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of Scheme-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.11 Plots of NACTs, and energy as a function of φ for q = 1.0Å of Scheme-1 29
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Abstract

HeH+
2 has been the subject of much research for the past 4-5 decades. We are interested

in studying the potential energy surfaces and locating the associated conical intersections

for this molecular system. Therefore, it is imperative to have a thorough understanding

of the coupling between electronic and nuclear motion and conical intersections which

we have explained in detail in Chapter 1. One of the most important properties of

conical intersections is that they show geometric phase effect (sign flip of electronic

wavefunctions) which we have used to our advantage to derive conditions to confirm

the presence of an intersection between potential energy surfaces. We then applied this

theory to HeH+
2 and obtained the corresponding results which we have discussed in

Chapter 2.
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Chapter 1

Introduction to Non-adiabatic

Coupling and Conical Intersections

1.1 Introduction

Hydrogen (H) and Helium (He) are the two most abundant elements in the universe,

making up almost 99% of its mass. These two elements are involved in most of the reac-

tions happening in stars and the interstellar medium. Naturally, many molecular species

comprising only H and He have been the subject of much research. But the molecule

garnering the most interest in the scientific fraternity is HeH+
2 , and not only due to its

significance in the field of Astrochemistry. HeH+
2 , a very simple ion-molecule system, is

one of the most studied molecular systems, both experimentally and theoretically. It was

the first molecular system for which vibrational enhancement was observed, experimen-

tally.1 And theoretically for the first time, reactive scattering resonances were predicted

using quantum mechanical calculations.2 But many inconsistencies between theory and

experimental observation have been reported for HeH+
2 , and this is also one of the reasons

that the scientific literature is full of research for HeH+
2 . So, taking a step in the direction

to understand this troublesome molecule in a more better way, we have dedicated the

present study to investigate the PESs (potential for nuclear motion, more in Section 1.5)

of linear HeH+
2 and confirm the location of CIs (formed when two or more PESs inter-

sect, see more in Section 1.6) formed by them. At CIs, the PESs are in close proximity

due to which the nuclear motion is no longer constrained to a single PES resulting in a

strong coupling between nuclear and electronic motion. So, before moving on to tackle

the HeH+
2 molecule, we intend to understand the theory on which the present study is

1



based.

1.2 Coupling between Nuclear and Electronic mo-

tion

We would like to see how nuclear and electronic motion are coupled to each other. In

this section, we will derive some mathematical relations which reveal this coupling.

The total Hamiltonian of a molecule, neglecting spin-orbit coupling and other rela-

tivistic effects can be written as,

H(r,R) = Tn(R) + Te(r) + U(r,R), (1.1)

where

U(r,R) = Uee(r) + Une(r,R) + Unn(R). (1.2)

r and R represent electronic and nuclear coordinates, respectively. Tn and Te in equa-

tion (1.1) are representing nuclear kinetic energy operator and electronic kinetic energy

operator, respectively. U is the potential energy term which includes electron-electron

repulsion (Uee), electron-nuclear attraction (Une), and nuclear-nuclear repulsion (Unn)

terms, given by equation (1.2).

The time-independent Schrödinger equation for a molecule can be written as,

(H(r,R)− ε)Ψ(r,R) = 0 (1.3)

where, ε is the total energy and Ψ(r,R) represents the total wavefunction of the

molecule.

Solving equation (1.3) without making any approximations is almost an impossible

task. So, we will make use of the Born-Oppenheimer approximation which encourages to

solve the Schrödinger equation for the electrons in the static electric potential resulting

from the nuclei in a fixed configuration. This approximation is based on the huge mass

difference between electrons and nuclei due to which the electrons can react immediately

to any (small) change in the nuclear configuration. Equipped with this approximation, we

will solve the total time-independent Schrödinger equation using two different approaches

and see how the coupling between nuclear and electronic motion arises mathematically

in these two cases.

2



1.2.1 Non-adiabatic Coupling

Within the framework of Born-Oppenheimer approximation, the adiabatic representation

of the total wavefunction of a molecule can be written as,

Ψ(r,R) =
∑
j

χj(R)φj(r;R) (1.4)

where χj(R) are the nuclear wavefunctions, and φj(r;R) are the adiabatic electronic

wavefunctions and they depend parametrically on nuclear coordinates.

The electronic wavefunctions (φj(r;R)) are eigenfunctions of electronic Hamiltonian

(He(r;R)) and the equation which relates these two entities is the time-independent

Schrödinger equation for electronic motion:

(He(r;R)− Ej(R))φj(r;R) = 0 (1.5)

where

He(r;R) = Te(r) + U(r,R) (1.6)

and Ej(R) is the electronic energy (including internuclear repulsion) of the jth state.

Substituting equation (1.4) in equation (1.3), and using equations (1.5) and (1.6), we

obtain∑
j

Tn(R)χj(R)φj(r;R) +
∑
j

Ej(R)χj(R)φj(r;R)− ε
∑
j

χj(R)φj(r;R) = 0 (1.7)

The nuclear kinetic energy operator (in terms of mass scaled coordinates) is written as,3,4

Tn(R) = − ~2

2m
∇2 (1.8)

where m represents mass of the system.

Substituting equation (1.8) in equation (1.7), left multiplying equation (1.7) by φ∗i (r;R),

and then integrating with respect to electronic coordinates gives us

− ~2

2m
∇2χi + (Ei − ε)χi −

~2

2m

∑
j

(2τij ·∇+ τ
(2)
ij )χj = 0, (1.9)

Equation (1.9) can be written in matrix form as,

− ~2

2m
∇2χ+ (E − ε)χ− ~2

2m
(2τ ·∇+ τ (2))χ = 0, (1.10)

where χ(R) is a column matrix containing the nuclear wavefunctions and E is a diagonal

matrix containing the adiabatic electronic energy.

3



τ and τ (2) in equation (1.10) are matrices containing the Non-Adiabatic Coupling

Terms (NACTs).4 τ is called the first-order non-adiabatic coupling matrix. It is a

vector matrix since each of its elements is a vector and is given as,

τij(R) = 〈φi(r;R)|∇φj(r;R)〉 (1.11)

τ (2) is known as the second-order non-adiabatic coupling matrix, which is a scalar matrix

with matrix elements having the following form,

τ
(2)
ij (R) =

〈
φi(r;R)

∣∣∇2φj(r;R)
〉

(1.12)

As can be seen from the form of equations (1.11) and (1.12), NACTs couple nuclear and

electronic components and also different electronic states.

We will now derive an equation which connects NACTs with the energy of the cor-

responding states. To do that, we consider equation (1.5) which is the electronic time-

independent Schrödinger equation. We differentiate this equation with respect to the

nuclear coordinates to get,

(∇He(r;R)) |φj(r;R)〉+He(r;R)(∇ |φj(r;R)〉)− (∇Ej(R)) |φj(r;R)〉

− Ej(R)(∇ |φj(r;R)〉) = 0 (1.13)

Left multiplying equation (1.13) by 〈φi(r;R)| (i 6= j) and then integrating over electronic

coordinates gives us,

〈φi(r;R)|∇He(r;R)|φj(r;R)〉+ 〈φi(r;R)|He(r;R))|∇φj(r;R)〉

− Ej(R) 〈φi(r;R)|∇φj(r;R)〉 = 0 (1.14)

The third term in equation (1.13) became zero because the electronic wavefunctions are

orthogonal in nature.

We know that the Hamiltonian operator can act on a bra state in the following

manner,

〈φj(r;R)|He(r;R)− 〈φj(r;R)|Ej(R) = 0 (1.15)

Using equations (1.11) and (1.15), we can rewrite equation (1.14) as,

〈φi(r;R)|∇He(r;R)|φj(r;R)〉+ Ei(r;R)τij − Ej(r;R)τij = 0 (1.16)

Rearranging equation (1.16) a bit gives the desired equation for NACT,

τij =
〈φi(r;R)|∇He(r;R)|φj(r;R)〉

Ej(r;R)− Ei(r;R)
(1.17)
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It is clear from equation (1.17) that the magnitude of NACT for a pair of states is

inversely proportional to the energy difference between them. As the PESs come close

to each other, the magnitude of NACTs increases and at the point of degeneracy, the

two energies become equal which implies NACT is not defined at that point since the

denominator in equation (1.17) is zero in such a case. This is why it is of utmost

importance to consider NACTs whenever we are dealing with processes which depend on

the close proximity of PESs.

Some other important properties of NACTs which we are stating without proof, are,

τij(R) = −τji(R) (1.18)

τii(R) = 0 (1.19)

provided the electronic wavefunctions are assumed to be real.

1.2.2 Vibronic Coupling

Let’s assume that, initially the molecule is in electronic state R at some reference nuclear

configuration R0. Now, suppose the state of the molecule changes from R to S. Due to

this electronic transition (change of state), there is relocation of electronic charge which

changes the Coulombic force acting on the nuclei and this results in change of nuclear

configuration from R0 to R.5 And if ∆R = R −R0 is small, then we can expand the

potential energy term (U(r,R)) in equation (1.1) using the Taylor series around the

reference configuration R0 as,

H(r,Q) = Tn(Q) + Te(r) + U(r,R0) +
∑
α

(
∂U

∂Qα

)
R0

Qα

+
1

2

∑
α

∑
β

(
∂2U

∂Qα∂Qβ

)
R0

QαQβ + ... (1.20)

where Q refers to the normal coordinates for the nuclei. The above equation is also called

Herzberg-Teller expansion.

Making use of the above discussion, we can write the total wavefunction of the

molecule in a slightly different way from equation (1.4) as,

Ψ(r,Q) =
∑
j

χj(Q)φj(r;R0) (1.21)

5



where we have used the diabatic electronic wavefuntions (φj(r;R0)). Hence, equation

(1.21) is called the diabatic representation of the total wavefunction.

In such a case the time-independent Schrödinger equation can be written as

(He(r;R0)− Ej(R0))φj(r;R0) = 0 (1.22)

where

He(r;R0) = Te(r) + U(r,R0) (1.23)

and Ej(R0) is the electronic energy of the jth state at the reference nuclear configuration

R0.

If we substitute equations (1.20) and (1.21) in (1.3), make use of equation (1.22), and

then simplify, we obtain

∑
j

φj(r;R0)Tn(Q)χj(Q) +
∑
j

∆Uχj(Q)φj(r;R0) +
∑
j

Ej(R0)χj(Q)φj(r;R0)

− ε
∑
j

χj(Q)φj(r;R0) = 0 (1.24)

where

∆U =
∑
α

(
∂U

∂Qα

)
R0

Qα +
1

2

∑
α

∑
β

(
∂2U

∂Qα∂Qβ

)
R0

QαQβ + ... (1.25)

Now, if we left multiply equation (1.24) by φ∗i (r;R0) and then integrate it over the

electronic coordinates, we obtain(
Tn(Q) + Ei(R0)− ε+

∑
α

(Vα)iiQα +
1

2

∑
α,β

(Wαβ)iiQαQβ + ...

)
χi(Q)

+
∑
j 6=i

(∑
α

(Vα)ij Qα +
1

2

∑
α,β

(Wαβ)ij QαQβ + ...

)
χj(Q) = 0 (1.26)

where

(Vα)ij =

〈
φi(r;R0)

∣∣∣∣( ∂U

∂Qα

)
R0

∣∣∣∣φj(r;R0)

〉
(1.27)

(Wαβ)ij =

〈
φi(r;R0)

∣∣∣∣∣
(

∂2U

∂Qα∂Qβ

)
R0

∣∣∣∣∣φj(r;R0)

〉
(1.28)

and they are known as linear and quadratic Vibronic Coupling Terms (VCTs),6

respectively. The mathematical form of VCTs (like NACTs) indicates coupling between

nuclear and electronic motion and also between different electronic states.
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1.3 Adiabatic-to-Diabatic Transformation (ADT)

In this section, we will see how adiabatic and diabatic representations are related to

each other and we will use this relation to derive quantitative conditions to confirm the

presence of CIs (section 1.6) between two PESs (section 1.5).

The adiabatic and diabatic electronic wavefunctions, φ(r;R) and φ(r;R0) respec-

tively, are connected by an orthogonal transformation,

φ(r;R) = A(R)φ(r;R0) (1.29)

where, A is an orthogonal matrix and is called the ADT matrix.

We have assumed that the electronic wavefunctions φj(r;R); j = 1, 2, ..., N form

a complete basis set in an N-dimensional Hilbert space. Now, |∇φj〉 (∇ is derivative

with respect to nuclear coordinates) is a function of electronic coordinates and exist in

the same Hilbert space, thus it can be expanded as a linear combination of electronic

wavefunctions as,

∇ |φj(r;R)〉 =
N∑
k=1

zjk |φk(r;R)〉 (1.30)

Left multiplying both sides of the equation (1.30) by 〈φi(r;R)| and then integrating over

electronic coordinates gives us,

〈φi(r;R)|∇φj(r;R)〉 = zji (1.31)

where we have used the orthogonality property of the electronic wavefunctions to obtain

equation (1.31). The LHS of equation (1.31) is nothing but the NACT (τij(R)). So,

using equations (1.31) and (1.18), we can rewrite equation (1.30) as,

∇ |φj(r;R)〉 = −
N∑
k=1

τjk(R) |φk(r;R)〉 (1.32)

which can be written in matrix form as follows,

∇φ(r;R) + τ (R)φ(r;R) = 0 (1.33)

Upon solving this first order differential equation in nuclear configuration space, we obtain

φ(r;R : R0) = Pexp

− R∫
R0

dR · τ (R)

φ(r;R0) (1.34)

7



where, the symbol P signifies that the integration is being done in an order. For ex-

ample, suppose the contour (R0 −→ R) is divided in a grid of nuclear positions as,

(R0, R1, R2, ..., R), then the integration is carried out for the limits (R0, R1), (R1, R2),

(R2, R3),... in that order. The reason for using this approach is that τ (R) in equation

(1.34) is not a simple function, but a matrix. Also, R0 in φ(r;R : R0) in equation

(1.34) suggests that the integration started from R0.

If we compare equations (1.29) and (1.34), we obtain

A(R) = Pexp

− R∫
R0

dR · τ (R)

 (1.35)

We can also integrate the RHS of equation (1.34) over a closed contour in nuclear con-

figuration space to get,

φ(r;R0 : R0) = Pexp
(
−
∮

Γ

dR · τ (R)

)
φ(r;R0) (1.36)

where the symbol Γ represents a closed contour.

For a closed contour, the ADT matrix is replaced by the Topological matrix (D(Γ))

and is given mathematically as,

D(Γ) = Pexp
(
−
∮

Γ

dR · τ (R)

)
(1.37)

The Topological matrix (like ADT matrix) is also an orthogonal matrix.

Since the electronic wavefunctions are self consistent, the wavefunction after being

taken around the closed contour will be equal to the initial one up to a phase factor, that

is

φj(r;R0 : R0) = exp(iθj(Γ))φj(r;R0) (1.38)

Because of this self consistency condition, the topological matrix is a diagonal matrix

and its elements have the following form,

Djk(Γ) = δjkexp(iθj(Γ)) (1.39)

where we have used the Kronecker delta, δjk so that off-diagonal terms of D(Γ) matrix

become zero. Also, the electronic wavefunctions are assumed to be real, so θj will always

be a multiple of π which means that the diagonal elements of the D matrix can only be

±1. In summary, the electronic wavefunction after being taken around a closed contour

in nuclear configuration space can be written as,

φj(r;R0 : R0) = ±φj(r;R0) (1.40)

provided the electronic wavefunctions are assumed to be real.
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1.4 π Quantization Condition

We would like to use the concepts explained in section 1.3 to derive a quantitative con-

dition to confirm the presence of a CI formed between two PESs. We will derive the

condition for the simplest case, that is, considering only two electronic states. If we

have only two states, then using equations (1.18) and (1.19), we can write the first-order

NACT matrix as follows,

τ (R) =

(
0 τ12(R)

−τ12(R) 0

)
. (1.41)

As we saw in the previous section, the ADT matrix is an orthogonal matrix, so it can be

written as,

A(R) =

(
cos γ12(R) sin γ12(R)

− sin γ12(R) cos γ12(R)

)
(1.42)

where γ12(R) is called the ADT angle.

The NACT and ADT matrices obey the following first order differential equation,

∇A(R) + τ (R)A(R) = 0 (1.43)

which is just an extension of equation (1.33) which we derived in section 1.3. Substituting

equations (1.41) and (1.42) in equation (1.43) and then simplifying, we obtain

∇γ12(R) + τ12(R) = 0 (1.44)

We can solve this first order differential equation for a contour in nuclear configuration

space and obtain,

γ12(R) =

− R∫
R0

dR · τ12(R)

 . (1.45)

Similarly, for a closed contour Γ in nuclear configuraion space, we can write the Topo-

logical matrix (like ADT matrix) as,

D(Γ) =

(
cosα12(R) sinα12(R)

− sinα12(R) cosα12(R)

)
, (1.46)

where α12(R) is known as the topological/geometrical phase. We can write a similar

equation for α12(R), as we wrote for γ12(R) in equation (1.43), if we do an integration

for closed contour Γ in nuclear configuration space,

α12(R) =

(
−
∮

Γ

dR · τ12(R)

)
(1.47)
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We proved in section 1.3 (equation (1.39)) that the topological matrix is diagonal and if

we examine the form of D(Γ) matrix from equation (1.46), it can be easily implied that

the angle α12(R) should be a multiple of π. So we can write equation (1.47) also as,

α12(R) =

(
−
∮

Γ

dR · τ12(R)

)
= nπ (1.48)

PESs of two electronic states φ1(r;R) and φ2(r;R) are forming a CI. Let’s assume a

closed loop Γ in nuclear configuration space. If φj(r;R)(j = 1, 2) changes sign after being

taken around the closed contour Γ, then there must be at least one nuclear configuration

inside Γ at which φj(r;R)(j = 1, 2) is discontinuous, which infers that the PES of

φj(r;R)(j = 1, 2) is forming a CI with that of another electronic state.7 This sign change

of the electronic wavefunction is known as the geometric phase effect .8 According to this

theorem, if we have a closed contour Γ enclosing a CI, then the concerned electronic

wavefunctions can be written as,

φj(r;R0 : R0) = −φj(r;R0) (1.49)

where R0 is any reference nuclear configuration on the closed loop Γ. In such a scenario,

the Topological matrix D(Γ) can be written as follows,

D(Γ) =

(
−1 0

0 −1

)
, (1.50)

If we compare equations (1.46) and (1.50), then it can be easily implied that the angle

α12(R) should be an odd multiple of π to obtain equation (1.50). Since we have only one

CI inside the closed contour Γ, the quantization condition which confirms that two PESs

are intersecting is given as,

α12(R) =

(
−
∮

Γ

dR · τ12(R)

)
= π (1.51)

Similarly, if the loop surrounds two CIs, then α12(R) should be equal to 2π (n = 2 in

equation (1.48)), and the electronic wavefunction will not change sign after transporting

it around the closed contour.

1.4.1 3-state Calculation

Many a time, considering only two states to achieve the quantization condition is not

sufficient. Theoretically, if we choose a small loop encompassing a CI (implying that the

10



PESs of the concerned states are very close for that loop in nuclear coordinate space),

then a two state calculation should be enough to reach the quantization condition, since

at and around CI, non-adiabatic effects from other neighboring states are small. But in

practical calculations, usually we work with closed contours which cover a large area in

nuclear configuration space. In such cases, we have to include non-adiabatic interactions

due to adjacent electronic states to attain the quantization condition. In this section,

we will derive the requisite conditions incorporating three electronic states. To be more

precise, we are assuming that PESs of states φ1(r;R) and φ2(r;R) are intersecting and

we are including non-adiabatic effects due to φ3(r;R) to help us achieve π quantization.

The NACT matrix for a 3-state case can be written as,

τ (R) =


0 τ12(R) τ13(R)

−τ12(R) 0 τ23(R)

−τ13(R) −τ23(R) 0

 . (1.52)

Since the ADT matrix is an orthogonal matrix, it can be written as a product of three

orthogonal matrices in the following way,

A(R) = Q12(R)Q23(R)Q13(R) (1.53)

where

Q12(R) =


cos γ12(R) sin γ12(R) 0

− sin γ12(R) cos γ12(R) 0

0 0 1

 (1.54a)

Q23(R) =


1 0 0

0 cos γ23(R) sin γ23(R)

0 − sin γ23(R) cos γ23(R)

 (1.54b)

Q13(R) =


cos γ13(R) 0 sin γ13(R)

0 1 0

− sin γ13(R) 0 cos γ13(R)

 (1.54c)

where γ12(R), γ23(R), and γ13(R) are the corresponding ADT angles for the coupling

between the three electronic states.

If we substitute equations (1.52) and (1.53) in equation (1.43) and simplify, then we
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obtain the following system of coupled differential equations.

∇γ12(R) = −τ12(R)− tan γ23(R)(−τ13(R) cos γ12(R) + τ23(R) sin γ12(R))

∇γ23(R) = −(τ23(R) cos γ12(R) + τ13(R) sin γ12(R))

∇γ13(R) = (cos γ13(R))−1(−τ13(R) cos γ12(R) + τ23(R) sin γ12(R))

(1.55)

Since PESs of φ1(r;R) and φ2(r;R) are forming a CI, we will solve equation (1.55) for

γ12(R) for a closed contour enclosing the concerned CI in the nuclear coordinate space.

1.5 Potential Energy Surfaces (PESs)

Let us consider equation (1.5) which is the electronic time-independent Schrödinger equa-

tion. Since the electronic wavefunction described in section 1.2.1 depends parametrically

on the nuclear coordinates, if we change the nuclear configuration slightly from R′′ to

R′, then the electronic wavefunction will adjust from φj(r;R
′′) to φj(r;R

′) (electrons

respond instantly to this nuclear change). Consequently, the electronic energy will also

change from Ej(R
′′) to Ej(R

′), therefore we can say that as the nuclear configuration of

the molecule changes, the electronic energy varies smoothly as a function of the nuclear

coordinates. Thus, Ej(R) can also be considered as the potential energy for the nuclear

motion for the jth electronic state.9 Since there are innumerable nuclear configurations,

we can solve equation (1.5) for each of these configurations and get the corresponding

energy Ej(R) and form the PES for the nuclear motion.

1.6 Non-adiabatic Processes and Conical Intersec-

tions (CIs)

The nuclear motion is confined to a single PES within the framework of Born-Oppenheimer

approximation. But there are processes known in chemistry where the nuclear motion

is no longer restricted to one PES and they are called Non-adiabatic processes. Some

of the important chemical processes governed by non-adiabatic theory are vision, charge

transfer reactions, light harvesting, and numerous reactions happening in the upper at-

mosphere. In such processes, there is a strong coupling between nuclear and electronic

motion due to which the nuclear and electronic wavefunctions cannot be considered as

separate entities and we say that there is a breakdown of Born-Oppenheimer approxima-

tion. Of course, these processes are mostly prevalent in regions of nuclear configuration
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space where the PESs are in close proximity. The places where the PESs intersect are

called Conical Intersections (CIs) and they are at the heart of most of the non-adiabatic

phenomena. CIs can induce ultrafast decay of excited electronic states due to the large

interstate coupling near the crossing. They can also facilitate lower state to upper state

(LtU) transitions.8 CIs can lead to the formation of more than one product if the reaction

is directed through them instead of a transition state.

Let us consider a CI formed by two PESs. Now, for the two PESs to cross, the

electronic Hamiltonian matrix at CI must satisfy certain conditions. The Hamiltonian

matrix is given as follows,10

H =

(
H11 H12

−H12 H22

)
(1.56)

At CI,

H11 = H22 (1.57)

and

H12 = 0 (1.58)

A seam can be defined as the locus formed by the points of CI when two PESs intersect.

The dimension of seam of CI is of particular importance for a proper understanding of

CIs and non-adiabatic processes.

Now, CIs can be broadly classified into three types11

Symmetry-required intersections

The symmetry of the electronic states forming CI are components of multi-dimensional

irreducible representation of a point group (for example, the irreducible represen-

tation E in C4v point group). In such cases, both the conditions (equations (1.57)

and (1.58)) are satisfied using symmetry arguments. So, the molecule must have

sufficient symmetry to have these type of CIs. The seam dimension is Nint. (Nint.

is the number of internal degrees of freedom available to the molecule ) since no

degree of freedom is being used to satisfy the two conditions.

Accidental symmetry-allowed intersections

The symmetry of the states forming the CI have different one-dimensional irre-

ducible representation. Here, H12 = 0 by symmetry but since the intersection is

accidental, so H11 = H22 by chance. The dimension of seam is (Nint.−1), since one

degree of freedom got consumed in order to satisfy equation (1.57).
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Accidental same-symmetry intersections

The symmetry of the states forming the CI have the same one-dimensional irre-

ducible representation. Both the conditions are being satisfied by accident. The

dimension of the seam of CI in this case is (Nint.− 2), since two degrees of freedom

are required to fulfill the two conditions.

CIs can also be distinguished based on the nature of dependence of potential energy

on nuclear coordinates in the vicinity of CI (figure 1.1).

Renner-Teller CI (RT CI)

The potential energy depends quadratically on nuclear coordinates near CI (the

linear energy term in the Schrödinger equation given by equation (1.27) goes to

zero in such cases). RT CIs are usually associated with linear molecules.12 They

are also called glancing CIs.

Jahn-Teller CI (JT CI)

The potential energy varies linearly as a function of nuclear parameters in the

neighborhood of CI. The local topology near the crossing is like a double cone, so

it is simply known as a conical intersection.
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Figure 1.1: Section of (a) Renner-Teller CI and (b) a general or Jahn-Teller CI.13
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Chapter 2

Results & Discussion

2.1 Computational Details

The molecule of our interest is linear HeH+
2 . It has only 3 electrons. The atoms forming

the molecule are Hydrogen (H) and Helium (He). Both H and He have 1s as the only

occupied orbital in the ground state.

Our aim is to study the PES diagram for HeH+
2 molecule and then see if we have any

potential CIs formed by PESs. If the PES diagram is showing a CI between two states,

then we will be using Non-adiabatic coupling theory explained in chapter 1 to confirm the

presence of the CI. As we described in section 1.4, we have to calculate NACTs and ADT

angles for the concerned electronic states forming the CI and also for additional adjacent

electronic states to achieve the π quantization condition. We did all the calculations

using the MOLPRO package14. As is evident from equation (1.11), NACTs are calculated

using the electronic wavefunctions, so the wavefuntions were calculated using CASSCF

(complete active space self consistent field) and MRCI (multi-reference configuration

interaction) theory, and aug-cc-pVTZ basis set. The symmetry of the molecule was

chosen to be Cs and the lowest 3 a′ orbitals were included in the active space for the

calculation of electronic wavefunctions. We considered only the doublet states, more

specifically, the lowest three 2A′ states in all the calculations.

HeH+
2 is a tri-atomic molecule which means that all the atoms will lie on a single

plane in any geometrical configuration. To do the necessary calculations, we need to

form a closed contour (enclosing a CI) in nuclear configuration space and the simplest

way to do that on a single plane is to choose a circular contour as shown in Figure 2.1,

where the atom X is just a dummy atom and is used to help us to make closed contours.

17



He H X

H
φ

+q

Figure 2.1: HeH+
2 molecule with a closed contour (in red) in nuclear configuration space

The dummy atom also allows us to cover any desired area in the nuclear configuration

space. X does not interfere with the calculations.

If we trace a circular contour as shown in Figure 2.1, then the only nuclear coordinate

that is changing is φ provided all the bond distances and the radius of the contour (q)

are kept constant. So we can rewrite some of the important equations stated in chapter

1 as,

τij(φ) = 〈φi|∇φj〉 (2.1)

γ12(φ) =

− 2π∫
0

τ12(φ) dφ

 . (2.2)

∇γ12(φ) = −τ12(φ)− tan γ23(φ)(−τ13(φ) cos γ12(φ) + τ23(φ) sin γ12(φ))

∇γ23(φ) = −(τ23(φ) cos γ12(φ) + τ13(φ) sin γ12(φ))

∇γ13(φ) = (cos γ13(φ))−1(−τ13(φ) cos γ12(φ) + τ23(φ) sin γ12(φ))

(2.3)

We calculated NACTs (τ12, τ23, τ13) using the MOLPRO package.14 After obtaining the

NACTs the 2-state ADT angle (equation (2.2)) was calculated using a numerical inte-

gration method called the Trapezoidal rule. We made a code using Fortran programming

language for the trapezoidal rule to calculate the ADT angle. The ADT angle for the

3-state case was calculated by solving the coupled differential equations given by equation

(2.3). We used ode45 (Runge-Kutta (4,5) method) method in MATLAB to solve this

system of coupled differential equations. The data for NACT, ADT angle and energy

were plotted using MATLAB.
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He H H
+

Figure 2.2: Linear HeH+
2 molecule

2.2 Linear HeH+
2

The nuclear configuration of linear HeH+
2 molecule is shown in Figure 2.2. We plotted the

3-D PES diagram for the lowest three doublet states for linear HeH+
2 (Figure 2.3). For

the 3-D plot, the x-axis, y-axis, and z-axis were chosen to be the He-H bond length (Å),

H-H bond length (Å), and the potential energy (Hartree) of the molecule as a function

of these bond distances, respectively. Since in the linear geometry, the point group of

HeH+
2 is D∞h, the states are designated as 2Σ+. As can be seen from Figure 2.3, there

is considerable energy difference between the ground state (12Σ+) and the first excited

state (22Σ+). But the first and the second excited states are coming close to each other

in a particular region of nuclear configuration space. We have enlarged and re-orientated

this region so that we can clearly see how these two PESs are approaching each other.

From Figure 2.4, it can be seen that the first two excited states are probably forming

a point of degeneracy at a specific molecular geometry. From the data, the molecular

geometry at which the PESs are closest to each other was found to be R(He-H)= 0.8Åand

R(H-H)= 0.7Å.

Now that we know the molecular geometry at which PESs are forming a CI, we

can go on to make a closed contour enclosing this CI and then calculate NACT and

ADT angle for this closed contour to get the required π quantization and confirm the

presence of the CI. We can form the closed contour in the following two ways as shown

in Figure 2.5. As we can see from Figure 2.5, both the schemes show the same molecule

but with some differences. In Scheme-1, the He-H and H-X bond distances are 0.8Åand

0.8Å, respectively and the H atom is being rotated about X to form the closed contour.

Whereas, in Scheme-2, the H-H and H-X bond distances are 0.7Åand 0.8Å, respectively

and the He atom is being rotated about X to make the closed contour.

Since we are doing calculations for the confirmation of CI formed by 2nd and 3rd state

((2,3) CI), so we have to calculate γ23 as a function of φ. The quantization condition
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Figure 2.3: PES diagram depicting the lowest three states for linear HeH+
2
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Figure 2.4: Close-up view of the region where the PESs of the two lowest excited states

are close to each other (for linear HeH+
2 )

He H X

H
φ

+
0.8Å 0.8Å

q

(a) Scheme-1

H H X

He
φ

+
0.7Å 0.8Å

q

(b) Scheme-2

Figure 2.5: Molecular configuration of HeH+
2 used to calculate NACTs and ADT angle
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which we would like to achieve is,

γ23(φ = 2π) = α23 = π (2.4)

where α23 is the corresponding geometrical phase. We have to calculate γ23(φ) using

both 2- and 3-state methods. The equation for 2-state is same as equation (2.2),

γ23(φ) =

− 2π∫
0

τ23(φ) dφ

 . (2.5)

but we have to change the 3-state equation given by equation (2.3). We derived the 3-state

equation in section 1.4.1 taking the three coupling terms in the order (12)× (23)× (13)

where we solved for (1,2) CI. But since we are looking for (2,3) CI, we have to derive the

3-state equation by considering the order of coupling terms as (23)× (13)× (12). Doing

this will give us a slightly different form of equation (2.3) which is,15

∇γ23(φ) = −τ23(φ)− tan γ13(φ)(−τ13(φ) cos γ23(φ) + τ12(φ) sin γ23(φ))

∇γ13(φ) = −(τ12(φ) cos γ23(φ) + τ13(φ) sin γ23(φ))

∇γ12(φ) = (cos γ13(φ))−1(−τ12(φ) cos γ23(φ) + τ13(φ) sin γ23(φ))

(2.6)

2.2.1 Scheme-1

We calculated NACTs (τ12, τ23, τ13), 2-state and 3-state ADT angle (γ23), and energy for

different q values and then plotted them with respect to φ for the molecular configuration

designated as Scheme-1. We did calculations for q = 0.1, 0.2, 0.3, 0.4, 0.6, 1.0, 1.3, 1.5,

1.8 Å.

From the PES diagram, we found the nuclear configuration at which there is a CI

(formed by the lowest two excited states) and that is R(He-H)= 0.8Åand R(H-H)= 0.7Å.

The molecule represented by Scheme-1 attains this geometry for q = 0.1Å and φ = π.

Due to this, τ23 shows a sharp peak (Figure 2.6a) and the 22A′ and 32A′ PECs form the

concerned CI (Figure 2.6d) at φ = π.

For q = 0.1 to 0.6 Å (Figures 2.6, 2.7, 2.8, 2.9, 2.10), from the plots of NACTs it is

clear that the magnitude of τ23 is the largest which is expected since we are near to (2,3)

CI and hence the 22A′ and 32A′ states are also close. The magnitude of other NACTs,

τ12 and τ13, is very less as compared to τ23 since there is considerable energy difference

between 12A′ and 22A′. The plots of ADT angle show us the value of γ23(φ = 2π). For

q = 0.1, 0.2Å, γ23(φ = 2π) is close to (but slightly less than) π. It’s almost exactly equal
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to π for q = 0.3, 0.4Å, and for q = 0.6Å, it is a tad greater than π. Also, there is not

much difference between the 2-state and 3-state results for the ADT angle. Thus, we can

say that π quantization is achieved in all cases but still there is room for improvement

for some q values.

For q = 1.0, 1.3, 1.5 Å (Figures 2.11, 2.12, 2.13), the H atom which is forming the

closed contour, is coming very near to He and the other H atom for φ close to π. In this

case, the magnitude of all three NACTs (τ12, τ23, τ13) are very small and they are almost

equivalent to each other. For this reason, we didn’t plot the ADT angle for these q values

because it was clear from the data (both 2- and 3-state) that the γ23(φ = 2π) won’t even

reach π/2 let alone π. Although we are sure that the loop is enclosing the CI, but since

the radius of the contour is large which means we are moving far from the CI and hence

the coupling terms are small. Maybe we will have to redo the calculations taking other

adjacent electronic states into account.

Now, q = 1.8Å (Figure 2.14) is an exceptional case for Scheme-1. The reason for

this anomaly is probably due to the molecular structure change from [He-H-H]+ to [H-

He-H]+ as the H atom moves around the circular contour. The PEC diagram (Figure

2.14c) shows that 12A′ and 22A′ are quite close to each other due to which τ12 has a

very large magnitude with two sharp peaks. Therefore, we calculated γ12 instead of γ23

and coincidentally γ12(φ = 2π) is reasonably close to π (Figure 2.14b). Based on this

observation, we can say that the path of the circle is fairly close to a (1,2) CI but not

necessarily for a linear geometry. If we vary the bond angle along with bond distances,

then there can be infinitely many other candidate nuclear configurations for a CI (more

on this in section 2.3).
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(c) PEC

He H X

H
φ

+
0.8Å 0.8Å

0.1Å

(d) Molecular configuration

Figure 2.6: Plots of NACTs, ADT angle, and energy as a function of φ for q = 0.1Å

of Scheme-1
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Figure 2.7: Plots of NACTs, ADT angle, and energy as a function of φ for q = 0.2Å

of Scheme-1
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Figure 2.8: Plots of NACTs, ADT angle, and energy as a function of φ for q = 0.3Å

of Scheme-1
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Figure 2.9: Plots of NACTs, ADT angle, and energy as a function of φ for q = 0.4Å

of Scheme-1
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Figure 2.10: Plots of NACTs, ADT angle, and energy as a function of φ for q = 0.6Å

of Scheme-1
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Figure 2.11: Plots of NACTs, and energy as a function of φ for q = 1.0Å

of Scheme-1
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Figure 2.12: Plots of NACTs, and energy as a function of φ for q = 1.3Å

of Scheme-1
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Figure 2.13: Plots of NACTs, and energy as a function of φ for q = 1.5Å

of Scheme-1
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Figure 2.14: Special case: Plots of NACTs, ADT angle, and energy as a function of φ

for q = 1.8Åof Scheme-1
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2.2.2 Scheme-2

Similarly, for Scheme-2, NACTs (τ12, τ23, τ13), 2-state and 3-state ADT angle (γ23), and

energy were calculated for different q values and then plotted with respect to φ. For

Scheme-2, we took q = 0.1, 0.2, 0.3, 0.4, 0.6, 1.0, 1.2, 1.8 Å.

When q = 0.1 to 0.6 Å (Figures 2.15, 2.16, 2.17, 2.18, 2.19), the path of closed

contour is close to (2,3) CI and we can see from PEC diagrams that 22A′ and 32A′ are in

proximity compared to 12A′ due to which the magnitude of τ23 is relatively larger than

the other two NACTs (τ12, τ13). Regarding the quantization condition, γ23(φ = 2π) is

nearing π from below for q = 0.1, 0.2, 0.3 Å. At q = 0.4, 0.6 Å, γ23(φ = 2π) is practically

equal to π. In fact, if we look closely at the plots of ADT angle, the value of γ23(φ = 2π)

increases slightly as q increases. Here also, the 2- and 3-state calculations for ADT angle

are giving almost similar results. We can further improve the γ23(φ = 2π) value for

q = 0.1, 0.2, 0.3 Åif we consider neighboring electronic states in calculations.

For q = 1.0, 1.2, 1.8Å (Figures 2.20, 2.21, 2.22), the coupling between 22A′ and 32A′

is significant as is evident from the NACT plots. As far as the quantization condition is

concerned, γ23(φ = 2π) is reaching π for 3-state calculation for q = 1.0Å. For q = 1.2Å,

γ23(φ = 2π) by 2-state equation is less than π but for 3-state, it is reaching above π. And

for q = 1.8Å, γ23(φ = 2π) is greater than π for both 2- and 3-state calculations. Even

when the radius of the loop is large, the (2,3) coupling has not diminished much. We

would like to do calculations for more q values and also improve the obtained results so

that we can get γ23(φ = 2π) converge to π.
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Figure 2.15: Plots of NACTs, ADT angle, and energy as a function of φ for q = 0.1Å

of Scheme-2
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Figure 2.16: Plots of NACTs, ADT angle, and energy as a function of φ for q = 0.2Å

of Scheme-2
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Figure 2.17: Plots of NACTs, ADT angle, and energy as a function of φ for q = 0.3Å

of Scheme-2
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Figure 2.18: Plots of NACTs, ADT angle, and energy as a function of φ for q = 0.4Å

of Scheme-2
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Figure 2.19: Plots of NACTs, ADT angle, and energy as a function of φ for q = 0.6Å

of Scheme-2
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Figure 2.20: Plots of NACTs, ADT angle, and energy as a function of φ for q = 1.0Å

of Scheme-2
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Figure 2.21: Plots of NACTs, ADT angle, and energy as a function of φ for q = 1.2Å

of Scheme-2
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(b) ADT angle

0 π 2π
−3.5

−3

−2.5

−2

−1.5

−1

E
ne

rg
y(

ha
rt

re
e)

φ(rad)

 

 

1 2A’

2 2A’

3 2A’

q = 1.8Å
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Figure 2.22: Plots of NACTs, ADT angle, and energy as a function of φ for q = 1.8Å

of Scheme-2
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2.3 Non-linear HHeH+

While plotting PECs for HeH+
2 for various geometries, we found a another nuclear con-

figuration for which a point of degeneracy between the ground state and the first excited

state was observed. But we detected it for a non-linear geometry and also the nuclear ar-

rangement was a bit different. In this section, we will show calculations and observations

for the CI between the ground state and the first excited state for non-linear HHeH+.

The molecular geometry which we are considering is shown in Figure 2.23.

We plotted the 3-D PES diagram for the lowest three doublet states for HHeH+

(Figure 2.24). For the 3-D plot, the x-axis, y-axis, and z-axis were chosen to be the

H-He bond length (Å), He-H bond length (Å), and the potential energy (Hartree) of the

molecule as a function of these bond distances, respectively. Here since the point group of

the non-linear HHeH+ is taken to be Cs, the three states have been assigned as 2A′. From

Figure 2.24, it is clear that the two lowest excited states are significantly apart while the

lowest two states are approaching close to each other for a certain nuclear coordinate

zone. To distinctly make out the CI between the two lowest states, we have amplified the

zone close to CI (Figure 2.25). Figure 2.25 clearly shows the CI between the ground state

(12A′) and the first excited state (22A′). From the data, the molecular geometry at which

the PESs are closest to each other was found to be R(H-He)= 1.0Åand R(He-H)= 1.0Å.

Following the same procedure to proceed with the calculation for the confirmation

of CI as explained in section 2.2, we obtain the molecular configuration for non-linear

HHeH+ showing the closed around CI (Figure 2.26).

H He

H
+

90°

Figure 2.23: Non-inear HHeH+ molecule
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Figure 2.24: PES diagram depicting lowest three states for non-linear HHeH+
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Figure 2.25: Close-up view of the region where the PESs of the two lowest electronic

states are close to each other (for non-linear HHeH+)

H He

X

H φ

+

1.0Å

1.0Å

q

90°

Figure 2.26: Molecular configuration of HHeH+ used to calculate NACTs and ADT angle
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Since we found a CI between the ground state and the first excited state, we have to

do calculations for (1,2) CI. Therefore, we are calculating γ12 as a function of φ and the

corresponding quantization condition is,

γ12(φ = 2π) = α12 = π (2.7)

where α12 is the corresponding geometrical phase. We have to calculate γ12(φ) using

both 2- and 3-state methods (equations (2.2) and (2.3)).

We calculated NACTs (τ12, τ23, τ13 representing the coupling between the lowest three

states), ADT angle (γ12) using both 2-state and 3-state methods, and energy as a function

of φ for different q values for the molecular configuration shown in Figure 2.26. We did

calculations for q = 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.2, 1.6, 2.0 Å.

For q = 0.1, 0.2 Å (Figures 2.28, 2.29), the results are along the expected lines. We

can see a strong coupling between 12A′ and 22A′ from the NACT plots. PEC diagrams

show this as well. γ12(φ = 2π) is reaching π for both 2- and 3-state calculations. In fact,

γ12(φ = 2π) is exactly equal to π for q = 0.1Å.

Unfortunately, the results are not very encouraging for q = 0.3, 0.4, 0.6, 0.8 Å (Fig-

ures 2.30, 2.31, 2.32, 2.33). The coupling between the lowest two states (τ12) decreased

significantly for the given q values. As a result, γ12(φ = 2π) is not even reaching π/2. The

closed contour is definitely enclosing the CI but the calculations are not in agreement

with the theory. Maybe we will have to redo the calculations including other excited

electronic states.

For q = 1.2, 1.6 Å (Figures 2.34, 2.35), instead of (1,2) coupling (τ12), (2,3) coupling

(τ23) is significantly larger than the others. This is not very surprising because we are

considering such a large loop and it is possible that the two excited states are close to

each other (maybe even intersecting) in that region. As far as the quantization condition

is concerned, 3-state calculations show some promise. Although, γ12(φ = 2π) is not

reaching π, but the results can be improved in this case.

Finally we are considering q = 2.0Å (Figure 2.36). As stated earlier, from the PES

diagram (Figure 2.24) we found the molecular geometry at which 12A′ and 22A′ are

forming a CI and that is R(H-He)= 1.0Åand R(He-H)= 1.0Å. But since non-linear [H-

He-H]+ is a symmetric molecule, we have two equivalent configurations at which we would

observe a CI (Figure 2.27). Although these two configurations are same in every respect,

yet when we move along the closed contour for q = 2.0Å(Figure 2.36d), we will encounter

Configuration-2 (Figure 2.27b) at φ = π and we will observe a CI between 12A′ and 22A′

at that geometry which is apparent from Figure 2.36c. The magnitude of τ12 coupling is
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(a) Configuration-1

H He

H

+90°

1.0Å

1.0Å

(b) Configuration-2

Figure 2.27: Molecular configuration of non-linear HHeH+ at which (1,2) CI is observed

very high in this case. But the most remarkable thing about this case is the ADT angle.

γ12(φ = 2π) for a 2-state calculation is around 3π/2 but for a 3-state calculation, it is

very close to 2π. The reason for this is that, the large closed contour is enclosing two

CIs corresponding to the two molecular configurations shown in Figure 2.27. Thus, we

have achieved the quantization condition for two CIs.
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(d) Molecular configuration

Figure 2.28: Plots of NACTs, ADT angle, and energy as a function of φ for q = 0.1Å

for non-linear HHeH+
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(d) Molecular configuration

Figure 2.29: Plots of NACTs, ADT angle, and energy as a function of φ for q = 0.2Å

for non-linear HHeH+
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(c) PEC

H He

X

H φ

+

1.0Å

1.0Å

0.3Å

90°

(d) Molecular configuration

Figure 2.30: Plots of NACTs, ADT angle, and energy as a function of φ for q = 0.3Å

for non-linear HHeH+
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(d) Molecular configuration

Figure 2.31: Plots of NACTs, ADT angle, and energy as a function of φ for q = 0.4Å

for non-linear HHeH+
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Figure 2.32: Plots of NACTs, ADT angle, and energy as a function of φ for q = 0.6Å

for non-linear HHeH+
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Figure 2.33: Plots of NACTs, ADT angle, and energy as a function of φ for q = 0.8Å

for non-linear HHeH+
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Figure 2.34: Plots of NACTs, ADT angle, and energy as a function of φ for q = 1.2Å

for non-linear HHeH+
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Figure 2.35: Plots of NACTs, ADT angle, and energy as a function of φ for q = 1.6Å

for non-linear HHeH+

54



0 π 2π
−5

0

10

20

30

40

50

60

τ ij(r
ad

−
1 )

φ(rad)

 

 

τ12

τ23

τ13

q = 2.0Å
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Figure 2.36: Plots of NACTs, ADT angle, and energy as a function of φ for q = 2.0Å

for non-linear HHeH+
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2.4 Conclusion

It’s always good to compare what the theory predicted and what results we got from

practical calculations. In Chapter-1, we derived conditions to confirm the presence of CIs.

One of the most important steps in the derivation, was the choice of the closed contour

enclosing the CI (because of the geometric phase effect shown by electronic wavefunctions

when a loop in nuclear coordinate space encloses a CI). Although, theoretically/from the

theoretical derivation it is clear that the π-quantization condition will be satisfied as long

as the closed contour encircles the CI (irrespective of the shape and size of the loop, and

also the relative distance between the path of the contour and the CI), but can we say

this based on the results that we have shown in Chapter-2? The answer is both yes and

no. Some calculations indeed are in favor of the theory but then there are some which

puts a question mark on the position of the closed contour relative to the CI. In other

words, while some calculations indeed show π quantization, some of them do not!

For the linear HeH+
2 , we could locate a CI between the second and the third electronic

state ((2,3)CI)(Section 2.2) and did requisite calculations for it. For Scheme-1 (Section

2.2.1), the results are satisfactory for small q, but for q ≥ 1.0Å, the calculations are not

in agreement with the theory. Whereas for Scheme-2 (Section 2.2.2), the results for both

small and large q are almost satisfactory, but still more calculations are needed. Now, in

any calculation (for CI), the most important step is the 3-state calculation for the ADT

angle. For this, we included the ground state (as the 3rd state) in our calculations and

got results. But one may wonder why didn’t we consider the 4th electronic state (3rd

excited state) for the 3-state calculations, since this state is also adjacent to (2,3)CI.

In fact, this is our next step in order to solve the linear HeH+
2 problem and get more

accurate results. We would like to do 3-state calculations incorporating the lowest three

excited states and also a 4-state calculation which will include the lowest four electronic

states.

The results for non-linear HHeH+ (Section 2.3) are interesting. In this case, we

achieved the quantization condition for only three q values (q = 0.1, 0.2, 2.0Å). And

in all three cases, the path of the closed contour was extremely close to the molecular

configuration representative of the concerned CI ((1,2)CI). While for other q values, the

results are like that the CI has altogether vanished from the loop. Moreover, since we are

studying the intersection between the lowest two electronic states, the inclusion of the

4th electronic state (which is energetically far from the lowest two states and hence from

(1,2)CI) in the calculations may not have that much of an impact on the final result.

56



Bibliography

[1] Chupka, W. A.; Russell, M. E.; Refaey, K. J. Chem. Phys. 1968, 48, 1518.

[2] Kouri, D. J.; Baer, M. Chem. Phys. Lett. 1974, 24, 37.
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