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Chapter 1

Introduction

In this thesis we focus on algebraic curves defined over an algebraically closed field of

characteristic zero.

We begin by giving some basic definitions of terms in chapter 1 which will be used

throughout. In chapter 2 and chapter 3 we define singular and normal varieties. We

show that the nonsingular varieties are normal. Our main aim in these two chapters

is to resolve the singularities of curves. We will show that there exists a normalization

of any variety. We will conclude that normalization resolves the singularities of the

curve. We then will give the construction of blowup of a surface at a point and show

that an embedded curve can be resolved after finitely many blowups of the surface.

In chapter 5 and chapter 6 we discuss the notion of Weil divisors and Cartier

divisors. In chapter 7 we look at the vector space of rational functions constructed

with respect to a given divisor. Given a divisor we will see in chapter 8 that there

is 1-1 correspondence between Cartier divisors and invertible sheaves on a projective

variety, in particular a nonsingular projective curve.

After having developed the necessary machinery we will then prove the Riemann-

Roch theorem for curves and look at some of its applications in chapter 10. In the next

chapter given a finite morphism between two curves we look at relation between their

genus. And finally, we show that any nonsingular, projective curve can be embedded

in P3.
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Chapter 2

Preliminaries

In this chapter we will give some basic definitions which will be used throughout this

thesis. We will use k to denote algebraically closed field unless stated otherwise. More

specifically k will denote field of complex numbers.

2.1 Sheaves

Definition 2.1. (Presheaf) Let X be a topological space. A presheaf F on X consists

of

(a) for every open subset U ⊆ X, a set F(U)

(b) for every inclusion V ⊆ U of open subsets of X, we have a morprhism ρUV :

F(U) −→ F(V )

such that

(i) F(∅) = 0

(ii) ρUU is the identity map

(iii) for W ⊆ V ⊆ U , ρUW = ρVW ◦ ρUV .

Definition 2.2. (Sheaf) A presheaf F on topological space X is sheaf if it satisfies

following conditions

(i) if U is an open set and {Vi} be its open covering and if s ∈ F(U) is an element

such that s|Vi
= 0 for all i, then s = 0.
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(ii) if U is an open set and {Vi} be its open covering and if we have si ∈ F(Vi)

for each i such that for all i,j we have si|Vi∩Vj
= sj|Vi∩Vj

, then there exists an

element s ∈ F(U) such that s|Vi
= si for all i.

Definition 2.3. (Stalk) Let F be the presheaf on X and P be a point on X. Stalk FP

of F at P is defined to be the direct limit of sets F(U) for all open set containing P

using the restriction map ρ.

Definition 2.4. (Morphism of sheaves) Let F and G be the sheaves on space X. A

morphism ψ : F −→ G consists of homomorphisms of ψ(U) : F(U) −→ G(U) for

every open set U of X such that whenever V ⊆ U following diagram commutes-

G(V ) F(V )

G(U) F(U)�

�

6 6

ϕ(V )

ϕ(U)

ρUV ρ′UV

where ρ and ρ′ are restriction maps of F and G respectively.

Definition 2.5. Let F be a presheaf. Sheafification of F is sheaf F+ with morphism

θ : F −→ F+ such that for any given sheaf, say G and any morphism ϕ : F −→ G
there is a unique morphism ψ : F+ −→ G such that ϕ = ψ ◦ θ.

To see the existence of sheafification of presheaf we construct F+ associated to

presheaf F of X in the following manner. For an open set U of X let F+ be the set

of functions s given by U 7→
⋃

P∈U FP such that for every P ∈ U

(i) we have s(P ) ∈ FP

(ii) there exists V ⊆ U with P ∈ V and an element t ∈ F(V ) such that for all

Q ∈ V , we have germ tQ = s(Q).

Definition 2.6. A ringed space is pair (X,OX) where X is topological space and OX

is a sheaf of rings on X. A ringed space is called locally ringed space if for every

P ∈ X the stalk OX,P is a local ring.
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Definition 2.7 (Morphism of Ringed Spaces). Morphism of ringed spaces from (X,OX)

to (Y,OY ) is given by (f, f ]) where f : X −→ Y is a continuous map and f ]

is a map of sheaves of rings on Y such that for any open set V ⊆ Y we have

f ](V ) : OY (V ) −→ OX(f−1(V )).

Definition 2.8. Let (X,OX) be a ringed space. A sheaf F is a sheaf of OX-module

if for each open set U ⊆ X, F(U) is an OX(U)-module.

A sheaf of ideals I on X is a subsheaf of OX such that for every open set U, I(U)

is an ideal in OX(U).

We define morphism of sheaves of OX-modules F and G such that map

F(U) −→ G(U) is homomorphism of OX(U)-module. An OX-module sheaf F is said

to be free if it can be expressed as direct sum of copies of OX and if F|Ui
is a free

OX |Ui
-module for some covering {Ui} of X, it is said to be locally free.

Definition 2.9. Let F and G be OX-module sheaves. Tensor product F⊗G is defined

to be the sheaf associated to presheaf U 7→ F(U)⊗OX(U) G(U).

2.2 Basic Definitions

Definition 2.10. Let A be a commutative noetherian ring. The set of all prime ideals

is defined to be SpecA.

Definition 2.11 (Krull Dimension). In a ring A, the height of a prime ideal p is the

supremum of integers n such that there exists a chain p0 ⊆ p1 ⊆ . . . ⊆ pn = p of

distinct prime ideals. Krull dimension (or simply dimension) of A is the supremum

of the heights of all the prime ideals.

Definition 2.12 (Zariski Topology). Let a be any ideal of A. We define

V (a) = {p ∈ SpecA|a ⊆ p}.

Zariski topology on SpecA is defined by taking subsets of the form V (a) to be the

closed sets.
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Definition 2.13. The structure sheaf OSpecA is the sheaf associated to presheaf SpecAf 7→
Af .

Definition 2.14 (Affine Scheme). An affine scheme is defined as locally ringed space

(SpecA,OSpecA). Henceforth we will denote the ringed space (SpecA,OSpecA) by

SpecA.

Definition 2.15 (Scheme). A locally ringed space (X,OX) is scheme if every point

has an open neighbourhood U such that (U,OX |U) is an affine scheme.

Definition 2.16 (Affine Space). Affine n-space over k is defined as a ringed space

Spec k[x1, . . . , xn] and is denoted by An
k or simply An if k is understood.

Definition 2.17 (Proj). Let S be a graded ring. Let S+ be the ideal ⊕d>0S
d. The set

ProjS is defined to be the set of all homogeneous prime ideals p, which do not contain

all of S+. We define Zariski topology on ProjS by taking subsets of the form

V (a) = {p ⊂ ProjS|a ⊆ p}

where a is a homogeneous ideal of S.

Definition 2.18 (Projective Space). Projective n-space over k is defined to be the

locally ringed scheme Pn
k = Proj k[x0, . . . , xn].

Definition 2.19 (Variety). A variety is a noetherian integral separated scheme of

finite type over an algebraically closed field k.

Definition 2.20 (Morphism). Let X and Y be schemes. A mapping ϕ : X → Y is

called morphism of schemes if

(i) ϕ is continuous.

(ii) for every open set U of Y if f ∈ Γ(U,OY ), then, f ◦ ϕ ∈ Γ(ϕ−1(U),OX).

Definition 2.21 (Rational Map). A rational map ϕ : X → Y is an equivalence class

of pairs (U,ϕ(U)),where U is non-empty subset of X and ϕ(U) is morphism from U

to Y. (U,ϕ(U)) and (V,ϕ(V )) are equivalent if ϕ(U) and ϕ(V ) agree on U ∩ V.
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Chapter 3

Singularities of Algebraic Varieties

In this chapter we define the condition for a variety to be singular. We also define

a normal variety and show that a nonsingular variety is a normal variety. Though a

normal variety may not imply that a variety is nonsingular in general, for curves we

show that a normal variety is nonsingular. We, then, define normalization of a variety

and say that it exists for all the varieties.

Definition 3.1 (Nonsingular Variety). Let Y ⊆ An be an affine variety and let

f1, f2, · · · , ft ∈ k[x1, x2 · · · , xn] be the set of generators for ideal of Y . Y is non-

singular at a point P ∈ Y if the rank of matrix ‖ (∂fi/∂xj)(P ) ‖ is n− r, where r is

the dimension of Y . The affine variety Y is nonsingular if it is nonsingular at every

point.

Example 3.2 Consider a variety given by y2 = x3 in A2. Here, n = 2 and r = 1. The

matrix is given by [−3x2 2y]. At point P = (0, 0) the rank of matrix is 0 < n− r.
Therefore P is singular point.

Example 3.3 Let Y be a variety given by y2 − x3 + x = 0 in A2. The matrix as in

definition is [−3x2 + 1 2y]. The rank of this matrix is 0 if y = 0 and x = ±1/
√

3.

But this point does not lie on the curve. Since n− r = 2− 1 = 1 and rank of matrix

is always 1, Y is a nonsingular variety.

Example 3.4 Now, we will look at a variety given by two equations in A3. Let

Y be given by (x2 − y3, y2 − z3). Here, n = 3 and r = 2. We get the matrix as
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[
2x −3y2 0

0 2y −3z2

]
. The rank of matrix at P = (0, 0) is 0. Therefore, Y is singular

at P .

Definition 3.5 (Regular local ring). Let R be a noetherian local ring with maximal

ideal m and residue field k = R/m. R is a regular local ring if dimm/m2 = dimR.

Following theorem shows that the concept of nonsingularity is intrinsic and hence

can be extended to any variety.

Theorem 3.6. Let Y ⊆ An be an affine variety. Let P ∈ Y be a point. Then Y is

nonsingular at P if and only if the local ring OP,Y is a regular local ring.

Proof Let P = (a1, . . . , an) ∈ An and I(P ) = (x1 − a1, . . . , xn − an) be the

corresponding maximal ideal in R = k[x1, . . . , xn]. Let

θ : R→ kn

be a linear map given by

f 7→ 〈 ∂f
∂x1

(P ), . . . ,
∂f

∂xn
(P )〉

for any f ∈ R. For all i, θ(xi − ai) forms a basis of kn and θ(I2(P )) = 0. Therefore θ

induces an isomorphism

θ′ : I(P )/I2(P )→ kn.

Consider an ideal I ′ of Y generated by f1, . . . , ft. The rank of the Jacobian matrix

J =‖ ( ∂fi
∂xj

)(P ) ‖ is the dimension of θ(I ′) as a subspace of kn i.e. the dimension of

the subspace (I ′ + I2(P ))/I2(P ) of I(P )/I2(P ). We get the local ring OP of P on Y

from R by dividing by I ′ and localizing at maximal ideal I(P ). If m is the maximal

ideal of OP we have

m/m2 ' I(P )/(I ′ + I2(P )).

Therefore, we have

dimm/m2 + rank J = n

Let dimY = r. Then OP is a local ring of dimension r. Now, OP is regular iff

dimk m/m
2 = r i.e. rank J = n− r, that is P is a non-singular point of Y .

In view of the above theorem we can reformulate definition 3.1 as follows.
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Definition 3.7. Let Y be a variety. Y is nonsingular at a point P ∈ Y if OP,Y is a

regular local ring. Y is nonsingular if it is so at every point. Y is singular if it is not

nonsingular.

Following examples illustrate the equivalence of two definitions.

Example 3.8 Let Y be the variety given by y2 − x3 = 0 in A = k[x, y]. We have

seen that Y is singular at P = (0, 0). We have k[Y ] = k[x, y]/(y2 − x3). Let OP (Y )

be the local ring at P = (0, 0).

A function f = g/h ∈ OP if h(P ) 6= 0 and f ∈ mP (Y ) if g is of the form xk[x]+yk[x].

So, mP (Y ) = (x, y) and m2
P (Y ) = (x2, xy).

Clearly, dimmP/m
2
P = 2 6= dimOP = 1.

Example 3.9 We will now consider the variety Y given by (x2 − y3, y2 − z3) in

A = k[x, y, z]. The coordinate ring of variety Y is k[Y ] = k[x, y]/(x2 − y3, y2 − z3).
From 3.4 it is singular at P = (0, 0).

A function f = g/h ∈ OP if h(P ) 6= 0 and f ∈ mP (Y ) if g is of the form

xk[y] + yk[y] + zk[y] + z2k[y] + xzk[y] + xz2k[y]. We have mP (Y ) = (x, y, z) and

m2
P (Y ) = (y2, z2, xy, yz, xz). Now, dimOP = 2 and dimmP/m

2
P = 3.

Remark 3.10 The set of singular points is the set of points where the rank of

Jacobian matrix ‖ (∂fi/∂xj)(P ) ‖< n−r. For a curve r = n−1 and hence, the singular

points are where the rank of matrix is 0, i.e. common solution where {∂fi/∂xj = 0}i,j.
Since fi’s are polynomials, the singular points are finite and isolated.

Definition 3.11 (Normal Variety). A variety Y is said to be a normal variety at a

point P if ring of regular functions OP is integrally closed. Y is said to be normal if

it is normal at every point.

Example 3.12 Consider the variety X given by y2 − x3 = 0 in A = k[x, y]. it has

a singular point at (0,0) in A2
k. Parametrizing, one can see that A/I(X) = k[X] =

k[x, y]/(y2 − x3) ∼= k[t2, t3]. It can be easily checked that 1+t3

t2
is not integral over

k[t2, t3].

Theorem 3.13. A nonsingular variety is normal.
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Proof Let X be an irreducible nonsingular variety and x ∈ X be any nonsingular

point. The local ring, Ox, at this point is a unique factorization domain. Let α ∈
k(X) be expressed as α = u/v such that u, v ∈ Ox have no common factor. If α

is integral over Ox then, αn + a1α
n−1 + · · · + an = 0 where ai ∈ Ox and hence,

un + a1u
n−1v + · · · + anv

n = 0. From the equation we have v|un but since v and u

have no common factors, α ∈ Ox. Therefore, Ox is integrally closed.

Now, we have that the local rings Ox are integrally closed for all x ∈ X. We will

prove that k[X] is also integrally closed. Let β ∈ k(X) be integral over k[X]. We

have βn +b1βn−1 + · · ·+bn = 0 where bi ∈ k[X] for all i ∈ {1, 2, · · · , n} . Also, bi ∈ Ox

for every x ∈ X. Since Ox is integrally closed, β ∈ Ox for all x ∈ X. Therefore,

β ∈ ∩x∈XOx. Since ∩x∈XOx = k[X], β ∈ k[X].

However, converse of above theorem may not always be true, i.e. a normal variety

may not be nonsingular. Consider the following example.

Example 3.14 Let X ⊂ A3 be given by x2 + y2 = z2. X is singular at (0, 0, 0).

We will prove that k[X] is integrally closed in k(X). k[X] consists of elements u+ vz

where u, v ∈ k[x, y]. Hence, k[X] is a finite module over k[x, y], and hence all elements

of k[X] are integral over k[x, y].

If α = u+ vz ∈ k(X), where u, v ∈ k(x, y), is integral over k[X] then it must also be

integral over k[x, y]. Its minimal polynomial is

T 2 − 2uT + u2 − (x2 + y2)v2.

Since 2u ∈ k[x, y] we have u ∈ k[x, y]. Similarly, u2 − (x2 + y2)v2 ∈ k[x, y], and hence

(x2 + y2)v2 ∈ k[x, y]. Now, since x2 + y2 = (x + iy)(x − iy) is the product of two

coprime irreducibles, it follows that v ∈ k[x, y], and thus α ∈ k[X].

Theorem 3.15. If X is a normal variety and Y ⊂ X a codimension 1 subvariety

then there exists an affine open set X ′ ⊂ X with X ′ ∩ Y 6= 0 such that the ideal of

Y ′ = X ′ ∩ Y in k[X ′] is principal.

Proof Let I(Y ) = (v1, · · · , vm) be the ideal corresponding to Y in k[X]. Let

0 6= f ∈ k[X] such that f ∈ I(Y ) ⊂ OY . Then Y ⊂ Z(f), and since both of

these are codimension 1 subvarieties, Y consists of components of Z(f). Suppose that

Z(f) = Y ∪ Y1 such that Y * Y1. Let X1 = X \ Y1 , we have Y ∩ X1 6= ∅ and

Y ∩X1 = Z(f) ∩X1. Thus, we can assume that Y = Z(f).

By the Nullstellensatz, Y = Z(f) in X implies that I(Y )k ⊂ (f) for some k > 0, and

10



hence for some minimal k, mk
Y ⊂ (f) in OY , where mY is the maximal ideal of OY .

Then there exist α1, · · · , αk−1 ∈ mY such that α1 · · ·αk−1 /∈ (f) but α1 · · ·αk−1mY ⊂
(f). Let g = α1 · · ·αk−1 we have g /∈ (f) but gmY ⊂ (f).

Consider u = f/g. We have u−1 /∈ OY , but u−1mY ⊂ OY . Since OY is integrally

closed, u−1mY * mY . Now, mY is the maximal ideal of OY and u−1mY ⊆ OY but

u−1mY * mY implies that u−1mY = OY . Hence, mY = (u) is principal in OY .

Since I(Y ) ⊂ mY , we can write vi = uwi , where wi = ci/di , with ci, di ∈ k[X] and

di /∈ I(Y ). Consider

X ′ = X \ Z(g)
m⋃
i=1

Z(di).

The ideal I(Y ′) of the variety Y ′ = X ′ ∩ Y is the principal ideal (u) in k[X ′].

Theorem 3.16. The set of singular points of a normal variety has codimension ≥ 2

Proof Let X be the normal variety and S be collection of singular points. Suppose

that S contains an irreducible component of codimension 1, say Y . Let X ′ and Y ′ be as

in proof of 3.15. Let y ∈ Y ′ such that y is nonsingular point of Y ′. Let u1, · · · , un−1
be the local parameters of Y ′ at y. From 3.15 I(Y ′) = (u) is a principal ideal of

k[X ′], and hence k[Y ′] = k[X ′]/(u) and OY ′,y = OX′,y/(u). Consider the natural

map OX′,y −→ OY ′,y, the inverse image of mY ′,y is mX′,y. Let v1, · · · , vn−1 ∈ OX′,y

be the arbitrary inverse images of the local parameters u1, · · · , un−1 ∈ OY ′,y. Then

mX′,y = (v1, · · · , vn−1, u). This proves that dimmX′,y/m
2
X′,y ≤ n, and hence that y is

a nonsingular point of X, which contradicts the assumption y ∈ Y ⊂ S.

Remark 3.17 Since the codimension of singular varieties is greater than or equal

to 2, for algebraic curves normal varieties are nonsingular.

Definition 3.18 (Normalization). A normalization of an irreducible variety X is an

irreducible normal variety X̄, together with a regular map ψ : X̄ −→ X, such that ψ

is finite and birational and has a property that whenever Z is a normal variety and

φ : Z −→ X is finite and birational map, there is a unique morphism θ : Z −→ X̄

such that φ = ψ ◦ θ.

Theorem 3.19 (Emmy Noether). If R is a finitely generated domain over a field or

over the integers, and L is finite extension field of the field of fractions of R, then the

integral closure of R in L is a finitely generated R-module.
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Proof cf. Eisenbud [Ei] [13, corollary 13.13]

Given an irreducible affine variety X following theorem shows the existence of a

normalized variety X̄.

Theorem 3.20. An affine irreducible variety has a normalisation that is also affine.

Proof Let X be given variety and k[X] be the associated coordinate ring. Let A be

the integral closure of k[X] in k(X). To prove the theorem we need to find an affine

variety X ′ such that A = k[X ′]. Then X ′ is normal and the inclusion k[X] ↪→ k[X ′]

defines a regular birational map f : X ′ −→ X.

By Noether Normalisation, there exists a subring B ⊂ k[X] such that B is

isomorphic to a polynomial ring B ∼= k[t1, · · · , tr] and k[X] is integral over B. Now,

A is equal to the integral closure of B in k(X) and K = k(X) is a finite field extension

of k(t1, · · · , tr), since t1, · · · , tr is a transcendence basis of k(X). From 3.19 we have

A is finite B-module.

Therefore, A is finitely generated k-algebra generated by finitely many elements say,

t1, · · · , tn. We have, A ∼= k[t1, · · · , tn]/I, where I is an ideal of the polynomial ring

k[t1, · · · , tn]. Suppose that I = (f1, · · · , fm). Consider the closed set X ′ ⊂ An

defined by the equations f1 = · · · = fm = 0 we have I(X ′) = I (by Hilbert

Nullstellensatz and the fact that there are no zero divisors), from which it follows

that k[X ′] ∼= k[t1, · · · , tn]/I ∼= A.

Proposition 3.21. Let A ⊆ B be rings and C be the integral closure of A in B. Let

S be a multiplicatively closed subset of A. Then S−1C is the integral closure of S−1A

in S−1B.

Proof Let x be an element of C and s be an element of S. Let

xn + a1x
n−1 + . . .+ an = 0

where ai ∈ A.

Let x/s be an element of S−1B. Then we obtain the equation

(x/s)n + (a1/s)(x/s)
n−1 + . . .+ an/s

n = 0

which shows that x/s is integral over S−1A. Hence S−1C is integral over S−1A.
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Conversely, let b/s ∈ S−1B be integral over S−1A. We have an equation of the

form

(b/s)n + (a1/s1)(b/s)
n−1 + . . .+ an/sn = 0

with ai ∈ A and si ∈ S. Define t = s1 · · · sn. On multiplying the above equation

(st)n, we get an equation of integral dependence for bt over A. Thus, we have bt ∈ C
and therefore b/s = bt/st ∈ S−1C. With this the proof is complete.

Theorem 3.22. Normalization exists for any scheme.

Proof (Sketch) Let X be an integral scheme covered by finite open affine schemes.

Consider two such open subsets U = SpecA and V = SpecB. The intersection

U ∩ V can be covered by finitely many affine subschemes given by localisation of

A and B. From 3.21 if Ã is the integral closure of A, then Ãf is the integral

closure of Af . Looking at intersection of SpecAf and SpecBg in Ã and B̃ we get

an isomorphism and hence we can patch the normalization of local affine schemes to

get global normalization. Hence for any scheme normalization exists.
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Chapter 4

Resolution of Singularities of

Curves

Here we will state the general problem of the resolution of singularities of varieties

and observe that on curves normalization resolves the singularities. We then explain

the construction of blowup of a surface at a point and show that a curve embedded

in a nonsingular surface can be resolved by finite number of sequential blowups of the

surface at the singular points. In this chapter we will be using concept of divisors and

canonical divisor which will be explained in the later chapters.

The general problem of the resolution of singularities of variety X is to find a

nonsingular variety X ′ along with a proper birational morphism φ : X ′ −→ X.

For some curve Y , from 3.16, normalisation gives the nonsingular curve Y ′ and

a birational map ψ : Y ′ −→ Y and hence resolves the singularities on curves.

Normalisation, however, may not resolve singularities in higher dimension.

Theorem 4.1. Let C be a nonsingular curve and P be a point in C. Let Y be a

projective variety and ϕ : C − P −→ Y be a morphism. Then there exists a unique

morphism ϕ̄ : C −→ Y extending ϕ.

Proof Embed Y as a closed subset of Pn for some n. It will be sufficient to show

that ϕ extends to a morphism of C into Pn, because if it does, the image is necessarily

contained in Y since Y is closed in Pn.

Let Pn have the homogeneous coordinates x0, · · · , xn and U be the open set such

that xi 6= 0 ∀ i. If ϕ(C − P ) ∩ U = ∅ then ϕ(C − P ) ⊆ Pn − U. Since Pn − U is the
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union of hyperplanes given by xi = 0 and ϕ(C − P ) is irreducible, ϕ(C − P ) ⊂ Hi

for some i. Now, Hi
∼= Pn−1. Hence, by using induction on n we can assume that

ϕ(C − P ) ∩ U 6= ∅.

Let xi/xj be regular functions of U ∀ i, j. Let fij be the regular function on C

obtained by pulling back xi/xj by ϕ. fij ∈ k(C) where k(C) is the function field of

C. Let ν be the valuation of k(C) with respect to valuation ring RP . Let ri = ν(fi0)

for i = 0, 1, · · · , n. Since xi/xj = (xi/x0)(x0/xj) we have ν(fij) = ri − rj. Let k be

such that rk = min{r0, · · · , rn}. Then, ν(fik) ≥ 0 for all i. Hence, f0k, · · · , fnk ∈ RP .

Now, we define ϕ̄ as ϕ̄(P ) = (f0k(P ), · · · , fnk(P )) and ϕ̄(Q) = ϕ(Q) for Q 6= P.

To show that ϕ̄ is a morphism it is enough to show that a regular function in the

neighbourhood of ϕ̄(P ) pulls back to a regular function on C. Consider Uk ⊆ Pn be

open set given by xk 6= 0. Then ϕ̄(P ) ∈ Uk since fkk(P ) = 1. Since Uk is affine with

coordinate ring k[x0/xk, · · · , xn/xk], these functions pull back to fok, · · · , fnk which

are regular at P by construction.

To prove uniqueness let us assume there exists another morphism ψ : C −→ Pn

such that ψ|C−P = ϕ̄|C−P . Consider

ψ × ϕ̄ : C −→ Pn × Pn.

Let

∆ = {R×R|R ∈ Pn}

be the diagonal subset of Pn × Pn. By hypothesis ψ × ϕ̄(C − P ) ⊂ ∆. Since (C − P )

is dense in C and ∆ is closed subset of Pn × Pn, we have ψ × ϕ̄(C) ⊂ ∆. Hence the

morphism is unique.

4.1 Blow-up

Now, we will construct the blowing up of An at the point O = (0, . . . , 0).

We have a quasi-projective variety An × Pn−1. Let x1, . . . , xn be the affine coordi-

nates of An and y1, . . . , yn be the homogeneous coordinates of Pn−1. The polynomials

in xiyj are the closed subsets of An × Pn−1.

Definition 4.2. The blowing-up of An at the point O = (0, · · · , 0) is the closed subset

X of An × Pn−1 given by the equations

{xiyj = xjyi|i, j = 1, . . . , n}.
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Let ϕ : X → An be the natural morphism obtained by restricting the projection

map of An × Pn−1.

We now look at some of its properties

(i) Let O 6= P ∈ An, then ϕ−1(P ) is a single point. Moreover, ϕ gives an

isomorphism of X − ϕ−1(O) onto An −O. We can see this if we let

P = (a1, . . . , an) where not all ai = 0. For each j, if P × (y1, . . . , yn) ∈ ϕ−1(P ),

we have yj = (aj/ai)yi. We see that (y1, . . . , yn) is uniquely determined as a

point in Pn−1. If we put yi = ai, we have ϕ−1(P ) to be a single point. We can

also define an inverse morphism ψ, by setting ψ(P ) = (a1, . . . , an)× (a1, . . . , an)

for a point P ∈ An −O. This gives us the desired isomorphism.

(ii) We have the isomorphism ϕ−1(O) ' Pn−1. This can be seen when we observe

that ϕ−1(O) consists of all points O × Q (where Q ∈ Pn−1) subject to no

restriction.

(iii) Let L be a line through O in An. We can give a parametric equation xi = ait

for all i where ai’s are not all 0 and t ∈ A1. Consider the line L′ = ϕ−1(L−O)

in X − ϕ−1(O). This is given by the parametric equation xi = ait and yi = ait

with t ∈ A1 − 0. Since yi’s are homogeneous coordinates in Pn−1, we can write

the equation of L′ as xi = ait, yi = ai for t ∈ A1 −O. These equations will now

make sense even for t = 0. This gives the closure L′ of L′ in X. We observe that

L′ meets ϕ−1(O) at Q = (a1, . . . , an) ∈ Pn−1. On sending L to Q we have a 1-1

correspondence between lines in An passing through O and points of ϕ−1(O).

(iv) X is the union of X − ϕ−1(O) and ϕ−1(O). We have seen that X − ϕ−1(O) is

isomorphic to An−O which is irreducible. Since every point of ϕ−1(O) is in L′,

X − ϕ−1(O) is dense. Therefore, X is irreducible.

Definition 4.3. Let Y be a closed subvariety of An passing through O. The blowing

up of Y at O is defined as Ỹ = (ϕ−1(Y −O))−, where ϕ is the blowing up of An at O

as above. The morphism obtained by restriction of ϕ : X → An to Ỹ is also denoted

by ϕ : Ỹ → Y . To blow up at any other point P ∈ An we can make a linear change

in coordinates.

Since ϕ induces an isomorphism from Ỹ − ϕ−1(O) to Y − O, it is birational

morphism of Ỹ to Y .
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Definition 4.4. The inverse image of O is called the exceptional curve. We will

denote it with E.

Definition 4.5. (Monoidal Transformation) Let X be a surface. Then blowing up a

single point P on X is called the monoidal transformation of X.

Let X be a nonsingular surface. Let Y be a curve in X. The problem of embedded

resolution is to find a birational morphism φ : X ′ −→ X such that X ′ is a nonsingular

surface and irreducible components of φ−1(Y ) are nonsingular and at any point P of

φ−1(Y ) the local equations of the irreducible components forms the regular system of

parameters at P. Then we say that φ−1(Y ) is a divisor with normal crossings in X ′.

To achieve this we proceed by blowing up the surface X at a point x where Y is

singular. Let φ1 : X1 −→ X be the morphism obtained by blowing up X at x. Let

Y1 be the closure of φ−11 (Y − x). Y1 is said to be the strict transform of Y on X1. We

repeat the process at singular points of Y1, if any.

By theorem 4.11 we prove that embedded curve can be resolved after finite number

of monoidal transformations.

Definition 4.6. Let C be an effective Cartier divisor on the surface X, and let f be

a local equation for C at the point P . Then, we define the multiplicity of C at P to

be the largest integer r such that f ∈ mr
P , where mP ⊂ OP,X is the maximal ideal.

Theorem 4.7. Let C be an effective divisor. Let P be a point of multiplicity r on C

and π : X̃ → X be the monoidal transformation at P . Then,

π∗(C) = C̃ + rE

where E is the exceptional curve.

Proof Let f be the local equation of C on X. Since multiplicity of P on C is r, f

can be written as

f = fr(x, y) + g

where, fr is a non-zero homogeneous polynomial of degree r and g ∈ mr+1.

In the blowup, consider the open affine subset defined by y = ux. We can write

π∗f = xr(f(1, u) + xh)
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x is the local equation of exceptional curve E and occurs with multiplicity exactly

r.

Definition 4.8 (Intersection Multiplicity). Let D1, . . . , Dn be effective divisors on

a nonsingular variety X at a point x ∈ X with local equations f1, . . . , fn in some

neighbourhood of x. Then dimk(Ox/(f1, . . . , fn)) is the intersection multiplicity or

local intersection number of D1, . . . , Dn at x.

Proposition 4.9. Let π : X̄ −→ X be monoidal transformation of nonsingular

projective surface X. Then,

(i) if C,D ∈ PicX, π∗(C).π∗(D) = C.D

(ii) if C ∈ PicX, then π∗(C).E = 0

(iii) E2 = −1.

Proof Let S ⊂ X be the set of singular points and T = π−1(S) be its set theoretic

inverse image. So we have an isomorphism X̄ \ T ' X \ S defined by π.

If SuppC ∩ S = SuppD ∩ S = ∅ we have π∗(C).π∗(D) = C.D due to isomorphism.

Else we can find C ′ and D′ such that C ′ ∼ C and D′ ∼ D and

SuppC ′ ∩ S = SuppD′ ∩ S = ∅. Since C.D = C ′.D′ and C ′.D′ = π∗(C ′).π∗(D′) due

to isomorphism and π∗(C ′) ∼ π∗(C), we have the desired equality.

If SuppC ∩ S = ∅ then π∗(C) = C̃. So we have π∗(C).E = 0. If

SuppC ∩ S 6= ∅ we can find C ′ such that C ′ ∼ C and SuppC ′ ∩ S = ∅.
Consider the curve C with local equation y. Then by 4.7 we have π∗(C) = C̃ +E.

Since x is the local equation of E we have C̃.E = 1. Now, since π∗(C).E = 0, we have

(C̃ + E).E = 0 which implies C̃.E + E2 = 0. Since C̃.E = 1, we get E2 = −1.

Theorem 4.10. Let C be an irreducible curve in the nonsingular surface X. Then

there exists a finite sequence of monoidal transformations Xn → Xn−1 → · · · → X0 =

X such that the strict transform Cn of C on Xn is nonsingular.

Proof If C is nonsingular there is nothing to prove. Let C be singular at some

point P with multiplicity r ≥ 2. Let X1 → X be the monoidal transformation at P

and let C1 be the strict transform of C. Then, by 10.16 we have g(C1) < g(C). If

C1 is nonsingular we have the required monoidal transformation. If not, we pick a
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singular point on C1 and proceed as before.

Since the arithmetic genus of an irreducible curve is non-negative and we have

g(Ci) < g(Ci−1), the sequence terminates after finite transformations.

Theorem 4.11 (Embedded Resolution of curves in surfaces). Let Y be any curve in

the surface X.Then there exists a finite sequence of monoidal transformations

X ′ = Xn → Xn−1 → · · · → X0 = X

such that if f : X ′ → X is their composition, then the strict transform of Y on X ′ is

smooth. Moreover, after possibly finitely many more blow-ups the total transform can

be made a divisor with simple normal crossing.

Proof Let π : X̄ −→ X be the monoidal tranformation at P and let multiplicity

of Y at P be r. The divisor π−1(Y ) = Ȳ + E = π∗(Y )− (r − 1)E and by 10.16

g(π−1(Y )) = g(Y )− 1

2
(r − 1)(r − 2)

If multiplicity of Y at P ≥ 3 then, g(π−1(Y )) ≤ g(Y ). So there can only be finitely

many steps. If multiplicity is 2 i.e. we have Y.E = 2, there are three possibilities.

(i) Ȳ meets E transversally in two distinct points we have achieved the resolution.

(ii) Ȳ and E meets at one point with multiplicity 2, we can blowup the point again

to get a triple point and then we can blow it up to get the desired resolution.

(iii) Ȳ has singular point of multiplicity 2 and E passes through the point. So,

multiplicity of singular point on Ȳ +E is 3. So, we blowing it up will make g(Y )

drop.

20



Chapter 5

Weil Divisors

Let X be a noetherian, integral, separated scheme which is regular in codimension

one.

Definition 5.1 (Prime Divisor). A prime divisor on X is a closed integral subscheme

Y of codimension one.

Let DivX be the free abelian group generated by the prime divisors.

DivX = {D|D = ΣniYi}

where ni are integers and Yi are the prime divisors.

Definition 5.2 (Weil Divisor). A Weil Divisor by definition is an element of the

group DivX.

Definition 5.3 (Degree of Divisor). The degree of a divisor D = ΣniYi is given by

degD = Σni deg Yi.

From the definition we can observe that deg(D1 +D2) = deg(D1) + deg(D2).

Definition 5.4 (Effective Divisor). A divisor D = ΣniYi is an effective divisor if all

ni ≥ 0.

Definition 5.5 (Support of Divisor). The support of a divisor D = ΣniYi is the union

of prime divisors Yi and is denoted by SuppD.
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If Y is an irreducible subvariety of codimension one, the local ring is discrete

valuation ring. Let vY be the valuation of Y .

Definition 5.6 (Zeroes and Poles). Let f ∈ K∗. If vY (f) is positive at a point, we

say f has a zero at that point along Y of order vY (f). If vY (f) is negative at a point

f is said to have a pole that point along Y of order −vY (f).

Definition 5.7 (Principal Divisor). Let f ∈ K∗ and X be as defined above, then

divisor of f is given by

(f) = ΣvY (f)Y

Any divisor equal to the divisor of a function is called principal divisor.

Proposition 5.8. Let A be a noetherian domain. If A is unique factorization domain

then divisors on X = SpecA are principal divisors.

Proof Since A is unique factorization domain, every prime ideal of A of height 1

is principal. Consider prime divisor Y ⊂ X = SpecA. The divisor Y corresponds to

a prime ideal p of height 1 generated by f , say. We have Y = (f).

Definition 5.9 (Linear Equivalence). Two divisors are said to be linearly equivalent

if their difference is a principal divisor.

Definition 5.10 (Class Group). The group DivX modulo subgroup of principal divi-

sors is the divisor class group of X, denoted by ClX.

Proposition 5.11. Let X be projective space Pn
k and D be any divisor of degree d,

then D ∼ dH where H is the hyperspace represented by x0 = 0. Moreover, we have

an isomorphism deg : ClX −→ Z.
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Proof Let D be a divisor of degree d. We express it as difference of two effective

divisors D1 and D2 of degrees, say, d1 and d2 respectively. By 5.8 D1 and D2 are

principal divisors. So, let D1 = (g1) and D2 = (g2).

Now, consider a rational function f = g1/x
d
0g2.

D − (f) = D1 −D2 − (f) = dH

Hence, D ∼ dH.

Since degree of hypersurface H is 1, we have deg : ClX −→ Z is an isomorphism.

Corollary 5.12. Cl(P1) ∼= Z.

This isomorphism given by deg map is generated by a point.

Corollary 5.13. Cl(P2) ∼= Z.

This isomorphism is generated by a line in P2.

Proposition 5.14. Let Z be an irreducible proper closed subset of codimension 1 of

X and let U=X-Z. There is an exact sequence

Z −→ ClX −→ ClU −→ 0.

Proof If f ∈ K∗ and (f) = ΣniYi, then considering f as a rational function on U

we have (f)U = Σni(Yi∩U). So we have a homomorphism ClX −→ ClU. Since every

principal divisor on U is the restriction of its closure in X, the map is surjective. The

kernel of the map is a divisor whose support is in Z. Since Z is irreducible, kernel is

just the subgroup of ClX generated by 1.Z.

Example 5.15 Let A = k[x, y, z]/(xy − z2) and X = SpecA. Let Y be given by

y = z = 0. Since Y is a prime divisor, we have

Z −→ ClX −→ Cl(X − Y ) −→ 0.

Since y = 0 ⇒ z2 and z generates the maximal ideal of the local ring at the

generic point of Y , the divisor of y is 2.Y . Hence X − Y = SpecAy. Now Ay =

k[x, y, y−1, z]/(xy−z2) ∼= k[y, y−1, z]. Since this is unique factorisation domain, Cl(X−
Y ) = 0. Therefore ClX is generated by Y and 2.Y=0. Let m = (x, y, z) be a maximal

ideal. Therefore m/m2 is a vector space of dimension 3 over k. Let p = (y, z) ⊆ m

and image of p in m/m2 is ȳ and z̄ and hence p is not a principal ideal. Therefore Y

is not a principal divisor. So we have ClX = Z/2Z.
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Chapter 6

Cartier Divisors

Let X be a scheme and U = SpecA be an open affine subset. Let S be the set of non-

zero divisors. The localization of A by the multiplicative set S is the total quotient

ring K(U).

For each open set U , S(U)−1Γ(U,OX) forms a presheaf. Then sheaf of total quotient

rings of O is the associated sheaf of rings to the presheaf and is denoted by K.

Let K∗ be the sheaf of inverible elemnts in the sheaf of rings K.

Definition 6.1 (Cartier Divisor). Cartier divisor on X is given by an open cover

{Ui} of X, and for each i an element fi ∈ Γ(Ui,K∗), such that for each i, j, fi/fj ∈
Γ(Ui ∩ Uj,O∗).

We represent cartier divisor by {Ui, fi}.

Definition 6.2 (Principal Cartier Divisor). A Cartier divisor is said to be principal

if it is in the image of the natural map

Γ(X,K∗) −→ Γ(X,K∗/O∗)

Two Cartier divisors are linearly equivalent if their difference is principal.

Theorem 6.3. For an integral, noetherian, separated locally factorial scheme X the

group DivX of Weil divisors is isomorphic to the group of Cartier divisors Γ(X,K∗/O∗).

Proof Let {Ui, fi} be the given cartier divisor. Let Y be any prime divisor. We

take its coefficient to be vY (fi) whenever Y ∩ Ui 6= ∅. On Ui ∩ Uj we have fi/fj is

invertible and hence vY (fi/fj) = 0, that is, vY (fi) = vY (fj). We can associate divisor
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D = ΣvY (fi)Y to the given Cartier divisor.

Conversely, Let D be a Weil divisor on X. Let x ∈ X be any point. The divisor

D induces a Weil divisor Dx on SpecOx. Since Ox is unique factorization domain, Dx

is a principal divisor. Let Dx = (fx). Now,the divisor (fx) and D on X differ at some

prime divisors not passing through X. There is an open neighborhood Ux of x such

that D and (fx) are same on the neighborhood. We can cover X with such open sets

and the respective functions on those open sets give the Cartier divisor on X.

Corollary 6.4. The notions of Weil and Cartier divisors coincide for nonsingular

varieties, in particular nonsingular projective varieties viz. curves.

26



Chapter 7

Linear Systems

Let X be a nonsingular projective variety and K = k(X) be the function field of X.

Given a divisor D we construct a vector space of rational functions on X with zeroes

and poles having orders no worse than the corresponding coefficient in the divisor D.

Proposition 7.1. Let 0 6= f ∈ K. Then, the following are equivalent

(i) div(f) ≥ 0

(ii) f ∈ k

(iii) div(f) = 0.

Proof If div(f) ≥ 0, f ∈ OP (X) for all P ∈ X. If f(P0) = λ0 for some P0, then

div(f − λ0) ≥ 0 and deg(div(f − λ0)) > 0, a contradiction, unless f − λ0 = 0, i.e.,

f ∈ k.

Remark 7.2

(i) The proposition shows that a meromorphic function can not just have zeroes or

just poles.

(ii) If D ∼ D′ (linearly equivalent), then degD = degD′.

(iii) If D ∼ D′ and D1 ∼ D′1, then D +D1 ∼ D′ +D′1.
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Definition 7.3. Let X be a curve and D = ΣnPP be a divisor of X. For a given

divisor D we define

L(D) = {f |ordP (f) ≥ −nP ∀ P ∈ X}.

L(D) forms a vector space over k.

Definition 7.4 (Complete linear system). A complete linear system denoted by |D|
is a set of all effective divisors linearly equivalent to a given divisor D. Any subvector

space of L(D) is called a linear system.

Proposition 7.5. (i) If D ≤ D0, then L(D) ⊂ L(D0), and

dimk(L(D0)/L(D)) ≤ deg(D0 −D).

(ii) L(0) = k; L(D) = 0 if deg(D) < 0.

(iii) L(D) is finite dimensional for all D. If deg(D) ≥ 0, then

dimk L(D) ≤ deg(D) + 1.

(iv) If D ∼ D0, then dimk L(D) = dimk L(D0).

Proof

(i) The proposition can be reduced to showing dimk(L(D + P )/L(D)) ≤ 1 Let

t be a uniformizing parameter in OP (X), and r = nP be the coefficient of

P in D. Consider φ : L(D + P ) −→ k given by φ(f) = (tr+1f)(P ). Since

ker(φ) = L(D), we have φ̄ : L(D + P )/L(D) −→ k is an injective map. Hence

dimk(L(D + P )/L(D)) ≤ 1.

(ii) This follows immediately from proposition 7.1 and remark 7.2.

(iii) Let degD = n ≥ 0. For some P ∈ X consider D′ = D − (n + 1)P . Since

degD′ < 0, we get L(D′) = 0. From (1), we have

dimk(L(D)/L(D′)) ≤ n+ 1 = deg(D) + 1.

(iv) If D = D′ there is nothing to prove. Let D = D′+ div(g) where g 6= 0 Consider

the map ψ : L(D) −→ L(D′) given by ψ(f) = fg. The map ψ is injective

because fg = 0 implies f = 0 as g 6= 0.
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To prove ψ is surjective consider f ′ ∈ L(D′).

(f ′/g) +D = (f ′)− (g) +D = (f ′) +D′ ≥ 0.

Hence ψ is an isomorphism.
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Chapter 8

Invertible sheaves and Divisors

Let X be a ringed space. Given a cartier divisor D on X we define invertible sheaf

L(D) associated with the divisor and show the 1-1 correspondence between the cartier

divisors and the invertible sheaves on X.

Definition 8.1. An invertible sheaf on X is a locally free OX-module of rank 1.

We recall that tensor product of two OX-modules L andM be the sheaf associated

to the presheaf U 7→ L(U)⊗OX(U)
M(U).

Proposition 8.2. If L and M are invertible sheaves on a ringed space X, then,

L⊗M is also an invertible sheaf. Also, if L is any invertible sheaf on X, then there

exists an invertible sheaf L−1 on X such that L ⊗ L−1 ∼= OX .

Proof Since L andM are both locally free OX-module of rank 1 and OX ⊗OX
∼=

OX , we have L ⊗M is an invertible sheaf.

Let L be any invertible sheaf, then L ⊗Hom(L,OX) ∼= Hom(L,L) = OX .

Definition 8.3 (Picard Group). The group of isomorphism classes of invertible sheaves

under the ⊗ operation is defined to be the Picard group of X, PicX.

Let D be a Cartier divisor on X represented by {Ui, fi}. Let L(D) be subsheaf of

sheaf of total quotient rings K such that L(D) is the sub-OX-module of K generated

by f−1i on Ui. Then L(D) is the sheaf associated with the divisor D.

Proposition 8.4. Let D be a cartier divisor and L(D) be the associated invertible

sheaf. Then,
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(i) the map D −→ L(D) gives the 1-1 correspondence between Cartier divisors on

X and invertible subsheaves of K.

(ii) L(D1 −D2) ∼= L(D1)⊗ L(D2)
−1.

(iii) D1 ∼ D2 if and only if L(D1) ∼= L(D2).

Proof

(i) Since fi ∈ Γ(Ui,K∗), the map OUi
7→ L(D)|Ui

given by 1 7→ f−1i is an isomor-

phism and hence, L(D) is an invertible sheaf. Given L(D) and its embedding

in K one can find the divisor D by taking fi to be inverse of local generator of

L(D) on Ui.

(ii) Let D1 and D2 be locally defined by fi and gi respectively. The invertible sheaf

L(D1−D2) is locally generated by f−1i gi. Hence L(D1−D2) = L(D1).L(D2)
−1 ∼=

L(D1)⊗ L(D2)
−1.

(iii) Using (2), if D1 − D2 is principal divisor, then L(D1) ∼= L(D2). Hence it is

sufficient to prove that D = D1 − D2 is principal iff L(D) ∼= OX . Let D be a

principal divisor generated by f ∈ Γ(X,K∗). Then L(D) is globally generated

by f−1 and the map 1 7→ f−1 gives the isomorphism OX
∼= L(D). Conversely,

if OX
∼= L(D) inverse of image of 1 will define D as the principal divisor.

Let D be an effective cartier divisor on X represented by {(Ui, fi)}. Then L(−D)

is subsheaf of OX locally generated by fi.

So L(−D) is the ideal sheaf of associated locally principal closed subscheme. This

gives an exact sequence

0 −→ L(−D) −→ OX −→ OD −→ 0.

Tensoring the above exact sequence with OC we get

0 −→ L(−D)⊗OC −→ OC −→ OC∩D −→ 0.

Thus L(D)⊗OC gives the invertible sheaf on C corresponding to the divisor C∩D.
Hence degC(L(D)⊗OC) gives the transversal intersection number C·D.
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8.1 Differentials

Let R be ring containing field k with quotient field K and M be an R-module.

Definition 8.5 (Derivation). A k-linear map D : R −→M is a derivation over k if

D(xy) = xD(y) + yD(x).

Let R and K are as defined above and M is a vector space over K and D be any

derivation D : R −→M . Consider z ∈ K, we can write z = x/y for x, y ∈ R. We can

extend the derivation D to D̄ : K −→ M as D(x) = yD̄(z) + zD(y) since, x = yz.

We have D̄(z) = y−1(D(x)− zD(y)).

Let F be a free R-module with R as basis (basis elements denoted as [x]) and N

generated by

(i) {[x+ y]− [x]− [y] | x, y ∈ R}

(ii) {[λx]− λ[x] | x ∈ R, λ ∈ k}

(iii) {[xy]− x[y]− y[x] | x, y ∈ R}.

be submodule of F.

Let Ωk(R) = F/N be the quotient module. Let dx be the image of [x] in F/N and

let map d : R −→ Ωk(R) take x to dx.

Following lemma will show that any derivation D : R −→M factors through d. Ωk(R)

is an R-module called module of differentials and d is a derivation.

Lemma 8.6. For any R-module M , and any derivation D : R −→ M , there is a

unique homomorphism of R-module φ : Ωk(R) −→M such that D(x) = φ(dx) for all

x ∈ R.

Proof We define φ′ : F −→M as

φ′(Σxi[yi]) = ΣxiD(yi).

Clearly, φ′(N) = 0. So, we have induced map

φ : Ωk(R) −→M

such that D(x) = φ(dx).

33



Ωk(R) is called module of differentials of R over k. More generally we define

module of differentials for B, an A-algebra, where A is a commutative ring (with

identity)as follows.

Definition 8.7 (Module of Relative Differentials). Module of relative differential

forms of B over A is B-module ΩB/A together with an A-derivation d : B −→ ΩB/A

and satisfying the following property : for any B module M, and for any A-derivation

D : B −→ M there exists a unique B-module homomorphism φ : ΩB/A −→ M such

that D = φ ◦ d.

Proposition 8.8. Let B be an A-algebra. Let f : B ⊗A B −→ B be the diagonal

homomorphism defined by f(b ⊗ b′) = bb′. Let I be the ker(f). Then, I/I2 inherits

the structure of B-module. Let d : B −→ I/I2 be a map given by db = 1⊗ b− b⊗ 1.

Then, (I/I2, d) is module of differentials for B over A.

Proof cf. Matsumura [Ma] [9, Section 25]

Theorem 8.9 (First Exact Sequence). Let A −→ B −→ C be rings and their

homomorphisms. Then there is an exact sequence of C-modules

ΩB/A ⊗ C −→ ΩC/A −→ ΩC/B −→ 0.

Proof cf. Matsumura [Ma] [9, Theorem 25.1]

Let f : X −→ Y be morphism of schemes. Let ∆ : X −→ X ×Y X be diagonal

morphism i.e., ∆ when composed with projection maps p1, p2 : X ×Y X −→ X gives

the identity map X 7→ X.

Definition 8.10. Let I be the sheaf of ideals of ∆(X). The sheaf of relative differ-

entials of X over Y is defined to be the sheaf ΩX/Y = ∆∗(I/I2) on X.

Now, we try to observe that the definition of sheaf of differentials is compatible

with the definition of module of differential as defined above (at least in affine case).

Let U = SpecA be an open affine subset of Y and V = SpecB be an open affine

subset of X such that f(V ) ⊆ U . Then V ×U V is an open affine subset of X ×Y X

isomorphic to Spec(B ⊗A B). ∆(X) ∩ (V ×U V ) is the closed subscheme defined by
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the kernel of the diagonal homomorphism B ⊗A B → B. Therefore I/I2 is the sheaf

associated to the module I/I2. ΩV/U ' (ΩB/A)∼.

Further observe that we can cover X and Y with open affine subsets and glue the

corresponding sheaves (ΩB/A)∼. The derivations d : B → ΩB/A glue together to give

a map d : OX → ΩX/Y of sheaves of Abelian groups on X, which is a derivation of

the local rings at each point.

Theorem 8.11. Let X
f−→ Y

g−→ Z be morphisms of schemes. Then there is an exact

sequence of sheaves on X,

f ∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

Proof cf. Hartshorne [Ha] [II, Proposition 8.11]

Definition 8.12 (Canonical Sheaf). The canonical sheaf of X is defined as ωX =∧n ΩX/k, the n-th exterior power of the sheaf of differentials, where n is dimension of

X. It is an invertible sheaf on X.

Theorem 8.13. Let Y be a nonsingular variety of codimension 1 in a nonsingular

variety X. Let L be the associated invertible sheaf on X. Then ωY
∼= ωX ⊗ L⊗OY .

Proof cf. Hartshorne [Ha] [II,Proposition 8.20]
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Chapter 9

Cohomology

This chapter is mainly used as a tool to prove Riemann-Roch theorem. Many theorems

are stated without proof which we will refer to in the later sections.

Definition 9.1. A complex A· in an Abelian category A is a collection of objects Ai,

where i is an integer and morphisms di : Ai → Ai+1 such that the composition of any

two consecutive morphisms is 0 (for all i).

Definition 9.2. The i-th cohomology object hi(A·) of the complex A· is ker(di)/im(di−1).

Let X be a topological space and F be a sheaf of abelian groups on X. Let

A = {Ai}i∈I be an open cover of X where the indexing set is well ordered.

A complex C ·(A,F) is defined as follows. For each p ≥ 0, let

Cp(A,F) =
∏

i0<...<ip

F(Ui0,...,ip).

Thus, an element α ∈ Cp(A,F) is determined by giving an element

αi0,...,ip ∈ F(Ui0,...,ip),

for each (p+ 1)-tuple i0 < . . . < ip of elements of I.

The coboundary map d : Cp → Cp+1 is given by

(dα)i0,...,ip+1 =

p+1∑
k=0

(−1)kαi0,...,̂ik,...,ip+1|Ui0,...,ip+1

where the notation îk means omit ik.
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Remark 9.3 The composition map d2 = 0. Therefore, we have a chain complex of

abelian groups.

Definition 9.4. The p-th Čech cohomology group of F with respect to the covering

A, is defined as

Ȟp(A,F) = hp(C ·(A,F)).

In the following example we will compute the cohomology groups Ȟn(P1,O).

Example 9.5 Let A be the covering of X = P1 by two open sets U = A1 with affine

coordinate x and V = A1 with affine coordinate y = 1/x. Then cochain groups are

C0 = O(U)×O(V ) = (f, g) such that f ∈ k[x] and g = k[y]

C1 = O(U ∩ V ) = k[x, 1/x] and Cn = ∅ for n ≥ 2.

Let d be the coboundary map. Then d(f, g) = f − g. So ker d is set of points (a, a)

where a ∈ k. Therefore Ȟ0(P1,O) = k.

Since im d = k[x, 1/x], we have Ȟ1(P1,O) = 0.

Definition 9.6 (Flasque sheaf). Let X be a topological space. A sheaf F is flasque

on X if for every inclusion V ⊆ U of open sets we have F(U) 7→ F(V ) is surjective.

Example 9.7 (Skyscraper sheaf) Let X be a topological space and A be an abelian

group. Let P ∈ X. We define skyscraper sheaf iP (A) as iP (A)(U) = A if P ∈ U , else

0.

Proposition 9.8. If F is a flasque sheaf on a topological space X, then H i(X,F) = 0

for all i ≥ 1.

Proof cf. Hartshorne [Ha] [III, Proposition 2.5]

Proposition 9.9. Let A be an open covering of X. Let F be a flasque sheaf of abelian

groups on X. Then for all p > 0 we have Ȟp(A,F) = 0.
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Proof cf. Hartshorne [Ha] [III, Proposition 4.3]

Theorem 9.10 (Serre Duality). Let X be a smooth projective space of dimension n

over k. Then for any locally free sheaf F on X we have

H i(X,F) ∼= Hn−i(X,ωX ⊗F∼)

for all 0 ≤ i ≤ n.

Proof cf. Hartshorne [Ha] [III, Corollary 7.7]
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Chapter 10

Riemann-Roch Theorem

In this chapter we will prove the Riemann-Roch theorem for curves. This theorem

helps compute the dimension of space of meromorphic functions having zeroes and

poles of certain order at given points. This is given by l(D), where D is the divisor

with the support as points of zeros and poles and the coefficients as their respective

orders. A curve or surface will mean nonsingular, projective curve or surface through

the rest of thesis unless stated otherwise.

Definition 10.1 (Geometric Genus). For X both projective and nonsingular curve,

we define geometric genus of X to be pg = dimkH
1(X,OX).

In this section we will refer to geometric genus as genus and denote it by g.

Theorem 10.2 (Riemann-Roch Theorem). Let D be a divisor on curve X of genus

g. Then,

l(D)− l(KX −D) = degD − g + 1

where l(D) = dimkH
0(X,L(D)) and KX is the canonical divisor.

Proof The divisor KX − D corresponds to (ωX ⊗ L(D)̌). Since by Serre Duality

theorem H0(X,ωX ⊗ L(D)̌) is dual to H1(X,L(D), their dimensions are same. We

prove the theorem by induction on divisor.

Taking D = 0 we have

dimkH
0(X,L(D))− dimkH

1(X,L(D)) = dimkH
0(X,OX)− dimkH

1(X,OX)

= 1− g
= 0 + 1− g
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= degD + 1− g

Now, let D be any non-zero divisor and P be any point on curve X. If the theorem

is true for divisor D, we prove that it is true for divisor D + P .

0 −→ L(D) −→ L(D + P ) −→ k(P ) −→ 0

is an exact sequence where k(P ) is the skyscraper sheaf at P . (In 9.7 we have observed

that skyscraper sheaf is a flasque sheaf and hence from 9.8 we have H1(X, k(P )) = 0).

This induces a long exact sequence

0→ H0(X,L(D))→ H0(X,L(D+P ))→ k → H1(X,L(D)) −→ H1(X,L(D+P ))→ 0.

Hence we have

dimH0(X,L(D))−dimH0(X,L(D+P ))+1−dimH1(X,L(D))+dimH1(X,L(D+P )) = 0

dimH0(X,L(D))− dimH1(X,L(D)) + 1

= dimH0(X,L(D + P )− dimH1(X,L(D + P ))

degD + 1− g + 1 = dimH0(X,L(D + P )− dimH1(X,L(D + P ))

Since deg(D + P ) = degD + 1, we have the desired result for divisor D + P as

dimH0(X,L(D + P ))− dimH1(X,L(D + P )) = deg(D + P ) + 1− g.

Following are few corollaries of the Riemann-Roch theorem.

Corollary 10.3. l(div(ωX)) = g.

Proof Let D = 0, we have

l(0)− l(KX) = 0− g + 1

which gives l(KX) = g.

Corollary 10.4. On a curve X of genus g, canonical divisor KX has degree 2g-2.
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Proof Let D = KX , we get

l(KX)− l(0) = degKX + 1− g.

Since l(0) = 1 and l(KX) = g, we have the desired result.

Corollary 10.5. If D is a divisor such that degD > 2g−2 then l(D) = degD−g+1.

Proof Let D be any divisor. If l(D) 6= 0 then |D| is nonempty. Therefore D is

linearly equivalent to some effective divisor, say D′. Since degD = degD′, we have

degD ≥ 0.

Now, if degD > 2g − 2, we have deg(KX − D) < 0. Therefore, l(KX − D) = 0.

Hence l(D) = degD − g + 1.

Corollary 10.6. Let D′ = KX −D. Then l(D)− 1

2
deg(D) = l(D′)− 1

2
deg(D′).

This is a duality result without reference to the genus of the curve.

Proof By Riemann-Roch theorem we have

l(D)− l(KX −D) = degD − g + 1.

Putting D = KX −D we get

l(KX −D)− l(D) = degKX −D − g + 1.

Taking difference of the two equations we get

l(D)− 1

2
deg(D) = l(KX −D)− 1

2
deg(KX −D).

Example 10.7 Let X be a curve and P ∈ X be a point. We can use Riemann-

Roch theorem to see the existence of a function f ∈ K(X) which is regular everywhere

except at finitely many points. It would be enough to observe this for a single point.

Consider divisor nP where n� 0 we have l(KX−nP ) = 0 and l(nP ) = n+1−g > 0

for n� 0.

Corollary 10.8 (Riemann Inequality). For divisor D, l(D) ≥ degD + 1− g
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Proof l(KX −D) ≥ 0.

Every divisor D on curve X defines a map ψD : X −→ Pn given by (f0 : f1 : . . . : fn)

where n = l(D)− 1 and fi generates vector space L(D).

Corollary 10.9. The map ψD is an embedding if degD ≥ 2g + 1.

Proof Let D be a divisor of degD ≥ 2g + 1 and P and Q be points on X. So

we have l(KX − D) = l(KX − D + P + Q) = 0. Now by Riemann-Roch theorem

l(D − P −Q) = g and l(D) = g + 2. Hence we have dim |D − P −Q| = dim |D| − 2.

This implies that there exists a divisor D′ ∼ D−P such that Q /∈ SuppD′. Therefore

ψ : X −→ Pn is injective.

Since X is smooth dimTP (X) = 1. Let D1 ∼ D. If P has multiplicity 1 in D1 then

dimTP (D1) = 0. Now, since dim |D − 2P | = dim |D| − 2, there exists a divisor D2

equivalent to (D − P ) such that P /∈ SuppD2. Let D1 ∼ D2 + P. Then ψ : X −→ Pn

maps the tangent spaces isomorphically.

Proposition 10.10. A smooth proper algebraic curve X is isomorphic to P1 if and

only if genus g of X is 0.

Proof We have seen in 9.5 that Ȟ1(P1,O) = 0. So genus of P1 is 0. Now let X be a

smooth proper algebraic curve with genus g = 0. Let P and Q be two distinct points

on X. Consider the divisor D = P −Q. Since deg(KX −D) = 2g − 2− 0 = −2, we

have l(KX −D) = 0. Hence l(D) = degD+ 1− g = 1. Since degD = 0, we get D ∼ 0

which implies that P ∼ Q. which implies we have a rational function f ∈ K(X) such

that (f) = P − Q. Consider the morphism ψ : X −→ P1 determined by f such that

(f) = ψ∗({0} − {∞}). Now, since ψ∗(0) = P , ψ is a morphism of degree 1. Since X

is a nonsingular proper curve, X is isomorphic to P1.

Theorem 10.11 (Luroth’s Theorem). Any subfield F 6= k of k(x) is also of pure

transcendence degree 1 .

Proof Note that char (k) = 0, hence all field extensions are separable. Since F is

subfield of k(x), transcendence degree of F is either 0 or 1. Since k is algebraically

closed and F 6= k, transcendence degree of F is 1. Now, since F ⊂ k(x) and both are

transcendence degree 1, k(x) is algebraic over F.

Let F be function field of some curve X. Since k(x) is function field of P1 we have a

44



morphism f : P1 −→ X. From 10.10 we have X is isomorphic to P1 and hence it has

pure transcendence degree 1.

Corollary 10.12. Any map from P1 to a curve C of genus ≥ 1 is constant.

Example 10.13 (Elliptic Curves) We observe that for curves of genus one, also

called elliptic curves, l(KX) = 1 and degKX = 0. Hence for elliptic curves KX ∼ 0.

Let E be a smooth projective curve of genus g = 1. Let P be any closed point on

E. Let D = 3P be a divisor. By Riemann-Roch theorem we have l(D) = 3. Since

degD = 2g + 1, the map defined by the divisor ψD : E −→ P2 gives an embedding of

degree 3.

Example 10.14 (Group Structure on Elliptic Curves) Let E be an elliptic curve

and P0 be a point on E. Let Pic0E denote the subgroup of PicX given by divisors of

degree 0. We will show that the map P 7→ L(P −P0) is a one to one correspondence.

To show this it is enough to prove that for a given divisor D of degree 0 there exists

a unique point P ∈ E such that D ∼ P − P0.

By Riemann-Roch theorem we have

l(D + P0)− l(KX −D − P0) = deg(D + P0) + 1− g.

Since degKX = 0 and deg(D+P0) = 1, l(KX−D−P0) = 0 and hence l(D+P0) = 1.

and consequently dim(D + P0) = 0. Therefore there is a unique effective divisor that

is linearly equivalent to D+P0. Since deg(D+P0) = 1, D+P0 ∼ P which is unique.

Theorem 10.15 (Adjunction Formula). If C is a nonsingular curve of genus g on

a nonsingular projective surface S, and if KS is the canonical divisor on S, then

2g − 2 = C.(C +K).

Proof From 8.13 we have ωC
∼= ωS ⊗ L(C)⊗OC . The degree of div(ωC) is 2g − 2

by Riemann-Roch theorem. Also,

degC(ωS ⊗ L(C)⊗OC) = (C +KS).C
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Corollary 10.16. g(C̃) = g(C)− 1

2
r(r − 1)

Proof From 10.15 we have 2g− 2 = C.(C+K), where KX is the canonical divisor.

Therefore,

2g(C̃)− 2 = C̃.(C̃ +KX̃)

= (π∗(C)− rE)(π∗(C)− rE + π∗(KX) + E)

= 2g(C)− 2− r(r − 1).

The following theorem gives the genus of smooth plane curves.

Theorem 10.17 (Plucker’s Formula). The genus of a nonsingular plane curve of

degree d is given by

g =
(d− 1)(d− 2)

2

Proof Let F (x0 : x1 : x2) = 0 be the defining equation of the curve X such that

x0 = 0 intersect X at d distinct points. On an open set where x0 6= 0 let x = x1/x0,

y = x2/x0 and f(x, y) = 1
xd
0
F (x0 : x1 : x2). Since the curve is nonsingular, we have

fx(a, b) 6= 0 or fy(a, b) 6= 0 for point (1 : a : b) on the curve where fx and fy are partial

derivatives of f with respect to x and y respectively. Also, fx(a, b)dx+ fy(a, b)dy = 0

dx

fy(a, b)
= − dy

fx(a, b)

.

Since, fx(a, b) 6= 0 or fy(a, b) 6= 0, above differential form gives canonical divisor

KX regular on {x0 6= 0} ∩ X. Near the points of intersections of X with x0 we can

consider the affine neighbourhood of the point by letting u = x0/x1, v = x2/x1 and

g(u, v) = 1
xd
1
F (x0 : x1 : x2) if the point doesn’t lie on x1 = 0.

u = 1/x and v = y/x

f(x, y) =
1

xd0
F (x0 : x1 : x2) =

xd1
xd0

1

xd1
F (x0 : x1 : x2)

f(x, y) =
1

ud
g(u, v)

fy(x, y) =
1

ud
∂g(u, v)

∂v

∂v

∂y
=

1

ud
gv(u, v)

1

x
=

1

ud−1
gv(u, v)

ω =
dx

fy(x, y)
=

d( 1
u
)

1
ud−1 gv(u, v)

= − u
d−3du

gv(u, v)
=

ud−3dv

gu(u, v)
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Clearly KX has zero of order (d−3) at every point of intersection of X with x0 = 0

which are of the form (0 : 1 : c). Similarly, we can prove this to be true for points of

the form (0 : e : 1). So we have

KX = (d− 3)ΣiPi

where Pi are the points of intersection of X and x0 = 0.

degKX = d(d− 3)

Since degKX = 2g − 2 we get

2g − 2 = d(d− 3)

and therefore

g =
(d− 1)(d− 2)

2

.

Example 10.18 The curve y2z − x3 + xz2 = 0 is a nonsingular planar curve of

degree d = 3. From the above proposition we get genus of the genus of the curve is

g = (3− 1)(3− 2)/2 = 1.

Example 10.19 (Conics) Every conic in P2 is isomorphic to P1 if it is smooth, hence

has genus zero, or else is either a union of two lines intersecting transversally or it is

a double line. This is easily seen by writing the homogeneous degree two equation for

a conic in the projective plane.

Example 10.20 (Fermat curves) The Fermat curves defined by the affine equation

xn + yn = 1, n ≥ 2, are non-singular curves: the derivatives are nxn−1 = 0 and

nyn−1 = 0 which have no common solution with the curve. Homogenising, we get

xn + yn = zn in the projective plane where it is again smooth at the points at infinity

by the same argument: in the yz plane the equation is 1 + yn = zn etc. For n = 1, 2

the Fermat curve is isomorphic to P1 and for n ≥ 3 the genus of Fermat curve is
(n−1)(n−2)

2
.
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Example 10.21 (Not all curves are planar) It is clear from the degree-genus formula

that not all positive integers appear as the genus of a non-singular plane curve since

not all positive integers can be written in the form (d−1)(d−2)
2

. In fact countably many

integers are not of this form. As we show later that all curves are embeddable in

space, this implies that countably many different genus curves are space curves.
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Chapter 11

Riemann-Hurwitz

Definition 11.1. The degree of a finite morphism f : X −→ Y is given by the degree

of extension of their function fields i.e. [K(X) : K(Y )].

Definition 11.2 (Ramification index). Let P be any point of X and Q = f(P ). If

t ∈ OX is a local parameter at Q, then we define ramification index eP = vP (f ](t))

where vP is the valuaton of OP and f ] is the natural map from OQ 7→ OP .

Definition 11.3. If eP > 1 we say that f is ramified at P and Q is the branch point.

If eP = 1 then f is said to be unramified at P.

Proposition 11.4. Let f : X −→ Y be a finite morphism of curves. Then, following

is an exact sequence of sheaves on X

0 −→ f ∗ΩY −→ ΩX −→ ΩX/Y −→ 0.

Proof From 8.11 we have

f ∗ΩY −→ ΩX −→ ΩX/Y −→ 0.

To prove the proposition we only need to prove f ∗ΩY −→ ΩX is injective. Since f

is separable ΩX/Y = 0 on generic point and hence,f ∗ΩY −→ ΩX −→ 0 is exact on

generic point. Therefore f ∗ΩY −→ ΩX is surjective. Since f ∗ΩY and ΩX are both

invertible sheaves on X the map is injective.
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Definition 11.5 (Ramification Divisor). Let f : X −→ Y be a finite separable

morphism of curves. Ramification divisor of f is defined to be

R = ΣP∈X length(ΩX/Y )PP.

Theorem 11.6 (Hurwitz). Let f : X −→ Y be a finite separable morphism of curves

and n be the degree of f . Then,

2g(X)− 2 = n(2g(Y )− 2) + degR

where R is the ramification divisor.

Proof Let P ∈ X and f(P ) = Q. Let t be local parameter at Q and dt a generator

of ΩY,Q. (ΩX/Y )P = 0 iff f ∗dt is generator for ΩX,P or in other words t is local

parameter OP , i.e., f is unramified at P . Therefore, OR
∼= ΩX/Y . On tensoring the

exact sequence in previous proposition we get

0 −→ f ∗ΩY ⊗ Ω−1X −→ OX −→ OR −→ 0

Ideal sheaf of R is isomorphic to L(−R). Hence

f ∗ΩY ⊗ Ω−1X
∼= L(−R).

The corresponding divisors give

f ∗KY −KX = −R

2g(X)− 2 = n.(2g(Y )− 2) + degR.

Corollary 11.7. P1 has no everywhere unramified cover of degree n > 1.

Proof Let f : X −→ P1 be unramified map of degree n. Then

2g(X)− 2 = (2g(P1)− 2)n+ degR
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Since degR = 0 and g(P1) = 0, we get 2g(X)−2 = −2n which is possible iff g(X) = 0

and n = 1. Since g(X) = 0, X ∼= P1. Therefore the only unramified map to P1 is the

identity map.

Corollary 11.8. If f : X −→ Y be a finite morphism of curves then g(X) ≥ g(Y ).

Proof If g(Y ) = 0 there is nothing to prove. We can rewrite Riemann-Hurwitz

formula as

g(X) = g(Y ) + (n− 1)(g(Y )− 1) +
1

2
degR

. Since n− 1 ≥ 0, g(Y )− 1 ≥ 0 and degR ≥ 0, we have g(X) ≥ g(Y ).

Example 11.9 (Hyperelliptic curves) The plane curve C given by the affine equation

y2 = f(x) where f is a reduced polynomial, is called a hyperelliptic curve. Let

deg(f) = n > 4, then one checks that the point at infinity is smooth if n is odd and

singular if n is even. In the even case let n = 2g + 2 and in the odd case n = 2g + 1.

The projection of the curve on the x-axis gives a 2 : 1 rational and ramified cover of

P1 which extends to a 2 : 1 morphism to the smooth model of the curve. In the odd

n case there are n+ 1 points of ramification since the point at infinity is smooth and

ramified, while in the even case there is a simple node at infinity which resolves to give

two points in the normalisation of the curve hence both these points are unramified.

We calculate by Riemann-Hurwitz in the odd case: 2gC−2 = −4+n+1 which implies

n = 2gC + 1 or in other words gC = g = (n− 1)/2. The case of even n is similar and

gives gC = g.
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Chapter 12

Embedding of Curves

Let X be a curve in Pn. This chapter aims at showing that any curve can be embedded

in P3.

Definition 12.1 (Secant Line). A line in Pn joining two distinct points of X is said

to be a secant line.

Definition 12.2 (Secant Variety). The union of all secant lines of X is secant variety

of X. We will denote it by SecX.

Definition 12.3 (Tangent Variety). The tangent variety of X is defined to be the

union of all tangent lines of X.

Let ϕ : X −→ Pn be a morphism. We state without proof the local criteria for ϕ

to be a closed immersion.

Theorem 12.4. Let ϕ : X −→ Pn be a morphism corresponding to invertible sheaf

L and s0, s1, · · · , sn ∈ Γ(X,L). Let V ∈ Γ(X,L) be the subspace. Then ϕ is a closed

immersion iff

(i) elements of V separates points, i.e., for any two distinct points P, Q on X we

have s ∈ V such that s ∈ mPLP but s /∈ mQLQ

(ii) elements of V separates tangents, i.e., for every P ∈ X set {s ∈ V |sP ∈ mPLP}
spans the vector space mPLP/m

2
PLP
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Proof cf. Hartshorne [Ha] [II, Proposition 7.3]

We have seen there is a 1-1 correspondence between invertible sheaves and corre-

sponding linear system of divisors. Hence the following remark.

Remark 12.5 Let ϕ : X −→ Pn be a morphism corresponding to the linear system

L(D). Then ϕ is a closed immersion if and only if

(i) L(D) separates points, i.e., for distinct closed points P,Q ∈ X, there exists

D ∈ L(D) such that P ∈ Supp(D) and Q /∈ Supp(D)

(ii) L(D) separates tangents, i.e., for P ∈ X and t ∈ TP (X) = mP/m
2
P we have

D ∈ L(D) such that P ∈ Supp(D) but t /∈ TP (D).

Proposition 12.6. Let X be a curve in Pn and let O be a point not on X. Let

ϕ : X −→ Pn−1 be the morphism determined by projection from O. Then ϕ is a closed

immersion if and only if

(i) O is not on any secant line of X, and

(ii) O is not on any tangent line of X.

Proof The morphism ϕ corresponds to the linear system given by the hyperplanes

H of Pn passing through O. From the above remark ϕ is a closed immersion if and

only if this linear system separates points and separates tangent vectors on X. Let

P and Q be two distinct points on X, then ϕ separates them if and only if there is

a hyperplane H containing O and P but not Q. This is possible if and only if O is

not on the line PQ. Also, ϕ separates tangent vectors at P if and only if there is a

hyperplane H containing O and P , and meeting X at P with multiplicity 1. This is

possible if and only if O is not on the tangent line at P .

Theorem 12.7. Any curve can be embedded in P3.

Proof The variety SecX is the image of X × X \ ∆ × P1 7→ Pn. The image is a

locally closed subset of dimension ≤ 2 dimX + 1 = 3. Similarly, TanX is locally an

image of X × P1 7→ Pn of dim ≤ 2. For n ≥ 4 we have SecX ∪TanX 6= Pn. So there

exists a point O which does not lie either on a secant line or a tangent line of X and

hence the image of the curve under the projection from O determines the embedding

of X in the hyperplane Pn−1 of Pn. By induction on n we can embed X in P3.
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