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Chapter 1

Introduction

Classically, the isometries of the real hyperbolic space Hn
R are classified as elliptic,

parabolic and hyperbolic according to the dynamics of their fixed points. In two and

three dimensional real hyperbolic geometries, this trichotomy of the isometries are clas-

sified algebraically in terms of their traces, cf. [4, Theorems 4.3.1 and 4.3.4]. There have

been several attempts to generalize this algebraic classification in higher dimensional real

hyperbolic geometries, for example, see [1, 9, 23, 51, 52]. Similar trichotomy based on the

fixed-point dynamics of the isometries is also valid in the complex and the quaternionic

hyperbolic geometries. In order to understand the geometry and dynamics of isometries

in these geometries, it is natural to ask the following problem:

Problem 1. Obtain algebraic criteria to classify isometries of the n-dimensional quater-

nionic and complex hyperbolic spaces?

That is, the problem is to obtain generalization of [4, Theorems 4.3.1 and 4.3.4] in

these geometries. In two-dimensional complex hyperbolic geometry similar criterion is

known by the work of Goldman [18, Theorem 6.2.4], also see [17]. Cao-Gongopadhyay,

Gongopadhyay [7, 24] have obtained a counterpart of Goldman’s theorem in two and

three dimensional quaternionic hyperbolic geometries. In chapter-3, we have generalized

these results to obtain an algebraic criterion to classify isometries of the n-dimensional

quaternionic hyperbolic space for any n. In chapter-4, we use the coefficients of the

characteristic polynomial to give a dynamical classification of unitary matrices preserving

a non-degenerate Hermitian form. As a special case, this gives us algebraic criteria to
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classify isometries of the n-dimensional complex hyperbolic space.

In order to illustrate and motivate the main results, let us work through the well

known example of 2 × 2 matrices. In this case, if A ∈ SU(p, q) with p + q = 2 then the

characteristic polynomial of A is

χA(X) = X2 − τX + 1

where τ = tr(A), which is real. Consider the resultant R(χA, χ
′
A), which determines

when χA(X) has a repeated root. Here the resultant is 4− τ2 and we have

(i) A is elliptic if and only if R(χA, χ
′
A) = 4− τ2 > 0.

(ii) A is parabolic (or ±I) if and only if R(χA, χ
′
A) = 4− τ2 = 0.

(iii) A is loxodromic if and only if R(χA, χ
′
A) = 4− τ2 < 0.

This argument was generalised by Goldman [18, Theorem 6.2.4] to the case p+q = 3;

see also Parker [39]. Goldman’s work has been generalised in a different direction by

Navarrete [38] who considers elements of SL(3,C). This is related to the theory of

complex Kleinian groups, see [5]. The classification of elements of SL(2,R), SL(2,C) or

SU(2, 1) has been useful in many contexts, see [19], [26] or [39]. Our initial motivation

to this work was to provide initial tools for generalisation of these works to SU(n, 1)

for n ≥ 3. As we did so, we realised that it is natural to consider Hermitian forms of

arbitrary signature. First, we drive the classification for SU(p, q), p, q arbitrary, and then,

we consider the special case where p + q = 4. This later case gives us a foundation tool

to initiate the study of the three dimensional complex hyperbolic geometry.

There is a long tradition of work to study two-generator discrete subgroups of SL(2,R)

and SL(2,C) in connection with Fuchsian and Kleinian groups. The study goes back to

the work of Vogt [50] and Fricke [16] who proved that a non-elementary two-generator

discrete free subgroup is determined up to conjugation by the traces of the generators

and their product. This result was incremental in the development of Teichmüller theory

and in particular, it was used to provide Fenchel-Nielsen coordinates on the Teichmüller

space. For an up to date exposition of this work see Goldman [19].
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In an attempt to define analogous Fenchel-Nielsen coordinates for complex hyper-

bolic quasi-Fuchsian representations of surface groups, Parker and Platis [41, Theorem

7.1] proved a generalization of the result of Fricke-Vogt for two-generator discrete free

subgroups of SU(2, 1) with loxodromic generators. Parker and Platis followed an ap-

proach that uses traces of the generators and a point on the so called Koranyi-Riemann

cross-ratio variety. In another approach, it follows from the work of Lawton [33], Wen [53]

and Will [54, 55] that a two-generator Zariski dense subgroup of SU(2, 1) is determined

by traces of the generators and the traces of three more compositions of the generators.

For a survey of these results see Parker [39]. In chapter-5, we obtain a generalization of

the result of Fricke-Vogt for two-generator subgroups of SU(3, 1) generated by loxodromic

elements. This also generalizes the work of Parker and Platis [41] to some extent.

1.1 An overview of the thesis

The key idea used in [7, 24] involves an embedding of the quaternions into the matrix ring

M2(C), and, classical analysis of nature of roots of a real cubic or biquadratic equations.

In chapter-3, generalizing this approach to arbitrary dimension, we have

Theorem 1.1.1. [28, Theorem 3.1] Let A be an element in Sp(n, 1). Suppose AC be the

corresponding element in GL((2(n+1),C). Let SA = {∆1, · · · ,∆n+1} be the discriminant

sequence of gA(t), where ∆n+1 = ∆ is the usual algebraic discriminant of gA(t). Let D

be the discriminant of the minimal polynomial of AC. Then the following holds.

1. A is regular hyperbolic if and only if ∆ < 0.

2. A is regular elliptic if and only if ∆ > 0.

3. A is semi-regular hyperbolic if and only if ∆ = 0 and the number of sign changes

of the revised sign list of SA is exactly one.

4. A is screw hyperbolic if and only if ∆ = 0 and gA(t) has a real root λ such that

|λ| > 2.

5. A is a strictly hyperbolic if and only if gA(t) has a real root λ such that |λ| > 2 and

for all m ≤ n− 2, g
(m)
A (2) = 0.

3



6. A is elliptic or parabolic if and only if ∆ = 0 and there is no sign change in the

number of revised sign list of SA. Further A is parabolic if D = 0; otherwise it is

elliptic. Further A is simple elliptic if the number of non-vanishing members of the

revised sign list is exactly one.

For terminology used in the above theorem, see page 12, chapter-2 and pages 21-22,

chapter-3.

In chapter-4, our aim is to generalise Goldman’s classification to higher values of

p + q = n. First, we consider arbitrary n and give a general result, Theorem 1.1.2.

In particular regular means that the eigenvalues of A are distinct. A is said to be k-

loxodromic means that A has k pairs of distinct eigenvalues related by inversion in the

unit circle and all other eigenvalues lie on the unit circle, so regular 0-loxodromic maps

are elliptic.

Theorem 1.1.2. [27, Theorem 3.1] Let A ∈ SU(p, q). Let R(χA, χ
′
A) denote the resultant

of the characteristic polynomial χA(X) and its first derivative χ′A(X). Then for m ≥ 0,

we have the following.

(i) A is regular 2m-loxodromic if and only if R(χA, χ
′
A) > 0.

(ii) A is regular (2m+ 1)-loxodromic if and only if R(χA, χ
′
A) < 0.

(iii) A has a repeated eigenvalue if and only if R(χA, χ
′
A) = 0.

An immediate corollary of Theorem 1.1.2 is a classification for SU(p, 1). Since q = 1,

if A is loxodromic it must be 1-loxodromic. This simplifies the classification:

Corollary 1.1.3. [27, Corollary 3.2] Let A ∈ SU(p, 1). Let R(χA, χ
′
A) denote the re-

sultant of the characteristic polynomial χA(X) and its first derivative χ′A(X). Then we

have the following.

(i) A is regular elliptic if and only if R(χA, χ
′
A) > 0.

(ii) A is regular loxodromic if and only if R(χA, χ
′
A) < 0.

(iii) A has a repeated eigenvalue if and only if R(χA, χ
′
A) = 0.
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Secondly, we give a much more detailed description in the case p + q = 4. Here the

characteristic polynomial is

χA(X) = X4 − τX3 + σX2 − τX + 1

where τ = tr(A), which is complex, and σ =
(
tr2(A) − tr(A2)

)
/2, which is real. In this

case, the locus where R(χA, χ
′
A) = 0 was studied by Poston and Stewart [46] following

earlier work by Chillingworth [12]. They named this object the holy grail. As a subset

of three dimensional space, parametrised by (τ, σ) ∈ C × R, the holy grail comprises a

ruled surface together with four space curves, called whiskers. We devote some space

to different ways of parametrising the holy grail and the different components of its

complement. The parametrisation of the corresponding object (a deltoid) in the case

of p + q = 3 has been useful when studying complex hyperbolic representation spaces

(see [22], [43] or the survey [39]). We believe that the results in this direction will be

foundational to the generalisation of these theorems to higher dimensions. We prove the

following

Theorem 1.1.4. [27, Theorem 4.9] Let A ∈ SU(p, q) where p+ q = 4 and let τ = tr(A)

and σ =
(
tr2(A) − tr(A2)

)
/2. Let χA(X) be the characteristic polynomial of A and let

R(χA, χ
′
A) be the resultant of χA(X) and χ′A(X). Then

(i) A is regular 2-loxodromic if and only if R(χA, χ
′
A) > 0 and

min
{
<(τ)2 − 4σ + 8, =(τ)2 + 4σ + 8, 6− σ, 6 + σ

}
< 0.

(ii) A is regular 1-loxodromic if and only if R(χA, χ
′
A) < 0.

(iii) A is regular elliptic if and only if R(χA, χ
′
A) > 0 and

<(τ)2 − 4σ + 8 > 0, =(τ)2 + 4σ + 8 > 0, −6 < σ < 6.

(iv) A has a repeated eigenvalue if and only if R(χA, χ
′
A) = 0.

We also consider the automorphisms of anti de Sitter space, which may be canonically

identified with PSL(2,R). This gives an identification between the automorphisms of
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anti de Sitter space and PSL(2,R)×PSL(2,R). By translating such an automorphism to

PSO(2, 2) we can use our classification to determine the dynamics. Specifically we have

Theorem 1.1.5. [27, Theorem 5.4] Let (A1, A2) ∈ PSL(2,R) × PSL(2,R) be an auto-

morphism of anti de Sitter space. Then

(i) (A1, A2) is regular 2-loxodromic if at least one of A1 and A2 is loxodromic, and

also tr2(A1) and tr2(A2) are distinct and neither of them equals 4.

(ii) (A1, A2) is regular elliptic if A1 and A2 are both elliptic and tr2(A1) does not equal

tr2(A2).

(iii) (A1, A2) is not regular if tr2(A1) = 4 or, tr2(A2) = 4 or tr2(A1) = tr2(A2).

In chapter-5, we are motivated by the approach of Parker-Platis [41]. However for two-

generator subgroups in SU(3, 1), traces and cross-ratios of the generators are not sufficient

to determine the subgroup up to conjugacy. For the determination of two-generator

subgroups, one needs to look for more conjugacy invariants of the pair of generators. For

this purpose, we use new invariants which are generalizations of Goldman’s eta invariants.

We also use Goldman’s eta-invariants to derive a sufficient condition for a two-generator

discrete, free loxodromic subgroup 〈A,B〉 to have an invariant C2-chain.

Let C3,1 be the vector space C4 equipped with a non-degenerate Hermitian form of

signature (3, 1). Then H3
C is the projectivization of negative vectors in C3,1. The bound-

ary ∂H3
C is the projectivization of null vectors. Following Goldman [18] recall that a

k-dimensional complex totally geodesic subspace of H3
C or a Ck-plane is the projectiviza-

tion of a copy of Ck,1 in C3,1, k = 1, 2. A C1-plane is simply called a complex geodesic.

A Ck-chain is the boundary of a Ck-plane in H3
C; a C1-chain is simply called a chain.

A positive vector c is polar to a C2-plane C if the lift of C in C3,1 is the orthogonal

complement of c. The positive vector c is polar to a C2-chain L if L is the boundary of

a C2-plane C that is polar to c.

For four distinct points z1, z2, z3 and z4 in ∂H3
C the Koranyi-Riemann cross-ratio is

defined by:

X(z1, z2, z3, z4) =
〈z3, z1〉〈z4, z2〉
〈z4, z1〉〈z3, z2〉

,
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where zi is lift of zi in C3,1. For more details on cross ratios, see [18]. We extend the

above definition to define invariants for the “generic case” that includes three null vectors

and one positive vector in C3,1. For a loxodromic element A, we denote by aA, rA the

null eigenvectors of A corresponding to the fixed points and let xA and yA correspond

to the positive eigenvectors of A.

Let A, B be two loxodromic elements in SU(3, 1) with distinct fixed points. Then

corresponding to the fixed points there are three cross-ratios Xk(A,B), k = 1, 2, 3 that

determines the four points uniquely. The collection of all such cross-ratios corresponding

to pair of loxodromic elements form a variety, called the cross-ratio variety. It follows

that every point in this variety has five real degrees of freedom. For more details on cross

ratios in the geometry of rank one symmetric spaces, see Platis [44]. The pair (A,B) is

called non-singular if

(i) A and B are loxodromics without a common fixed point.

(ii) The fixed points of A and B do not lie on a common C2-chain.

(iii) The fixed point set of A is disjoint from at least one of the C2-chains polar to the

positive eigenvectors of B and, the fixed point set of B is disjoint from at least one

of the C2-chains polar to the positive eigenvectors of A.

The free subgroup 〈A,B〉 is non-singular if the generating pair is non-singular. In partic-

ular, a non-singular subgroup is Zariski-dense in SU(3, 1). To a non-singular pair (A,B),

we associate a pair of complex numbers αi(A,B) and βj(A,B) which are given by the

following:

α1(A,B) = X(rA, aA, xB, aB), α2(A,B) = X(rA, aA, yB, aB).

β1(A,B) = X(rB, aB, xA, aA), β2(A,B) = X(rB, aB, yA, aA).

We shall refer to α1(A,B) or α2(A,B) by α-invariant and, β1(A,B) or β2(A,B) by

β-invariant. We prove the following:

Theorem 1.1.6. Let A, B be two loxodromic elements in SU(3, 1) such that they gen-

erate a non-singular subgroup 〈A,B〉. Then 〈A,B〉 is determined up to conjugacy by the

following parameters:
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tr(A), tr(B), σ(A), σ(B), Xk(A,B), k = 1, 2, 3, one non-zero α-invariant and

one non-zero β-invariant, where tr(A) = trace(A), σ(A) = 1
2(tr2(A)− tr(A2)).

In the parameter space associated to 〈A,B〉, the parameters tr(A), tr(B), α and β

are complex numbers, σ(A), σ(B) are real numbers, (X1,X2,X3) live on the cross-ratio

variety, which is 5 dimensional. Thus we need a total of (4×2+2×1+5) = 15 dimensional

real parameters to specify 〈A,B〉 up to conjugacy.

Suppose F2 is a free group of rank two. Let F2 = 〈m,n〉. Let us consider the SU(3, 1)-

representation variety of F2: M = Hom(F2, SU(3, 1))//SU(3, 1). Let Rlox be the subset

of M defined by

Rlox = {ρ : F2 → SU(3, 1) | ρ(m) and ρ(n) are loxodromic}.

For i, j ∈ {1, 2}, let

Rloxij = {ρ ∈ Rlox | (ρ(m), ρ(n)) is non-singular and ηi(ρ(m), ρ(n)) 6= 0 6= νj(ρ(m), ρ(n))}.

Let

Rloxo = {ρ ∈ Rlox | (ρ(m), ρ(n)) is non-singular}, thus

Rloxo = Rlox11 ∪Rlox12 ∪Rlox21 ∪Rlox22 .

Let Mlox
ij = Rloxij //SU(3, 1). Then Theorem 1.1.6 classifies the representations of Mlox

ij .

Corollary 1.1.7. Let ρ : F2 → SU(3, 1) be a representation such that ρ(m), ρ(n) are

loxodromic and generates a non-singular subgroup of SU(3, 1). For some i, j ∈ {1, 2}, let

ηi(ρ(m), ρ(n)) 6= 0 6= νj(ρ(m), ρ(n)). Then there exists two non-zero complex parameters

αi and βj such that these along with coefficients of the characteristic polynomials of ρ(m),

ρ(n) and a point on the cross-ratio variety completely determine ρ up to conjugacy.

The real dimension of the parameter space associated to Mlox
ij is 15.

8



Chapter 2

Preliminaries

2.1 Polynomials and their roots

Theorem 2.1.1. Let A ∈ Mn(C) has characteristic polynomial χA(x) = xn + s1x
n−1 +

· · ·+sn and Tk =Trace of Ak. Then the coefficients si of χA(x) are given by the following

recursion:

s1 = −T1, s2 = −1
2(s1T1 + T2), · · · , sn = − 1

n(sn−1T1 + sn−2T2 + · · ·+ Tn).

Definition 2.1.2. We define the resultant of two polynomials, p(X) = arX
r+ar−1X

r−1+

· · · + a1X + a0, q(X) = bsX
s + bs−1X

s−1 + · · · + b1X + b0 as the determinant of the

(r + s)× (r + s) matrix defined as follows.

R(p, q) = det



ar ar−1 · · · a0 0 0 · · · 0

0 ar · · · a1 a0 0 · · · 0
...

...
...

...
...

...

0 0 · · · 0 ar ar−1 · · · a0

bs bs−1 · · · b0 0 0 · · · 0

0 bs · · · b1 b0 0 · · · 0
...

...
...

...
...

...

0 0 · · · 0 bs bs−1 · · · b0


.

Definition 2.1.3. Given a polynomial f(x) = a0x
n + a1x

n−1 + · · · + an, write the first

derivative of f(x) as

f ′(x) = 0.xn + na0x
n−1 + · · ·+ an−1.
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The discriminant matrix of f(x) is given by R(f, f ′) and we have,

Disc(f) =



a0 a1 a2 · · · an

0 na0 (n− 1)a1 · · · an−1

0 a0 a1 · · · a0 an

0 0 na0 · · · 2an−2 an−1

· · · · · ·
· · · · · ·

a0 a1 · · · an
0 na0 · · · an−1


.

Definition 2.1.4. For k = 1, · · · , n, let ∆k(f) or simply, ∆k, denote the determinant

of the submatrix of Disc(f) formed by the first 2k rows and first 2k columns. Note that

∆n = ∆ = det(Disc(f)) The discriminant sequence of f(x) is defined to be the sequence

S = {∆1,∆2, · · · ,∆n}.

Definition 2.1.5. The list [sign(∆1), · · · , sign(∆n)] is called the sign list of the dis-

criminant sequence S.

Definition 2.1.6. Given a sign list [s1, s2, · · · , sn], define the revised sign list as follows:

If [si, si+1, · · · , si+j ] is a section of the given list, where

si 6= 0, si+1 = si+2 = · · · = si+j−1 = 0, si+j 6= 0,

then we replace the subsection [si+1, · · · , si+j−1] by

[−si,−si, si, si,−si,−si, si, si, · · · ]

i.e. let ei+r = (−1)[
r+1
2

]si for r = 1, 2, · · · , j − 1. Otherwise let ek = sk. This gives us

the revised sign list [e1, e2, · · · , en].

Theorem 2.1.7. [29, Theorem 1] Given a polynomial f(x) with real coefficients

f(x) = a0x
n + an−1x

n−1 + · · ·+ an,

if the number of the sign changes of the revised sign list of

{∆1(f),∆2(f), · · · ,∆n(f)}
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is p, then the pairs of distinct conjugate imaginary roots of f(x) equal p. Furthermore,

if the number of non-vanishing members of the revised sign list is q, then the number of

distinct real roots of f(x) equals q − 2p.

Theorem 2.1.8. [14, Number of Roots Theorem] Let Dn = (−1)
n(n−1)

2 an−20 n−n∆n.

Suppose the roots of f(x) are distinct. Then the number of real roots of f(x) is:

(1) if n is odd, congruent to 1 or 3 modulo 4 according as Dn > 0 or Dn < 0.

(2) if n is even, congruent to 0 or 2 modulo 4 according as Dn and the leading

coefficient of f(x) have the same or opposite signs.

2.2 Hyperbolic spaces and their isometry groups

Definition 2.2.1. The division ring of quaternions is a 4-dimensional division algebra

over R with basis {1, i, j, k} satisfying i2 = −1 = j2, ij = k = −ji. We denote it by H.

For a quaternion z = a + bi + cj + dk, a, b, c, d ∈ R, we define z̄ = a − bi − cj − dk so

that <(z) = (z + z̄)/2 and ‖z‖2 = a2 + b2 + c2 + d2 = zz̄.

Lemma 2.2.2. Two quaternions z, w are conjugate iff <(z) = <(w) and ‖z‖ = ‖w‖.

Lemma 2.2.3. Let V be a right vector space over H and T be an invertible linear

transformation of V . Then the eigenvalues of T occur in similarity classes.

Proof. For v ∈ V , λ ∈ H∗, suppose Tv = vλ, i.e. λ is a (right) eigenvalue of T .

For µ ∈ H∗, T (vµ) = (vµ)µ−1λµ, i.e. if v is an λ-eigenvector, then vµ ∈ vH is an

µ−1λµ-eigenvector. This establishes the result.

Definition 2.2.4. Let λ be a (right) eigenvalue of an invertible linear transformation of

V . Then the one-dimensional right subspace of V spanned by v will be called λ-eigenline.

Remark 2.2.5. Each similarity class of eigenvalues contains a unique pair of complex

conjugate numbers. We will denote the similarity class of an eigenvalue with its complex

representative [reiθ], 0 ≤ θ ≤ π.

Theorem 2.2.6. [57, Theorem-6.3] Every n× n quaternionic matrix A is conjugate to

an n× n complex matrix Ac.
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Definition 2.2.7. The multiplicity of the similarity class [reiθ] of eigenvalues of A is

defined to be algebraic multiplicity of an eigenvalue reiθ of Ac, where Ac is n×n complex

matrix conjugate to A.

Remark 2.2.8. The eigenvalues are no more conjugacy invariants for T , but the simi-

larity classes of eigenvalues are conjugacy invariant.

Definition 2.2.9. Let F = C or H and V be a (right) n-dimensional vector space over

F. Then a Hermitian form 〈·, ·〉 on V , is a map from V × V to F satisfying

1. 〈v + z, w〉 = 〈v, w〉+ 〈z, w〉,

2. 〈v, z + w〉 = 〈v, z〉+ 〈v, w〉,

3. 〈v, zλ〉 = 〈v, z〉λ, and

4. 〈v, z〉 = 〈z, v〉 for all v, z, w ∈ V and all λ ∈ F.

Definition 2.2.10. Let V = Fn+1 be the Hermitian vector space equipped with the Her-

mitian form of signature (p, q) defined by 〈z, w〉 = −z̄0w0 − z̄1w1 − · · · − z̄p−1wp−1 +

z̄pwp + · · · + z̄p+q−1wp+q−1, where z and w are the column vectors in V with entries

z0, · · · , zn and w0, · · · , wn respectively. When F = C, the isometry group is denoted by

U(p, q). An element of U(p, q) is called an unitary matrix. We often wish to consider

unitary matrices with determinant equal to 1. Such matrices form the group SU(p, q).

When F = C, or H and p = n, q = 1, we denote the isometry group by U(n, 1;F). For

F = C, we denote it simply by U(n, 1) and for F = H, we denote it by Sp(n, 1).

Lemma 2.2.11 (Lemma 6.2.5 of Goldman). Let V be a Hermitian vector space and A a

unitary transformation of V . If λ is an eigenvalue of A then λ
−1

is also an eigenvalue of

A with the same multiplicity as λ. That is, the collection of eigenvalues of A is invariant

under inversion in the unit circle.

Definition 2.2.12. A vector v ∈ V is called time-like, resp. space-like, resp. light-like

if 〈v, v〉 is negative, resp. positive, resp. zero. The set of all time-like, resp. space-like,

resp. light-like vectors is denoted by V−, resp. V+, rep. V0.
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Definition 2.2.13. A right eigenvalue λ (counted without multiplicities) of g ∈ U(n, 1;F)

is called negative, resp. positive, resp. null if the λ-eigenline is time-like, resp. space-

like, resp. light-like.

Remark 2.2.14. A similarity class of eigenvalues [λ] is negative, positive or null ac-

cording as its representative λ is negative, positive or null eigenvalue.

Definition 2.2.15. Consider the (right) vector space V = Fn+1 over F equipped with

the Hermitian form of signature (n, 1). Let P(V) be the projective space obtained from

V, equipped with the quotient topology via the projection map π : V − {0} → P(V). The

n-dimensional hyperbolic space over F is defined to be Hn
F = π(V−). The boundary ∂Hn

F

is π(V0).

Definition 2.2.16. The group U(n, 1;F) acts as the isometry group of Hn
F. The actual

group of isometries of Hn
F is PU(n, 1;F) = U(n, 1;F)/Z(U(n, 1;F)), where Z(U(n, 1;F))

denotes the center. When F = C, Z(U(n, 1)) is the circle group S1 = {λI | |λ| = 1}, and

for F = H, Z(Sp(n, 1)) = {I,−I}; here I denotes the identity transformation.

Remark 2.2.17. An isometry g of Hn
F lifts to a transformation g̃ in U(n, 1;F). For

convenience, we mostly deal with the linear group U(n, 1;F) rather than PU(n, 1;F).

2.2.1 Siegel domain model of the complex hyperbolic space

Let V = Cn,1 be the complex vector space Cn+1 equipped with the Hermitian form of

signature (n, 1) given by

〈z,w〉 = w∗Hz = z0w̄n + z1w̄1 + · · ·+ zn−1w̄n−1 + znw̄0,

where ∗ denotes conjugate transpose. The matrix of the Hermitian form is given by

H =

 0 0 1

0 In−1 0

1 0 0


Let P : Cn,1−{0} −→ CPn be the canonical projection onto complex projective space.

The complex hyperbolic space Hn
C is defined to be PV−. The ideal boundary ∂H3

C is
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PV0. The canonical projection of a vector z is given by z = P(z) = (z0/zn, · · · , zn−1/zn).

Therefore we can write Hn
C = P(V−) as

Hn
C = {(w0, · · · , wn−1) ∈ Cn : 2<(w0) + |w1|2 + · · ·+ |wn−1|2 < 0}.

This gives the Siegel domain model of Hn
C. There are two distinguished points in V0

which we denote by o and ∞ given by

o =


0
...

0

1

 ,∞ =


1

0
...

0

 .

Then we can write ∂Hn
C = P(V0) as

∂Hn
C −∞ = {(z0, · · · , zn−1) ∈ Cn : 2<(z0) + |z1|2 + · · ·+ |zn−1|2 = 0}.

Remark 2.2.18. If H and H ′ are two (n + 1) × (n + 1) Hermitian matrices with the

same signature (n, 1), then there is a (n + 1) × (n + 1) matrix C so that C∗HC = H ′.

Also a matrix A ∈ GL(n + 1,C) preserves the Hermitian form H iff C−1AC preserves

the Hermitian form H ′. In context to the Siegel domain model, the isometry group of

Hn
C is C−1U(n, 1)C, where U(n, 1) is same as in definition 2.2.10 and C is given by

C =


1√
2

0 − 1√
2

0 In−1 0
1√
2

0 1√
2

 .

The projective transformation given by C is called the Cayley transform. However in this

case also, we denote the isometry group by U(n, 1).

2.3 Classification of isometries

Definition 2.3.1. Every isometry g ∈ U(n, 1;F) has a fixed point on the closure Hn
F =

Hn
F ∪ ∂Hn

F. An isometry g is called elliptic if it has a fixed point on Hn
F. It is called

parabolic, resp. hyperbolic if it has exactly one, resp. two fixed points on the boundary
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∂Hn
F.

Theorem 2.3.2. [11, Theorem 3.4.1]

(a) An elliptic element is semisimple, with eigenvalues of norm one. Two elliptic el-

ements are conjugate if and only if they have same similarity class of negative

eigenvalues (which may coincide with one of the positive classes) and same n sim-

ilarity classes of positive eigenvalues (with the same multiplicities).

(b) A hyperbolic element has (n − 1) similarity classes of positive eigenvalues (which

may not be different) of norm one and two similarity classes of null eigenvalues

represented by reiθ, r−1eiθ, r > 1, 0 ≤ θ ≤ 2π. Two hyperbolic elements are

conjugate if and only if they have same similarity classes of eigenvalues.

(c) A parabolic element is not semisimple and all similarity classes of eigenvalues have

norm one. it has the Jordan decomposition g = gsgu = gugs, where gs is elliptic,

gu is unipotent. Two parabolics elements are conjugate if and only if their elliptic

and unipotent components are conjugate. If it is unipotent, then there are two

classes chracterized by their minimal polynomials; which are (x − 1)2 for vertical

and (x− 1)3 for non-vertical translations.

Theorem 2.3.3 (Theorem 6.2.4 of Goldman [18]). Let A ∈ SU(p, q) with p + q = 3. A

has characteristic polynomial χA(X) = X3 − τX2 + τX − 1 and resultant R(χA, χ
′
A) =

−|τ |2 + 8<(τ3)− 18|τ |2 + 27, where τ = tr(A). Then

(i) A is regular elliptic if and only if R(χA, χ
′
A) > 0.

(ii) A has a repeated eigenvalue if and only if R(χA, χ
′
A) = 0. In this case A is either

parabolic or boundary elliptic.

(iii) A is loxodromic if and only if R(χA, χ
′
A) < 0.

Moreover, if A is loxodromic or parabolic then (p, q) = (2, 1) or (1, 2).

Remark 2.3.4. The locus where R(χA, χ
′
A) = 0 is a classical curve called a deltoid, see

pages 26, 27 of Kirwan [31].
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Figure 2.1: The deltoid.

2.4 Numerical invariants in complex hyperbolic

geometry

All the invariants discussed in this section can be defined for SU(n, 1). However we shall

restrict to the case n = 3, as that is relevant to this thesis.

Definition 2.4.1. Let z1, z2, z3 be three distinct points of ∂H3
C with lifts z1, z2 and z3

respectively. Cartan’s angular invariant A(z1, z2, z3) is defined by :

A(z1, z2, z3) = arg(−〈z1, z2〉〈z2, z3〉〈z3, z1〉).

A is invariant under SU(3, 1) and is independent of the chosen lifts.

Theorem 2.4.2. [18, Theorem 7.1.1] Let z1, z2, z3 and z′1, z
′
2, z

′
3 be triples of dis-

tinct points of ∂H3
C. Then A(z1, z2, z3) = A(z′1, z

′
2, z

′
3) if and only if there exist

A ∈ SU(3, 1) so that A(zj) = z′j for j = 1, 2, 3.

Remark 2.4.3. The above theorem shows that this invariant determines any triples of

distinct points in ∂H3
C up to SU(3, 1)-equivalence.

Theorem 2.4.4. [18, Theorems 7.1.3 and 7.1.4] Let z1, z2, z3 be three distinct

points of ∂H3
C and let A = A(z1, z2, z3) be their angular invariant. Then
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1. A ∈ [−π
2 ,

π
2 ].

2. A = ±π
2 if and only if z1, z2, z3 lie on the same chain.

3. A = 0 if and only if z1, z2, z3 lie on a totally real totally geodesic subspace.

Definition 2.4.5. Given a quadruple of distinct points (z1, z2, z3, z4) on ∂H3
C, their

Koranyi-Riemann cross ratio is defined by

X(z1, z2, z3, z4) = [z1, z2, z3, z4] =
〈z3, z1〉〈z4, z2〉
〈z4, z1〉〈z3, z2〉

,

where, for i = 1, 2, 3, 4, zi, are lifts of zi. It can be seen easily that X is independent of

the chosen lifts of zi’s. By choosing different ordering of the four points, we may define

other cross ratios and it can be seen in [18, p.225] that there are certain symmetries that

are associated with certain permutations. After taking these into account, there are only

three cross-ratios that remain. Given distinct points z1, z2, z3, z4 in ∂H3
C, we define :

X1 = [z1, z2, z3, z4], X2 = [z1, z3, z2, z4], X3 = [z2, z3, z1, z4] (2.4.1)
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Chapter 3

Classification of Quaternionic

Hyperbolic Isometries

Let F denote either the complex numbers C or the quaternions H. Let Hn
F denote

the n-dimensional hyperbolic space over F. We obtain algebraic criteria to classify the

isometries of Hn
F.

3.1 Classification of Quaternionic hyperbolic Isome-

tries

Let A ∈ Sp(n, 1). Write H = C⊕ jC. Express A = A1 + jA2, where A1, A2 ∈M2(n+1)(C).

This gives an embedding A 7→ AC of Sp(n, 1) into GL(2(n + 1),C), cf. [34, section-2],

[57, section-2], where

AC =

(
A1 −A2

A2 A1

)
. (3.1.1)

Lemma 3.1.1. The characteristic polynomial of AC is real and self-dual i.e. it has the

form

χAC(x) =

2(n+1)∑
j=0

ajx
2(n+1)−j , where aj = a2(n+1)−j ; a0 = a2(n+1) = 1. (3.1.2)

where for all i, ai ∈ R.
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Proof. Note that the characteristic polynomial χAC(x) of AC is an invariant of the

conjugacy class of A. It follows from the conjugacy class representatives in Sp(n, 1) that

χAC(x) is self-dual, i.e. if λ ∈ C is a root of χAC(x), so is λ−1. Further if λ is an

eigenvalue, then so is λ̄−1, cf. [18, Lemma 6.2.5, p. 205]. It follows that if λ is a root of

the characteristic polynomial, so is λ̄. This proves the result.

Write χAC(x) = xn+1g(x+ x−1), where

g(x+ x−1) =
n∑
j=0

aj(x
n+1−j + x−(n+1−j)) + an+1

Expanding the terms in the brackets, and considering t = x + x−1 as polynomial inde-

terminate, we get the polynomial

gA(t) = g(x+ x−1). (3.1.3)

Using the Newton’s identities, cf. [35, 47] the coefficients of χAC(x) can be expressed

as a combination of several powers of Tk = trace(AkC), k = 1, 2, . . . , n+ 1. Hence the

coefficients of gA(t) can be expressed by the numbers Tk.

Theorem 2.3.2 motivates to a more refined classification of elements of U(n, 1;F). An

element is called regular if it has mutually disjoint classes of eigenvalues. A non-regular

hyperbolic has a positive eigenvalue of multiplicity at least two. A non-regular hyperbolic

isometry whose null eigenvalues are non-reals, is called semi-regular ; it is called screw

hyperbolic if its null eigenvalues are real numbers; it is called a strictly hyperbolic if it is

a screw hyperbolic and all positive eigenvalues are 1. An elliptic element is called simple

elliptic if it has only a single class of eigenvalues, i.e. it is of the form λI, |λ| = 1.

Theorem 3.1.2. Let A be an element in Sp(n, 1). Suppose AC be the corresponding

element in GL((2(n + 1),C). Let SA = {∆1, · · · ,∆n+1} be the discriminant sequence

of gA(t), where ∆n+1 = ∆ is the usual algebraic discriminant of gA(t). Let D be the

discriminant of the minimal polynomial of AC. Then the following holds.

1. A is regular hyperbolic if and only if ∆ < 0.

2. A is regular elliptic if and only if ∆ > 0.
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3. A is semi-regular hyperbolic if and only if ∆ = 0 and the number of sign changes

of the revised sign list of SA is exactly one.

4. A is screw hyperbolic if and only if ∆ = 0 and gA(t) has a real root λ such that

|λ| > 2.

5. A is a strictly hyperbolic if and only if gA(t) has a real root λ such that |λ| > 2 and

for all m ≤ n− 2, g
(m)
A (2) = 0.

6. A is elliptic or parabolic if and only if ∆ = 0 and there is no sign change in the

number of revised sign list of SA. Further A is parabolic if D = 0; otherwise it is

elliptic. Further A is simple elliptic if the number of non-vanishing members of the

revised sign list is exactly one.

Proof. Since χAC(x) is a conjugacy invariant, so is gA(t). If α is a root of χAC(x), then

α+α−1 is a root of gA(t). Hence the nature of roots of gA(t) is determined by the nature

of roots of χAC(x). It follows from the conjugacy classification in Sp(4, 1) that for all A

in Sp(n, 1), the number of complex conjugate roots of gA(t) can be at most 2.

For A hyperbolic, the representatives of eigenvalues of A are given by reiθ, r−1eiθ,

eiφk , k = 1, · · · , n − 1. It is easy to see from the embedding (3.1.1) that χAC has roots

re±iθ, r−1e±iθ, e±iφk , k = 1, · · · , n− 1. Thus the roots of gA(t) are given by

s1 = reiθ + r−1e−iθ, s2 = r−1eiθ + re−iθ, tk = eiφk + e−iφk = 2 cosφk, (3.1.4)

for k = 1, · · · , n − 1. Note that if A is a screw hyperbolic, i.e. θ = 0 or mπ, then gA(t)

has at least one real double root r+r−1 or −r−r−1. Note that |r+r−1| > 2 and |tk| ≤ 2

for all k. . Hence if A is a screw hyperbolic, then gA(t) has exactly one double real root

of absolute value > 2. If A is a strictly hyperbolic, then 1 is a root of A of multiplicity

n − 1. Hence 2 is a root of gA(t) of multiplicity (n − 1), and hence g
(m)
A (2) = 0 for all

m ≤ n− 2.

For A elliptic or parabolic, the eigenvalues of A are represented by eiθi , i = 1, · · · , n+

1, (for some i, j, θi may be equal to θj). In this case, the roots of gA(t) are given by

u1, · · · , un+1 where ui = 2 cos θi. For all i, |ui| ≤ 2.
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If A is regular hyperbolic, then θ 6= mπ. Hence s1 and s2 are non-real complex

conjugate numbers and gA(t) has n − 1 real roots. Depending on n is even or odd we

have the following possibilities and in each of the cases, applying Theorem 2.1.8 we see

that ∆ < 0:

First note that Dn+1 = (−1)
n(n+1)

2 (n+ 1)−(n+1)∆n+1.

(i) For n = 4k, n− 1 ≡ 3 mod 4: Consequently, by Theorem 2.1.8, Dn+1 < 0. Since

4k(4k+1)
2 = 2k(4k + 1) is an even number, hence ∆ < 0.

(ii) For n = 4k + 1, n− 1 ≡ 0 mod 4: Since the leading coefficient of gA(t) is 1 > 0,

hence by Theorem 2.1.8, Dn+1 > 0; consequently ∆ < 0.

(iii) For n = 4k + 2, n− 1 ≡ 1 mod 4, hence Dn+1 > 0; consequently, ∆ < 0.

(iv) For n = 4k + 3, n− 1 ≡ 2 mod 4, hence Dn+1 < 0; consequently, ∆ < 0.

If A is regular elliptic, then we have ui’s are mutually distinct, hence all roots of gA(t)

are real and mutually distinct. Using Theorem 2.1.8 and similar arguments as above it

follows that ∆ > 0.

If A is either of non-regular elliptic, non-regular hyperbolic or parabolic, then gA(t)

has at least one root of multiplicity 2. Hence ∆ = 0.

Suppose ∆ = 0. Then SA = {∆1,∆2, · · · ,∆n+1} be the discriminant sequence of the

polynomial gA(t). Let A be semi-regular hyperbolic. Then gA(t) has exactly two complex

conjugate roots. Hence by Theorem 2.1.7, the number of sign changes of the revised sign

list of SA is exactly 1. If A is screw hyperbolic, elliptic or parabolic , then gA(t) has no

complex roots, hence the number of sign changes of the revised sign list of SA is zero. If

A is elliptic or parabolic, then from above we have seen that all the roots have absolute

value ≤ 2; A is screw hyperbolic if and only if A has a root α such that |α| > 2.

Finally we note that if A is parabolic, it has the Jordan decomposition A = AsAu,

where Au is a vertical or non-vertical translation. Thus the minimal polynomial of AC

has a factor of the form (x−λ)m, m = 2 or 3. Hence D must be zero. For A elliptic, the

minimal polynomial of AC is a product of distinct linear factors, hence D 6= 0. Suppose

A is simple elliptic. Then all the roots of gA(t) are equal, hence it has only one real root.

Hence by Theorem 2.1.7, the number of non-vanishing members of the revised sign list

is exactly one.

22



∆ Type of isometry
< 0 Regular Hyperbolic
> 0 Regular elliptic
= 0 Parabolic, non-regular elliptic or a non-regular hyperbolic

Table 3.1: Classification of isometries of Hn
H.

This proves the theorem.

Note that Theorem 3.1.2 can also be adapted to the setting of complex hyperbolic

geometry. This can be done by using the embedding of U(n, 1) into GL(2(n+ 1),R) given

by (3.1.1) and then follow the same method as in the quaternionic case. In the action of

U(n, 1) on Hn
C, the regular, semi-regular and (non-strictly) screw hyperbolic isometries

fall in the same class; together we call them loxodromic. Also the simple elliptics, i.e.

the scalar matrices of the form λI, |λ| = 1, acts as the identity on Hn
C. We have the

following.

Corollary 3.1.3. Let A be an element in U(n, 1). Suppose AR be the corresponding

element in GL((2(n + 1),R). Let SA = {∆1, · · · ,∆n+1} be the discriminant sequence

of gA(t), where ∆n+1 = ∆ is the usual algebraic discriminant of gA(t). Let D be the

discriminant of the minimal polynomial of AR. Then the following holds.

1. A is loxodromic if and only if one of the following holds:

(i) ∆ < 0.

(ii) ∆ = 0 and either the number of sign changes of the revised sign list of SA is

exactly one or, gA(t) has a real root λ such that |λ| > 2 and for some m ≤ n− 2,

g
(m)
A (2) 6= 0.

2. A is regular elliptic if and only if ∆ > 0.

3. A is a strictly hyperbolic if gA(t) has a real root λ such that |λ| > 2 and for all

m ≤ n− 2, g
(m)
A (2) = 0.

4. A is elliptic or parabolic if and only if ∆ = 0 and there is no sign change in the

number of revised sign list of SA. Further A is parabolic if D = 0; otherwise it is

elliptic.
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5. A acts as the identity if and only if ∆ = 0, D 6= 0 and the number of non-vanishing

members of the revised sign list is exactly one.

3.1.1 Remarks on a complete algorithm for algebraic clas-

sification of the isometries

Theorem 3.1.2 gives us a fair classification of the isometries. However, it does not give

us informations about the multiplicities of the similarity classes of eigenvalues. However,

following the methods in the above proof, using the polynomial gA(t) and the algorithm

in [29, p. 633], it is indeed possible to derive a complete root classification of gA(t) with

multiplicities. This will give us the number of distinct eigenvalues with multiplicities. For

example, ifA is elliptic and gA(t) has distinct roots 2 cos θ1, · · · , 2 cos θk with multiplicities

m1, · · · ,mk respectively, then the eigenvalue classes of A are represented by eiθ1 , · · · , eiθk

each with multiplicities m1, · · · ,mk respectively. A limitation of this method is that it

tells only the number of distinct classes of eigenvalues with multiplicities, but it does not

tell us which one among the eigenvalues is time-like or space-like or light-like. To obtain

this information, we need to refer to the centralizers, up to conjugacy, of the isometries.

The description of the centralizers, up to conjugacy, in Sp(n, 1), resp. U(n, 1), has been

obtained in [25], resp. [6]. Thus Theorem 3.1.2, the above algorithm, along with the

description of the centralizers, give us a complete algorithm to determine the type of an

isometry of Hn
H (and also of Hn

C).
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Chapter 4

Classification of Unitary Matrices

In this chapter, we classify the dynamical action of matrices in SU(p, q) using the coef-

ficients of their characteristic polynomial. This generalises earlier work of Goldman for

SU(2, 1) and the classical result for SU(1, 1), which is conjugate to SL(2,R). As geomet-

rical applications, we show how this enables us to classify automorphisms of real and

complex hyperbolic space and anti de Sitter space.

4.1 Classification of elements in SU(p, q)

4.1.1 Introduction

In this section we consider matrices in SU(p, q) for arbitrary n = p+ q. We discuss how

to use the resultant to enumerate the different possibilities for such matrices.

4.1.2 The resultant

First recall the definition of resultant of two polynomials. Let p(X) and q(X) be two

polynomials. Suppose that p(X) has degree r > 0, leading coefficient ar (so the highest

order term of p(X) is arX
r) and roots α1, . . . , αr. Similarly, suppose that q(X) has

degree s, leading coefficient bs and roots β1, . . . , βs. Then the resultant of p(X) and

q(X) is defined to be

R(p, q) = asrb
r
s

∏
i,j

(αi − βj) = asr

r∏
i=1

q(αi) = brs

s∏
j=1

p(βj).
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In the case where q(X) = p′(X), which is the case we are interested in, there is a simpler

formula. It is easy to show that

p′(αj) = ar
∏
i 6=j

(αj − αi).

Hence

R(p, p′) = ar−1r

r∏
j=1

p′(αj) = a2r−1r (−1)r(r−1)/2
∏
i<j

(αj − αi)2.

4.1.3 Classification when p+ q = n

A matrix A in SU(p, q) is called k-loxodromic if it has k pairs of eigenvalues rje
iθj and

r−1j eiθj with rj > 1 for j = 1, . . . , k, and all other eigenvalues are unit modulus complex

numbers. We adopt the convention of taking k ≥ 0 with the understanding that a 0-

loxodromic means that all eigenvalues are unit modulus complex numbers. Note that in

SU(p, q) we have k ≤ min{p, q}.

Also, A is said to be regular if the eigenvalues are mutually distinct, that is A has no

repeated eigenvalues.

Theorem 4.1.1. Let A ∈ SU(p, q). Let R(χA, χ
′
A) denotes the resultant of the charac-

teristic polynomial χA(X) and its first derivative χ′A(X). Then for m ≥ 0, we have the

following.

(i) A is regular 2m-loxodromic if and only if R(χA, χ
′
A) > 0.

(ii) A is regular (2m+ 1)-loxodromic if and only if R(χA, χ
′
A) < 0.

(iii) A has a repeated eigenvalue if and only if R(χA, χ
′
A) = 0.

Proof. Write p + q = n. Suppose A is r-loxodromic, including the case where r = 0

and so A is elliptic. Then A has mutually distinct eigenvalues

λj = e`j+iφj , λ
−1
j = e−`j+iφj , µk = eiθk ,
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where `j is a positive real number, j = 1, . . . , r, k = 1, . . . , s and 2r + s = p + q = n.

Then the squares of the differences of these eigenvalues are

(λj − λ
−1
j )2 = e2iφj 4 sinh2(`j),

(λj − λk)2(λ
−1
j − λ−1k )2 = e2iφj+2iφk

(
2 cosh(`j − `k)− 2 cos(φj − φk)

)2
,

(λj − λ
−1
k )2(λ

−1
j − λk)2 = e2iφj+2iφk

(
2 cosh(`j + `k)− 2 cos(φj − φk)

)2
,

(λj − µk)2(λ
−1
j − µk)2 = e2iφj+2iθk

(
2 cosh(`j)− 2 cos(φj − θk)

)2
,

(µj − µk)2 = −eiθj+iθk
(
2− 2 cos(θj − θk)

)
.

Therefore

R(χA, χ
′
A)

= (−1)n(n−1)/2
∏
j

(λj − λ
−1
j )2

∏
j<k

(λj − λk)2(λ
−1
j − λ

−1
k )2(λj − λ

−1
k )2(λ

−1
j − λk)2

·
∏
j,k

(λj − µk)2(λ
−1
j − µk)2

∏
j<k

(µj − µk)2

= (−1)n(n−1)/2(−1)s(s−1)/2
r∏
j=1

e(n−1)2iφj
s∏

k=1

e(n−1)iθk
∏
j

4 sinh2(`j)

·
∏
j<k

(
2 cosh(`j − `k)− 2 cos(φj − φk)

)2(
2 cosh(`j + `k)− 2 cos(φj − φk)

)2
·
∏
j,k

(
2 cosh(`j)− 2 cos(φj − θk)

)2∏
j<k

(
2− 2 cos(θj − θk)

)
= (−1)n(n−1)/2+s(s−1)/2

∏
j

4 sinh2(`j)

·
∏
j<k

(
2 cosh(`j − `k)− 2 cos(φj − φk)

)2(
2 cosh(`j + `k)− 2 cos(φj − φk)

)2
·
∏
j,k

(
2 cosh(`j)− 2 cos(φj − θk)

)2∏
j<k

(
2− 2 cos(θj − θk)

)
,

where we have used

r∏
j=1

e(n−1)2iφj
s∏

k=1

e(n−1)iθk =
(
det(A)

)n−1
= 1.
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All the product terms are real and positive provided `j > 0 and θj 6= θk. Thus we must

find the power of (−1). Since n = 2r + s we have

n(n− 1) + s(s− 1) = 2n(n− 1)− 4rn+ 4r2 + 2r.

Since 2n(n−1) is even, this implies (−1)n(n−1)/2+s(s−1)/2 = (−1)r. This proves assertions

(i) and (ii). Assertion (iii) follows from the definition of the resultant.

Corollary 4.1.2. Let A ∈ SU(p, 1). Let R(χA, χ
′
A) denotes the resultant of the charac-

teristic polynomial χA(X) and its first derivative χ′A(X). Then we have the following.

(i) A is regular elliptic if and only if R(χA, χ
′
A) > 0.

(ii) A is regular loxodromic if and only if R(χA, χ
′
A) < 0.

(iii) A has a repeated eigenvalue if and only if R(χA, χ
′
A) = 0.

4.2 Classification of matrices in SU(p, q) with p +

q = 4

4.2.1 Introduction

In this section we consider the case of SU(p, q) where p+ q = 4. In fact, up to changing

the sign of the Hermitian form, there are three possible groups SU(4, 0) = SU(4), SU(3, 1)

and SU(2, 2). Our goal will be to extend Goldman’s classification of matrices in SU(2, 1)

using the resultant R(χA, χ
′
A) as a polynomial in tr(A) and tr(A). In this case, the

characteristic polynomial is determined by a complex and a real parameter (see [26,

section 4.5]):

Lemma 4.2.1. Let A be in SU(p, q), where p + q = 4, with characteristic polynomial

χA(X). Write τ = tr(A) and σ = 1
2

(
tr2(A)− tr(A2)

)
∈ R. Then

χA(X) = X4 − τX3 + σX2 − τX + 1. (4.2.1)

28



If λi for i = 1, 2, 3, 4 are the eigenvalues of A, then note that

τ = λ1 + λ2 + λ3 + λ4, (4.2.2)

σ = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4. (4.2.3)

We want conditions on σ, τ characterising when χA(X) = 0 has repeated solutions, or

equivalently when χA(X) and its derivative χ′A(X) have a common root. Note that:

χ′A(X) = 4X3 − 3τX2 + 2σX − τ . (4.2.4)

Therefore we need to find the locus of points (τ, σ) ∈ C × R where the resultant

R(χA, χ
′
A) = 0. This problem was studied by Poston and Stewart [46]. Based on earlier

work of Chillingworth [12], they call the locus of points where this resultant vanishes the

holy grail; see Figure 4.1. This generalises the deltoid, which is the zero locus of the

resultant for SU(2, 1).

In this section we investigate the dynamics of isometries whose parameters (τ, σ)

lie on each part of the holy grail and in each component of the complement. In this

section no assumption is made about the signature of H, but readers should recall that

a k-loxodromic map can only occur in SU(p, q) when k ≤ min{p, q}.

4.2.2 Eigenvalues and parameters

Consider a unitary matrix A in SU(p, q) with p + q = 4, but at this stage we will not

specify the signature of the Hermitian form. Suppose that the eigenvalues of A (that is

the roots of the characteristic polynomial) are λ1, λ2, λ3, λ4. Recall from Goldman’s

lemma, Lemma 2.2.11, the set {λ1, λ2, λ3, λ4} is closed under the map λ 7−→ λ
−1

. Note

that an even number of eigenvalues satisfy |λ| 6= 1 and so an even number satisfy |λ| = 1.

In what follows, after rearranging them if necessary, suppose that the eigenvalues are

paired up as follows.

• if |λ1| 6= 1 then λ2 = λ
−1
1 ; if |λ1| = 1 then |λ2| = 1;

• if |λ2| 6= 1 then λ1 = λ
−1
2 ; if |λ2| = 1 then |λ1| = 1;

• if |λ3| 6= 1 then λ4 = λ
−1
3 ; if |λ3| = 1 then |λ4| = 1;
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• if |λ4| 6= 1 then λ3 = λ
−1
4 ; if |λ4| = 1 then |λ3| = 1.

With this ordering of eigenvalues, note that |λ1λ2| = |λ3λ4| = 1. Define φ ∈ [0, π) by

λ1λ2 = e2iφ. Moreover, since the product of the eigenvalues is 1, we also have λ3λ4 =

e−2iφ. The following parameters will simplify our calculations:

x = (λ1 + λ2)e
−iφ, y = (λ3 + λ4)e

iφ, t = 2 cos(2φ). (4.2.5)

The rest of this section will be devoted to investigating the properties of the change of

parameters (τ, σ)←→ (x, y, φ).

Lemma 4.2.2. The parameters x, y and t defined by (4.2.5) are all real.

Proof. Clearly t is real. In order to see that x is real, note that either |λ1| = |λ2|−1 6= 1

and λ1 = λ−12 , λ2 = λ−11 or else |λ1| = |λ2| = 1 and λ1 = λ−11 , λ2 = λ−12 . In the either

case

x = (λ1 + λ2)e
iφ = (λ−11 + λ−12 )eiφ = (λ1 + λ2)e

−iφ = x

where we have used λ1λ2 = e2iφ. Thus x is real. Similarly y is real.

Lemma 4.2.3. With τ , σ and x, y, φ as in (4.2.5), we have

τ = xeiφ + ye−iφ, (4.2.6)

σ = xy + 2 cos(2φ). (4.2.7)

Proof. From the definition of x, y and φ we have

τ = (λ1 + λ2) + (λ3 + λ4) = xeiφ + ye−iφ,

σ = (λ1 + λ2)(λ3 + λ4) + λ1λ2 + λ3λ4 = xeiφye−iφ + e2iφ + e−2iφ.

We now characterise when this change of variables is a local diffeomorphism.

Proposition 4.2.4. The change of parameters R2 × S1 −→ C× R given by

(x, y, eiφ) 7−→ (τ, σ) =
(
xeiφ + ye−iφ, xy + e2iφ + e−2iφ

)
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is a local diffeomorphism provided

x2 + y2 − 4− 2xy cos(2φ) + 4 cos2(2φ) 6= 0.

Proof. Consider the change of coordinates

<(τ) = (x+ y) cos(φ), =(τ) = (x− y) sin(φ), σ = xy + e2iφ + e−2iφ.

Then the Jacobian is

J = det

cos(φ) cos(φ) −(x+ y) sin(φ)

sin(φ) − sin(φ) (x− y) cos(φ)

y x −4 sin(2φ)


= 4 sin2(2φ)− (x+ y)2 sin2(φ)− (x− y)2 cos2(φ)

= −x2 − y2 + 4 + 2xy cos(2φ)− 4 cos2(2φ).

Now we show the change of variables is surjective (compare Lemma 3.8 of [39]).

Proposition 4.2.5. Given (τ, σ) ∈ C× R then there exist (x, y, eiφ) ∈ R2 × S1 so that

<(τ) = (x+ y) cos(φ), =(τ) = (x− y) sin(φ), σ = xy + e2iφ + e−2iφ. (4.2.8)

Proof. If there exist such x, y, eiφ then, writing t = 2 cos(2φ), we have

|τ |2 = <(τ)2 + =(τ)2 = x2 + y2 + xyt, (4.2.9)

2<(τ2) = 2<(τ)2 − 2=(τ)2 = (x2 + y2)t+ 4xy, (4.2.10)

σ = xy + t.

Eliminating x and y we see that t must satisfy q(t) = 0 where

q(X) = X3 − σX2 − 4X + <(τ)2X + =(τ)2X + 4σ − 2<(τ)2 + 2=(τ)2.

Evaluating at X = ±2 we see that

q(2) = 8− 4σ − 8 + 2<(τ)2 + 2=(τ)2 + 4σ − 2<(τ)2 + 2=(τ)2 = 4=(τ)2 ≥ 0,

q(−2) = −8− 4σ + 8− 2<(τ)2 − 2=(τ)2 + 4σ − 2<(τ)2 + 2=(τ)2 = −4<(τ)2 ≤ 0.
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If <(τ) 6= 0 and =(τ) 6= 0 then, by the intermediate value theorem, we can find t with

−2 < t < 2 so that q(t) = 0. Define φ by 2 cos(2φ) = t. As cos(2φ) 6= ±1 we have

sin(2φ) 6= 0. In this case x and y are given by

x =
<(τ) sin(φ) + =(τ) cos(φ)

sin(2φ)
, y =

<(τ) sin(φ)−=(τ) cos(φ)

sin(2φ)
.

If =(τ) = 0 and <(τ) 6= 0 then q(2) = 0 and

q0(X) = q(X)/(X − 2) = X2 + 2X − σX − 2σ + <(τ)2.

We have

q0(2) = 8− 4σ + <(τ)2, q0(−2) = <(τ)2 > 0.

If <(τ)2 < 4σ − 8 we have q0(2) < 0 < q0(−2) and we can find t with −2 < t < 2 and

q0(t) = 0. In this case define t = 2 cos(2φ) and proceed as above. If <(τ)2 ≥ 4σ− 8 then

define φ = 0. We must solve <(τ) = x+ y and σ = xy + 2. A solution is

x =
<(τ) +

√
<(τ)2 − 4σ + 8

2
, y =

<(τ)−
√
<(τ)2 − 4σ + 8

2
.

If <(τ) = 0 and =(τ) 6= 0 then q(−2) = 0. As above, if =(τ)2 < −8 − 4σ then

we can find t with −2 < t < 2 and q(t) = 0, giving a similar solution as before. If

=(τ)2 > −8− 4σ then φ = π/2 and

x =
=(τ) +

√
=(τ)2 + 4σ + 8

2
, y =

=(τ)−
√
=(τ)2 + 4σ + 8

2
.

Finally, suppose <(τ) = =(τ) = 0. If σ ≥ 0 then define φ = π/2 and x = y =
√
σ + 2;

if σ < 0 define φ = 0 and x = −y =
√
−σ + 2.

4.2.3 The resultant

Let χA(x) be the characteristic polynomial of A ∈ SU(p, q) with p + q = 4. We have

expressions for χA(x) and χ′A(x) in (4.2.1) and (4.2.4). We now calculate their resultant
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R(χA, χ
′
A) as a polynomial in τ , τ and σ:

R(χA, χ
′
A) = det



1 −τ σ −τ 1 0 0

0 1 −τ σ −τ 1 0

0 0 1 −τ σ −τ 1

4 −3τ 2σ −τ 0 0 0

0 4 −3τ 2σ −τ 0 0

0 0 4 −3τ 2σ −τ 0

0 0 0 4 −3τ 2σ −τ


= 16σ4 − 4σ3(τ2 + τ2) + σ2|τ |4 − 80σ2|τ |2 − 128σ2

+18σ(τ2 + τ2)|τ |2 + 144σ(τ2 + τ2)

−4|τ |6 − 27(τ2 + τ2)2 + 48|τ |4 − 192|τ |2 + 256

= 4
(
σ2/3− |τ |2 + 4

)3
− 27

(
2σ3/27− |τ |2σ/3− 8σ/3 + (τ2 + τ2)

)2
.

Figure 4.1: The holy grail. Here points of R3 have coordinates
(
<(τ),=(τ), σ

)
.
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In [46] Poston and Stewart considered the locus of points where

f(z, z) = <
(
αz4 + βz3z + γz2z2

)
has repeated roots. Based on earlier work of Chillingworth [12], they call the locus of

these points the holy grail; see Figure 4.1, which should be compared with Figures 4

and 5 of [46]. In order to see the connection between the two problems, observe that by

setting α = 1, β = τ and γ = σ/2 we have

f(z, z) = z4χA(−z/z).

When α = 1, Poston and Stewart’s equation for the holy grail, page 268 of [46], is

∆ =
(

4γ2/3− |β|2 + 4
)3
− 27

(
8γ3/27− |β|2γ/3− 8γ/3 + (β2 + β

2
)/2
)2
.

Clearly, the above substitution makes ∆ agree with our expression for R(χA, χ
′
A).

We now express R(χA, χ
′
A) in terms of x, y and t. A consequence of this and Propo-

sition 4.2.4 is that the change of parameters (τ, σ)←→ (x, y, t) is a local diffeomorphism

when R(χA, χ
′
A) 6= 0.

Proposition 4.2.6. In terms of the parameters x, y and t given in (4.2.5) the resultant

is given by the following expression:

R(χA, χ
′
A) = (x2 − 4)(y2 − 4)(x2 + y2 − 4− xyt+ t2)2.

Proof. We use equations (4.2.9), (4.2.10) and (4.2.7) substitute for τ and σ in terms

of x, y and t = 2 cos(2φ). Then, expanding and simplifying, we obtain

R(χA, χ
′
A) = 16σ4 − 4σ3(τ2 + τ2) + σ2|τ |4 − 80σ2|τ |2

−128σ2 + 18σ(τ2 + τ2)|τ |2 + 144σ(τ2 + τ2)

−4|τ |6 − 27(τ2 + τ2)2 + 48|τ |4 − 192|τ |2 + 256

= (x2 − 4)(y2 − 4)(x2 + y2 − 4− xyt+ t2)2.

We remark that there is a symmetry that arises from multiplying A by powers of i.
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In several places below we will use this symmetry to avoid repetition. We note that for

our geometrical applications, we will be interested in PSU(p, q) = SU(p, q)/{±I,±iI}

and so A is only defined up to multiplication by i.

Corollary 4.2.7. Let x, y and t be the parameters given in (4.2.5). The resultant

R(χA, χ
′
A) is preserved by the changes of variable where (x, y, t) is sent to one of

(x, y, t), (x,−y,−t), (−x, y,−t), (−x,−y, t),
(y, x, t), (y,−x,−t), (−y, x,−t), (−y,−x, t).

Moreover, this automorphism group is generated by (λ1, λ2)←→ (λ3, λ4). and A −→ iA.

Proof. It is easy to see in that all the changes of variable stated above preserve the

expression for R(χA, χ
′
A) from Proposition 4.2.6.

Now consider the effect of multiplying A by i. In the following table we give the

various changes to our parameters.

A τ σ φ x y t

iA iτ −σ φ+ π/2 x −y −t
−A −τ σ φ+ π x y t

−iA −iτ −σ φ+ 3π/2 x −y −t

A further symmetry may be obtained by interchanging the pairs of eigenvalues (λ1, λ2)

and (λ3, λ4). It is easy to see from (4.2.5) that this has the effect of sending (x, y, t) to

(y, x, t). Repeated application of the automorphisms A −→ iA and (λ1, λ2)←→ (λ3, λ4)

give all the changes of variable in the statement of the corollary.

Using Proposition 4.2.6, the condition R(χA, χ
′
A) > 0 implies (x2 − 4)(y2 − 4) > 0.

Thus, either x2 and y2 are both greater than 4, or they are both less than 4. In the

former case A is 2-loxodromic and in the latter case it is elliptic. Thus it is useful to

distinguish when xy > 4, −4 < xy < 4 and xy < −4. In the following lemma, we express

these conditions in terms of σ and τ .

Lemma 4.2.8. Let τ and σ be given by (4.2.6) and (4.2.7). Suppose that R(χA, χ
′
A) > 0.

Then xy 6= ±4. Furthermore:

(i) xy > 4 if and only if either <(τ)2 − 4σ + 8 < 0 or σ > 6.
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(ii) xy < 4 if and only if both <(τ)2 − 4σ + 8 > 0 and σ < 6.

(iii) xy > −4 if and only if both =(τ)2 + 4σ + 8 > 0 and σ > −6.

(iv) xy < −4 if and only if =(τ)2 + 4σ + 8 < 0 or σ < −6.

Note that a simple consequence of this lemma is that if R(χA, χ
′
A) > 0 then both

min
{
<(τ)2 − 4σ + 8, 6− σ

}
and min

{
=(τ)2 + 4σ + 8, 6 + σ

}
are both non-zero.

Proof. If R(χA, χ
′
A) > 0 then we have

0 < (x2 − 4)(y2 − 4) = (xy + 4)2 − 4(x+ y)2 = (xy − 4)2 − 4(x− y)2.

Therefore xy 6= ±4. The remaining cases exhaust the other possibilities. Therefore, by

process of elimination, it suffices to prove only one direction of the implications. We

choose to do this from right to left.

If σ > 6 then

6 < σ = xy + 2 cos(2φ) ≤ xy + 2.

Therefore xy > 4. Similarly, if σ < −6 then xy < −4.

If <(τ)2 − 4σ + 8 < 0 then

0 > <(τ)2 − 4σ + 8 = (x− y)2 cos2 φ+ (16− 4xy) sin2 φ ≥ (16− 4xy) sin2 φ

and so xy > 4. Similarly, if =(τ)2 + 4σ + 8 > 0 then xy < −4.

Now assume that <(τ)2 − 4σ + 8 > 0, σ < 6 and R(χA, χ
′
A) > 0. We note that in

terms of x, y and φ these inequalities imply

0 < (x− y)2 cos2 φ+ (16− 4xy) sin2 φ, (4.2.11)

xy − 4 < 4 sin2 φ, (4.2.12)

4(x− y)2 < (4− xy)2. (4.2.13)

Using (4.2.13) to eliminate (x− y)2 from (4.2.11), we see that

0 < 4(x− y)2 cos2 φ+ 16(4− xy) sin2 φ < (4− xy)
(
(4− xy) cos2 φ+ 16 sin2 φ

)
.
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Using (4.2.12) we see that

(4− xy) cos2 φ+ 16 sin2 φ > 4 sin2 φ(4− cos2 φ) > 0.

Therefore xy < 4 as claimed.

Similarly, if =(τ)2 + 4σ + 8 > 0, σ > −6 and R(χA, χ
′
A) > 0 then xy > −4.

Putting this together, we have the following theorem:

Theorem 4.2.9. Let A ∈ SU(p, q) where p+ q = 4 and let τ = tr(A) and σ =
(
tr2(A)−

tr(A2)
)
/2. Let χA(X) be the characteristic polynomial of A and let R(χA, χ

′
A) be the

resultant of χA(X) and χ′A(X). Then

(i) A is regular 2-loxodromic if and only if R(χA, χ
′
A) > 0 and

min
{
<(τ)2 − 4σ + 8, =(τ)2 + 4σ + 8, 6− σ, 6 + σ

}
< 0.

(ii) A is regular 1-loxodromic if and only if R(χA, χ
′
A) < 0.

(iii) A is regular elliptic if and only if R(χA, χ
′
A) > 0 and

<(τ)2 − 4σ + 8 > 0, =(τ)2 + 4σ + 8 > 0, −6 < σ < 6.

(iv) A has a repeated eigenvalue if and only if R(χA, χ
′
A) = 0.
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Figure 4.2: A cross section through the holy grail.

4.2.4 Parametrising the holy grail

In this section we consider the points where R(χA, χ
′
A) = 0, called the holy grail. We

claim that, after reordering eigenvalues, we may suppose that either y = 2 or else x2y2 >

16 and x2 + y2− 4−xyt+ t2 = 0. The former condition determines a ruled surface made

up of three parts, the upper bowl, central tetrahedron and lower bowl, names introduced

by Poston and Stewart. The latter condition determines four space curves called the

whiskers. This is illustrated in Figure 4.1 of this chapter or in Figure 5 of Poston and

Stewart [46], where the different parts are labelled.

Proposition 4.2.10. Let x, y and t be the parameters given by (4.2.5). Up to applying

one of the automorphisms given in Corollary 4.2.7, the condition R(χA, χ
′
A) = 0 is

equivalent to one of the following equations

(i) y = 2;

(ii) (x2 − 4)(y2 − 4) > 0 and x2 + y2 − 4− xyt+ t2 = 0.
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Proof. Using Proposition 4.2.6 we see that points on the holy grail are given by

0 = (x2 − 4)(y2 − 4)(x2 + y2 − 4− xyt+ t2)2.

If (x4− 4)(y2− 4) = 0 then either x = ±2 or y = ±2. After applying the automorphisms

from Corollary 4.2.7, we see that we may take y = 2.

If (x2 − 4)(y2 − 4) 6= 0 then x2 + y2 − 4− xyt+ t2 = 0. Hence

t =
xy ±

√
(x2 − 4)(y2 − 4)

2
.

Since t is real, we must have (x2 − 4)(y2 − 4) > 0.

The following result is stated on page 269 of Poston and Stewart [46]. It is illustrated

in the cross-section drawn in Figure 4.2.

Corollary 4.2.11. The points on the holy grail with y = 2 form a ruled surface in C×R.

Proof. The points in C× R for which y = 2 are

(τ, σ) =
(
xeiφ + 2e−iφ, 2x+ 2 cos(2φ)

)
=

(
2e−iφ, 2 cos(2φ)

)
+ x
(
eiφ, 2

)
.

This is the equation of a ruled surface (see Section 3.5 of do Carmo [10], for example).

Suppose that y = 2. Then the three main parts of the holy grail are determined by

the conditions x > 2, −2 ≤ x ≤ 2 and x < −2.

Corollary 4.2.12. Suppose that y = 2. Then the parameters τ and σ are given by

(i) If x = 2 cosh(`) > 2 then

τ = 2 cosh(`)eiφ + 2e−iφ, σ = 4 cosh(`) + 2 cos(2φ).

(ii) If x = 2 cos(θ) ∈ [−2, 2] then

τ = 2 cos(θ)eiφ + 2e−iφ, σ = 4 cos(θ) + 2 cos(2φ).
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(iii) If x = −2 cosh(`) < −2 then

τ = −2 cosh(`)eiφ + 2e−iφ, σ = −4 cosh(`) + 2 cos(2φ).

The parameter values of Corollary 4.2.12 exhaust the possibilities when condition (i)

of Proposition 4.2.10 is satisfied. They correspond to the upper bowl, central tetrahedron

and lower bowl respectively. We can relate these parameter values to the possible Jordan

decompositions that can arise.

Proposition 4.2.13. Suppose that A ∈ SU(p, q) and y = 2.

(i) If x = 2 cosh(`) > 2 or x = −2 cosh(`) < −2 then A is either diagonalisable or

its Jordan normal form has a 2× 2 Jordan block associated to the eigenvalue e−iθ.

The latter can only happen if p = q = 2.

(ii) If x = 2 cos(θ) ∈ [−2, 2] then A cann have any Jordan normal form. There can be

at most min{p, q} Jordan blocks of size at least 2.

Proof. The eigenspace associated to each Jordan block of size at least 2 is spanned by

a null vector. These null vectors are linearly independent. Therefore there can only be

min{p, q} Jordan blocks of size at least 2.

In (i) the eigenvectors corresponding to the eigenvalues e±`+iφ or −e±`+iφ span a sub-

space where the restriction of H has signature (1, 1). If the other eigenvalues correspond

to a Jordan block of size 2, then its eigenvector is linearly independent from the above

subspace. Therefore min{p, q} is at least 2. Since p+ q = 4 we have p = q = 2.

In (ii) all eigenvalues have absolute value 1, so there is no further restriction.

In both cases, it is an easy exercise to write down matrices and Hermitian forms to

demonstrate that there are no further restrictions.

We now consider what happens when condition (ii) of Proposition 4.2.10 is satisfied.

Suppose that (x2 − 4)(y2 − 4) > 0 and −4 ≤ xy ≤ 4. Then −2 < x < 2 and −2 < y < 2.

Write x = 2 cos(θ) and y = 2 cos(ψ). If we also have x2 + y2 − 4 − xyt + t2 = 0 then

t = 2 cos(2φ) = 2 cos(θ ± ψ). In other words, 2φ = θ ± ψ or 2φ = −θ ± ψ. There are
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several cases. We choose the case 2φ = θ + ψ. Eliminating ψ, the eigenvalues are

λ1 = eiθ+iφ, λ2 = e−iθ+iφ, λ3 = e−iθ+iφ, λ4 = eiθ−3iφ.

Reorder the eigenvalues by swapping λ2 and λ4.

λ′1 = eiθ+iφ, λ′2 = eiθ−3iφ, λ′3 = e−iθ+iφ, λ′4 = e−iθ+iφ.

With this new parametrisation we get new parameters e2iφ
′

= λ′1λ
′
2 = e2iθ−2iφ and

x′ = (λ′1 + λ′2)e
−iφ′ = 2 cos(2φ), y′ = (λ′3 + λ′4)e

iφ′ = 2, t′ = 2 cos(2θ − 2φ).

Therefore, this is a point on the central tetrahedron. The other cases are similar.

We therefore concentrate of the points with xy > 4 or xy < −4.

Lemma 4.2.14. Suppose x2 + y2 − 4− xyt+ t2 = 0 and −2 ≤ t ≤ 2.

(i) If xy > 4 then x = y and t = 2.

(ii) If xy < −4 then x = −y and t = −2.

Proof. We have

0 = x2 + y2 − 4− xyt+ t2 = (x− y)2 + (2− t)(xy − 4) + (2− t)2.

Since −2 ≤ t ≤ 2 we see that if xy > 4 we must have (x− y)2 = (2− t)2 = 0. Similarly

0 = x2 + y2 − 4− xyt+ t2 = (x+ y)2 + (2 + t)(−xy − 4) + (2 + t)2.

If xy < −4 then (x+ y)2 = (2 + t)2 = 0.

The locus of points described in Lemma 4.2.14 are the whiskers.

Corollary 4.2.15. The whiskers are given by

(τ, σ) =
(
±2 cosh(`), 4 cosh2(`) + 2

)
,

(τ, σ) =
(
±2i cosh(`),−4 cosh2(`)− 2

)
where ` > 0 is a real parameter.
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Proposition 4.2.16. Suppose that A ∈ SU(p, q) satsfies the hypotheses of Lemma 4.2.14.

Then p = q = 2 and A is either diagonalisable or its Jordan normal form has two blocks

of size 2.

Proof. In this case, (up to multiplying A by a power of i) the eigenvalues are e`, e`,

e−`, e−` where ` > 0. Since there are two eigenvectors that are greater than 1, we see

that min{p, q} ≥ 2. Thus p = q = 2.

Since each eigenvalue has multiplicity 2, the possible Jordan blocks have size 1 or

2. Using the same argument as in Lemma 2.2.11, we see that the eigenspace associated

to e` has the same dimension as the eigenspace associated to e−`. Therefore A is either

diagonalisable or has two Jordan blocks of size 2. It is easy to write down matrices that

show both possibilities can arise (see comment after Theorem 4.3.5).

4.2.5 When A is 2-loxodromic

In the next three sections we give a few more details about the components of the

complement of the holy grail. In particular, we relate the coordinates (x, y, t) with more

geometrical parameters.

Suppose that |λ1| = |λ2|−1 > 1 and |λ3| = |λ4|−1 > 1. In this case, (after possibly

multiplying A by a power of i if necessary) we can write

λ1 = e`+iφ, λ2 = e−`+iφ, λ3 = em−iφ, λ4 = e−m−iφ

where ` > 0 and m > 0. Hence

τ = 2 cosh(`)eiφ + 2 cosh(m)e−iφ, σ = 4 cosh(`) cosh(m) + 2 cos(2φ). (4.2.14)

and x = 2 cosh(`), y = 2 cosh(m), t = 2 cos(2φ). In this case

R(χA, χ
′
A)

= 256 sinh2(`) sinh2(m)
(
cosh(`+m)− cos(2φ)

)2(
cosh(`−m)− cos(2φ)

)2
.

When ` = m and φ = π/2 then we see that τ = 0 and σ = 4 cosh2(`)−2 = 2 cosh(2`).

Such points lie inside the top bowl of the holy grail. Therefore, by continuity, this region
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comprises points where R(χA, χ
′
A) > 0. The presence of the whiskers in this bowl mean

these two components of the set where R(χA, χ
′
A) > 0 are not simply connected. This

leads to subtleties when it comes to giving parameters. The whiskers comprise points

with ` = m and φ = 0 or φ = π. We now give a characterisation in terms of σ and τ of

the points where exactly one of these conditions is satisfied.

Lemma 4.2.17. Suppose that τ and σ satisfy (4.2.14).

(i) If φ = 0 and ` 6= m then =(τ) = 0, <(τ) > 0 and <(τ)2 − 4σ + 8 > 0.

(ii) If φ = π and ` 6= m then =(τ) = 0, <(τ) < 0 and <(τ)2 − 4σ + 8 > 0.

(iii) If φ 6= 0, π and ` = m then =(τ) = 0 and <(τ)2 − 4σ + 8 < 0.

Proof. If φ = 0 and ` 6= m then

τ = 2 cosh(`) + 2 cosh(m), σ = 4 cosh(`) cosh(m) + 2.

Clearly =(τ) = 0 and <(τ) > 0. Also

<(τ)2 − 4σ + 8 =
(
2 cosh(`)− 2 cosh(m)

)2
> 0.

The case where φ = π and ` 6= m is similar.

If φ 6= 0, π and ` = m then

τ = 4 cosh(`) cos(φ), σ = 4 cosh2(`) + 2 cos(2φ).

Clearly =(τ) = 0. Also,

<(τ)2 − 4σ + 8 = −16 sinh2(`) sin2(φ) < 0.

Define C to be the set of all (τ, σ) ∈ C× R satisfying

(i) R(χA, χ
′
A) > 0,

(ii) min
{
<(τ)2 − 4σ + 8, 6− σ

}
< 0,

(iii) max
{
<(τ)2 − 4σ + 8, =(τ)2

}
> 0.
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Geometrically, conditions (i) and (ii) imply that C is contained “inside” or “above” the

upper bowl of the holy grail. Condition (iii) means that the points with both =(τ) = 0

and <(τ)2− 4σ+ 8 ≤ 0 are not in C. Using Lemma 4.2.17 (iii) and the description of the

whiskers, we see that this excludes those points with ` = m.

Proposition 4.2.18. The map

Φ :
{

(`,m, eiφ) ∈ R2
+ × S1 : ` > m

}
−→ C

given by (4.2.14) is a diffeomorphism.

Proof. We have seen above that if τ and σ are given by (4.2.14) then R(χA, χ
′
A) > 0.

Moreover since xy = 4 cosh(`) cosh(m) > 4, using Lemma 4.2.8 we see that

min
{
<(τ)2 − 4σ + 8, 6− σ

}
< 0.

In addition,

<(τ)2 − 4σ + 8 = 4
(
cosh(`)− cosh(m)

)2 − 16
((

cosh(`) + cosh(m)
)2 − 1

)
sin2 φ,

=(τ)2 = 4
(
cosh(`)− cosh(m)

)2
sin2 φ.

Since ` 6= m either =(τ)2 > 0 or sin2 φ = 0. In the latter case, <(τ)2 − 4σ + 8 > 0.

Therefore

max
{
<(τ)2 − 4σ + 8, =(τ)2

}
> 0.

Hence the image of Φ is contained C.

Conversely, Proposition 4.2.5 implies that given any (τ, σ) ∈ C × R we can find

(x, y, eiφ) satisfying (4.2.8). Using Lemma 4.2.8 (i) we see that if

R(χA, χ
′
A) > 0, min

{
<(τ)2 − 4σ + 8, 6− σ

}
< 0

then (x2− 4)(y2− 4) > 0 and xy > 4. Thus x > 2 and y > 2. We can write x = 2 cosh(`)

and y = 2 cosh(m). Using Lemma 4.2.17 (iii) we see that if

max
{
<(τ)2 − 4σ + 8, =(τ)2

}
> 0
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then ` 6= m. Swapping the roles of x and y if necessary (as in Corollary 4.2.7) we may

assume that ` > m. Therefore Φ is onto.

In real coordinates

<(τ) = 2
(
cosh(`) + cosh(m)

)
cos(φ),

=(τ) = 2
(
cosh(`)− cosh(m)

)
sin(φ),

σ = 4 cosh(`) cosh(m) + 2 cos(2φ).

This change of variables leads to the Jacobian

J = 16 sinh(`) sinh(m) det

 cos(φ) cos(φ) −
(
cosh(`) + cosh(m)

)
sin(φ)

sin(φ) − sin(φ)
(
cosh(`)− cosh(m)

)
cos(φ)

cosh(m) cosh(`) − sin(2φ)


= −16 sinh(`) sinh(m)

(
cosh(`+m)− cos(2φ)

)(
cosh(`−m)− cos(2φ)

)
.

This is clearly non-zero when ` > m > 0. Therefore Φ is a local diffeomorphism.

As m tends to 0 then (τ, σ) tends to the upper bowl of the holy grail; as `−m tends

to 0 then (τ, σ) tends to points where =(τ) = 0 and <(τ)2 − 4σ+ 8 ≤ 0; as ` tends to ∞

then (τ, σ) tends to infinity. Therefore Φ is proper.

Therefore Φ is a covering map. For fixed m and very large values of ` we have

(τ, σ) ∼ (e`eiφ, 2e` cosh(m)). Hence Φ has winding number 1 for such values of ` and

hence everywhere. Thus Φ is a global diffeomorphism.

4.2.6 Simple loxodromic case

Suppose that |λ1| = |λ2|−1 > 1 and |λ3| = |λ4|−1 = 1. In this case, (after possibly

multiplying A by a power of i if necessary) we can write

λ1 = e`+iφ, λ2 = e−`+iφ, λ3 = eiψ−iφ, λ4 = e−iψ−iφ

where ` > 0. Then

τ = 2 cosh(`)eiφ + 2 cos(ψ)e−iφ, σ = 4 cosh(`) cos(ψ) + 2 cos(2φ) (4.2.15)
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and x = 2 cosh(`), y = 2 cos(ψ), t = 2 cos(2φ). In this case

R(χA, χ
′
A)

= −256 sinh2(`) sin2(ψ)
(
cosh(`)− cos(ψ + 2φ)

)2(
cosh(`)− cos(ψ − 2φ)

)2
.

When ψ = π/2 and φ = π/4 then τ =
√

2 cosh(`)(1+ i). Such points are outside the holy

grail. Therefore by continuity, R(χA, χ
′
A) < 0 in this region. The following proposition

may be proved in a similar manner to Proposition 4.2.18 (compare Proposition 3.8 of

[39]).

Proposition 4.2.19. The map

Φ :
{

(`, ψ, eiφ) ∈ R+ × (0, π)× S1
}
−→

{
(τ, σ) ∈ C× R : R(χA, χ

′
A) < 0

}
given by (4.2.15) is a diffeomorphism.

We remark that, depending on the signature of the Hermitian form, Proposition 4.2.19

may still not mean that A is determined up to conjugacy by (τ, σ). Suppose that the

eigenvalue λj corresponds to the eigenspace Uj . Since |λ1| = |λ2|−1 > 1, the eigenspaces

U1 and U2 must both be null and the Hermitian form restricted to U1 ⊕ U2 must have

signature (1, 1). If the signature of the form is (3, 1) or (1, 3) then U3 and U4 must

both be positive or negative respectively. On the other hand, if the form has signature

(2, 2) then one of U3 or U4 is positive and the other is negative. This determines two

conjugacy classes in this case. For example, if the form is the standard diagonal form

diag(1, 1,−1,−1) then for ε = ±1 consider the following matrices in SU(2, 2)

Aε =


cosh(`)eiφ 0 0 sinh(`)eiφ

0 eiεψ−iφ 0 0

0 0 e−iεψ−iφ 0

sinh(`)eiφ 0 0 cosh(`)eiφ

 .

Both these matrices have the same values of τ and σ but yet they are not conjugate

within SU(2, 2) (even though they are conjugate in SL(4,C)).
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4.2.7 Regular elliptic case

Suppose that |λ1| = |λ2|−1 = 1 and |λ3| = |λ4|−1 = 1. In this case, (after possibly

multiplying A by a power of i if necessary) we can write

λ1 = eiθ+iφ, λ2 = e−iθ+iφ, λ3 = eiψ−iφ, λ4 = e−iψ−iφ.

Then

τ = 2 cos(θ)eiφ + 2 cos(ψ)e−iφ, σ = 4 cos(θ) cos(ψ) + 2 cos(2φ).

and x = 2 cos(θ), y = 2 cos(ψ), t = 2 cos(2φ). In this case

R(χA, χ
′
A) = 256 sin2(θ) sin2(ψ) sin2

(
φ+ (θ + ψ)/2

)
sin2

(
φ− (θ + ψ)/2

)
· sin2

(
φ+ (θ − ψ)/2

)
sin2

(
φ− (θ − ψ)/2

)
.

When θ = ψ and φ = π/2 then we see that τ = 0 and σ = 4 cos2(θ) − 2 = 2 cos(2θ).

This lies in the central tetrahedron of the holy grail. Therefore, by continuity, this region

comprises points where R(χA, χ
′
A) > 0.

4.3 Geometrical applications

4.3.1 Introduction

Our primary motivation for the classification of elements of SU(p, q) with p+ q = 4 was

to consider SU(3, 1), a four fold cover of PSU(3, 1), the holomorphic isometry group of

complex hyperbolic space H3
C. In order to demonstrate that this classification is also of

interest in the case of SU(2, 2), we use our results in two special cases. First we show

that we can embed the orientation preserving isometry group of H1
H, which is isometric

to H4
R, into PSU(2, 2). Secondly, we do a similar thing with automorphisms of anti de

Sitter space.

4.3.2 Isometries of complex hyperbolic space H3
C

The holomorphic isometry group of complex hyperbolic 3-space H3
C is the projective

unitary group PSU(3, 1) = SU(3, 1)/{±I, ±iI}. In this group all loxodromic maps are
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simple, that is they have a single pair of eigenvalues λ1 and λ2 = λ
−1
1 with absolute value

different from 1, as described in Section 4.2.6. The classification of elements of SU(3, 1)

via their resultant is simply the case p = 3 of Corollary 4.1.2:

Proposition 4.3.1. Let A ∈ SU(3, 1). Let R(χA, χ
′
A) denotes the resultant of the char-

acteristic polynomial χA(X) and its first derivative χ′A(X). Then we have the following.

(i) A is regular elliptic if and only if R(χA, χ
′
A) > 0.

(ii) A is regular loxodromic if and only if R(χA, χ
′
A) < 0.

(iii) A has a repeated eigenvalue if and only if R(χA, χ
′
A) = 0.

Furthermore, using Proposition 4.2.13 we can say slightly more about the case when

A has a repeated eigenvalue.

Proposition 4.3.2. Suppose that A ∈ SU(3, 1) has a repeated eigenvalue. If A is diago-

nalisable, then it is either elliptic or loxodromic (and both possibilities arise). Otherwise

it is parabolic, and the possible minimal polynomials of A are:

(i) m(x) = (x− e−iφ)2(x− eiθ+iφ)(x− e−iθ+iφ) where θ 6= 0, π, ±2φ (mod 2π);

(ii) m(x) = (x− e−iφ)2(x− eiφ) where φ 6= 0, π (mod 2π);

(iii) m(x) = (x− e−iφ)2(x− e3iφ) where φ 6= 0, π/2, π, 3π/2 (mod 2π);

(iv) m(x) = (x− e−iφ)3(x− e3iφ) where φ 6= 0, π/2, π, 3π/2 (mod 2π);

(v) m(x) = (x− e−ikπ/2)2 for k = 0, 1, 2, 3;

(vi) m(x) = (x− e−ikπ/2)3 for k = 0, 1, 2, 3.

For a detailed classification of elements of SU(3, 1) with repeated eigenvalues see [24].

With respect to the Hermitian form

H =


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

 , (4.3.1)
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we can find representatives of cases (i) to (vi) with one of the following two forms:

A1 =


e−iφ 0 0 ie−iφ

0 eiθ+iφ 0 0

0 0 e−iθ+iφ 0

0 0 0 e−iφ

 , A2 =


e−iφ 0 −2e−iφ −2e−iφ

0 e3iφ 0 0

0 0 e−iφ 2e−iφ

0 0 0 e−iφ

 .

In (i) we have A1; in (ii) we have A1 with θ = 0; in (iii) we have A1 with θ = 2φ; in

(iv) we have A2; in (v) we have A1 with θ = 0 and φ = kπ/2; in (vi) we have A2 with

φ = kπ/2.

Our goal in remainder of this section is to relate our parameters for loxodromic maps

in SU(3, 1) with the geometry of their action on H3
C. This generalises the work in Parker

[39] where the geometry of loxodromic maps in SU(2, 1) was considered.

We now recall the notation of Section 4.2.6. Suppose that A ∈ SU(3, 1) has eigenval-

ues

λ1 = e`+iφ, λ2 = e−`+iφ, λ3 = eiψ−iφ, λ4 = e−iψ−iφ. (4.3.2)

The eigenspaces V1 and V2 in C3,1 corresponding to λ1 and λ2 are both null. After

projectivisation, they correspond to fixed points q1 and q2 of A on ∂H3
C. Also, V1⊕V2 is

indefinite. Its projectivisation is a complex line, whose intersection L with H3
Cis a copy

of the Poincaré disc model of the hyperbolic plane, called the complex axis of A. The

(Poincaré) geodesic in L with endpoints q1 and q2 is called the axis of A and is denoted

α(A). The eigenspaces V3 and V4 in C3,1 corresponding to λ3 and λ4 are each positive.

They are orthogonal to V1 ⊕ V2, whose projectivisation intersects H3
C in L.

Proposition 4.3.3. Let A in SU(3, 1) be a loxodromic map with axis α and complex axis

L. Let `, φ and ψ be the parameters associated to A given by (4.3.2). Then A translates

a Bergman distance 2` along α and rotates the complex lines orthogonal to L by angles

−2φ+ ψ and −2φ− ψ.

Proof. We use the diagonal Hermitian form 〈, 〉 given by H = diag(1, 1, 1, −1) and

we follow the ideas of Parker [39, Proposition 3.10]. In this case we may represent points

z in H3
C by (z1, z2, z3) ∈ C3 with |z1|2 + |z2|2 + |z3|2 < 1. If the eigenvalues of A are given

49



by (4.3.2) then, up to conjugacy, we may suppose

A =


cosh(`)eiφ 0 0 sinh(`)eiφ

0 eiψ−iφ 0 0

0 0 e−iψ−iφ 0

sinh(`)eiφ 0 0 cosh(`)eiφ

 .

Thus A fixes (±1, 0, 0) on ∂H3
C. The action of A on H3

C is given by

A


z1

z2

z3

1

 ∼


(
cosh(`)z1 + sinh(`)

)
/
(
sinh(`)z1 + cosh(`)

)
eiψ−2iφz2/

(
sinh(`)z1 + cosh(`)

)
e−iψ−2iφz3/

(
sinh(`)z1 + cosh(`)

)
1


where ∼ stands for projective equality. The axis of A is the geodesic α joining the fixed

points and the complex axis of A is the unique complex line containing α. They are given

by

α =
{

(x, 0, 0) ∈ H3
C : −1 < x < 1

}
, L =

{
(z, 0, 0) ∈ H3

C : |z| < 1
}
.

Suppose that p = (x, 0, 0) is a point of the axis α of A. Let p denote the lift of p to C4

given by p = (x, 0, 0, 1)t. Then the translation length of A along α is ρ
(
A(p), p

)
. We

have

cosh
(
ρ
(
A(p), p

)
/2
)

=

∣∣∣∣〈Ap,p〉
〈p,p〉

∣∣∣∣ =

∣∣∣∣cosh(`)(x2 − 1)

x2 − 1

∣∣∣∣ = cosh(`).

This implies ρ
(
A(p), p

)
= 2` as claimed.

The tangent vectors to H3
C spanning the complex lines orthogonal to L are given by

ξ and η:

ξ = (0, 1, 0, 0)2, η = (0, 0, 1, 0)t.

Clearly the (projective) action of A sends ξ in Tp(H
2
C) to eiψ−2iφξ in TA(p)(H

2
C) and η to

e−iψ−2iφη. The rest of the result follows.

4.3.3 Isometries of H1
H = H4

R

Quaternionic hyperbolic 1-space H1
H may be identified with hyperbolic 4-space H4

R. The

isometries of quaternionic hyperbolic 1-space are contained in the projective symplectic

group PSp(1, 1) = Sp(1, 1)/(±I). The group Sp(1, 1) is the group of 2 × 2 quaternionic
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matrices preserving a quaternionic Hermitian form of signature (1, 1); see Parker [40] for

example. There is a canonical way to identify a quaternion with a 2× 2 complex matrix

and therefore to identify a 2 × 2 quaternionic matrix with a 4 × 4 complex matrix; see

Gongopadhyay [23] for example. When we do this, the quaternionic Hermitian form of

signature (1, 1) becomes a complex Hermitian form of signature (2, 2). The upshot of this

construction is that it is possible to embed (the double cover of) the group of orientation

preserving isometries of hyperbolic 4-space into SU(2, 2). In this section we show how the

classification given in the previous sections relate to the well known classification of four

dimensional hyperbolic isometries. Our construction follows Gongopadhyay [23], where

arbitrary invertible 2 × 2 quaternionic matrices were considered. See also Parker and

Short [45] for an alternative method of classifying quaternionic Möbius transformations.

Let AH be a 2× 2 matrix of quaternions acting on a column vector zH of quaternions

as

AHzH =

(
a b

c d

)(
z

w

)
=

(
az + bw

cz + dw

)
.

If A is in Sp(1, 1) then |a| = |d|, |b| = |c|, |a|2−|c|2 = 1, ab = cd and ac = bd; see Lemma

1.1 of [9] or Proposition 6.3.1 of [40] for example. If a is a quaternion we can write it as

a = a1 + ja2 where a1, a2 ∈ C. Then a corresponds to the following matrix in C2:(
a1 −a2
a2 a1

)
.

It is not hard to show that this identification is a group homomorphism from H with

quaternionic multiplication to M(2,C) with matrix multiplication.

Using this identification, the matrix AH corresponds to a 4 × 4 complex matrix A

given by:

A =


a1 −a2 b1 −b2
a2 a1 b2 b1

c1 −c2 d1 −d2
c2 c1 d2 d1

 .

Likewise zH corresponds to 4× 2 matrix and we only consider its first column, which is

a vector z in C4. The action of AH on zH induces the standard action of A on z ∈ C4

by matrix multiplication. Using this identification, we see that if AH is in Sp(1, 1) then
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A ∈ SU(2, 2).

Suppose that λH ∈ H is a right eigenvalue for AH. This means that there is a

quaternionic vector v so that AHv = vλH. It is always possible to find a unit quaternion

µ so that λ = µ−1λHµ is in C; see Parker and Short [45] or Gongopadhyay [23] for

example. (That is, writing λ = λ1 + jλ2 with λ1, λ2 ∈ C gives λ2 = 0.) In this case

AH(vµ) = vλHµ = (vµ)λ.

Hence λ ∈ C is also a right eigenvalue of AH. (In the language of quaternions, right

eigenvalues of quaternionic matrices are defined up to similarity.) It is easy to show that

λ is also an eigenvalue of A. Since we can also find ν ∈ H so that λ = ν−1λHν, a similar

argument shows that λ is also an eigenvalue of A. Hence, if |λ| 6= 1, using Goldman’s

lemma, Lemma 2.2.11, the eigenvalues of A are

λ, λ, λ−1, λ
−1
.

If |λ| = 1 then this is true of all eigenvalues and they are

eiθ, e−iθ, eiψ, e−iψ.

This implies that τ is real (which could have been seen by inspection) and so the

characteristic polynomial χA(X) of A has real coefficients. Hence the coefficients of X

and X3 in χA(X) are the same. This rules out case (i) of [23] Theorem 1.1; see also

Corollary 6.2 of Parker and Short [45]. Putting τ ∈ R in the expression for R(χA, χ
′
A) in

terms of σ and τ in Section 4.2.3 gives.

R(χA, χ
′
A) =

(
σ2 + 4σ + 4− 4τ2

)(
τ2 − 4σ + 8

)2
=

(
σ + 2− 2τ

)(
σ + 2 + 2τ

)(
τ2 − 4σ + 8

)2
.

We can now state our classification theorem, which should be compared to Theorem 1.1

of Gongopadhyay [23].

Proposition 4.3.4. Let A ∈ SU(2, 2) correspond to a map in Sp(1, 1). Then A has

52



characteristic polynomial

χA(X) = X4 − τX3 + σX2 − τX + 1

where tr(A) = τ ∈ R and σ ∈ R. Moreover

(i) A is regular 2-loxodromic if and only if τ2 − 4σ + 8 < 0.

(ii) A is regular elliptic if and only if τ2 − 4σ + 8 > 0 and (σ + 2)2 6= 4τ2.

(iii) A has a repeated eigenvalue if and only if τ2 − 4σ + 8 = 0 or (σ + 2)2 = 4τ2.

We note that the connection between our notation and that of Gongopadhyay is that

c1 = c3 = τ2/4 and c2 = σ. The main difference between our result and Theorem 1.1 of

Gongopadhyay [23] is that his result does not involve (σ + 2)2 − 4τ2. We now explain

this. Using our expression for the eigenvalues of A, we see that when |λ| 6= 1 then

(
σ + 2− 2τ

)(
σ + 2 + 2τ

)
= |λ+ λ−1 − 2|2|λ+ λ−1 + 2|2 > 0.

Otherwise τ = 2 cos(θ) + 2 cos(ψ) and σ = 4 cos(θ) cos(ψ) + 2 and

(
σ + 2− 2τ

)(
σ + 2 + 2τ

)
= 16

(
1− cos(θ)

)(
1− cos(ψ)

)(
1 + cos(θ)

)(
1 + cos(ψ)

)
≥ 0.

Hence
(
σ+ 2− 2τ

)(
σ+ 2 + 2τ

)
= 0 if and only if eiθ = ±1 or eiψ = ±1. If both of these

are true then τ2 − 4σ + 8 = 0. Otherwise, the eigenvalues of A are

eiθ, e−iθ, ±1, ±1.

where eiθ 6= ±1. In this case τ2 − 4σ + 8 = 4(1∓ cos θ)2 > 0. Furthermore, the repeated

eigenvalue λ = ±1 corresponds to the same quaternionic eigenvector λH = ±1. Thus

there is a two dimensional complex eigenspace associated to this eigenvector and A is

elliptic.

4.3.4 Automorphisms of anti de Sitter space

There is a canonical identification between R4 and M(2,R), the collection of 2 × 2 real

matrices. Under this identification, the determinant map det : M(2,R) −→ R corresponds
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to a quadratic form of signature (2, 2) on R4. Anti de Sitter space is the projectivisation of

the positive vectors with respect to this quadratic form. It may be canonically identified

with PSL(2,R) by considering the section where this quadratic form takes the value

+1; see Section 7 of Mess [36] or Section 2 of Goldman [20]. The automorphism group

of anti de Sitter space with its Lorentz structure is PSL(2,R) × PSL(2,R). Using the

identification of anti de Sitter space with R4 gives an isomorphism between PSL(2,R)×

PSL(2,R) and PSO0(2, 2) = SO0(2, 2)/(±I), where SO0(2, 2) is the identity component

of SO(2, 2); again see Mess [36] or Goldman [20].

Let us make this explicit. Identify R4 and M(2,R) by the map:

F : x =


x1

x2

x3

x4

 7−→ X =

(
x1 x2

x3 x4

)
.

The determinant map det(X) corresponds to the quadratic form Q(x) = x1x4 − x2x3.

This is associated to the symmetric matrix H of signature (2, 2) where

H =
1

2


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 .

Let A1, A2 ∈ SL(2,R). Then the pair (A1, A2) acts on SL(2,R) and this action corre-

sponds to A ∈ SO(2, 2) as follows:

F (Ax) = A1F (x)A−12 .

(Note we invert the matrix on the right so that the map from SL(2,R) × SL(2,R) to

SO(2, 2) is a homomorphism.) If

A1 =

(
a1 b1

c1 d1

)
, A2 =

(
a2 b2

c2 d2

)
.
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Then it is easy to see that

A =


a1d2 −a1c2 b1d2 −b1c2
−a1b2 a1a2 −b1b2 b1a2

c1d2 −c1c2 d1d2 −d1c2
−c1b2 c1a2 −d1b2 d1a2

 .

Clearly τ = tr(A) = (a1 + d1)(a2 + d2) = tr(A1)tr(A2). It is not hard to see that

σ =
1

2

(
tr2(A)− tr(A2)

)
=

1

2

(
tr2(A1)tr

2(A2)− tr(A2
1)tr(A

2
2)
)

=
1

2

(
tr2(A1)tr

2(A2)−
(
tr2(A1)− 2

)(
tr2(A2)− 2

))
= tr2(A1) + tr2(A2)− 2.

Theorem 4.3.5. Let (A1, A2) ∈ PSL(2,R) × PSL(2,R) be an automorphism of anti de

Sitter space. Then

(i) (A1, A2) is regular 2-loxodromic if either A1 or A2 is loxodromic and also 4 6=

tr2(A1) 6= tr2(A2) 6= 4.

(ii) (A1, A2) is regular elliptic if A1 and A2 are both elliptic and tr2(A1) 6= tr2(A2).

(iii) (A1, A2) is not regular if tr2(A1) = 4 or tr2(A2) = 4 or tr2(A1) = tr2(A2).

Proof. Consider the parameters x, y and t defined in (4.2.5). Since tr(A) is real, we

have t = 2, that is φ = 0 or φ = π. Moreover

(x+ y)2 = |τ |2 = tr2(A1)tr
2(A2),

xy + 2 = σ = tr2(A1) + tr2(A2)− 2.

A consequence of this is that

(x2 − 4)(y2 − 4) = (xy)2 − 4(x2 + y2) + 16 =
(
tr2(A1)− tr2(A2)

)2
,

x2 + y2 − 4− xyt+ t2 = (x+ y)2 − 4xy =
(
tr2(A1)− 4

)(
tr2(A2)− 4

)
.
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Therefore, using the identity from Proposition 4.2.6, we have

R(χA, χ
′
A) = (x2 − 4)(y2 − 4)(x2 + y2 − 4− xyt+ t2)2

=
(
tr2(A1)− tr2(A2)

)2(
tr2(A1)− 4

)2(
tr2(A2)− 4

)2
.

Then A has a repeated eigenvalue if and only if one of the following conditions hold:

tr(A2) = ±tr(A1), tr(A1) = ±2, tr(A2) = ±2.

Otherwise A is 2-loxodromic or elliptic. Furthermore, we have

<(τ)2 − 4σ + 8 =
(
tr2(A1)− 4

)(
tr2(A2)− 4

)
,

=(τ)2 + 4σ + 8 = 4tr2(A1) + 4tr2(A2),

6− σ = 8− tr2(A1)− tr2(A2).

Then using Theorem 4.2.9 we see (A1, A2) is elliptic if and only if A1 and A2 are both

elliptic with tr2(A1) 6= tr2(A2).

Note that taking A1 to be loxodromic and A2 to be parabolic gives an example of a

matrix in SU(2, 2) lying on one of the whiskers and whose Jordan normal form has two

blocks of size 2; see Proposition 4.2.16.
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Chapter 5

Classification of Pair of

Loxodromic Elements

In this chapter, we determine, up to conjugation, non-singular pair of loxodromics ele-

ments in SU(3, 1).

Following the notation of Section 2.2.1, we consider the Siegel domain model of H3
C.

The holomorphic isometry group of H3
C is the projective unitary group PSU(3, 1) =

SU(3, 1)/{±I,±iI}.

5.1 Loxodromic isometries

Let A ∈ SU(3, 1) represents a loxodromic isometry. Then A has eigenvalues of the form

reiθ, r−1eiθ, eiφ, e−i(2θ+φ). We can assume θ, φ ∈ (−π, π] and θ ≤ φ. Then (r, θ, φ) ∈ S,

where S is the region defined by:

S = {(r, θ, φ) ∈ R3 : r > 1, θ, φ ∈ (−π, π], θ ≥ φ}.

Let aA ∈ ∂H3
C be the attractive fixed point of A. then any lift aA of aA to V0 is

an eigenvector of A and corresponding eigenvalue is reiθ. Similarly if rA ∈ ∂H3
C is the

repelling fixed point of A, then any lift rA of rA to V0 is an eigenvector of A with eigen-

value r−1eiθ.
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For (r, θ, φ) ∈ S, define E(r, θ, φ) as

E(r, θ, φ) =


reiθ

eiφ

e−i(2θ+φ)

r−1eiθ

 . (5.1.1)

It is easy to see that E = E(r, θ, φ) ∈ SU(3, 1) represent a loxodromic map with attractive

fixed point aE =∞ and repelling fixed point rE = o.

Let xA, yA be the eigenvectors corresponding to the eigenvalues eiφ, e−i(2θ+φ) re-

spectively, scaled so that 〈xA,xA〉 = 1 = 〈yA,yA〉. Let CA =
[

aA xA yA rA

]
be

the 4 × 4 matrix, where the lifts aA and rA are chosen so that CA has determinant 1.

Then CA ∈ SU(3, 1) and A = CAEA(r, θ, φ)C−1A , where EA(r, θ, φ) is given by (5.1.1).

Lemma 5.1.1. Let A ∈ SU(3, 1). Then A has characteristic polynomial

χA(X) = X4 − τAX3 + σAX
2 − τ̄AX + 1,

where τA = tr(A) and σA = 1
2(tr2(A)− tr(A2)). Moreover σA is real.

For a proof see [26]. We also denote σA by σ(A) in the sequel.

Proposition 5.1.2. Two loxodromic elements in SU(3, 1) are conjugate if and only if

they have the same eigenvalues.

For a proof see [11]. An immediate consequence of Lemma 5.1.1 and Proposition 5.1.2

is:

Corollary 5.1.3. Two loxodromic elements A and A′ in SU(3, 1) are conjugate if and

only if τA = τA′ and σA = σA′.

Lemma 5.1.4. Let A = [Ae1, Ae2, Ae3, Ae4] ∈ SU(3, 1), then the vector Ae3 is uniquely

determined by the vectors Ae1, Ae2 and Ae4.

Proof. Let W be the subspace spanned by Ae1, Ae2, Ae4. Let W⊥ be the orthogonal

complement of W in C3,1. Observe that since A ∈ SU(3, 1), W ∩ W⊥ = {0} and

W⊥ 6= {0} is an one dimensional subspace of C4. Let W⊥ = 〈w〉 for some w ∈ C4. Then
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Ae3 ∈ W⊥ implies that Ae3 = λw for some λ ∈ C. Further the condition det(A) = 1

determines λ uniquely and the assertion follows.

Corollary 5.1.5. Let A = [Ae1, Ae2, Ae3, Ae4], B = [Be1, Be2, Be3, Be4] ∈ SU(3, 1)

and C ∈ SU(3, 1) be such that CAei = Bei for i = 1, 2, 4, then CAe3 = Be3.

From Lemma 5.1.4 and Corollary 5.1.3 we have the following.

Corollary 5.1.6. Let A and A′ are two loxodromic elements in SU(3, 1) such that τA =

τA′, σA = σA′ , aA = aA′ , rA = rA′ and xA = xA′, then A = A′.

5.2 The cross-ratios

Parker and Platis [41], also see Falbel [16], have shown that the triples of cross-ratios of

an ordered quadruple of points in ∂H2
C satisfy two real equations. If the ordered triples

of points belongs to ∂H3
C, the corresponding cross-ratios satisfy only one real equation

and one real inequality as shown in the following proposition.

Proposition 5.2.1. Let z1, z2, z3, z4 be four distinct points in ∂H3
C. Let X1, X2, X3

be defined by 2.4.1, then

|X2| = |X1||X3|. (5.2.1)

2|X1|2<(X3) ≥ |X1|2 + |X2|2 + 1− 2<(X1 + X2). (5.2.2)

Further, equality holds in (5.2.2) if and only if either of the following holds.

(i) z1, z2, z4 lie on the same complex line.

(ii) z1, z3, z4 lie on the same complex line.

(iii) z1, z2, z3, z4 lie on the same complex line.

Proof. Since SU(3, 1) acts doubly transitively on ∂H3
C, we may suppose z2 = ∞ and

z3 = o. Let z1, z4 be lifts of z1 and z4 chosen so that 〈z1, z4〉 = 1. We write them in
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coordinates as

z1 =


ξ1

η1

α1

δ1

 , z2 =


1

0

0

0

 , z3 =


0

0

0

1

 , z4 =


ξ4

ν2

ζ4

δ4

 .

Then we have

0 = 〈z1, z1〉 = ξ1δ̄1 + ξ̄1δ1 + |η1|2 + |α1|2 (5.2.3)

1 = 〈z4, z1〉 = ξ4δ̄1 + ξ̄4δ1 + ν2η̄1 + ζ4ᾱ1 (5.2.4)

0 = 〈z4, z4〉 = ξ4δ̄4 + ξ̄4δ4 + |ν2|2 + |ζ4|2 (5.2.5)

From the definitions of the cross-ratios we have:

X1 = [z1, z2, z3, z4] =
〈z3, z1〉〈z4, z2〉
〈z4, z1〉〈z3, z2〉

= ξ̄1δ4

X2 = [z1, z3, z2, z4] =
〈z2, z1〉〈z4, z3〉
〈z4, z1〉〈z2, z3〉

= ξ4δ̄1

X3 = [z2, z3, z1, z4] =
〈z1, z2〉〈z4, z3〉
〈z4, z2〉〈z1, z3〉

=
ξ4δ1
ξ1δ4

We immediately see that

|X3| =
|X2|
|X1|

.

Using eqs. 5.2.3 – 5.2.5, we have:
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|X1|2|X3 − 1|2 = |ξ4δ1 − ξ1δ4|2

= |ξ4δ1|2 + |ξ1δ4|2 − ξ4δ1ξ̄1δ̄4 − ξ̄4δ̄1ξ1δ4

= |ξ̄1δ4|2 + |ξ4δ̄1|2 + ξ4δ̄4(ξ1δ̄1 + |η1|2 + |α1|2) + ξ̄4δ4(ξ̄1δ1 + |η1|2 + |α1|2)

= |ξ̄1δ4 + ξ4δ̄1|2 − (|ν2|2 + |ζ4|2)(|η1|2 + |α1|2)

= |ξ̄1δ4 + ξ4δ̄1|2 − |ν2ᾱ1 + ζ4ᾱ1|2 − |ν2α1 − η1ζ4|2

= |X1 + X2|2 + |1− X1 − X2|2 − |ν2α1 − η1ζ4|2

This implies

|X1|2|X3 − 1|2 − |X1 + X2|2 + |1− X1 − X2|2 = −|ν2α1 − η1ζ4|2 ≤ 0

Rearranging this gives the inequality we want. Further the above inequality is an equality

if and only if

ν2α1 − η1ζ4 = 0, i.e.
ν2
η1

=
ζ4
α1
.

This means either of the conditions (i), (ii) , (iii) given in the statement. This proves the

proposition.

Platis [44] has proved a generalization of the above proposition for arbitrary rank 1

symmetric spaces of non-compact type and has applied it to derive Ptolemaean inequality

on the boundary of a rank 1 symmetric space of non-compact type. Since we have

restricted ourselves only to three dimensional complex hyperbolic geometry, our proof

above is much simpler.

Corollary 5.2.2. Let X1, X2, X3 be defined by 2.4.1, then 2<(X1 + X2) ≥ 1.

Proof. Since <(X3) ≤ |X3|,

2<(X1 + X2)− 1 ≥ |X1|2 + |X2|2 − 2|X1|2<(X3)

≥ |X1|2 + |X2|2 − 2|X1|2|X3|

= |X1|2 + |X2|2 − 2|X1||X2|

= (|X1| − |X2|)2 ≥ 0
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In particular 2<(X1 + X2) ≥ 1

Proposition 5.2.3. Let z1, · · · , z4 be distinct points of ∂H3
C and let X1, X2, X3 denote

the cross-ratios defined by 2.4.1. Suppose X1, X2 and X3 are non-real complex numbers.

Let A1 = A(z4, z3, z2) and A2 = A(z3, z2, z1). Then

1. A1 + A2 = arg(X1X2).

2. A1 − A2 = arg(X3).

Note that the above proposition is not true if Xi’s are real numbers. Cuhna-Gusevskii

[13, p.279] have given a counter-example to the above proposition when Xi’s are real

numbers. However, when all the cross-ratios are non-real complex numbers, the argument

as in the proof of [41, Proposition 5.8] goes through and we have the above proposition.

An explanation that the proof of [41, Proposition 5.8] does not carry over to the real cross

ratio case is that the principal argument of complex numbers is a well-defined function

from C − {0} to the semi-open interval (−π, π]. On the other hand, A1 ± A2 are well-

defined functions from distinct triple points on ∂Hn
C onto the closed interval [−π, π]. So,

the principal argument can not be identified with A1 ± A2, especially on the boundary

points of the intervals and those cases correspond when the cross ratios are real numbers.

Proposition 5.2.4. Let z1, z2, z3, z4 be distinct points of ∂H3
C with non-real cross

ratios X1, X2, X3. Let z′1, z
′
2, z

′
3, z

′
4 be another set of distinct points of ∂H3

C with

corresponding cross ratios X′1, X′2, X′3. If X′i = Xi for i = 1, 2, 3, then there exist

A ∈ SU(3, 1) such that A(zj) = z′j for j = 1, 2, 3, 4.

Proof. Since SU(3, 1) acts doubly transitively on ∂H3
C, wlog we may assume z2 = z′2 =

∞, z3 = z′3 = o. We write the lifts of other points as

z1 =


ξ1

η1

α1

δ1

 , z4 =


ξ4

ν2

ζ4

δ4

 . z′1 =


ξ′1

η′1

α′1

δ′1

 , z′4 =


ξ′4

ν ′2

ζ ′4

δ′4

 .
We may suppose that lifts of these points are chosen so that 〈z4, z1〉 = 〈z′4, z′1〉, i.e

ξ̄1δ4 + ξ4δ̄1 + ν2η̄1 + ζ4ᾱ1 = ξ̄′1δ
′
4 + ξ′4δ̄

′
1 + ν ′2η̄

′
1 + ζ ′4ᾱ

′
1.
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Then our condition on the cross-ratios gives :

ξ̄1δ4 = ξ̄′1δ
′
4,

ξ4δ̄1 = ξ′4δ̄
′
1,

ξ4δ1
ξ1δ4

=
ξ′4δ
′
1

ξ′1δ
′
4

.

Hence we also have

ν2η̄1 + ζ4ᾱ1 = ν ′2η̄
′
1 + ζ ′4α

′
1 (5.2.6)

Let us denote the angular invariants of the points by A1 = A(z4, z3, z2), A2 =

A(z3, z2, z1), A′1 = A(z′4, z
′
3, z

′
2), A′2 = A(z′3, z

′
2, z

′
1). Using Proposition 5.2.3,

we see that A1 + A2 = A′1 + A′2 and A1 − A2 = A′1 − A′2. Hence A1 = A′1 and

A2 = A′2. From Theorem 2.4.2, we see that there exist A1, A2 ∈ SU(3, 1) such that

A1(z2) = z′2, A1(z3) = z′3, A1(z4) = z′4 and A2(z1) = z′1, A2(z2) = z′2, A2(z3) = z′3.

Because A1 fixes z2 =∞ and z3 = 0, it is of form λ

U1

λ̄−1



where |λ| 6= 1 and U1 ∈ U(2). Hence we have λξ4 = ξ′4, λ̄
−1δ4 = δ′4 and U1

[
ν2

ζ4

]
=

[
ν ′2

ζ ′4

]
.

Therefore

ξ′1 =
δ̄4
δ̄′4
ξ1

= λξ1

δ′1 = δ1
ξ̄4
ξ̄′4
δ1

= λ̄−1δ1.

Hence A2 is of form  λ

U2

λ̄−1


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where, U2 ∈ U(2) so that

U2

[
η1

α1

]
=

[
η′1

α′1

]
.

It is enough to prove that there exist U ∈ U(2) such that

U

[
ν2

ζ4

]
=

[
ν ′2

ζ ′4

]
and U

[
η1

α1

]
=

[
η′1

α′1

]
.

Let us denote by y1 =

[
η1

α1

]
, y4 =

[
ν2

ζ4

]
, y1

′ =

[
η′1

α′1

]
, y4

′ =

[
ν ′2

ζ ′4

]
.

From (5.2.6), we have

� y4, y1 �=� y4
′, y1

′ � (5.2.7)

where � ., . � is the standard positive-definite Hermitian form on C2. Also we have

U1y4 = y4
′ and U2y1 = y1

′. Then U1, U2 ∈ U(2) implies

� y4,y4 �=� y4
′, y4

′ � (5.2.8)

� y1,y1 �=� y1
′, y1

′ � (5.2.9)

Suppose y1 and y4 are linearly independent over C and so forms a basis of C2. Let U

be the 2 × 2 matrix so that Uy1 = y1
′ and Uy4 = y4

′. Then from (5.2.7) – (5.2.9)

it follows that U preserves the Hermitian form � ., . � on C2, so U ∈ U(2) and we are

done.

Now consider the case when y1 and y4 are linearly dependent over C i.e. y4 = µy1

for some µ ∈ C. Then since the form � ., .� is positive definite and using 5.2.7−5.2.9,

this is true if and only if

� y4 − µy1,y4 − µy1 �= 0

⇔ � y4
′ − µy1

′,y4
′ − µy1

′ �= 0

⇔ y4
′ = µy1

′

Therefore either of U1 and U2 works and this completes the proof.
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When cross ratios are all real

Suppose all the three cross-ratios are real. Then (5.2.1) implies X3 = ±X2/X1. The

following result can be proved along the same line as in the proof of [41, Proposition

5.12].

Lemma 5.2.5. Suppose X1, X2 and X3 are all real.

1. If X3 = −X2/X1, then the points zj all lie on a chain.

2. If X3 = X2/X1, then the points zj all lie in a totally real Lagrangian subspace.

The following result follows from [18, p.225].

Lemma 5.2.6. Suppose z1, z2, z3 and z4 all lie on the same chain. Then X1, X2 and

X3 are each real.

Lemma 5.2.7. If z1, z2, z3, z4 are contained in the same totally real totally geodesic

subspace, then X1, X2. X3 are real numbers.

Proof. Let ι be the anti-holomorphic involution fixing the totally real totally geodesic

subspace. Then for i = 1, 2, 3, applying ι we get Xi = Xi. Hence all the cross-ratios are

real.

Summarizing the above lemmas we have the following.

Proposition 5.2.8. Let z1, z2, z3, z4 are distinct points on ∂H3
C. Then the cross ratios

X1, X2 and X3 are real numbers if and only if z1, z2, z3, z4 all lie on the same chain or

the same totally real totally geodesic subspace.

5.3 A sufficient condition for irreducibility

Let A, B be loxodromic elements in SU(3, 1) and following the notation of Section 5.1,

let

CA =
[

aA xA yA rA

]
, CB =

[
aB xB yB rB

]
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be the eigen matrices associated with A and B respectively. The Koranyi-Riemann cross-

ratios of A and B are defined by

X1(A, B) = [aB, aA, rA, rB] =
〈rA,aB〉〈rB,aA〉
〈rB,aB〉〈rA,aA〉

(5.3.1)

X2(A, B) = [aB, rA, aA, rB] =
〈aA,aB〉〈rB, rA〉
〈rB,aB〉〈aA, rA〉

(5.3.2)

X3(A, B) = [aA, rA, aB, rB] =
〈aB,aA〉〈rB, rA〉
〈rB,aA〉〈aB, rA〉

(5.3.3)

In [18] , Goldman defines η-invariant for a triple of points with two points on ∂H3
C and

one point on P(V+). Following Goldman’s definition, we define η-invariants associated to

A and B as follows

η1(A,B) = η(aA, rA;xB) =
〈aA,xB〉〈xB, rA〉
〈aA, rA〉〈xB,xB〉

η2(A,B) = η(aA, rA; yB) =
〈aA,yB〉〈yB, rA〉
〈aA, rA〉〈yB,yB〉

ν1(A,B) = η(aB, rB;xA) =
〈aB,xA〉〈xA, rB〉
〈aB, rB〉〈xA,xA〉

ν2(A,B) = η(aB, rB; yA) =
〈aB,yA〉〈yA, rB〉
〈aB, rB〉〈yA,yA〉

We define

ζo(A,B) = [yA, xA, xB, yB] =
〈xB,yA〉〈yB,xA〉
〈xB,xA〉〈yB,yA〉

It is clear from the definition that the Xi’s, ηj ’s and ζo are conjugacy invariants for

the two generator subgroup 〈A,B〉 of SU(3, 1) and their values are independent of the

chosen lifts of eigenvectors.

Theorem 5.3.1. Let 〈A,B〉 be a discrete, free subgroup of SU(3, 1) that is generated by

two loxodromic elements A and B. Then 〈A,B〉 preserves a C2-plane if and only if one

of the following holds.

(i) ζo = 0 and, either η1(A,B) = 0 = ν1(A,B) or η2(A,B) = 0 = ν2(A,B).

(ii) ζo =∞ and, either η1(A,B) = 0 = ν2(A,B) or η2(A,B) = 0 = ν1(A,B).
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Proof. Note that a two dimensional totally geodesic subspace of H3
C corresponds to a

copy of C2,1.

The condition is necessary. Suppose 〈A,B〉 preserve a copy of C2,1. Observe that

〈A,B〉 preserve a copy of C2,1 if and only if A and B have a common space-like eigen-

vector. Thus, either of the following cases arises:

(a) xA = xB

(b) yA = yB

(c) yA = xB

(d) xA = yB

The result follows from the definition of ηi(A,B)’s and ζo(A,B).

The condition is sufficient. Suppose ζo = 0. We discuss the case (i) i.e. let

η1(A,B) = 0 = ν1(A,B) = 0 = ζo(A,B).

We claim that xA = xB. We have

〈aA,xB〉〈xB, rA〉 = 0

〈aB,xA〉〈xA, rB〉 = 0

〈xB,yA〉〈yB,xA〉 = 0

Different subcases arises, it is enough to consider the following subcase

〈aA,xB〉 = 0, 〈aB,xA〉 = 0, 〈yB,xA〉 = 0. (5.3.4)

Since, {aB, xB, yB, rB} is a basis for C3,1, hence there exists scalars µ1, µ2, µ3, µ4

such that

xA = µ1aB + µ2xB + µ3yB + µ4rB.

The conditions 〈aB,xA〉 = 0 = 〈yB,xA〉 implies µ3 = 0 = µ4. Hence

xA = µ1aB + µ2xB.
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This implies

0 = 〈xA,aA〉 = µ1〈aB,aA〉+ µ2〈xB,aA〉.

Using (5.3.4) we have µ1〈aB,aA〉 = 0. Since 〈aB,aA〉 6= 0, we have µ1 = 0. Hence

xA = µ2xB i.e. xB = xA, proving the result for the case (i). The argument in the other

cases are similar.

Note that if ζo =∞, then 1/ζo = 0 and similar arguments work in these cases also.

The subgroup 〈A,B〉 of SU(3, 1) is called irreducible or Zariski-dense if it does not

preserves a totally geodesic subspace of H3
C. Using the above theorem and the results

on cross ratios, it is possible to derive many conditions for irreducibility of 〈A,B〉. As a

special case we have the following.

Corollary 5.3.2. Let A and B be two loxodromic elements in SU(3, 1) such that 〈A,B〉

is non-singular. Then 〈A,B〉 is irreducible.

5.4 Classification of non-singular pair of loxodromics

In this section we follow the notations from Section 5.1. First we shall show that for a

non-singular pair (A,B) one can always get a well-defined α-invariant and a well-defined

β-invariant.

5.4.1 α and β-invariants are well-defined

Let A and B be two loxodromics such that they form a non-singular pair. Without loss

of generality, we can assume A is a diagonal matrix, that is CA = [e1, e2, e3, e4], where

{e1, e2, e3, e4} is the standard orthonormal basis of C3,1. Let B = CBE(λ, ψ)C−1B , where

CB = [aB,xB,yB, rB]. Let

aB =


a

e

j

n

 , xB =


b

f

k

s

 , yB =


c

g

l

p

 , rB =


d

h

m

q

 .

Now we see that

α1(A,B) =
nb

as
, α2(A,B) =

nc

ap
,
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β1(A,B) =
n̄h̄

q̄ē
, β2(A,B) =

n̄m̄

q̄j̄
.

Since aB and rB are negative vectors, we must have a, n and q non-zeros. Now note that

〈aA,xB〉 = b, 〈rA,xB〉 = s, (5.4.1)

〈aA,yB〉 = c, 〈rA,yB〉 = p, (5.4.2)

〈aB,xA〉 = e, 〈rB,xA〉 = h, (5.4.3)

〈aB,yA〉 = j, 〈rB,yA〉 = m. (5.4.4)

It follows from condition (iii) of the definition of non-singularity that neither of aA

and rA belong to at least one of the C2-chains x⊥B and y⊥B and also, neither of aB and rB

belong to one of the C2-chains x⊥A and y⊥A . Thus, at least one of the equations (5.4.1)

and (5.4.2) must have entirely non-zero solution. Similarly, the solution of one of the

equations (5.4.3) and (5.4.3) will also be entirely non-zero. Thus at least one α-invariant

and one β-invariant are always well-defined complex numbers for a non-singular pair of

loxodromics.

It can further be seen from the definition of Goldman’s eta invariants that the well-

definedness of α-invariant and β-invariant can be stated equivalently by saying that for

some i, j ∈ {1, 2}, ηi(A,B) 6= 0 and νj(A,B) 6= 0.

Lemma 5.4.1. Let A, B, A′, B′ be loxodromic elements in SU(3, 1). Let 〈A,B〉 be

a non-singular subgroup in SU(3, 1) such that for some i, j ∈ {1, 2}, ηi(A,B) 6= 0 and

νj(A,B) 6= 0. Suppose αi(A,B) = αi(A
′, B′), βj(A,B) = βj(A

′, B′) and, for k = 1, 2, 3,

Xk(A, B) = Xk(A′, B′). Then there exist C ∈ SU(3, 1) such that C(aA) = aA′ , C(xA) =

xA′ , C(yA) = yA′ , C(rA) = rA′ and C(aB) = aB′ , C(xB) = xB′ , C(yB) = yB′ , C(rB) =

rB′.

Proof. We shall prove the lemma assuming that (i, j) = (1, 1). The rest of the cases

are similar.

Since Xi(A, B) = Xi(A′, B′), i = 1, 2, 3, by Proposition 5.2.4 it follows that there

exist C ∈ SU(3, 1) such that aA′ = C(aA), rA′ = C(rA), aB′ = C(aB) and rB′ = C(rB).
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Since α1(A
′, B′) = α1(A, B), we have

〈xB, rA〉〈aB,aA〉
〈aB, rA〉〈xB,aA〉

=
〈x′B, r′A〉〈a′B,a′A〉
〈a′B, r′A〉〈x′B,a′A〉

=
〈C−1(x′B), rA〉〈aB,aA〉
〈aB, rA〉〈C−1(x′B),aA〉

=⇒ 〈xB, rA〉
〈C−1(x′B), rA〉

=
〈xB,aA〉

〈C−1(x′B),aA〉

Let

λ =
〈xB, rA〉

〈C−1(x′B), rA〉
=

〈xB,aA〉
〈C−1(x′B),aA〉

This implies

〈xB − λC−1(x′B), rA〉 = 0. (5.4.5)

〈xB − λC−1(x′B),aA〉 = 0. (5.4.6)

On the other hand, note that

〈xB − λC−1(x′B), rB〉 = 〈xB, rB〉 − λ〈C−1(x′B)− rB〉 = 0− λ〈x′B, r′B〉 = 0. (5.4.7)

Similarly,

〈xB − λC−1(x′B),aB〉 = 0. (5.4.8)

Let LA and LB denote the two-dimensional time-like subspaces of C3,1 that represent the

complex axes of A and B respectively. Thus {aA, rA} and {aB, rB} are the respective

bases of LA and LB.

It follows from (5.4.5) – (5.4.8) that v = xB − λC−1(x′B) is orthogonal to to both

LA and LB. We must have 〈v, v〉 > 0. Thus v is polar to the C2-chain (copy of H2
C) that

is represented by V = v⊥. Since C3,1 = V ⊕ Cv, hence LA and LB must be subsets in

V. Thus the fixed points of A and B belongs to boundary of the C2-chain P(V). This

is a contradiction to the non-singularity of (A,B). Hence we must have v = 0, that is

C(xB) = λx′B. Thus, C(xB) = x′B. Consequently, C(yB) = y′B.

Similarly β1(A,B) = β1(A
′, B′) implies C(xA) = x′A and hence C(yA) = y′A. This

proves the lemma.

Theorem 5.4.2. Let A, B be two loxodromic elements in SU(3, 1) such that they gen-
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erate a non-singular subgroup 〈A,B〉. Then 〈A,B〉 is determined up to conjugacy by the

following parameters:

tr(A), tr(B), σ(A), σ(B), Xk(A,B), k = 1, 2, 3, one non-zero α-invariant and

one non-zero β-invariant, where tr(A) = trace(A), σ(A) = 1
2(tr2(A)− tr(A2)).

Proof. Suppose that A, B, A′, B′ are loxodromic elements such that

tr(A) = tr(A′), tr(B) = tr(B′), σ(A) = σ(A′), σ(B) = σ(B′);

αi(A,B) = αi(A
′, B′), βj(A,B) = βj(A

′, B′) and for k = 1, 2, 3, Xk(A, B) = Xk(A′, B′).

Following the notation in Section 5.1, A = CAEAC
−1
A , B = CBEBC

−1
B and similarly

for A′ and B′. Since the cross-ratios are equal, by Lemma 5.4.1 it follows that there

exist C ∈ SU(3, 1) such that C(aA) = aA′ , C(xA) = xA′ , C(yA) = yA′ , C(rA) = rA′ and

C(aB) = aB′ , C(xB) = xB′ , C(yB) = yB′ , C(rB) = rB′ . Therefore CAC−1 and A′ have

same eigenvectors. Since tr(A′) = tr(CAC−1), σ(A′) = σ(CAC−1), by Corollary 5.1.3

and Proposition 5.1.2, we must have CAC−1 = A′. Similarly, B′ = CBC−1. Thus

〈A′, B′〉 = 〈CAC−1, CBC−1〉 = C〈A, B〉C−1 as claimed.
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mations, Computational Methods and Function Theory 9 (2009) 13–25.

[46] T. Poston & I. Stewart, The cross-ratio foliation of binary quartic forms, Geom.

Dedicata 27 (1988), no. 3, 263–280.

[47] L. H. Rowen, Polynomial Identities in Ring Theory, Pure and Applied Mathemat-

ics, Academic Press (London), 1980.

76



[48] R. E. Schwartz, Complex hyperbolic triangle groups,Proceedings of the International

Congress of Mathematicians (2002) Volume 1: Invited Lectures, 339–350

[49] S. P. Tan, Complex Fenchel-Nielsen coordinates for quasi-Fuchsian structures, In-

ternat. J. Math. 5 (1994), 239–251.

[50] H. Vogt, Sur les invariants fondamentaux deséquations différentielles linéaires du
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[51] M. Wada, Conjugacy invariants of Möbius transformations, Complex Variables

Theory Appl. 15 (1990), no. 2, 125–133.
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