a time, though the set of individuals we interact with may

change quite frequently. Further, all interactions with neighbours may not be capable

of transferring an infection. It is particularly relevant in case of sexually transmitted

diseases where the number of neighbours is low for vast majority of population and only

contacts involving sexual partnership can be counted as edges [94]. This has analogues

in other scenarios, such as spread of computer virus, as well.

Further, the analysis here can also be used to identify which groups are more vulner-

able to an outbreak. For example children tend to change their connections more rapidly

compared to adults [95]. Thus it may happen that an epidemic occurs only among the

sub-population of children and not among adults.

In conclusion, we have described a simple model mimicking disease spreading on a

network with dynamically varying connections, and we have investigated the dynamical

consequences of switching links in the network. Our central observation is that the disease

cycles get more synchronized, indicating the onset of epidemics, as the underlying network

changes more rapidly. Further, for periodic switching of links, we observed dynamical

features arising from the interplay of the time-scales of the network changes and that
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of the emergent synchronized infection oscillations. Lastly, we discuss some possible

implications of our results on potential epidemic management strategies.
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Chapter 8

Synchronization in time varying

networks

8.1 Introduction

Synchronization of dynamical units has attracted researchers from diverse fields like bi-

ology, ecology, sociology, power grids, climatology etc. [60, 61, 62, 63, 64]. Most of the

earlier approaches have studied the stability of the synchronized state by linearizing the

dynamical equations [65, 66]. Such approaches have enabled the analysis of stability of

large class of synchronized oscillators. However, there have been studies[67] where local

stability predictions do not corroborate with the actual dynamical response of the sys-

tem. Jost et al.[68], have proved that linear stability provides conditions for stability

of synchronized solution that are necessary but not sufficient. Detailed studies of these

cases reveal that local stability results can only be valid for small perturbations and here

“small” could actually be “infinitesimal” in some cases. Thus to correctly predict the

dynamical response to any kind of perturbation, one should have a clear idea about com-

plete landscape of the coupled system. By complete landscape we mean that one should

know the size of basin of attraction[69, 70] for all local minimas present in the system.

To probe the stability of the synchronized state in case of large perturbations, it was

proposed that the basin of attraction of the synchronized state be also estimated [69].

In this regard, Menck et al. [71] propounded the concept of Basin Stability (BS) based

on the volume of basin of attraction and showed that the linear stability and BS may

be quite different and both approaches should be considered to evaluate the stability of
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the synchronized state. They argued that the optimization of synchronizability and the

simultaneous optimization of BS act as two opposing forces and their contest results in

a topological trade-off: small-worldness [43].

Furthermore, many of the initial studies assumed the interactions among the nodes

to be invariant over time, though lately, there have been efforts to incorporate the

time varying nature of the interactions. In one way such time variations represent the

evolution of interactions over time. In another way they can be helpful in represent-

ing the discontinuities in interactions, i.e. when the nodes interact only for limited

time. Such time varying interactions are commonly found in social networks, com-

munication, biological systems, spread of epidemics, computer networks, world wide

web etc and have been shown to result in significantly different emergent phenomenon

[96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 81].

Major advances have been made in the analysis of such time varying networks and

it has been shown that if connections change quite rapidly, then the network can be

essentially modeled as the aggregate of the interactions over time [96, 112]. It was also

shown that if the Laplacian matrices at different times do not commute, the stability

range is even greater [97]. When the time period of variation of links is close to time

period of nodal dynamics, new stable synchronized states may appear [103]. Very recently,

similar results have been found in temporal networks, i.e. where only a single edge exists

at one particular instant of time [113]. Long lasting interactions slowed down diffusion

in such networks and the slow eigenmodes of the effective Laplacian matrix were shown

to be affected more as compared to fast eigenmodes [110].

In this work, we study the stability of the synchronized state when the underlying

connection network evolves in time. The BS paradigm is particularly useful in case of time

varying networks as it can be applied to large class of systems, whereas the linear stability

analysis can be done exactly only in some specific cases. For this reason, most of the

previous studies have considered some special switching schemes like very fast rewiring

[96, 112], on-off coupling [103, 109], temporal networks [113] or a particular class of local

dynamics [101]. We consider Watts-Strogatz (WS) networks and vary the fraction of

random links p to cover broad range of networks varying from regular ring topology for

p = 0 to random networks for p = 1. For intermediate values of p, such networks are

characterized by small path length and high clustering coefficient and typically referred

to as “small-world networks”. The time varying character is considered by assuming that

each link rewires with a rewiring frequency f . We discuss the model in the next sections

and present our results and conclusions in the further sections.
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8.2 Model

We begin by describing our link rewiring method. In our model each link in the network

rewires stochastically and independently of the other links with an average frequency f .

Specifically we consider ensembles of WS networks consisting of N Rössler oscillators, in

which the dynamics at a node i is given by:

ẋi = −yi − zi −K
N∑
j=0

Lijxj

ẏi = xi + ayi (8.1)

żi = b+ zi(xi − c)

where K is a coupling constant, L the Laplacian matrix, and the parameters a = b = 0.2,

and c = 7.0. For the given set of parameter values, each uncoupled Rössler oscillator has

a chaotic trajectory and the synchronous state corresponds to the case when all oscillators

follow the same trajectory. To construct the WS network, we start with a regular ring in

which each node is connected to 2k nearest neighbors, k on either side. Degree distribution

of such networks is shown in Fig. 8.1. Then we rewire each link with probability p by

cutting it from any one side and joining to some randomly selected distant node. Then at

any time t, the link is rewired with probability fdt where dt is the integration time step.

If the edge is between two distant neighbors, it is rewired to a nearest neighbor of one of

the nodes with a probability 1−p. Similarly if the edge is between two nearest neighbors,

then with probability p, it is broken from one of the nodes and connected to a random

distant node, and not rewired otherwise. Thus on average, pkN links couple distant

neighbors and (1− p)kN links couple nearest neighbors and the rewiring represents the

rate at which nearest neighbor links become random or vice versa. Whenever an edge

is selected for rewiring, the node from which it will be cut is chosen at random. The

nodes are initialized with random values, x ∈ [−15 : 15], y ∈ [−15 : 15], z ∈ [−5 : 15].

These values roughly correspond to the size of the chaotic attractor. We simulate the

system for 10000 time units and check the final state of the system. There are three

possibilities: (i) the system synchronizes, (ii) it doesn’t synchronize, and (iii) it goes to

infinity. We vary the rewiring frequency f from low to high and calculate the percentage

of initial conditions that arrive at the synchronized state. Large f means that the edges

are rewiring very quickly whereas a low value of f implies that the network is almost

static.
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8.3 Results

We simulate the above system for various fraction of random links p and coupling

strengths K and further average out the results over different realizations of Watt Stro-

gatz networks. Fig 8.2 shows the fraction of initial conditions arriving at the synchronous

state for different f,K, p and k. It can be seen that the range of coupling strength over

which the synchronous state is stable increases considerably as the rewiring frequency in-

creases. Also, it is easily inferred that when the network approaches the global limit

(k → N) the change in connections will not affect the dynamics, while the effects of

time-varying links will be most pronounced in networks with lower number of neighbors

k.
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Figure 8.1: Degree distribution in WS networks.

Further notice that, while the range of synchronization is largest when the fraction of

random links p is high, the time-varying nature of the links starts to affect networks with

low p at lower rewiring frequencies. In this sense networks with low p are more sensitive to

dynamic connections. To further illustrate this point, we calculate the BS of the network

for fixed p and f (see Fig. 8.3). This is given as the average of the number of initial

conditions arriving at the synchronized state for all possible values of coupling strengths
1 When rewiring frequency is close to 0, i.e. network is almost static, BS is higher for

1The values of BS obtained in this way are slightly lower than those obtained in [71], as in our case
the average considers all coupling strengths whereas the upper and lower bounds for coupling strengths
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Figure 8.2: Color indicates the fraction of initial conditions arriving at the synchronized
state for various rewiring frequencies f and coupling strengths K. Fraction of random
links p is 0.2 (left panels) and 0.8 (right panels) and number of nearest neighbors on each
side k is 2 (top panels) and 4 (bottom panels).

low values of p as reported in [71]. As rewiring frequency increases, BS for low p values

rises rapidly, whereas the rise in BS for high p values is slower, indicating that BS for

small world networks (low p) approaches to that of fast rewiring networks even for slowly

rewiring networks, whereas a much higher rewiring frequency is needed for random (high

p) networks to reach the level of fast rewiring networks. Notice also that at very fast

rewiring times the basin stability is larger for networks with more spatial randomness, i.e.

high p. So for networks where the connections change infrequently small-world networks

are more significantly affected than completely random networks, while for networks that

change rapidly random networks yield larger synchronization regions than small-world

networks.

The time taken to reach the synchronized state is plotted in Fig 8.4 and it can be

seen that more randomness (i.e. higher p) and higher rewiring frequency result in lower

synchronization times. In Fig 8.2 we observe that the fraction of initial conditions arriving

at the synchronized state decreases for intermediate values of rewiring frequencies in the

were obtained from the linear stability analysis based on master function approach in [71]. Results are
qualitatively the same in both cases.
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Figure 8.3: The fraction of initial conditions which arrive at the synchronized state for
different rewiring frequencies averaged over different coupling strengths (0 < K < 0.6 for
k = 4).

k = 2 case. This is so because in this range of rewiring frequencies, the time taken to

arrive at the synchronized state increases (see Fig 8.5) and many initial conditions neither

synchronize nor go to infinity, but continue to stay in the unsynchronized state for long

times. These timescales correspond to the transition from static to dynamic behavior.

For frequencies lower than these, the time varying character of the networks is lost and

the dynamics is essentially that of static networks. Note that in the on-off coupling model

discussed in [103], the dynamics can be determined by Lyapunov exponents for similar

time scales (relating f ∼ 1/T ).

To get further insight, we plot the fraction of initial conditions that synchronize as a

function of coupling strength and rewiring frequency in Fig. 8.6. We see that this fraction

primarily depends on coupling strength, with randomness p or rewiring frequency having

little effect on this.

It was reported in [96, 112, 103] that a time varying network can be approximated
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Figure 8.4: Time taken to reach the synchronized state for various coupling strengths,
and rewiring frequencies at p = 0.2 (top) and p = 0.8 (bottom) for k = 4. It can be seen
that fast rewiring networks take much lower time to reach the synchronized state.

by the time averaged network for sufficiently fast rewiring. In our case, for the time

averaged network the entries in the Laplacian matrix will be (1−p) for nearest neighbors

and −2kp/(N − 2k − 1) for distant nodes. Now we follow the master stability function

approach [65, 66] and find the coupling range for which the synchronous state is stable.

It is stable against local perturbations if the coupling strength is chosen from the interval

K ∈ (α1/λmin, α2/λmax) where λmin and λmax are the minimum and maximum non-zero

eigenvalues of the Laplacian matrix.

In Fig. 8.7, we plot the range of the coupling strength for which the synchronized

state is stable according to master stability approach. We can see that the coupling range

for which the synchronous state is stable widens considerably for the averaged network

as compared to the static network. Further, the difference between static and averaged
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Figure 8.5: Time taken to reach the synchronized state for various coupling strengths,
and rewiring frequencies at p = 0.8 and k = 2. It can be seen that synchronization time
increases for intermediate values of rewiring frequencies f ∼ 0.1.

cases is maximum when number of neighbors is smallest. All these results are consistent

with those obtained using BS (see fig. 8.2).

To measure how close the effective Laplacian is to the time averaged case at various

rewiring frequencies, we define an average matrix parameter as,

r = (Kmax
tv −Kmax

s )/(Kmax −Kmax
s ) (8.2)

where Kmax
tv is the maximum coupling strength for which even a single initial condition

settles at the synchronized state for that particular value of rewiring time T and Kmax
s is

the coupling strength for which the synchronized state is stable in case of a static network.

Kmax is the maximum value of Kmax
tv . The variation of this averaged matrix parameter

with the rewiring frequency shows a linear increase in the averaged matrix parameter

with log of the rewiring frequency (Fig. 8.8). Further, as the SW parameter p increases,

the critical value of the rewiring frequency at which R starts increasing, also increases.

Note that the maximum value of the coupling strength for which the synchronized state is

stable is α2/λmax from the MSF approach. So the maximum coupling strength upto which

the synchronous state is stable is directly related to the largest non−zero eigenvalue of

the effective Laplacian matrix. Recently it was shown that in case of temporal networks
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Figure 8.6: Fraction of initial conditions arriving at the synchronized state for various
coupling strengths. Color indicates the frequency of rewiring.

[110], the effect of timescale of interactions is least on fast eigenmodes. In this case, as

the maximum eigenvalue of the time averaged SW networks is more than the maximum

eigenvalue of time averaged random networks, we can say that the eigenmodes of the

time averaged SW networks are faster as compared to eigenmodes of the time averaged

random networks. So the effect of rewiring is less on eigenmodes of time averaged SW

networks as compared to those of random networks. Thus the time averaged character

can be retained even at slower rewiring for the case of SW networks.

Stability in the on-off model We have also studied the on-off coupling model

[103], in order to gain further insights into the power of the BS approach in time-varying

networks. In this model, the network is switched ”on” if nT < t < (n + θ)T and ”off”
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master stability function approach. For the static case, the values have been obtained by
averaging over 10000 different networks.

if (n + θ)T < t < (n + 1)T for n = 0, 1, 2, ... and 0 6 θ 6 1. θ = 0 implies that the

network is always off and all nodes are isolated, whereas if θ = 1, the nodes are always

connected. For other values of θ the connections become on and off with time period

T . It was shown in [103] that the time scale T is of critical importance for the network

dynamics. If T is very small, the stability of the synchronized state can be predicted by a

static time averaged coupling. For very large T , stability can be explained by Lyapunov

exponents. When T is of the order of the timescale of nodal dynamics, not only the region

of stability increases but the time taken to reach the synchronized state also decreases.

It was shown that for intermediate values of T , the traditional bound for synchronization

due to short-wavelength bifurcations (SWBs) disappears and more stable regions emerge.
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This analysis, based on linear stability of the synchronous state is valid only for small

perturbations. To understand whether the linear stability analysis can accurately predict

the stability for large perturbations also, we calculate the BS (calculated as the number

of initial conditions that arrive at the synchronous state) for an on−off coupling model

by taking Rössler oscillators on WS networks. The results are shown in Fig. 8.9. As

can be seen in the left panels, the linear stability rises and falls gradually with increasing

coupling strength, whereas the BS (right panels) rises smoothly for low values of coupling

and then drops sharply. Further, in bottom panel we see that whereas linear stability

analysis predicts that the upper bound for synchronous state disappears, but from the BS

we find that it disappears only for the synchronous state corresponding to low θ values.

For the synchronous state corresponding to high θ values, the BS approaches zero for high

coupling strengths. Furthermore, the BS is much higher for intermediate time−scales.

Thus for time varying networks linear stability analysis alone is not sufficient and we need

to calculate the BS also to accurately predict the stability of the synchronized state.

8.4 Conclusion

We have studied the stability of synchronous state in dynamic WS networks. In line

with previous results [96, 112], we have found that for sufficiently fast rewirings, the time

varying networks can be approximated by static time averaged networks. To the best of

99



T=6 

 0  5  10  15  20  25  30  35  40

α

 0

 0.2

 0.4

 0.6

 0.8

 1

Θ

-1

-0.8

-0.6

-0.4

-0.2

 0

T=3

 0

 0.2

 0.4

 0.6

 0.8

 1

Θ

-2

-1.6

-1.2

-0.8

-0.4

 0

T=0.01

 0

 0.2

 0.4

 0.6

 0.8

 1
Θ

-0.8

-0.6

-0.4

-0.2

 0

k=4, p=0.2, T=6

 0  0.5  1  1.5  2  2.5  3  3.5  4

Coupling strength, K

 0

 0.2

 0.4

 0.6

 0.8

 1

k=4, p=0.2, T=3

 0

 0.2

 0.4

 0.6

 0.8

 1

k=4, p=0.2, T=0.01

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 8.9: Maximum Lyapunov exponent (left panels) for the on-off coupling model
obtained from linear stability analysis for T = 0.1 (top), T = 3 (middle) and T = 6
(bottom). Colored regions correspond to cases when maximum Lyapunov exponent is
negative, i.e. the synchronized state is stable. The panels on right show the BS of WS
networks for p = 0.2. The results are qualitatively same for other values of p also.

our knowledge, till now there is no method of finding out how fast the rewiring should

be in order to consider it sufficiently fast. Using the BS framework, we have been able

to estimate the rewiring frequency at which the network can be approximated by the

static time average. Further we also able to get insight into how the transition from

static to time averaged case takes place. We showed how the stability range changes at

different rewiring timescales. Our central result from the extensive numerical simulations

is that in case of small world networks the transition to time averaged case occurs at

much slower link rewiring frequency compared to the random networks. We found that

not only the BS of small world networks highest in static cases as reported earlier, but

they approach the time averaged coupling case fastest. That is, their BS approaches that

of time averaged case even for very slow rewiring time periods. It was observed that
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if the links are rewiring rapidly, random networks yield larger synchronization regions

than small-world networks.Further, it was found that the impact of rewring is maximum

when the number of neighbors is less. Lastly, faster rewiring networks were found to

synchronize quickly.
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Chapter 9

Conclusions and future directions

In this thesis, we have studied the emergent patterns in nonlinear systems and the possible

use of nonlinear dynamical systems in designing computing systems capable of functioning

robustly in noisy environments. We have explicitly shown that a nonlinear system can

produce a completely consistent logic as well as Set-Reset latch operation on two inputs,

streaming in any random sequence. We have found that for very small or very large

noise strengths the system does not yield a reliable output. However, in a reasonably

wide band of moderate noise strength, the system produced the desired output very

consistently. Furthermore, the response of the system could be easily switched from

memory to logic operations by varying the bias in the system. It has been shown that

noise can reduce the latency in the response of the system to switched inputs.

We have also shown through numerics and circuit experiments, that it is possible

to obtain a logic response exactly similar to LSR, without the presence of noise. Using

only a periodically driven bistable system, we have produced a logical combination of two

inputs streaming in any random sequence. For very small or very large forcing frequencies

the system did not yield any consistent logic output, but in a wide band of moderate

frequencies the system produced the desired logical output very reliably. Furthermore,

the logic response of the system could be easily switched from one logic gate to another

by varying the bias in the system. Thus it has been shown that noise is not a necessary

ingredient to facilitate changes of state that reliably mirror logical outputs.

Further, we have explicitly shown that by utilizing the constructive interplay of noise

and periodic forcing it is possible to obtain a logic response similar to LSR even when

the strength of noise is lower then the minimum threshold. This enables us to use the

LSR elements in sub-threshold noise conditions. Moreover, by coupling the LSR element

103



to another LSR element with a lower potential barrier we can make the systems adapt

to varying noise intensity, so that its operation is robust even in high noise conditions.

The results that we have presented are quite general, and can potentially be extended

to other systems which show enhanced performance in the presence of noise, such as

typically observed in generalized stochastic resonance phenomena.

We have also demonstrated that the performance of a VCSEL based stochastic logic

gate can be enhanced by addition of a periodic signal in the orthogonal LP mode. This

enhancement has been observed for both the optoelectronic configuration as well as the

all optical configuration and both in form of increase in the optimal noise window as well

as decrease in minimum bit time.

So it is evident that “LSR Elements” can reliably function as logic and memory

devices even for sub-threshold signals, thus consuming very low power. These “LSR

Elements” can potentially act as building blocks of futuristic “Smart Computing Devices”.

Potentially, such devices will not only operate robustly in noisy environments, but can also

be capable of optimal utilization of their resources by configuring their “LSR Elements”

into latches, or any of the logic gates, depending on the requirements of the task being

performed. For example, if we are performing tasks requiring more computational power

like running a code, then these computing devices will morph most of the LSR elements

to logic gates, whereas in case of tasks requiring memory like plotting large values of

data, LSR elements will be morphed into memory enabling efficient use of resources.

Furthermore, it is conceivable that devices based on such elements can potentially help

in reducing boot times thus achieving what is commonly called “instant boot”. This can

be accomplished by morphing large number of LSR elements into memory at the time of

shut down and start up. This significant increase in memory will enable us to keep most

of the data required for the applications readily accessible, paving way for faster boot

times.

In future, we want to demonstrate LSR in other bistable and multi-stable systems

and realize some other basic operations like adder. We would try to obtain different

operations in parallel by measuring the state of different state variables. LSR appears to

be a fairly generic phenomenon and we plan to demonstrate it with chaotic signals also.

In the second part of the thesis, we have shown that when bistable elements are

coupled and a bias is applied, even a very small number of heterogeneous inputs can

drag the collective response towards the stable state of the minority inputs. In our

explicit demonstration we demonstrated this phenomenon in mean−field coupled Schmitt
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triggers. We have shown that the minimum heterogeneity that can be detected scales

with ratio of threshold voltage to source voltage of the Schmitt triggers, and can be be

brought down to the limit of single bit detection.

We also described a simple model mimicking disease spreading on a network with dy-

namically varying connections, and investigated the dynamical consequences of switching

links in the network. We have observed that the disease cycles get more synchronized, in-

dicating the onset of epidemics, as the underlying network changes more rapidly. Further,

for periodic switching of links, we observed dynamical features arising from the interplay

of the time-scales of the network changes and that of the emergent synchronized infection

oscillations.

Lastly, we have studied the stability of synchronous state in dynamic WS networks.

We have found that for sufficiently fast rewirings, time varying networks can be approxi-

mated by static time averaged networks. To the best of our knowledge, till now there is no

method of finding out how fast the rewiring should be in order to consider it sufficiently

fast. Using the BS framework, we have been able to estimate the rewiring frequency at

which the network can be approximated by the static time average. Further we have got

insights into how the transition from static to time averaged case takes place. We have

shown how the stability range changes at different rewiring timescales. Our central result

from the extensive numerical simulations is that in case of SW networks the transition

to the time averaged case occurs at a much slower link rewiring frequency compared

to random networks. We have found that not only the BS of SW networks is highest

in static cases as reported earlier, but they approach the time averaged coupling case

fastest. That is, their BS approaches that of the time averaged case even for very slow

rewiring time periods. It has been observed that if the links are rewiring rapidly, random

networks yield larger synchronization regions than SW networks. Further, we have found

that the impact of rewiring is maximum when the number of neighbors is less. Lastly,

faster rewiring networks have been uncovered to synchronize quickly.

In future, we would like to further extend our work on stability of synchronized states

in complex networks which is relevant across fields like study of neurons in the brain,

power grids, climate systems, social networks, communication, biological systems, spread

of epidemics, computer networks, world wide web etc. Specifically, we would like to

explore the stability of synchronous states in complex networks using BS framework.

Our emphasis will be on comparing the linear stability and BS and then possibly study

the limits of BS. Till now we have studied chaotic systems on small world networks. Next

we plan to explore other systems like continuous systems, discrete systems and excitable
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systems and see if there are any differences and possible reasons for those differences.

We will also check for other network configurations like scale free and random net-

works. We want to see the changes when we vary a single network parameter and the

network varies between Erdos Renyi networks on one side to Albert Barabasi on the the

other. We plan to explore the effect of delay in the dynamical equations. Another point

to explore will be the changes in BS when perturbations come from different distributions

like uniform, Gaussian or long tailed distributions. Our emphasis will be on estimating

the size and shape of sync basins and if it is theoretically possible to predict the behavior

in different cases.

Briefly, we plan to build a stronger theoretical and mathematical framework for ana-

lyzing complex networks by BS analysis along with the time tested linear stability anal-

ysis. We also want to explore other diverse complex systems and ways to control the

emergent spatiotemporal dynamics thereby contributing toward the growing understand-

ing of complex systems and their control.
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