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Chapter 1

Introduction

The aim of this thesis is to understand the topology of an algebraic set (hypersurface)

near a point p belonging to that algebraic set.

We will use the following construction [Mil68] to study the topology. We intersect

the hyper-surface V or the algebraic set with a small sphere Sε centered at the given

point p. Then the topology of the V within the disc bounded by Sε is closely related

to the topology of the set K = Sε ∩ V , via the following theorem:

Theorem 1.1 For small ε the intersection of V with Dε is homeomorphic to the cone

over K = V ∩Sε. In fact the pair (Dε, V ∩Dε) is homeomorphic to the pair consisting

of the cone over Sε and the cone over K.

This provides us the necessary justification for using the construction described

above. Therfore, it is sufficient for us to study the topological properties of K,

which we do with the help of Milnor fibration.

This thesis is organized into three chapters after introduction. The second chapter

deals with the basic definitions and a few preliminary theorems which are in turn

used in proving the Milnor fibration theorem in the fourth chapter.In this chapter

we also state the basic results from Morse theory which are used in studying the

topological properties and we give a proof of the equivalence of the various notion of

dimension.
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The third chapter deals with the proof of the theorem stated above on the

topological properties of a space near a point. This chapter then discusses the results

when the point of interest is a regular point:

Theorem 1.2 If p is a simple point of V , the the intersection K = V ∩ Sε is an

unknotted sphere in Sε, for all sufficiently small ε.

We end this chapter by giving an example of the case when the point is singular.

In the first section of fourth chapter we prove the Milnor fibration theorem as

stated below:

Theorem 1.3 (Milnor, 1968) If p is any point of the complex hyper-surface V = f−1(0)

and if Sε is a sufficiently small sphere centered at p, then the mapping

φ(z) = f(z)
|f(z)|

from Sε −K to the unit circle (S1) is a smooth fiber bundle.

The basic idea of the proof lies in a construction of a non-vanishing vector field

locally and then patching it up using partitions of unity to get a global map. The

proof that the fibers are smooth manifolds is based on the result that pullback of

any regular value gives us a smooth manifold.

In the second section of this chapter we study the topological properties of the

fibers of the Milnor fibration as well as the topological properties of the space of our

interest near an isolated singular point. The main theorems are:

Theorem 1.4 The space K = V ∩ Sε is (n-2) connected.

Theorem 1.5 Each fiber Fθ has the homotopy type of a bouquet Sn∨. . .∨Sn of sphere,

the number of spheres in this bouquet being strictly positive. Each fiber can be realized

as the interior of a smooth compact manifold with boundary, F̄θ = Fθ ∪K.

We end with a brief discussion on whether K is a topological sphere or not.
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Chapter 2

Algebraic and Analytic

Underpinnings

2.1 Basic Definitions

Let Φ be any infinite field, and let Φm be the coordinate space consisting of all m-

tuples x = (x1, . . . , xm) of elements of Φ. (In our case Φ will be either R or C.)

Definition 2.1 (Algebraic set) A subset V ⊂ Φm is called an algebraic set if V is the

locus of common zeros of some collection of polynomial functions on Φm.

We denote by Φ[x1, . . . , xm] the ring of all polynomial functions from Φm to Φ and

let I(V ) ⊂ Φ[x1, . . . , xm] be the ideal consisting of those polynomials which vanish

throughout V . From Hilbert’s basis theorem we can conclude that the ideal I(V ) is

finitely generated.

We observe that the union V ∪ V ′ of any two algebraic sets V and V ′ in Φm is

again an algebraic set since the locus of zeros of the product of two polynomials is

precisely the union of locus of zeros of each polynomial.

Definition 2.2 (Irreducible algebraic set) A non-vacuous algebraic set V is called a va-

riety or an irreducible algebraic set if it cannot be expressed as the union of

two proper algebraic subsets.
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As an alternate description V is irreducible iff I(V ) is a prime ideal for Φ an

algebraically closed field. If V is irreducible, then the field of quotients f/g with f

and g 6= 0 in the integral domain

Φ[x1, . . . , xm]/I(V )

is called the field of rational functions on V . Its transcendence degree over

Φ is called the algebraic dimension of V over Φ. If W is a proper sub variety of V ,

then the dimension of W is less than dimension of V over Φ.

Let V ⊂ Φm be any non-vacuous algebraic set. Choose finitely many polynomials

f1, . . . , fk which span the ideal I(V ) and for each x ∈ V , consider the k ×m matrix

(∂fi/∂xj) evaluated at x. Let ρ be the largest rank which the matrix attains at any

point of V .

Definition 2.3 A point x ∈ V is called non-singular or regular if the matrix

(∂fi/∂xj) attains its maximal rank ρ at x and singular if

rank(∂fi(x)/∂xj) < ρ.

We note that this definition does not depend on the choice of {f1, . . . , fk} since

if we add an extra polynomial fk+1 = g1f1 + . . .+ gkfk the resulting new row will be

a linear combination of the old rows.

Lemma 2.4 The set Σ(V ) of all singular points of V forms a proper algebraic subset

(possibly vacuous) of V .

Proof A point x ∈ V will belong to Σ(V ) iff every ρ × ρ minor determinant of

(∂fi/∂xj) vanishes at x. Thus Σ(V ) is an algebraic set determined by algebraic

equations.

Remark: If V is a variety then, the dimension of V is m− ρ.

Definition 2.5 (Gradient) We define the gradient of an analytic function f(z1, . . . , zm)

of m complex variables to be the m−vector

grad f = (∂f/∂z1, . . . , ∂f/∂zm)

whose j − th component is the complex conjugate of ∂f/∂z1.
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Using the above definition, we get the chain rule of the derivative of f along a path

z = γ(t) to be

df(γ(t))/dt =< dγ/dt, grad f >,

using the hermitian inner product

< a, b >= Σaj b̄j.

In other words, the directional derivative of f along a vector v at the point z is

equal to the inner product < v, grad f(z) >.

Definition 2.6 (Critical point) A critical point of a smooth mapping f : M → N

between smooth manifolds is a point of the first manifold (p ∈ M) at which the

induced linear mapping between tangent spaces fails to be surjective , i.e., the map

Tpf : TpM → Tf(p)N

is not surjective.

Definition 2.7 (Critical value) A critical value f(x) ∈ N is the image under f of a

critical point.

Definition 2.8 (Non-degenerate critical point) A critical point p is called non-degenerate

iff the matrix (
∂2f

∂xi∂xj
(p)

)
is non-singular

We now give the definition of a smooth fiber bundle. In our notation a smooth

fiber bundle would mean a locally trivial fibration, in the following sense:

Definition 2.9 (Locally trivial fibration) Let φ : E → M be a smooth map, E and M

are smooth manifolds . We say that φ is a locally trivial fibration if for each

z ∈M there is an open neighborhood U and a diffeomorphism

h : φ−1(U)→ U × φ−1(z)

such that φ−1(U)
φ|φ−1(U)

''

h // U × φ−1(z)

prU
��
U

commutes.
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2.2 Morse Theory

In this section, we have stated the important results from Morse theory [Mil66] which

are used in the following sections to compute the topological properties of spaces of

our interest.

Let f be a smooth real valued function on a manifold M with critical point at p.

If v, w ∈ TpM then v and w have extensions ṽ and w̃ to vector fields. We define a

symmetric bilinear functional f∗∗ on TpM as

f∗∗(v, w) = ṽp(w̃(f)),

where ṽp = v. This functional is called the Hessian of f at p.

This symmetric because

ṽp(w̃(f))− w̃p(ṽ(f)) = [ṽ, w̃]p(f) = 0

where [ṽ, w̃] is the Poisson bracket of ṽ and w̃, and where [ṽ, w̃]p(f) = 0 since f has

a critical point at p.

Hence it is well-defined since ṽp(w̃(f)) = v(w̃(f)) is independent of the extension

ṽ of v, while w̃p(ṽ(f)) is independent of w̃.

Let (x1, . . . , xn) be a local coordinate system and v =
∑
ai

∂
∂xi
|p, w =

∑
bj

∂
∂xj
|p,

we choose w̃ =
∑
bj

∂
∂xj
|p, where bj is a constant function. Then

f∗∗(v, w) = v(w̃(f))(p) = v(
∑

bj
∂f

∂xj
) =

∑
i,j

aibj
∂2f

∂xi∂xj
(p);

so the matrix ( ∂2f
∂xi∂xj

) represents the bilinear function f∗∗ with respect to the basis
∂
∂x1
|p, . . . , ∂

∂xn
|p.

Definition 2.10 (Index) The index of a bilinear functional H, on a vector space V

is defined to be the maximal dimension of a subspace of V on which H is negative

definite.
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Definition 2.11 (Nullity) Nullity is defined to be the dimension of the subspace con-

sisting of all v ∈ V such that H(v, w) = 0 for all w ∈ V .

We note that the point p is a non-degenerate critical point of f iff f∗∗ on TpM has

nullity equal to 0. We refer to the index of f∗∗ on TpM simply as the index of f at

p. The following result will show that the behaviour of f at p can be fully described

by the index.

Lemma 2.12 (Lemma of Morse) Let p be a non-degenerate critical point of f . Then

there is a local coordinate system (y1, . . . , yn) in a neighborhood U of p with yi(p) =

0 ∀i and such that the identity

f = f(p)− (y1)2 − . . .− (yλ)2 + (yλ+1)2 + . . .+ (yn)2

holds throughout U , where λ is the index of f at p.

Corollary 2.13 Non- degenerate critical points are isolated.

Theorem 2.14 (Morse) [Mor34] Let C be a critical set of f which lies in a coordinate

system (x) in which f is analytic. Corresponding to any arbitrarily small neighbor-

hood N of C, there exists a function ψ of class C2 on a Reimannian manifold M

which with its first and second partial derivatives approximates f and its first and

second partial derivatives arbitrarily closely over M and which is such that f ≡ ψ

on (M \N) while ψ has at most non-degenerate critical points on N .

If f is a real valued function on a manifold M , we let

Ma = f−1(−∞, a] = {p ∈M |f(p) ≤ a}

Theorem 2.15 Let f be a smooth real valued function on M . Let a < b and suppose

that the set f−1[a, b], consisting of all p ∈ M with a ≤ f(p) ≤ b, is compact, and

contains no critical points of f. Then Ma is diffeomorphic to M b. Furthermore, Ma

is a deformation retract of M b, so the inclusion map Ma → M b is an homotopy

equivalence.
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Theorem 2.16 Let f : M → R be a smooth function, and let p be a non-degenerate

critical point with index λ. Setting f(p) = c, suppose that f−1[c− ε, c+ ε] is compact,

and contain no critical points of f other than p, for some ε > 0. Then, for all

sufficiently small ε, the set M c+ε has the homotopy type of M c−ε with a λ-cell (eλ)

attached.

From the above theorem it also follows that M c−ε ∪ eλ is a deformation retract

of M c.

Theorem 2.17 If f is a differentiable function on a manifold M with no degenerate

critical points, and if each Ma is compact, then M has the homotopy type of a CW-

complex, with one cell of dimension λ for each critical point of index λ.

Let K be a compact subset of the Euclidean space Rn; let U be a neighborhood

of K and let

f : U → R

be a smooth function such that all critical points of f in K have index ≥ λ0.

Theorem 2.18 If g : U → R is any smooth function which is close to f, in the sense

that

| ∂g
∂xi
− ∂f

∂xi
| < ε, | ∂2g

∂xi∂xj
− ∂2f

∂xi∂xj
| < ε, (i, j = 1, . . . , n)

uniformly throughout K, for some sufficiently small constant ε, then all critical points

of g in K have index ≥ λ0.

Here f is allowed to have degenerate critical points.

2.3 Whitney’s Theorems

We state the following theorems due to Whitney. The proofs can be found in [Whi57].

Theorem 2.19 (Whitney) If Φ is the field of real (or complex) numbers, then the set

V − Σ(V ) of non-singular points of V forms a smooth, non-vacuous manifold. In

fact this manifold is real (or complex) analytic, and has dimension m− ρ over Φ.
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The proof of this theorem will be a corollary of the following result due to Whitney

and we will need the following definition for its proof.

Definition 2.20 (Locally algebraic submanifold of Rm) A locally algebraic subman-

ifold of Rm(called as algebraic partial manifold be Whitney in [Whi57]) M is an

subset of Rm associated with a number ρ, with the property that for any p ∈M , there

exists a set of polynomials f1, . . . , fρ of rank ρ at a point p and a neighborhood U of

p, such that U ∩M is the set of zeros in U of these fi. The number m − ρ is the

dimension of the locally lagebraic submanifold of Rm.

Note that M need not be closed or connected and that any open subset of M is

a locally algebraic submanifold of Rm.

The following theorem is stated for the real case but will be proved first in the

complex case:

Theorem 2.21 [Whi57] Let V ⊂ Rn be a real algebraic variety and let M1 be the

set of points p ∈ V where the rank of (∂fi/∂xj) for fi the generators of I(V ) is

its maximum. Then M1 is a locally algebraic submanifold of Rn of dimension n −
rank (∂fi/∂xj) and V1 = V −M1 is void or is a proper algebraic subvariety of V.

Before proceeding to the proof of the theorem we prove an elementary lemma:

Lemma 2.22 Let f1, . . . , fρ have independent differentials at p. Then there is a coor-

dinate system (x′1, . . . , x
′
n) in a neighborhood U of p such that

x′i(q) = fi(q)− fi(p) ∈ U (i = 1, . . . , ρ) (2.1)

Proof Choose co-vectors ξρ+1, . . . , ξn which with dfi(p) form an independent set.

Let

x′i(q) = ξ.(q − p) for i > ρ;

then

dx′i(q) = dfi(q) (i ≤ ρ) (2.2)

dx′i(q) = ξi (i > ρ) (2.3)
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Hence the Jacobian of the transformation

(x1, . . . , xn)→ (x′1, . . . , x
′
n)

is not zero at p and (x′1, . . . , x
′
n) is a coordinate system.

Proof [Proof of Theorem 2.21] Take any p ∈ M1. We may choose polynomials

f1, . . . , fρ in I(V ) with independent differentials at p; we keep these f fixed.

Given any polynomial g and any µ = (µ1, . . . , µρ+1), define the polynomial

Ψµg =
∂(f1, . . . , fρ, g)

∂(xµ1 , . . . , xµρ , xµρ+1)
(2.4)

where ∂(f1,...,fρ,g)

∂(xµ1 ,...,xµρ ,xµρ+1 )
is the determinant of the matrix of partial derivatives of the

function f1, . . . , fρ, g with respect to xµ1 , . . . , xµρ , xµρ+1 .

We choose a coordinate system (x′1, . . . , x
′
n) in a neighborhood of U of p by the

above lemma. Now

∂fi/∂x
′
j = Σn(∂fi/∂xn)(∂xn/∂x

′
j)

and this gives

∂(f1, . . . , fρ, g)

∂(x′1, . . . , x
′
ρ, x
′
k)

= Σµ1<...<µρ+1

∂(f1, . . . , fρ, g)

∂(xµ1 , . . . , xµρ , xµρ+1)

∂(xµ1 , . . . , xµρ , xµρ+1)

∂(x′1, . . . , x
′
ρ, x
′
k)

Because of 2.2 and 2.3, the left hand side is simply ∂g/∂x′k, if k > p. Let T µk
denote the last term on the right. Then this relation and 2.4 give

∂g

∂x′k
= Σµ1<...<µρ+1T

µ
k Ψµg in U (k > ρ) (2.5)

Let M∗ be the (n − ρ)- dimensional manifold in U defined by the vanishing of

the fi; it is the part of the (x′ρ+1, . . . , x
′
n)- coordinate plane in U.

Given a function g and a point p′ ∈ M∗, dg(p′).v = 0 for all vector v tangent to

M∗ at p′ iff dg(p′) is dependent on the dfi(p
′), that is, iff all Ψµg = 0 at p or again,
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∂g/∂x′k = 0 at p′ for k > ρ.

We may iterate the operations forming ΨλΨµg, ΨσΨλΨµg, etc.

Let H(g) be the set of all such polynomials, and let JU(g) be the ideal of analytic

functions in U generated by H(g), consisting of all functions

Σϕi(p)hi(p) with hi ∈ H(g)

and ϕi analytic in U .

We show that each partial derivative of g of any order with respect to the variables

(x′ρ+1, . . . , x
′
n) is an element of JU(g).

By 2.5, this holds for the first partial derivatives. Using induction it is sufficient

to show that if ϕ is analytic in U and h = Ψσ . . .Ψµg, then

∂(ϕh)/∂x′k ∈ JU(g) , k > ρ

Differentiating ϕh
∂(ϕh)

∂x′k
=
∂(ϕ)

∂x′k
.h+ ϕ

∂(h)

∂x′k

and applying 2.5 with h in place of g shows this to be true.

Now suppose that M∗ is connected. To prove the theorem we need to show that

M1 ∩ U = M∗.

Since V1 is closed, we may suppose V1 ∩U = 0, hence M1 ∩U = V ∩U ⊂M∗ (as

fi ∈ I(V )) and there remains to prove M∗ ⊂ V .

Take any polynomial g ∈ I(V ); we must prove that g = 0 in M∗. Since

rank(∂fi/∂xj) = ρ, the differentials df1, . . . , dfρ, dg are dependent through out V ;

hence all Ψµg = 0 throughout V , and Ψµg ∈ I(V ).
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Repeating the above argument shows that H(g) ⊂ I(V ). In particular, all

polynomials in H(g) vanish at p. By the above result, all partial derivatives of

g vanish at p.

Now g is analytic in the open connected part of (x′ρ+1, . . . , x
′
n)-space which is M∗

and g = 0 there. This gives us the proof.

Remark: It follows from the theorem 2.21 that we can express V as a disjoint

union , V = M1 ∪ . . . ∪ Ml, where each Mj is smooth manifold and we call the

maximum of dimensions of Mj as the dimension of V .

Theorem 2.23 (Whitney) For any pair W ⊂ V of algebraic sets in a real or complex

coordinate space, the difference V − W has at most a finite number of topological

components.

Here V −W is itself an algebraic set. It is sufficient to consider the real case,

since any complex algebraic set in Cm can be thought of as a real algebraic set in R2m.

Before giving the proof, we prove a few lemmas which are required in the proof

of theorem.

Lemma 2.24 Let V be an algebraic set in the m−dimensional coordinate space over

any infinite field, and let f1, . . . , fm be polynomials which vanish on V and at point

p. If the matrix (∂fi/∂xj) is non-singular at a point p of V , then, removing p from

V , the complement V − p will still be a closed algebraic subset of V .

Proof We may assume p = 0. Since the fj vanishes at the origin, we can choose

polynomials gjk so that

fj(x) = gj1(x)x1 + . . .+ gjm(x)xm.

Let W denote the algebraic set consisting of all points x ∈ V which satisfy the

polynomial equation

det(gjk(x)) = 0.
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Then the origin is not a point of W , since the matrix

(∂fi(0)/∂xj) = (gjk(0))

is non-singular. But at any point x 6= 0 of V the linear dependence realtion

 0
...

0

 =

 g11(x)
...

gm1(x)

x1 + . . .+

 g1m(x)
...

gmm(x)

xm

shows that det(gjk(x)) = 0. So V − {0} = W , which proves that V − {0} is an

algebraic set.

Now we specialize to the field R of real numbers.

Corollary 2.25 If an algebraic set V ⊂ Rm has topological dimension zero, then V is

a finite set.

Proof Let f1, . . . , fk span the ideal I(V ). It is enough to show that every zero

dimensional algebraic set V contains at least one point p at which the matrix

(∂fi/∂xj) has rank m. For then the point p can be removed by the above lemma,

yielding a proper algebraic subset V1 = V − {p}. Iterating our construction, we

obtain a chain

V1 ⊃ V2 ⊃ V3 ⊃ . . .

of nested algebraic subsets. Since every such chain must terminate by Hilbert’s basis

theorem, this will prove that V is finite.

But if the matrix (∂fi/∂xj) has rank at most ρ ≤ m − 1 at all points of V ,

then from theorem 2.19 would imply that V contained a smooth manifold V −Σ(V )

of dimension m − ρ ≥ 1. Since this would contradict the hypothesis that V has

topological dimension zero, this completes the proof of the corollary.

Lemma 2.26 Any non-singular algebraic set V ⊂ Rm has the homotopy type of a

finite CW complex.
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Proof Given any point a ∈ Rm let

ra : V → R

denote the squared distance function

ra(x) = ||x− a||2

Then for almost every choice of a, the function ra on V has only non-degenerate

critical points [Mil66].

Let Γ ⊂ V denote the set of all critical points of ra. Then Γ is an algebraic set.

But non-degenerate critical points are clearly isolated, so it follows from the previous

corollary that Γ is a finite set.

Every component V (i) of V must intersect the critical set Γ. For the distance

from a must be minimized at some point x of the closed set V (i), and clearly this

closet point x will belong to Γ. Therefore, V can have only finitely many components.

Alternatively, the main theorem of Morse theory [Mor34], [Mil66] states that the

manifold V has the homotopy type of a cell complex with one cell for each critical

point of the non-degenerate, proper, non-negative function ra. Then the finiteness

of Γ implies that V has the homotopy type of a finite CW complex.

Corollary 2.27 For any real algebraic set V , if W is an algebraic subset containing

the singular set Σ(V ), then V −W has the homotopy type of a finite CW complex.

Proof Suppose that W is defined by polynomial equations f1(x) = . . . = fk(x) = 0.

setting

s(x) = f1(x)2 + . . .+ fk(x)2,

note that W can also be defined by the single polynomial equation s(x) = 0.

Now let G be the graph of the rational function 1/s from V to R. That is , let

G be the set of all

(x, y) ∈ V × R ⊂ Rm+1
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for which s(x)y = 1.

Then we see that G is an algebraic set, and is homeomorphic to V −W . Moreover

G has no singular points. This gives us the proof of the lemma.

Proof [Proof of Theorem 2.23] As we have seen, the set V can be expressed as a

finite union M1 ∪ . . .Mp , where the manifold M1 is the set of non-singular points of

V1 = V , the manifold M2 is the set of non-singular points of V2 = Σ(V1), and so on.

Therefore

V −W = (M1 −W ) ∪ . . . ∪ (Mp −W )

where each

Mi −W = Vi − (Σ(Vi) ∪W )

is a manifold which has only finitely many (path-) components by the above lemma.

It follows that the union V −W has only finitely many path-components. This

completes the proof of the theorem.

As a consequence of the above theorems we have the following corollary whose

proof is just an application of Hilbert’s basis theorem.

Corollary 2.28 Any real or complex algebraic set V can be expressed as a finite disjoint

union V = M1∪M2∪ . . .∪Mp, where each Mj is a smooth manifold with only finitely

many components. Similarly any difference V −W of varieties can be expressed as

such a finite union.

We end this section with the following theorem:

Theorem 2.29 The manifold of simple points of a complex variety V is everywhere

dense.

Proof It is sufficient to prove the following statement:

If V = V (P ), P is a prime ideal in C[x1, . . . , xn] and f ∈ C[x1, . . . , xn], f /∈ P ,

then V − Z(f) is dense in the strong topology on V .
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The statement is trivially true for the case when n = 0. For the case n = 1, we

have two subcases: First, if P = (0), then for any f ∈ C[x]− 0 , Z(f) is a finite set

and V (0) = C and C − {finite set} is dense in C, so we are done. Second subcase

is if P 6= (0), since C[x] is a principal ideal domain, we have every prime ideal is

maximal, so P = (x− a). Thus V (P ) = {a} and f /∈ P iff f(a) 6= 0. This gives us

Z(f) ∩ V (P ) = ∅.

Therefore

V (P )− Z(f) = V (P )− Z(f) = V (P )

and we are done. Now for case n > 1 , we again have two subcase: First, when

P = (0). By induction, we get that Z(f) in An or Pn is not all of An or Pn for k an

infinite field. This gives An − Z(f) or Pn − Z(f) is dense in An or Pn respectively

as take any point p ∈ Z(f) and take all the lines passing through that point, then

only finitely many lie in Z(f) and Z(f) ∩ L is finite. Thus, L− (Z(f) ∩ L) is dense

in L. Therefore, An − Z(f) or Pn − Z(f) is dense in An or Pn.

Second subcase, when P = (g), where g is irreducible. (We can reduce this to

the case of curves using induction).Consider

k[x] ↪→ k[x, y1, . . . , yn]/P
η−→ k[x, y1, . . . , ym]/Q.

where P is prime and yi are integral.

Claim 1: There exists η such that k[x, y1, . . . , ym]/Q is integrally closed.

Proof of claim 1: We want to show that the integral closure(R̃) of R =

k[x, y1, . . . , yn]/P in the quotient field is a finitely generated R-module.

Without loss of generality and using Noether normalisation lemma we get

C[x0, x1] ↪→ R

is an integral extension.This gives us

C(x0, x1) ↪→ Q(R)
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is a finite extension and we know that

C[x0, x1] ↪→ C(x0, x1)

is integrally closed. Consider e1, . . . , ed be a basis of Q(R) over C(x0, x1) such that

ei are integral over C[x0, x1]. This gives ei ∈ R̃.

M = {a ∈ Q(R)|TrQ(R)/C(x0,x1)(aei) ∈ C[x0, x1]}

is a finitely generated C[x0, x1]-module and R̃ ⊂M . This proves our claim.

Claim 2:V (Q) is smooth at every point. The proof of this can be referred in

([Sha96] Pg 126).

Then again using the fact that complements of finite sets are dense, we get our

theorem.

2.4 Application of Whitney’s theorem

Let M1 = V − Σ(V ) be the manifold of simple (regular, non-singular) points of an

algebraic set V ⊂ Φm, where Φ denotes the real or complex numbers, and let g be a

polynomial function on Φm. The dimension of M1 is the same as that of the algebraic

variety V .

Lemma 2.30 The set of critical points of the restricted function g|M1 from M1 to Φ

is equal to the intersection of M1 with the algebraic set W consisting of all points

x ∈ V at which the matrix


∂g
∂x1

. . . ∂g
∂xm

∂f1
∂x1

. . . ∂f1
∂xm

...
. . .

...
∂fk
∂x1

. . . ∂fk
∂xm


has rank ≤ ρ; where f1, . . . , fk denote polynomial spanning I(V ).
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Proof Using Implicit function theorem or Rank theorem, near any point of M1 we

can choose a (real or complex) smooth system of local coordinates u1, . . . , um for Φm

so that M1 corresponds to the locus u1 = 0, . . . , uρ = 0. Then uρ+1, . . . , um can be

taken as the local coordinates on M1. We note that ∂fi
∂uj

, evaluated at a point of M1,

is 0 for j ≥ ρ + 1 (as fi vanishes on M1 ). Since the matrix (∂fi/∂uj) is column

equivalent to the matrix (∂fi/∂xl) and therefore has rank ρ, it follows that the first

ρ columns of (∂fi/∂uj) must be linearly independent.

Now the enlarged matrix 
∂g
∂u1

. . . ∂g
∂um

∂f1
∂u1

. . . ∂f1
∂um

...
. . .

...
∂fk
∂u1

. . . ∂fk
∂um


will have the same rank ρ iff

∂g

∂uρ+1

= . . . =
∂g

∂um
= 0;

or one can say iff the given point is a critical point of g|M1 . Since this new matrix is

column equivalent to the matrix ,
∂g
∂x1

. . . ∂g
∂xm

∂f1
∂x1

. . . ∂f1
∂xm

...
. . .

...
∂fk
∂x1

. . . ∂fk
∂xm


our proof is complete.

Corollary 2.31 A polynomial function g on M1 = V −Σ(V ) can have at most a finite

number of critical values.

Proof The set of critical points of g|M1 can be expressed as a difference W − Σ(V )

of algebraic sets, and hence can be expressed as a finite union of smooth manifold,

W − Σ(V ) = M ′
1 ∪ . . . ∪M ′

p
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where each M ′
i has only finitely many components. Each point x ∈ M ′

i is a critical

point of the smooth function g|M1 , so a fortiori it is a critical point of the restricted

function g|M ′1 . Since all points of M ′
i are critical, it follows that g is constant on each

connected component. But the union g(M ′
2) ∪ . . . ∪ g(M ′

p) is precisely the set of all

critical values of g|M1 .

Let p be either a simple point of V or an isolated point of the singular set Σ(V ),

where V is any real or complex algebraic set.

Corollary 2.32 Every sufficiently small sphere Sε centered at p intersects V in a

smooth manifold (possibly vacuous).

Proof The complex case reduces to real case, since every complex algebraic set is

also a real algebraic set. In the real case this follows by applying the above corollary

to the polynomial function r(x) = ||x − p||2. If ε2 is smaller than any positive

critical value of r|(V−Σ(V )) then ε2 will be regular value, hence its inverse image

r−1(ε2) ∩ (V − Σ(V )) = Sε ∩ (V − Σ(V )) will be a smooth manifold K. But if ε is

small enough then Sε will not meet Σ(V ) (as p is an isolated point), hence K will

equal Sε ∩ V .

2.5 Lefschetz Theorem

This section has been referred from [Mil68].

We begin by introducing a positive integer µ which measures the amount of

degeneracy at the critical point p. This integer µ will be the multiplicity of p as

solution to the collection of polynomial equations

∂f

∂z1

= . . . =
∂f

∂zn
= 0.

In a general setup, let g1(z), . . . , gm(z) be arbitrary analytic functions of m

complex variables, and let p be an isolated solution to the collection of equations

g1(z) = . . . = gm(z) = 0.
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We will say this as: p is an isolated zero of the mapping g : Cm → Cm.

Definition 2.33 The multiplicity µ of the isolated zero p is the degree of the mapping

z 7→ g(z)

||g(z)||

from a small sphere Sε centered at p to the unit sphere of Cm.

The following properties help us in providing a justification for our definition.

Lemma 2.34 If the Jacobian
(
∂gj
∂zk

)
is non-singular at p then µ = 1.

Proof We consider the Taylor series expansion with remainder:

g(z) = L(z − p) + r(z),

where the linear transformation L is non-singular by hypothesis, and where ||r(z)||||z−p||
tends to 0 as z → p. We choose an ε small enough so that

||r(z)|| < ||L(z − p)||

whenever ||z − p|| = ε. Then the one parameter family of mappings

ht(z) =
(L(z − p) + t.r(z))

||L(z − p) + t.r(z)||
, 0 ≤ t ≤ 1,

from Sε(z
0) to the unit sphere demonstrates that the degree µ of h1 is equal to the

degree of the mapping L/||L|| on Sε(p). (From Rouche’s principle : The degree

of (L + r)/(||L + r||) on Sε is equal to the degree of L/||L|| whenever ||r|| < ||L||
throughout Sε.)

Now we deform L continuously to the identity within the group GL(m,C) con-

sisting of all non-singular linear transformations. This is possible since the Lie-group

GL(m,C) is connected. It follows easily that the degree the degree of the mapping

L/||L|| on Sε(p) is 1. This finishes the proof.

Now let D be a compact region with smooth boundary in Cm and assume that g

has only finitely many zeros in D and no zero on the boundary.
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Lemma 2.35 The number of zeros of g within D, counted with its appropriate multi-

plicities, is equal to the degree of the mapping

∂D → S2m−1

given by

z 7→ g(z)/||g(z)||

Proof We remove a small open disc about each zero of g from the region D. Then

the function g/||g|| is defined and continuous throughout the remaining region D0.

The boundary ∂D is homologous to the sum of the small boundary spheres within

D0, it follows that the degree of g/||g|| on ∂D is equal to the sum ,
∑
µ of the degrees

on the small spheres. This gives us our lemma.

Let p be an isolated zero of g with multiplicity µ.

Lemma 2.36 If Dε is a disc about p containing no other zeros of g then, for almost

all points q ∈ Cm sufficiently close to the origin, the equation g(z) = q has precisely

µ solutions z ∈ Dε.

Proof From Sard’s Theorem, almost every point q of Cm is a regular value of the

differentiable mapping

g : Cm → Cm.

That is, for all q not in some set of Lebesgue measure zero, the matrix (∂gj/∂zk) is

non-singular at every point z in the inverse image g−1(a).

Given any such regular value q, the solutions z of the system of analytic equations

g(z)− q = 0 are all isolated, with multiplicity 1, using 2.34. We choose any regular

value q of g which is close to the origin so that ||q|| < ||g(z)|| for all z ∈ ∂Dε. Then

from 2.35 the number of solutions of the equation g(z)− q = 0 inside Dε is equal to

the degree of the map g(z)− q/||g(z)− q|| on ∂Dε. Thus, by Rouche’s principle the

degree of the mapping g(z)− q/||g(z)− q|| is equal to the degree µ of g(z)/||g(z)||.
This gives us our result.

Corollary 2.37 The inequality µ ≥ 0 is always satisfied.
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For the special case gj(z) = ∂f/∂zj, we see that 2.34 gives us that in case of

a non-degenerate critical point of f , where the Hessian matrix is non-singular, the

integer µ is 1. 2.36 gives us that if we change f minutely by subtracting almost any

small linear polynomial a1z1 + . . . + amzm from it, then the isolated critical point p

will split up into a cluster of µ nearby critical points, all non-degenerate.

Now we come to the main theorem for this section:

Theorem 2.38 (Lefschetz) The multiplicity µ of an isolated solution of m polynomial

equation in m variable is always a positive integer.

Proof Given a disc Dε about p containing no other zeros of g, we choose a number

η which is small enough so that

|η| < ||g(z)||/ε

for all z ∈ ∂Dε, and which is distinct from all eigenvalues of the matrix (∂gj(p)/∂zk).

Then the perturbed function

g′(z) = g(z)− η(z − p)

has a zero of multiplicity 1 at p, since the matrix(
∂g′j
∂zk

)
=

(
∂gj
∂zk
− ηδjk

)
is non-singular at p. Therefore, assuming that g′ has only finitely many zeros with

Dε, the algebraic number
∑
µ′ of the zeros of g′ within Dε is certainly ≥ 1 ( as

g′(p) = 0 and all summands being ≥ 0 by 2.37). This sum is equal to the degree

of g′/||g′|| on ∂Dε, which is equal to the degree µ of g/||g|| on ∂Dε by Rouche’s

principle. Hence µ ≥ 1.

We now need to eliminate the possibility of g′ having infinitely many zeros inside

Dε. In that case we could subtract a small constant vector q from g′, where q is a

regular value of g′. Then the zeros of g′ − q are isolated and hence there are only

finitely many zeros of g′ − q within Dε. To guarantee that g′ − q has at least one
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zero, we use the inverse function theorem to choose a neighborhood U of p in Dε so

that g′ maps diffeomorphically onto an open neighborhood of the origin. Choosing

q within g′(U) the equation equation g′(z)− q = 0 certainly has a solution z within

U ⊂ Dε. This completes the proof that µ ≥ 1.

2.6 The Notion of Dimensions

In this section we will show the equivalence of various definition of dimension of a

variety. We will begin by the local notions of dimension for a general Noetherian

local ring and show that these versions coincide with the notion of dimension of

algebraic variety as the transcendence degree of the function field [A M01]. We will

be using the concept of Hilbert’s function in our discussion.

Let A = ⊕∞n=0An be a Noetherian graded ring. Then A0 is a Noetherian ring

and A is finitely generated as an A0 algebra by x1, . . . , xs which are homogeneous of

degrees k1, . . . , ks (all > 0).

Consider M = ⊕∞n=0Mn to be a finitely generated graded A-module. Then M is

generated by homogeneous element mj (1 ≤ j ≤ t) with rj = degmj. Thus elements

of Mn have the form
∑

j fj(x)mj, where fj(x) ∈ A is homogeneous of degree n− rj
and is zero if n < rj. Thus Mn is finitely generated as an A0-module by all gj(x)mj,

where gj(x) is a monomial in xi of total degree n− rj.

Definition 2.39 (Additive function) Let C be a class of A-modules and let λ be a func-

tion on C with values in Z, then the function λ is additive if, for each short exact

sequence in which all terms belong to C,

0→M ′ →M →M ′′ → 0

we have the relation

λ(M ′)− λ(M) + λ(M ′′) = 0.

Let λ be an additive function on the class of all finitely generated A0-modules.

The Poincaré series of M is the power series

P (M, t) =
∞∑
n=0

λ(Mn)tn ∈ Z[[t]]
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Theorem 2.40 (Hilbert, Serre) P(M,t) is a rational function in t of the form f(t)∏s
i=1(1−tki ) ,

where f(t) ∈ Z[t].

Proof We proceed by induction on the number of generators of A over A0. For

s = 0 , we have An = 0 for all n > 0, so that A = A0 and M is a finitely generated

A0 module, hence Mn = 0 for all large n. There by giving us that P (M, t) is a

polynomial.

Now take s > 0 and assume the result for s − 1 . Then multiplication by xs is an

A-module homomorphism of Mn into Mn+ks which gives us the exact sequence

0→ Kn →Mn
xs−→Mn+ks → Ln+ks → 0. (2.6)

Let K = ⊕nKn , L = ⊕nLn; these are finitely generated A-modules and both

are annihilated by xs, hence they are A0[x1, . . . , xs−1]-modules. On applying λ to

equation 2.6 we have

λ(Kn)− λ(Mn) + λ(Mn+ks)− λ(Ln+ks) = 0

multiplying by tn+ks and summing over n we get

(1− tks)P (M, t) = P (L, t)− tksP (K, t) + g(t) (2.7)

where g(t) =
∑ks

i=0 λ(Mi)t
i −

∑ks
i=0 λ(Li)t

i is a polynomial. We get our result by

applying the inductive hypothesis.

We denote the order of the pole of P (M, t) at t = 1 by d(M). The case when all

ki = 1 is given by:

Corollary 2.41 If each ki = 1, then for all sufficiently large n, λ(Mn) is a polynomial

in n with rational coefficients of degree d− 1.

Proposition 2.42 If x ∈ Ak is not a zero divisor in M them d(M/xM) = d(M)− 1.

Proof In the sequence 2.6 we replace xs by an element x ∈ Ak which is not a zero

divisor in M . Then K = 0 and equation 2.7 gives us that d(L) = d(M) − 1. This

gives us our proposition.

Now we prove another proposition which will be an important ingredient for

dimension theorem.
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Proposition 2.43 Let A be a Noetherian local ring, m its maximal ideal, q an m-

primary ideal, M a finitely generated A-module, (Mn) a stable q-filtration of M.

Then

1. M/Mn is of finite length, for each n ≥ 0 ;

2. for all sufficiently large n this length is a polynomial g(n) of degree ≤ s in n,

where s is the least number of generators of q;

3. the degree and leading coefficient of g(n) depend only on M and q, not on the

filtration chosen.

Proof

1. Let G(A) = ⊕nqn/qn+1, G(M) = ⊕nMn/Mn+1. Then G0(A) = A/q is an

Artin local ring, G(A) is Noetherian and G(M) is a finitely generated graded

G(A)-module. Each Gn(M) = Mn/Mn+1 is a Noetherian A-module annihilated

by q, hence a Noetherian A/q-module and therefore of finite length (since A/q

is Artinian). Hence M/Mn is of finite length and

ln = l(M/Mn) =
n∑
r=1

l(Mr−1/Mr) (2.8)

as l is an additive function.

2. If x1, . . . , xs generate q, the images x̄i of xi in q/q2 generate G(A) as an A/q-

algebra and each x̄i has degree 1. Hence by 2.41 we have l(Mn/Mn+1) = f(n),

where f(n) is a polynomial in n of degree ≤ s − 1 ∀ large n. Since from

equation 2.8 we have ln+1 − ln = f(n), it follows that ln is a polynomial g(n)

of degree ≤ s ∀ large n.

3. Let (Mn
′) be another stable q-filtration of M , and let g′(n) = l(M/M ′

n). Then

the two filtrations have bounded difference , i.e., there exists an integer n0

such that Mn+n0 ⊆ M ′
n, M

′
n+n0

⊆ Mn∀ n ≥ 0; thus we have g(n + n0) ≥
g′(n), g′(n + n0) ≥ g(n). Since g and g′ are polynomials for all large n,

we have limn→∞ g(n)/g′(n) = 1 and therefore g, g′ have the same degree and

leading coefficient.

25



We denote the polynomial g(n) corresponding to the filtration (qnM) by χMq (n):

χMq (n) = l(M/qnM) (∀ large n).

If M = A, we write χq(n) for χAq (n). In this case from 2.43 we get

Corollary 2.44 For all large n, the length l(A/qn) is a polynomial χq(n) of degree ≤ s,

where s is the least number of generators of q.

The next proposition shows that the degree of χq(n) is independent of the choice

of the m-primary ideal q.

Proposition 2.45 If A,m, q are as above then

degχq(n) = degχm(n).

Proof Note that m ⊇ q ⊇ mr for some r, hence mn ⊇ qn ⊇ mrn and thus

χm(n) ≤ χq(n) ≤ χm(rn)

for all large n. Now let n → ∞, and using the fact that the χ′s are polynomials in

n, we have our result.

We denote the common degree of χq(n) by d(A), by 2.41 this means that we

are putting d(A) = d(Gm(A)). Let δ(A) be the least number of generators of an

m-primary ideal of A. Our aim is to prove that δ(A) = d(A) = dimA, which we do

by showing δ(A) ≥ d(A) ≥ dimA ≥ δ(A).

Proposition 2.46 δ(A) ≥ d(A)

This we get from 2.44 and 2.45.

Proposition 2.47 Let M be a finitely generated A-module, x ∈ A a non-zero divisor

in M and M ′ = M/xM . Then

degχM
′

q (n) ≤ χMq (n)− 1.
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Proof Let N = xM , then N ∼= M as an A-module as x is not a zero divisor. Let

Nn = N ∩ qnM . Then we have the exact sequences

0→ N/Nn →M/qnM →M ′/qnM ′ → 0.

Hence if g(n) = l(N/Nn), we have

g(n)− χMq (n) + χM
′

q (n) = 0

for all large n. Now by Artin-Rees, (Nn) is a stable q-filtration of N . Since N ∼= M

2.43 implies that g(n) and χMq (n) have the same leading terms, hence our result.

Corollary 2.48 If A is a Noetherian local ring, x is a non zero divisor in A, then

d(A/(x)) ≤ d(A)− 1.

Proposition 2.49 d(A) ≥ dimA.

Proof We proceed by induction on d = d(A). If d = 0 then l(A/mn) is constant for

all large n, hence mn = mn+1 for some n, hence mn = 0 by Nakayama lemma. Thus

A is an Artin ring and dimA = 0.

Suppose d > 0 and let p0 ⊂ . . . ⊂ pr be any chain of prime ideal in A. Let x ∈ p1−p0,

A′ = A/p0 and x′ be the image of x in A′. Then x′ 6= 0 and A′ is an integral domain,

hence by 2.48 we have

d(A′/(x′)) ≤ d(A′)− 1.

Also, if m′ is the maximal ideal of A′, A′/m′n is a homomorphic image of A/mn,

hence l(A/mn) ≥ l(A′/m′n) and therefore d(A) ≥ d(A′). Consequently

d(A′/(x′)) ≤ d(A)− 1 = d− 1.

Hence by inductive hypothesis, the length of any chain of prime ideals in A′/(x′) is

≤ d− 1. But the images of p1, . . . , pr in A′/(x′) form a chain of length r − 1, hence

r − 1 ≤ d− 1 and thus r ≤ d. Hence dimA ≤ d.

Proposition 2.50 Let A be a Noetherian local ring of dimension d. Then there exists

an m-primary ideal in A generated by d elements x1, . . . , xd, and therefore dimA ≥
δ(A).
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Proof We construct x1, . . . , xd inductively in a way such that every prime ideal

containing (x1, . . . , xi) has height ≥ i, for each i. Suppose i > 0 and x1, . . . , xi−1

constructed. Let pj (1 ≤ j ≤ s) be the minimal prime ideals of (x1, . . . , xi−1) (if

any) which have height exactly i − 1. Since i − 1 < d = dimA = height m, we

have m 6= pj (i ≤ j ≤ s), hence m 6=
⋃s
j=1 pj. We choose xi ∈ m \

⋃
pj and let q

be any prime containing (x1, . . . , xi), then q contains some minimal prime ideal p of

(x1, . . . , xi−1). If p = pj for some j, we have xi ∈ q \ p, thus q ⊃ p and therefore

height p ≥ i, hence height q ≥ i. Thus every prime ideal containing (x1, . . . , xi) has

height ≥ i.

We consider then (x1, . . . , xd). If p is a prime ideal of this ideal, p has height ≥ d,

hence p = m for p ⊂ m =⇒ height p < height m = d. Hence the ideal (x1, . . . , xd)

is m-primary.

Theorem 2.51 (Dimension Theorem) For any Noetherian local ring A the following

three integers are equal:

1. the maximum length of chains of prime ideals in A;

2. the degree of the polynomial χm(n) = l(A/mn);

3. the least number of generators of an m-primary ideal of A.

The proof follows from 2.46, 2.49, 2.50.

If x1, . . . , xd generate an m-primary ideal, and d = dimA, we call x1, . . . , xd a

system of parameters. They satisfy an independence property as described below:

Proposition 2.52 Let x1, . . . , xd be a system of parameters for A and let q = (x1, . . . , xd)

be the m-primary ideal generate by them. Let f(t1, . . . , td) be a homogeneous polyno-

mial of degree s with coefficients in A, and assume that

f(x1, . . . , xd) ∈ qs+1.

Then all the coefficients of f lie in m.
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Proof Consider the epimorphism of graded rings

α :
A

q
[t1, . . . , td]→ Gq(A)

given by ti 7→ x̄i, where ti are indeterminates and x̄i = xi mod q. The assumption

on f gives that f̄(t1, . . . , td) = f mod q is in the kernel of α. We assume if possible

that some coefficient of f is a unit, then f̄ is not a zero divisor. Then we have

d(Gq(A)) ≤ d((A/q)[t1, . . . , td]/(f̄)) as f̄ ∈ ker(α)

= d((A/q)[t1, . . . , td])− 1 by 2.42

= d− 1

But d(Gq(A)) = d by 2.51. This gives us a contradiction.

For the case of A containing a field k mapping isomorphically onto the residue

field A/m, we have:

Corollary 2.53 If k ⊂ A is a field mapping isomorphically onto A/m and if x1, . . . , xd

is a system of parameters, then x1, . . . , xd are algebraically independent over k.

We end this section by proving the equivalence of dimension of local rings and the

dimension of varieties defined in terms of the function field. Let V be an irreducible

affine variety over k, an algebraically closed field. Then the coordinate ring A(V ) is

:

A(V ) =
k[x1, . . . , xn]

p

where p is a prime ideal. We denote by k(V ) the field of rational functions on V

which is the field of fractions of the integral domain A(V ). k(V ) is a finitely generated

extension over k. Its transcendence degree over k is defined to be the dimension of V .

By Hilbert’s Nullstellensatz, the points of V correspond bijectively with the

maximal ideals of A(V ). If P is a point with maximal ideal m we call dimA(V )m

the local dimension of V at P .

Lemma 2.54 Let B ⊂ A be integral domains with B integrally closed and A integral

over B. Let m be a maximal ideal of A, and let n = m ∩ B, then n is maximal and

dimAm = dimBn.
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Proof It follows easily that n is maximal. If

m ⊃ q1 ⊃ . . . ⊃ qd

is a strict chain of primes in A, its intersection with B is a strict chain of primes by

going down lemma:

n ⊃ p1 ⊃ . . . ⊃ pd

This proves dimBn ≥ dimAm. Conversely, we can go in the other direction using

going up lemma and thus dimBn ≤ dimAm.

Theorem 2.55 For any irreducible variety V over k the local dimension of V at any

point is equal to dimV .

Proof By 2.53, we have dimV ≥ dimAm for all m.

By the Noether Normalization Lemma, we can find a polynomial ringB = k[x1, . . . , xd]

contained in A(V ) such that d = dimV and A(V ) is integral over B. Since B is

integrally closed, we apply 2.54 and this reduces to the case for the ring B, i.e., for

affine space. But any point of affine space can be taken as the origin of coordinates

and as we know that k[x1, . . . , xd] localized at the maximal ideal (x1, . . . , xd) is a

local ring of dimension d.

Corollary 2.56 For every maximal ideal m of A(V ) we have

dimA(V ) = dimA(V )m

Proof By definition we have dimA(V ) = supm dimA(V )m but by 2.55 all A(V )m

have the same dimension. This gives us the result.

Thus we have shown that various notion of dimension are equal in appropriate

settings.
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Chapter 3

Knots and Singularities

In this chapter, we will discuss some topological properties of a space near a singular

point and we will compute the singularities which give us torus knots.

Let f(z1, . . . , zn+1) be a non-constant polynomial in n+ 1 complex variables, and

let V be the algebraic set consisting of all (n+ 1)-tuples

z = (z1, . . . , zn+1)

of complex numbers with f(z) = 0. We call such a set as a complex hyper surface.

We want to study the topology of V in the neighborhood of some point p.

Let Dε denote the closed disk consisting of all x with ||x − p|| ≤ ε and let p be

either a simple point or an isolated singular point of V . Take K = V ∩ Sε. This

definition is useful only when K is contained in a sphere around p.

Definition 3.1 (Cone over K) Cone over K is defined to be the union of all line seg-

ments

tk + (1− t)p, 0 ≤ t ≤ 1

joining points k ∈ K to the base point p. It is denoted as Cone(K).

The set Cone(Sε), defined similarly is equal to Dε.

Theorem 3.2 For small ε the intersection of V with Dε is homeomorphic to the cone

over K = V ∩Sε. In fact the pair (Dε, V ∩Dε) is homeomorphic to the pair consisting

of the cone over Sε and the cone over K.
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Proof It is sufficient to consider the real case. Let ε be small enough so that the

disc Dε contains no singular points of V and no critical points of r|V−Σ(V ) , other

than p itself.

We will construct a smooth vector field v(x) on the punctured disk Dε − p with

two properties:

First, the vector v(x) will point away from p for all x; that is the euclidean inner

product

< v(x), x− p >

will be strictly positive.

Second, the vector v(x) will be tangent to the manifold M1 = V −Σ(V ) whenever

x ∈M1.

We begin by constructing the vector field locally. Given any point q of Dε − p
we will construct a vector field vq(x) throughout a neighborhood U q of q so that the

above two properties are satisfied.

If q does not belong to V then we can simply set

vq(x) = x− p

for all x in some neighborhood U q ⊂ Rm − V .

If q belongs to V , and hence belongs to M1, we choose a system of local coor-

dinates u1, . . . , um throughout a neighborhood of q so that M1 corresponds to the

locus u1 = . . . = uρ = 0. Since q is not a critical point of the function r|M1 , where

r(x) = ||x− p||2, it follows that at least one of the partial derivatives

∂r/∂uρ+1, . . . , ∂r/∂um

must be non-zero at q. Suppose ∂r/∂uh is non-zero at q, then let U q be a small

connected neighborhood throughout which ∂r/∂uh 6= 0 and , let vq(x) be the vector

±(∂x1/∂uh, . . . , ∂xm/∂uh)
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tangent to the uh-coordinate curve through x; choosing the plus sign or the minus

sign according as ∂r/∂uh is positive or negative. This vector vq(x) is certainly tangent

to M1, whenever x ∈ M1, since the entire uh− coordinate curve is contained in M1.

Furthermore

2 < vq(x), x− p > =
∑

2(xi − pi)vqi (x) (3.1)

=
∑

∂r/∂xi(±∂xi/∂uh) (3.2)

is equal to ±∂r/∂uh > 0 for all x ∈ U q.

Now choose a smooth partition of unity λq on Dε − p, with support(λq) ⊂ U q.

Then the vector field

v(x) = Σλq(x)vq(x)

on Dε − p clearly has the required properties.

We normalize by setting

w(x) = v(x)/ < 2(x− p), v(x) >

and consider the differential equation

dx/dt = w(x).

In other words, we look for smooth curves x = γ(t), defined say for α < t < β, which

satisfy

dγ(t)/dt = w(γ(t)).

Given any solution γ(t), note that the derivative of the composition r(γ(t)) is

given by

dr/dt = Σ(∂r/∂xi)wi(x)

= < 2(x− p), w(x) >

= 1

where x = γ(t). So the function r(γ(t)) must be equal to t + constant. Thus,

subtracting a constant from the parameter t if necessary, we may assume that

r(γ(t)) = ||γ(t)− p||2 = t.
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Claim:This solution γ(t) can certainly be extended throughout the interval 0 < t ≤
ε2.

Proof of Claim: We assume that the vector field w(x) has been constructed

over an open set slightly larger than Dε − p, so that the boundary points of Dε do

not behave weirdly.

By Zorn’s lemma and compactness the given solution can be extended over some

maximal open interval α′ < t < β′. Suppose for example that β′ ≤ ε2. Then we

will extend the solution γ(t) over a slightly larger interval, thus contradicting the

definition of β′. Since the points γ(t) with α′ < t < β′ all belong to the compact set

Dε, there exists at least one limit point x′ of {γ(t)} as t→ β′; clearly r(x′) = β′ 6= 0

so that x′ ∈ Dε − p.

We will use the local existence, uniqueness and the smoothness theorem for the

differential equation dx/dt = w(x) near x′. This theorem asserts that for each x′′

in some neighborhood U of x′ and each t′′ in some arbitrarily small open interval I

containing β′ there exists a unique solution

x = γ′(t), t ∈ I

satisfying the initial condition γ′(t′′) = x′′; and further more , that γ′(t) is a smooth

function of x′′ , t′′ and t. To apply this theorem, we choose t′′ ∈ (α′, β′) ∩ I. So the

solutions γ and γ′ can be put together to yield a solution which is defined for all t in

the larger interval (α′, β′) ∪ I. This contradiction proves that β′ > ε2 and a similar

argument shows that α′ = 0. This finishes the proof of the claim.

We note that the solution γ(t), 0 < t ≤ ε2 is uniquely determined by the initial

value

γ(ε2) ∈ Sε

For each a ∈ Sε let

γ(t) = P (a, t), 0 < t ≤ ε2,
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be the unique solution which satisfies the initial condition

γ(ε2) = P (a, ε2) = a.

Clearly this function P maps the product Sε × (0, ε2] diffeomorphically onto the

punctured disk Dε− p. Furthermore, since the vector field w(x) is tangent to M1 for

all x ∈M1, it follows that every solution curve which touches M1 must be contained

in M1. Hence P maps the product K × (0, ε2] diffeomorphically onto V ∪ (Dε − p).

Finally, we note that P (a, t) tends uniformly to p as t → 0. Therefore the

correspondence

ta+ (1− t)p 7→ P (a, tε2),

defined for 0 < t ≤ 1, extends uniquely to a homeomorphism from Cone(Sε) to

Dε. Moreover, this homeomorphism carries Cone(K) onto V ∩Dε. This proves our

theorem.

Now we study the specific case when p is a simple point of V.

Theorem 3.3 If p is a regular point of V , the the intersection K = V ∩ Sε is an

unknotted sphere in Sε, for all sufficiently small ε.

Proof We note that the smooth function r(x) = ||x − p||2 restricted to M1 =

V − Σ(V ) has a non-degenerate critical point at p. Then from the lemma of Morse,

there exists a system of local coordinates u1, . . . , uk for M1 near p so that

r(x) = u2
1 + . . .+ u2

k.

It follows immediately that K = V ∩ Sε is diffeomorphic to the sphere consisting of

all u1, . . . , uk with u1 + . . .+ u2
k = ε2 .

We can extend the Morse’s argument to be used for the pair of manifolds M1 ⊂
Rm. That is: there exists local coordinates u1, . . . , um for Rm near p so that

r(x) = u2
1 + . . .+ u2

k.

and so that V corresponds to the locus uk+1 = . . . = um = 0.
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Thus the pair (Sε, K) is diffeomorphic to the pair consisting of a sphere and a

great sub sphere in the u-coordinate space. This proves the theorem.

Thus if we can identify the manifold K, and the way in which K is embedded in

Sε, then we will have completely determined the topology of V , and the embedding

of V in its coordinate space, throughout a neighborhood of p. As in the case of K

being a topological sphere, then V must be a topological manifold near p.

Now we consider the special case of a regular point p of a complex hypersurface

V = f−1(0) ⊂ Cn+1.

We want to study the set

F0 = φ−1(1) = f−1(R+) ∩ Sε.

Theorem 3.4 If the center p of Sε is a regular point of f , then this fiber F0 is

diffeomorphic to R2n.

Proof Applying the Morse argument to the pair of manifolds V ⊂ f−1(R) near p

we obtain local coordinates u1, . . . , u2n+1 for f−1(R) so

||z − p||2 = u2
1 + . . .+ u2

2n+1;

and so that V corresponds to the locus u1 = 0. Then

φ−1 = f−1(R+) ∩ Sε

will correspond to the open hemisphere

±u1 > 0, u2
1 + u2

2 + . . .+ u2
2n+1 = ε2;

which clearly is diffeomorphic to R2n. This proves our theorem.

Now we consider a particular example of a polynomial function in two variables

for which the hypersurface has a singular point and we compute the space K near

that singular point, which in our case will turn out to be a knot unlike the smooth

case.

36



Consider the following polynomial

f(z1, z2) = zp1 + zq2

in two variables, with a critical point (∂f/∂z1 = ∂f/∂z2 = 0) at the origin and

assume that the integers p, q are relatively prime and ≥ 2. This point will be a

singular point in V = (z1, z2)|f(z1, z2) = zp1 + zq2 = 0.

Theorem 3.5 (Brauner) The intersection of V = f−1(0) with a sphere Sε centered at

the origin is a knotted circle of the type known as ”torus knots of the type ( p, q)”

in the 3-sphere Sε.

Proof We note that the intersection K = V ∩ Sε lies in the torus consisting of all

(z1, z2) with |z1| = ξ, |z2| = η, where ξ and η are positive constants. In fact, K

consists of all pairs (ξeqiθ, ηepiθ+πi/q) as the parameter θ ranges from 0 to 2π: Thus

K sweeps around the torus q times in one coordinate and p times in the other.

We end this section by giving an example of the torus knot of the type (3,5) as

illustrated in the figure.

The higher dimensional analogues of these torus knots are know as Brieskorn

spheres [Mil68].
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Chapter 4

Milnor Fibre and their properties

This chapter has been referred from [Mil68].

4.1 Milnor Fibration Theorem

This section details the main Fibration theorem due to Milnor.

Let V ⊂ Rm be a real algebraic set, and let U ⊂ Rm be an open set defined by

finitely many polynomial inequalities:

U = {x ∈ Rm|g1(x) > 0, . . . , gl(x) > 0}.

Before proceeding ahead we state a result about the parametrization of algebraic

curves which is used in the proof of the curve selection lemma.

Lemma 4.1 (Parametrization of algebraic curves ) Let p be a non-isolated point of a

real (or complex) 1-dimensional variety V . Then a suitably chosen neighborhood of p

in V is the union of finitely many ”branches” which intersect only at p. Each branch

is homeomorphic to an open interval of real numbers (or to an open disc of complex

numbers) under a homeomorphism x = γ(t) which is given by a power series

γ(t) = p+ a1t+ a2t
2 + a3t

3 + . . . ,

convergent for t < ε.

38



Proof [Sketch of proof] The full proof for case of complex curve in C2 can be found

in [Per08]. The main idea of the proof depends on showing that: If f(X, Y ) is the

polynomial which defines the curve in the affine space A2(k) and if p is an element of

k, then the irreducible factors of f as a polynomial in Y with coefficients in k((X−p))
correspond bijectively to the different branches of the curve C which have center at

the points (x0, yi) of the curve.

The case of a complex curve in Cm, with m > 2, can be considered in a similar

way.

For the case of real 1-dimensional variety V ⊂ R we see that:

Let VC be the smallest complex algebraic set in Cm which contains V . Then we

see that VC is irreducible, of complex dimension 1, and that the set of Rm ∩ VC of

real points in VC is equal to V . Now for each branch of VC we can form the complex

parametrization

x = γ(t) = p+ (0, . . . , 0, tµ,Σiak+1,it
i, . . . ,Σiamit

i).

We want to know for which values of the complex parameter t will the vector γ(t)

be real. Clearly the k− th component tµ is real iff t can be expressed as the product

of µ− th root of unity ξ and a real number s. But, for each choice of ξ, substituting

t = ξs in the power series γ, we obtain a new complex power series p + Σ(aiξ
i)si in

the real variable s. If the coefficients aiξ
i are all real, then γ(ξs) ∈ Rm. But if some

coefficient vector aiξ
i is not real, then γ(ξs) /∈ Rm for all small non-zero values of s.

Therefore each branch of VC intersects Rm in at most a finite number of branches of

the real variety V. This sketches the proof of our lemma.

Lemma 4.2 (The Curve Selection Lemma) [Milnor, 1968] If U ∩ V contains points

arbitrarily close to the origin (i.e. if 0 ∈ (U ∩ V )) then there exists a real analytic

curve

γ : [0, ε)→ Rm

with γ(0) = 0 and with γ(t) ∈ U ∩ V for t > 0.

39



Proof We may assume that dimension of V ≤ 1 as if the dimension of V ≥ 2, then

we can construct a proper algebraic subset V1 ⊂ V so that 0 ∈ (U ∩ V1). We iterate

this procedure inductively until we find an algebraic subset Vq of dimension ≤ 1 with

0 ∈ (U ∩ Vq). We also assume that V is irreducible and that the open set U does not

contain any points of the singular set Σ(V ), within some neighborhood Dη of 0. For

if V was a union of two proper algebraic subsets, then one of these subsets serves as

V1 and if U would contain some point of Σ(V ), we could choose V1 to be Σ(V ).

Let f1, . . . , fk span the ideal I(V ). The singular set Σ(V ) is the set of all x ∈ V
for which

rank{df1(x), . . . , dfk(x)} < ρ;

where the dimension of the variety V is m − ρ . Consider the following auxiliary

functions:

r(x) = ||x||2, g(x) = g1(x)g2(x) . . . gl(x).

Let V ′ be the set of all x ∈ V with

rank{df1(x), . . . , dfk(x), dr(x), dg(x)} ≤ ρ+ 1.

Claim: The intersection U ∩ V ′ also contains points arbitrarily close to 0.

Proof of Claim: By hypothesis there exist arbitrarily small spheres Sε centered at

0 which contains points of U ∩ V . We choose any such sphere Sε and consider the

compact set consisting of all x ∈ V ∩ Sε with

g1(x) ≥ 0, . . . , gl(x) ≥ 0.

From the extreme value theorem, the continuous function g(x) must be maxi-

mized at some point x′ of this compact set; and clearly x′ ∈ U . Now we show that

x′ ∈ V ′. We first observe that Sε intersect U ∩ V in a smooth manifold of dimension

m− ρ− 1; and that

rank{df1(x), . . . , dfk(x), dr(x)} = ρ+ 1

at every point x of U ∩ V ∩ Sε. Observe that the critical points of g|U∩V ∩Sε are just

those points of U ∩ V ∩ Sε which lie in V ′ as V ′ is the set of all x ∈ V with

rank{df1(x), . . . , dfk(x), dr(x), dg(x)} ≤ ρ+ 1
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and in U ∩ V ∩ Sε we have rank{df1(x), . . . , dfk(x), dr(x)} = ρ+ 1.

But g|U∩V ∩Sε attains its maximum at x′. So x′ is certainly a critical point and

therefore belong to V ′. This gives us our claim.

Thus, if V ′ is a proper subset of V , then it satisfies our requirements. The case

that remains is when V = V ′. In that case we carry out the above proceduce with

the following function in place of g :

(x1, . . . , xm)→ xig(x1, . . . , xm).

Let V ′i be the set of all x ∈ V with

rank{df1(x), . . . , dfk(x), dr(x), d(xig)(x)} ≤ ρ+ 1

Then in a similar way one can show that 0 ∈ (U ∩ V ′i ).

Thus we have found a suitable algebraic subset V1 ⊂ V except in the case V =

V ′ = V ′1 = · · · = V ′m.

Claim: V = V ′ = V ′1 = · · · = V ′m occurs only when the dimension m− ρ of V is

equal to 1.

Proof of claim: We choose a point x′ ∈ U ∩ V so that

rank{df1(x′), . . . , dfk(x
′), dr(x′)} = ρ+ 1 .

If V = V ′, then x′ ∈ V ′ and hence the differential dg(x′) ∈ {df1(x′), . . . , dfk(x
′), dr(x′)}

a ρ + 1 dimensional vector space. Similarly, if V = V ′i , then d(xig)(x′) must belong

to this vector space. Using the identity

d(xig) = (dxi)g + xi(dg)

and the fact that g(x′) 6= 0 ( since x′ ∈ U) it follows that dxi(x
′) also belongs to this

ρ+ 1 dimensional vector space. But the differentials dx1, . . . , dxm form a basis of for

the entire m-dimensional vector space of differentials at x′. So the subspace spanned

by df1(x′), . . . , dfk(x
′), dr(x′) must be the whole of the space i.e. , ρ + 1 = m. This

gives m− ρ = 1, which is the dimension of V. This proves our claim.
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Now suppose that V contains points x arbitrarily close to 0 with x ∈ U , that is

with

g1(x) > 0, . . . , gl(x) > 0;

and that V has dimension 1. Then using the parametrization of algebraic curves (

varieties of dimension 1 ), one of the finitely many branches of V through 0 must

contain points of U arbitrarily close to 0. Let

x = γ(t), |t| < ε

be a real analytic parametrization of this branch. For each gi note that the real

analytic function gi(γ(t)) must be either > 0 for all t in some interval 0 < t < ε′, or

≤ 0 for all t with 0 < t < ε′. So the half-branch γ(0, ε′) is either contained in U or

disjoint from U , for ε′ sufficiently small. Similarly for the half-branch γ(−ε′, 0). But

we have assumed that γ(−ε, ε) contains points of U arbitrarily close to 0, so at least

one of these two half-branches must be contained in U . We are done.

Here is an application of curve selection lemma.

Corollary 4.3 If f ≥ 0 and g ≥ 0 are non-negative polynomial functions on Rm which

vanish at p, then for x in some neighborhood of Dε of p, the two differentials df(x)

and dg(x) cannot point in exactly opposite directions unless at least one of them

vanishes.

Proof Let U be the open set consisting of all x for which the inner product

Σi(∂f(x)/∂xi)(∂g(x)/∂xi)

is negative, and let V be the algebraic set consisting of all x for which

rank{df(x), dg(x)} ≤ 1

Thus U ∩ V is the set of all x for which df(x) and dg(x) point exactly in opposite

directions. If U ∩ V contained points arbitrarily close to p , then there would exist

an entire real analytic curve

x = γ(t), 0 ≤ t < ε,
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which consisted entirely of such points, except for p = γ(0).

For every x ∈ U note that f(x) > 0 and g(x) > 0. For if the non-nefative function

f were to vanish at x then the differential df(x) would have to vanish also, hence x

could not belong to U. Therefore

f(γ(t)) > 0 for t > 0;

and since f ◦γ is real analytic this implies that df(γ(t))/dt > 0 also for small positive

values of t. Similarly dg(γ(t))/dt is positive for small positive t. But

df/dt = Σ(∂f/∂xi)dγi/dt, dg/dt = Σ(∂g/∂xi)dγi/dt,

where the row vector (∂f/∂x1, . . . , ∂f/∂xm) is a negative multiple of (∂g/∂x1, . . . , ∂g/∂xm),

for all t > 0. Hence df/dt and dg/dt must have opposite sign. This is a contradiction

which shows that the condition must be false: p cannot be te limit point of U ∩V .

Theorem 4.4 (Milnor, 1968) If p is any point of the complex hyper-surface V = f−1(0)

and if Sε is a sufficiently small sphere centered at p, then the mapping

φ(z) = f(z)
|f(z)|

from Sε −K to the unit circle (S1) is a locally trivial fibration.

Proof The idea of the proof is to create a non-vanishing vector field on the space

Sε−K and using that we construct a local diffeomorphism using the inverse function

theorem. For creating such a vector field we will use the curve selection lemma.

Our aim is now to show that the fiber is a smooth manifold and for that we will

show that the mapping φ has no critical points for ε small enough. For that part we

will proceed through the following series of claims:

Let K denote the intersection of the set of zeros of f with the sphere Sε, consisting

of all z ∈ Cm with ||z|| = ε.

Claim 1: The critical points of the mapping Φ : Sε −K → S1 defined as above

are precisely those points z ∈ Sε − K for which the vector igrad log f(z) is a real
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multiple of the vector z.

Proof of Claim 1: Locally one can take the logarithm function as a single-

valued function; and its gradient grad log f(z) = (grad f(z))/f̄(z), is well defined

everywhere.

Now setting f(z)/|f(z)| = eiθ(z), we see that θ(z) = Re(−i log f(z)) as we can

multiply the equation

iθ = log(f/|f |) = log f − log |f |

by −i to get

θ = −i log(f/|f |) = −i log f + i log |f |

and we take the real part on both the sides and observe that i log |f | is always a

purely imaginary number. Differentiating θ(z) = Re(−i log f(z)) along the curve

z = γ(t) we obtain

dθ(γ(t))/dt = Re(d(− log f)/dt)

= Re < dγ/dt, grad(−i log f) >

= Re < dγ/dt, igrad log f > .

In other words, the directional derivative of the function θ(z) in the direction

v = dγ/dt is equal to

Re < dγ/dt, igrad log f >

We note that the hermitian vector space Cm can be thought of as a euclidean vector

space (of dimension 2m) over R, defining the euclidean inner-product of two vectors

a and b be the real part

Re < a,b >= Re < b, a >

We observe that a vector v is tangent to the sphere Sε at z iff the real inner product

Re < v, z > is zero.

Now if the vector igrad(log f(z)) happens to be a real multiple of z, i.e., this

vector is normal to Sε, then for every vector v tangent to Sε at z the directional

derivative

Re < v, igrad log f(z) >
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of θ in the direction v will be 0. Hence, z is a critical point of the mapping φ.

For the converse, if the vectors igrad log f(z) and z are linearly independent over

R, then there exists a vector v in our euclidean vector space so that

Re < v, z >= 0

Re < v, igrad log f(z) >= 1.

Thus v is tangent to Sε and the directional derivative of θ along v is 1 6= 0; hence z

is not a ccritical point of φ. This proves our claim.

Let V denote the hyper surface f−1(0) ⊂ Cm.

Assume that f is a polynomial which vanishes at the origin.

Claim 2: Let γ : [0, ε) → Cm be a real analytic path with γ(0) = 0 such that,

for each t > 0, the number f(γ(t)) is non-zero and the vector grad log f(γ(t)) is a

complex multiple λ(t)γ(t). Then the argument of the complex number λ(t) tends to

zero as t→ 0.

Proof of claim 2: We want to show that λ(t) is non-zero for small positive

values of t and limt→0 λ(t)/|λ(t)| = 1.

Consider the Taylor expansions

γ(t) = atα + a1t
α+1 + . . . ,

f(γ(t)) = btβ + b1t
β+1 + . . . ,

grad f(p(t)) = ctδ + c1t
δ+1 + . . . ,

where the leading coefficients a, b, c are non-zero. The identity df/dt = <

dγ/dt, grad f > shows that grad f(γ(t)) cannot be identically zero. The leading

exponents α, β, δ are integers with α ≥ 1, β ≥ 1, δ ≥ 0. These series are all convergent

say for |t| < ε′.
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For each t > 0 we have

grad log f(γ(t)) = λ(t)γ(t),

hence

grad f(γ(t)) = λ(t)γ(t)f̄(γ(t)),

or in other words

(ctδ + c1t
δ+1 + . . .) = λ(t)(ab̄tα+β + . . .).

Comparing corresponding components of these two vector valued functions, we see

that λ(t) is the quotient of real analytic functions, and therefore has a Laurent series

expansion of the form

λ(t) = λ0t
δ−α−β(1 + k1t+ k2t

2 + . . .).

Furthermore the leading coefficients must satisfy the equation

c = λ0ab̄.

Substituting this equation in the power series expansion of the identity

df/dt = < dγ/dt, grad f >

we get

(βbtβ−1 + . . .) = < αatα−1 + . . . , λ0ab̄t
δ + . . . >

= α||a||2λ̄0bt
α−1+δ + . . . .

Comparing the leading coefficients it follows that

β = α||a||2λ̄0

which proves that λ0is a positive real number. Therefore

limt→0argumentλ(t) = 0,

which proves our claim 2.
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Claim 3: Given any polynomial f which vanishes at the origin, there exists a

number ε0 > 0 so that , for all z ∈ Cm − V with ||z|| ≤ ε0 , the two vectors z and

grad log f(z) are either linearly independent over the complex numbers or else

grad log f(z) = λz

where λ is a non-zero complex number whose argument has absolute value less than

π/4. (Here argument of λ 6= 0 will mean the unique number θ ∈ (−π, π] such that

λ/|λ| = eiθ.

In other words, λ lies in the open quadrant of the complex plane which is centered

about the positive real axis. It follows that

Re(λ) > 0;

so that λ cannot be purely imaginary. We see an immediate consequence of this in

the following specialization of claim 3.

Claim 4: For every z ∈ Cm − V which is sufficiently close to the origin, the two

vectors z and igrad log f(z) are linearly independent over R.

Proof of claim 3: Suppose there were points z ∈ Cm − V arbitrarily close to

the origin with

grad log f(z) = λz 6= 0

and with |argλ| > π/4. In other words, assume that λ lies in the open half-plane

Re((1 + i)λ) < 0

or the open half-plane

Re((1− i)λ) < 0

We would like to change these conditions into algebraic statements so that we

can use the curve selection lemma.
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Let W be the set of all z ∈ Cm for which the vectors grad f(z) and z are linearly

dependent. Thus z ∈ W iff the following holds.

zj(∂f/∂zk) = zk(∂f/∂zj)

Set zj = xj+iyj, and then taking the real and imaginary parts, we obtain a collection

of real polynomial equations in the real variables xj and yj. This shows that W ⊂ Cm

is a real algebraic set.

Note that a point z ∈ Cm − V belong to W iff

(grad f(z))/f̄(z) = λz

for some complex number λ. Multiplying by f̄(z) and taking the inner product with

f̄(z)z, this yields

< (grad f(z)), f̄(z)z >= λ||f̄(z)z||2.

In other words, the number λ, multiplied by a positive real number, is equal to

λ′(z) =< grad f(z), f̄(z)z >

Hence

argλ = argλ′.

Clearly, λ′ is a complex valued polynomial function of the real variables xj and yj.

Now let U+ (resp. U−) denote the open set consisting of all z satisfying the real

polynomial inequality

Re((1 + i)λ′(z)) < 0 (4.1)

respectively

Re((1− i)λ′(z)) < 0

We have assumed that there exist points z arbitrarily close to the origin with z ∈
W ∩ (U+∪U−). Hence by the curve selection lemma, there must exist a real analytic

path

γ : [0, ε)→ Cm
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with γ(0) = 0 and with either

γ(t) ∈ W ∩ U+

for all t > 0 or

γ(t) ∈ W ∩ U−

for all t > 0. In either case, for each t > 0 we get

grad log f(γ(t)) = λ(t)γ(t)

with

|argλ(t)| > π/4;

which contradicts Claim 2. To complete the proof we still have to show that W −
(V ∩W ) does not contain points arbitrarily close to the origin with either

λ′(z) = 0 or |argλ′(z)| = π/4.

But we can proceed similarly as above, substituting the polynomial equality

Re((1 + i))λ′(z))Re((1− i)λ′(z)) = 0,

together with the polynomial inequality

||f(z)||2 > 0,

for the inequality (4.1). Again we would obtain a path p(t) which would contradict

claim 2. This completes the proof of claim 3 and 4.

Now, combining Claim 1 and 4 we get that

If ε ≤ ε0 then the map

φ : Sε −K → S1

has no critical points at all.

It follows that, for each eiθ ∈ S1, the inverse image

Fθ = φ−1(eiθ) ⊂ Sε −K
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is a smooth (2m− 2)-dimensional manifold.

Now we only need to prove that φ is the projection map of a locally trivial

fibration. We do this by the help of following claims:

Claim 5: If ε ≤ ε0 then there exists a smooth tangential vector field v(z) on

Sε −K, then the complex inner product

< v(z), igrad log f(z) >

is non-zero, and has argument less than π/4 in absolute value.

Proof of Claim 5: It is sufficient to construct such a vector field locally, in

a neighborhood of some given point zα, as we can make the field global by using

partition of unity.

CASE 1: If the vectors w and grad log f(w) are linearly independent over C, then

the linear equations

< v,w >= 0,

< v, igrad log f(w) >= 1

have a simultaneous solution v. The first equation guarantees that Re(< v,w >) = 0,

so that v is the tangent to Sε at w.

CASE 2: If grad log f(w) is equal to the multiple λw, then set v = iw. Clearly

Re(< iw,w >) = 0;

and by claim 3 the number

< iw, igrad log f(w) >= λ̄||w||2

has argument less than π/4 in absolute value.
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In either case we can choose a local tangential vector field vw(z) which takes the

constructed value v at w. The condition

|arg < vw(z), igrad log f(z) > | < π/4

will then certainly hold throughout a neighborhood of w. Using partition of unity,

we obtain a global vector field v(z) having the same property. This gives us claim 5.

Next we normalize by setting

u(z) = v(z)/Re(< v(z), igrad log f(z) >).

Thus we obtain a smooth tangential vector field u on Sε −K which satisfies two

conditions:

Re(< u(z), igrad log f(z) >) = 1

and the corresponding imaginary part satisfies

|Re(< v(z), grad log f(z) >)| < 1.

Now consider the trajectories of the differential equation dz/dt = u(z).

Claim 6: Given any p ∈ Sε −K there exists a unique smooth path

γ : R→ Sε −K

which satisfies the differential equation

dγ/dt = w(γ(t))

with initial condition p(0) = p.

Proof of Claim 6: We know that such a solution z = γ(t) exists locally, and can

be extended over some maximal open interval of real numbers. Then only problem,

which arises since Sε−K is non-compact, is to insure that γ(t) cannot tend towards
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K as t tends toward some finite limit t0. That is we must guarantee that f(γ(t))

cannot tend to zero, or

Re(log f(γ(t)))→ −∞

as t→ t0. But the derivative

d(Re(log f(γ(t)))/dt) = Re < dγ/dt, grad log f >

= Re < w(γ(t)), grad log f >

has absolute value less than 1. Hence |f(γ(t))| is bounded away from zero as t tends

to any finite limit. This proves claim 6.

Setting φ(z) = eiθ(z), we note that

dθ(γ(t))/dt = Re < dγ/dt, igrad log f >= 1.

Hence

θ(γ(t)) = t+ constant.

In other words the path γ(t) projects under φ to a path which winds around the unit

circle in the positive direction with unit velocity.

We note that the point p(t) is a smooth function both of t and of the initial value

p = γ(0).

We express this dependence by setting

γ(t) = ht(p).

We note that each ht is a diffeomorphism mapping Sε−K to itself and it maps each

fiber Fθ = φ−1(eiθ) onto the fiber Fθ+t.

Now, given eiθ ∈ S1 let U be a small neighborhood of eiθ. Then the correspon-

dence

(ei(θ+t), z) 7→ ht(z),

for |t| < constant, and z ∈ Fθ, maps the product U × Fθ diffeomorphically onto

φ−1(U). This proves our theorem.
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4.2 Topological Properties

In this section we describe the topological properties of the Milnor Fiber

Fθ = φ−1(eiθ)

where φ was the Milnor fibration map and thereby derive the topological properties

of K = V ∩ Sε. We will use tools from Morse theory to understand these fibers.

If we set m − n + 1 ≥ 1, we have already seen that each Fθ will be a smooth

manifold of dimension 2n. We associate to this manifold a real valued function |f |.
We proceed to compute the critical points of this map. For this purpose we work

with the smooth function aθ : Fθ → R defined by

aθ(z) = log |f(z)|

An easy computation shows that the critical points of aθ are same as those of |f |
on Fθ.

Lemma 4.5 The critical points of the smooth real valued function aθ = log |f(z)| on

Fθ are those point z ∈ Fθ for which the vector grad log f(z) is a complex multiple of

z.

Proof The directional derivative of the function

log |f(z)| = Re log f(z)

in any direction v is equal to the real inner product

Re < v, gradlogf(z) > .

Thus z will be a critical point of this function restricted to Fθ if and only if the vector

grad log |f(z)| is normal to Fθ at z, where normal means orthogonal to all tangent

vectors using the real inner product. The space of normal vectors to the submanifold

Fθ ⊂ Cm, of real codimension 2, is spanned by the two linearly independent vectors z

and igrad log f(z). Thus z is a critical point of aθ iff there is a real linear dependence

between the vectors grad log f(z), z and igrad log f(z). This gives us our lemma.
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We want to compute the Morse index of the function aθ, for which we will compute

the Hessian, at a critical point. We use the following formulation for this step.

Given a tangent vector v at the critical point z we choose a smooth path

γ : R→ Fθ

with velocity vector dγ
dt

= v at γ(0) = z. Then the second derivative

äθ =
d2aθ(γ(t))

dt2

at t = 0 can be expressed as a quadratic function of v as described below. This

quadratic function is the Hessian.

Lemma 4.6 The second derivative of aθ(γ(t)) at t = 0 is given by an expression of

the form

äθ =
∑

Re(Bjkvjvk)− c||v||2

where (Bjk) is a matrix of complex numbers and c is real positive number.

Proof The path γ(t) lies within the manifold Fθ on which f/|f | = eiθ is constant.

On differentiating

aθ(γ(t)) = log |f(γ(t))| = log f(γ(t))

we get

ȧθ(γ(t)) = d log f(γ(t))/dt =
∑

(∂ log f/∂zj)(dγj/dt)

On differentiating again we get

äθ(γ(t)) =
∑

(∂ log f/∂zj)(d
2γj/dt

2) +
∑

(∂2 log f/∂zj∂zk)(dγj/dt)(dγk/dt).

We set t = 0, grad log f(z) = λz ( by previous lemma) and introduce the notation

Djk = ∂2 log f/∂zj∂zk,

we can rewrite the above relation as

äθ(γ(t)) = < γ̈, λz > +
∑

Djkvjvk.
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where the left side äθ is clearly real. Now we multiply both the sides by λ and take

the real part:

äθRe(λ) = |λ|2Re < γ̈, z > +
∑

Re(λDjkvjvk).

We differentiate the following equation twice

< γ(t), γ(t) > = constant,

this gives us the identity Re < γ̈, z > = −||v||2, which we substitute into the relation

above to get

äθRe(λ) =
∑

Re(λDjkvjvk)− ||λv||.

On dividing by Re(λ), which is positive as was shown in the proof of the fibration

theorem , we get our lemma.

Now we estimate the index as:

Lemma 4.7 The Morse index of aθ : Fθ → R at a critical point is ≥ n.

Proof The Morse Index I of the quadratic function

H(v) = Re
∑

Re(Bjkvjvk)− c||v||2

where v ∈ TzFθ, is the maximum dimension of a subspace on which H is negative

definite.

If H(v) ≥ 0 for any non-zero vector v, then H(iv) < 0; as the first term in H(v)

changes sign while the second term remains negative and iv is also a tangent vector

to Fθ.

We split the tangent space at z as a real direct sum T0 ⊕ T1 where the Hessian

is negative definite on T0 and positive semidefinite on T1. Clearly, dimT0 = I, the

Morse index. But H is also negative definite on iT1. Thus

I ≥ dim(iT1) = dim(T1) = 2n− I.

This gives us that I ≥ n.
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Remark We can do the same estimations for a smooth function on the total space

of the locally trivial fribration (Milnor Fibration). For that consider the function

a : Sε \K → R defined as

a(z) = log |f(z)|

We observe that on a fiber Fθ the function aθ(z) = a(z) and the critical points of a

are same as those of |f | on Sε \K. The corresponding statement for a as the above

lemma i.e., the Morse index of a : Sε \K → R at any critical point is ≥ n , follows

as every critical point of a is also a critical point of the appropriate aθ and the index

of a at z is clearly the index greater than or equal to the index of aθ at z.

Now we show that the critical points all lie within a compact subset of Fθ or if

Sε \K.

Lemma 4.8 There exists a constant ηθ > 0 so that the critical points of aθ all lie

within the compact subset |f(z)| ≥ ηθ of Fθ. Similarly, there exists η > 0 so that the

critical points z of a all satisfy |f(z)| ≥ η.

Proof Let us assume that there were critical points z of aθ = log |f | on Fθ with

|f(z)| arbitrarily close to zero, then these critical points will have a limit point p

on the compact set Sε. Using the curve selection lemma, there would exist a real

analytic curve

γ : (0, ε′)→ Fθ

consisting completely of critical points with γ(0) = p. Clearly, the function aθ is

constant along this path, hence |f | is constant and cannot tend to |f(p)| = 0 . This

is a contradiction to our assumption. Hence our lemma holds.

Lemma 4.9 There exists a smooth mapping

sθ : Fθ → R+

so that all critical points of sθ are non- degenerate, with Morse index ≥ n, and so

that sθ(z) = |f(z)| whenever |f(z)| is sufficiently close to zero. Similarly there exists

a smooth mapping

s : Sε \K → R+
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with all critical points non-degenerate, of index ≥ n and with s(z) = |f(z)|, whenever

|f(z)| is sufficiently close to 0.

Proof From 2.14, we can choose sθ (or s) so as to be equal to |f | except on a

compact neighborhood of the critical set, have only non-degenerate critical points

and so that the first and second derivative s of sθ on any compact coordinate patch

uniformly approximates those of |f |. Since the critical points of |f | all have index

≥ n, it follow that if the approximation is sufficiently close, that critical points of sθ

also have index ≥ n, using 2.18. This gives the lemma.

As the critical points of sθ are isolated, and all lie within a compact set. Hence

there are only finitely many critical points of sθ.

Now we proceed to prove the main theorems for this section which describe the

topological properties of the fibers.

Theorem 4.10 Each fiber Fθ has the homotopy type of a finite CW-complex of dimen-

sion n.

Proof Consider the function g : Fθ → R defined as

g(z) = − log sθ(z)

This function has the property that the set {z ∈ Fθ|g(z) ≤ c} is compact, for every

constant c.

The index I of sθ or log sθ at a critical point is ≥ n. Hence the index of − log sθ

is 2n − I ≤ n. Thus from 2.17, the manifold Fθ has the homotopy type of a CW-

complex of dimension ≤ n, made up of one cell for each critical point of g. This gives

us the theorem.

A similar argument shows that the total space Sε \K has the homotopy type of

a finite complex of dimension n+ 1.

We now give an alternative description of the fibers in terms of nearby hyper-

planes. Let Dε denote the closed disk bounded by Sε.
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Lemma 4.11 There exists a smooth vector field v on Dε \V so that the inner product

< v(z), grad log f(z) >

is real and positive, for all z ∈ Dε \V , and so that the inner product < v(z), z > has

positive real part.

Proof It is sufficient to construct such a vector field locally, in the neighborhood of

some point w.

Case 1: The vectors w and grad log f(w) are linearly independent over C, then the

linear equations

< v,w > = r, r ∈ R+

< v, grad log f(w) > = 1

have a simultaneous solution. The first equation gives us that Re < v,w >> 0.

Case 2: If grad log f(w) = λw , then we take v = w. Clearly,

Re < w,w > = ||w||2 > 0;

and as from the proof of fibration theorem claim 3, the number

< w, λw > = λ̄||w||2

has argument less than π/4 in absolute value.

Therefore in both the cases one can choose a local vector field v(z) which takes the

constructed value v at w. The conditions required hold throughout a neighborhood

of w. Using partition of unity, we obtain a global vector field v(z) having the same

property. This gives the proof of lemma.

Let c be a small complex constant, and let c/|c| = eiθ.

Lemma 4.12 The intersection of the hyperplane f−1(c) with the open ε-disc is diffeo-

morphic to the portion of the fiber Fθ defined by the inequality |f(z)| > |c|.
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Proof Next we consider the solutions of the differential equation

dγ

dt
= v(γ(t))

on Dε \ V . The condition that

<
dγ

dt
, grad log f(γ(t)) > ∈ R+

gives us that the argument of f(γ(t)) is constant, and that |f(γ(t))| is strictly

monotone as a function of t because

d log f(γ(t))/dt = <
dγ

dt
, grad log f(γ(t)) > = d| log f(γ(t))|/dt+ idarg(f(γ(t)))/dt.

The condition

2Re <
dγ(t)

dt
, γ(t) > = d||γ(t)||2/dt > 0

ensures that ||γ(t)|| is a strictly monotone function of t.

Thus beginning from any interior point z of Dε \V and we follow a path through

Z going away from the origin, in a direction of increasing |f |, until we reach a point

z′ on Sε \K, which must satisfy

f(z′)

|f(z′)|
=

f(z)

|f(z)|
.

Using the correspondence z 7→ z′ we have proved our lemma.

But if |c| is sufficiently small, then from 4.8 and 2.15 it follows that this portion

of Fθ is diffeomorphic to all of Fθ.Thus we have shown that

Theorem 4.13 If the complex number c 6= 0 is sufficiently close to zero, then the

complex hypersurface f−1(c) intersects the open ε-disc in a smooth manifold which

is diffeomorphic to the fiber Fθ.

Now we proceed on to describe a result about the topological property of K which

will be later used to give the homotopy type of the fibers.

Theorem 4.14 The space K = V ∩ Sε is (n-2) connected.

Thus for n ≥ 2 the space K is connected, and for n ≥ 3 it is simply connected.
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Proof Let Nη(K) denote the neighborhood of K consisting of all z ∈ Sε with

|f(z)| ≤ η. It follows from 4.8 that Nη(K) is a smooth manifold with bound-

ary, for η sufficiently small. Using the smooth non-degenerate function s on Sε \
Interior Nη(K), we note that the entire sphere Sε has the homotopy type of a

complex built up from Nη(K) by adjoining finitely many cells of dimension ≥ n, one

I−cell for each critical point of s of index I.

Clearly, the adjunction of a cell of dimension ≥ n cannot alter the homotopy

groups in dimension ≤ n− 2. Therefore

πi(Nη(K)) ∼= πi(Sε) = 0

for i ≤ n− 2.

Now we use the fact that K is a absolute neighborhood retract [Hu65] and as it

is a real algebraic set , it can be triangulated.

Therefore K is a retract of the neighborhood Nη(K) when η is sufficiently small.

It follows that πi(K) is also trivial for i ≤ n− 2, which completes the proof.

Next we put an additional hypothesis that the polynomial f(z1, . . . , zn+1) has

no critical points in some neighborhood of the origin, except possibly the origin

itself. Thus the origin is either an isolated singular point, or a non-singular point,

of the hypersurface V = f−1(0). We know that the intersection K = V ∩ Sε is a

smooth (2n− 1)-dimensional manifold, provided ε is small enough. We improve this

statement as follows:

Lemma 4.15 For ε sufficiently small, the closure of each fiber Fθ in Sε is a smooth

2n-dimensional manifold with boundary, the interior of this manifold being Fθ and

the boundary K.

Proof From our assumption the mapping f |Sε to C has no critical points on K, for

ε sufficiently small. In other words, the number zero is regular value of f |Sε . This

can be derived as follows using the curve selection lemma:
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The critical points of f |Sε are those points z in Sε at which the (non-zero) vector

gradf(z) is a complex multiple of z. Given a non-zero smooth path

γ : [0, ε′)→ Cn+1

consisting only of such points, with

γ(0) = 0 and f(γ(t)) ≡ 0,

we would have

<
dγ

dt
, gradf > =

df(γ(t))

dt
≡ 0

hence

2Re <
dγ

dt
, γ(t) > =

d||γ||2

dt
≡ 0

and therefore γ(t) ≡ 0, which contradicts the hypothesis.

Now let p be any point ofK. We choose a real local coordinate system u1, . . . , u2n+1

for Sε in a neighborhood U of p so that

f(z) = u1(z) + iu2(z)

for all z in U . A point of U belongs to the fiber F0 = φ−1(1) iff u1 > 0, u2 = 0. Hence

the closure F̄0 intersects U in the set u1 ≥ 0, u2 = 0. Clearly this is a smooth 2n-

dimensional manifold, with F0∩U as interior and with K∩U as boundary. Similarly

we can do this for other fibers Fθ. This completes the proof.

Corollary 4.16 The compact manifold with boundary F̄θ is embedded in Sε in such a

way as to have the same homotopy type as its complement Sε \ F̄θ.

Proof The complement is a locally trivial fiber space over the contractible manifold

S1− (eiθ). Hence Sε \ F̄θ has any other fiber Fθ′ , as a deformation retract. Thus the

complement has the same homotopy type as the fiber F̄θ′ . But Fθ′ is diffeomorphic

to Fθ and so has the same homotopy type as F̄θ′ .

Corollary 4.17 The fiber Fθ has the homotopy type of a point in dimension less than

n.
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Proof Alexander duality theorem gives us that the reduced homology group H̃i(Sε\
F̄θ) ∼= H̃2n−i(F̄θ) , which is zero for 2n− i > n using 4.10.

The above statement can be made more precise in the following way:

Lemma 4.18 The fiber Fθ is (n− 1)-connected.

Proof From the previous corollary we only need to verify Fθ is simply connected,

provided that n ≥ 2.

For n ≥ 3 , we can prove this lemma using 4.9. Using the smooth function

sθ on F̄θ note that F̄θ can be constructed, starting with a neighborhood K × [0, η]

of the boundary by adjoining handles ( I-dim cell) of index ≥ n, there being one

cell(handle) corresponding to each critical point of sθ. Since adjoining such cells

cannot change the homotopy groups in dimension ≤ n− 2, it follows that

πi(F̄θ) ∼= πI(K × [0, η]) = 0

for i ≤ n− 2, using 4.14.

We can prove the above statment in another way as well using the Morse function

−sθ on F̄θ. We can build F̄θ starting with a disc D2n
0 and successively adjoining

handles of index ≤ n. All of these handles (I-cells) can be attached within the

containing space Sε but the complement Sε \D2n
0 is certainly simply connected, and

the adjunction of handles of index ≤ dim(Sε) − 3 = 2n − 2 cannot change the

fundamental group of the complementary set. So it follows inductively that the

complement Sε \ F̄θ is simply connected, provided n ≤ 2n − 2. Together with 4.16,

this gives us the proof.

Theorem 4.19 Each fiber has the homotopy type of a bouquet Sn∨ . . .∨Sn of spheres.

Proof The homology group Hn(Fθ) must be free abelian, since any torsion element

would give rise to a cohomology classes in dimension n+1 , contradicting 4.10. Hence

πn(Fθ) ∼= Hn(Fθ) is free abelian, using the Hurewicz theorem and assuming n ≥ 2.

Thus we can choose finitely many maps

(Sn, basepoint)→ (Fθ, basepoint)
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representing a basis. These combine to give a map

Sn ∨ . . . ∨ Sn → Fθ

which induces an isomorphism of homology groups and hence, by Whitehead theorem

is a homotopy equivalence. This finishes the proof for the case n ≥ 2. For the

case of n = 1, the proof follows from the fact that the first homology group is the

abelianization of the fundamental group, thus it is a free group. This completes the

proof of our theorem.

The above theorem can be made more precise in the following result which we

state without proof.

Theorem 4.20 For n 6= 2 the manifold F̄θ is diffeomorphic to a handle body, obtained

from the disc D2n by simultaneously attaching a number of handles of index precisely

equal to n.

Now we proceed on to understanding the Betti numbers of the fiber.

We want to compute the degree of a smooth map

v : Sk → Sk

of a sphere into itself in terms of fixed points of v. Let M be a compact region with

smooth boundary on the sphere Sk ⊂ Rk+1 and for each boundary point x ∈ M let

n(x) denote the inward normal vector, the unique unit vector which is tangent to Sk

and normal to ∂M at x and points into M .

Lemma 4.21 If the following properties are satisfied

1. Every fixed point of the mapping v : Sk → Sk lies in the interior of M

2. No point x ∈M is mapped into the antipode −x by v ,and

3. The euclidean inner product < v(x), n(x) > is positive for every x ∈ ∂M ,

then the euler number χ(M) is related to the degree d of v by the equality

χ(M) = 1 + (−1)kd.
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Proof After perturbing v slightly we may assume that the fixed point of v are

isolated. From the Lefschetz fixed point theorem one can assign an ı(x) to each fixed

point so that the the sum of the indices is equal to the Lefschetz number∑
(−1)jTrace(v∗ : Hj(S

k)→ Hj(S
k)) = 1 + (−1)kd.

Consider the one parameter family of mappings

vt : M → Sk

defined by

vt(x) =
((1− t)x+ tv(x))

||((1− t)x+ tv(x))||
This is well defined since v(x) 6= −x for x ∈ M . Clearly, v0 is the identity and vt

maps M into itself, by a mapping homotopic to the identity, for small values of t.

So, the Lefschetz number of vt : M →M must be equal to the Euler number χ(M),

for say 0 < t ≤ ε.

But the fixed points of vt are precisely the same as the fixed points of v : Sk → Sk,

for t > 0. Since the Lefschetz index of the fixed point x of vt is an integer which

varies continuously with t, it follows that the Lefschetz number χ(M) of vε must be

equal to the Lefschetz number of v. This proves our lemma.

We will now show that

Theorem 4.22 The middle Betti number of the fiber F0 is equal to the multiplicity µ.

Hence the middle homology group Hn(F0) is free abelian of rank µ.

Proof Let M be the region consisting of all points z ∈ Sε which satisfy the inequality

Re(f(z)) ≥ 0. Thus, M is the union of the fibers Fθ as θ ranges over the interval

[−π/2, π/2], together with the common boundary K. Clearly, ∂M = F−π/2∪K∪Fπ/2
is a smooth manifold. Note that M has the homotopy type of Fθ. In fact the interior

of M is fibered over an open semicircle with Fθ as fiber.

Consider the smooth function

v(z) = ε
gradf(z)

||gradf(z)||
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from the sphere Sε to itself. We will show that v satisfies the three hypotheses of

4.21.

1. Clearly z is a fixed point of v = ε gradf/||gradf || iff gradf(z) is a positive real

multiple of z. But if gradf(z) = cz, c > 0,then f(z) 6= 0, and grad log f(z) =

cz/f̄(z), where the coefficient c/f̄(z) must have positive real part. Hence

Re(f(z)) > 0 and z is an interior point of M .

2. it follows similarly

3. Given any boundary point z of M we can choose a smooth path p(t) crossing

into M with velocity vector dp/dt = n(z) at p(0) = z. Clearly the derivative

of Ref(p(t)) > 0 at t = 0 from the definition of M . So the identity

d Ref

dt
= Re <

dp

dt
, gradf >

shows that the euclidean inner product Re < n(z), v(z) > is positive.

Hence from 4.21 we get that

χ(Fθ) = χ(M) = 1− deg(v), (4.2)

since the dimension 2n+ 1 of Sε is odd.

But the degree of the mapping v is equal to (−1)n+1 times the multiplicity µ of the

origin as solution to the set of polynomial equations

∂f

∂z1

= . . . =
∂f

∂zn+1

= 0.

For µ was defined as the degree of the mapping

z 7→ g(z)

||g(z)||

on Sε where g(z) is the complex conjugate of gradf(z). And the conjugation map

(g1, . . . , gn+1)→ (ḡ1, . . . , ḡn+1)

clearly takes Sε into itself with degree (−1)n+1. Substituting this into 4.2 we obtain

χ(Fθ) = 1 + (−1)nµ. But by definition the Euler number χ(Fθ) is equal to∑
(−1)jrank Hj(Fθ) = 1 + (−1)nrank Hn(Fθ).
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Therefore µ = rank Hn(Fθ), which gives us the result.

Since µ > 0 , we have

Corollary 4.23 If the origin is an isolated critical point of f, then the fibers Fθ are not

contractible and the manifold K = V ∩ Sε is not an unknotted sphere in Sε.

Proof If K was a topologically unknotted sphere in Sε, then Sε \K would have the

homotopy type of a circle. The homotopy exact sequence

. . .→ πn+1(S1)→ πn(F0)→ πn(Sε \K)→ . . .

of the fibration then leads to a contradiction.

We end this section with a discussion on the question whether or not the compact

(2n−1)-dimensional manifold K = f−1∩Sε is a topological sphere? This is answered

partly for the case n 6= 2 by the following lemma

Lemma 4.24 If n 6= 2 then K is homeomorphic to the sphere S2n−1 iff K has the

homology of a sphere.

Proof If n ≥ 3 then K is simply connected by 4.14. and has dimension ≥ 5, so we

can apply generalized Poincaré hypothesis. Since the statement is trivially true for

n = 1 this completes the proof.

The above criterion can be sharpened as follows:

Lemma 4.25 For n 6= 2 the manifold K is a topological sphere if and only if the

reduced homology group H̃n−1 is trivial.

Proof For if this group is trivial, then using the Universal coefficient theorem,

Poincaré duality and the fact that K is n−2 connected, we get that K is a homology

sphere.
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