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Chapter 1

Introduction

Let k be a field of characteristic different from 2 and ks be a separable closure of k.

Let L be a finite Galois extension of k contained in ks. Let G denote Gal(L/k), the

Galois group of L over k. Then we have an isomorphism between the second cohomol-

ogy group H2(G,L×) and the subgroup Br(L/k) of Brauer group Br(k) consisting of

Brauer equivalence classes of central simple algebras over k, that are split by L.

H2(G,L×) ∼= Br(L/k)

given by [f ] 7→ [(k,G, f)] denoting the crossed product over L associated to co-cycle

f .

The Galois group of ks over k, denoted by Gal(ks/k), is a profinite group as it is an

inverse limit of finite groups L such that L is a finite Galois extension of k contained

in ks, with ordering on fields L is by inclusion. Let us denote the profinite cohomology

group by H2
c (G(ks/k), k×s ). We have the following isomorphism:

H2
c (G(ks/k), k×s ) := lim−→H

2(G(L/k), L×) ∼= lim−→Br(L/k) = Br(k),

where the direct limit is taken over all finite Galois extensions L of k contained in ks.

It is also well-known that Br(k) is torsion for any field k.

Brauer groups and Milnor K−groups are also related. For example, 2Br(k) ∼=
K2(k)/2K2(k). This was proved by Merkurjev in 1981. These relations may be used

to get information about central simple algebras over fields using Galois cohomology.
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The n-th Milnor K-group attached to a field k is defined as the quotient of (k×)⊗n,

the n-th power tensor(over Z) of the multiplicative group of k, by the subgroup

generated by those elements a1 ⊗ · · · ⊗ an for which ai + aj = 1 for some i, 1 ≤ i <

j ≤ n, where a1, . . . , an ∈ k×. We use {a1, . . . , an} to denote the equivalence class

of (a1 ⊗ · · · ⊗ an) in Kn(k). We refer to elements of type {a1, . . . , an} as symbols in

Kn(k).

Let E be a field and F be the rational function field E(t) in the variable t over E.

Let m be a natural number co-prime to characteristic of E. Let P be the collection of

monic irreducible polynomials in E[t]. Any p ∈ P determines a Z-valuation υp on E(t)

that is trivial on E with υp(p) = 1. Other than these, there is a unique Z-valuation υ∞

on E(t) such that υ∞(f) = −deg(f) for any f ∈ E[t]\{0}. Let P ′
denote P∪{∞}. For

each p ∈ P ′
, we write ∂p to denote the ramification map corresponding to the valuation

υp and Ep to denote the corresponding residue field. For p ∈ P , Ep ∼= E[t]/ < p > for

p ∈ P , and E∞ ∼= E. Then, for every valuation υp, we have a homomorphism ∂υp :

Km
2 F → Km

1 Ep such that ∂υp({f, g}) = {(−1)υp(f)υp(g)f−υp(g)gυp(f)} for f, g ∈ F×.

Lets denote ⊕∂p by ∂, called ramification map.

Also, for every p ∈ P ′
, we have the norm map of the finite extension Ep over E.

These maps induce a group homomorphism from K
(m)
1 Ep → K

(m)
1 E for every p ∈ P ′

.

Summing over all these induced maps, we get a homomorphism N :
⊕
p∈P ′

K
(m)
1 Ep →

K
(m)
1 E. Let <′m(E) denote

⊕
p∈P ′

K
(m)
1 Ep.

We then have the following exact sequence [3]

0 −→ K
(m)
2 E −→ K

(m)
2 F

∂p−→ <′m(E)
N−→ K

(m)
1 E −→ 0.

Let <m(E) denote the kernel of map N , which is same as the image of ∂. For

ρ = (ρp)p∈P ′ ∈ <′m(E), we shall denote supp(ρ) = {p ∈ P ′|ρp 6= 0} and deg(ρ) =

Σp∈supp(ρ)[kp : k], and call this the support and the degree of ρ.

Remark We want to study the relation between the degree of ρ in the image of

∂ and the properties of elements ξ ∈ K(m)
2 (E(t)) with ∂(ξ) = ρ. More precisely, we

want to ask whether given any ρ in the image of ∂ with a fixed degree, does there

exist a natural number r such that ξ is a sum of at most r symbols and ∂(ξ) = ρ.
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In [3], it is shown that for a given element ρ in the image of ∂, how to find a

η ∈ K(m)
2 F with ∂(η) = ρ such that η is a sum of r symbols where r is bounded by

half the degree of the support of ρ. All these terms will be defined later. In subsequent

chapters, we will define all the terms and basic concepts and later we will prove the

results for bound on the minimal length of a sum of symbols in the second Milnor K-

group of a rational function field.
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Chapter 2

Quaternion Algebras

Unless stated otherwise, k denotes a field of characteristic not 2. We refer to [1] for

results of this chapter.

Definition 2.1. (Quaternion algebra) : For any two elements a, b ∈ k×, we

define quaternion algebra (a, b) as the four dimensional k-algebra with basis 1, i, j, ij,

multiplication being determined by

i2 = a, j2 = b, ij = −ji.

The set {1, i, j, ij} is called a quaternion basis of (a, b).

Example The matrix algebra M2(k) is a quaternion algebra over k.

Indeed, the assignment

i 7→

(
1 0

0 −1

)
, j 7→

(
0 b

1 0

)
defines an isomorphism (of k-algebras) (1, b) ∼= M2(k).

Definition 2.2. (Conjugate and Norm) : Let (a, b) be a quaternion algebra with

basis {1, i, j, ij}, then for an element q ∈ (a, b) with q = x+yi+zj+wij, its conjugate

is defined as q̄ = x− yi− zj − wij.
And, its norm is defined as

N(q) = qq̄.

Lemma 2.3. An element q of the quaternion algebra (a, b) is invertible if and only if

it has non-zero norm. Hence, (a, b) is a division algebra if and only if the norm map

N : (a, b)→ k does not vanish outside 0.

Definition 2.4. A quaternion algebra over k is called split if it is isomorphic to M2(k)

as a k-algebra.
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Proposition 2.5. For a quaternion algebra (a, b) , the following statements are equiv-

alent.

1. The algebra (a, b) is split.

2. The algebra (a, b) is not a division algebra.

3. The norm map N : (a, b)→ k has a non-trivial zero.

4. The element b is a norm from the field extension k(
√
a)|k.

Lemma 2.6. Let D be a four dimensional central division algebra over k. Suppose

D contains commutative k- sublagebra isomorphic to a non-trivial quadratic field ex-

tension k(
√
a) of k, then D is isomorphic to a quarternion algebra (a, b) for suitable

b ∈ k×.

Proposition 2.7. A four dimensional central division algebra D over k is isomorphic

to a quaternion algebra.

Proposition 2.8. Consider a quaternion algebra A over k, and fix an element a ∈ k×

which is not in k×2. The following statements are equivalent.

1. A is isomorphic to the quaternion algebra (a, b) for some b ∈ k×.

2. The k(
√
a)- algebra A⊗k k(

√
a) is split.

3. A contains a commutative k−sublagebra isomorphic to k(
√
a).

2.1 The associated Conic

To every quaternion algebra (a, b), we can associate a conic, called the associated conic

C(a, b), which is the projective plane curve defined by the homogeneous equation

ax2 + by2 = z2 (2.1)

where x, y, z are the homogeneous coordinates in the projective plane P2.

Remark The conic C(a, b) associated to (a, b) doe not depend on the choice of a

basis. The conic C(a, b) is isomorphic to the conic ax2+by2 = abz2 via the substitution

x 7→ by, y 7→ ax, z 7→ abz and division of the equation by ab. Now, ax2 + by2 − abz2

is exactly the square of the pure quaternion xi + yj + zij and hence is intrinsically

defined. ( A pure quaternion is an element q of (a, b) such that q2 ∈ k but q does not

belong to k. Hence, the notion of pure quaternion is intrinsic and does not depend

on the basis of the quaternion. It is easy to see that q = x = yi+ zj + wij is a pure

quaternion if and only if x = 0 ).
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We recall that the conic C(a, b) defined above is said to have a k−rational point if

there exist x0, y0, z0 ∈ k, not all zero, that satisfy equation (2.1) above.

We have following proposition.

Proposition 2.9. The quaternion algebra (a, b) is split if and only if the conic C(a, b)

has a k-rational point.

Proof If x0, y0, z0 ∈ k is a k−rational point on C(a, b) with y0 6= 0, then b =

(z0/y0)
2 − a(x0/y0)

2 and a part (4) of 2.5 is satisfied. If y0 happens to be 0, then x0

must be nonzero and we get similarly that a is a norm from the extension k(
√
b)|k.

Conversely, if b = r2 − as2 for some r, s ∈ k, then (s, 1, r) is a k− rational point on

C(a, b). �

Remark Let a ∈ k\{0, 1}, then the projective conic ax2+(1−a)y2 = z2 has (1, 1, 1)

as a k-rational point. So, the quaternion algebra (a, 1−a) is isomorphic to the matrix

algebra M2(k). This suggest that there may be some connection between K2(k) and

quaternions. Indeed, there is a connection. The map from k× × k× to the 2-torsion

subgroup of Brauer group (see next chapter for definition of Brauer group of a field)

of k, 2Br(k) which is given by (a, b) 7→ (a, b) induces a homomorphism αk : K2(k)→

2Br(k). This further induces a homomorphism α̃k : K2(k)/2K2(k)→ 2Br(k).

2.2 Tensor Product of quaternion algebras

Lemma 2.10. The tensor product of two matrix algebras Mn(k) and Mm(k) over kis

isomorphic to the matrix algebra Mnm(k).

Lemma 2.11. Given elements a, b, b′ ∈ k×, we have an isomorphism

(a, b)⊗k (a, b′) ∼= (a, bb′)⊗k M2(k).

Proof We denote by (1, i, j, ij) and (1, i′, j′, i′j′) quaternion bases of (a, b) and (a, b′),

respectively, and consider the k-subspaces

A1 = k(1⊗k 1)⊕ k(i⊗k 1)⊕ k(j ⊗k j′)⊕ k(ij ⊗k j′)
A2 = k(1⊗k 1)⊕ k(1⊗k j′)⊕ k(i⊗k i′j′)⊕ k((−b′i)⊗k i′)

of (a, b)⊗k (a, b′). One checks that A1 and A2 are both closed under multiplication and

hence are sub-algebras of (a, b)⊗k (a, b′). By squaring the basis elements i⊗k 1,j⊗k j′

and 1⊗k j′,i⊗k i′j′, we see that A1 and A2 are isomorphic to the quaternion algebras

(a, bb′) and (b′,−a2b′), respectively. But this latter algebra is isomorphic to (b′,−b′),
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which is split because the conic C(b′,−b′) has the k−rational point (1, 1, 0).

Now, we consider the map ρ : A1 ⊗k A2 → (a, b) ⊗k (a, b′) induced by the k-bilinear

map (x, y) → xy. It can be checked that all basis elements of (a, b) ⊗k (a, b′) lie in

the image of ρ, so it is surjective and hence induces the required isomorphism for

dimension reasons. �

Remark Let [(x, y)] be the Brauer equivalence class (please see next chapter for

definition) of the quaternion algebra (x, y), for x, y ∈ k×. Then, the above proposition

implies that [(a, b)][(a, b′)] = [(a, bb′)], where the operation is group multiplication in

Brauer group of k. Similarly, [(b, a)][(b′, a)] = [(bb′, a)]. And, we already showed in

the previous remark that (a, 1 − a) is a matrix algebra, which means [(a, 1 − a)] is

the identity of the Brauer group of k(see next chapter for definition of Brauer group

of a field). We will see later(chapter 4) that the definition of K2 of a field essentially

captures all these relations.

Corollary 2.12. For a quaternion algebra (a, b) over k, the tensor product algebra

(a, b)⊗k (a, b) is isomorphic to the matrix algebra M4(k).

Remark In terms of Brauer group of k, it means that Brauer equivalence class of

quaternion algebra (a, b) is of order 2.
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Chapter 3

Central simple algebras and Brauer

groups

In this chapter k will denote a field of characteristic not equal to 2. We refer to [8]

and [1] for results of this chapter.

Definition 3.1. An algebra A over k is called central simple if the centre of A is k,

[A : k] <∞ and the only two sided ideals of A are 0 and A.

Definition 3.2. An extension K/k of fields is called a splitting field for A if K⊗kA ∼=
Mn(K), where A is a central simple algebra over k.

Lemma 3.3. Let A be a central simple algebra over k and B a k-algebra whose only

two sided ideals are 0 and B. Then the only two-sided ideals of A ⊗k B are 0 and

A⊗k B.

Proof By Wedderburn’s theorem, A ∼= Mr(D), where D is a division ring, and

centre(D) =centreMr(D) =centre(A) = k. Since, every two-sided ideal of Mr(D⊗kB)

comes from a two-sided ideal of D ⊗k B, we replace A by D and assume that A is

finite dimensional central division algebra over k. Let C 6= 0 be an two-sided ideal

of A ⊗k B. Let {ei}i∈I be a k−basis for B. Every element a ∈ C, a 6= 0, can be

uniquely written as Σi∈Jai ⊗k ei, J ⊂ I, ai ∈ A. We call l(a) = |J |. We choose a ∈ C
with l(a) minimal. Replacing a by (a−1j0 ⊗k 1)a, for some j0 ∈ J , we may assume

aj0 = 1. For any d ∈ A, a′ = (d ⊗k 1)a − a(d ⊗k 1) = σ(dai − aid) ⊗k ei ∈ C and

l(a′) < l(a), aj0 being 1, unless a′ = 0. Since l(a) is minimal, a′ = 0 =⇒ dai = aid

for all i ∈ J =⇒ ai ∈ k for all i ∈ J =⇒ a ∈ C ∩ 1 ⊗k B. Since, B is simple,

C ∩ (1⊗k B) = 1⊗B =⇒ 1⊗k 1 ∈ C =⇒ C = A⊗k B.
�
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Lemma 3.4. Let A and B be k-algebras, then centre(A⊗k B) = centreA⊗k centreB.

Proof Clearly, centreA⊗k centreB ⊂ centre(A⊗kB). Let x ∈ centre(A⊗kB). Write

x = Σiei ⊗ bi, {ei}i∈I a basis of A over k, the condition (1 ⊗k b)x = x(1 ⊗k b) for all

b ∈ B implies, by the linear independence of ei, that bbi = bib for all b ∈ B. Thus, the

centre(A⊗kB) ⊂ A⊗k centre(B). Similarly, centre(A⊗kB) ⊂ centre(A)⊗kB. Thus,

centre(A⊗k B) ⊂ (A⊗k centre (B))∩ (centre(A)⊗k B) ⊂ centre(A)⊗k centre(B). �

Therefore, we have following proposition.

Proposition 3.5. If A and B are central simple algebras over k, then A ⊗k B is a

central simple algebra over k.

Proposition 3.6. Let A be an algebra over k. Then, the following are equivalent.

1. A is a central simple algebra over k.

2. There exists a field extension L/k such that L⊗k A ∼= Mn(L) for some natural

number n. When this happens, we say A is form over k for the matrix algebra.

Proof Let A be a form over k for the matrix algebra and let L be a field extension

such that L⊗k A ∼= Mn(L). Then, [A : k] = [Mn(L) : L] = n2. By 3.4,

centre(L⊗k A) = L⊗kcentre A = centre Mn(L) = L.

Thus, [centreA : k] = [L ⊗k centreA : L] = 1 and centre A = k. If C is a two-sided

ideal of A, then L ⊗ C 6= 0 is a two-sided ideal of L ⊗k A ∼= Mn(L). Since Mn(L) is

simple, we must have L⊗C = L⊗kA. Hence, C = A. Suppose now that A is a central

simple algebra over k. Let k̄ denote the algebraic closure of k. By lemmas above,

k̄ ⊗ k is central simple over k̄. Since the only finite dimensional division algebra

over an algebraically closed field is itself, it follows by Wedderburn’s theorem that

k̄ ⊗ k ∼= Mn(k̄). �

Proposition 3.7. Every central simple algebra A over k admits of a splitting field L

which is a finite extension of k.

Proof Let k̄ denote the algebraic closure of k and φ : k̄ ⊗k A ∼= Mn(k̄) be an

isomorphism of k̄ − algebras. If ei, 1 ≤ i ≤ n2 is a k-basis of A and φ(1 ⊗ ei) =

Σλijkejk, ejk, 1 ≤ j, k ≤ n denoting the standard basis ofMn(k̄), we set L = k(λijk), 1 ≤
i ≤ n2, 1 ≤ j, k ≤ n. Then, φ induces a L-algebra homomorphism φ̃ : L⊗kA→Mn(L).

Since L⊗A is simple , φ̃ is injective. Since n2 = [A : k] = [Mn(L);L], φ̃ is an isomor-

phism. �
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We consider the set S of isomorphism classes of all central simple algebras over k.

The set S is a commutative monoid with tensor product over k as operation, and

the class of k as the identity element. If A is a central simple algebra over k, then

A ∼= Mn(DA), where DA is a central division algebra over k, whose isomorphism class

is uniquely determined by A. We define A ∼ B(Brauer equivalent) if and only if

DA
∼= DB. We denote by [A] the class of A in S/∼. We note that if A ∼ B and

[A : k] = [B : k], then A ∼= B. Also, two central simple algebras A and B are Brauer

equivalent if and only if Mr(A) = Ms(B) for some integers r and s. The equivalence

relation on S is compatible with the monoid structure of S i.e. A ∼ A′, B ∼ B′ =⇒
A⊗k B ∼ A′⊗B′. Thus, the set S/∼ is again a commutative monoid with class of all

matrix algebras over k as identity element. The following proposition shows that , in

fact, S/∼ is a group.

Proposition 3.8. For a central simple algebra A over k, if Aop denotes the opposite

algebra, then Aop is central simple and [A][Aop] = [k] in S/∼.

Proof If A is central simple, clearly Aop is again central simple. The maps A →
EndkA, a 7→ La and Aop → Ra, La, Ra denoting the left and right multiplications,

induce a homomorphism φ : A ⊗k Aop → EndkA, since La ◦ Rb = Rb ◦ La, a, b ∈ A.
Since A⊗k Aop is simple, φ is injective. Further, [A⊗k Aop] = [A : k]2 = [EndkA : k]

so that φ is surjective and hence an isomorphism. For a choice of basis of A over k,

EndkA is isomorphic to a matrix algebra over k. �

The group S/∼ is called the Brauer group of k, denoted by Br(k). The assignment

A 7→ DA yields a bijection between Br(k) and the set of isomorphism classes of central

division algebras over k. Thus, the Brauer group classifies finite dimensional central

division algebras over k. If k is algebraically closed, Br(k) is trivial, since the only

finite dimensional division algebra over k is itself. Also, if k is finite, in view of a

celebrated theorem by Wedderburn, Br(k) is trivial.

For any field k, the Brauer group Br(k) is torsion i.e every element of the group has a

finite order. Also, it is known that 2−torsion Brauer group of a field k is generated by

quaternion algebras. The assignment K 7→ Br(k) is functorial. In fact, if k ↪→ K is

an injection of fields, we have an induced functorial homomorphism Br(k)→ Br(K)

defined by [A] 7→ [K ⊗k A].

Proposition 3.9. Let k(X) denote the rational function field in the variable X. The

inclusion k ↪→ k(X) induces an injection Br(k) 7→ Br(k(X)).
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We have these important results:

Proposition 3.10. If A is a central simple algebra over k, there exists a finite Galois

extension L over k which splits A.

Proposition 3.11. Let L be a finite Galois extension of k with Galois group G.

Then, we have an isomorphism H2(G,L×) ∼= Br(L/k), where Br(L/k) is a subgroup

of Br(k) consisting of Brauer classes that are split by L.

Proposition 3.12. The two torsion Brauer group of k is generated by quaternion al-

gebras over k.( for char(k) = 2 by Albert and for char(k) 6= 2 follows from Merkurjev’s

theorem )

3.1 Crossed Products

Let L be a finite Galois extension of k with Galois group G(L/k) = G. Then, L and

L× = L\{0} are Z[G] modules , via the action of G on L.

A (normalised) 2- cocycle of G with values in L× is a map f : G × G → L× with

the property f(1, 1) = 1, and for σ1, σ2, σ3 ∈ G,

σ1f(σ2, σ3)f(σ1σ2, σ3)
−1f(σ1, σ2σ3)f(σ1, σ2)

−1 = 1.

It is easy to see that f(1, σ) = f(σ, 1) = 1 for all σ ∈ G. The 2- cocycles form an

abelian group under the operation

(f + g)(σ1, σ2) = f(σ1, σ2)g(σ1, σ2)

This group is denoted by Z2(G,L×).

A (normalised)2- coboundary is a map δh : G × G → L× of the form (σ1, σ2) 7→
σ1(h(σ2))h(σ1σ2)

−1, where h : G→ L× is a map with h(1) = 1. δh is a 2- cocycle and 2-

coboundaries form a subgroup denoted by B2(G,L×) of Z2(G,L×). Let H2(G,L×) =

Z2(G,L×)/B2(G,L×). We call H2(G,L×) the second cohomology group of G with

coefficients in L×.

Let f ∈ Z2(G,L×). For every σ ∈ G, let eσ denote a symbol. We let (k,G, f)

be the free L- vector space on the set {eσ}, σ ∈ G, as a basis. We , then, define

a multiplication on (k,G, f) by setting (λeσ1)(µeσ2) := λσ1(µ)f(σ1, σ2)eσ1σ2 for all

σ1, σ2 ∈ G and λ, µ ∈ L, and, then extending it to (k,G, f) by distributivity. The

algebra (k,G, f) is called a crossed-product over L.
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Remark The multiplication defined above makes (k,G, f) into a central simple al-

gebra over k. Also, if for f, g ∈ Z2(G,L×), then, (k,G, f) and (k,G, g) are isomorphic

if and only if f − g ∈ B2(G,L×). And, for f ∈ Z2(G,L×), (k,G, f) is isomorphic to

matrix algebra over k if and only if f ∈ B2(G,L×). Proofs of these facts can be found

in [8].

Theorem 3.13. Let L be a Galois extension of k with Galois group G. Then, we

have an isomorphism c : H2(G,L×) ∼= Br(L/k) given by [f ] 7→ [(k,G, f)].
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Chapter 4

Milnor K- theory

Throughout this chapter, the unadorned tensor product denotes the tensor product

over Z. Milnor K-groups were defined in [5] and we recall them here. We refer to [1]

for results of this chapter.

The n-th Milnor K-group attached to a field k is defined as the quotient of (k×)⊗n,

the n-th power tensor(over Z) of the multiplicative group of k, by the subgroup gen-

erated by those elements a1⊗ · · ·⊗ an for which ai + aj = 1 for some i, 1 ≤ i < j ≤ n,

where a1, . . . , an ∈ k×. Thus, K0(k) = Z and K1(k) = k×. Elements of Kn(k) are

called symbols. We write {a1, . . . , an} for the image of a1 ⊗ · · · ⊗ an in Kn(k). The

relation ai + aj = 1 will be often referred to as the Steinberg relation. Milnor K-

groups are functorial with respect to field extensions: given an inclusion φ : k ↪→ K,

there is a natural map iK|k : Kn(k) → Kn(K) induced by φ. Given α ∈ Kn(k), we

shall abbreviate iK|k(α) by αK . There is a natural product structure

Kn(k)×Km(k)→ Kn+m(k), (α, β) 7→ {α, β} (4.1)

coming from the tensor product pairing (k×)⊗n × (k×)⊗n which obviously preserves

the Steinberg relation. This product operation equips the direct sum

K∗(k) =
⊕
n≥0

Kn(k)

with the structure of a graded ring indexed by the non-negative integers. The ring

K∗(k) is commutative in graded sense.

Proposition 4.1. The product operation as defined in equation 4.1 is graded-commutative,

i.e. it satisfies

{α, β} = (−1)mn{β, α}
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for α ∈ Kn(k), β ∈ Km(k).

For the proof, we establish an easy lemma :

Lemma 4.2. The group K2(k) satisfies the relations

{x,−x} = 0 and {x, x} = {x,−1}.

Proof For the first relation, we compute in K2(k)

{x,−x}+ {x,−(1− x)x−1} = {x, 1− x} = 0,

and, so

{x,−x} = −{x,−(1− x)x−1} = {x, 1− x−1} = {x−1, 1− x−1} = 0.

The second one follows by bilinearity as {x, x} = {x,−1}+ {x,−x}. �

Proof of Proposition 4.1 : By the previous lemma, in K2(k), we have the equal-

ities

0 = {xy,−xy} = {x,−x}+ {x, y}+ {y, x}+ {y,−y} = {x, y}+ {y, x},

which establishes the proposition in the case n = m = 1. The proposition follows

from this by a straightforward induction. �

We recall that a Z valuation υ on k, where k is a field, is a surjective map υ : k× → Z
such that:

• υ(xy) = υ(x) + υ(y)

• υ(x+ y) ≥ min(υ(x), υ(y)) for all x, y ∈ k×

The set A := Aυ = {x ∈ k× : υ(x) ≥ 0} is a ring, called valuation ring. This ring has

I = {x ∈ k× : υ(x) > 0} as its unique maximal ideal. The field κ := κυ := A/I is

called its residue field. For x ∈ A, let x̄ denote the image of x in κυ under the natural

surjection map.

Let k be a field equipped with a Z valuation υ : k× → Z. We denote by A the

associated discrete valuation ring and by κ its residue field. Once a local parameter π

(i.e. an element with υ(π) = 1) is fixed, each element x ∈ k× can be uniquely written

as a product uπi for some unit u of A and integer i. From this, it follows by bi-

linearity and graded-commutativity of symbols that the groups Kn(k) are generated

by symbols of the form {π, u2, . . . , un} and {u1, u2, . . . , un}, where the ui are the units

in A.
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Proposition 4.3. For each n ≥ 1, there exist a unique homomorphism

∂ : Kn(k)→ Kn−1(κ)

satisfying

∂(π, u2, . . . , un) = {ū2, . . . , ūn} (4.2)

for all local parameters π and all (n − 1)- tuples (u2, . . . , un) of units of A, where ūi

denotes the image of ui in κ.

Moreover, once a local parameter π is fixed, there is a unique homomorphism

sπ : Kn(k)→ Kn(κ)

with the property

sπ({πi1u1, . . . , πinun}) = {ū1, . . . , ūn} (4.3)

for all n-tuples of integers (i1, . . . , in) and units (u1, . . . , un) of A.

The map ∂ is called the tame symbol or the residue map for Milnor K− theory; the

maps sπ are called specialisation maps. We note that sπ depends on the choice of π,

whereas ∂ does not, as seen from its definition.

Proof Uniqueness for sπ is obvious, and that of ∂ follows from the above remark on

generators of Kn(k), in view of the fact that a symbol of the form {u1, . . . , un} can

be written as a difference {πu1, u2, . . . , un} − {π, u2, . . . , un} with local parameters π

and πu1, and hence must be annihilated by ∂.

We prove the existence simultaneously for ∂ and the sπ via a construction due to Serre.

Consider the free graded-commutative K∗(κ)- algebra K∗(κ)[x] on one generator of

degree 1. By definition, its elements can be identified with polynomials with coeffi-

cients in K∗(κ), but the multiplication is determined by αx = −xα for α ∈ K1(κ).

Now, take the quotient K∗(κ)[η] of K∗(κ)[x] by the ideal (x2 −−1x), where {−1} is

regarded as a symbol in K1(κ). The image of η in the quotient satisfies η2 = −1η.

The ring K∗(κ)[η] has a natural grading in which η has a degree 1: one has

K∗(κ)[η] =
⊕
n≥0

Ln,

where Ln = Kn(κ)⊕ ηKn−1(κ) for n > 0 and L0 = K0(κ) = Z.
Now, we fix a local parameter π and consider the group homomorphism

dπ : k× → L1 = κ×
⊕

ηZ
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given by πiu 7→ (ū, ηi). Taking tensor powers and using the product structure in

K∗(κ)[η], we get maps

d⊗nπ : (k×)⊗n → Ln = Kn(κ)⊕ ηKn−1(κ).

Denoting by π1 : Ln → Kn(κ) and π2 : Ln → Kn−1(κ) the natural projections, put

∂ := π2 ◦ d⊗nπ and sπ := π ◦ d⊗nπ .

One sees that these maps satisfy the required properties. Therefore the construction

will be complete if we show that d⊗nπ factors through Kn(k), for then so do ∂ and sπ.

Concerning our claim about d⊗nπ , it is enough to establish the Steinberg relations

dπ(x)dπ(1−x) = 0 in L2. To do so, note first that the multiplication map L1×L1 → L2

is given by

(x, ηi)(y, ηj) = (x, y, η{(−1)ijxjyi}), (4.4)

where apart from the definition of the Li we have used the fact that the multiplication

map K0(κ)×K1(κ)→ K1(κ) is given by (i, x) 7→ xi.

Now, take x = πiu. If i > 0, the element 1 − x is a unit, hence dπ(1 − x) = 0

and the Steinberg relation holds trivially. If i < 0, then 1 − x = (−u + π−1πi) and

dπ(1− x) = (−ū, ηi). It follows from (4.4) that

dπ(x)dπ(1− x) = (ū, ηi)(−ū, ηi) = ({ū,−ū}, η{(−1)i
2
ū−i(−ū)i}),

which is 0 in L2. It remains to treat the case i = 0. If υ(1− x) 6= 0, then replacing x

by 1− x, we arrive at one of the above cases. If υ(1− x) = 0, i.e. x and 1− x both

are units, then dπ(x)dπ(1− x) = ({ū, 1− ū}, 0· η) = 0, and the proof is complete. �

Example The tame symbol ∂ : K1(k) → K0(κ) is none but the valuation map

υ : k× → Z.
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Chapter 5

The second Milnor K-group of a

rational function field

The results of this chapter are based on [3]. We have already introduced Milnor

K-groups in the previous chapters.

Let E denote a field, E(t) denote the rational function field in one variable t over

E and P denote the set of monic irreducible polynomials p in E[t]. Let Ep be the

quotient E[t]/(p). Any p ∈ P determines a Z− valuation υp on E(t) that is triv-

ial on E and such that υp(p) = 1. We describe the valuation υp explicitly. Let

φ(t) ∈ E(t)\{0}, then we can write φ(t) = p(t)n1f(t)/p(t)n2g(t) for n1, n2 non-negative

integers, where p(t) neither divides f(t) nor g(t). Then υp(φ) = n1 − n2. Apart from

these valuations, there is a unique Z−valuation, denoted by υ∞, on E(t) such that

υ∞(f(t)/g(t)) = − deg(f(t)) + deg(g(t)) for any f(t), g(t) ∈ E[t]\{0}.(We may call it

the degree valuation)

Let P ′ denote P ∪ {∞}. For each p ∈ P ′
, we write ∂p to denote the ramification

map corresponding to the valuation υp and Ep to denote the corresponding residue

field. The map ∂p : K
(m)
2 E(t)→ K

(m)
1 Ep is given by ∂p : Km

2 E(t)→ Km
1 Ep such that

∂υp({f, g}) = {(−1)υp(f)υp(g)f−υp(g)gυp(f)} for f, g ∈ F×. For p ∈ P , Ep ∼= E[t]/ < p >

for p ∈ P , and E∞ ∼= E.

Finally, we set P ′ := P ∪ {∞}.

The Faddeev Exact Sequence It is well known that for m co-prime to the

characteristic of the field E, the sequence

0 −→ Kn(m)E −→ K(m)
n E(t)

⊕∂p−−→
⊕
p∈P

K
(m)
n−1Ep −→ 0, (5.1)
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is split exact.

In what follows, we take n = 2 and set <′m(E) =
⊕
p∈P ′

K
(m)
1 Ep.

For p ∈ P ′, the norm map of the finite field extension yields a group homomorphism

from K
(m)
1 Ep to K

(m)
1 E. Summing over all these maps for all p ∈ P ′ yields a homo-

morphism N : <′m(E) → K
(m)
1 E.. We set ∂ =

⊕
p∈P ′

∂p, where ∂p is the residue map

corresponding to the valuation υp. By [1, (7.2.4), (7.2.5)], we obtain an exact sequence

0 −→ K
(m)
2 E −→ K

(m)
2 F

∂−→ <′m(E)
N−→ K

(m)
1 E −→ 0. (5.2)

Let <m denote the kernel of N , which is same as the image of ∂ : K
(m)
2 E(t)→ <′m(E).

We will work with this sequence.

Notation For ρ = (ρp)p∈P ′ ∈ <′m(E), the support of ρ, denoted by supp(ρ), is de-

fined as supp(ρ) = {p ∈ P ′|ρp 6= 0}. And, degree of ρ, denoted by deg(ρ), is defined

as deg(ρ) = Σp∈supp(ρ)[Ep : E]. We note that the degree of an element of <′m(E) is

invariant under E− automorphisms of E(t).

We want to study the relation between the degree of ρ ∈ <m(E) and the properties

of elements ξ ∈ K
(m)
2 E(t) with ∂(ξ) = ρ. More precisely, we want to ask whether

given any ρ ∈ <m(E) with a fixed degree, does there exist a natural number r such

that ξ is a sum of at most r symbols and ∂(ξ) = ρ. We will show that this is indeed

the case with r being the integral part of deg(ρ)/2. So, we will prove following result:

Theorem 5.1. For ρ ∈ <m(E) and r = bdeg(ρ)/2c, there exists symbols σ1, . . . , σn

in K
(m)
2 E(t) such that ρ = ∂(σ1 + · · ·+ σr).

5.1 Example showing the bound obtained is sharp

The example here is adapted from [4, Proposition 2].

For any a ∈ A, we have a unique homomorphism sa : K
(m)
n E(t) → K

(m)
n E such that

sa({f1, . . . , fn}) = {f1(a), . . . , fn(a)} for any f1, . . . , fn ∈ E[t] prime to t−a and such

that sa({t− a, ., . . . , .}) = 0 [1, (7.1.4)].

18



Lemma 5.2. The homomorphism s := s0−s1 : K
(m)
n E(t)→ K

(m)
N E satisfies following

properties:

(a) s(K
(m)
n E) = 0.

(b) s({(1− a)t+ a, b2, . . . , bn}) = {a, b2, . . . , bn} for any a, b2, . . . , bn ∈ E×.

(c) Any symbol in k
(m)
n E(t) is mapped under s to a sum of two symbols in K

(m)
n E.

Proof (a) is clear. (b) is true as s1({(1− a)t + a, b2, . . . , bn}) = 0. (c) is true as s0

and s1 map symbols to symbols, by definition. �

Proposition 5.3. Let d be a natural number, a1. . . . , ad, and σ1, . . . , σd symbols in

K
(m)
n−1E. Assume that Σd

i=1{ai}σ̇i ∈ K
(m)
n E is not equal to a sum of less than d symbols

and let

η = Σd
i=1{(1− ai)t+ ai}σ̇i ∈ K(m)

n E(t).

Then, deg (∂(η)) = d+ 1, and if r ∈ N is such that ∂(η) = ∂(τ1 + · · ·+ τr) for symbols

τ1, . . . , τr in K
(m)
n E(t), then r ≥ b(d+ 1)/2c.

Proof For i = 1, . . . , d, we would have {ai}σ̇i 6= 0 and hence, ai 6= 1. So, we consider

p = t+ [ai/(1− ai)].
∂p(η) = σi 6= 0 in K

(m)
n−1E.

Furthermore, since

Σd
i=1{ai}σ̇i 6= Σ{aia−1d }σ̇i,

we have ∂∞(η) = −Σd
i=1σ 6= 0 in K

(m)
n−1E. Therefore, we obtain

supp(∂(η)) = {t+ [ai/1− ai]|1 ≤ i ≤ d} ∪ {∞}

and thus deg(∂(η)) = d+ 1.

Now, let r ∈ N and ∂(η) = ∂(τ1 + · · ·+ τr) for symbols τ1, . . . , τr in K
(m)
n E(t). Then,

τ1 + · · ·+ τr− η is defined over E. Let s be the map as described in the lemma above.

Then, we obtain s(τ1 + · · ·+ τr − η) = 0 and thus

Σd
i=1{ai}σ̇i = s(η) = s(τ1) + · · ·+ s(τr) ∈ K(m)

n E,

which is a sum of 2r symbols. Hence, 2r ≥ d, by the hypothesis on d. �
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Example We take a prime p dividing m. Also, let k be a field containing a prim-

itive p-th root of unity ω and a1, . . . , ad ∈ k× such that the Kummer extension

k( p
√
a1, . . . , p

√
ad) of k has degree pd. Let b1, . . . , pd be the indeterminates over k and

set E = k(b1, . . . , bd). Using [T1987,(2.10)] and [2, (2.10)] it follows that Σd
i=1{ai, bi} is

not equal to a sum of less than d symbols in K
(p)
2 E. Since p|m, it follows immediately

that Σd
i=1{ai, bi} ∈ K

(m)
2 E is not a sum of less than d symbols in K

(m)
2 E. We consider

η = Σd
i=1{(1− ai)t+ ai, bi}

in K
(m)
2 E(t). By previous proposition, for ρ = ∂(η), we have that deg(ρ) = d+ 1 and

ρ 6= ∂(η′) for any η′ ∈ K(m)
2 E(t) that is a sum of less than r = bdeg(ρ)/2c symbols.

5.2 Proof of the theorem

We start with propositions and lemmas which lead to the above mentioned result.

Proposition 5.4. If ρ ∈ <m(E), then deg(ρ) 6= 1.

Proof Let ρ ∈ <′m with deg(ρ) = 1. The support of ρ consists of one rational point

p ∈ P ′. Thus, N(ρ) = ρp 6= 0 in K
(m)
1 E, hence ρ cannot belong to <m(E).

�

Definition 5.5. We say p ∈ P ′ is rational if [Ep : E] = 1. We call a subset of P ′

rational if all its elements are rational.

Remark We want to find a bound for the number of symbols r so that any ρ ∈
<m(E) is an image of ξ ∈ K(m)

2 E(t) under the map ∂, where ξ is a sum of at most

r symbols. A natural way would be to use the principle of mathematical induction

and it is the method we will use for the proof. But, for applying induction, we need

to find some way to reduce the degree of a given element in <m(E) upto image of a

symbol in K
(m)
2 E(t). This is what we do in the next lemma.

Lemma 5.6. Let ρ be an element of <′m(E) with deg(ρ) ≥ 2. Then there exists a

symbol σ in K
(m)
2 E(t) such that deg(ρ− ∂(σ)) ≤ deg(ρ)− 1 and where this inequality

is strict if deg(ρ) ≥ 3 and ρ∞ 6= 0. More precisely, one may choose σ = {fh, g} where

f is the product of polynomials in supp(ρ) and where g, h ∈ E[t]\{0} are such that

deg(g) < deg(f) and, either deg(h) < deg(g), or gh ∈ E×.
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Idea of the Proof We will consider f , which is the product of the polynomials

in supp(ρ). Then, we choose g ∈ E[t] prime to f with deg(g) < deg(f) such that

∂p({f, g}) = ρp for all monic irreducible polynomials p ∈supp(ρ). Finally, depending

on whether g is constant or square free or neither of them, we choose a suitable h and

get a σ which satisfies the properties as desired in the lemma.

Proof Let f be the product of the polynomials in supp(ρ). We claim that it is

possible to choose g ∈ E[t] prime to f with deg(g) < deg(f) such that ∂p({f, g}) = ρp

for all monic irreducible polynomials p ∈supp(ρ).

Suppose there exists such a g, then we have

∂p({f, g}) = ρp

⇐⇒ {(−1)υp(f)υp(g)f−υp(g)gυp(f)} = ρp ⇐⇒ {g} = ρp

for all monic irreducible polynomials p ∈ supp(ρ).

Using the Chinese Remainder Theorem, we see that the natural projection map

from E[t] to
⊕

p∈supp(ρ)

Ep is a surjection. So, we can find a g such that {g} = ρp

for all p monic irreducible polynomials in the support of ρ. We can ensure that

deg(g) < deg(f), for we can divide g by f and consider the remainder , if needed.

As {g, lg} = 0 for any l ∈ E[t] and ∂p is a homomorphism, such a g will satisfy

∂p({f, g}) = ρp. Also, by construction, g and f are co-prime as ρp 6= 0 for all p ∈
supp(ρ).

Now, we consider three cases. In each case, we would choose a h ∈ E[t]\{0}
carefully such that if we take σ := {fh, g}, we have deg(ρ− ∂(σ)) ≤ deg(ρ)− 1.

Case 1 g is a constant i.e.g = c ∈ E×.

In this case, we simply take h = 1. So,

σ = {fh, g} = {f, g}.

Now, from the definition of ∂p, it is clear that the monic irreducible polynomials for

which ∂p({f, c}) can take non-zero values lie in supp(ρ). And, by the choice of g,

we have ∂p(σ) = ρp for all monic irreducible polynomials p ∈ supp(ρ), therefore,
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(ρ− ∂(σ))p = 0.

So, only p ∈ P ′ for which (ρ− ∂(σ))p can be possibly non-zero is for p =∞. And, so,

deg(ρ− ∂(σ)) ≤ 1. And, so deg(ρ− ∂(σ)) ≤ deg(ρ)− 1 as deg(ρ) ≥ 2.

Case 2 g is not constant and g is not square-free.

In this case, we take h to be the product of all monic irreducible factors of g. Clearly,

then, deg(h) < deg(g) (as g is not square-free).

Then, the only possible p for which (ρ−∂(σ))p may be non-zero can be p which belong

to supp(ρ) ∪ {∞}∪ set of monic irreducible factor of h .

For p ∈supp(ρ),

(ρ− ∂({fh, g}))p = ρp − ∂p({f, g})− ∂p{h, g}} = −∂p{h, g} = −{1} = 0

(as both g and h are coprime to f .)

So, now,

deg(ρ− ∂(σ)) ≤ 1 + deg(h) =⇒ deg(ρ− ∂(σ)) ≤ deg(ρ)− 1

as

deg(h) < deg(g) < deg(f) =⇒ deg(f)− deg(h) ≥ 2

=⇒ deg(f)− 1 ≥ 1 + deg(h) =⇒ deg(ρ)− 1 ≥ 1 + deg(h).

since deg(f) = deg(ρ), by construction of f .

Case 3 g is not constant and g is square-free.

Now again, by the Chinese Remainder Theorem, the natural projection map from

E[t] to
⊕
p

Ep, with p varying over all monic irreducible factors of g, is a surjection.

Thus, we can choose h ∈ E[t]× such that ∂p({f, g}) − ρp = {h} in K
(m)
1 Ep for ev-

ery monic irreducible factor p of g. We can ensure that deg(h) < deg(g), for we

can divide h by g and consider the remainder, if needed. Such a h is co-prime to g.

Here, if (ρ − ∂(σ))p 6= 0, then p must be a monic irreducible factor of h. And, as

deg(h) < deg(g) < deg(f), we have deg(ρ− ∂(σ)) ≤ deg(ρ)− 1.

Also, in all three cases, clearly, if deg(ρ) ≥ 3 and ρ∞ 6= 0, then, deg(ρ − ∂(σ)) ≤
deg(ρ)− 2. �
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Lemma 5.7. Let d be a non-negative integer and f ∈ E[t] be non-constant and square-

free such that deg(p) ≥ d for every monic irreducible factor p of f . Let F = E[t]/(f)

and let ϑ denote the class of t in F . Then for any a ∈ F×, there exist non-zero

polynomials g, h ∈ E[t] with deg(h) ≤ d − 1 and deg(g) ≤ deg(f) − d such that

a = g(ϑ)/h(ϑ).

Proof Let

V =
d−1⊕
i=0

Eϑi and W =
e−d⊕
i=0

Eϑi,

where e = deg(f).

Let g ∈ E[t] be a polynomial of degree m ≤ d− 1. Then, g(t) is co-prime to f(t). So,

there exists l(t), q(t) ∈ E[t] such that g(t)l(t)+f(t)q(t) = 1, which implies g(ϑ)l(ϑ) =

1. So, g(ϑ) is invertible in F . Now, we have V \{0} ⊂ F×, where F× denotes the

group of invertible elements of F. As a ∈ F×, we have dimE(V a) = dimE(V ) = d and

dimE(V a) + dimE(W ) = e + 1 > e = [F : E](dimension of F as a vector space over

E). So V a ∩W 6= 0. Consequently, h(ϑ)a = g(ϑ) for certain h, g ∈ E[t]\{0} with

deg(h) ≤ d− 1 and deg(g) ≤ e− d. Thus, h(ϑ) ∈ V \{0} ⊂ F× and a = g(ϑ)/h(ϑ). �

Lemma 5.8. Let ρ ∈ <′m(E) and q ∈ supp(ρ) be such that deg(q) = 2n+1 with n ≥ 1.

Then there exists a symbol σ in K
(m)
2 E(t) such that deg(ρ−∂(σ)) ≤ deg(ρ)−2. More

precisely, one may choose σ = {qhf−2g−2, g−1f} with f, g, h ∈ E[t]\{0} such that

deg(f), deg(g) ≤ n and deg(h) ≤ 2n− 1.

Proof We apply the previous lemma for d = n+1 and thus get f , g ∈ E[t]\{0} with

deg(f), deg(g) ≤ n such that ∂q({q,−1 f}) = ρq. Then, q is co-prime to fg as deg(fg) =

2n ≤ deg(q) and q is irreducible. We make three cases. Let σ = {qhf−2g−2, g−1f},
where h ∈ E[t] will vary according to the case we consider.

Case 1 fg is constant.

Let h = 1 and consider σ = {qf−2g−2, g−1f}. Then, ∂q(σ) = ρq and ∂p(σ) = 0

for every monic irreducible polynomial p ∈ E[t] not contained in supp(ρ) and prime

to g and f . So, deg(ρ− ∂(σ)) ≤ deg(ρ)− (2n− 1) + 1 ≤ deg(ρ)− 2n ≤ deg(ρ)− 2.

Case 2 fg is not constant, not square-free.
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Let h to be the product of the different monic irreducible factors of fg. Then,

deg(h) ≤ 2n− 1. We consider two sub-cases.

Case 2A deg(h) = 2n− 1. This also implies deg(f) = deg(g) = n. So, deg(qh) =

4n = 2 deg(fg). Hence, ∂∞(σ) = 0. So, deg(∂ − ∂(σ)) ≤ deg(ρ)− 2.

Case 2B deg(h) ≤ 2n− 2. Then, deg(ρ− ∂(σ)) ≤ deg(ρ)− 3 + 1.

So, we are done with Case2.

Case 3 fg is not square-free, not constant.

We choose h ∈ E[t] co-prime to fg with deg(h) < deg(fg) such that ∂p({h, g−1f}) =

∂p({q−1f 2g2, g−1f}) for every monic irreducible factor p of fg. So, deg(h) ≤ 2n− 1 =

deg(q) − 2. Again, clearly, for p ∈ E[t] co-prime to h and not contained in supp(ρ),

∂p(σ) = 0. Again, we have two sub-cases.

Case 3A deg(h) = 2n− 1. Then, ∂∞ = 0. So, we are done.

Case 3B deg(h) ≤ 2n− 2. We are done whether ∂∞ is zero or not. �

Proposition 5.9. Let ρ be an element of <′m with deg(ρ) ≥ 2. Then there exists a

symbol σ in K
(m)
2 E(t) such that deg(ρ − ∂(σ)) ≤ deg(ρ) − 1. Moreover, if deg(ρ) ≥

3 and supp(ρ) contains an element of odd degree, then there exists a symbol σ in

K
(m)
2 E(t) such that deg(ρ− ∂(σ)) ≤ deg(ρ)− 2.

Proof We have already proved the first part in earlier results. So, we just need to

prove the second part of the statement. Again, if supp(ρ) contains a non-rational

point of odd degree, the statement follows from the previous lemma. Now, suppose

supp(ρ) contains a rational support. We note that the statement is invariant under

E- automorphisms of E(t). Hence, we may assume that ∞ ∈ supp(ρ), in which case

the statement follows from one of the earlier lemmas.

Let i denote an E-automorphism of E[t] and ĩ denote induced automorphism of

K
(m)
2 E(t). Further, let i

′
denote induced automorphism of <′

m(E). Now, we take

i such that i
′
(ρ) has ∞ in its support. Then, it follows that there exists a symbol

σ inK
(m)
2 E(t) such that deg(i

′
(ρ) − ∂(σ)) ≤ deg(i

′
(ρ)) − 2. Now, applying inverse

automorpisms, we get that deg(ρ− ∂(̃i−1(σ))) ≤ deg(ρ)− 2. So, the result follows. �
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Theorem 5.10. For ρ ∈ <′m(E) and r = bdeg(ρ)/2c, there exist symbols σ1, . . . , σr

in K
(m)
2 E(t) such that ρ = ∂(σ1 + · · ·+ σr).

Proof We induct on r. If r = 0, then ρ = 0 and the statement is trivial. So, we

assume that r > 0. We have either deg(ρ) = 2r + 1, in which case ρ contains a

point of odd degree, or deg(ρ) = 2r. Hence, by the previous proposition, there exists

a symbol σ in K
(m)
2 E(t) with deg(ρ − ∂(σ)) ≤ 2r − 1. By the induction hypothesis,

there exist symbols σ1, . . . , σr−1 in K
(m)
2 E(t) with ρ−∂(σ) = ∂(σ1+ · · ·+σr−1). Then,

ρ = ∂(σ1 + · · ·+ σr−1 + σ).

�
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