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Abstract

Point Contact spectroscopy(PCS) is a well established and valued technique while study-

ing electron interaction with various kinds of elementary excitations in the lattice. If

the junction constriction diameter is made sufficiently small such that the transport falls

under ballistic limit, electron can be given high energies(large bias across the junction)

without significant heating effects (absence of scattering). These electrons at particular

characteristic energies, in turn can excite the fundamental modes in the lattice structure,

thus forming the basis of energy resolved spectroscopy. Consequently PCS acts as a

local probe for the Fermi Surface in metals. PCS between metals and Superconductors

at appropriate transport regimes gives us valuable information regarding the energy gap

structure of the Superconductor. A wider scope of PCS theory allows us to determine the

degree of transport spin polarization in a ferromagnet in a Superconductor-Ferromagnet

point contact spectroscopy. Using a well known formalism by Blonder-Tinkham-Klapwijk

for modelling Normal metal-Superconductor junctions, I have analysed the following ex-

periments

(1) Calculating the degree of transport spin polarization in the itinerant ferromagnet

CuFeSb.

(2) PCS in Pb-Ag and Pb-Co point contacts, where the differential conductance spectra

suggest possibility of spin triplet pairing in mesoscopic Pb-point contacts.

vii
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Chapter 1

Introduction

1.1 Superconductivity

Superconductivity was discovered accidentally in 1911 by Heike Kamerlingh Onnes, one

day he noticed that the resistivity of mercury dropped abruptly at 4.2K to a value below

the resolution of his instruments. Superconductors are substances whose resistivity falls

to zero below a certain temperature TC , called the critical temperature.

Figure 1.1: Heike Kamerlingh Onnes: Discovery of superconductivity of Mercury-

1911(source:Google images)

In 1933 Meissner and Ochsenfeld discovered another property of superconductors that if
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a superconductor kept in a magnetic field, is cooled below the transition(critical) temper-

ature, the lines of the induction field B are pushed out,which means the magnetic field

vanishes inside the superconductor (Meissner effect). It was shown by London(1935) that

B reduces to zero inside the superconductor over a characteristic penetration depth λ

nearly equal to 10−5 cm.

Figure 1.2: Meissner effect-Magnetic lines are pushed out of a superconductor(Source:

Google images)

It has been observed that even at temperatures below the critical temperature, the ap-

plication of a minimum magnetic field HC(T ) [5] destroys the superconductivity.The

superconductor reverts back to the normal resistance state. Critical temperature and

critical magnetic field are related as follows:

HC(T ) = HC(0)
(

1− T

TC

)

2



Figure 1.3: H-T phase diagram of a BCS Superconductor

Superconductors are classified into two classes Type I and Type II [1] based on their

Critical Magnetic fields HC . In Type I Superconductors, on applying an external field

greater than the critical magnetic field HC , the superconductor reverts back to the normal

resistance state(Figure: 1.4 (a)) and magnetic field lines pass through the substance(Hi

becomes equal to Ha).

Hi = Ha + µ0M

Where Hiis the field inside the superconductor, Ha is the applied magnetic field and M

is the magnetization of the substance(due to Meissner effect M = −1).

Figure 1.4: Critical Magnetic fields: (a)Type I superconductors, (b)Type II supercon-

ductors, (c)Vortices of superconducting current j at HC2 > H > HC1

In Type II Superconductors there are two transitions with increasing magnetic field, at
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HC1, external magnetic field starts penetrating inside the superconductor (Figure: 1.4

(b)), but the entire substance doesn’t revert back to the normal state. Vortices(loops of

super-current)(Figure: 1.4 (c)) are created surrounding the penetrated field region(normal

region). As we increase the magnetic field , the number of vortices increase, letting in

more magnetic field. At HC2 the substance completely changes back to normal state

letting in all the external magnetic field.

1.1.1 Microscopic theory of Superconductivity

The first theory regarding the inherent origin of superconductivity was given by Bardeen-

Cooper-Schrieffer(BCS Theory). According to BCS theory, the interaction between elec-

trons and phonons causes deformation of the crystal lattice such that there exists an

attractive potential between the two electrons. An electron interacts with the lattice in

the form of coloumbic attraction from the metallic ions. Another electron in the vicinity

of the deformed lattice interacts with the lattice deformation.Therefore giving rise to an

electron-electron interaction. They are said to exist in a coupled state called Cooper

Pair. Theses electrons have equal and opposite momentum. At Temperature T < TC

all electron undergo Bose Einstein Condensation. At T = 0K in the ground state all

electrons are paired and the superconducting ground state is represented as :

|ψ〉 = [u~k + v~kc
∗
~k↑c
∗
−~k↓]|0〉

where |0〉 is the null state, c∗~k↑(c
∗
−~k↓) represents the electron operators that gives rise an

electron with momenta ~k( ~−k) and spin ↑ (↓). While, v2
~k

is the probability that both

electrons exist in the Cooper Pair state and u2
~k

= 1− v2
~k

is the probability of vacant pair.

At T = 0K, the minimum amount of energy required to break the Cooper pair is called

the energy gap. Order parameter defines the energy gap structure. When energy gap

∆ is isotropic with k ,i.e it is symmetric in momentum space, it is said to have S-wave

symmetry of the order parameter. The name derives its reason from the fact that net

spin in the Cooper pair is zero which gives it a S = 0 singlet state like nature.
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Unconventional Superconductors: Attractive potential between electrons can arise

as a result of other interactions like magnetic interactions. For example antiferromagnetic

fluctuations in high TC cuprates [12] gives rise to a superconducting gap function in k-

space that has d wave symmetry, while ferromagnetic fluctuations in Sr2RuO4 [11] gives

rise to spin triplet pairing(p wave symmetry) of electrons.

Figure 1.5: Momentum space representation of s-wave, p-wave and d-wave superconduct-

ing order parameter. Source: Google images

1.2 Point Contact Spectroscopy

A point contact is made by connecting two conductors [9] through a narrow constriction.

If momentum and energy of the electron is conserved while passing through the junction,

that is in the absence of scattering, it shows several interesting properties [17].
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Figure 1.6: Schematic representation of a Point Contact and electron scattering while

crossing the junction,’a’: Cross section diameter and ’l’: mean free path of the electron

1.2.1 Electron transport regimes and respective Length Scales

The conductance of a bulk conductor is given by Ohm’s law:

G = σ
A

l

where A and l are the area of cross-section and length of the conductor, respectively. The

conductivity of the sample is determined by intrinsic material parameters, given by the

Drude conductivity:

σ =
ne2

2m
τm

where n represents charge carrier concentration, τm is the characteristic momentum relax-

ation time of the charge carriers. However, Drude theory has limitations at microscopic

length scales smaller than the mean free length of the electron given by l = vF τm, where

vF is the Fermi velocity. This length gives the distance, that the electron traverses

between two successive collisions(scattering events).

Mean free length lm is further classified as elastic mean free length lelastic and inelastic

mean free length linelastic. lelastic corresponds to scattering cases such that energy and

momentum are both preserved as in elastic collision [19]. It allows both energy and mo-

mentum resolved spectroscopy. linelastic corresponds to inelastic scattering where neither

energy nor momentum is conserved.

Contacts between conductors are classified based on their contact diameter ’a’. The

smallest constriction diameter is limited by De-Broglie wavelength of electron [31]. A
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nano-constriction [18] is in the ballistic regime if a < lelastic, i. e. essentially no

scattering occurs inside the conductor. On the contrary, for conductors in the ther-

mal regime (a > linelastic) due to scattering energy resolved spectroscopy is difficult.

Constriction with diameter in the range linelastic > a > lelastic are defined to be in the

intermediate or Diffusive regime In such a regime energy is conserved.

Resistance in the ballistic regime is given by Sharvin’s Formula (Sharvin 1965):

GS =
2e2

h

(
kFa

2

)2

where, ′a′ is the junction diameter and ′k′F represents the Fermi wave vector. Resistance

of constrictions in the thermal regime is same as that calculated in the bulk material.

For junction diameters in the diffusive regime, approximation for resistance is given the

Wexler’s equation [32]

RW = Γ
ρ(T )

2a
+

2h̄/e2

(akF )2

it can be decomposed as the sum of the resistances obtained in the thermal and ballistic

regime.

If the junction constriction diameter is made sufficiently small such the transport falls

under ballistic limit, electron can be given high energies(large bias across the junction)

without significant heating effects (absence of scattering). These electrons at particular

characteristic energies in turn can excite the fundamental modes in the lattice struc-

ture, thus forming the basis of energy resolved spectroscopy [8]. Therefore point contact

spectroscopy can act as a localized probe for the Fermi surface.

1.2.2 Andreev reflection

Point Contact Spectroscopy of Normal Metal-Superconductor (N − S) junctions are

mainly used to measure the energy gap of the involved superconductor [6],[10]. Using this

information lower bounds of Fermi velocity and coherence length of the superconductor

can be calculated.
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In N − S junction transport measurement, as current(electrons) is passed through the

junction, three processes can occur at the interface: (1) Transmission, (2) Reflection and

(3) Andreev reflection. The respective probabilities of occurrence of each process depends

on the size of the junction and barrier potential. The potential of the junction is char-

acterised by the dimensionless parameter Z such that a negligible barrier(transparent)

easy to pass is given by Z = 0, while a large potential that stops electrons is given by

Z > 1.

Figure 1.7: Schematic representation of N-S junction showing energy versus density of

states on each side

At temperatures below the critical temperature of the superconductor (T < TC). There

is a gap in density of states that opens up at energy ∆. According to BCS theory, at

T = 0K, in the absence of thermal agitations, electrons exist in the form of Cooper

Pair. At appropriately low temperatures, it is thermodynamically more favourable for

electrons of opposite spin to bind together(Cooper Pair). Cooper pairs break and form

quasiparitcles, for energies above the gap. Therefore the energy gap is also called the

binding energy. There are no quasiparticle states available at energies E < ∆.

Travelling from the metal, if the incident electron at the junction possesses energy greater

than ∆, due to availability of quasiparticle states in the superconductor(at E > ∆), it gets
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transmitted across the interface. Here electrons from normal metal flow through the junc-

tion into the superconductor and shows constant differential conductance(characteristics

of linear I-V spectra).

For electron with energies between the gap (E < ∆), the differential conductance depends

on the cross section of the junction and potential of the junction barrier Z. In case of point

contacts with a large cross section(thermal regime transport), it is seen that irrespective

of the value of Z, the electron cannot pass across the junction and gets reflected from the

interface back into the metal, hence differential conductance ( dI
dV

) is zero in this regime.

At exactly the gap energy ∆ there is a discontinuity in I-V curve which manifests itself

as sharp peak in the dI
dV

characteristics. Width of this peak is temperature dependent as

thermal fluctuations leads to broadening that destroys the Cooper pairs.

If the constriction cross section is in the ballistic regime, for small junction potential

Z with electron energy E < ∆ a phenomenon called Andreev reflection occurs and

differential conductance increases by a factor of two as compared to the conductance at

energies above the gap (Figure 1.8 (a)). Physically we can analyse the process as follows,

for an electron with E < ∆ to cross the junction and enter inside the superconductor, it

can only exist in the form of Cooper pair, therefore it binds with an electron of opposite

spin inside the superconductor. As a result, a hole - a mathematical construction to

explain the imbalance of charge created in the absence of an electron, is reflected back

into the normal metal with exactly opposite spin and momentum of that of the incident

electron. Therefore if the incident electron possesses current density evF , then current

−(−evF ) is reflected as hole. As a result we have current of 2evF in the normal metal

and 2evF in the superconductor due to the Cooper pair.

In a realN−S junction the barrier potential will be finite and hence increase in differential

conductivity for E < ∆ will be less than twice Figure 1.8. For large valus of barrier

potential Z, the transport regime falls under tunnelling regime. The current is zero

below (E < ∆) and At exactly the gap energy ∆ there is a discontinuity in I-V curve

which manifests itself as sharp peak in the dI
dV

characteristics.
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Figure 1.8: Z dependenc of Differential Conductance dI
dV

plots with respect to VDC(potial

across junction): (a)Z = 0.02 nearly trasparent barrier, (b)Z = 0.2 dI
dV

less than exactly

twice in E < ∆ region,(C)Z = 1.2 dI
dV

going towards zero, (d)Z = 3 At very high value

of Z, dI
dV

is zero in the E < ∆ region.

1.2.3 BTK Model

The theory used to model [6] the point contact electron transport across the junction

considers transmission, reflection and Andreev reflection. Junction barrier potential is

taken as δ-function barrier of amplitude H. Incident wave is considered one dimensional

plane wave travelling from normal metal into the superconductor. This one dimensional

model is based for superconductors with energy gap symmetric in momentum space i.e.

BCS superconductors(s-wave superconductor).
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Solution of the BTK Model[10] The following section has been written with help

from [10] To find the probabilities of the respective processes of transmission, reflection

and Andreev reflection, we have to solve Bogoliubov-de Gennes equations(BdG)

φ = (f(x, t), g(x, t))

where f(x,t),g(x,t) are electron and hole wave functions respectively. The BdG equation

is as follows:

i

(
h̄
δ

δt
+ ΓΘ(x)

)
σzφ =

(
− h̄2

2m

δ2

δx2
− µ(x) + V (x)

)
σzφ+ ∆(x)σxφ

where σx, σz are Pauli matrices, Θ(x) is the step function such that it is zero for negative

values of x, while unity for x equal to zero and positive values of x, V (x) is the potential

energy, µ(x) is the chemical potential and ∆(x) represents the energy gap. The rate at

which the quasi particles decay to the BCS ground state is represented by parameter Γ.

Say τ is the lifetime of these particles, then

Γ =
h̄

τ

The parameter Γ accounts for the quasi particle decay through scattering. It broadens

the peak as shown in figure. µ is the energy required to add particles to the system. The

barrier potential is characterized by a dimensional parameter Z,

Z =
H

h̄vFS

where vFS is the fermi velocity in the superconductor.

The plane wave equations at the N-S junctions are as follows:

ψi =

 1

0

 eiq+xe−iEt/h̄

ψr =

a
 0

1

 eiq−x + b

 1

0

 e−iq+x

 e−iEt/h̄
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ψt =

c
 u0

v0

 eik+x + d

 v0

u0

 e−ik−x

 e−i(E+iΓ)t/h̄

where ψi,ψr,ψt, represent the incident, reflected and transmitted wave functions respec-

tively. The wave vectors in the metal and superconductor and q and k respectively. Also

inside the superconductor the electron and hole are not independent fermions but rather

quasiparticles. As a result their eigen vectors differ from electron/hole states and have

both non-zero components u0 and v0. The boundary values are:

Continuity of wave functions at the junction

ΨN(0) = ΨS(0)

where ΨN = ψt + ψr and ΨS = ψt and discontinuity of the first derivative across the

δ-function.

− h̄2

2m

(
dΨS(0)

dx
− dΨN(0)

dx

)
+HΨS(0) = 0

Using these equations we get the values of q+/− and k+/− and

u2
0 = 1− v2

0 =
1

2

[
1 +

√
E2 −∆2

E

]

Solving the given equations we get the probabilities for Andreev reflection A and normal

reflection B as:

for E < ∆:

A(E) =
∆2

E2 + (∆2 − E2)(1 + 2Z2)2

B(E) = 1− A

for E > ∆:

A(E) =
u2

0v
2
0

γ2

B(E) =
(u2

0 − v2
0)2Z2(1 + Z2)

γ2
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Simulations of the BTK Model:

Varying the value of energy gap ∆: As shown in figure 1.9 the peaks close to V=0 are

the signature features of Andreev reflection

Figure 1.9: Changing value of ∆ changes the position of the Andreev peaks

Varying the value of Barrier potential Z, keeping Temperature and ∆ constant.

Figure 1.10: Increase in Z causes dI
dV

to reduce in E < ∆ region

Varying Temperature:
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Figure 1.11: Increase in Temperature causes broadening of the Andreev features

Current across the junction [10] The probability of tunnelling across the junction is

the product of number of initial occupied states and the final number of unoccupied states.

For tunnelling across normal metal to the superconductor, number of occupied initial

states is NN(E)f(E) and number of final unoccupied states is NS(E+eV )[1−f(E+eV )].

HereNN(E) andNS(E) are density of states of the metal and superconductor respectively

and f(E) is the Fermi function. For current in the opposite direction net probability

equals NN(E)f(E + eV )NS(E + eV )[1 − f(E)] Subtracting reverse current from the

forward current we get the net current INS as :

INS ∝
∫ ∞
−∞

NN(E)f(E + eV )[f(E)− f(E + eV )]dE

Using BTK Model to include the effect of Andreev reflection, the current flow across the

junction is

INS ∝
∫ ∞
−∞

(1 + A(E)−B(E))f(E)− f(E + eV )dE

Here 1 +A(E)−B(E) is the transmission coefficient such that when a hole is reflected,

a positive charge moves in the opposite direction of the incident electron and thus adds

14



to the current. It is represented by A(E). Simply reflected electron represented by B(E)

reduces the current

1.2.4 Spectral broadening

The BTK Model simulates electronic transport through Normal metal/Superconductor

junctions considering ballistic regime of transport. Although this theoretical model quite

accurately agrees with the experimental results, there have been a number of cases where

the discrepancy between the experimental data and theoretical fit is significant. Most of

such experimental spectra show broadening effects and decrease in differential conduc-

tance. It is therefore required to consider the possibility of inelastic scattering at the

junction. This leads to shortening of quasiparticle lifetime τ . Spin fluctuation also leads

to broadening of the gap structure(Andreev feature). This effect has been incorporated

in the existing BTK Model [21], such that new expression for Probabilities of Andreev

reflection A(E) and normal reflection B(E) have an additional complex term Γ added to

the energy.

Γ =
h̄

τ

This can be interpreted as decrease in energy due to the inelastic scattering. Increasing

the value of Γ has smearing effects on the differential conductance peaks.

Modified coherence factors u0 and v0 become:

u2
0 = 1− v2

0 =
1

2

1 +

√
(E + iΓ)2 −∆2

E + iΓ


and in turn the probabilities of Andreev and normal reflection A(E)andB(E) become:

A(E) =

√
(α2 + η2)(β2 + η2)

γ2

B(E) = Z2 [(α− β)Z − 2η]2 + [2ηZ + (α− β)]2

γ2

where u2
0 = α + iη and v2

0 = β − iη

15



Figure 1.12: Effect of parameter Γ which increases with decrease in quasiparticle lifetime

τ . dI
dV

decreasing and broadening with increase in Γ.

1.2.5 Spin Resolved Point Contact Spectroscopy

In ferromagnets there is a discrepancy in the density of states of spin up and spin down

band electrons. Classically in solid states, spin polarization is P is defines as the ratio of

difference in the number density of electrons of spin up and spin down band with respect

to the total density of states.

P =
N ↑ −N ↓
N ↑ +N ↓

Figure 1.13: Density of states in normal metal and ferromagnets.

However while studying electron transport through ferromagnet-metal junctionsc[14], we
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cannot directly measure the density of states and thus classical definition cannot be used

to support the experimental data. A modified definition of spin polarization [14] given

by Bloch-Boltzmann transport theory in terms of current densities J in the spin up band

and spin down band gives us transport spin polarization Pt such that,

Pt =
J ↑ −J ↓
J ↑ +J ↓

Current density J depends of the Fermi velocity vF . The nature of dependence in turn

is dependent on the transport regime. The ballistic and diffusive limit have the following

definitions of J respectively,

J ↑ballistic= 〈N ↑ vF ↑〉

and

J ↑diffusive= 〈N ↑ v2
F ↑〉

As we consider Andreev reflection across the Superconductor-ferromagnet junction [26],

it is evident from the discrepancy in the density of states of the spin up and down down

bands in ferromagnet, that corresponding to the theory of Andreev reflection, not all

incident electrons(of any particular band, say spin up) will have a reflecting hole from

the opposite spin band. As a result increase in differential conductance in the energy gap

region is suppressed as compared to that in normal metal - superconductor junctions.

A new model that takes into effect the amount of transport spin polarization in a ferro-

magnet and gives the corresponding Andreev reflection probability is as follows:

Net current through the junction is a combination of IU and IP , where IU corresponds to

the current without any spin polarization and IP correspond to the current using 100%

spin polarization, which has separate Andreev reflection and normal reflection coefficients

AP (E) and BP (E) respectively, given by:

AP (E) = 0

BP (E) =
(1−

√
ε)2 + 4Z2ε

(1 +
√
ε)2 + 4Z2ε
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where u2
0 = 1

2
(1 +

√
ε), ε = E2−∆2

E2 and Z is the barrier potential.

Figure 1.14: Dependence of diferential conductance on degree of transport spin polariza-

tion Pt of the sample

Then the current for an intermediate spin polarization Pt is calculated by interpolation

between IU and IP following the relation given by:

It = IU(1− Pt) + IPPt

The derivative of It with respect to V gives the modified Andreev reflection spectrum

with finite spin polarization.

1.2.6 Role of Critical Current:

If a point contact falls under diffusive or thermal regime, We see certain sharp peaks in

the differential resistance spectra as in figure 1.15 (b). These sharp peak arise as a result

of sudden non linearities in the I-V spectrum [25]. The point contacts not being in the

completely ballistic regime are prone to scattering effects(finite normal state resistance),

as soon as the critical current of the point contact is reached while sweeping the current,

superconductivity is destroyed and the point contact has a finite resistance. This sudden

change in I-V spectrum manifest themselves as sharp peaks in the dV
dI

spectra. The peaks

are hence called the critical current peaks.
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Figure 1.15: (a) dV
dI

spectra in compltely ballistic regime. (b)dV
dI

spectra showing Critical

current peaks in non ballistic regime point contacts

The critical current peaks can arise at any value of VDC depending on the critical current

of that particular point contact. Figure 1.15 shows a comparison between the Andreev

spectra of two point contacts one in completely ballistic regime(resistance resistance

doesn’t change even after critical current is reached)and another showing critical current

peaks of the point contact in diffusive regime.

In the following figure 1.16 we see a summary of Pb-Ag point contacts in Ballistic,

Thermal and Diffusive(Intermediate) regimes.

19



Figure 1.16: Summary of dV/dI spectra in Thermal, Intermediate(Diffusive) and Ballistic

regimes

1.2.7 Experimental Setup

Andreev reflection spectroscopy experiments include the following setup and their corre-

sponding data acquisitions techniques.

1.Point Contact fabrication:

In our experiments we employed ”Needle Anvil” method to form the Nano constric-

tions [17]. A sharp tip(Superconductor/Metal) is brought into contact with a flat sur-

face(Metal/Superconductor) using a differential screw, thus forming a transport pathway

of a very small diameter. The resulting point contact acts as a local probe to study the

Fermi surface properties of the sample.
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Figure 1.17: Sample holding space of the probe, cernox thermometer-temperature sensor

2. Differential conductivity with respect to electron energy

Differential Conductance:

As the electrons pass through the junction non linearities arising in the Current(I) as a

function of Voltage(V) greatly manifest themselves when plotted in the form of dI/dV

called Differential Conductance. Electron energy is proportional with respect to Voltage

difference across the junction. dI/dV can be obtained by either of the following ways:

(1) A current Voltage sweep and then the derivative : A relatively easy method to setup,

requiring one source and one voltage measuring instrument. This method has various

drawbacks, even a small noise in the I-V spectrum becomes a large noise when the

measurements are differentiated. Also large current can cause significant joule heating.

(2)AC lock-in modulation technique of applying very small sinusoidal signal (IACcos(ωt))

superimposed over a DC bias across the junction and using the lock-in again to read the

AC current and AC Voltage drop across the junction. Writing the voltage expression in

the form of Taylor Series,

V (IDC + IACcos(ωt)) = V (IDC) +
dV (IDC)

dI
IACcos(ωt) + .....

This clearly indicates that measuring the AC Voltage gives dV/dI. We have used this

technique for our measurements of Andreev reflection spectrum. dI is proportional to the

excitation current set during the experiment. The data acquisition was done by using a
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labview programme developed in house.

Figure 1.18: Schematic dscription of the measurement setup

The instruments used for the measurements are KEITHLEY2000 Multimeter for mea-

suring the DC Voltage, SRS 830 Lock-in Amplifier, Lakeshore350 for measuring the

temperature of the sample inside the cryostat.
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Chapter 2

Spin-resolved Point Contact

Spectroscopy on CuFeSb

Spectroscopic evidence of high transport spin-polarization in ferromagnetic

CuFeSb

Preetha Saha1, Abhishek Gaurav1, Shubhra Jyotsna1, Gohil S. Thakur2, Zeba Haque2, L.

C. Gupta2, Ashok K. Ganguli2,3, and Goutam Sheet1

1Department of Physical Sciences, Indian Institute of Science Education and Research

Mohali,2Department of Chemistry, Indian Institute of Technology, New Delhi,3Institute

of Nano Science and Technology, Mohali

Introduction:

Transport Spin Polarization of the itinerant ferromagnet CuFeSb was measured using

spin-resolved Andreev reflection spectroscopy. The spectra were analysed using a mod-

ified Blonder-Tinkham-Klapwijk (BTK) formalism that includes Fermi-level spin polar-

ization and spectral broadening due to finite quasiparticle lifetime. We found that the

intrinsic transport spin polarization in CuFeSb is approximately 50%. This is significantly

different from the half metallic behaviour of CuFeSb as expected from band-structure cal-
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culation. We attribute this difference to possible difference in the Fermi velocities in the

spin up and the spin down bands of CuFeSb.

Theory:

It is believed that the exotic superconductivity in the iron-based pnictide and chalco-

genide superconductors originates from a magnetically driven pairing mechanism where

the superconducting order is thought to be coupled with spin fluctuations [2]. Therefore,

in order to understand the nature of coupling between the superconducting order and

spin fluctuations, it is imperative to understand the nature of magnetism and the spin

fluctuations in the parent compounds from which the superconducting states are derived

through doping.

Recently it has been shown that CuFeSb [22], which is isostructural to the iron-based

layered superconductors e.g., Li(Na)FeAs, has a ferromagnetic ground state [23]. A close

relative of this compound CuFeAs [30] stabilizes in an antiferromagnetic ground state.

The ferromagnetic order in CuFeSb is thought to originate from the large height of Sb

from the Fe plane. This fact also supports the hypothesis that the competing magnetic

interactions in ferropnictide superconductors is decided by the anion height i.e., there is a

gradual change in the magnetic properties from superconductivity to antiferromagnetism

to ferromagnetism on moving in the increasing order of anion height from LiFeAs to

CuFeAs to CuFeSb [15].

CuFeSb has been known to be the only material in the FeAs or FeSb family that shows

a ferromagnetic ground state. Therefore it is most important to understand the Fermi

surface properties of this unique system by spectroscopic measurements, in particular,

the nature of the Fermi surface spin polarization.

Experiment:

Here we have employed spin-resolved Andreev reflection spectroscopy [26] using conven-

tional superconducting tips to measure the transport spin polarization Pt at the Fermi

level of CuFeSb. From the analysis of the Andreev reflection data between the super-
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conductor and the ferromagnet [29], we found the evidence of a high degree of transport

spin polarization approaching 50% in CuFeSb. This fact is of important consequence as

ferromagnets with more than 50% transport spin polarization are potential candidates

as spin source in spintronic devices.

As discussed in the introduction, transport through a ballistic point contact between a

normal metal and a superconductor is dominated by Andreev reflection that involves

the reflection of a spin up(down) electron as a spin down(up) hole from the interface [6]

. The Andreev reflection spectra can be fitted using two fitting parameters,Z and ∆.

However, in the system where the life-time of the quasiparticles is finite due to inelastic

processes at the interface and spin fluctuation [16], the Andreev reflection spectrum

undergoes broadening. Such spectra are analysed by a modified BTK formalism using

three parameters Z, ∆ and Γ.

In a superconductor-ferromagnet junction as in this case, we expect the Fermi level to

be spin polarized [28], as a result increase in differential conductance(below E < ∆) is

suppressed depending on the amount of spin polarization. Accordingly the analysis and

fitting of such spectra is done using a further modified BTK Model [27] that takes into

account the spin polarized Fermi surface. Thus the parameters required for fitting are

Z, ∆, Γ and Pt.

It should be noted that for the measurement of the spin polarization of ferromagnets

standard conventional superconducting probes are used for which the value of ∆ is known.

In addition, in order to have superconductivity, Γ cannot be arbitrarily large with respect

to ∆. Therefore, effectively only two parameters, Z and Pt, are tuned freely during the

analysis of spin-polarized Andreev reflection spectra. For fitting the experimental data

theoretical spectra were generated by a code written in python.

The measurements were performed on a polycrystalline pellet of CuFeSb and supercon-

ducting tip Nb and Pb were used. CuFeSb shows a ferromagnetic transition around 380

K. The Andreev reflection spectroscopic measurements were performed by measuring

the transport characteristics of several ballistic point-contacts between CuFeSb and the
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elemental superconductors niobium (Nb) and lead (Pb) respectively using a home-built

point-contact spectroscopy probe in a liquid helium cryostat.

A calibrated cernox thermometer and a heater were attached to the same copper disc

for precise measurement of the temperature and for controlling the sample temperature.

Two 100µm thick gold wires were mounted on the sample for transport measurements.

The superconducting tips were fabricated from 250µm diameter wires of Nb and Pb

respectively. The tips were mounted on a teflon piece connected to the head of a 100

threads per inch differential screw. Two more 100µm thick gold wires were mounted on

the tip. The probe was then mounted inside the static variable temperature insert (VTI)

of a liquid-helium cryostat. The static VTI was surrounded by a dynamic VTI with a

micro-capillary that allowed us to perform measurements down to 1.4K.

In figure 2.1 we see Andreev reflection spectra between Nb and CuFeSb. The spectra

clearly show the double-peak structure symmetric about V = 0, which is the hallmark

of Andreev reflection. For low values of Z, these peaks appear close to the energy gap of

the superconductor. The solid lines show the theoretical fits as per the model described

above. The superconducting energy gap of niobium is found to be approximately between

1meV and 1.5meV for all the point contacts that we have analysed, indicating the prox-

imity of the ferromagnet does not suppress the superconductivity of the point-contacts

significantly.

The value of Γ remained zero for all the spectra, which means the broadening due to

finite quasiparticle lifetime is absent at the point-contact. This fact also indicates that

the spin fluctuation in the system is not significant as strong spin fluctuations is also

known to give rise to large Γ.
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Figure 2.1: Fitting of Andreev reflection spectra of CuFeSb with Niobium

It is found that the raw data deviate slightly from the fit at certain points (notice the dip

structures in dI/dV ). Such deviation is known to originate from the critical current of

the superconductor when a small part of the Maxwell’s resistance is also measured along

with the Sharvin resistance in the point-contacts close to the ballistic regime.

On repeating the experiment with Pb tip, figure 2.2 spectra were found to be considerably

broader than the theoretically generated spectra. This can be attributed to the low-

energy phonon modes of Pb that couple strongly with the quasiparticles and might modify

the point-contact spectra. However, the low-energy part of the spectra clearly show the

signature of Andreev reflection (the double-peak structure symmetric about V = 0).

Spectra near V = 0 fitted nicely and the relevant parameters were extracted by fitting

the low-bias portion of the spectra. Again, in such fittings, the value of Γ remained
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almost zero and the superconducting energy gap was found to be approximately 1meV

which is same as the superconducting energy gap of bulk Pb.

Figure 2.2: Fitting of Andreev reflection spectra of CuFeSb with Lead

On plotting a curve of Pt with respect to the Z value figure 2.3, for both Nb and Pb

spectra, we observe that for most of the Nb/CuFeSb point-contacts, the value of Z was

found to be small (< 0.2) For such point-contacts, the maximum measured value of Pt is

found to be 52%. For the Nb/CuFeSb, Pt did not change noticeably with Z. It should

be noted that within the BTK formalism, no correlation between Pt and Z is expected.

For the Pb/CuFeSb point contacts, however, Pt shows small dependence on Z and the

dependence is linear. The measured value of Pt decreases with increasing strength of the

barrier (represented by Z).
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Figure 2.3: Z dependence of transport spin polarization Pt for CuFeSb-Nb and CuFeSb-

Pb spectra, Though Pt shows different dependence on Z, the intrinsic value of Pt ex-

tracted for Z = 0 is identical for both Nb and Pb tips.

The observed dependence of Pt on Z is not understood in the BTK formalism. In such

cases the dependence is attributed to spin depolarization at a magnetically disordered

scattering barrier formed at the interface. In such cases, the conventional way of finding

the intrinsic transport spin polarization is to extrapolate the Pt vs Z curve to Z = 0.

By doing this extrapolation, the intrinsic Pt is found to be approximately 47% which is

nearly equal to the value measured with the Nb tip. Therefore, it is rational to conclude

that the degree of spin polarization at the Fermi level of CuFeSb is approximately 50%.

The accurate value of the transport spin polarization can be obtained only from the

point-contacts that are in the ballistic or diffusive limit of transport. For our analysis,

we have carefully chosen only the spectra that show the double-peak structure symmetric

about V = 0, which is a clear signature of Andreev reflection in the ballistic or diffusive

limit.
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Some of the spectra we have presented here show very small conductance dips indicat-

ing that the point-contacts were close to the ballistic limit containing negligibly small

contribution of thermal resistance.

The experimentally obtained value of the intrinsic spin-polarization at the Fermi level is

significantly different from the spin-polarization estimated by local spin density calcula-

tions earlier performed by Sargolzaei [24]. According to this calculation, the Fermi-level

is almost 100% spin polarized that makes CuFeSb a half-metallic ferromagnet.

The significant amount of discrepancy could be explained as follows,

In our experiments we measure current densities J ↑ and J ↓. Accordingly the appropri-

ate definition of Transport spin polarization is

Pt =
J ↑ −J ↓
J ↑ +J ↓

Taking into account the definitions of the current density J in both ballistic and diffusive

limit,J ↑ballistic= 〈N ↑ vF ↑〉 and J ↑diffusive= 〈N ↑ v2
F ↑〉, we can see it always depends

on the Fermi velocity. Therefore even if according to the classical definition P = N↑−N↓
N↑+N↓

spin polarization is high, it is possible to get a lower value of Pt due to significant difference

in the Fermi velocities of spin and spin down bands,vF ↑ and vF ↓.
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Chapter 3

Possibility of Spin triplet pairing in

mesoscopic Pb-point contacts

3.1 Enhanced Superconductivity in Lead Point Con-

tacts

The point contacts were made using a polycrystalline lead pellet and Silver tip(diameter

250 µm). The movement of the tip to fabricate the point contacts was controlled using

a 100 threads per inch differential screw. The tip was pressed onto the sample to break

through the oxidized layers.

It is know that Bulk lead is a conventional Superconductor with critical Magnetic field

of about 800 Gauss [13]. However in our Point Contact experiments it was seen that the

superconductivity in several point contacts survived upto high critical fields of 3 Tesla.

We have plotted differential resistance dV
dI

versus VDC(potential difference across the

junction) to analyse Andreev reflection spectra.
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Figure 3.1: Pb-Ag point contact: (a)Experimental setup, (b)Thermal limit data of mag-

netic field dependence of dV
dI
spectra

We can see in figure 3.1 the superconductivity survives upto 1.6 Tesla.This behaviour is

similar to the enhanced critical magnetic field observed in lead nano-particles [33]. In

our experiment, the point contacts could be compared to nano-domains trapped under

the point contact. We estimated the constriction diameter using Wexler’s formula for

resistance of point contacts in the intermediate regime. All point contacts diameters

varied between few nanometers.

Figure 3.2: (a)Magnetoresistance of the point contact in firgure 3.1, (b)H-T diagram of

the same point contact-Blue dots(Pb-Ag data), clearly show unconventional pairing, Red

dots show a empirically expected H-T phase diagram of a conventional superconductor
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Along with the Magnetic field dependence of differential conductance spectra, we also

did the magnetoresistance(two probe resistivity measurement) of the same point contact

(Figure 3.2). It can be seen from Figure 3.2 that critical temperature of the point contact

reduces with increasing magnetic field. On plotting the H − T graph, we observed that

the H-T phase diagram has a significant deviation from that expected in a conventional

superconductor. A possible reason for the unconventional H − T dependence could be,

since inversion symmetry breaks at the surface, it possible for the system to exist in

mixed triplet state s+ ip [20], [7].

3.2 Asymmetry in Differential resistance

Figure 3.3: Pb-Ag point contact: In presence of magnetic field-Asymmtery(critical cur-

rent peaks and Andreev features) in differential resistance with respect to the direction

of potential bias across the junction
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As shown in figure, 3.3 we observed that in presence of magnetic field, in differential

resistance spectra, the height of critical current peaks and Andreev features is current

direction dependent. There is a clear asymmetry in the resistance with respect to the

positive and negative bias.

3.2.1 Behaviour in magnetic field

Experiments were also done on Lead with Cobalt tip. Similar results were observed in

Pb-Co point contacts. As shown in figure 3.4, the asymmetry was clearly observed in

both Pb-Ag (Figure 3.4(a)) point contacts and Pb-Co (Figure 3.4(b)) point contacts

[4]. In addition to this, the direction of asymmetry laterally reversed on inverting the

direction of magnetic field.

Figure 3.4: (a)Thermal limit Pb-Ag point contact showing asymmetry in presence of

magnetic field, laterally reverses on inverting the direction of magnetic field, (b)Nearly

ballistic limit Pb-Co point contact showing asymmetry in Andreev feature in presence of

magnetic field
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Since Lead is a heavy metal, it has high spin orbit coupling [3]. As time reversal symmetry

breaks on applying magnetic field, it possible for such a state(s+ip) to couple with

magnetic field, which we see in the spectra.

3.2.2 Oscillation in magnetic field

Another interesting feature was observed in the differential resistance spectra (Figure 3.5).

As the magnetic field was increased, it was seen that the height of the critical current

peaks oscillated, until they completely vanished with approaching critical magnetic field.

Figure 3.5: 3D diagram of diffusive limit Pb-Ag point contact showing oscillation in the

critical current peaks with increasing magnetic field
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Analysis

Figure 3.6: (a)ratio of RL with RS, (b)Differential resistance of Critical current of the

positive bias with magnetic field

We have analysed the amount of asymmetry, by plotting in figure 3.6 (a) the ratio of

the differential resistance of critical current peaks RL and RS with magnetic field, where

RL is the longer of the critical current peaks in a spectra and RS the shorter one and in

figure 3.6 (b)the differential resistance of the critical current peaks of the positive bias

with magnetic field. Both the plots show clear oscillation.

We have not conclusively determined the reason for the asymmetry. Future work on this

includes, solving the Hamiltonian of the system and checking if the state(s+ip) couples

with magnetic field and indeed produces an asymmetry.
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