Redox Regulation of Yeast Vacuolar Channel Protein (YVC1) In Saccharomyces cerevisiae

Krishna K. Das

A dissertation submitted for the partial fulfillment

of BS-MS dual degree in Science

Indian Institute of Science Education and Research Mohali

April 2015

Certificate of Examination

This is to certify that the dissertation titled "Redox Regulation of Yeast Vacuolar Channel (YVC1) in *Saccharomyces cerevisiae*" submitted by Ms. Krishna K. Das (Reg. No. MS10051) for the partial fulfilment of BS-MS dual degree programme of the Institute, has been examined by the thesis committee duly appointed by the Institute. The committee finds the work done by the candidate satisfactory and recommends that the report be accepted.

Dr. Rachna Chaba

Dr. Shranvan Kumar Mishra

Prof. Anand K. Bachhawat (Supervisor)

Dated: April 24, 2015

Declaration

The work presented in this dissertation has been carried out by me under the guidance of Prof. Anand K. Bachhawat at the Indian Institute of Science Education and Research Mohali.

This work has not been submitted in part or in full for a degree, a diploma, or a fellowship to any other university or institute. Whenever contributions of others are involved, every effort is made to indicate this clearly, with due acknowledgement of collaborative research and discussions. This thesis is a bonafide record of original work done by me and all sources listed within have been detailed in the bibliography.

Krishna K. Das

(Candidate)

Dated: April 24, 2015

In my capacity as the supervisor of the candidate's project work, I certify that the above statements by the candidate are true to the best of my knowledge.

Prof. Anand K. Bachhawat

(Supervisor)

Acknowledgment

I express my deep gratitude to my guide **Prof. A. K. Bachhawat**, who has suggested the research problem and guided me throughout the year. It would have been impossible to proceed without the useful discussions I had with him at various stages of the work. I am thankful to him also for the useful suggestions he gave on various aspects of presentation and for his patience in going through this report and suggesting modifications.

I take this opportunity to thank **Mr. Avinash Chandel** who has always been there with a helping hand. His kind support in doing all the experimental work is priceless. I am also thankful to all other **lab members** for their continuous support and valuable suggestions.

I would like to thank DST for providing **INSPIRE** scholarship which has been greatly supportive and truly inspiring throughout my life in IISER Mohali.

The acknowledgement will not complete without thanking **my teachers, students and staff** of IISER Mohali for the invaluable roles they played.

Finally, I thank the modern infrastructure of IISER Mohali, especially the Library and Internet facilities.

Krishna K. Das

List of Figures

Introduction

Figure 1.1: Ca²⁺ regulates many cellular processes.

Figure 1.2: Basic structure of TRP channels.

Figure 1.3: Ca²⁺ level in a normal yeast cell.

Figure 1.4: Ca²⁺ channels and transporters in S.cerevisiae.

Figure 1.5: Different kinds of modifications of proteins in response to oxidative stress.

Results and discussions

Figure 3.1: MSA of YVC1 with homologues in fungi.

Figure 3.2: MSA of YVC1 with homologues in higher organisms.

Figure 3.3: Predicted structure of transmembrane domains of YVC1.

Figure 3.4: $yvc1\Delta$ shows enhanced resistance to oxidizing agents.

Figure 3.5: Intracellular Ca^{2+} measurement using aequorin based luminescent assay.

Figure 3.6: YVC1 is glutathionylated under oxidative stress.

Figure 3.7: YVC1 glutathionylation is affected by NEM and IAM.

Figure 3.8: A functional plate assay using H_2O_2 (selection plate SD- His). C17A and C191A show resistance to oxidizing agent.

Figure 3.9: The image shows the localization of Mutants.

Figure 3.10: The mutants YVC C17A, YVC C61A and YVC C191A are showing lower level of glutathionylation compared to control.

Figure 3.11: C17A and C191A mutants are showing lower level of cytosolic Ca^{2+} .

List of Tables

Introduction

Table 1.1: The table shows all the Ca^{2+} channels of yeast and their function.

Materials and methods

Table 2.1: Details of the strains used in this study.

Table 2.2: Various plasmids used in this study.

 Table 2.3: The list shows all primers used in this study.

Results and discussions

Table 3.1: Homologues of YVC1.

Abbreviations

Α	Alanine	
Ala	Alanine	
С	Cysteine	
Cys	Cysteine	
APS	Ammonuim per sulfate	
ATP	Adenosine Triphosphate	
dNTPs	2'- deoxyadenosine 5'- Triphosphate	
ER	Endoplasmic Reticulum	
GSH	Reduced glutathione	
GSH1	GSH synthesizing enzyme	
GSSG	Oxidized glutathione	
H ₂ O ₂	Hydrogen Peroxide	
IAM	Ido- acetamide	
MSA	Multiple Sequence Alignment	
Na ²⁺	Sodium	
NEM	N'- Ethylmaleimide	
PEG	Poly Ethylene Glycol	
RNS	Reactive Nitrogen Species	
ROS	Reactive Oxygen Species	
SDS	Sodium Dodecyl Sulphate	
SDS PAGE	Sodium Dodecyl Sulphate PolyAcrylamide Gel Electrophoresis	
SOCE	Store- operated Ca ²⁺ entry channels	
TEMED	N,N,N',N'- tetramethylethylenediamine	
ТМ	Trans- membrane	

Contents

List of Figures	i
List of Tables	ii
Abbreviation	iii
Contents	iv
Abstract	vii

Chapter 1 Introduction

1.1 0	Ca ²⁺ homeostasis inside the cell	2
1.2	Yeast and Ca ²⁺ homeostasis	4
1.3	Ca ²⁺ channels and transporters in yeast	5
1.4	Redox regulation of Ca ²⁺ channels	6
1.5	Yeast Vacuolar Channel Preotein (YVC1)	7

1

9

Chapter 2 Materials and methods

2.1	Chemicals and reagents 10	
2.2	Strains and H	Plasmids 10
2.3	Primers	
2.4	Media	
	2.4.1	LB 12
	2.4.2	YPD 13
	2.4.3	SD 13
	2.4.4	SOB 13
2.5	Buffers, Stoc	ck solutions and other chemicals 13
	2.5.1	Ampicillin stock solution 13
	2.5.2	GSH stock solution 14
	2.5.3	TERNAse

2.5.4	50% Glycerol	14
2.5.5	Alkaline lysis for plasmid isolation	14
2.5.6	Agarose gel electrophoresis reagents	15
2.5.7	Yeast transformation solutions	15
2.5.8	SDS PAGE solutions and reagents	16
2.5.9	Western blotting reagents	16
2.5.10	Hydrogen peroxide	17
2.5.11	Diamide	17
2.5.12	<i>N</i> - Ethylmaliemide	18
2.5.13	Ido- acetamide	18
2.5.14	Coelentrazine	18

Methods

2.6	Grow	th and maintenance of bacteria and yeast strains	18
2.7	Reco	nbinant DNA methodology	18
2.8	Taggi	ng the protein with His tag	19
2.9	Const	ruction of site directed mutants of YVC1	19
2.10	Trans	formation of yeast	19
2.11	Funct	ional plate assay by dilution spotting	20
2.12	Protei	in purification from the yeast whole cell extract	20
2.13	Protei	n electrophoresis and western blotting	20
2.14	4 Aequorin based Ca2+ luminescent assay		
2.15	Seque	ence analysis	21
Chap	oter 3 R	esults and Discussions	22
3.1	Seque	nce analysis	23
	3.1.1	Homologues of Yvc1	23
	3.1.2	Multiple sequence alignment using Clustal W	23
	3.1.3	Transmembrane prediction using Topcons	26
3.2	A fun	ctional plate assay using oxidizing agent	. 26
3.3	Intrac	ellular Ca ²⁺ measurement of $yvcl\Delta$ starin during oxidative stress	. 27

3.4	Glutathionylation analysis		
	3.4.1	In vivo assay using diamide	28
	3.4.2	In vitro assay using diamide	28
3.5	Analys	sis of all Cys \rightarrow Ala mutations	29
	3.5.1	A functional plate assay using H_2O_2	29
	3.5.2	Checking Localization of all Cys \rightarrow Ala mutants	. 30
	3.5.3	Glutathionylation assay for all Cys \rightarrow Ala mutants	. 30
	3.5.4	Ca ²⁺ measurement using aequorin based luminescent assay	. 31

Conclusion

References

32 33

vi

Abstract

YVC1 is yeast vacuolar channel that effluxes Ca^{2+} from the vacuole to the cytosol. Previous studies in this lab have shown that, there is an increase in the levels of cytoplasmic Ca^{2+} and YVC1 contributes to this increase. YVC1 contains 9 cysteine residues and since these cysteines are expected to play a role in its activation, we mutated 8 of the 9 cysteines to alanines. These Cys → Ala mutations were evaluated for protein expression, localization and function. C343A mutant was hyperactive. We also observed that C61A was defective in localization. Among the other mutants, we observed that C17A and C191A were nonfunctional and also these mutants were partially defective in glutathionylation. Functionality of C17A and C191A were also defective as detected by aequorin based assay for Ca²⁺. The results suggest a role for the two cysteine residues in YVC1 activation.

Chapter 1

Introduction

1.1 Ca²⁺ homeostasis inside the cell

Calcium (Ca²⁺) is an important regulator of many cellular processes in eukaryotic organisms, which includes cell division, cellular motility, neural activity, protein trafficking, gene expression, muscle contractility, developmental regulation and apoptosis. Ca²⁺ is a carrier of signals from the beginning of a cell's life to its end. Function of Ca²⁺ in apoptosis is particularly important, when we consider its role in the cardiovascular, immune and nervous system disorders. Moreover during oxidative stress, Ca²⁺ can alter the physiological condition of the cell via influx of the ion from external environment and storage organelles. Ca²⁺ can also regulate the modification of proteins as well as modulate signal transduction pathways. The rise in cytoplasmic Ca²⁺ beyond a certain level thus disrupts the normal metabolic processes, leading to cell death.

Figure 1.1: Ca²⁺ regulates many cellular processes.

Since Ca^{2+} is an important messenger, its levels are tightly regulated inside the cell. There is a large Ca^{2+} gradient across the cellular organelles. In a typical cell the intracellular Ca^{2+} level is 100

nM. But it is subject to 10 to 100 fold increase during various cellular processes. This Ca^{2+} comes from external as well as from its main storage organelle ER, where the concentration is in mM range. So maintaining this Ca^{2+} homeostasis is very important for the survival of the cell. This is done by the Ca^{2+} channels present on the plasma membrane, ER, Golgi apparatus and mitochondria.

There are three major groups of channels; (a.) the voltage-gated channels (VOCs) (b.) the receptor-operated channels (ROCs), which are activated by the interaction with the ligand (c.) the store-operated Ca^{2+} entry channels (SOCEs), which require the presence of Ca^{2+} for its activation. These channels are present on the plasma membrane. Among the three groups, the SOCEs are present on normal cell lines as well as neuron and skeletal muscle cells [1]. All the three groups can be further divided into subfamilies based on their function. All these channels are selectively permeable to Ca^{2+} even if other ions are present in higher concentration.

Other than these three groups, there are transient receptor potential channels (TRP), intracellular Ca^{2+} channels and Ca^{2+} pumps also present to maintain the Ca^{2+} homeostasis inside the cell. There are 3 Ca^{2+} ATPases pumps in animal system, which can be present on the PM, ER and in the Golgi membrane. All of these help the cell to reduce the cytosolic Ca^{2+} level to normal state by exporting the excess amount of Ca^{2+} to external environment or to internal spaces. The pumps need energy for moving Ca^{2+} through their hydrophobic channel. They are gaining this energy by splitting ATP molecule. We can say that they are the fine tuners of cellular Ca^{2+} level as they have a high affinity interaction with Ca^{2+} [1]. Also most of the animal cells have a low affinity Ca^{2+} pump which ejects Ca^{2+} in exchange with Na⁺, termed as Ca^{2+}/Na^+ exchanger.

The TRP family constitute a large family of cation-conducting channels. They are expressed in both excitable and non-excitable tissue types. There are 6 different subfamilies of TRP channels in mammals, according to their homology: TRPC (canonical), TRPV (Vanilliod), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin), and TRPP (polycistine). So far, 28 TRP channels have been found in mammals. The TRP channels are non- selective cationic channels with six transmembrane domains. Another common feature of TRP channels is their pore forming region between the fifth and the sixth transmembrane domain [1]. Some of the TRP channels are localized to internal organelles also. Thus TRPV and TRPP can be found on ER and Golgi membranes too. A class of TRP channel has been reported to be modulated by ROS/RNS and to control cellular responses [2].

Figure 1.2: Basic structure of TRP channels [3].

1.2 Yeast and Ca²⁺ homeostasis

In budding yeast, the intracellular Ca^{2+} concentration is in the range of 50- 200 nM range. Previous studies have shown that under oxidative stress the cytoplasmic Ca^{2+} level increased to millimolar range with the activation of a number of Ca^{2+} channels and transporters of *Saccharomyces cerevisiae*. The major source of Ca^{2+} in yeast cells is their vacuolar rather than ER. More than 90 percent of Ca^{2+} is stored in the vacuole (2mM).

Figure 1.3: Ca^{2+} level in a normal yeast cell.

As in other eukaryotic organisms, Ca^{2+} has a very important role in cellular and physiological processes of a yeast cell. These signal transduction pathways are regulated by the changing amplitude of Ca^{2+} level inside the cytoplasm. Most of the factors in these pathways are conserved among the eukaryotes. One such factor is the Ca^{2+} channels and transporters. We can find the homologues of yeast Ca^{2+} channels and transporters in higher eukaryotic organisms including humans.

1.3 Ca²⁺ channels and transporters in yeast

A large number of Ca^{2+} channels and transporters are present in yeast cells which have an important role in Ca^{2+} influx and regulation of intracellular processes. Excessive quantities of Ca^{2+} are toxic to the cell and it is regulated with the help of these channels.

Figure 1.4: Ca²⁺ channels and transporters in S.cerevisiae.

One of the high affinity Ca^{2+} channels is Cch1, which is present on the plasma membrane. Another important channel present on the vacuolar membrane is Yvc1 which belongs to the family of human TRP channels. Previous studies have shown that both these channels get activated under oxidative stress leading to an increase in the level of cytoplamic Ca^{2+} . The redox regulation of these channels is of extreme important for the survival of cell. *Table 1.1* explains all the Ca²⁺ channels/ transporters present in *S.cerevisiae*.

Protein Name	Туре	Localization	Function
Cchl	Channel	РМ	Influx of Ca ²⁺ from external environment under oxidative stress
Yvc1	Channel	Vacuole	Mediates release of Ca ²⁺ from Vacuole to cytosol in response to hyperosmotic shock
Pmc1	ATPase	Vacuole	Involved in depleting cytosolic Ca ²⁺ level
Pmr1	P- type ATPase	ER	Ca ²⁺ , Mn ²⁺ transport to golgi, Ca ²⁺ dependent protein sorting& processing
Spf1	P- type ATPase	ER	Ion transporter of ER membrane
Gdt1	Not Known	Golgi	Involved in Ca ²⁺ homeostasis, function unknown

Table 1.1: The table shows all the Ca^{2+} channels of yeast and their function.

1.4 Redox regulation of Ca²⁺ channels

Reactive oxygen species (ROS) are oxygen molecules in different reduction states. They primarily induce cell death. So the understanding of how Ca^{2+} signaling is altered by redox control will help us to know the mechanism of activation and regulation of these

channels. The following schematic diagram shows the possible mechanism for the activation of Ca^{2+} channels under oxidative stress.

Glutahione (GSH) is an antioxidant present in cells. Under oxidative stress GSH can either be converted to its oxidized form, glutathione disulfide (GSSG) or form mixed disulfides with proteins. S- glutathionylation is the reversible addition of glutathione to thiolate anions of cysteines in target proteins [4]. Thus S- glutathionylation can modify protein structure and function.

Another effect that oxidative stress can have on protein is to cause disulfide bond formation that can also alter protein structure.

Another way that protein can be altered is by ROS which directly interacting with the exposed thiol groups of proteins and change their functionality. One such modifications is sulfenylation (SOH), induced by hydrogen peroxide (H_2O_2) and superoxide (O^{2-}). It can be reversible or irreversible depending on the local redox environment of the cell.

Figure 1.5: Different kinds of modification of proteins in response to oxidative stress.

1.5 Yeast Vacuolar Channel Protein (YVC1)

The most abundant store of Ca^{2+} in a yeast cell is the vacuole. YVC1 is Ca^{2+} permeable channel present on the vacuolar membrane. The channel contributes to an influx of Ca^{2+} from vacuole to cytosol under oxidative stress. But the mechanism of activation and regulation of the channel is not known yet. Excessive amount of Ca^{2+} flux followed by the activation of YVC1 is toxic to the cell.

In *Candida albicans*, a common opportunuistic pathogen, the YVC1 homologue was found to play a key role in hyphal polarized growth and re- orientation to host signal. The study showed that YVC1 homologue was essential for the fungi during infection and survival in host tissue [6]. Similarly the YVC1 homologue in *Aspergillus fumigatus* has an important role in Ca^{2+} homeostasis and the pathogens virulence [7].

YVC1 belongs to the TRP family of proteins. The human homologue of YVC1 is TRPV1 proteins. It is a plasma membrane channel involved in pain and heat sensation. The previous studies have reported covalent cysteine modification as a mechanism for the activation of TRPV1 [8].

The vacuolar cahnnel YVC1 found to be mechanosensitive under osmotic upshock from some previous studies [9]. But the mechanical activation occurs regardless of the Ca^{2+} concentration, and is independent of its known Ca^{2+} activation [9]. As Ca^{2+} is a regulator of many cellular processes, to get a clear image about the role of YVC1 in Ca^{2+} homeostasis is important. Studies have to be done to know how YVC1 is regulated under oxidative stress.

Chapter 2

Materials and methods

Materials

2.1 Chemicals and Reagents

All chemicals were purchased from commercial sources and were of analytical grade. Media components, other chemicals and reagents were purchased from Sigma Aldrich (St. Louis, U.S.A.), HiMedia (Mumbai, India) and Merck. India. Ltd(Mumbai, India). Primers were designed using SnapGene software and purchased from IDT. Enzymes including all restriction enzymes, *Vent* DNA polymerase, *Taq* DNA polymerase, Phusion High Fidelity DNA polymerase, T4 DNA ligase, Calf Intestinal Phosphatase (CIP), Antartic Phosphatase and their buffers, dNTPs, DNA and protein molecular weight markers were purchased from NEB. Gelextraction kits and plasmid mini prep columns were obtained from Thermo. Chip immunoprecipitation kit was purchased from Millipore. Anti-his mouse monoclonal antibody, anti-glutathione moue monoclonal antibody, anti-mouse HRP linked polyclonal antibody were purchased from Cell signaling and Abcam. The HRP substrate was bought from Millipore. Coelentarazine for the luminescent assay was purchased from Promega.

2.2 Strains and Plasmids

For all cloning we used *Escherichia coli* DH5 α cells as a host. The only yeast strain used in this study was *yvc* Δ . The genotype of the strain is given below.

S.no	Strain no	Source	Genotype	Remarks
1	ABE 3796	Euroscarf	BY4741; <i>MAT a his3Δ1 leu2Δ0</i>	<i>Yvc1</i> ∆ strain
			met15 Δ 0 ura2 Δ 0 Yvc1 Δ ::kanMX	

Table 2.1: Details of the strains used in this study.

The details of the plasmids used in this study are given in *Table 2.2*.

S. no	Strain no	Remarks
1	ABE 4149	Complete Yvc1 gene with N- terminus His tag cloned in

		pRS313 TEF Vector at XbaI and XmaI sites.
2	ABE 4235	Yvc1 gene with mutation of Cys17 to Ala cloned in pRS313 TEF
		vector at the sites of XbaI and XmaI with His tag.
3	ABE 4236	Yvc1 gene with mutation of Cys61 to Ala cloned in pRS313 TEF
		vector at the sites of XbaI and XmaI with His tag.
4	ABE 4237	Yvc1 gene with mutation of Cys61 to Ala and Cys79 to Ala
		cloned in pRS313 TEF vector at the sites of XbaI and XmaI
		with His tag.
5	ABE 4147	Yvc1 gene with mutation of Cys106 to Ala cloned in pRS313 TEF
		vector at the sites of XbaI and XmaI with His tag.
6	ABE 4238	Yvc1 gene with mutation of Cys132 to Ala cloned in pRS313 TEF
		vector at the sites of XbaI and XmaI with His tag.
7	ABE 4239	Yvc1 gene with mutation of Cys179 to Ala cloned in pRS313 TEF
		vector at the sites of XbaI and XmaI with His tag.
8	ABE 4240	Yvc1 gene with mutation of Cys191 to Ala cloned in pRS313 TEF
		vector at the sites of XbaI and XmaI with His tag.
9	ABE 4241	Yvc1 gene with mutation of Cys343 to Ala cloned in pRS313 TEF
		vector at the sites of XbaI and XmaI with His tag.
10	ABE 4244	Yvc1 gene with mutation of Cys624 to Ala cloned in pRS313 TEF
		vector at the sites of XbaI and XmaI with His tag.

Table 2.2: Various plasmids used in this study.

2.3 Primers

The list of all primers used in this study is given in *Table 2.3*.

S. no	Name	Nucleotide sequence($5' \rightarrow 3'$)
1	YVCXbaI Fw	TGTGTGTCTAGACCCATTTATGTTAGCTAC
2	YVCXmaI Rw	ACACACCCCGGGTTAGTGGTGATGGTGATGATGCTCTTTCTT
		TCCTTTATGTCTAATTTTTC
3	YVC17 Fw	ATTTCTAACGAACAGGCAATGCCGGAAAACAAT
4	YVC17 Rw	ATTGTTTTCCGGCATTGCCTGTTCGTTAGAAAT

5	YVC61 Fw	CCCAATGATATTGTTGCCGACCATTCTGAGATTT
6	YVC61 Rw	AAATCTCAGAATGGTCGGCAACAATATCATTGGG
7	YVC79 Fw	CTGGCTTATGAAGCAGCGGGGGGGGGAACCCTAAA
8	YVC79 Rw	TTTAGGGTTCCCGCCCGCTGCTTCATAAGCCAG
9	YVC106 Fw	TCACTTCTTAAAGTTGCTGAGTGGTATTCC
10	YVC106 Rw	GGAATACCACTCAGCAACTTTAAGAAGTGA
11	YVC132 Fw	GCCTCACAACAGTTAGCGAAATTGTTAATTGAA
12	YVC132 Rw	TTCAATTAACAATTTCGCTAACTGTTGTGAGGC
13	YVC179 Fw	GCCACAGATATGCACGCGACTACAGTGATAGGA
14	YVC179 Rw	TCCTATCACTGTAGTCGCGTGCATATCTGTGGC
15	YVC191 Fw	AGTGGATTTCAGCGTGCTTTAAAATGGATATGG
16	YVC191 Rw	CCATATCCATTTTAAAGCACGCTGAAATCCACT
17	YVC343 Fw	TATAGAGTCTTATCCGCAGCAGCACCATTT
18	YVC343 Rw	AAATGGTGCTGCGGGATAAGACTCTATA
19	YVC624 Fw	AAAAACGTTAAAAAAGCGAGTCCCTCCTTCGAA
20	YVC624 Rw	TTCGAAGGAGGGACTCGCTTTTTTAACGTTTTT

Table 2.3: The list shows all primers used in this study.

2.4 Media

All media, buffers and stock solutions were prepared using Millipore elix 3 deionized water. They were sterilized by autoclaving at 15psi pressure and 121^oC for 15- 20 minutes. Additional nutrients and amino acids were prepared as per the requirement. Agar was added at a final concentration of 2.5% if required.

2.4.1 YPD	Yeast extract	10g/l
(Yeast extract-	Peptone	20g/l
Peptone-Dextrose)	Dextrose	20g/l
Medium		

2.4.2 SD	Yeast nitrogen base	1.7g/l	
(Synthetic Defined)	Ammonium sulfate	5g/l	
Medium	Glucose	20g/l	
	Supplementary amino acids	80mg/l	
2.4.3 SOB	Tryptone	20g/l	
(Super Optimal Broth)	Yeast extract	5g/l	
Medium	NaCl	0.5g/l	
	1M KCl	1.25 mL	
	1M MgCl ₂	5 mL	
	1M MgSO ₄	5 mL	
	pH of the medium was adjusted to 7 using		
	1N NaOH		

2.5 Buffers, Stock solutions and other chemicals

2.5.1 Ampicillin stock solution

A 50mg/ml stock of ampicillin was prepared in deionized water. The stock keeps at - 20^{0} C in a tight container.

2.5.2 GSH stock solution

A 100 mg/ml stock of glutathione was dissolved in required amount of deionized water and keeps at -20° C in a tight container.

2.5.3 TERNAse

A 10 mg/ml RNAse stock was prepared in TE buffer (pH 8). The final working concentration was 10 μ g/ml.

2.5.4 50% Glycerol

The required amount of glycerol was dissolved in deionized water. After autoclaving, kept at room temperature. It was used in making -80° C stock of *E.coli*

2.5.5 Alkaline lysis for plasmid isolation

a. Solution I (Resuspension)	50 mM Glucose
	25 mM Tris-HCl (pH 8)
	10 mM EDTA (pH 8)
	Auticlaved and stores at 4^{0} C.
b. Solution II (Lysis)	0.2 N NaOH (diluted from 5 N NaOH)
	1% SDS (diluted from 20% stock)
	Freshly prepared when required.
c. Solution III (Neutralization)	Potassium acetate 294.5 g/l
	Glacial acetic acid 110 mL/l
	Make up the solution to 1000 mL and
	keep at 4 ⁰ C after autoclaving.
d. PCI	Purchased readymade PCI solution from
(Phenol Chlorofom Isoamyl	Sigma- Aldrich and stored at 4 ⁰ C.
Alcohol) Solution	

2.5.6 Agarose gel electrophoresis reagents

a. 1X TAE	40 mM Tris-acetate		
(Tris- Acetate- EDTA)	1 mM EDTA (pH 8) for a 1000 mL		
Buffer	solution. 50X stock was prepared and		
	keep at room temperature after autoclaving.		
b. Orange G dye 6X	0.25% Orange G		

	30% Glycerol
c. 0.8% agarose gel	0.8 g in 100 mL of 1X TAE buffer.
e. Ethidium bromide	A final concentration of 0.5 µg/mL from
	the stock of 10 mg/mL.

2.5.7 Yeast transformation solutions

a. TE (Tris- EDTA) Buffer	10 mM Tris- HCl (pH 8)		
	1 mM EDTA		
b. Lithium Acetate	A final concentration of 0.1 M.		
	10M stock is prepared in TE buffer and		
	Keep at room temperature.		
c. PEG (Polyethylene glycol)	PEG 3350 500g/l dissolved in dH_2O .		

2.5.8 SDS PAGE solutions and reagents

a. 30% Acrylamide mix	29.2% Acrylamide			
	0.8% N,N'- methylenebisacrylamide			
	Filtered before use.			
b. Resolving gel buffer	Tris- HCl 184.5g/l			

(4X stock)	Adjust the pH to 8.8 using 6N HCl and
(HX Stock)	
	keep at 4°C.
a Staaling gel huffen	Trie $UCI = 60.5 \times 1$
c. Stacking gel buller	111S- HC1 00.3g/1
(4X stock)	Adjust the pH to 6.8 using 6N HCl and
	keep at 4 ⁰ C.
a. SDS	0.4% SDS was used in the buffer.
e. TEMED	Added according to the gel concentration
f. Ammonium per sulfate (APS)	10% solution was used in the buffers.
g. Gel running buffer	25 mM Tris base (pH 8.3)
	250 mM Glycine
	0.1% SDS

2.5.9 Western blotting reagents

a. Transfer buffer	48 mM Tris- base
	39 mM Glycine
	20% Methanol
c. Washing buffer	0.1% Tween 20 in 1X PBS
d. Blocking agent	5% BSA (Bovine Serum Albumine) in
	0.1% PBST

e. HRP substrate	

Other Chemicals

2.5.10 Hydrogen peroxide (H₂O₂)

 H_2O_2 is a strong oxidizing agent with an oxygen- oxygen single bond. We used it as an agent to induce oxidative stress in both plate based assay and Ca2+ luminescent assay. It was added in each experiment as per the requirement. We purchased a 10 M stock from commercial sources.

2.5.11 Diamide

Diamide is reported to be a thiol oxidizing agent. It can increase the protein glutathionylation in a concentration dependent manner. We used this chemical in the immunoprecipitation based glutathionylation assay. The final working concentration was determined as per the requirement.

2.5.12 *N*- Ethylmaleimide (NEM)

NEM is a organic compound derived from maleic acid. It can irreversibly bind to the thiol groups because of the presence of an alkene. We used this chemical to block the cysteine residues of YVC1 in the glutathionylation experiments.

2.5.13 Ido-acetamide (IAM)

IAM is an alkylating agent which can covalently bind to the thiol groups of cysteien residues. As it is an irreversible reaction, we used this to block the cysteine residues of YVC1. The chemical was added as per the concentration of protein.

2.5.14 Coelenterazine

Coelenterazine is a light- emitting molecule found in many aquatic organisms. It is a substrate for many luciferases like aequorin. The molecule absorbs light in the ultraviolet and visible spectrum. We used it as a luciferase for aequorin in the Ca²⁺ luminescent assay.

Methods

2.6 Growth and maintenance of bacteria and yeast strains

The *E. coli* straine were grown in LB medium at 37⁰C. The *E. coli* transformants were selected and maintained on LB medium supplemented with ampicillin.

The yeast strains were grown on YPD medium at 30° C. The yeast transformants were selected and grown on SD medium with the required supplements.

2.7 Recombinant DNA methodology

All molecular techniques used in this study in both bacterial and yeast cells were according to the standard protocol.

2.8 Tagging the protein with His tag

PCR has been done using the primers, YVC XbaI forward and YVC XmaI reverse to construct the His tag on the N-terminal of the protein YVC1. This was done to check whether the mutants are localizing properly. I have used the His tagged proteins throughout my experiments.

His tag was encoded by the sequence- CAT CAT CAC CAT CAC CAC

2.9 Construction of site directed mutants of YVC1

I separately mutated at 8 cysteine residues of YVC1 to alanine residues using splice overlapping extension method. All the mutants were of His tagged at the N-terminal as explained before. I used 4 different primers for creating these point mutations. For creating C17A mutation, I created two constructs using the following set of primers;

(1) YVC XbaI Fw & YVC17 Rw

(2)YVC17 Fw & YVC XmaI Rw

Then I fused these two templates using YVC XbaI Fw and YVC XmaI Rw. In this manner I created the other Cys to Ala mutations of YVC1. The mutations were confirmed by sequencing.

2.10 Transformation of yeast

All the mutant plasmids of YVC1 were transformed into *S. cerevisiae* of *yvc1* Δ background using the standard lithium acetate method. *S.cerevisiae* culture was grown in YPD medium for 16 hours at 30^oC. Reinoculated the culture into fresh YPD medium with a starting OD of 0.1. The culture was allowed to grow for 5-6 hours. The cells were harvested by centrifuging at 6000 rpm for 5 min followed by washing with sterile distilled water and 0.1 M lithium acetate. The cells were incubated at 30^oC for 30 minutes in 0.1 M lithium acetate to get a cell density of 10^ocells/ml. After spun down suspended the cells in 0.1 M lithium acetate and made 100 µl aliquots. Approximately 50 µg of heat denaturated single stranded DNA followed by 0.3- 0.7 µg of plasmid were added to each aliquot and incubated for 10 minutes at 30^oC. 0.3 ml of 50% PEG was added to each tube and mixed well. After incubation of 45 minutes at 30^oC the samples were subjected to heat shock at 42^oC for 10 minutes. After cooling pellet down the cells at 6000 rpm for 5 minutes followed by 2 washing with sterile distilled water. The culture was suspended in appropriate amount of water and spread on selection plates.

2.11 Functional plate assay by dilution spotting

For growth assay, *S.cerevisiae* strains with YVC cysteine to alanine mutants were grown in SD medium without histidine (the mutant gene was cloned downstream of TEF promoter in pRS313 vector, which has a histidine marker). A secondary culture was inoculated at an OD of 0.1 and grown at 30° C for 6 hours. These were serially diluted to the concentrations of 0.1, 0.01, 0.001 and 0.0001. The cell suspensions were spotted on SD-His plates with different concentrations of H₂O₂. The plates were incubated at 30° C for 3 days and photographs were taken.

2.12 Protein purification from the yeast whole cell extract

All the mutant cells were grown in SD-His medium. A secondary culture was inoculated in 100 ml of medium and allowed to grow at 30° C at 30 minutes until the growth reaches the exponential phase (OD₆₀₀ 0.6- 0.8). For glutathionylation *in vivo* assay the culture was treated with 1.8 mM diamide for 10 minutes at 30° C. The cells were harvested by centrifugation and resuspended in yeast breaking buffer along with protease inhibitor and phenylmethanesulfonyl fluoride. Acid-washed glass beads were added to the cell suspension and gave vigourous vortexing. The whole cell extract were collected by centrifugation. For selectively getting YVC1 protein, added anti-his mouse monoclonal antibody (as per the amount of whole cell extract) and incubated at 4° C overnight. We used an immuniprecipitation kit (from Millipore) to purify the YVC1 protein alone.

2.13 Protein electrophoresis and western blotting

I used a 5% non- reducing gel to run my samples. Equal amount of proteins were loaded in two gels without β - mercaptoethanol (after heating at 90^oC for 10 minutes with the loading buffer). Both the gels were blotted on nitrocellulose blotting papers. Immediately after blotting, blocking was done using 5% BSA. One blot was incubated with anti-His mouse monoclonal antibody and the second one with anti-GSH mouse monoclonal antibody at 4^oC overnight with gentle shaking. Anti- mouse HRP linked polyclonal antibody was added and incubated overnight at 4^oC with gentle shaking. Washing was done using 0.1% PBST 3 times. The signal was detected using HRP substrate.

For *in vitro* glutathionylation assay, proteins were purified from the yeast whole cell extract and given *N*-Ethylmaleimide/Ido-acetamide treatment for 1 hour at 30^{0} C in Tris buffer (pH 8). After washing, 100 nM diamide along with 10mM GSH for 10 minutes at 30^{0} C was added. This was followed by the method for checking glutathionylation.

2.14 Aequorin based Ca²⁺ luminescent assay

Real time cytosolic Ca^{2+} level were measured using this assay. All the cells having the mutant plasmids were first transformed with aequorin plasmid (Leucine marker). The transformed mutants were grown in SD-His-Leu medium at 30^oC until the OD reached 1.5. The cells were harvested by centrifugation at 6000 rpm for 5 minutes. The cells were suspended in minimal medium (200 µl) and incubated with 100 mM coelenterazine for 30 minutes at 30^oC. After washing with sterile distilled water, resusupended the cells in 200µl of SD-Leu-His medium. To each of the sample added 500 nM EGTA and incubate for 30 minutes at 30^oC. Luminescence was measured in 96 well white plates by inducing oxidative stress using 4 mM H₂O₂.

2.15 Sequence analysis

The sequences were retrieved from *S.cerevisiae* Genome Database (SGD). Protein sequences of homologues of YVC1 were retrieved. Conserved amino acids among these homologues were found by multiple sequence alignment using the Clustal W software. The topology and transmembrane domains were predicted using Topcons consesnsus method.

Chapter 3

Results and Discussions

3.1 Sequence analysis

3.1.1 Homologues of Yvc1

Organism	% similarity with Yvc1p	Size of the protein(aa)	Location	Function
H. Sapiens - TRP V 1	23	838	Plasma membrane	Pain and heat sensation
D. melanogaster- TRP isoform a	22	1128	unknown	unknown
<i>M. musculus</i> – TRP channel 4 isoform 1	22	974	unknown	unknown
C. albicans- Hypothetical protein Cao	45	675	Vacuole	Predicted to be Ca ²⁺ transporter

Table 3.1: Homologues of Yvc1.

3.1.2 Multiple sequence alignment using Clustal W

MSA of YVC1 with fungi is shown in *Figure 3.1*. The result shows that cysteine 106, 191 and 343 are conserved among the homologues in different fungi.

MSA with the homologues of *H. sapiens, M.musculus, D. melanogaster* shows that cysteine 17 and 79 are conserved. The data is shown in *Figure 3.2.*

Sacc_cere_ Yvclp Cand_orth_ Yvclp -----DLHLPISNEQCMPENN 22 ----MLKYNPPHSTVLYHTLPVLYTWGLLEQLMSEQLPVDNEGCQPANS 45 Cand_trop_Hypo MPEL-DLEENNP----------LLPPSOVNDENYEGSIY 28 MPEL-DLEENNP------ 28 Cand dubl Yvc1 MPOLADLEENNP------LIPPSQRNNEEYEGSIY 29 Cand albi Caola.2209 Cand_teni_VCC ---MFDLEDNNP-----GSIY 23 --MSTDIEASES----- 15 Cand_Glab_ Cao -MGWRDIFASEAS-----GFLQDMQRHRLLPTHE 28 Aspe nudu Hypo : Sacc_cere_ Yvclp Cand_orth_ Yvclp GSLGFEAPTPRQVLRVTLNLKYLIDKVVPIVYDPNDIVCDHSEILSPKVV 72 G-YNVEAPTSRQVLRVALNLKYLVDKVVPVTYGCDEIESDHSSVVTPAVV 94 Cand_trop_Hypo GNDARFCPNSROVFRICSNLKLLIDKIIPICFKEEEITSSNSAILSDPVI 78 GEDARFCPNSRQVFRICSNLKLLIDKIIPICFKEDEITSSNSAILSDPVI 78 Cand dubl Yvc1 Cand albi Caola.2209 G-EGIYCPNSRQIFRICTNLKSLIDQIIPICFKEEEITAPDSSILNGPVI 78 Cand_teni_VCC Cand_Glab_ Cao -OELNCPNSROVWRICKNLKLLIDKVVPILFDKEEILRPDSSILNDNVI 72 ---KTFFPNSROVWRICSNLKHLIDKVVSVEFAESDITDAGSPILNENVI 62 Aspe nudu Hypo GDEIPTDHPAKEVTRLALRLKYOLEOVIPCELEEESITSANSRVITODVI 78 .::: *: .** :::::. ..* * ::. *: Sacc_cere_ Yvclp Cand_orth_ Yvclp KLAYEACG--GNPKDKANKRKYQSVIIFSLLKVCEWYSILATMEVHNAKL 120 QLALEACG--GDPEDKKNRDKYRAVVVFALLKVYGWYSQLAATELHNAEL 142 DLVYQAAGGKGDGKEGTSSYKYRGSLVFCLLKVCDWYWQQSEYELSDNEL 128 Cand_trop_Hypo Cand dubl Yvc1 DLVYQAAGGKGDGKEGTSSYKYRGSLVFCLLKVCDWYWQQAEFELSDNEL 128 DLVYKAAGGKGDGKEGTSSRKYRAALVFCLLKVCDWYWQQSEFELSDNEL 128 Cand albi Caola.2209 Cand teni VCC ELCYTAAGGKGDGKEGTSSRKYRACLVFCLLKVCDWYWQQSEYELSDNEL 122 Cand_Glab_ Cao GLVYKAAGGKGNGKEGTSSYRYQSSLVFCLLKVCDWYWQQAEYELYDTNL 112 Aspe nudu Hypo HTAMQAGG-----EHLRACVPFCLLVCLRWFKRQAQQELWDSEL 117 : :. : *.** *: *: : :* Sacc_cere_ Yvclp Cand_orth_ Yvclp YETRNLASQQLCKLLIEREETRDLQFLFMQLLLRRYVINENDEDQEPLNA 170 YESRGVAAOOLCKIIIDOEEMNDLHFMFMOMLLRRYTINENDEDSEPANA 192 Cand_trop_Hypo YSLRALTAQTIAAIVIERE--KRDKYLFLTMLCHRYTICVNGVDATPVSA 176 Cand dubl Yvc1 YSLRALTAQTIAAIIIERE--KRDKYLFLNMLCHRYTICVNGVDATPVSA 176 FSLRALTAQTLAAIIIERE--TNDKYLFLSMLCHRYCICINGTDSTPVSA 176 Cand albi Caola.2209 YSLRALSAQTLAAIIIERE--NDEKYLFLSMLCHRYTICLNGEDSEPISA 170 Cand teni VCC Cand_Glab_ Cao YNLRAVAAQRLAADIIERT--ENDEYLFLAMLCHRYTICLNDEDSPFFNV 160 HELRATAFCMNFLTMSSIEADEDQNHLLVHVLLKRYSIFQDGEESAPANV 167 Aspe_nudu_Hypo: :* :** * :. : .. * : : . Sacc_cere_ Yvclp Cand_orth_ Yvclp LELATDMHCTTVIGSSGFQRCLKWIWRGWIVQNGLDPTTFIKDDSLAEVS 220 IELASDMHCTIVIGSGGFORCLTWLWRGWIIONRRDPTTFIRDETVSSPY 242 Cand trop Hypo LEMAVDMHSTIVIGSSGYORCIKWLWRGWIIOSSTDPHSYVLYKGAASOS 226 Cand_dubl_Yvc1 LEMAVDMHSTIVIGSSGYQRCIKWLWRGWIIQSSTDPHSYVLYKGAASQS 226 Cand albi Caola.2209 LEMAVDMHSTIIIGSSGYQRCIKWLWRGWIVQSSTDPHSYVLYKGIASQS 226 Cand teni VCC LELAVDMHSTTVISSSGYQRCIKWLWRGWIVQSSSDPHSYVLYKGVASHS 220 Cand_Glab_ Cao MELAVDMHSTTIIGSAGYORCIKWLWRGWIVOSEKDPYSYELYRETASOK 210 IERAVDLHALRVIGSSGYQKCIKYLWNGWLCQQEGNPTNFVPYQDRDSTD 217 Aspe_nudu_Hypo :* * *:*. :*.*.*:*:*:.::*.**: *. :* .: Sacc_cere_ Yvclp Cand_orth_ Yvclp VTP--LNAKYSSEDWDKISYRVLSCAAPFVWSRLLLYLESQRFIGIMLVI 368 VAP--LKLHNPSEYWDKISYRILSCAAPFVWSRMLLYLESEPFVGVMLVV 390 Cand trop Hypo VN----AHGATRIRYDEISFRVLACASPLMWSRLLLFLDAYKFVGAMIVV 371 Cand dubl_Yvc1 VN----SHGATRIKYDEISFRVLACASPLMWSRLLLFLDAYKFVGAMIVV 371 Cand albi Caola.2209 VSL--SSHDALRARYDEISYRVLACASPMMWSRLLLFLDAYKFVGAMIVV 373 Cand teni VCC IN----AHGALRDRYDEISYRLLSCAAPFMWSRLLLFLDAEKFVGAMMVV 365 Cand_Glab_ Cao LA----NKSPLKEQYDEISFRVLSLVSPLMWSRLLLYLDAQKFVGAMIVV 355 Aspe nudu Hypo LAHSASAGDEOROTLNKLSYNFLAFAGPMFWMRMMLYLDTLRFFGAMFVV 365 :::*:..*: ..*:.* *::*:*:: *.* *:*: Sacc_cere_ Yvclp Cand_orth_ Yvclp VP-KKWYKNVKKCSPSFEQ---YDNDDTEDDVGEDKDE----- 646 VP-REWYSKVKHICHKHEQE-KCASDDGSNDLSEKVSELLVKLSKVGLSV 682 Cand trop Hypo INTHQFSEKIDKVVKPVEQAGKAGVNWQIYEVIEKIDKLTNLLEVVVAE- 663 Cand dubl Yvc1 INTHQFSEKIDKIVKPVGQASKVGVNWQIYEVIEKIDKLTNLLEVVVAE- 663 Cand_albi_Caola.2209 Cand_teni_VCC INIHEFNQEIEKTVKPVKQANKMGVNWQIYEVIEKIDKLTALLEVVVEE- 663 INLNEFEKKVEGVAKPVKEATKVGLNWOFFDLYKKIDKLTEMVELVITE- 662 Cand Glab Cao IDMTKFSKDIDEVSKPVLDANRLGIKWEYYEIYNQLSELQTLVKAVLKE- 643 Aspe_nudu_Hypo PSAAEVAKLREEVRALTEVVRVLIETNGERDGGRESNRLG----- 631 : . :

Figure 3.1: MSA of YVC1 with homologues in fungi.

Mus Musc TRP4	SLEEAEIYFKININCIDPLGRTALLIAIENENLELIELLLSFNVYVGDAL	100
Homo sani TRPV1	SLEEAETYFKININCIDPLOPTALLIATENENLELIELLISENVYVODAL	100
		200
Dros_mela_TRP Y 1SO A	MLQKAQDTEIINVNCVDPLGKTALLMAIDNENLEMVELLININVDTKDAL	88
Sacc_cere_Yvcl	NEQCMPENNGSLGFEAPTPRQVLRVTLNLKYL	45
	* :*: . : : * .:: : * :.: *	
Mus Musc TRP4	LHAIRKEVVGAVELLLNHKKPSGEKQVPPILLDKQFSEFTPDITPIIL	148
Homo sapi TRPV1	LHAIRKEVVGAVELLINHKKPSGEKOVPPILLDKOFSEFTPDITPIIL	148
Dros mala MPD v ico A		120
DIOS_MEIA_IRF Y ISO A	LISISEEF VERVEVELODENVIF ISEGNISWESKSEDISIFIFDIIFEIL	130
Sacc_cere_IVCI	IDKVVPIVIDPNDIVCDHS	64
	:. : . . ::: :*.	
Mus Musc TRP4	AAHTNNYEIIKLLVQKGVSVPRPHEVRCNCVECVSSSDVDSLRHSRSRLN	198
Homo sapi TRPV1	AAHTNNYEIIKLLVQKGVSVPRPHEVRCNCVECVSSSDVDSLRHSRSRLN	198
Dros mela TRP v iso A	AAHRDNYETTKTLUDRGAVLPMPHDVRCGCDECVOSROEDSLRHSRSRTN	188
Case core Vicil	ELINOTITIC CONTRACTOR OF THE PROPERTY OF THE P	06
Sacc_cere_ivei	GILSPRVVKLAIERCGGNPKDKANKRKIQSVI	90
	: *: *: *: :: :	
Mus Musc TRP4	IYKALASPSLIALSSEDPFLTAFQLSWELQELSKVENEFKSEYEELSRQC	248
Homo_sapi_TRPV1	IYKALASPSLIALSSEDPFLTAFQLSWELQELSKVENEFKSEYEELSRQC	248
Dros mela TRP y iso A	AYRALASPSLIALSSKDPILTAFELSWELRRLSFLEHEFKNEYQELRKQC	238
Sacc cere Yvc1	IFSLLKVCEWYSILATMEVHNAKLYETRNLAS	128
Mus Muss TPPA	KOPAKDI I DOWDCCDFI FITI NYDDDNCI TEFOCODI ADI KI ATKYD	296
Mus Musc IKP4	KYPAKDILDYIKSSKELEIILMIKDUSSILEEVSSMDLAKLKLAIKIK	290
Homo_sapi_TRPV1	KQFAKDLLDQTRSSRELEIILNYRDDNSLIEEQSGNDLARLKLAIKYR	296
Dros_mela_TRP γ iso A	QDFATALLDHTRTSHELEILLNHDPTGPVYEHGERMHLNRLKLAIKLR	286
Sacc cere Yvcl	QQLCKLLIEREETRDLQFLFMQLLLRRYVINENDEDQEPLNALELATDMH	178
Mus Musc TRP4	QKEFVAQPNCQQLLASRWYDEFPGWRRRHWAVKMVTCFIIGLLFPVFSVC	346
Homo sapi TRPV1	OKEFVAOPNCOOLLASRWYDEFPGWRRRHWAVKMVTCFIIGLLFPVFSVC	346
Dros mola TPP v iso A	OFFERING CONTRACTOR CO	226
DIOS_MEIA_IRF Y ISO A	QKKE VARSNVQQLLASIWIEGLEGE KKKNMALQAVDIIKIGHE EIESLA	330
Sacc_cere_Yvc1	CTTVIGSSGFQRCLKWIWRGWIVQNGLDPTTFIKDDSLAEVSLISHFNPV	228
	:. *: * * : :. : ::. *.	
Mus Musc TRP4	MWHPTLVAEALFAIANIFSSLRLISLFTANSHLGPLQISLGRMLLDILKF	519
Homo sapi TRPV1	MWHPTLVAEALFAIANIFSSLRLISLFTANSHLGPLQISLGRMLLDILKF	519
Dros mela TRP v iso A	AWDPMLISEGLFSAANIFSSLKLVYIFSVNPHLGPLOVSLSRMVMDIMKF	536
Saco cere Vycl	SEDWORTSVEVT.SCAAPEVWSELT.LVLESOPETCIMI.VII.KHMMKESTVE	379
Sacc_cere_iver	SEDHDRISIRVESCARFFYHOREDHIDESSTRFIGHAUTERARESIVE	575
March March MDD4		045
MUS_MUSC_TRP4	KSAAIASERHNISNGSALVVQEPPREKQRKVNFVTDIKNFG	846
Homo_sapi_TRPV1	RSAAIASERHNLSNGSALVVQEPPREKQRKVNFVADIKNFG	842
Dros_mela_TRP γ iso A	PQGTQGAAMTASSQVTKYNKSALKPYNKRIAGHKKRWGTLIEAAKVGNVS	935
Sacc cere Yvcl	NRNSGMRATQLKNSRSLKLQRTAEQEDVHFKVPKKWYKNVKKCS	625
	. * :*	

Figure 3.2: MSA of YVC1 with homologues of higher organisms.

3.1.3 Transmembrane prediction using Topcons

The Topcons consensus method predicted that YVC1 is a protein with 6 transmembrane domains. I also looked at the position of each of the cysteine residues of protein using the predicted transmembrane structure. *Figure 3.3* shows the TM structure of YVC1 made by me as per the result from Topcons method.

Figure 3.3: Predicted structure of transmembrane domains of YVC1.

3.2 A functional plate assay using oxidizing agents

Figure 3.4: yvc1 Δ *strain shows enhanced resistance to oxidizing agent.*

GSH1 is the first enzyme in glutathione biosynthesis. The $gshl\Delta$ strains are sensitive to oxidative stress. The same cell lines show enhanced resistance to oxidizing agents in $yvcl\Delta$ background. This indicates Yvc1 contributes to the sensitivity of yeast cells under oxidative stress. This work is done previously in the lab and the data is not published (Chandel & Bachhawat, unpublished).

3.3 Intracellular Ca^{2+} measurement of yvc1 Δ strain during oxidative stress

Figure 3.5: Intracellular Ca^{2+} measurement using acquorin based luminescent assay.

As the *yvc1* Δ strain showed resistance to oxidizing agents in the plate assay, I measured the cytosolic Ca²⁺ level using aequorin based luminescent assay. The result shows that Ca²⁺ level is low in *yvc1* Δ cells compared to control and *cch1* Δ cells after exposing to H₂O₂. This implies that the enhanced resistance of *yvc1* Δ cells is due to decrease in the level of Ca²⁺ as the channel is not active in these cells.

3.4 Glutathionylation analysis

3.4.1 In vivo assay using diamide

Figure 3.6: YVC1 is glutathionylated under oxidatitive stress.

An immunoprecipitation based assay was done to check whether the protein YVC1 is glutathionylated or not. To induce such a condition, treated the cells with diamide. The western blotting results show that in the diamide treated cells, YVC1 showed a thick band at the required length using anti- GSH antibody. Whereas the non- treated cells showed a very faint band. The control blot showed band at the required size using anti- His antibody. So analysis of the results leads me to the conclusion that YVC1 is glutathionylated.

3.4.2 In vitro assay using diamide

Figure 3.7: YVC1 glutathionylation is affected by NEM and IAM.

AS YVC1 seems to be glutathionylated, I treated the protein with *N*- ethylmaliemide and Ido- acetamide which will irreversibly block the thiol groups of cysteine residues.

Then I gave NEM and IAM treatment to the protein to see whether it is affecting the glutathionylation of YVC1. The western blotting results show that the level of glutathionylation has decreased in the samples treated with NEM and IAM. Whereas, the control shows good level of glutathionylation. By this assay it is confirmed that YVC1 is a protein which is prior to get glutathionylated under oxidative stress.

3.5 Analysis of all $Cys \rightarrow Ala$ mutations

There are 9 cysteine residues present in YVC1. To check which of these cystienes are glutathionylated I created all Cys \rightarrow Ala mutations- C17A, C61A, C106A, C132A, C179A, C191A, C343A, C624A and a double mutant C61A C17A. C79A is a mutation which is under construction.

3.5.1 A functional plate using H₂O₂

Figure 3.8: A functional plate assay using H_2O_2 (selection plate SD-His).C17A and C191A show resistance to oxidizing agent.

The spotting assay of mutants in 2 mM H_2O_2 plates show that YVC C17A and YVC C191A mutants are growing more than the control cells. This implies that these mutants can be loss function mutants. Another important observation here is YVC C343A mutant is showing very less growth compared to control. This can be a gain of function mutant.

3.5.2 Checking localization of all Cys \rightarrow Ala mutants

Localization of mutants reveals that except YVC C61A, all other mutants are localizing properly to the vacuole. Localization was checked by Mr. Avinash Chandel.

Figure 3.9: The image shows the localization of Mutants.

3.5.3 Glutathionylation assay for all Cys \rightarrow Ala mutants

The glutathionylation assay for the mutants shows YVC C17A, YVC C61A and YVC C191A are having lower level of glutathionylation. Whereas, YVC C343A shows similar band as control. Here C61A is a mislocalized protein.

The lower level of glutathionylation of YVC C17A and YVC C191A indicates that these can be the cystienes which are getting glutathionylated and leads to the activation of the channel YVC1 under oxidative stress.

Figure 3.10: The mutants YVC C17A, YVC C61A and YVC C191A are showing lower level of glutathionylation compared to the control.

3.5.4 Ca²⁺ measurement using aequorin based luminescent assay

VVC C17A and VVC C191A mutants show lower amount of Ca^{2+} as compared to control. This is a clear implication that cys17 and cys191 are the most critical cysteines that are glutathionylated under oxidative stress. The higher amount of Ca^{2+} in YVC C343A mutant confirms that the mutant is hyper active.

Figure 3.10: C17A and C191A mutants are showing lower level of cytosolic Ca^{2+} .

Conclusion

The Yeast Vacuolar Channel protein, YVC1 has an important role in maintaining Ca^{2+} homeostasis inside the cell. The analysis of *yvc1* Δ strain yielded clue about the regulation of YVC1. As the response of yeast cells towards oxidative stress is rapid, the most probable mechanism of channel activation is some kind of post- translational modifications. Our study reveals that glutathionylation is one of the post translational modification involved in YVC1 regulation. As the important targets of glutathionylation are the thiol groups of cysteine residues, we have created $Cys \rightarrow Ala$ mutations of 8 of the 9 different cystiene residues of the protein YVC1. From the functional plate assay using H₂O₂, C17A and C191A were showing more growth than control whereas C343A mutation was showing increased sensitivity towards oxidative stress. By checking glutathionylation, C17A and C191A were showing lower level compared to control. Further analysis is needed for the C61A mutation which shows mislocalization to ER. The aequorin based calcium assay shows lower levels of cytoplasmic Ca²⁺ burst by the C17A and C191A mutants, which further confirms their loss in activity. On the other hand higher calcium burst in case of C343A suggests a constitutive gain of function by the C343A mutant. The data suggests that YVC1 is activated by the glutathionylation of Cys 17 and 191 under oxidative stress and Cys 343 plays a role in calcium channel activation

References

[1]. Brini M, Cali T, Ottolini D and Carafoli E. Intracellular Ca2+ homeostasis and signaling, Metallomics and the Cell, 12, 119-168, 2013

[2]. Yuji Hara *et al.* LTRPC2 Ca2+ permeable channel activated by changes in redox status confers susceptibility to cell death, Molecualr cell, 9, 163-173, 2002

[3]. Kozai D, Ogawa N, Mori Y. Redox regulation of transient receptor potential channels, Antioxidants & Redox Signalling, 21, 971-986, 2013

[4]. Christina L. Grek *et al.* Causes and consequences of cysteine S- glutathionylation, The journal of biological chemistry, 288, 26497–26504, 2013

[5]. Cumming RC *et al.* Protein disulfide bond formation in the cytoplasm during oxidative stress, J. Biological Chemistry, 24, 21749-58, 2004

[6]. Qilin U *et al.* A novel role of the vacuolar calcium channel Yvc1 in stress response, morphogenesis and pathogenecity of *Candida albicans*, International J. of Medical Microbiology, 304, 339–350, 2014

[7]. Jessica Chiaratto *et al.* The involvement of the Mid1/ Cch1/ Yvc1 calcium channels in *Aspergillus fumigatus* virulence. PLOS ONE, 9, 103987-99, 2014

[8]. Zhenwei Su *et al.* Yeast gain- of- function mutation reveals structure- function relationships conserved among different subfamilies of transient receptor potential channels, PNAS, 104, 19607-612, 2007

[9]. Xin- Liang Zhou *et al.* The transient receptor potential channel on the yeast vacuole is mechanosensitive, Cell Biology, 100, 7105-7110, 2013

[10]. Livia C. Hool and Ben Corry, Redox Control of Calcium Channels: From Mechanisms to Therapeutic Opportunities, Antioxidants & Redox Signalling, 9, 409–435, 2006

[11]. Slobodan M. Todorovic and Vesna Jevtovic-Todorovic, Redox Regulation of Neuronal Voltage-Gated Calcium Channels, Antioxidants & Redox Signalling, 21, 880-891, 2013

[12]. Marisa Brini, Tito Calì, Denis Ottolini, and Ernesto Carafoli, Intracellular Calcium Homeostasis and Signaling, Metallomics and the Cell, 12, 119–168, 2013

[13]. Jiangjun Cui et al. Calcium homeostasis and signaling in yeast cells and cardiac

Myocytes, FEMS Yeast Res, 9, 1137–1147, 2009

[14]. Myriam Bonilla and Kyle W. Cunningham, Calcium Release and Influx in Yeast: TRPC and VGCC Rule Another Kingdom, Sciences STKE, 127, 1126-1130, 2002

[15]. Makoto Ihara et al. TRP Channel of a Fungal Transient Receptor Potential

Molecular Bases of Multimodal Regulation, J. Cell Biology, 288, 15303-15317, 2013

[16]. Chris P. Palmer *et al.* A TRP homolog in *Saccharomyces cerevisiae* forms an intracellular Ca²⁺- permeable channel in the yeast vacuolar membrane, PNAS, 98, 7801-7805, 2001

[17]. Xinliang Zhou *et al.* Yeast screens show aromatic residues at the end of the sixth helix anchor transient receptor potential channel gate, PNAS, 104, 15555-155559, 2007

[18]. Qilin Yu *et al.* Interaction among the vacuole, the mitochondria, and the oxidative stress response is governed by the transient receptor potential channel in *Candida albicans* Free Radical Biology and Medicine, 77, 152–167, 2014

[19]. Olaf Voolstra and Armin Huber, Post-Translational Modifications of TRP Channels Cell, 3, 258-287, 2013

[20]. Yiming Chang, Gabriel Schlenstedt, Veit Flockerzi, Andreas Beck, Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvc1, FEBS, 584, 2028–2032, 2010

[21]. Valérie Denis and Martha S. Cyert, Internal Ca²⁺ release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue, The Journal of Cell Biology, 156, 29–34, 2002

[22]. Popa CV, Dumitru I, Ruta LL, Danet AF, Farcasanu IC, Exogenous oxidative stress induces Ca2+ release in the yeast Saccharomyces cerevisiae, FEBS, 277, 4027-38, 2010