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Introduction

The main aim of my thesis is to review the major developments in the area of integral

and modular dimension subgroups and study some of their applications.

One of the fundamental objects of study in group theory is the lower central series.

Magnus [Mag35] was one of the first to investigate the lower central series of free

groups. To recall his approach, let F be a free group ring with basis X = {xi}i∈I .
Let A = Z[[Xi]] be the ring of formal power series and U(A) the group of units of A.

Clearly, 1 + Xi is an invertible element with the inverse as 1 − Xi + X2
i − . . .. The

map xi 7→ 1+Xi extends to a homomorphism θ : F → U(A). It can be shown that θ

is actually a monomorphism [MKS76, Chapter 5].

For a ∈ A, let an be the homogeneous components of degree n so that

a = a0 + a1 + . . .+ an + . . . .

Magnus defined dimension subgroups, Dn(F ), n ≥ 1, as follows

Dn(F ) := {f ∈ F | θ(f) = 1 + θ(fn) + θ(fn+1) + . . .}. (1)

These subgroups are normal subgroup with the property that (F,Dn(F )) ⊆ Dn+1(F )

for all n ≥ 1 where for M,N subgroups of the group, G, we define (M,N) to be the

subgroup generated by the commutators (m,n) = m−1n−1mn for m ∈M and n ∈ N ,

i.e.,

(M,N) = 〈(m,n) = m−1n−1mn|m ∈M and n ∈ N〉. (2)

Let f be the augmentation ideal of Z[F ]. Define Dn(F ) = G∩(1+fn). For free groups,

it is easy to see that γn(F ) ⊆ Dn(F ) ⊆ Dn(F ) for all n ≥ 1.

The homomorphism θ can be extended to a monomorphism Θ : Z[F ] → U(A). Under

this map, α ∈ fn maps to an element where θ(α)i = 0 for all i ≤ n − 1. From the
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work of Grün [Gru36], Magnus [Mag37] and Witt [Wit37] it follows that the above

inclusions are actually equalities i.e.,

γn(F ) = Dn(F ) = Dn(F ) for all n ≥ 1. (3)

The above result gives a close relation between the lower central series and the dimen-

sion series. It was only natural to conjecture that, for any group G, the lower central

series and the dimension series coincide. It was in 1972 that E. Rips [Rip72] settled

this conjecture by giving a counter-example.

In the first chapter, we study integral dimension subgroups. We see that the first three

terms of the integral dimension series and the lower central series of an arbitrary group

coincide; however, beyond that the equality does not hold in general. We study the

structure of the fourth [Tah77] and the fifth dimension subgroups [Tah81] in some

detail. We also study some of the counter-examples given by Gupta [Gup90]. In the

second part of this chapter we focus on dimension subgroups over fields.

In the second chapter, we study the Lie dimension subgroups, D(n)[G] and D[n](G)

for n ≥ 1. We see that γn(G) ⊆ D[n](G) ⊆ D(n)(G) ⊆ Dn(G). We explore the Lie

dimension subgroups in some detail to realize that more definitive results are known

about them. We also discuss the identification of Lie dimension subgroups over fields

as given by Passi and Sehgal [PS75].

In the last chapter, we study powerful p-groups which were introduced by Lubotzky

and Mann [LM87]. These can be thought of as generalization of Abelian groups.

Shalev [Sha90] introduced a double-indexed series, {Dm,k}, which we study in some

detail. We focus on some of its properties and see how these are related to dimension

subgroups [SS91]. We discuss how powerful and potent p-groups help us understand

the power structure of p groups [Wil03]. Extensive work has been done in this area

by A. Shalev [Sha90] [Sha91], C. Scoppola [Sco91] and others.
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Chapter 1

Dimension Subgroups

In this chapter we study integral dimension subgroups, Dn,R(G) when R

is the ring Z of integers or a field.

1.1 Integral Dimension Subgroups

1.1.1 Preliminaries

Definition 1.1.1. Let G be any group, and R be a ring with identity. The set of

elements of the form
∑

i rigi where ri ∈ R (with only finitely many ri’s non-zero) and

gi ∈ G is called group ring of G with respect to R and is denoted by R[G] with

addition and multiplication defined as follows:

1.
∑

g∈G rgg +
∑

g∈G r
′
gg =

∑

g∈G(rg + r′g)g,

2. (
∑

g∈G agg) · (
∑

h∈G bhh) =
∑

g,h∈G(agbh)(gh) =
∑

x∈G(
∑

gh=x agbh)(x).

When R = Z we refer to the group ring R[G] as the integral group ring of G.

Definition 1.1.2. The map ε : R[G] → R which maps
∑

i rigi to
∑

i ri is called the

augmentation map; it is a ring homomorphism. The kernel of ε is a two-sided ideal,

called the augmentation ideal. We denote it by ∆R(G).

When R = Z we drop the subscript R and abbreviate the notation to ∆(G) or g.

As an R-module, ∆R(G) is generated freely by the elements g − 1R, (g ∈ G).

Definition 1.1.3. The nth dimension subgroup of G over the ring, R with identity

is defined as

Dn,R(G) = G ∩ (1 + ∆n
R(G)) for alln ≥ 1. (1.1)
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This is a normal subgroup with the property (G,Dn,R(G)) ⊆ Dn+1,R(G). We thus

have the following central series

G = D1,R(G) ⊇ D2,R(G) ⊇ . . . ⊇ Dn,R(G) ⊇ . . . (1.2)

called the dimension series of G over R. Again, if R = Z we will write Dn(G) rather

than D
n,Z(G).

We denote by (a, b) the commutator, a−1b−1ab, of two elements a and b of a group, G.

Note that we use simple brackets in place of square brackets; this is to avoid confusion

with the Lie bracket notation introduced later. We use the notation ab = b−1ab.

Theorem 1.1.4. [MKS76, Theorem 5.1] For any three elements x, y, z ∈ G

1. (x, y) · (y, x) = 1

2. (x, y · z) = (x, y) · (x, z) · ((x, y), z)

3. (x · y, z) = (x, y) · ((x, z), y) · (y, z)

4. ((x, y), zx) · ((z, x), yz) · ((y, z), xy) = 1.

Definition 1.1.5. Define subgroups γn(G) inductively as follows

γ1(G) = G; γn+1(G) = (G, γn(G)) for all n ≥ 1. (1.3)

The series

G = γ1(G) ⊇ γ2(G) ⊇ . . . ⊇ γn(G) ⊇ . . . (1.4)

is referred to as the lower central series of G.

The lower central series is a fundamental object of study in the theory of groups.

We note that γn(G) ⊆ Dn(G) for all groups, G, and for all n ≥ 1.

1.1.2 Dimension Property

Definition 1.1.6. Let G be a group. The quotient Dn(G)/γn(G), n ≥ 1 is called the

nth (integral) dimension quotient of G. The group G is said to have the dimension

property if all the dimension quotients are trivial, i.e., Dn(G) = γn(G) for all n ≥ 1.

4



For a free group F , Dn(F ) = γn(F ) for all n ≥ 1. This is the Magnus-Grün-Witt

theorem [Gup87, I.3.7], also known as the Fundamental Theorem of Free Group

Rings which exhibits a close relationship between the lower central series and the

dimension subgroups of free groups.

It is this theorem that motivated the study of dimension subgroups. It was conjectured

that Dn(G) = γn(G) for all G and all n. This came to be known as the dimension

subgroup conjecture. The origin of the dimension subgroup conjecture can be

traced back to Grün [Gru36] who attributes it to Magnus.

For all n ≤ 3, it is known Dn(G) = γn(G) for all groups. The proof is elementary for

the case n = 2. G. Higman and D. Rees had shown independently that for all groups

D3(G) = γ3(G). For the proof, the reader may refer to [Pas79, Chapter V, Section 5].

In fact, a stronger result holds.

Theorem 1.1.7. [Pas79, V.5.9] For every group G,

γ3(G) = G ∩ (1 + ∆(G)3 +∆(G)∆(ζ1(G))) (1.5)

where ζ1(G) is the center of the group G.

Passi [Pas68a] showed that D4(G) = γ4(G) for any finite p-group (p odd). A counter-

example to the triviality of the fourth dimension quotient was provided by Rips

[Rip72]. Subsequently counter-examples for all n ≥ 4 were given by Narain Gupta

(see [Gup90]) by constructing for each n ≥ 4 a finite 2-group, Gn, such that the

Dn(Gn) 6= γn(Gn).

It was observed by G. Higman that to study the obstruction to the triviality of di-

mension quotients it suffices to focus on prime power groups.

Theorem 1.1.8. Higman’s Reduction [Pas79, V.4.4] If G is a group such that

Dn(G) 6= γn(G), then there is a sub-quotient N of G such that

1. N is a finite p-group of class ≤ n− 1.

2. Dn(N) 6= 1.

Proof Let x ∈ G be such that x ∈ Dn(G) and x /∈ γn(G). We then have an equation

x− 1 =
∑

r(g1 − 1)(g2 − 1) . . . (gn − 1)

5



where gk ∈ G and r ∈ Z.

Let H be the subgroup of G (finitely) generated by the elements, gk ∈ G, which are

involved in the above expansion of x− 1. Now, x ∈ Dn(H) but x /∈ γn(H).

Define a quotient group K = H/γn(H). Dimension subgroups are preserved under

homomorphism, hence x = xγn(H) ∈ Dn(K). Also, x /∈ γn(K) = 1.

Now, note that K is a finitely generated nilpotent group and is hence a residually

prime power group [Gru57, Theorem 2.1(i)]. Thus, there exists a normal subgroup L

of K such that x /∈ L and K/L = N is a prime power group which is a quotient of a

subgroup of G (by construction) such that xL ∈ Dn(N) and xL /∈ γn(N) = 1. Hence,

the theorem is proved.

Fourth Dimension Subgroup

We next take up the discussion of the fourth dimension quotient. We will first see a

result of Passi [Pas68a]. We will look at a description of D4(G)/γ4(G) given by Gupta

using the approach of free groups. Our main will be to understand the structure of

D4(G)/γ4(G) given by Tahara [Tah77].

We state without proof a result which will be required in one of the approaches to

investigate the fourth dimension subgroup.

Let 1 → N
i−→ G → X → 1 be a short exact sequence where N is an Abelian group

and i is an inclusion map. We use the notation (N, nG) = (. . . ((N,G), G), . . .G
︸ ︷︷ ︸

n times

).

Theorem 1.1.9. [Pas79, V.5.1] A homomorphism α : N → M , M Abelian, can be

extended to a map ϕ : G→M whose linear extension to Z[G] vanishes on ∆(G)n+1+

∆(G)∆(N) iff

1. There exists transversal {w(x)}x∈X with w(1) = 1, for X in G and a map

χ : X →M , χ(1) = 0, such that

α(W (x1, (x2 − 1)(x3 − 1) . . . (xn − 1))) = χ((x1 − 1)(x2 − 1) . . . (xn+1 − 1)),

{xi}n+1
i=1 ∈ X where W (x1, x2) = w(x1, x2)

−1w(x1)w(x2) : X × X → N is the

2-cocycle determined by w. N is a right X-module via conjugation in G. By

linearity, W is extended to Z[X ]× Z[X ] and χ is extended to Z[X ].

2. α vanishes on (N, nG).

6



Theorem 1.1.10. If G is a p-group, p 6= 2, then

D4(G) = γ4(G). (1.6)

The above theorem is a straight forward corollary of a more general result.

Theorem 1.1.11. If G is a p-group for p odd, then

γ4(G) = G ∩ (1 + ∆4(G) + ∆(G) ·∆(ζ1(G))) (1.7)

where ζ1(G) is the center of G.

Proof Theorem 1.1.8 tells us that it is sufficient to give the proof for finite p( 6= 2)

groups of nilpotency class 3. Let us consider the group G with γ4(G) = 1. We only

have to show that RHS ⊆ LHS as the other way inclusion is obvious. Let x( 6= 1) be

an element in G ∩ (1 + ∆4(G) + ∆(G) ·∆(ζ1(G))).

Using theorem 1.1.7 we can say that x ∈ γ3(G) ⊆ ζ1(G). Let T be the additive group

of rationals modulo 1. There exists a homomorphism α : ζ1(G) → T with the property

that x is not mapped to 0. The crux of the proof is that the homomorphism α can

be extended to a map ϕ : G → T which when extended linearly to Z[G] vanishes on

∆4(G) + ∆(G) ·∆(ζ1(G)). Therefore, we have

α(x) = ϕ(x) = ϕ(x− 1) = 0. (1.8)

But this is a contradiction.

Thus our assumption must be false, and G∩ (1+∆4(G))+∆(G) ·∆(ζ1(G))) = 1.

Though D4(G) may not be equal to γ4(G) for all groups G, we have the following

result which is the best known for the fourth dimension quotient.

Theorem 1.1.12. For every group G, D4(G)/γ4(G) has exponent at most 2.

Proof Using theorem 1.1.8, it is sufficient to consider the case of finite 2-groups of

nilpotency class 3. Let G be such a group. Let x be an element in D4(G) with x
2 6= 1.

Since D3(G) = γ3(G) for all groups, we can conclude that x ∈ γ3(G). Furthermore,

there exists a homomorphism α : γ3(G) → T so that 2α(x) = α(x2) 6= 0. We can

extend the homomorphism, 2α, to a map ϕ : G→ T of degree ≤ 3 such that

7



2α(x) = ϕ(x) = ϕ(x− 1) = 0.

This results in a contradiction, meaning that our assumption is wrong. Hence x2 = 1

for all x ∈ D4(G). This proves the theorem.

We now look at the free group approach developed by Gupta for studying the structure

of D4(G)/γ4(G). This approach became useful as it later helped in coming with a

large number of examples of groups without the dimension property.

Let G be any group with free presentation 〈X|r1, r2, . . .〉 where X is the set of gener-

ators and ri’s are the relations. The presentation of G can be viewed as a short exact

sequence

1 → R
i−→ F

p−→ G→ 1 (1.9)

where i is an injection and p a surjection, F is a free group on the set X and R is a

normal subgroup of F . We thus have G ≃ F/R.

NOTATION: Let F be a free group with basis X and Z[F ] its integral group ring.

We denote the augmentation ideal Z[F ](F − 1) by f. For a normal subgroup R in F

we have a two-sided ideal, r = Z[F ](R− 1) of Z[F ], .

We translate the dimension subgroup problem into the language of free group rings.

Let G = F/R, we define D(n,R) = F ∩ (1 + r + fn) and call it the nth dimension

subgroup of F relative to R. The dimension subgroup problem translates into the

identification of the quotient D(n,R)/Rγn(F ).

The following theorem of Gupta gives the structure of the fourth dimension subgroup.

As will be seen subsequently, this is a translation of what was shown by Tahara

[Tah77]. In this discussion G is a finitely generated metabelian group (a group with

γ2(G) Abelian) which has the pre-Abelian presentation

F/R = 〈x1, . . . , xm|xe11 ξ1, . . . , xemm ξm, ξm+1, . . . , F
′′〉 (1.10)

with em| . . . |e1 ≥ 0 and for all i, ξi ∈ F ′.

Theorem 1.1.13. [Gup87, IV.5.1] Let G = F/R with F/RF ′ ≃ F/S where F is

the free group on the set X = {x1, . . . , xm} and S = 〈xe11 , . . . , xemm , F ′〉, ei = 2αi,

and α1 ≥ α2,≥ αm ≥ 1. Then modulo Rγ4(F ), D(4, R) consists of all elements

w =
∏

1≤i<j≤m(x
ei
i , x

ej
j )

aij , aij ∈ Z such that

8



• ej |
(
ei
2

)
aij 1 ≤ i < j ≤ m.

• yk =
∏

i<k x
−e′iaik
i

∏

k<j x
ejbkj
j ∈ RF ′ekγ3(F ), 1 ≤ k ≤ m, where we define

bkj =
ek
ej
akj +

(ek2 )
ej
akj(xk − 1).

Proof To proceed with the proof we need the following theorem

Theorem 1.1.14. [Gup87, IV.3.2] For all n ≥ 1, modulo (F ′, S)γn+2(F ), D(n+2, fs)

is generated by

(xi, xj)
t(xi,ei)aij 1 ≤ i < j ≤ m (1.11)

where aij = aij(xj , . . . , xm) ∈ Z[F ] and t(xi, ei) := 1 + xi + . . .+ xeii . Also, t(xi, ej)aij

is an element of t(xj , ej)Z[F ] + s+ fn. We define D(n+ 2, fs) as F ∩ (1 + fs+ fn).

Let w ∈ D(4, fr) ≤ D(4, fs). Theorem 1.1.14 tells us that we can write

w =
∏

1≤i<j≤m

(xi, xj)
dij

m∏

k=1

(xekk , ηk)ξ (1.12)

where ξ ∈ γ4(F ), ηk ∈ F ′, dij = t(xi, ei)aij ≡ t(xj , ej)bij(s+ f2), aij = aij(xj, . . . , xm)

and bij = bij(x1, . . . , xm) are elements of the free group ring Z[F ].

Now, modulo (F ′, S)γ4(F ), (xi, xj)
t(xi,ei)(xk−1) = 1. This means that it is enough to

prove for the case when aij ∈ Z and bij = b′ij + b′′ij(xi − 1) with b′ij , b
′′
ij ∈ Z.

Now we set

t(xi, ei)aij = t(xj , ej)b
′
ij + t(xj , ej)b

′′
ij(xi − 1) +

∑

l

αl(x
el
l − 1). (1.13)

We write t(xi, ei) = 1 + xi + . . .+ xei−1
i =

x
ei
i −1

xi−1
wherever required. If we consider the

augmentation of both sides, we get bij =
eiaij
ej

. Further, we use the expansion

(xei − 1) = (xi − 1 + 1)ei − 1 = ei(xi − 1) +

(
ei
2

)

(xi − 1)2 + . . . (1.14)

and compare coefficients to get ej |
(
ei
2

)
aij 1 ≤ i < j ≤ m and b′′ij =

(ei2 )
ej
aij .

yk is as defined in the statement of the theorem and zk :=
∏
(xi, xj)

xkDxk
(dij ), product

over i such that i < j and i ≤ k where Dxk
(u) is the usual partial derivative as defined

for rational functions.

9



We can simplify each term in the expression for zk as:

(xi, xj)
xkDxk

(dij ) =

{

(xi, xj)
t(xi,ei)Dxk

(aij ) k 6= i

(xi, xj)
t(xj ,ej)Dxk

(bij) k = i
(1.15)

Modulo f2s+ f4, we have

w − 1 ≡
m∑

k=1

(xk − 1)(ykz
−1
k ηekk − 1) (1.16)

(For detailed calculations, see [Gup87, Lemma IV.4.4].)

Therefore, we have
∑m

k=1(xk − 1)(ykz
−1
k ηekk − 1) ≡ 0 mod f(r + fs + f3). Thus,

ykz
−1
k ηekk rk − 1 ∈ fs+ f3 ≤ r+ f3 for some rk ∈ R.

Furthermore, ykz
−1
k ηekk rk ∈ Rγ3(F ) implies ykz

−1
k ∈ RF ′ekγ3(F ).

Also, zk ≡ 1 mod Rγ3(F ). Thus, we get the desired result yk ∈ RF ′ekγ3(F ).

Conversely, if w =
∏

1≤i<j≤m(x
ei
i , xj)

aij , aij ∈ Z satisfying the two properties men-

tioned above, then

t(xi, ei)aij ≡ t(xj , ej)bij mod (s+ f2). (1.17)

Theorem 1.1.14 tells us that w ∈ D(4, fs). As before, modulo f2s + f4 we have,

w − 1 ≡
m∑

k=1

(xk − 1)(ykz
−1
k ηekk − 1)

where zk ∈ Rγ3(F ).

This allows us to say (xk − 1)(z−1
k − 1) ∈ fr+ f4. Also, we have from the hypothesis

that (xk − 1)(yk − 1) ∈ fr+ f4.

Also, (xk − 1)(ηekk − 1) ≡ (xekk − 1)(ηk − 1) ≡ 0 mod (r + f4). It is obvious that

fs + f4 ≤ f2r + f4 ≤ r + f4. This allows us to conclude w − 1 ∈ r + f4 and thus

w − 1 ∈ D(4, R). With this the proof is complete.

Corollary 1.1.15. If m ≤ 3 in the above theorem, then D(4, R) = Rγ4(F ).

This allows us to say that if G is a 2 or 3 generator group then D4(G) = γ4(G).
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We will now look at the structure of fourth dimension subgroup as given by Tahara

[Tah77]. This approach paves the way for understanding the structure of the fifth

dimension subgroup.

Recall that for an Abelian group A, the nth symmetric power, Spn(A) of A is the

quotient A⊗n/J , where A⊗n is the nth tensor power of A and J is the subgroup of

A⊗n generated by all the elements x1⊗ . . . xn−xσ(1)⊗ . . . xσ(n) for xi ∈ A and σ ∈ Sn,

the symmetric group of degree n. We denote the element x1 ⊗ . . .⊗ xn + J ∈ Spn(A)

by x1 ∨ . . . ∨ xn. We define a weight function w : G→ N ∪ {∞} by setting

w(x) =

{

k x ∈ γk(G) \ γk+1(G)

∞ x = 1
(1.18)

If x 6= 1, define o∗(x) to be the order of the coset x = xγw(x)+1(G) in γw(x)(G)/γw(x)+1(G).

Each quotient γi(G)/γi+1(G) is a finite Abelian group and by the Structure Theorem

of finitely generated Abelian groups can be written as direct sum of λ(i) cyclic groups.

Each element g ∈ γk(G)/γk+1(G) can be written uniquely as

g = e(1)xk1 + . . .+ e(λ(k))xkλ(k), (1.19)

where 0 ≤ e(i) < o∗(xki) for all i. We can choose xki such that o∗(xki) divides

o∗(xki+1).

Since our aim is to study the fourth dimension subgroup of a finite group, we can

restrict ourselves to a finite nilpotent group of nilpotency class 3.

Let d(i) = o∗(x1i) where 1 ≤ i ≤ s = λ(1). We have

x
d(i)
1i = xci12i . . . x

cit
2t x3i (1.20)

with x3i ∈ γ3(G), t = λ(2). This means we can write

x
d(i)
1i = (ci1)x2i + . . .+ (cit)x2t. (1.21)

Using the above notation, we have the following theorem

Theorem 1.1.16. [Tah77, Theorem 8] G ∩ (1 + ∆4(G)) is equal to the subgroup

generated by elements

11



∑

1≤i<j≤s

uij
d(j)

d(i)
(x

d(i)
1i , x1j)

for all integers uij satisfying the conditions

1. uij
(
dj
2

)
≡ 0 mod d(i).

2.
∑

1≤h<i uhi
d(i)
d(h)

chk −
∑

i<j≤s uijcjk ≡ 0 mod (d(i), d′(k))

for 1 ≤ i ≤ s and 1 ≤ k ≤ t with d(i) = o∗(x1i), d
′(k) = o∗(x2k).

Proof We know G∩ (1+∆3(G)) = γ3(G), hence γ4(G) ⊆ G∩ (1+∆4(G)) ⊆ γ3(G).

[Tah77, Theorem 7] gives us the structure of

∆3(G)/∆4(G) ≃ {γ3/γ4 ⊕ (γ1/γ2 ⊗ γ2/γ3)⊕ Sp3(γ1/γ2)}/R (1.22)

where R is the submodule of

γ3(G)⊕ (γ1(G)/γ2(G)⊗ γ2(G)/γ3(G))⊕ Sp3(γ1(G)/γ2(G)).

generated by

d(j)

d(i)
(x

d(i)
1i , x1j)⊕{d(j)

d(i)
(x1j⊗xd(i)1i )−(x1i⊗xd(j)1j )}⊕{

(
dj
2

)

(x1i∨x1j∨x1j)−
d(j)

d(i)

(
dj
2

)

(x1i∨x1j∨x1j)}

with 1 ≤ i ≤ j ≤ λ(1), (x
d(i)
1i , x1j) = (x

d(i)
1i , x1j)γ4(G), x1k = x1kγ2(G) and

x
d(k)
1k = x

d(k)
1k γ3(G).

Consider the homomorphism

ϕ3 : γ3(G) → ∆3(G)/∆4(G)

defined by

x 7→ (x− 1) + ∆4(G).

The kernel, ker(ϕ3) = G ∩ (1 + ∆4(G)).

γ3(G) can be identified with γ3(G)⊕0⊕0, the structure of ∆3(G)/∆4(G) above shows

that ker(ϕ3) = R ∩ {γ3(G)⊕ 0⊕ 0}.

Thus, ker(ϕ3) is the submodule generated by
∑

1≤i<j≤s uij
d(j)
d(i)

(x
d(i)
1i , x1j) for all integers

uij(1 ≤ i < j ≤ s) provided the following two conditions are satisfied:

12



1.
∑

1≤i<j≤s uij{
d(j)
d(i)

(x1j ⊗ x
d(i)
1i )− (x1i ⊗ x

d(j)
1j )} = 0

2.
∑

1≤i<j≤s uij{
(
dj
2

)
(x1i ∨ x1j ∨ x1j)− d(j)

d(i)

(
di
2

)
(x1i ∨ x1j ∨ x1j)} = 0.

We now write x
d(i)
1i as was mentioned above (1.21) and in the first condition put

coefficients of x1i ⊗ x2k = 0. Thus the first condition is equivalent to

∑

1≤h<i

uhi
d(i)

d(h)
chk −

∑

i<j≤s

uijcjk ≡ 0 mod (d(i), d′(k)) (1 ≤ k ≤ λ(2)) (1.23)

The second condition gives us the equivalent condition

uij

(
dj
2

)

≡ 0 mod d(i). (1.24)

This proves the theorem.

Corollary 1.1.17. [Tah77, Corollary 9] If G is a finite p-group with p 6= 2, then

G ∩ (1 + ∆4(G)) = γ4(G), i.e., D4(G) = γ4(G).

Proof As before we may assume our group to be of class 3, i.e., γ4(G) = 1. Since

we have already assumed that p is odd, we straight away have
(
dj
2

)
≡ 0 mod d(i) for

all 1 ≤ i < j ≤ s. If uij are integers satisfying condition 2 of theorem 1.1.16 then we

are only left to show
∑

1≤i<j≤s

uij
d(j)

d(i)
(x

d(i)
1i , x1j) = 0.

Condition 2 of the theorem implies that

∑

1≤h<i

uhi
d(i)

d(h)
(x

d(h)
1h , x1i) +

∑

1<j≤s

uij(x
d(i)
1i , x1j) = 0. (1.25)

The conditions p odd and nilpotency class 3 imply

d(j)

d(i)
(x

d(i)
1i , x1j) = (x1i, x

d(j)
1j ) for 1 ≤ i < j ≤ s. (1.26)

These two combined give us

2
∑

1≤i<j≤s

uij
d(j)

d(i)
(x

d(i)
1i , x1j) = 0. (1.27)
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Since p 6= 2, we have
∑

1≤i<j≤s uij
d(j)
d(i)

(x
d(i)
1i , x1j) = 0.

With this the fourth dimension subgroup case is complete.

Before shifting focus to the fifth dimension subgroup case we mention an important

theorem of Sjogren [Sjo79], which gives an estimate of the exponent of Dn(G)/γn(G).

Theorem 1.1.18. [Sjo79, 2.15] For every group G,

Dn(G)
c(n) = γn(G) for all n ≥ 1 (1.28)

where c(1) = c(2) = 1 and c(n) = b(1)(
n−2
1 ) . . . b(n− 2)(

n−2
n−2), n ≥ 3. For every k ∈ N,

let b(k) = lcm{1, 2, . . . , k}.

The proof given by Sjogren is through construction of spectral sequences and analyzing

its properties through combinatorial methods. Later a relatively easier proof of this

theorem was given by Cliff and Hartley ([CH87]). Another proof was given by Gupta

[Gup87] using the free group ring approach. Computations for small n show: c(3) = 1,

c(4) = 2, c(5) = 48.

Corollary 1.1.19. If G is a p-group, then Dn(G) = γn(G) for n ≤ p+ 1

Proof The proof follows from the observation c(p+ 1) is co-prime to p where p is a

prime.

Remark 1.1.20. 1. The above corollary improves an earlier result of Moran where

he had shown that for such a group G, Dn(G) = γn(G) for all n less than equal

to p.

2. The bound c(n) for the exponent ofDn(G)/γn(G) obtained by Sjogren is unlikely

to be the best possible. For a metabelian group G, Gupta has shown [Gup87,

Theorem IV.4.6] that c(n) can be replaced by a smaller integer 2 ·b(1) . . . b(n−2)

where b(i)’s are as defined in Sjogren’s theorem.

Fifth Dimension Subgroup

In this section our aim is to study the structure of fifth dimension subgroup, D5(G) =

G ∩ {1 + ∆5(G)} with the help of the structure of ∆3(G)/∆5(G).

Let G be a finite group of nilpotency class 4. We set some notations which will be

required throughout this section:
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• x
d(i)
1i = xbi121 x

bi2
22 · · ·xbit2t x

ci1
31 x

ci2
32 · · ·xciu3u y4i where y4i ∈ γ4(G) and 1 ≤ i ≤ s.

• x
e(i)
2i = xdi131 x

di2
32 · · ·xdit3u y

′
4i where y

′
4i ∈ γ4(G) and 1 ≤ i ≤ t.

• x
f(i)
3i = xfi141 x

fi2
42 · · ·xfiv4v y5i where y5i ∈ γ5(G) and 1 ≤ i ≤ u.

• (x
d(i)
1i , x1j) = x

α
(ij)
1

31 x
α
(ij)
2

32 · · ·xα
(ij)
u

3u x
β
(ij)
1

41 x
β
(ij)
2

42 · · ·xβ
(ij)
v

4v y
(ij)
5 where y

(ij)
5 ∈ γ5(G) and

1 ≤ i < j ≤ s.

We have seen the statement of Sjogren’s theorem in 1.1.18. This gives an upper bound

on the exponent of Dn(G)/γn(G). For n = 5 the exponent must be a divisor of 48.

Tahara’s approach [Tah81] could improve this result significantly and that is what we

will study in this section.

The main result we wish to study is the following:

Theorem 1.1.21. [Tah81, Corollary 6.11] If G is a finite group, then the exponent

D5(G)/γ5(G) is divisible by 3!.

This follows from theorem 1.1.22 which gives us the exact structure of D5(G).

Theorem 1.1.22. [Tah81, Theorem 6.1] G ∩ {1 + ∆5(G)} is equal to the subgroup

generated by the elements

∑

1≤i<j≤s

uij
d(j)

d(i)
(x

d(i)
1i , x1j)+

∑

1≤i≤s;1≤k≤t

vik(
∑

k<l

bil(x2l, x2k))+
∑

1≤i≤j≤k≤s

wijk(x
d(i)
1i , x1j , x1k)

(1.29)

for all integers uij (1 ≤ i < j ≤ s), vik (1 ≤ i ≤ s; 1 ≤ k ≤ t), wijk (1 ≤ i ≤ j ≤
k ≤ s), w′

ijk 1 ≤ i < j ≤ k ≤ s, w′′
ijk 1 ≤ i < j ≤ k ≤ s which satisfy the following

conditions

1. wiii = 0 for 1 ≤ i ≤ s.

2. uij
d(j)
d(i)

(
d(i)
2

)
+ wiijd(i) + w′′

iij(d(j)) = 0 for 1 ≤ i < j ≤ s.

3. −uij
(
d(j)
2

)
+ wijjd(i) + w′

ijjd(j) for 1 ≤ i < j ≤ s.

4. wijkd(i) + w′
ijkd(j) + w′′

ijkd(k) = 0 for 1 ≤ i < j < k ≤ s.

5.
∑

i<h uihbhk −
∑

h<i uhi
d(i)
d(h)

bhk + vikd(i) + v′ike(k) = 0 for 1 ≤ i ≤ s; 1 ≤ k ≤ t.

6. uij
d(j)
d(i)

(
d(i)
3

)
+ wiij

(
d(i)
2

)
≡ 0 mod d(i) for 1 ≤ i < j ≤ s.
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7. wijj

(
d(i)
2

)
+ w′′

iij

(
d(j)
2

)
≡ 0 mod d(i) for 1 ≤ i < j ≤ s.

8. −uij
(
d(j)
3

)
+ w′

ijj

(
d(j)
2

)
≡ 0 mod d(i) for 1 ≤ i < j ≤ s.

9. wijk

(
d(i)
2

)
, w′

ijk

(
d(j)
2

)
, w′′

ijk

(
d(k)
2

)
≡ 0 mod d(i) for 1 ≤ i < j < k ≤ s.

10. vik
(
d(i)
2

)
−
∑

h≤iwhiibhk −
∑

i<hw
′′
iihbhk ≡ 0 mod (d(i), e(k)) for 1 ≤ i ≤ s; 1 ≤

k ≤ t.

11.
∑

h≤iwhijbhk+
∑

i<h≤j w
′
ihjbhk+

∑

j<hw
′′
ijkbhk ≡ 0 mod (d(i), e(k)) for 1 ≤ i <

j ≤ s; 1 ≤ k ≤ t.

12. −
∑

h<i uhi
d(i)
d(h)

α
(hi)
l +

∑

i<h uihchl−
∑

h<i uhi
d(i)
d(h)

chl−
∑

k v
′
ikdkl−

∑

g≤i≤hwgihα
(gh)
l −

∑

g≤h≤iwghiα
(gh)
l −

∑

i<g≤hw
′
ighα

(gh)
l ≡ 0 mod (d(i), e(k)) for 1 ≤ i ≤ s; 1 ≤

l ≤ u.

13.
∑

i vikbik ≡ 0 mod e(k) for 1 ≤ k ≤ t.

14.
∑

i vikbil +
∑

i vilbik ≡ 0 mod e(k) for 1 ≤ k < l ≤ t.

To prove thoerem 1.1.21 from the above theorem the following lemmas are needed.

Lemma 1.1.23.

3
∑

i<j<k w
′
ijk(x1i, x

d(j)
1j , x1k)− 3

∑

i<j<k w
′′
ijk(x

d(k)
1k , x1i, x1j) +

∑

i<j uij
d(j)
d(i)

(
d(i)
2

)
(x1i, x1j, x1i)

+
∑

i<j uij
(
d(j)
2

)
(x1i, x1j , x1i)−

∑

i<j vik
(
d(i)
2

)
(x2k, x1i, x1i) +

∑

i<j wiij

(
d(i)
2

)
(x1j , x1i, x1i, x1i)

−
∑

i<j w
′
ijj

(
d(j)
2

)
(x1j , x1i, x1j , x1i) = 0.

Lemma 1.1.24.

2
∑

i<j

uij(x1i, x
d(j)
1j ) +

∑

i<j

uij
d(j)

d(i)
(x

d(i)
1i , x1j , x1j)−

∑

i,k

vij(x2k, x
d(i)
1i ) = 0.

Lemma 1.1.25.
∑

i,k vik(x2k, x
d(i)
1i ) + 2

∑

i,k vik(
∑

k<l bil(x2l, x2k)) = 0.

Lemma 1.1.26.
∑

i<j uijd(j)(x1i, x1j , x1i) +
∑

i<j uijd(j)(x1i, x1j , x1j)

−
∑

i<j uij
d(j)
d(i)

(
d(i)
2

)
(x1j , x1i, x1i, x1j) +

∑

i<j uij
(
d(j)
2

)
(x1i, x1j , x1j , x1i) = 0.

Now we finally move on to the proof of the main result of this section (theorem 1.1.21).
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Proof We know that a typical element g ∈ G ∩ {1 + ∆5(G)} is of the form written

in theorem 1.1.22. We are done if we show 6g = 0. Using relations 1-4 and 6-9 of the

above theorem we can re-write

g =
∑

i<j(x1i, x
d(j)
1j ) +

∑

i<j<k w
′
ijk(x1i, x

d(j)
1j , x1k)

−
∑

i<j<k w
′′
ijk(x

d(k)
1k , x1i, x1j) +

∑

i<j uij
d(j)
d(i)

(
d(i)
2

)
(x1i, x1j , x1i)

+
∑

i,k vik(
∑

k<l bil(x2l, x2k)).

(1.30)

Now, we simplify the first term of the above expression using lemma 1.1.24 and the

second and third term using lemma 1.1.23 and keep the last two terms as they are.

6g = −3
∑

i<j uij
d(j)
d(i)

(x
d(i)
1i , x1j , x1j) + 3

∑

i,k vik(x2k, x
d(i)
1i )

−2
∑

i<j uij
d(j)
d(i)

(
d(i)
2

)
(x1i, x1j , x1i) − 2

∑

i<j

(
d(j)
2

)
(x1i, x1j , x1j)

+2
∑

i,k vik
(
d(i)
2

)
(x2k, x1i, x1i) − 2

∑

i<j wiij

(
d(i)
2

)
(x1j , x1i, x1i, x1i)

+2
∑

i<j w
′
ijj

(
d(j)
2

)
(x1j , x1i, x1j , x1j) + 6

∑

i<j uij
d(j)
d(i)

(
d(i)
2

)
(x1i, x1j , x1i)

+6
∑

i,k vik(
∑

k<l bil(x2l, x2k)).

(1.31)

Also

2
∑

i,k vik
(
d(i)
2

)
(x2k, x1i, x1i) = 2

∑

i<j wiij

(
d(i)
2

)
(x1j , x1i, x1i, x1j)

= 2
∑

i<j w
′
ijj

(
d(i)
2

)
(x1j , x1i, x1j , x1j)

= 0

(1.32)

and

3
∑

i,k

vik(x2k, x
d(i)
1i ) + 6

∑

i,k

vik(
∑

k<l

bil(x2l, x2k)) = 0. (1.33)

Thus some of the terms cancel and the expression simplifies. We get

6g = −3
∑

i<j uij
d(j)
d(i)

(x
d(i)
1i , x1j , x1j) + 4

∑

i<j uij
d(j)
d(i)

(
d(i)
2

)
(x1i, x1j , x1i)

−2
∑

i<j

(
d(j)
2

)
(x1i, x1j , x1j).

(1.34)

Using the following
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• uij
d(j)
d(i)

(
d(i)
2

)
≡ 0 mod d(i)

• d(i)d(j)(x1i, x1j , x1i) = 0

• d(j)2(x1i, x1j , x1j) = 0

we get

6g = −2
∑

i<j

d(j)(x1i, x1j , x1i)− 2
∑

i<j

d(j)(x1i, x1j , x1j). (1.35)

Using

2
∑

i<j

d(j)(x1j , x1i, x1i, x1j) = 2
∑

i<j

(
d(j)

2

)

(x1i, x1j , x1j , x1i) = 0, (1.36)

an application of lemma 1.1.26 gives 6g = 0. With this the proof is complete.

The following is an unpublished result by Shalini Gupta. I thank her for allowing me

to include it in my thesis.

Proposition 1.1.27. Let G be a metabelian 2-group with γ1(G)/γ2(G) = C1 ⊕ C2,

where C1 and C2 are cyclic groups. Then D5(G) = γ5(G).

Before giving the proof of the proposition, we mention the following lemma which will

be used repeatedly:

Lemma 1.1.28. [Tah81]Lemma 2.3 Let n be a non negative integer. For a group, G,

let G = γ1(G) ⊇ γ2(G) . . . ⊇ γ5(G) = 1. Then

1. (x, gg′) = (x, g)(x, g′).

2. (x, y)n = (x, yn)(x, y, y)−(
n

2)(x, y, y, y)−(
n

3).

= (xn, y)(x, y, x)−(
n

3)(x, y, x, x)−(
n

3).

3. (x, y, z)n = (xn, y, z)(y, x, x, z)(
n

2).

= (x, yn, z)(y, x, y, z)(
n

2).

= (x, y, zn)(y, x, z, z)(
n

2).

4. (x, y, g)(y, g, x)(g, x, y) = 1.

(1.37)

where x, y, z ∈ G and g, g′ ∈ γ2(G).

We now give the proof of proposition 1.1.27:
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Proof Let G be a metabelian 2-group with γ1(G)/γ2(G) = C1⊕C2. Let the basis of

γ1(G)/γ2(G) be {x11, x12} and o(x1i) = d(i). As per the notation in theorem 1.1.22,

the fifth dimension subgroup, D5(G) (written additively) is generated by elements of

the type:

u12
d(2)

d(1)
(x

d(1)
11 , x12) + w112(x

d(1)
11 , x11, x12) + w122(x

d(1)
11 , x12, x12) (1.38)

subject to the conditions:

1. u12
d(2)
d(1)

(
d(1)
2

)
+ w112d(1) + w′′

112d(2) = 0

2. −u12
(
d(2)
2

)
+ w122d(1) + w′

112d(2) = 0

3. u12b2k + v1kd(1) + v′1ke(k) = 0

4. −u12 d(2)
d(1)

b1k + v2kd(2) + v′2ke(k) = 0

5. u12
d(2)
d(1)

(
d(1)
3

)
+ w112

(
d(1)
2

)
≡ 0 mod d(1)

6. w122

(
d(1)
2

)
+ w′

112

(
d(2)
2

)
≡ 0 mod d(1)

7. −u12
(
d(2)
3

)
+ w′

122

(
d(2)
2

)
≡ 0 mod d(1)

8. v1k
(
d(1)
2

)
− w′

112b2k ≡ 0 mod gcd(d(1), e(k))

9. v2k
(
d(2)
2

)
− w122b1k ≡ 0 mod gcd(d(2), e(k))

10.
∑2

i=1 vikbik ≡ 0 mod e(k)

11.
∑2

i=1 vikbil +
∑2

i=1 vilbik ≡ 0 mod e(k) where 1 ≤ k < l ≤ t

12. w112b1k + w′
122b2k ≡ 0 mod gcd(d(1), e(k))

13. u12c2l −
∑

k v
′
1kdkl − w112α

(12)
l ≡ 0 mod gcd(d(1), f(l))

14. −u12 d(2)
d(1)

α
(12)
l − u12

d(2)
d(1)

c1l −
∑

k v
′
2kdkl − 2w122α

(12)
l ≡ 0 mod gcd(d(2), f(l))

Simplifying the second term on the RHS of the generator (equation 1.38)

(x
d(1)
11 , x11, x12)

w112 = (x12, x11, x
d(1)
11 )−w112(x12, x

d(1)
11 , x11)

−w112
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Here, the first term on the RHS is trivial because G is metabelian. For the second

term on the RHS, we can use lemma 1.37 to see that

(x12, x
d(1)
11 , x11)

−w112 = (x12, x11, x11)
−w112d(1)(x11, x12, x11, x11)

w112(d(1)2 )

= (x12, x11, x
d(1)
11 ) · 1

= 1.

Thus the generator simplifies to

u12
d(2)

d(1)
(x

d(1)
11 , x12) + w122(x

d(1)
11 , x12, x12). (1.39)

Using 4, we have

∏

k

(x2k, x12)
−u12

d(2)
d(1)

b1k+v2kd(2)+v′2ke(k) = 1. (1.40)

Thus,

(
∏

k

xb1k2k , x12)
−u12

d(2)
d(1) ·

∏

k

{(x2k, xd(2)12 )v2k(x2k, x12, x12)
−v2k(d(2)2 )} ·

∏

k

(x
e(k)
2k , x12)

v′2k = 1.

(1.41)

(x2k, x
d(2)
12 ) = 1 because G is metabelian and hence the above equation simplifies to

(
∏

k

xb1k2k , x12)
−u12

d(2)
d(1) ·

∏

k

(x2k, x12, x12)
−v2k(d(2)2 ) ·

∏

l

(x3l, x12)
∑

k v′2kdkl = 1. (1.42)

Making use of the relation 9 we have

(
∏

k

xb1k2k , x12)
−u12

d(2)
d(1) ·

∏

k

(x2k, x12, x12)
−w122b1k ·

∏

l

(x3l, x12)
∑

k v′2kdkl = 1. (1.43)

We now focus on the term
∏

l(x3l, x12)
∑

k v′2kdkl .

Using the relation 14 we have
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∏

l(x3l, x12)
∑

k v′2kdkl =
∏

l(x3l, x12)
−u12

d(2)
d(1)

α
(12)
l

−u12
d(2)
d(1)

c1l−2w122α
(12)
l

= (x
d(1)
11 , x12, x12)

−u12
d(2)
d(1) · (∏l x

cil
3l )

−u12
d(2)
d(1) · (xd(1)11 , x12, x12)

−2w122 .

(1.44)

We will now concentrate on the first and third terms on the RHS of equation 1.44.

(x
d(1)
11 , x12, x12)

−u12
d(2)
d(1) = (x11, x12, x12)

−u12d(2) · (x12, x11, x11, x12)u12
d(2)
d(1)(

d(1)
2 )

= (x11, x12, x
d(2)
12 )−u12(x12, x11, x12, x12)

−u12(d(2)2 )(x12, x11, x11, x12)
u12

d(2)
d(1)(

d(1)
2 ).

(1.45)

These equalities follow from lemma 1.37.

The first term of equation 1.45 is identity because our group is metabelian.

mod d(1) we have

u12
d(2)
d(1)

(
d(1)
2

)
≡ 0 Thus the third term of 1.45 is also trivial.

−u12
(
d(2)
2

)
≡ 0 Thus the second term of 1.45 is also trivial.

Thus the first term on the RHS of equation 1.44 is trivial.

Now we look at the third term on the RHS of equation 1.44.

From 2 we observe that

−2w122d(1) = −2u12
(
d(2)
2

)
+ 2w′

122d(2).

Thus we have

(x
d(1)
11 , x12, x12)

−2w122 = (x11, x12, x
d(2)
12 )(−u12(d(2)−1)+2w′

122) · (x12, x11, x12, x12)(−u12(d(2)−1)+2w′

122)(
d(2)
2 ).

(1.46)

Now again, the first term on the RHS of 1.46 is trivial.

We further have
u12

d(2)
d(1)

(
d(2)
2

)
≡ 0 mod d(1).

2w′
122

(
d(2)
2

)
≡ 0 mod d(2).

This ensures that the third term of 1.44 is also trivial.

Thus, we are left with
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(
∏

k

xb1k2k ·
∏

l

xc1l3l , x12)
−u12

d(2)
d(1) · (xd(1)11 , x12, x12)

−w122 = 1. (1.47)

This allows us to conclude

(x
d(1)
11 , x12)

−u12
d(2)
d(1) · (xd(1)11 , x12, x12)

−w122 = 1. (1.48)

Hence D5(G) = 1.

1.1.3 Groups Without Dimension Property

As mentioned earlier, the first example of a group with non-trivial dimension quotients

was provided by E. Rips in his 1972 paper (see [Rip72]). He gave the example of a

2-group of nilpotency class 3 with a non-zero fourth integral dimension subgroup.

Theorem 1.1.29. [Rip72] Let G be a group with generators a0, a1, a2, a3, b1, b2, b3, c

and relations

b641 = b162 = b43 = c256 = 1,

(b2, b1) = (b3, b1) = (b3, b2) = (c, b1) = (c, b2) = (c, b3) = 1,

a640 = b321 , a
64
1 = b−4

2 b−2
3 , a162 = b41b

−1
3 , a43 = b21b2,

(a1, a0) = b1c
2, (a2, a0) = b2c

8, (a3, a0) = b3c
32,

(a2, a1) = c, (a3, a1) = c2, (a3, a2) = c4,

(b1, a1) = c4, (b2, a2) = c16, (b3, a3) = c64,

(bi, aj) = 1 for i 6= j, (c, ai) = 1 for i = 0, 1, 2, 3.

Calculations show that γ4(G) = {1} and the non-trivial element

(a1, a2)
128(a1, a3)

64(a2, a3)
32 = c128 ∈ D4(G).

We now give Gupta’s construction of the 2-group Gn where n ≥ 4 (see [Gup90]) such

that the nth dimension subgroup is not equal to the nth term of the lower central

series.

Theorem 1.1.30. Let n be fixed integer greater than 4, and consider the group

〈r, a, b, c〉. Set x0 = y0 = z0 = r and define xi = [xi−1, a], yi = (yi−1, b), zi = (zi−1, c)
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iteratively for all i. Consider the group generated by {r, a, b, c} subject to the conditions

r2
2n−1

= 1, a2
n+2

= y4n−3z
2
n−3, b

2n = x−4
n−3zn−3, c

2n−2

= x−2
n−3y

−1
n−3,

zn−2 = y4n−2, yn−2 = x4n−2,

xn−1 = 1, yn−1 = 1, zn−1 = 1,

(a, b, g) = (b, c, g) = (a, c, g) = 1 for all g

(xi, b) = (xi, c) = (yi, a) = (yi, c) = (zi, a) = (zi, b) = 1 where i ≥ 1,

(xi, xj) = (xi, yj) = (xi, zj) = (yi, yj) = (yi, zj) = (zi, zj) = 1 for all i, j ≥ 0.

Then, Dn(G) 6= γn(G).

G is in fact a metabelian group of nilpotency class n − 1. The non trivial element

(a, b)2
2n−1

(a, c)2
2n−2

(b, c)2
2n−3

is in Dn(G).

1.2 Dimension Subgroups Over Fields

In this section we shift our focus to dimension subgroups over a field k. The study

of dimension subgroups over fields of characteristic p were introduced by Jennings in

the 1940’s.

1.2.1 N-Series and Filtration of the Augmentation Ideal

We recall a few definitions.

Definition 1.2.1. A series G = H1 ⊇ H2 ⊇ . . . ⊇ Hi ⊇ . . . of subgroups of a group

G is called an N-series if (Hi, Hj) ⊆ Hi+j for all i, j ≥ 1.

Definition 1.2.2. An N -series {Hi}i≥1 is called restricted N-series relative to

prime p if x ∈ Hi implies that xp ∈ Hip for all i ≥ 1.

The most familiar example of an N -series is the lower central series {γi(G)}i∈Z. This
series has the additional property that for any N -series {Hi} in G, γi(G) ⊆ Hi for all

i.

Remark 1.2.3. The associative powers of augmentation ideal, ∆R(G), have the fol-

lowing properties
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∆i
R(G) ·∆j

R(G) ⊆ ∆i+j
R (G) for all i, j ≥ 1. (1.49)

Lemma 1.2.4. [Pas79, III.1.3] If G is a group and R a ring with identity, then

{Dn,R}n≥1 is an N-series. If characteristic of R is a prime p, then the series is a

restricted N-series relative to p.

Definition 1.2.5. A decreasing series

∆R(G) = A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . (1.50)

of two-sided ideals of R[G] is called a filtration of the augmentation ideal ∆R(G).

Every N -series {Hi} of a group, G, induces a weight function, w : G→ N ∪∞ :

w(x) =

{

k if x ∈ Hk \Hk+1

∞ if x ∈ ∩iHi

(1.51)

A natural way in which the N -series arise is from filtrations of the augmentation

ideals. Let R be a ring with identity and G a group with the N -series {Hi}. For

n ≥ 1 we can define An to be the R-submodule of R[G] spanned by all the products

(g1−1)(g2−1) . . . (gs−1) with
∑s

i=1w(gi) ≥ n where w is the weight function defined

as above.

Then we have AiAj ⊆ Ai+j for all i, j ≥ 1 with A1 = ∆R(G). This gives the filtration

∆R(G) = A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . (1.52)

called the canonical filtration of R[G] induced by the N -series {Hi}.

Remark 1.2.6. The canonical filtration of R[G] induced by the lower central series,

{γn(G)}n≥1 is the filtration given by the powers of the augmentation ideal, i.e.,

An = ∆n
R(G) for all n ≥ 1.

An interesting problem is to investigate the conditions under which the N -series de-

termined by the canonical filtration of the augmentation ideal is {Hi} itself, i.e.,

Hi = G ∩ (1 + Ai). The dimension subgroup problem corresponds to the case when

{Hi} is the lower central series of the group, G.
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1.2.2 The Main Results

We begin this section by stating a theorem of Parmenter, Passi and Sehgal [PPS73]

which shows that the dimension series {Dn,R(G)}n≥1 depends only on the character-

istic of the ring R.

Theorem 1.2.7. [PPS73, 5.1] Let G be any group and R any arbitrary ring with

identity.

1. If characteristic of R is 0, then

Dn,R(G) =
∏

p∈σ(R)

{τp(G modD
n,Z(G)) ∩Dn,Z/peZ(G)} (1.53)

where σ(R) = {p|p is a prime, pnR = pn+1R for some n ≥ 0}. For p ∈ σ(R),

pe is the smallest power of p for which peR = pe+1R. τp(G mod D
n,Z(G))

is the p-torsion subgroup of G mod D
n,Z(G). When σ(R) is empty the right

hand side of the above equation is interpreted as D
n,Z(G).

2. If characteristic of R is r > 0, then for n ≥ 1,

Dn,R(G) = D
n,Z/rZ(G) =

⋂

i

D
n,Z/p

ei
i Z

(G) (1.54)

where r = peii is the prime factorization of r.

In particular, when G is a group and k a field, then for every integer n ≥ 1 we have

Dn,k(G) =

{

D
n,Q(G) if characteristic of k is zero

D
n,Z/pZ(G) if characteristic of k is p > 0

(1.55)

NOTATION: Let H be a subset of a group G. We define

√
H = {x ∈ G|xm ∈ H for some positive integer m}. (1.56)

It is a result of Jennings that

Theorem 1.2.8. For all n ≥ 1,

D
n,Q(G) =

√

γn(G)
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The proof of the above theorem indicated here uses the approach adopted by Passi

[?]. The proof makes use of the following lemmas:

Lemma 1.2.9. [Pas79, IV.1.3] G =
√

γ1(G) ⊇
√

γ2(G) ⊇ . . . ⊇
√

γn(G) ⊇ . . . is an

N-series in G.

Proof We observe that γn(G) ⊆
√

γn(G). Periodic elements of nilpotent groups

form a subgroup and hence
√

γn(G) is a subgroup of G. It is trivially normal. Let x, y

be elements of G and r, s be positive integers such that xr ∈ γm(G) and y
s ∈ γn(G).

To prove the lemma it needs to be shown that (x, y) ∈
√

γn+m(G). We may assume
√

γn+m(G) is 1. If the commutator, (x, y) 6= 1 then there exists an integer greater

than 1 such that (x, y) ∈ Zi \ Zi−1 where {Zi}i≥0 is the upper central series. Since it

is assumed
√

γn+m(G) = 1, G is a torsion-free nilpotent group. Furthermore,

1 = (xr, ys) ≡ (x, y)rs( mod Zi−1). (1.57)

This means that (x, y)Zi−1 is a non-identity torsion element of G/Zi−1. This is not

possible because we have seen earlier that G is torsion-free and nilpotent. Thus,

(x, y) = 1 and {
√

γn+m(G)}n≥1 is an N -series.

Lemma 1.2.10. [Pas79, IV.1.4] The canonical filtration {An}n≥1 of ∆Q(G) induced

by the N-series {
√

γn(G)}n≥1 is the ∆Q(G)-adic filtration i.e., An = ∆n

Q(G) for all

n ≥ 1.

Proof Let w be the weight function on G by the N -series {
√

γn(G)}n≥1. By def-

inition, we have An is the Q-subspace of Q[G] spanned by products (g1 − 1)(g2 −
1) . . . (gs − 1) with s ≥ 1 and

∑

i wgi ≥ n. Let g ∈
√

γn(G) and m be a positive

integer such that gm ∈ γn(G). Then, g
m − 1 ∈ ∆n

Q(G). We have the equation

gm − 1 = m(g − 1) +

(
m

2

)

(g − 1)2 + . . .+ (g − 1)m. (1.58)

This gives g − 1 ∈ ∆n

Q(G). Thus,
√

γn(G) ⊆ D
n,Q(G) and An ⊆ ∆n

Q(G) for all

positive integers, n. For all n ≥ 1, we have ∆n

Q(G) ⊆ An. This gives An = ∆n

Q(G)

for all n ≥ 1.

Moving on to the proof of the theorem
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Proof Fix a positive integer n. We go modulo
√

γn(G) (when necessary) and assume

that
√

γn(G) = 1. We observe that each quotient,
√

γi(G)/
√

γi+1(G), is torsion-free.

Hence in view of the following theorem of Jennings,

Theorem 1.2.11. Let G = H1 ⊇ H2 ⊇ . . . ⊇ Hc ⊇ Hc+1 = 1 be a finite N-series with

each successive quotient torsion-free. Let R be a ring with identity of characteristic 0.

Then for all positive integers i,

Hi = G ∩ (1 + Ai)

where {Ai} is the canonical filtration of R[G] induced by {Hi}.

we have

G ∩ (1 + ∆n

Q(G)) = G ∩ (1 + An) =
√

γn(G). (1.59)

Corollary 1.2.12. If G is a group with γi(G)/γi+1(G) torsion-free for all positive

integers i, then D
i,Z(G) = γi(G) for all i. In particular, when F is a free group

D
i,Z(F ) = γi(F ).

The proof follows when we observe that
√

γi(G) = γi(G) for all positive integers i

when γi(G)/γi+1(G) are all torsion-free. Also, γ2(G) ⊆ D
i,Z(G) ⊆ D

i,Q(G).

Remark 1.2.13. When F is a free group, we get the fundamental theorem of free

group rings of Magnus Grün and Witt.

We now wish to calculate the dimension series {D
n,Z/pZ(G)}n≥1 where G is any group

and p is a prime. Lemma 1.2.4 tells us that {D
n,Z/pZ(G)}n≥1 is a restricted N -series

relative to p. It is thus a central series with the property x ∈ D
i,Z/pZ(G) implies

xp ∈ D
ip,Z/pZ(G) for all i ≥ 1.

This means that {D
n,Z/pZ(G)}n≥1 must contain the Brauer Jennings Zassenhaus M-

series {Mn,p(G)}n≥1, the minimal central series with the property

x ∈Mn,p(G) ⇒ xp ∈Mnp,p(G) for all n ≥ 1. (1.60)

For any group G and a prime p, the series {Mn,p(G)}n≥1 is defined inductively as

M1,p(G) = G
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and

Mn,p(G) = (G,Mn−1,p(G))M
p
⌈n
p
⌉,p(G) for n ≥ 2.

{Mn,p(G)}n≥1 is a central series and hence contains the lower central series of G,

{γn(G)}n≥1. Thus, when x ∈ γi(G) and ip
j ≥ n then xp

j ∈Mn,p(G).

This means the M-series contains the series {Gn,p}n≥1 of normal subgroups defined

by setting

Gn,p =
∏

ipj≥n

γi(G)
pj for n ≥ 1 (1.61)

Theorem 1.2.14. [Pas79, IV.1.9] For every group G, prime p and all positive integers

n,

Gn,p =Mn,p(G) = D
n,Z/pZ(G). (1.62)

We know that the series {Gn,p}n≥1 is a restricted N -series with respect to the prime,

p ([Pas79, IV.1.22]).

The proof of the above theorem makes use of the following lemma:

Lemma 1.2.15. The canonical filtration {An}n≥1 of ∆Z/pZ(G) induced by the N-

series {Gn,p}n≥1 is the ∆Z/pZ(G)-adic filtration i.e., An = ∆n

Z/pZ(G) for all n ≥ 1.

Proof The canonical filtration of a group ring, R[G], induced by the lower central

series, {γi(G)}, is the filtration given by the powers of the augmentation ideal. In

particular, when R = Z/pZ (as in this case) we have An ⊇ ∆n

Z/pZ(G) for all n ≥ 1.

We thus have to show Gn,p ⊆ 1 + ∆n

Z/pZ(G) for all n ≥ 1. However, from our

discussion preceding theorem 1.2.14 ensures that Gn,p ⊆ D
n,Z/pZ(G) for all n ≥ 1.

This proves the lemma.

We now sketch a proof of the main theorem (theorem 1.2.14).

Proof Let n be a positive integer. We know that Gn,p ⊆ D
n,Z/pZ(G). To prove the

equality, we must show that D
n,Z/pZ(G) = 1 when Gn,p = 1.

Without loss of generality we may assume that G is finitely generated. Furthermore,

since we assume that Gn,p = 1, it means G is finite.
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Lemma 1.2.15 tells us that the canonical filtration of ∆Z/pZ(G) induced by {Gi,p}i≥1

is the ∆Z/pZ(G)-adic filtration of ∆Z/pZ(G).

We have the following result of Lazard [Laz54]:

Proposition 1.2.16. [Pas79, III.1.7] Let G = H1 ⊇ . . . ⊇ Hc ⊇ Hc+1 = 1 be a finite

restricted N-series relative to a prime p. Let Ai be the canonical filtration of ∆R(G)

where R is a ring of characteristic p with identity. Then Hi = G ∩ (1 + Ai) for all i.

The above result yields

D
n,Z/pZ(G) = G ∩ (1 + ∆n

Z/pZ(G)) = Gn,p = 1. (1.63)

This completes our proof.

Corollary 1.2.17. Let p be a prime number and let G be a group with Gp = 1. Then

D
i,Z(G) = γi(G) for all positive integers i.

Proof From definition, we have Gi,p = γi(G) when G
p = 1. The result follows from

γi(G) ⊆ D
i,Z(G) ⊆ D

i,Z/pZ(G) = Gi,p. (1.64)
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Chapter 2

Lie Dimension Subgroups

Closely related to the dimension subgroups are the Lie dimension sub-

groups. In this chapter we study integral Lie dimension subgroups, D(n),R(G)

when R is the ring Z of integers or a field. In contrast to the integral di-

mension subgroups, we will see that many more definite results are known

about Lie dimension subgroups.

2.1 Integral Lie Dimension Subgroups

2.1.1 Preliminaries

Definition 2.1.1. A Lie ring, L, is an Abelian group with an operation [·, ·] that
has the following properties:

1. Bilinearity

[x+ y, z] = [x, y] + [y, z]; [z, x+ y] = [z, x] + [z, y] (2.1)

for all x, y, z ∈ L.

2. Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (2.2)

for all x, y, z ∈ L.

3. For all x ∈ L

[x, x] = 0. (2.3)
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From the last condition we have

0 = [x+ y, x+ y]

= [x, x] + [x, y] + [y, x] + [y, y]

= [x, y] + [y, x].

(2.4)

Thus [x, y] = −[y, x].

Let Z[G] be the integral group ring and let ∆(G) be its augmentation ideal.

Definition 2.1.2. The Lie powers ∆(n)(G), n ≥ 1, of ∆(G) are defined inductively

as follows:

∆(1)(G) = ∆(G) (2.5)

and

∆(n)(G) = [∆(n−1),∆(G)]Z[G] = IdealZ[G]
{[x, y]|x ∈ ∆(n−1)(G), y ∈ ∆(G)} (2.6)

where [x, y] = xy − yx is the Lie product.

∆(n)(G) is a two sided ideal. We can see this from the following calculations. Let

α ∈ ∆(n−1)(G), β ∈ ∆(G) and g ∈ Z[G] then we have

g · (αβ − βα) = (gαg−1gβg−1 − gβg−1gαg−1) · g
= (αgβg − βgαg) · g

where we use the notation αg for conjugation by g.

Remark 2.1.3. Even when A and B are ideals of Z[G], it must be noted that the

Lie bracket [A,B] = 〈[a, b]|a ∈ A and b ∈ B〉 need not be an ideal.

We have the decreasing series

∆(1)(G) ⊇ ∆(2)(G) ⊇ . . .∆(k)(G) ⊇ . . . . (2.7)

Definition 2.1.4. The nth Lie dimension subgroup of G is defined as

D(n)(G) = G ∩ (1 + ∆(n)(G)) n ≥ 1. (2.8)
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Clearly we have

G = D(1)(G) ⊇ D(2)(G) ⊇ . . .D(k)(G) ⊇ . . . . (2.9)

Let α ∈ D(i)(G) and β ∈ G. Then we have

(α, β)− 1 = α−1β−1(αβ − βα)

= α−1β−1((α− 1)(β − 1)− (β − 1)(α− 1))

= α−1β−1[α− 1, β − 1].

By definition, α−1β−1[α−1, β−1] ∈ ∆(i+1)(G) since α−1 ∈ ∆(i)(G) and β−1 ∈ ∆(G).

Thus, (α, β) ∈ D(i+1)(G) and this means that (D(i)(G), G) ⊆ D(i+1)(G). Thus, we see

that the series (equation 2.9) is a central series.

Hence, for all n ≥ 1 and all groups, G, we have the chain

γn(G) ⊆ D(n)(G) ⊆ Dn(G). (2.10)

Lemma 2.1.5. Let G be any group and m,n be positive integers then

1. [Pas79, Proposition 1.7(ii)][∆(m)(G),∆(n)(G)] ⊆ ∆(m+n)(G).

2. [PS75, Prop 2.2] ∆(m)(G) ·∆(n)(G) ⊆ ∆(m+n−1)(G).

Proof These statements are proven by induction. Both the statements hold true

(trivially) for m = 1 and all n ≥ 1. Suppose that both hold true for some m ≥ 1 and

all n ≥ 1. We have the following identity in Z[G]

[xy, z] = x[y, z] + [x, z]y. (2.11)

Thus we have

[∆(m+1)(G),∆(n)(G)] = [[∆(G),∆(m)(G)]Z[G],∆(n)(G)]

⊆ [∆(G),∆(m)(G)][Z[G],∆(n)(G)] + [[∆(G),∆(m)(G)],∆(n)(G)]Z[G]

⊆ [∆(G),∆(m)(G)]∆(n+1)(G) + [[∆(G),∆(m)(G)],∆(n)(G)]Z[G]

Using equation 2.11 and the induction hypothesis we can conclude that

[∆(G),∆(m)(G)]∆(n+1)(G) ⊆ ∆(m+n+1)(G). (2.12)
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Using the Jacobi identity (equation 2.2) and induction hypothesis we can show that

[[∆(G),∆(m)(G)],∆(n)(G)]Z[G] ⊆ ∆(m+n+1)(G). (2.13)

Therefore we have

[∆(m+1)(G),∆(n)(G)] ⊆ ∆(m+n+1)(G) (2.14)

which proves the first part of the lemma.

For proving the second part, we again make use of equation 2.11 and the induction

hypothesis to conclude

[∆(G),∆(m)(G)]∆(n)(G) ⊆ ∆(m+n)(G). (2.15)

Thus giving us for all n ≥ 1,

∆(m+1)(G) ·∆(n)(G) ⊆ ∆(n+m)(G). (2.16)

Let α ∈ D(m)(G) and β ∈ D(n)(G). We have

(α, β)− 1 = α−1β−1[α− 1, β − 1]. (2.17)

(This calculation has been carried out; see preceding text)

Since here we have, α− 1 ∈ ∆(m)(G) and β − 1 ∈ ∆(n)(G), from lemma 2.1.5 we can

say that [α− 1, β − 1] ∈ ∆(m+n). Therefore, (α, β) ∈ D(m+n)(G). This means,

(D(m)(G), D(n)(G)) ⊆ D(m+n)(G). (2.18)

Therefore, the series 2.9 is an N -series.

Remark 2.1.6. The above definitions and results hold for any ring, R in general.

Sandling gave an explicit formula for ∆(n)(G) for all n and all G in his 1972 paper,

[San72a]. This is the main result discussed in this section.

Theorem 2.1.7. Let G be any group. Then

∆(n)(G) = ∆(γn(G))Z[G] +
∑∏

j

∆(γnj
(G))Z[G].
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where the sum is over all nj such that n ≥ nj > 1 with
∑

j(nj − 1) = n− 1.

We make an important observation:

For all n ≥ 1, we know that γn(G) is a normal subgroup of G. Consider the map

ϕ : G→ G/γn(G)

This map induces a natural epimorphism

ϕ̃ : Z[G] ։ Z[G/γn(G)].

Let ∆(G, γn(G)) denote the kernel of ϕ̃. The kernel is a two-sided ideal generated by

∆(γn(G)), i.e.

∆(G, γn(G)) = ∆(γn(G))Z[G] = Z[G]∆(γn(G)). (2.19)

We now present a proof of theorem 2.1.7.

Proof First we show that RHS ⊆ LHS. We consider the first term on the RHS,

∆(γn(G))Z[G] = ∆(G, γn(G)). We will proceed by induction on n. ∆(1)(G) = ∆(G)

and hence for n = 1, the first term of the RHS is contained in the LHS. Now, let

g ∈ G and x ∈ γn−1(G) (induction hypothesis). Let ∆(G, γn−1(G)) ⊆ ∆(n−1)(G)

where n ≥ 2. We have seen in our calculations that

(g, x)− 1 = g−1x−1[g − 1, x− 1] ∈ ∆(n)(G)

where x− 1 ∈ ∆(n−1)(G) by induction hypothesis.

∆(G, γn(G)) is generated by elements of the type (g, x)−1, thus proving that the first

term of the RHS is contained in the LHS. Using the second statement of lemma 2.1.5,

we can easily see that the second term on the RHS is also contained in the LHS.

To show that LHS ⊆ RHS we will again proceed by induction. For n = 2, the

statement holds as ∆(2)(G) = [∆(G),∆((G)]Z[G] which is contained in ∆(2)(G)Z[G].

Suppose n > 2 and

∆(n−1)(G) = ∆(γn−1(G))Z[G] +
∑∏

j

∆(γnj
(G))Z[G]

where the sum is over all nj and n− 1 ≥ nj > 1 with
∑

j(nj − 1) = n− 2.
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Let g, h ∈ G and x ∈ γn−1(G). Now

[(x− 1)g, h− 1] = (x− 1)[g, h− 1] + [x− 1, h− 1]g

= (x− 1)gh((g, h)− 1) + hx((x, h)− 1)g
(2.20)

where the first equality follows from equation 2.11.

The first term on the RHS of equation 2.20 is an element of ∆(G, γn−1(G))·∆(G, γ2(G)).

The second term is an element of ∆(G, γn(G)). Therefore

[∆(G, γn−1(G)),∆(G)] ⊆ ∆(G, γn(G)) + ∆(G, γn−1(G)) ·∆(G, γ2(G)). (2.21)

We will be done if we can show that

[
∏

j

∆(γnj
(G))Z[G],∆(G)] ⊆ ∆(G, γn(G)) +

∑∏

i

∆(G, γmi
(G)) (2.22)

where the sum is over all mi such that n ≥ mi > 1 and
∑

i(mi − 1) = n − 1. Also,

n− 1 ≥ nj > 1 and
∑

j(nj − 1) = n− 2.

Using equation 2.11, calculations like those done above allow us to conclude that

[
∏

j

∆(γnj
(G))Z[G],∆(G)] ⊆

∏

j

∆(γnj
(G))·∆(γ2(G))·Z[G]+[

∏

j

∆(γnj
(G)),∆(G)]Z[G].

(2.23)

The first term on the RHS of the equation 2.23 is of the required type. Furthermore,

repeatedly using equation 2.11 and observing that

[∆(γi(G)),∆(G)] ⊆ ∆(G, γi+1(G)) (2.24)

shows that the second term is also of the desired type. With this the proof is complete.

Another notion related to Lie dimension subgroups is the restricted Lie powers of

∆(G).

Definition 2.1.8. The restricted Lie powers of ∆(G) are defined inductively by

∆[1](G) = ∆(G) (2.25)
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and

∆[n](G) = [∆[n−1],∆(G)]. (2.26)

Definition 2.1.9. The restricted Lie dimension subgroup for all n ≥ 1 is defined

as

D[n](G) = G ∩ (1 + ∆[n](G)Z[G]). (2.27)

In [GL83], Gupta and Levin showed that γn(G) ⊆ D[n](G). For an arbitrary group

G, by induction we can get the following chain

γn(G) ⊆ D[n](G) ⊆ D(n)(G) ⊆ Dn(G) for all n ≥ 1. (2.28)

2.1.2 Lie Dimension Subgroup Problem

An example of a group without dimension property was given by Rips. When the

above chain 2.28 was observed it was natural to question whether D(n)(G) = γn(G) for

all n and all G. Sandling [San72a] showed that the Lie dimension subgroup property

holds for all groups when n ≤ 6. Hurley and Sehgal [HS91] showed that D(n)(G) 6=
γn(G) in general for n ≥ 9. They constructed a 2-group G such that D(n)(G) 6= γn(G).

The case of n = 7 and 8 was settled by Gupta and Tahara [GT93] in the affirmative.

As a consequence of equation 2.28, the analogous restricted Lie dimension subgroup

property holds for n ≤ 8. Hurley and Sehgal [HS91] showed that the D[n](G) 6= γn(G)

in general for n ≥ 14. The gap is resolved negatively by Gupta and Srivastava [GS91]

where they show that γn(G) 6= D[n](G) for all 9 ≤ n ≤ 13.

The Case n ≤ 6

We will now see that for all groups, G, the Lie dimension property holds, i.e.,

D(n)(G) = γn(G). Since Dn(G) = γn(G) for all groups when n ≤ 3, D(n)(G) = γn(G)

for all groups when n ≤ 3. Here we will give independent proofs of Dn(G) = γn(G)

for all groups when n ≤ 6 using Sandling’s formula.

For n = 1, there is nothing to prove.

For n = 2, we have to show that D(2)(G) = γ2(G). Now, γ2(G) ⊆ D(2)(G) holds

always so we only have to show the other way inclusion. Let g ∈ D(2)(G), therefore
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g−1 ∈ ∆(2)(G). From theorem 2.1.7 we know that ∆(2)(G) = ∆(γ2(G))Z[G]. We can

write g − 1 =
∑

i nigi[fi − 1, hi − 1].

Consider the map

ϕ : G→ G/γ2(G). (2.29)

This map then extends to

ϕ̄ : Z[G] → Z[G/γ2(G)]. (2.30)

Now since G/γ2(G) is Abelian we have

ϕ̄(g − 1) = ϕ(g)− 1 =
∑

i niϕ(gi)[ϕ(fi)− 1, ϕ(hi)− 1]

= 0.
(2.31)

Therefore g · γ2(G) = γ2(G) i.e., g ∈ γ2(G).

For n = 3, we must show that D(3)(G) = γ3(G).

Using theorem 2.1.7 we have

∆(3)(G) = Z[G]∆(γ3(G)) + Z[G]∆(γ2(G))
2. (2.32)

Let g ∈ D(3)(G) then g − 1 ∈ ∆(3)(G).

We consider the map

θ : G→ γ2(G). (2.33)

This map extends to

θ̄ : Z[G] → Z[γ2(G)]. (2.34)

Therefore

θ̄(g − 1) ∈ Z[γ2(G)]∆(γ3(G)) + Z[γ2(G)]∆(γ2(G))
2. (2.35)

We know that γ2(G)/γ3(G) is Abelian and hence

D2(γ2(G)/γ3(G)) = γ2(γ2(G)/γ3(G)) = 1.

Now, we consider the map

ϕ : γ2(G) → γ2(G)/γ3(G) (2.36)
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which has a linear extension to

ϕ̄ : Z[γ2(G)] → Z[γ2(G)/γ3(G)]. (2.37)

Equation 2.35 under the map ϕ̄ yields

g · γ3(G) = γ3(G) ⇒ g ∈ γ3(G).

For n = 4, our aim is to show that D(4)(G) = γ4(G). It is enough to show that RHS

contains the LHS. We consider an element g in D(4)(G). Thus, g − 1 is an element of

∆(4)(G). Theorem 2.1.7 gives us

∆(4)(G) = Z[G]∆(γ4(G))+Z[G]∆(γ2(G))
3+Z[G]∆(γ3(G))∆(γ2(G))+Z[G]∆(γ2(G))∆(γ3(G)).

(2.38)

We consider the map

θ : G→ γ2(G). (2.39)

This map extends to

θ̄ : Z[G] → Z[γ2(G)]. (2.40)

Therefore

θ̄(g − 1) ∈ Z[γ2(G)]∆(γ4(G)) + Z[γ2(G)]∆(γ2(G))
2. (2.41)

We know that γ2(G)/γ4(G) is Abelian and hence

D2(γ2(G)/γ4(G)) = γ2(γ2(G)/γ4(G)) = 1.

Now, we consider the map

ϕ : γ2(G) → γ2(G)/γ4(G) (2.42)

which has a linear extension to

ϕ̄ : Z[γ2(G)] → Z[γ2(G)/γ4(G)]. (2.43)
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Equation 2.41 under the map ϕ̄ yields

g · γ4(G) = γ4(G) ⇒ g ∈ γ4(G).

For n = 5, our aim is to show that D(5)(G) = γ5(G). Again, it is enough to show

that RHS contains the LHS, since the other way inclusion is trivial. We consider an

element g ∈ D(5)(G). Just as we have seen earlier, g − 1 is an element of ∆(5)(G).

Using theorem 2.1.7 we get

∆(5)(G) = Z[G]∆(γ5(G)) + Z[G]∆(γ4(G))∆(γ2(G)) + Z[G]∆(γ2(G))∆(γ4(G))

+ Z[G]∆(γ3(G))
2 + Z[G]∆(γ2(G))

4 + Z[G]∆(γ3(G))∆(γ2(G))
2

+ Z[G]∆(γ2(G))
2∆(γ3(G)) + Z[G]∆(γ2(G))∆(γ3(G))∆(γ2(G)).

(2.44)

We consider the map

θ : G→ γ4(G). (2.45)

This map extends to

θ̄ : Z[G] → Z[γ4(G)]. (2.46)

Therefore

θ̄(g − 1) ∈ Z[γ4(G)]∆(γ5(G)) + Z[γ4(G)]∆(γ4(G))
2. (2.47)

We know that γ4(G)/γ5(G) is Abelian and hence

D2(γ4(G)/γ5(G)) = γ2(γ4(G)/γ5(G)) = 1.

Now, we consider the map

ϕ : γ4(G) → γ4(G)/γ5(G) (2.48)

which has a linear extension to

ϕ̄ : Z[γ4(G)] → Z[γ4(G)/γ5(G)]. (2.49)
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Equation 2.47 under the map ϕ̄ yields

g · γ5(G) = γ5(G) ⇒ g ∈ γ5(G).

For n = 6, our aim is to show that D(6)(G) = γ6(G). Here also we will show that RHS

contains the LHS, since the other way inclusion is trivial. We consider an element

g ∈ D(6)(G). Just as we have seen earlier, g − 1 is an element of ∆(6)(G). Using

theorem 2.1.7 we have

∆(6)(G) = Z[G]∆(γ6(G)) + Z[G]∆(γ5(G))∆(γ2(G)) + Z[G]∆(γ2(G))∆(γ5(G))

+ Z[G]∆(γ3(G))
2∆(γ2(G)) + Z[G]∆(γ2(G))∆(γ3(G))

2 + Z[G]∆(γ3(G))∆(γ2(G))∆(γ3(G))

+ Z[G]∆(γ2(G))
5 + Z[G]∆(γ4(G))∆(γ3(G)) + Z[G]∆(γ4(G))∆(γ3(G))

+ Z[G]∆(γ2(G))
2∆(γ4(G)) + Z[G]∆(γ4(G))∆(γ2(G))

2 + Z[G]∆(γ2(G))∆(γ4(G))∆(γ2(G)).

(2.50)

We consider the map

θ : G→ γ3(G). (2.51)

This map extends to

θ̄ : Z[G] → Z[γ3(G)]. (2.52)

Therefore

θ̄(g − 1) ∈ Z[γ3(G)]∆(γ6(G)) + Z[γ3(G)]∆(γ3(G))
2. (2.53)

We know that γ3(G)/γ6(G) is Abelian and hence

D2(γ3(G)/γ6(G)) = γ2(γ3(G)/γ6(G)) = 0.

Now, we consider the map

ϕ : γ3(G) → γ3(G)/γ6(G) (2.54)

which has a linear extension to

ϕ̄ : Z[γ3(G)] → Z[γ3(G)/γ6(G)]. (2.55)
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Equation 2.53 under the map ϕ̄ yields

g · γ6(G) = γ6(G) ⇒ g ∈ γ6(G).

Thus we have shown that D(n)(G) = γn(G) for all n ≤ 6.

The Case n = 7 and 8

Gupta and Tahara [GT93] proved that all groups have the Lie dimension property

for n = 7 and 8. This was done by translating the problem into the language of free

group rings. It suffices if we can prove it for finite nilpotent groups. Let G be such a

group given by the free presentation

1 → R→ F → G→ 1 (2.56)

where F is a free group on the set X = {x1, . . . xm} and R is a normal subgroup of F .

The Lie dimension subgroup problem in this language translates to identifying the

quotient F ∩ (1 + r+ f(n))/Rγn(G).

The Case n ≥ 9

For this section we will refer to [HS91].

In this section, we study the example of a group with non-trivial Lie dimension prop-

erty provided by Hurley and Sehgal. They showed D(n)(G) 6= γn(G) in general when

n ≥ 9 by giving an example which is a modification of the Gupta group.

Let F be a free group on a set of generators X . Let n is a positive integer greater

than or equal to 9. We define

t =

{
(n−3)

2
if n is odd

(n−4)
2

if n is even
(2.57)

Let us assume a, b, c are distinct simple basic commutators of weight t, which are

arranged as a > b > c. Furthermore, r is another basic commutator. It is of weight

2 when n is odd and of weight 3 when n is even. By convention, we let r < c when

r and c have the same weight. We define p = n − t − 1. Let there be at least one

symbol in each a, b, c, r not in others.

The construction of such a group is carried out in a series of steps.
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1. Set R1 = γn(F ).

2. Define H as the normal closure of {(a, b, x), (b, c, x), (a, c, x)|x ∈ F} in F , i.e.,

H = 〈(a, b, x), (b, c, x), (a, c, x)|x ∈ F 〉F .

3. Set R2 = γn(F ) ·H .

4. Define R3 = 〈(a64, r), (b16, r), (c4, r)〉F · R2.

5. R4 = 〈(c, r, c)−1(b, r, b)4, (b, r, b)−1(a, r, a)4, (a, b)−16(a, r, a)4, (b, c)−4(a, r, a)4, (c, a)−4(a, r, a)2〉F×
R3.

6. Set R = 〈a−64(b, r)4(c, r)2, b−16(a, r)−4(c, r), c−4(a, r)−2(b, r)−1〉F ·R4.

7. Finally set G = F/R.

This completes the construction of G.

The following lemmas are needed for the proof.

Lemma 2.1.10. [HS91, Lemma 3] In F/R3 we have

1. (a, r, a)64 = 1; (b, r, b)16 = 1; (c, r, c)4 = 1.

2. (a, r)64 = (a, r, a)32; (b, r)16 = (b, r, b)8; (c, r)4 = (c, r, c)2.

3. (a, r)128 = (b, r)32 = (c, r)8 = 1.

Extensive calculations done in [HS91, section 3] prove that the order of (a, b) in G is

256. To disprove the conjecture, it can be shown that there exists g ∈ F such that

modulo R, g ≡ (a, b)128 and that g−1 ≡ 0 mod (f(n)+ r). Since (a, b)128 6= 1 mod R

therefore the image of g in G (say ḡ) is not equal to 1. Therefore, ḡ ∈ γn(G) where

ḡ 6= 1. Hence D(n)(G) 6= γn(G).

Consider the element g = (a, b)128(a, c)64(b, c)32 ∈ F . Using relators 5,

(a, c)4 ≡ (a, r, a)2

⇒ (a, c)64 ≡ (a, r, a)32,

(b, c)32 ≡ (a, r, a)32.

Therefore, (a, c)64(b, c)32 ≡ (a, r, a)64 = 1. Hence, g ≡ (a, b)128 mod R.

Now, we move towards showing that g − 1 ∈ f(n) + r. For this purpose we will work

modulo f(n) + r.
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We first observe that (a, b)128, (a, c)64, (b, c)32 ∈ γn−4(F ). Using the known identity

xy − 1 = (x− 1) + (y − 1) + (x− 1)(y − 1), (2.58)

we can conclude that

g − 1 ≡ ((a, b)128 − 1) + ((a, c)64 − 1) + ((b, c)32 − 1). (2.59)

Consider the first term, ((a, b)128 − 1) ≡ 128((a, b)− 1). We also have the identity

(a, b)−1 = (a−1b−1−1){(a−1)(b−1)−(b−1)(a−1)}+{(a−1)(b−1)−(b−1)(a−1)}.
(2.60)

We observe that b32−1 ≡ 0 and hence 128(a−1b−1−1){(a−1)(b−1)−(b−1)(a−1)} ≡ 0.

Therefore we have the equivalence,

1. (a, b)128 − 1 ≡ 128{(a− 1)(b− 1)− (b− 1)(a− 1)}.

Similarly, we have

2. (a, c)64 − 1 ≡ 64{(a− 1)(c− 1)− (c− 1)(a− 1)}.

3. (b, c)32 − 1 ≡ 32{(b− 1)(c− 1)− (c− 1)(b− 1)}.

Equation 2.59 therefore becomes

g − 1 ≡ {128(a− 1)(b− 1)− (b− 1)(a− 1)}+ {64(a− 1)(c− 1)− (c− 1)(a− 1)}
+{32(b− 1)(c− 1)− (c− 1)(b− 1)}.

(2.61)

For the final step the following two lemmas are needed:

Lemma 2.1.11. Modulo f(n) + r,

1. 64(c− 1)(a− 1) ≡ (c− 1)(a64 − 1).

2. 64(a− 1)(c− 1) ≡ (a− 1)(c64 − 1).

3. 128(b− 1)(a− 1) ≡ (b− 1)(a128 − 1).

4. 128(a− 1)(b− 1) ≡ (a− 1)(b128 − 1).
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5. 32(b− 1)(c− 1) ≡ (b− 1)(c32 − 1).

6. 64(c− 1)(b− 1) ≡ (c− 1)(b32 − 1).

Proof The first part is proven, the others follow in the same way

64(c− 1)(a− 1) ≡ (c− 1)((a64 − 1) + λ1 · 32(a− 1)2 + λ2 · 16(a− 1)3) λi ∈ Z.

≡ (c− 1)(a64 − 1) + λ1 · 32(c− 1)(a− 1)2 + λ2 · 16(c− 1)(a− 1)3.

≡ (c− 1)(a64 − 1).

(2.62)

The final equivalence follows from the observation that modulo f(p) + r,

c8 − 1 ≡ 8(c− 1) +
(
8
2

)
(c− 1)2

≡ 8(c− 1) + 7(c4 − 1)(c− 1)
(2.63)

where p = n− t− 1 as before.

Since c4 ∈ γp(F ), we have 7(c4 − 1)(c− 1) and c8 − 1 in f(p). Hence 8(c− 1) ∈ f(p) + r.

Lemma 2.1.12. 1. b128c64 ∈ γ64p (F ) · γn−1(F ) · R.

2. a128c−32 ∈ γ16p (F ) · γn−1(F ) · R.

3. a64b32 ∈ γ4p(F ) · γn−1(F ) · R.

Proof The proof of the first part is given; the proof of the other two parts will follow

in a similar fashion.

b128c64 = b16·8c4·16

≡ ((a, r)−4(c, r))8 · ((a, r)−2(b, r)−1)16 mod R using 6

≡ (a, r)−32 · (c, r)8 · (a, r)−32 · (b, r)−16 mod R

≡ (a, r)−64 · (b, r)−16 · (c, r)8 mod R

≡ 1 mod (γn−1(F ) · R) using 2.1.10.

(2.64)

Using lemma 2.1.11 and relators 6 we see that 2.61 transforms to
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g − 1 ≡ (a− 1)(b128 − 1)− (b− 1)(a128 − 1) + (a− 1)(c64 − 1)− (c− 1)(a64 − 1)

+(b− 1)(c32 − 1)− (c− 1)(b32 − 1)

≡ (a− 1)(b128c64 − 1)− (b− 1)(a128c−32 − 1)− (c− 1)(a64b32 − 1)

≡ (a− 1)(d64a − 1)− (b− 1)(d16b − 1)− (c− 1)(d4c − 1).

(2.65)

With da, db, dc ∈ γp(F ) and using lemma 2.1.12 we have

g − 1 ≡ 64(a− 1)(da − 1)− 16(b− 1)(db − 1)− 4(c− 1)(dc − 1)

≡ (a64 − 1)(da − 1)− (b16 − 1)(db − 1)− (c4 − 1)(dc − 1)

≡ 0 using 6.

(2.66)

With this the proof of D(n)(G) 6= γn(G) when n ≥ 9 is complete.

2.2 Lie Dimension Subgroups Over Fields

Analogous to the study of dimension subgroups over fields, the Lie dimension sub-

groups over fields have also been studied. We start this section by mentioning a

theorem of Parmenter, Passi and Sehgal [PPS73] which gives us an explicit formula

for Lie dimension subgroups over arbitrary rings of coefficients. What is important

to note is that just like the dimension series {Dn,R(G)}n≥1 depends only on the char-

acteristic of R, the Lie dimension series {D(n),R(G)}n≥1 also depends only on the

characteristic of R.

Theorem 2.2.1. [PPS73, 6.1] Let G be any group and R be any arbitrary ring.

1. If characteristic of R is 0, then

D(n),R(G) =
∏

p∈σ(R)

γ2(G) ∩ {τp(G modD
(n),Z(G)) ∩D(n),Z/peZ(G)} (2.67)

where σ(R) = {p|p is a prime, pnR = pn+1R for some n ≥ 0}. For p ∈ σ(R),

pe is the smallest power of p for which peR = pe+1R. τp(G mod D
(n),Z(G)) is

the p-torsion subgroup of Z[G] mod D
(n),Z(G). When σ(R) is empty then the

right hand side is interpreted as D
(n),Z(G).
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2. If characteristic of R is r > 0, then for n ≥ 1,

D(n),R(G) = D
(n),Z/rZ(G) =

⋂

i

D
(n),Z/p

ei
i Z

(G) (2.68)

where r = peii is the prime factorization of r.

In particular, when G is a group and k a field, for every integer n ≥ 1 we have

D(n),k(G) =

{

D
(n),Q(G) if characteristic of k is zero

D
(n),Z/pZ(G) if characteristic of k is p > 0

(2.69)

Passi and Sehgal found an explicit formula for the case characteristic of the field is 0.

Theorem 2.2.2. [PS75] For all n ≥ 2, we have

D
(n),QG =

√

γn(G) ∩ γ2(G)

Proof Claim: D
(2),Q(G) = γ2(G).

Justification: Let x, y be elements of the group, G. We have seen that

(x, y)− 1 = x−1y−1{(x− 1)(y − 1)− (y − 1)(x− 1)}
∈ ∆

(2)
R (G).

(2.70)

Therefore, γ2(G) is contained in D
(2),Q(G). For the reverse inclusion, we can assume

that the group is Abelian. This would mean that ∆
(2)
R (G) = 0 and hence D

(2),Q(G) =

1. With this we have proven the claim.

We have from equation 2.28, D
(n),Q(G) ⊆ D

n,Q(G). Using theorem 1.2.8, we have

D
(n),Q(G) ⊆

√

γn(G) ∩ γ2(G). (2.71)

To prove the other way inclusion we consider an element x ∈
√

γn(G)∩γ2(G) for some

n ≥ 2. By definition, there exists a positive integer m such that xm is an element of

γn(G). We consider the equation

xm − 1 = m(x− 1) +

(
m

2

)

(x− 1)2 + . . .+ (x− 1)m. (2.72)
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Let x − 1 ∈ ∆
(j)

Q (G) \ ∆
(j+1)

Q (G) where 2 ≤ j < n. Using lemma 2.1.5, the above

equation 2.72 tells us

xm − 1 ∈ ∆
(s)

Q (G) where s = min{n, 2j − 1}.

However, since s ≥ j + 1, we arrive at a contradiction. Hence x − 1 ∈ ∆
(n)

Q (G) i.e.,

x ∈ D
(n),Q(G). With this the proof is complete.

Let G be a group and p be any prime. Analogous to the M-series we had earlier, we

define a series {M(n),p(G)}n≥1 as follows:

M(1),p(G) = G, M(2),p(G) = γ2(G)

and

M(n),p(G) = (G,M(n−1),p(G))M
p

⌈n+p−1
p

⌉,p
(G) for n ≥ 3.

This series has the property

Mp
(i),p(G) ⊆M(ip−p+1),p(G) for all i ≥ 1. (2.73)

We define a series {G(n),p}n≥1 by setting

G(n),p =
∏

(i−1)pj≥n

γi(G)
pj . (2.74)

We observe that G(1),p = γ2(G).

Passi and Sehgal [PS75, Section 4] showed that the above defined series is a restricted

N -series of γ2(G). Our aim now is to study the structure of the Lie dimension sub-

groups D
(n),Z/pZ(G) for all n ≥ 1.

Theorem 2.2.3. [PS75, Theorem 4.10] For every group G, prime p and for all n ≥ 1,

G(n),p =M(n+1),p(G) = D
(n+1),Z/pZ(G).

Proof The proof this theorem is given in two steps. First, we will show that

G(n),p ⊆M(n+1),p(G) ⊆ D
(n+1),Z/pZ(G). (2.75)
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From the way we have defined the series {M(n),p(G)}n≥1, it is a central series in G.

Therefore, γn(G) ⊆M(n),p(G) for all positive integers n. From equation 2.73 we have

γi(G)
pj ⊆M((i−1)p

j
+1),p(G). (2.76)

If we impose the condition ipj ≥ n + pj, i.e., (i− 1)pj + 1 ≥ n+ 1, the we have,

γi(G)
pj ⊆ M(n+1),p(G). (2.77)

This gives us the first inclusion of equation 2.75.

The second inclusion can be shown by induction on n. The inclusion holds for n = 1

since

M(2),p(G) = γ2(G) = D
(2),Z/pZ(G). (2.78)

Let m ≥ 2 and let us assume that the inclusion holds for all n < m. By definition

M(m+1),p(G) = (G,M(m),p(G))M
p

⌈m+p

p
⌉,p
(G). (2.79)

By induction hypothesis

M(m),p(G) ⊆ D
(m),Z/pZ(G). (2.80)

We have seen that the Lie dimension series is an N -series. Therefore

(G,M(m),p(G)) ⊆ (G,D
(m),Z/pZ(G)) ⊆ D

(m+1),Z/pZ(G). (2.81)

Let s = ⌈m+p
p

⌉ and x be an element of M(s),p(G). By induction

x ∈ D
(s),Z/pZ(G) ⇒ x− 1 ∈ ∆

(s)

Z/pZ(G).

Using lemma 2.1.5 we have

xp − 1 = (x− 1)p ∈ (∆
(s)

Z/pZ(G))
p ⊆ ∆

(ps−p+1)

Z/pZ (G). (2.82)

From the way we have set s, we have ps− p + 1 ≥ m+ 1. Hence

xp − 1 ∈ ∆
(m+1)

Z/pZ(G) ⇒ xp ∈ D
(m+1),Z/pZ(G). (2.83)
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Hence, M(m+1),p(G) ⊆ D
(m+1),Z/pZ(G). With this the first step of our proof is com-

plete.

We will now show

G(n),p ⊇M(n+1),p(G) ⊇ D
(n+1),Z/pZ(G) (2.84)

by going modulo G(n),p and assuming (when necessary) G(n),p = 1. The theorem is

proven if we can show that D
(n+1),Z/pZ(G) = 1. We may assume that G is finitely

generated. We already have that G is nilpotent. Hence we can conclude γ2(G) is a

finitely generated nilpotent group with exponent a power of p and hence has order a

power of p.

To complete the proof of this theorem the following lemma is needed:

Lemma 2.2.4. Let R be a commutative ring with identity and G be a group. Let

characteristic of R be a prime, p. The canonical filtration {An}n≥1 of R(γ2(G)) defined

by {G(n),p}n≥1 is given by

An = R(γ2(G)) ∩∆
(n+1)
R (G) for all n ≥ 1.

As mentioned before, {G(i),p}i≥1 is a restricted N -series of γ2(G). The above lemma

2.2.4 suggests that the canonical filtration of {An}n≥1 of Z/pZ(γ2(G)) is

Ai = (Z/pZ)(γ2(G)) ∩∆
(i+1)

Z/pZ(G) for all i ≥ 1. (2.85)

Lazard ([Laz54]) had shown

Theorem 2.2.5. Let G = H1 ⊇ H2 ⊇ . . . ⊇ Hc ⊇ Hc+1 = 1 be a finite restricted

N-series relative to a prime p. Let R be a ring with identity of characteristic p and

{Ai} be the canonical filtration of ∆R(G). Then

Hi = G ∩ (1 + Ai) for all i ≥ 1.

This gives

1 = G(n),p = γ2(G) ∩ (1 + An)

= γ2(G) ∩ (1 + ∆
(n+1)

Z/pZ(G))

= D
(n+1),Z/pZ(G).

With this the proof is complete.
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Chapter 3

Prime Power Groups

Though dimension subgroups were primarily thought to be tools used to

study ring theoretic aspects of group algebras, it is now understood that

they have some pure group theoretic applications as well. Various prob-

lems in modular p-groups are solved through extensive study of dimension

subgroups.

In the earlier chapters we focussed on the identifying the dimension sub-

groups and Lie dimension subgroups. Higman’s reduction, theorem 1.1.8,

suggested that the study of dimension subgroups is primarily a study of

finite p-groups. In this chapter the focus will be on applying the theory

of dimension subgroups to the power structure of p groups ([SS91]). In

particular we will use the properties developed by Shalev [Sha90]. Then

we will shift focus to the powerful and potent groups and see how the two

theories come together ([Wil03]).

NOTATION: For all i ≥ 0, define ℧i(G) = 〈xpi |x ∈ G〉 = Gpi which is the subgroup

generated by the pith powers. For all i ≥ 0, we define ℧(i)(G) inductively:

℧(0)(G) = G

and

℧(i)(G) = ℧1(℧(i−1)(G)) for all i ≥ 1.
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We have the obvious inclusion:

℧(i)(G) ⊇ ℧i(G) ⊇ {xpi|x ∈ G}. (3.1)

3.1 The Series {Dm,k}
From theorem 1.2.14 we have D

m,Z/pZ(G) =
∏

jpi≥m γj(G)
pi (where i ≥ 0) for positive

integer m and a prime p. As per the notation introduced above we can rewrite this as

D
m,Z/pZ(G) =

∏

jpi≥m

℧i(γj(G)). (3.2)

This is Lazard’s explicit expression. For ease of writing, we drop Z/pZ if there is

no ambiguity about the field (of characteristic p) over which we are considering our

dimension subgroups.

We will now introduce the double-indexed series {Dm,k} described by Shalev [Sha90].

Definition 3.1.1. For integers m ≥ 1 and k ≥ 0, we define

Dm,k(G) =
∏

jpi≥m

℧i(γj+k(G)). (3.3)

We define non-negative integers dm,k by

pdm,k = (Dm,k : Dm+1,k). (3.4)

As can be easily seen, we get Lazard’s formula (equation 3.2) when we put k = 0.

For ease of notation when k = 0, we will drop the second index. For a prime p and

positive integer m, we denote νp(m) as the maximal integer ν such that pν divides m.

We will use the notation, (m)p′ = m/pν where ν = νp(m).

We will need the following definition.

Definition 3.1.2. For positive integer m and non-negative integers k and ν we define

1. D≤ν
m,k =

∏

jpi≥m℧i(γj+k) where the product is over i ≤ ν.

2. D>ν
m,k =

∏

jpi≥m℧i(γj+k) where the product is over i > ν.
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Passi and Sehgal found an explicit formula for D(m)(G) (theorem 2.2.3). Using the

notation introduced above it can be formulated as

D(m+1)(G) = Dm,1(G) for all m ≥ 1. (3.5)

We will now summarize some of the basic properties of the series {Dm,k}. For the

proofs of these properties, one may refer to [SS91, Section 2] and [Sha90, Section 1].

Theorem 3.1.3. 1. Dm,k+1(G) = (G,Dm,k(G)) for all m ≥ 1, k ≥ 0.

2. dm,k = 0 implies dm,h = 0 for all h > k.

Lemma 3.1.4. Set νp(m) = ν. Then

1. Dm+1(G) = (G,Dm(G)) ·D>ν
m (G).

2. dm(G) = 0 iff Dm(G) = D>ν
m (G).

Theorem 3.1.5. Let dm,k = 0 and n ≥ m. Then

1. Dn,k = ℧1(D⌈n
p
⌉,k).

2. D≤ν
n,k ≤ (G,Dn,k) where ν = νp(m).

3. Dn,k = D>ν
n,k where ν = νp(m).

4. (n)p′ ≥ (m)p′ implies dn,k = 0.

Theorem 3.1.6. Let (m)p′ < p holds and dm(G) = 0. Let H = 〈γk, x〉 be a subgroup

of G where k > 1 and x ∈ G. Then dm(H) = 0.

The following theorem of P. Hall ([Hal32]) is of much importance:

Theorem 3.1.7. For any group G, elements x, y in G, prime p and positive integer

k the following hold:

1. (xy)p
k ≡ xp

k

yp
k

mod γ2(〈x, y〉)p
k ·

∏k
i=1 γpi(〈x, y〉)p

k−i

.

2. (xp
k

, y) ≡ (x, y)p
k

mod γ2(〈x, (x, y)〉)pk ·
∏k

i=1 γpi(〈x, (x, y)〉)p
k−i

.
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Theorem 3.1.8. [Sha90, 1.12] The map ϕ : Dm(G)/Dm+1(G) → Dpm(G)/Dpm+1

given by x 7→ xp is well defined. If dl = 0 for some m < l < pm where νp(l) ≥ νp(m),

then ϕ is an epimorphism. In particular, dpm ≤ dm.

Before mentioning some further properties we need to introduce another notation.

Let M and N be subgroups of a group G. We inductively define

(M,N ; 0) =M

and

(M,N ; l + 1) = ((M,N ; l), N).

Let M and N be normal subgroups of G. Then the above theorem (3.1.7) allows us

to conclude that

(Mp, N) ⊆ (M,N)p(N,M ; p) (3.6)

and

(MN)p ⊆MpNp(M,N,MN ; p− 2) (3.7)

Furthermore, the Three Subgroup Lemma allows us to conclude that for normal sub-

groups M and N of G

(M, γk(N)) ⊆ (M,N ; k). (3.8)

There are many results on commutators of dimension subgroups which are known. In

the next few theorems we will summarize those which are of importance to us.

For a finite p-group G we have

(Dk(G), G; l) =
∏

ipj≥k

℧pj(γi+l(G)). (3.9)

Theorem 3.1.9. Let G be a finite p-group. Let a ≥ b ≥ 1 be integers. Then

(Da(G), Db(G)) ⊆ γa+b(G)Da+pb(G).

A slightly more robust result is the following:

Theorem 3.1.10. Let G be a finite p-group. Let a, b and l are positive integers. Then
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1. (γb(G), Da(G); l) ⊆ γla+b(G)D((l−1)p+1)a+pb(G).

2. γl(Da(G)) ⊆ γla(G)D(p(l−1)+1)a(G).

3. if a ≥ b, then (Da(G), Db)G)) ⊆ γa+b(G)γ⌈a
p
⌉+b(G)

pDa+p2b(G)Dpa+pb(G).

Another lemma which will be needed is the following

Lemma 3.1.11. Let G be a finite p-group and γm ⊆ Dph(G) where m < ph. Then

Dn(G) = D⌈n
p
⌉(G)

p if n ≥ m+ 1. If γpk(G) ⊆ Dpk+1(G) then Dpk(G) = Dpk−1(G)p.

3.2 Powerful p-Groups

The notion of powerful groups was introduced by Lubotzky and Mann in their 1987

paper ([LM87]). Powerful groups can be thought of as a generalization of Abelian

groups.

Definition 3.2.1. Let G be a finite p group where p is an odd prime. We say

G is powerful if (G,G) ⊆ Gp. A normal subgroup, N , is said to be powerfully

embedded in G if (N,G) ⊆ Np.

As is evident from the definition, G is powerful if and only if it is powerfully embedded

in itself. If N is powerfully embedded in G, then N is powerful. If N ⊆ H ⊆ G and

H/N is cyclic, then

Hp ⊇ Np ⊇ (N,H) = (H,H). (3.10)

For p-groups with p 6= 2, there is a related notion of being potent.

Definition 3.2.2. A p-group G (where p 6= 2) is called potent if γp−1(G) ⊆ Gp.

Since for all 2-groups, (G,G) ⊆ G2, we need a change in the definition for the case

p = 2.

Definition 3.2.3. Let G be a finite 2-group. We say G is powerful if (G,G) ⊆ G4.

Like before, a normal subgroup, N , is said to be powerfully embedded in G if

(N,G) ⊆ N4.

Next, we have an important result of powerful groups.

Proposition 3.2.4. [DdMS93, 2.6] If G is a powerful p-group then every element of

℧1(G) is a pth power in G.
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Proof The proof is by induction on the order of the group G. We begin with some

observations

1. For powerful p-groups G, we have

℧1(G)(G,G) = ℧1(G) = Φ(G). (3.11)

where Φ(G) is the Frattini subgroup.

Define Pi(G) inductively as follows:

P1(G) = G

and

Pi+1(G) = ℧1(Pi(G))(Pi(G), G) for all i ≥ 1.

2. We can extend the above observation (by induction), to a general statement

that for each i, Pi(G) is powerfully embedded in G and

Pi+1(G) = ℧1(Pi(G)) = Φ(Pi(G)). (3.12)

3. The map x 7→ xp induces a surjective homomorphism

G/P2(G) → P2(G)/P3(G). (3.13)

Now, let g ∈ ℧1(G), the above observations allow us to conclude that there exist

x ∈ G and y ∈ P3(G) such that g = xpy.

Define H = 〈℧1(G), x〉. Since, ℧1(G) is normal subgroup of H we have the obvious

equality (H,H) = (N,H). Furthermore, we know that ℧1(G) is powerfully embedded

in G and hence (H,H) ⊆ (℧1(G))
p ⊆ Hp (respectively for the p = 2 case). Therefore

H is also powerful.

We can see that g ∈ ℧1(H) because y ∈ P3(G) = ℧1(P2(G)).

Two cases can arise. Firstly, when H 6= G, induction hypothesis gives that g is a

pth power in H and hence a pth power in G. Secondly, when H = G, we have

G = 〈℧1(G), x〉 = Φ(G)〈x〉 = 〈x〉 where Φ(G) is the Frattini subgroup of G. The

result follows trivially in this case.
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Example 3.2.5. Some examples of powerful p-groups are mentioned below.

1. Let G be a regular p-group. For all x, y ∈ G, there exists c ∈ ℧1(H
′) where

H = 〈x, y〉 such that xpyp = (xy)pc. It is a straightforward observation that

℧1(℧1(G)) = {xp|x ∈ ℧1(G)} = {xp2|x ∈ G} = ℧2(G). Also, it can be shown

that (℧1(G),℧1(G)) = ℧2(G
′) ([Hup67, III.10]). This clearly gives us that

℧1(G) is powerful. ([LM87])

2. Consider a regular metabelian p-group, G, with p 6= 2 and exponent at most p.

If N⊳G and is contained in the Frattini subgroup of G, then N is powerful. This

can be seen if we consider a counterexample N such that Np = 1 and N ′ is a

normal subgroup of order p. For a p-group, the Frattini subgroup Φ(G) = G′Gp.

Therefore, we have (N,Φ(G)) = (N,G′Gp) = (N,G′)(N,Gp). The regularity

condition ensures that (N,Gp) = (N,G)p = 1 (follows from (N,G) ⊆ N and G

is metabelian). We also have

(N,G′) ≤ (G′Gp, G′) = (G′, G′)(Gp, G′)

= (G,G′)p = γ3(G)
p = 1.

(3.14)

Thus, (N,Φ(G)) = 1 and hence N ′ = 1. This is a contradiction. ([Kin73,

Corollary 4])

3. Consider the p-groupG. LetN be a 2-generator normal subgroup of G contained

in the Frattini subgroup. Then N is powerful. ([Kin73, Theorem 7])

4. The central product D8 ◦C8 is powerful, where D8 is the dihedral group of order

8 and C8 is the cyclic group of order 8. ([HL03])

We will see some ways as to how powerful p-groups can be viewed as generalizations

of Abelian groups.

LetG be a powerful p-group (p odd). By definition of powerful groups, γ2(G) ⊆ ℧1(G).

Thus, from Lazard’s formula, equation 3.2, we have D2(G) = D3(G) = ℧1(G), i.e.,

d2 = 0. We can apply theorem 3.1.5 (part 4) to conclude that dm 6= 0 only whenm = pi

for some i. If we let l = 2pi−1 in theorem 3.1.8, we can say that dpi−1 ≥ dpi for all

i ≥ 1. Applying lemma 3.1.4 with m = 2pi−1 gives D2pi−1(G) = D
>(i−1)

2pi−1 (G) = ℧i(G).

Dm(G) is fixed for pi−1 < m ≤ pi, therefore for such an m, Dm(G) = ℧i(G). The

dimension class of a group G, dc(G) = sup{m|Dm(G) 6= 1}. Here, dimension class
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is pe−1 where e is the exponent of the group. Thus, powerful p-groups behave just like

Abelian groups with respect to dimension subgroups in characteristic p.

The Loewy series, {ci}, corresponds to the filtration {∆i} of k[G] where k is a field

of characteristic p and G is a finite p-group. We define ci = dimk ∆
i(G)/∆i+1(G). Let

f be the generating function, then f(x) =
∑

i ci ·xi. Jennings [Jen41] had shown that

f is symmetric polynomial of degree t(G) − 1 where t(G) is the nilpotency index of

the group. Huppert raised a question whether f is unimodal , i.e., whether ci−1 ≤ ci

for all positive integers i ≤ t(G)−1
2

. Manz and Staszewski [MS86] showed that Loewy

series is unimodal for regular powerful p-groups, in particular for Abelian groups. In

[Sha90, Section 4], Shalev drops the regularity condition when p 6= 2.

Remark 3.2.6. Powerful p-groups have played a crucial role in understanding ana-

lytic pro-p groups [DdMS93].

3.3 Power Structure of Finite p-Groups

In this section we will understand how dimension subgroups in characteristic p are

used to study the power structure of finite p-groups. Our focus will be on the results

proven by Scopolla and Shalev [SS91] and the generalization of one of their theorems

by Wilson [Wil03].

We had seen the chain, equation 3.1, earlier in section 3.2. It is a natural question

to ask when do all the three notions coincide. For regular p-groups, the three notions

are equivalent. This is a straight forward consequence of the following theorem of P.

Hall.

Theorem 3.3.1. [Hal32, Theorem 4.21] Let G be a regular p-group. The product of

the pk-th powers of two or more elements of G is itself a pk-th power of some element

of G.

It has been shown by Lubotzky and Mann [LM87] that a similar phenomenon occurs in

case of powerful p-groups as well. One can deduce them from the following theorems:

Proposition 3.3.2. [LM87, Theorem 1.3 and 4.1.3] Let G be a powerful p-group.

Then ℧i(℧j(G)) = ℧i+j(G).

and
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Proposition 3.3.3. [LM87, Theorem 1.7 and 4.1.7] Let G be a powerful p-group.

Then each element of ℧i(G) can be written as xp
i

for some x ∈ G.

In [Wil03], Wilson states without proof a similar statement for potent groups.

Proposition 3.3.4. Let G be a potent p-group, ℧(k)(G) = Gpk = {xpk |x ∈ G}.

The above mentioned phenomena can be generalized in view of the following theorem.

Theorem 3.3.5. Let m = apα−1 with a < p and α ≥ 1. Let G be a p-group with

dm = 0. Then for all i ≥ α we have ℧(i)(G) = ℧i(G) = {xpi|x ∈ G}.

We have a straightforward corollary:

Corollary 3.3.6. Let G be any group of order pn. For any positive integer i ≥ n−1
p−1

,

℧(i)(G) = ℧i(G) = {xpi|x ∈ G}.

The corollary follows from simple counting that Dm(G) = Dm+1(G) for some m of

the form apα−1 when a is a positive integer less than p and α ≤ ⌈n−1
p−1

⌉.

We will now mention a proof of theorem 3.3.5.

Proof The proof of this theorem proceeds by induction on the order of the group

G. We observe that {Dm(G)} is an Np-series. Thus, ℧(i)(G) ⊆ Dpi(G) = ℧i(G). The

equality follows straight from Lazard’s formula, equation 3.2. We will be done if we

can show that every element of Dpi(G) = ℧i(G) is a p
ith power of an element of G,

for all i ≥ α. We may assume α = i (otherwise replace m by m′ = mpi−α).

The Hall’s collection formula ensures

(xy)p
i ≡ xp

i

yp
i

mod ℧i(γ2(G)) ·
i∏

r=1

℧i−r(γpr(G)). (3.15)

It is a straight forward observation from definition 3.1.2 that

D
≤(i−1)

pi (G) =

i∏

r=1

℧i−r(γpr(G)). (3.16)

Theorem 3.1.5 (part 2) allows us to say

D
≤(i−1)

pi (G) ⊆ (G,Dpi(G)) = (G,℧i(G)). (3.17)
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From definition, we have

Dm,1(G) =
∏

jpi≥api−1

℧i(γj+1(G)) =
∏

jpi≥api−1;i>i−1

℧i(γj+1(G)) = D
>(i−1)
m,1 (G) = ℧i(γ2(G)).

(3.18)

Combining the above equations gives us

(xy)p
i ≡ xp

i

yp
i

mod ℧i(γ2(G)). (3.19)

For every element g ∈ ℧i(G), we can say there must exist x ∈ G such that

g ∈ xp
i · ℧i(γ2(G)) ⊆ ℧i(N) ⊆ Dpi(N) where N = 〈γ2(G), x〉 (3.20)

N is a proper subgroup of G. The conditions of theorem 3.1.6 are satisfied and we

have dm(N) = 0. We can apply the induction hypothesis on N . Every element of

Dpi(N) can be written as a pith power. Therefore, g = xp
i

for some x ∈ N .

With this the proof is complete.

In [Man76], Mann shows in section 1 that for a group G of nilpotency class c, and

k = ⌊ c−1
p−1

⌋, we have ℧i+k ⊆ {xpi |x ∈ G}. This result can be improved as has been

done in the following theorem.

Theorem 3.3.7. Let G be a p group (p 6= 2) of nilpotency class c, and let k be the

minimal integer such that c < (p− 1)pk. Then ℧(i+k) ⊆ {xpi |x ∈ G}.

There is a slight generalization of this theorem discussed in section 3 of [Wil03].

Proposition 3.3.8. Let G be a finite p-group (p 6= 2). If there exists k such that

γ(p−1)pk(G) ⊆ Dpk+1(G) then Dpk+l(G) ⊆ {xpl|x ∈ G}.

Proof In view of the following lemma, Dpk+l(G) is potent.

Lemma 3.3.9. Let G be a finite p-group with p odd. If γm(G) ⊆ Dph(G) where

m < ph then Di(G) is potent if the following two conditions hold:

• i ≥ m/(p− 1)

• i ≥ (m− ph−1)/(p− 2).
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Repeated application of lemma 3.1.11 gives Dpk+l(G) = ℧(l)(Dpk(G)). In view of

proposition 3.3.4, ℧(l)(Dpk(G)) = {xpl|x ∈ Dpk(G)}. Thus the proposition follows.

Remark 3.3.10. It is evident that theorem 3.3.7 can now be attained as a corollary

of the above theorem 3.3.8 once we observe that ℧(i)(G) ⊆ Dpi(G) for all i. In fact,

slightly more can be said. Under the hypothesis that the nilpotency class of group

G is c and k is the minimal integer such that -c < (p − 1)pk, we have ℧(k+l)(G) ⊆
Dpk+l(G) ⊆ {xpl|x ∈ G}.

Below is a proof of theorem 3.3.7

Proof It is given that the nilpotency class is c < (p − 1)pk, thus, γ(p−1)pk(G) = 1.

Also, we observe that (p − 1)pk + 1 is relatively prime to p and γ(p−1)pk+1(G) = 1.

From Lazard’s formula, equation 3.2, we have D(p−1)pk+1(G) = D(p−1)pk+2(G). By

definition, d(p−1)pk+1 = 0, and this allows us to conclude (using theorem 3.1.5 part 1)

that

Dpk+1(G) = ℧1(Dpk(G)). (3.21)

We formulate Lemma 1.5 of [Sco91], for the particular case here. If p is an odd prime,

and γ(p−1)pk(G) = 1, then

γp−1(Dpk(G)) ⊆ Dpk+1(G). (3.22)

Therefore, γp−1(Dpk(G)) ⊆ ℧1(Dpk(G)). Using Lazard’s formula, 3.2, we have

Dp−1(Dpk(G)) = ℧1(Dpk(G)) = Dp(Dpk(G)). (3.23)

Therefore, dp−1(Dpk(G)) = 0. We can hence apply theorem 3.3.5. We can say that

℧(i)(Dpk(G)) = {gpi|g ∈ Dpk(G)} for all i > 0. (3.24)

We had observed that ℧(k)(G) ⊆ Dpk(G). Therefore, ℧(i+k)(G) ⊆ ℧(i)(Dpk(G)).

Thus,

℧(i+k)(G) ⊆ {xpi |x ∈ G} for all i > 0. (3.25)

This completes the proof.
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Remark 3.3.11. The constant k is the best possible for most values of c. In any

case, it can not be reduced by more than 1.

This can be seen in view of the following theorem:

Theorem 3.3.12. For all integers k ≥ 1, there exists a p-group (p 6= 2), G, of class

c = pk+1 such that ℧1+k * {xp|x ∈ G}. In particular, let F be the free group on two

generators, then G = F/Dpk+1+1(F ) has the required property.

Proof Let F be a free group on two generators, x and y. Define G = F/Dpk+1+1(F ).

G is a finite p-group and its nilpotency class is pk+1.

Let z = xp
k+1
yp

k+1 ∈ ℧1+k(G). We have seen that ℧i(G) ⊆ Dpi(G) for all i. Hence,

z ∈ Dpk+1(G).

The proof of the theorem is by contradiction. Let z = ap for some element a in G.

This means that ap ∈ Dpk+1(G) \Dpk+1+1(G). Then by a result of Scoppola ([Sco91,

Lemma 1.10]), we conclude that a ∈ Dpk(G) \Dpk+1(G).

Now, we had seen in theorem 3.1.8 that the map x 7→ xp induces a well defined map

ϕ : Dpk(G)/Dpk+1(G) → Dpk+1(G)/Dpk+1+1(G). (3.26)

We also have the canonical projection

π : Dpk+1(G)/Dpk+1+1(G) → Dpk+1(G)/γpk+1(G)Dpk+1+1(G). (3.27)

The composition map µpk = π ◦ ϕ is a homomorphism. In fact, it can be shown that

µpk is an isomorphism ([Sco91, Lemma 1.11]).

Let us define Ḡ = G/γpk+1(G).

The map g 7→ gp induces the map

ψ : Dpk(Ḡ)/Dpk+1(Ḡ) → Dpk+1(Ḡ) (3.28)

which can be identified with µpk .

We have

µpk(x̄
pk ȳp

k

Dpk+1(Ḡ)) = x̄p
k+1

ȳp
k+1

= z̄ = µpk(āDpk+1(Ḡ)). (3.29)
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Since ā ≡ x̄p
k

ȳp
k

mod Dpk+1(Ḡ) and µpk is an injective map this means a ≡ xp
k

yp
k

mod Dpk+1(G). Without loss of generality we may assume that a = xp
k

yp
k

.

Using Hall’s collection formula, we have ap = xp
k+1
yp

k+1
R where R is the product of

basic commutators of weight p in xp
k

and yp
k

. Calculations show (yp
k

, xp
k

, yp
k

; p− 2)

is the only basic commutator of weight 1 in xp
k

that appears in P . Also, the exponent

of this commutator component is -1 ([Sco91, Lemma 2.3]).

We have a standard result (see [Zas40] and [Laz54]) that allows us to conclude

(yp
k

, xp
k

, yp
k

; p− 2) = ((y, x), y; pk+1 − 1). (3.30)

Using the method adopted by Meier-Wunderli [Mei52] we have

ap = xp
k+1

yp
k+1

((y, x), y; pk+1 − 1)−1P (3.31)

where P is a product of some basic commutators of total weight pk+1 in x and y whose

partial weight in x is at least 2pk.

This expression of ap is in terms of a basis as defined by Scoppola ([Sco91, Lemma

1.11]) and is unique. Thus, ap 6= xp
k+1
yp

k+1
. With this our proof is complete.

The theorem discussed above (theorem 3.3.7) holds only for the case when p is an odd

prime. The following theorem of Wilson ([Wil03, Theorem 4.1]) strengthens theorem

3.3.8 further and also deals with the case of p = 2.

Theorem 3.3.13. Let G be a finite p group with γpk(G) ⊆ Dpk+1(G) for some k.

Then Dpk+l−1(G) ⊆ {xpl |x ∈ G} for positive integers l.

The proof of the theorem is both lengthy and involved. Here, we will only indicate a

sketch of the proof.

Proof The proof is divided into three parts

Case 1: k = 1

In this case, as per the hypothesis of the theorem, we have a finite p-group, G, with

γp(G) ⊆ Dp2(G).

It can be observed that Dp2(G) = γp2(G) · γpp(G) · ℧2(G). Therefore the hypothesis

γp(G) ⊆ Dp2(G) is equivalent to assuming γp(G) ⊆ ℧2(G).
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Similarly, it can be seen that Dp(G) = γp(G) · ℧1(G). This means that by our

assumption we have Dp(G) = ℧1(G) = {xp|x ∈ G}.

If p = 2, then it is easy to observe that the group, G, is powerful and using standard

results we have that ℧1(G) = G2 is also powerful in this case.

In view of the following lemma we see that even when p is odd, Dp(G) is powerful.

Lemma 3.3.14. Let G be a finite p-group with p odd. If γm(G) ⊆ Dph(G) where

m < ph then Di(G) is powerful if the following two conditions hold:

• i ≥ m/2

• i ≥ (m− ph−1).

Using lemma 3.1.11 repeatedly we have Dpl = ℧(l−1)(Dp(G)). Since we have already

seen that Dp(G) is powerful we can conclude that every element of Dpl(G) is a p
l−1-th

power of an element of Dp(G). Thus it is a p
l-th power of an element of G.

The proof of the first case is thus complete.

Case 2: p = 2 and k = 2

The hypothesis in this case is that G is a finite p group with γ4(G) ⊆ D8(G).

Use of lemma 3.1.11 gives that D4(G) = D2
2(G) and D8(G) = D2

4(G). It can be shown

that D4(G) is powerful and as a matter of fact, so is D3(G).

We consider two elements in D2(G), say x and y. (xy)2 = x2y2(y, x)y can be shown

to be the square of an element of D2(G). Since x and y were arbitrary elements

of D2(G), we can conclude that D4(G) = D2
2(G) are squares of elements of D2(G).

℧(l−1)(D4(G)) = D2l+1(G) by the use of lemma 3.1.11. Since, D4(G) is powerful,

elements of ℧(l−1)(D4(G)) is a 2l−1-th power of an element of D4(G). Thus, every

element of D2l+1(G) is a 2l-th power of an element of D2(G).

This case is also done.

Case 3: p odd with k > 1 and p = 2 with k > 2

Using lemma 3.3.14 we can say that Dpk(G) is powerful when p is odd.

Even when p = 2, it can be shown with some (non trivial) computation that D2k(G)

is powerful.

For all p, use of lemma 3.1.11 yields Dpk(G) = Dp
pk−1(G) and Dpk+1(G) = Dp

pk
(G).
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We consider two elements x, y in Dpk−1(G). It can be shown that xpyp is an element

in Hp where H is a potent subgroup of Dpk−1(G).

Thus, xpyp is a p-th power of an element of Dpk−1(G) and every element of Dp
pk−1(G)

is a p-th power of an element of Dpk−1(G). Since Dpk(G) = Dp
pk−1(G), elements of

Dpk(G) are p-th powers. This yields the result for l = 1.

When we use the lemma 3.1.11 repeatedly we get Dpk+l−1(G) = ℧(l−1)(Dpk(G)). Since

we have already seen thatDpk(G) is powerful, an element of ℧(l−1)(Dpk(G)) is a p
l−1-th

power of an element of Dpk(G) and therefore a pl-th power of an element of Dpk−1(G).

Thus the theorem is proved.
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Closing Remarks

In this chapter, I will highlight some of the open questions and also point

out what I wish to do in the future.

Open Problems

We saw in chapter 1 that Dn(G) = γn(G) for all n ≤ 3. A natural question then arises

what is the structure of Dn(G)/γn(G) in general? Tahara provided an answer to the

question for n = 4 and n = 5. The structure of higher dimension subgroups are still

unknown and remain as open problems. Tahara raised a problem in [Tah81] whether

the exponent Dn(G)/γn(G) is divisible by (n-2)! for all n ≥ 2?

We saw in corollary 1.1.15 that for 2 or 3 generator groups D4(G) = γ4(G). A natural

question arises, what can we say for D5(G)?

Some problems were raised in [MP09]. If G is a nilpotent group of class 3, is D5(G)

always trivial? For an arbitrary group, G, is (D5(G), G,G) = D7(G)?

Future Plans

In two semesters I could only read very little portion of the literature that is already

available. I would want to read in greater depth and work on the open problems in

the future.

Dimension subgroups have turned out to be useful in several interesting problem which

at first seemed unrelated. To cite a few examples: the isomorphism problem for lo-

cal group algebras ([PS72] and [Roh87]), Frobenius-Wielandt complements ([Sco91]),

generators of ideals in local group algebras ([Sha90]) and the Lie-structure of local

group algebras ([Sha91]). Dimension subgroups give rise to restricted Lie algebras,

which have also played a small role in the study of the restricted Burnside problem.

Myriad features of dimension subgroups in characteristic p were derived by Shalev in

[Sha90]. This theory of dimension subgroups has been used to generalize Koshitani’s
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theorem on nilpotency index of the augmentation ideal of the group ring, k[G], where

k is a field of characteristic p( 6= 2) and G is a finite p-group. Further, it can be used

to generalize some properties of the Loewy series {ci} of k[G] where ci is defined as

dim(∆i(G)/∆i+1(G)). In particular, he also derived a connection between the m-th

dimension subgroup Dm(G) and the (m+1)-st Lie dimension subgroup D(m+1)(G). I

wish to understand these applications in greater detail.

There are some applications of dimension subgroups in topology as well, I would be

interested in exploring them. In [Mas06], Massuyeau shows that Goussarov-Habiro

conjecture (in topology) is a variation of the classical problem in algebra, namely

the dimension subgroup problem. He then uses purely algebraic methods to prove an

analogue of the conjecture for finite-type invariants in a fixed field.

The thesis of Smyth [Smy10] links the study of powerful p-groups and pro-p groups

with Galois groups. I would be interested in looking at such a link as this will integrate

what I have studied over the past years with what I have worked on for my thesis.
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