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Notations

BB =im dn FPAPTY

C = exact couple

C' = derived couple of C

CP(n) = n-dimensional complex projective space

C*(X;R) = cochain complex of X with coefficients in R

Ej(A) = associated graded module of A

A = exterior algebra

QX = space of based loops in X

PX = space of based paths in X

RP(n) = n-dimensional real projective space

SU(n) = group of (n x n) special unitary matrices

Total(M**) = total complex of M**

U(n) = group of (n xn) the unitary matrices

Vi (C™) = Stiefel manifold of k-frames in C”

W X = free path space of X

X ~Y =X and Yare homotopy equivalent

[X,Y] = set of homotopy class of maps from X to Y

Z5 = ker dN FP APT4
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Summary

The aim of this thesis is to understand the Leray-Serre spectral sequence of a
fibration and use it to compute cohomology of some interesting manifolds. To do
that, it is important to understand spectral sequences first. So the first part of my
thesis is devoted to an introduction to spectral sequences and then some background

in topology to understand the Leray-Serre spectral sequence of a fibration.

A cohomology spectral sequence is a collection of differential bigraded R-
modules {E,",d,}; » = 1,2,..., where the differentials are all of bidegree (r,1—r)
such that for all r, the E,”;-term is given as the cohomology of the E;"*-term. Pic-
torially one can imagine this as a three dimensional lattice with each lattice point
an R-module, the differentials as arrows between them and each page is obtained by
taking the cohomology of the previous page. One can observe that, the knowledge
of B;™" and d, determines E,, but not d,41. So if a differential is not known then
one needs some other method to proceed.

The first property that a spectral sequence admits is that it can be represented as
an infinite tower of submodules of the E>-term and conversely. Thus one can define
the limit term of this sequence which we call the E-term. Now the ultimate goal
is to compute this F-term. It is interesting to note that if a spectral sequence ‘col-
lapses’ at, say N, then the computation of E-term becomes easy as the sequence
becomes constant after (N — 1)th page.

Once we know what a spectral sequence is, the natural question that one can ask
is how can we construct one? In this direction, there are two general algebraic
settings in which spectral sequences arise naturally. First is a filtered differential
graded module and second is an exact couple.

In the first case, each filtered differential graded module A determines a spectral
sequence with differential of bidegree (7,1 —r) and if the filtration is bounded then
the spectral sequence converges to H(A,d) (the homology of A with respect to d).
This result first appeared in the work of Koszul [3] and Cartan [I]. There are also

weaker conditions which ensure the convergence and uniqueness of the target. Thus

vi



if the filtration is exhaustive and weakly convergent, the same result will still hold
true.

Second case is that of an exact couple. This idea was introduced by Massey [5].
An exact couple also determines a spectral sequence of cohomological type. It is
interesting to observe that one can also associate a tower of submodules of £ and
an F-term to an exact couple, just as we can do for any spectral sequence.

The next question one could ask is that if the two approaches are related in any
way? and if yes then how do the two spectral sequences compare? The answer to
the above question is yes and it is not very difficult to see that a filtered differ-
ential graded module gives rise to an exact couple. And in fact, the two spectral
sequences, one associated to the filtered differential graded module and the other
associated to the exact couple derived from the filtered differential graded module,
turn out to be same.

There is another algebraic object namely double complex which gives rise to two
spectral sequences, which in turn help in the calculation of the homology of the
total complex associated to a double complex. Double complexes offer an example

of the filtered differential graded module construction of a spectral sequence.

Finally, with enough background on spectral sequences, one can talk about fibra-
tions and the spectral sequence associated to them. A map satisfying the homotopy
lifting property with respect to all spaces is called a Hurewicz fibration (or just a
fibration), while a map with the homotopy lifting property with respect to all n-
cells is called a Serre fibration. It was Leray [4] who solved the problem of relating
the cohomology rings of spaces making up a fiber space by developing a powerful
computational gadget called a spectral sequence. This spectral sequence has many
applications such as computation of cohomology of various Lie groups, homogeneous

spaces and loop spaces.

Vil



viii



Chapter 1

Introduction

1.1 Definition of a spectral sequence

In this chapter, we will give some basic definitions and properties of a spectral

sequence. Let us start by defining the key element of a spectral sequence.

Definition 1.1 A differential bigraded module over a ring R, 1s a sequence
of bigraded R-modules {EP?}, where p and q are integers, together with a R-
linear map d: E** — E**, the differential, of bidegree (s,1—5s) or (—s,s—1),

for some integer s, and satisfying dod = 0.

With the differential, it makes sense to take the cohomology of a differential bi-
graded module as follows,

Hp,q E*,* d o ke'r(d : Ep:q — Ep+s,q—5+1)
( 4)= im(d: Ep—sat+s—1  Epa)’

Now we can define what a spectral sequence is.

Definition 1.2 A Spectral sequence 1s a collection of differential bigraded R-
modules {Eﬁ’*,dr}, where r =1,2,...; the differentials are either all of bidegree
(=r,r—1) (for a spectral sequence of homological type) or all of bidegree (r,1—
r) (for a spectral sequence of cohomological type) and EY}, = HPI(E;",d,) for

all p,q,r.

The r* stage of this sequence is called the E,-term (or rt*-page) and it may be
pictured as a lattice with each lattice point an R-module and the differentials as

arrows. Figure 1.1 below depicts 3"¢ page of the spectral sequence.
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Figure 1.1: Es-term with differential of bidegree (3,—2).

*,%

Remark 1.1 Knowledge of Ey* and d, can determine E,; but not dry1. So if

some differential 1s not known then one needs some other method to proceed.

The first property of a spectral sequence is that it can be represented as an infinite
tower of submodules of the Es-term. To see this, let {E:’*,dr}rzg be a spectral
sequence. From now on, we will suppress the bigrading.

Let Zy := ker do and By := tm dy, then dyody, = 0 implies that By C Z5 C E».
By definition, we have B3 = Z,/B,. Let Z3 := ker(ds : B3 — E3). Then Z3 is a
submodule of B3 2 Z,/B,, so we can write Z3 = Z3/ B, for a submodule By C Z3 C
Zy. Similarly, if B3 :=1m d3, then B3 = B3/B, for a submodule By C B3 C Zs.

Again, F, = Z3/B3 = Z3/ Bz, so we get the following tower of inclusions
By C B3 C Z3 C 4y C Es.

Iterating this process, we present the spectral sequence as an infinite tower of sub-

modules of E, as follows
B,CB3sC---CB,C----- CZnC---CJZ3C 24y C Ey,

with the property that E,.; = Z,/B, and the differential d,;1, can be taken as
a mapping Z,/B, — Z,/B, which has the kernel Z,1/B,, and image By,1/Bp.

The differential d,+1 induces the following short exact sequence



which gives rise to isomorphisms Z,/Z, 1 = Bpy1/B, for all n.

Conversely, given a tower of submodules of Fy,
By, CB3C -+ CBpCevvvre CZpnC- CdsCZyC By

together with a set of isomorphisms Z,/Z,11 = B,4+1/ By, we get a spectral sequence
{E>*,d,}.

In general, the submodule B, of E; is the set of elements that are boundaries by
the rt* stage. Similarly, the submodule Z, of E, is the set of elements that are
in the kernel of all the previous (r — 2) differentials but not in their image. These
elements are said to have survived to the rt* stage.

Let Zoo =, Zn be the submodule of Ey of elements that survive forever, that
is the elements that are cycles at every stage. Similarly, let By, = U, B, be the
submodule with elements that eventually bound. Clearly, from the tower of in-
clusions, we have By, C Z and hence Ey, := Z,/Bw is the bigraded module which
remains after the computation of successive homologies. In general, the aim of a
computation is to determine the E,-term of the spectral sequence. Sometimes un-
der the best possible conditions the computation of F-term becomes easy as the
sequence ends at some finite stage, which happens, for example, under the following

condition.

Definition 1.3 A spectral sequence {Ey",d.} is said to collapse at the N
term if the differentials d, =0 for all > N.

The immediate result of collapse at the N term is that By X Ey', = - 2 EY'.

From the following short exact sequence,
dr
0— Zr/Br—l — Zr—l/Br—l — Br/Br—l — 0,

the condition d, = 0 implies that Z, = Z,_1 and B, = B,_1. Thus, the tower of

submodules becomes

ByCBsC---CBpy_1

:ZN_1C"'CZ3CZQCE2



and hence Foo =--- = Eny1 = EN.

Below we discuss some examples.

Example 1.1 Suppose n; and n; are natural numbers and E5? = {0} for p > n; or
g > ny. Then the spectral sequence collapses at the N** term where N = min(ni +
1,n2+2).

Case (1) When n; <mny+1, that is N =n; +1.

For r > N, dy : EPY — EF*™ ™! and p+7r>p+N=p+ni+1>ny. Therefore
d. =0.

Case (2) When ny+1 < nq, that is N =ny+ 2.

Sincegq—r+1<g—ny,—1<0, so d- =0. Hence the spectral sequence collapses at

Nth term.

Example 1.2 Suppose E5'? = {0} whenever p is even or q is odd. Then the spectral
sequence collapses at Fs.

To see this, note that for any r > 2, EX'? will be non-zero only if E5? # {0}, which
can happen only if p+q = 1(mod 2). So, EX'? # {0} implies that p+q = 1(mod 2).
But, the differential d, : EP'? — EFT"9 "1 changes the total degree, p-+g, by 1.
That is p+7+qg—7+1=p+q+1=0(mod 2). Therefore, EZ*"~"*! = {0}. Thus,
d, = o for r > 2.

Example 1.3 Suppose E5? = {0} unless ¢ = 0 or ¢ = n, for some n > 2. Then

there is a long exact sequence

dniy 1
coo— gPHT g Tty printl0

1,n dn+1 2,0
gptntl E§+ m dntd E§+n+ Oy

Since the Es>-term is non-zero only when ¢ = 0 or ¢ = n, thus we can depict this

pictorially as follows.



Then observe that the only non-zero differential is d,,+1. Therefore E; = .- = F, 11

and Epio = H(Ep+1,dn+1) = Ew. Now, since d,1 is zero homomorphism on the

*,0 ~

bottom stripe, so Foy =2 B, 0 /im dn41. Similarly, since everything above the strip
g = n is trivial, thus Es" = ker dp,1. Thus we obtain the following short exact

sequence
dn+1 1,0
0— Ep::’n — Eg’n A E§+n+ T Ep::+n+1’0 —0

for each p. Since Esy! is non-trivial only when g = 0 or ¢ = n, thus the filtration on

H* takes the following form

Hp+n — FOHp+n — ... :Fan—l—n D) Fn+1Hp+n

— Fﬂ+2Hp+n — e — Fp+an+n D {0}'

Further, B = HP+n /Fprlgptn o getn ) BP0 oives us the following short exact

sequence
p+n,0 p+n p,n
0—s EEF™0 _, gPtn _, gpn

for each p. Finally to obtain the long exact sequence in the example, we splice

together these short exact sequences as in the following diagram

~
~N
~N
A
Hp+n—1 0
~N
> ~
~
EN
1 ~1 0 0
0——E% " ——Ey " —— EPT™ EE™ 0
h ~
~N
~N
A
0 EPptn
N
N
N
> \
0 ER" ER"
0

This long exact sequence is called the Gysin sequence. We will come back to this

sequence again in chapter 4.



1.2 Convergence of spectral sequence

In order to define convergence of a spectral sequence let us first define what a

filtration is.

Definition 1.4 A filtration F* on an R-module A 1s a family of submodules

{FPA} for p in Z so that

- CFP'ACFPAC FPYAC .- C A (decreasing filtration)

or .- C FPTYAC FPAC FPTYAC ... C A (increasing filtration).

Example 1.4 7Z is a filtered Z-module, together with the decreasing filtration

7, ifp<o,
FP7 —
%7, if p> 0.

- C16ZC8LCA4LC2LCLCLC - CL.

Example 1.5 If H* is a graded vector space with H"™ = {0} for n < 0, then there
is an obvious filtration, induced by the grading, and given by
FPH* = H".
n>p
Example 1.6 A filtration is induced on the cohomology of a CW-complex X, by

filtering the space itself by successive skeleta
XD---D X(n) D) X(n—l) D) X(n—2) DRI X(O) D {*}

and defining FPH*(X) = ker f,_,) where ¢,y : H*(X) — H*(X(P~1) is induced

by the following (p — 1)%* inclusion map

Definition 1.5 A filtration of A, say F*, can be collapsed into another graded
module called the associated graded module, Ef(A) given by
FPA/FPYLA,  when F is decreasing,

Ej(A) =
FPA/FP=YA,  when F is increasing.



Example 1.7 In the example 1.4 above, we have

{0}, if p<O,
E§(Z) =

7)2Z, if p> 0.

Example 1.8 In the example 1.5 above, the associated graded module is given by

n
’ Dn>pr1 H"

Thus, one can easily collapse a filtered module to its associated graded module as
shown above.
But, what about the converse? The reconstruction of a filtered module from its
associated graded module may be difficult. For instance, in the case of a locally
finite graded vector space H* (that is, H™ is finite dimensional for each n), H*
can be recovered up to isomorphism from the associated graded vector space,
ES(H*) = FPH*/FPY1H*, by taking direct sums, that is,

00

H* >~ (P ES(HY).

=0
However, for a graded module A over an arbitrary commutative ring R, there may
be extension problems that prevent one from reconstructing A from the associated
graded module Ej(A).
Let A be a filtered R-module with a bounded (decreasing) filtration:

{0} CFPACF"lAC---CF'ACFACF A=A

Then the associated graded module E}(A), is nontrivial only in degrees —1 < k < n,

and we obtain a sequence of short exact sequences

0 — F'"A— Ej(A)—0

0 FrA—F 1A BV Y (A)—0
0 5 FFA F* 1A BFYA) =0

0— FlA—F°A— EJ(A) —0

0— F'A — A— E;'(A) —0



Then Ef(A) determines F™A. But at each step n—1>p >0, FPA is only deter-
mined up to choice of extension of FP*1A by E5A. Which means, we know A only
up to a sequence of choices.

Before moving forward, we observe a simple property of the associated graded mod-
ule. In case of a graded R-module H*, the associated graded module E5(H*) with
respect to filtration F* of H* is bigraded. Using the degree in H*, we can define
FPH™ = FPH*N H™ and thus we obtain a bigrading on Fy by defining

FPEPT/FPTIHPTY  if F* is decreasing,
ESY(H* F*) =
FPHPT4/FP-1HPFA  if F* is increasing.
Now, how does this associated graded module play any role in the determination of

H*? To understand this, we give the following definition.

Definition 1.6 A spectral sequence {E;”*,d.} is said to converge to H*, a

graded R-module, if there is a filtration F* on H* such that
BRI~ BRYH* F*),
where Ex' is the limit term of the spectral sequence.

Finally, we can describe the first general setting in which a spectral sequence arises.

We will talk about the spectral sequence associated to this setting in chapter 2.
Definition 1.7 An R-module A s a filtered differential graded module if:
1. A 1s a direct sum of submodules, A= @,y A".

2. There is an R-linear mapping, d: A — A, of degree 1 (d: A™ — A1) or
degree —1 (d: A™ — A" 1) satisfying dod = 0.

3. A has a filtration F* and the differential d respects the filtration, that 1s,
d: FPA— FPA for all p.

Recall the definition of convergence. Now we would like to define some weaker
conditions on the filtration of a filtered differential module which guarantee the

convergence and uniqueness of the target of its spectral sequence, as will be discussed
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in chapter 2. Let us consider a filtered differential module A over a ring R. Let

(A,d, f) denote a decreasing filtration on (A4, d),
i CEFPTLACFPACFEFPIAC...C A

Note that an inclusion F*A C F*A need not induce an inclusion in homology, H(C

): H(F$A) — H(F'A). Define (suppressing one of the bidegrees)
ZP .= FPNd Y (FP'"A) and BF:=FFPNd(FP"A)
and obtain the tower of submodules
BScBYc...cBPC----- czbc.-.cztczb.

The Eo-term of the associated spectral sequence is given by E% =, Z%/U, BF.
Define Z5% := FPANker d and B5 := FPANim d to obtain the induced filtration
on H(A,d). Since these modules Z5 and B need not come from the tower, we

extend the tower as follows
BicBYc---c|JBPCcBY, czb,c(\28c---czy cZ.
T T

Note that, the equality B5% = U, Bf, that is FPANim d = U, (FP Nd(FP~TA4)),
can fail if U;F°A # A. To avoid this pathology, we require the filtration to be

exhaustive as defined below.

Definition 1.8 A filtration F of a differential graded module (A,d), is said
to be exhaustive if A=U;F°A. It 1s called weakly convergent if, for all p,
Z5% =N, ZF that 1s FPAnker d=\,(FPANd (FPTT A)).

The significance of these conditions will be clear in chapter 2 when we talk about
the convergence of the spectral sequence associated to a filtered differential graded
module. The following conditions on the filtration imply that it is weakly conver-

gent:

1. The filtration is bounded above, that is, for each n, there is a value s(n)

with Fs(M A4 = 0.

2. Np FPA={0}.



But the definition of weak convergence looks to be dependent on the explicit knowl-
edge of (4,d, f). So let us give some equivalent definition for it involving homologies

of subquotients of A or its filtration.

Proposition 1.9 [6, Proposition 3.3] The following conditions are equivalent

on a filtration F of a differential graded module (A,d):
1. F 1s weakly convergent.
2. Ne>19m(H(FPA/FPTTA) — H(FPT1A)) ={0}.

3. For all p, the mappings induced by the filtration, RPTY1 — RP, are monomor-

phisms, where RP =\, im(H(FPT"A) — H(FPA)).

1.3 Morphisms of spectral sequences

In this section, we will deal with the question if two spectral sequences are isomor-

phic then how do the targets of the spectral sequences compare?

Definition 1.10 Given two spectral sequences {(E;",d,)} and {(E+",d,)}, we
define a morphism of spectral sequences to be a sequence of homomorphisms
of bigraded modules f,: (Ey"*,d,) — (Ep*,d,) for all r, of bidegree (0,0), such
that f. commutes with the differentials, that is frod, =d,o f,, and each fri1

1s wnduced by fr on homology, that 1s fry1 15 the composite

~ H fT n 7\ ~ vk,

frov: By = H(B*dy) ) BBy, d) = B,

The class of spectral sequences, with morphisms as defined above, constitutes a
category called SpecSeq.

Suppose we have a morphism {f.}: {(E,d,)} — {(E\,d,)} of spectral sequences.
Recall that each spectral sequence can be represented as a tower of submodules of

its Fo-term. By restricting fo: Ey — E,, we get the diagram:

Bs© Bs¢ ¢ Nr Br Nr Zr© c 3¢ VAN Es
| | | I
By¢ By ‘ Ny BrC Nr 2 : 75 7y By



The condition f,od, = d,o f, allows us to identify f,.1; with the following map
induced by f;

fre1: Brp1 = Zr/Br — Zr/Br = Er+1-

Furthermore, such a morphism induces a map foo : Eoo — Foo.

The second condition, that f,1; is induced by f, on homology, can be expressed as:

0 br Cr Er.'.l —_—> 0
lfr lfr lfr-&-l
0 l_)r Efr Er.'.l —_—> 0

where ¢, = ker d, : E, — E, and b, = 1m d,. As a consequence of all this, we have

the following result.

Theorem 1.11 If {f,}: {(E,d,)} — {(&;,d;)} is a morphism of spectral se-
quences and, for somen, fn:E,— E, is an itsomorphism of bigraded modules,

then for allr, n<r<oo, f,: E, — E, is an isomorphism.

Proof For r =n, as seen above we have the following diagram

f‘n lf‘n lfn-&-l

where ¢, = ker d, : E, — B, and b, = tm d,. Since f, is an isomorphism thus ap-
plying the Five lemma [2], p.129], we obtain f,; is also an isomorphism. Proceeding

in the same manner we can show that f, is an isomorphism for all n <r < oo.
[ |

Thus an isomorphism at some stage of the spectral sequences gives an isomorphism
of By -term. Morphisms of spectral sequences also arise in the case of filtered

differential graded modules.

Definition 1.12 A map ¢: (A,d,F) — (4,d,F) with ¢: A — A a morphism of
graded modules, such that ¢od=do¢ and ¢(FPA) C FPA is called a morphism
of filtered differential graded modules.

11



Now given a morphism of filtered differential graded modules, we would like to

compare the targets H(A,d) and H(A,d) of the two spectral sequences respectively.

Theorem 1.13 (Moore [6, Theorem 3.5]) A morphism of filtered differential

graded modules
¢:(A,d,F)— (A,d,F),

determines a morphism of the associated spectral sequences. If for some n,
b : En — E, is an isomorphism of bigraded modules, then ¢, : E, — E, is an
somorphism for all v, n <r < oo. If the filtrations are bounded, then ¢ induces

an isomorphism H(¢): H(A,d) — H(A,d).

Proof By Theorem 1.11, it is enough to prove the last part of the theorem. By
definition, a bounded filtration implies that there exist functions s = s(n) and ¢ =

t(n) such that
{O}ZFan C Fs—lH’n. C---C Ft+1Hn C FtH’rL:H’n

where H" := H"(A,d) and E5! =~ FPHPT4/FPHIP+a, Similarly for H" := H"(4,d).
Now since ¢ is an isomorphism, by the boundedness of the filtration, we have for

the same s = s(n),
Fs—lHn — Fs—lﬂn/Fan o Ego—l,n—s-l—l o Ergo—l,n—s+1 o F'S_lHn.

We now apply induction downward to H™ and H". Consider the following commu-

tative diagram with exact rows

0— FPH" — > FP-lgn - gEPH g
LH(@ lHW’) \L‘i’oo
0—=FPH" — > Fp-1gn . gECLnoPHL g
Let p =s—1—1. Applying induction on : we assume that H(¢) induces an iso-
morphism FPH™ = FPH™. Since ¢o, is an isomorphism, thus the Five lemma [2,
p.129] implies that H(¢): FP~'H™ — FP~1H™ is also an isomorphism. Thus we
have H™ = FtH"™ = F*H™ = H™. This completes the proof of the theorem.

12



Chapter 2

Construction of spectral sequences

Now that we know what a spectral sequence is, the next natural question that arises
is, how can we construct one? In this chapter, we present two general algebraic
settings in which spectral sequences arise naturally: one is a filtered differential

module and another is an exact couple.

2.1 Filtered differential graded modules

Recall the definition of a filtered differential graded module as mentioned in chapter
1. Since the differential respects the filtration, H(A,d) = ker d/ tm d also inherits

a filtration as given below

inclusion

FPH(A,d) = image(H(FPA,d) 7™ H(4,q)).

Thus we can now describe what a spectral sequence associated to a filtered differen-
tial graded module would look like. Suppose that A is a filtered differential graded

module with differential of degree +1 and a descending filtration.

Theorem 2.1 [6, Theorem 2.6] Each filtered differential graded module (A,d, F*)
determines a spectral sequence, {Ey"*,d,}, r=1,2,--- with d, of bidegree (r,1—7)

and
EP?~ HPYY(FP A/FPTL4).

Suppose further that the filtration 1s bounded, that s, for each dimension n,
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there are values s = s(n) and t =t(n), so that
{0}y CFA"CF* 1AM C..- C F"IAM C FTA™ = A",
then the spectral sequence converges to H(A,d), that 1s,
EPI =~ FPHPYI(A d)/FPTLHPTI(A,d).
Proof Consider the following decreasing filtration for A
.. C FPAPTY - pP=lppta — pp—2 ppta — ...

Then by definition of a filtered differential graded module, we know that d respects
the filtration, that is d(FPAPT?) C FPAPT+1 Before proceeding further, we set the

following notation.

ZP9:= elements in FPAPT? that have boundaries in FPT"AP1H]
— FpAp-H] N d—l(Fp+7‘Ap+q+1)

BP9 := elements in FPAP*? that form the image of d from FP~"APTI~!
= FPAPHING(FP" APTITT)

ZP9 .= kerdn FP AP*4

BPI .= imdn FP AP,
We claim that there is a tower of submodules
BYcBMc...cBRICzPiC..-Cc 2P c Z5.

The decreasing filtration and the stability of the differential give us the desired tower
of submodules. First observe that, Z)'? = FPAPTINd~1(FPAPTI+1) = FP APFI since
FPAPe C d~1(FPAPTI!) using the stability of the differential. Obviously Z¢ C
FP AP*9 and hence Z? € Z59. In general, since we have a decreasing filtration, we
get FPTTAPTatl  ppr—1 Ap+a+l which further implies that d—!(FPT"APTat+l) C
d-1(FPiT—14ptatl),

Thus we have FPAPTING™1(FPHT APTat]) C FPAPTINg—1(FPTT—1 APTaF])  There-
fore Z2? C ZP'% for any r > 0. Finally, to see that Z5! C ZF'?, note that d(Z57) =
0 € FPTTAPTI+L and ZB? C FPAPTY by definition. Therefore Z5%? C FPAPHIN
d-1(FPtT Aptatly
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Similarly, since FP~"+1AP+a~1 C FP=T APT4~1 we obtain BXY, c BMY.
Finally, since dod = 0 implies that 4m d C ker d, we obtain B5! C Z5?. Hence we
obtain the tower of submodules as claimed above.

We also observe that
d(Zf_T’q+r_1) — d(Fp—rAp+q—1 N d—l(FpAp+q))
— FPAPTIN d(Fp—rAp-I-q—l)
— BP9,

Now boundedness of filtration implies that, for » > s(p+g+1)—pand r > p—t(p+
g—1), that is, for

r+p>s(p+qg+1) and p—r<tlp+g—1)
Fp+rAp+q+1 -0 Fp—rAp—i—q—l — Ap+q—1
= d L(FPTTAPTITY) = ker d = d(FPTAPTI ) = imd

Therefore, by definition Z7'? = Z5! and BP? = B%. This ensures the convergence.

Now define,
EPY:=ZP9/(Z01197 4+ BRY))

for all 0 < r < oo, and define n¥'? : ZF'? — EP? to be the canonical projection with

ker nP? = (ZPT1%1 4 BPY)). Observe that

d(ZP9) = d(FPAPTI N d~ L (FPHT APHeTLY)
= FPYT APTatl g FP APTHY)
— Bptrg-r+l
P

C zptng-r+l
r
and
+1, -1 y +17 -1 )
d(Z7I0T 4+ BRE) = d(Z72 ) + d(BRY)
C BPPTTT o (since dod = 0)
C Zfi—{‘—i—l,q—r_f_Bf—_F;,q—r—i—l.
Thus the differential, as a map d: ZP? — ZFP™™9 " induces a homomorphism d,
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such that the following diagram commutes

d —r+1
Zf:q Z%[-H—T’q T+

Pk

E;J,q dr E;{J—{—r,q—r—{-l
Since dod = 0, we have d,od, = 0. Next we claim the following:
I. H*(E",d,) 2 By,
II. B? =~ HPTI(FPA/FPHLA),
III. B! =~ FPHPTI(A,d)/FPYIHPYI(A,d).

I[. Consider the following diagram

1g9-—1 C d —r+1
ZyI-H— 4 —|—B£’q Zr+1 ZTI‘%‘Z ZTI‘H"”:‘Z r+
—r+1
ker d, - A

T

Hp’q(E;f’*,dr)

0
where the first inclusion is true, since FPt1APte C FP APt implies that FPT1APTIN
d-1(FPHrlAptatly c P APTIN G (FPTTH1 APFaFL) which further implies that
ZBTHl c gP4 Thus ZPM0l .y BP9 P,
Firstly we observe that n¥'?(Z%%,) = ker d,. For that, we consider n~*(ker d,).
dr(nz) =0 & dz € ZPT7THIT L BPTPOT (gince dpon =1nod)

&zezbl +zP ! (by definitions of Z* and B}*).
Thus, 7~ (ker d,) = Z0'%, + ZF 17", Therefore ker d, = (2084 + 28171 =
n(ZP4,), since ZF101 C ker P9
Secondly, ZET1 4 BB = ZP9 A ((nP9)"1(4m d,)). We know that im d, =
nP9(d(Z2 ")) = pP9(BEY) and hence
(789 (9 d) = BE -+ ker P
— BP9y BP9, 4 zPthe] (since B9, C BP9)

+1,g-1
=B+ Z7
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IIL

Also,

ijll,q—l N fol — pptlgptq md—l(FerrA;zthﬁtl) N FP APt4 md—l(Fp+7~+1Ap+q+1)
= FPTIAPYI A gL FPiT gPTat1y  g=1(FPirtl gptatly
(since FP1APTY C FPAPTY)
= FPHLAPTa O g—1(FPHT gPtatly
(since FPHTH1gptatl o pptr gpta+l)

_ p+lg—1
— ¢ .

Therefore, ZP'%, N (nP9)~1(im d,) = 2819 4+ BRY,

Finally, let v: 22 — HP9(E;",d,) be the composition of the maps
np,q
z08 = ker d, — HPY(E}*,d,).

Then, ker v = ZP% N (729) "1 (im d,) = ZFTH9~1 + BP9 Since 7 is an epimor-

phism, we obtain

HPY(E}™ d,) 2 200 [(ZEYH971 + BRY) = B,

Observe that E2? = zP9/(zPT1971 4 BP9 where
Z1141-1,q—1 — FPHLlAptd gpd Bli:‘ll — d(Fp+1Ap+q_1).

Since d respects the filtration, FPAP*? C d~!(FPAPTITL) and d(FPH APTI~1) C
FPH1 AP Thus

EP? = FPAPTIN d—l(FpAp+q+1)/(Fp+lAp+q + d(pp+1Ap+q—1))

= FPAPTY) P+l gpta

The differential do : E5? — BP9 is induced by the differential d : FPAP1? —

FPAPTa+1 therefore we have

EP9 >~ HPYY(FPA/FPTLA).

Let nh? : Z5! — E%? and 7 : ker d — H(A,d) denote the canonical projections.

Then

FPHPYU(A,d) = HPY9(im(FPA — A),d) = m(FPAP* I ker d) = (Z29).
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Since, w(ker 78d) = 7(Z5 97! + BRY) = FPTIHPI( A, d), we have that 7 in-

duces a map d, : B! — FPHPI(A,d)/FPY1HPT9(A,d). Further,
ker deo = nP3(n Y (FPHLHPTI(A, d)) N ZB9)
=B (Z5 M N d(A) N ZEY)

C B (25191 + BR) = {0}.
Thus d is an isomorphism, hence
EPA =~ FPHPYI(A d)/FPTIHPTI(A,d).
This completes the proof.

Thus, as a consequence of the above theorem, if A can be filtered and some term
of the associated spectral sequence is something calculable, then we can compute
H(A,d) up to the calculation of the successive homologies and reconstruction from
the associated graded module.

Now coming to the weaker conditions, we talked about in chapter 1, that guarantee
convergence and uniqueness of the target. With slight modifications in the proof of

Theorem 2.1 we have the following result.

Theorem 2.2 Let (A,d, f) be a filtered differential graded module such that the
filtration is exhaustive and weakly convergent. Then the associated spectral

sequence with E)'? =2 HPTI(FPA/FPt A) converges to H(A,d), that 1s,
EPA = FPHPHI(A 4)/FPHUHP(A, d).

So we know now, that a weakly convergent and exhaustive filtration guarantees that
the spectral sequence from a filtered differential graded module (4,d, f), converges

to H(A,d), in the sense that the F.-term is related directly to a filtration of H(A,d).

2.2 Exact couples

So far we discussed the algebraic setting of a filtered differential graded module.

But not always our objects of study are explicitly filtered or come from a filtered
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differential module. In this direction, we present exact couples, another general
setting giving rise to a spectral sequence naturally. The idea of an exact couple was
introduced by Massey [5]. The target of the spectral sequence coming from an exact
couple may be difficult to identify, unlike the case of a filtered differential graded
module.

Let D and E denote R-modules and let :: D — D, 3: D — E and k: E — D be
module homomorphisms.

D

NV

Definition 2.3 We say that C = {D,E,1,3,k} ts an Exact Couple if the above
diagram 1s exact at each group, that is, tim1=ker 7, im 3 =ker k and mm k =

ker 1.

Example 2.1 Let 0~ 7Z N/ 7./pZ — 0 be the short exact sequence associated
to the ‘times p’ map. Suppose (C*,d) is a differential graded abelian group that
is free in each degree. When we tensor C* with the coefficients, the ‘times p’ map

results in the following short exact sequence
0C* B cr 5 C*®7Z/pZ — 0
which on taking homology gives the following exact couple.

)\ / )

H(C*®Z/pZ)

H(xp)

H(C* c*)

The spectral sequence associated to this exact couple is known as the Bockstein

spectral sequence.

Note that, an immediate consequence of the exactness of a couple is that, E becomes
a differential R-module with differential d: E — E given by d = j0k. To see this,
we compute dod = (jok)o(jok)=jo0(koj)ok=0.

A fundamental operation on exact couples is the formation of the derived couple.
Let B' = H(E,d) = ker d/im d = ker(jok)/im(jok) and D' =i(D) = ker j. Also
define,
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i'=il;p:D'— D', j': D' — E' given by j'(i(z)) = j(z) +dE € E', where z € D
and k' : E' — D' given by k'(e+ dE) = k(e). We note the following.

Firstly, 5/ is well-defined. If i(z) = i(z'), then (z —z') € ker i = im k and there is a
y € B with k(y) =z—2'. Thus (jok)(y) = d(y) =j(z) —s(z) and j(z) = 5(z') +d(y),
that is, j(z)+dE = j(z')+dFE as cosets in E'.

Secondly, k' is also well defined. If e+dE =e'+ dE, then ¢ = e+ d(z) for some
z € E which implies that k(e') = k(e) + k(d(z)) = k(e) + (kojok)(z) = k(e). Also,
since d(e) =0, we have k(e) € ker j=imi=D'.

We call C'={D',E',7,j',k'} the Derived couple of C.

Proposition 2.4 ¢'={D',|E',7,5',k'} is an exzact couple.
Proof We first show the exactness at the left D'. We have

keri =iminkeri=ker jNimk
= k(k™(ker 7)) = k(ker d) = k'(ker d/im d)

=imk'
Note that D' =4D = D/ker i. Thus we can write

ker j' =37 (im d)/ker i =51 (j(im k))/ker i
= (em k+ker 5)/ker i = (ker 1+ ker)) /ker 1
=1i(ker j) =1i(im 1) =1m 7.
Finally, since joi =0, we have ker k' =kerk/imd=im j/imd=jD/imd=1im7j'"
|
We can iterate this process to obtain the n* derived couple of C,

cm) = {D(m) B () () gy = (cr-Dy.

Note that E(»+t1) = H (E(”),d(")). Now, we can describe the spectral sequence asso-

ciated to an exact couple.

Theorem 2.5 [6, Theorem 2.8] Suppose D** = {DP?} and E** = {EP?} are

bigraded modules over R equipped with homomorphisms: © of bidegree (—1,1),
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J of bidegree (0,0) and k of bidegree (1,0).

D*’* 7 D*’*
S
E*,*

These data determine a spectral sequence {E,,d,} for r =1,2,..., of cohomo-
logical type, with E, = (E**)""1), the (r —1)-st derived module of E** and
d,,. = j(‘l’—l) o) k;(r_l).

Proof It is enough to check that the differentials d,, have the correct bidegree
(r,1—7). We will prove this by induction. Let r =1, so E; = E**, dj =jok
and hence d; has bidegree (1,0)+ (0,0) = (1,0). Thus the statement is true for
r = 1. Now assuming it to be true for r — 1, that is, given that bidegree of d,_1 =
(r—1,2—r), we will show that the result is true for r, that is we claim that bidegree
of d, = (r,1—7r). Since bidgree of k("2 = (1,0) and d,_1 = 5" 0 k("=2), thus
bidgree of j("=2) = (r—2,2—r). Now, since the map

=1 (DY(r=1) —; (BPa)(r=1) is defined as

=0 (=2 (z)) = j(r=2(2) + -2 E(r=2) ¢ (EPa)(r—1),

where j("2)(z) ¢ (EP9)("=2),

The image in (EP9)("~1) must come from 4("—2)(DP—7+24+7-2)(r=2) Tg gee this, let
us assume that the image comes from i("=2)(D*#)("=2)_ Then since j("~2)(D%F)(r-2)
is in (EP9)("=2) and by induction hypothesis bidegree of j("=2) = (r — 2,2 —7),
therefore we have o +r—2=p and f—r+2 =gq. That is, the image comes from
§(r=2)(pP-r+2g+r-2)(r=2),

But note that 4("=2)(DP~7+2.4+7-2)(r=2) — (pp-r+La+r—1)(r=1) therefore we have

j(r—l) . (Dp—'r+1,q+r—1)('r—1) N (Ep,q)(r—l),
that is, the bidegree of ("1 = (p—(p—r+1),g—(g+7—1))=(r—1,1—7). Also,
since k("V(e+dr—2E(r-2) = k("=2)(e) and k(") has bidegree (1,0), so does

k("’_l)_ Thus, bidegree of d, = (7‘ —-1,1— 7‘) + (1,0) = ('f‘, 1-— 7‘), which is what we

wanted to prove. Therefore the statement is true for all r =1,2,....
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A bigraded exact couple can be represented as in the following diagram:

i i
_ kppteg-1_ I ppt2g-1_k _ pp+3g-1_J
i i

k_ pr+lg Ertla__k _ppt2g T

__k pr

1 1

___k ppa+tt gpatl __k_ pptilg+l I

7 1

Another useful presentation of exact couples is the unrolled exact couple:

1 pptlx DP* pP—lx _+

\Ep,/ \/

It is interesting to observe that we can also associate a tower of submodules of E

and an E-term to an exact couple, just as we can do for any spectral sequence.
Another expression for the E,-terms of spectral sequence associated to an exact

couple is given in the following proposition and the corollary following it.

Proposition 2.6 [6, Proposition 2.9] Let ZF™ = k~1(im ¢"—1: DPtr* — DPHL¥)
and BY* = j(ker i"=1 : DP* — DP~"™+1%) pe submodules of EP*. Then these

submodules determine the spectral sequence associated to the exact couple:
EP* = (EP*)(1—1) = zpx / BP*
Furthermore,
BEy = ()20 || B =
T T
Nk t(@Em "1 DPY™* — DPALN) /| j(ker 5771 : DP* — DP=7T1¥)
r r

Proof We prove this by induction. For r =2, E;”* = (E**)' = ker d/im d = ker(j o
k)/im(j0k). Now im(jok)=j(im k) = j(ker ). Also ker(jok) =k Y(ker j) =
k~1(im1). So

EY* = k™ '(imi: DPT®* — DPTL*) /j(ker i: DP* — DP™1¥),
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Then by induction,
Bp* = (B2 = 7p* /Y

since ", 7" and k" are induced by , 7 and k with the appropriate images in
D) = {m ¢"~1. Note that by composing with the map ¢ the following inclusions
follow: ZP* C ZP*, and BP'* C BE',. Also, the map jok induces the differential
d:Z,_1/Br—1 — By/Br_1 C Zy_1/Br_1. Thus we obtain the tower of submodules.

Hence the E-term of the associated spectral sequence follows immediately.

Corollary 2.7 [6, Corollary 2.10] For, r > 1, there is an ezact sequence:

0 — DP* /(ker i" (DP* — DP="*) 4 iDPFL*) L, P

X 4m 4" (DPTTHL* — DPELAY M ker 4(DPYY* — DP*) — 0

2.3 The equivalence of the two approaches

Having investigated two algebraic settings in which a spectral sequence arises natu-
rally, the next question that one can ask is that, are these two related in any way?
And, if yes, then how do their spectral sequences compare? In this direction we
observe that, a filtered differential graded R-module (A,d, f) gives rise to an exact
couple. This can be seen as follows.

For each filtration degree p, there is a short exact sequence of graded modules
0— FPTIA L FPA— FPA/FPTI4A —0.

Since the differential respects the filtration, we get a short exact sequence of dif-
ferential graded modules. On applying the homology functor, we obtain the long

exact sequence, for each p:

...Hp+q(pp+1A) LN HPTI(FPA) g Hp+q(FpA/Fp+1A)

K, gPtetl(pptlg) t, grtatl(pe ) I
where k is the connecting homomorphism. Define the bigraded modules:

EP9 = HPYYFPA/FPTTA) and DPY= HPTI(FPA).
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This gives us an exact couple from the long exact sequences:

pp+lg-1 d P

‘x ’

EPa

Dptlg

Note that the bigradings agree with Theorem 2.5 to yield a spectral sequence, so

we have the following result.

Proposition 2.8 For a filtered differential graded R-module (A,d, f), the spec-
tral sequence associated to the (decreasing) filtration and the spectral sequence

associated to the exact couple are the same.

Proof It is enough to show that, in the spectral sequence for the exact couple, the
E,.-term, as a subquotient of FPA/FP*1 A, coincides with the subquotient given in

the proof of Theorem 2.1. That is, we need to show that
EPY =k Yim i ) /j(ker i) = ZP9/(ZPT1ATL L BPA Y,

Suppose z € E? = HPT9(FPA/FPT1A), that is z is represented by [z + FPT1A]
where ¢ € FPA and d(z) € FP*1A. Then the boundary homomorphism k in the

long exact sequence associated to the exact couple can be defined as:
k([z+ FPTLA]) = [d(z)] € HPTIH1pPtlyg,
Thus,

2+ FPPIA c k7 (im ™ Y) @ k([z + FPTA]) = [d(z)] € im 471
& d(z) € FPTAPTatL
But since € FPAP*9, then z € FPAPTING~1(FPHT APTa+1) = ZP9 Therefore we
have, k~1(s3m ") = ZP'? /FP1 APT4. Now, in order to determine j(ker :"~1) con-
sider ker i"~! C HPY9(FPA). Then, [u] € ker 1"~! & u € FPAP™ and v is a bound-
ary in FP~"+1 AP*2 which implies that u € FPAPTINd(FP"T1APT9) = BPY | Since

J assigns to a class in HPTI(FPA) its relative class modulo FP*! A, we obtain

j(ker i*™1) = BB JFPHL AP,
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Thus we have

BP9 =k (imi" 1) /i (ker i Y)
= ZP9 P+l gqpte /B / P+l ppta
— ZP9 ) FPHLAPta J(BPY o ZPT LAYyt gpta  (gince ZPT10TT ¢ FPHLAPTA)

~ 7D, p+1,9—1 D,q
—Zr /(Zr—l +Br—1 :

2.4 Double complexes

As an example of the construction of a spectral sequence from a filtered differential

graded module, we present another algebraic setting called double complexes.

Definition 2.9 A double complex, {M**,d',d"}, is a bigraded R-module with
two R-linear maps d' : M** — M** of bidegree (1,0) and d": M** — M** of
bidegree (0,1) satisfying

dod =0,d"od" =0 and d'od"+d"od =0.

The total complex, Total(M), s the differential graded R-module defined by
Total(M)" = @ptq=n MP? with total differential d =d'+d" satisfying dod = 0.

Example 2.2 If we let K™" = A" QrB", d =ds®1and d' = (—1)"1®dp, then
we have a double complex such that (T'otal(K),d) = (A®g B,dg).

Now our aim is to compute homology of the total complex with respect to the
differential d i.e. H(Total(M),d). For this, we construct two spectral sequences by

taking homologies in two different directions, namely, horizontal and vertical.

Definition 2.10 (Horizontal and Vertical homology) The Horizontal homol-
ogy 1s defined as:

ker d' : M™™ — MTHL™

n)m P— _ )
Hr M) = s gntm s pgmm — HM™04)
and the Vertical homology as:
kerd' - M™™ Mn,m+1
HY™M (M) = 2T ~ — H(M™™,d").

imd': M1 pMm
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Then H;*(M) and Hyj (M) are differential bigraded modules with respective dif-

ferentials
d': HP™(M)— HP™ (M), z— d'(z) and
d:Hy™(M) — Hy ™M), §—d(y)
and respective homology groups
Hy" Hyp(M) = H(H;f (M), d) and Hjf Hy(M) = H(H}* (M), d").
Now we can describe the spectral sequence for a double complex.

Theorem 2.11 [6, Theorem 2.15] Given a double complex {M**,d',d"}, there

are two spectral sequences, {;Fr",1d,} and {;1E"" ,11d,} with
By 2 HP Hi(M) and 1B = Hiy Hi(M)

If MP?2 =0 when p<0 or q <0, then both spectral sequences converge to
H*(Total(M),d).

Proof We prove the case of {;F»"*,;d,}; the other case will follow by symmetry. To
prove this we will appeal to Theorem 2.1. To do that, let us first define filtrations
of (Total(M),d) in the following two ways:
F¥(Total(M))! =P M"*"  and F¥(Total(M)) = P M.
r>p r>p

where F} is called the column-wise filtration and Fj; the row-wise filtration.
Note that both are decreasing filtrations and d, the total differential, respects each
filtration since d = d' 4+ d" and both d’' and d” respect the filtrations. Now because
MP9 = {0} when p < 0 or g < 0, this filtration is bounded. Thus by Theorem 2.1,
we obtain two spectral sequences converging to H(Total(M),d). In the case of Fj

we have:
(BP9 = HPYY(FPTotal(M)/FP Total(M), d).

It only remains to identify the Eo-term as described. We claim that ;ED'? =

HYA(M). Note that

(FPTotal(M)/F¥Total(M))PH9 = (P M™PT7/ B MPHT)
T>p r>p+1

o~ Mp)q
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where the differential is d” since d = d'+d" and d'(FPTotal(M)) C FF " Total(M).
Therefore 1 E? =2 HT(M). Now following Proposition 2.8, consider the following

diagram (where we write FP for FPTotal(M))

: HPT(FPtly HPa(FP)

.. HPHat1l(Fpt2) o HPrat (el

.

Hp+q+1(Fp+1/Fp+2 Hp+q p/Fp+1)
+1, )
HE (1) i HY (M)

Now, an element in HP+9(FP/FP*1) is represented by [z + FP*1], where z € FP such
that d(z) € FP™! or it can also be written as a class, [z] € HI}(M) with z € MP4.

Now,
k([z+ FPTY) = [dz] € HPTITH(FPHY,

Taking z as the representative, this determines [d'z] € HPT¢+1(FP*1) since d"z = 0.
The morphism j assigns a class in HPT9H1(FP*1) to its representative mod FP*+2.
Thus we can consider d’z as an element of MPt14. Hence d; :=jok =d’, the induced
mapping of d on HY(M). Therefore 1EY? = HP Y H (M).

Similarly, to obtain the second spectral sequence from F;;Total(M) we can reindex
the double complex as its transpose: 'MP9 = MIP, td' = d" and !d’ =d'. Then
we have Total(*M) = Total(M) and F};Total(M) = F}Total(*M). By a similar
procedure as above we obtain the required result. This completes the proof of the

theorem.

2.5 Spectral sequences of algebras

Let (E**,dg) and (E**,d3) be differential bigraded modules over R.

Definition 2.12 The tensor product of differential bigraded modules over
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R 15 defined as:

(E ®R E)P:q — @ ETS QR Et,u

r+t=p
s+u=q

with dg(e®é) =dg(e)®e+(—1)""e®dz(€), where e € E"* and € € Eb™.
Further, a differential bigraded algebra over R is defined to be a differential
bigraded module (E**,d) together with a morphism ¢ : (EQ® E)** — E** such

that 1t 15 associative.

Now we can define a “tensor product of spectral sequences” by forming the tensor

product of differential bigraded modules at each term in the sequences.

Definition 2.13 A spectral sequence of algebras over R 1s a spectral sequence,
{E:’*,dr} together with algebra structures ¢, : E,®gr E, — E, for each r, such

that ¥r+1 can be written as the composite

H ’lpr o
(% : H(Er) — Er+1:

"//r+1 : Er—f-l ®r Er+1 i H(Er) ®R H(Er) g H(Er ®r Er)
where the homomorphism p is giwen by p([u]® [v]) = [u®v].

For example the Leray-Serre spectral sequence that we will encounter in chapter 4

is also a spectral sequence of algebras.

Remark 2.1 [6, p.25] If there is a spectral sequence converging to H* as an
algebra and the Eo-term is a free, graded-commutative, bigraded algebra, then

H* is a free, graded commutative algebra isomorphic to TotalEsy .
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Chapter 3

Fibrations

In this chapter, we give an overview of the topological background required to
understand the Leray-Serre spectral sequence of a fibration, which is our ultimate

aim.

3.1 Definition of a fibration

Definition 3.1 A map p: E — B has the homotopy lifting property (HLP),
with respect to a space Y 1if, given a homotopy G:Y xI — B and a map g :
Y x {0} — E such that pog(y,0) = G(y,0), then there is a homotopy G:Y xI — E
such that é’(y,O) =g(y,0) and poG=G.

Yx{O}L:E

G -
I
Ve

yxI-%.B

Definition 3.2 A mapping with the HLP with respect to all spaces s called a
Hurewicz fibration. A mapping with the HLP with respect to all n-cells 1is

called Serre fibration.

From now on, by a fibration, we mean a Hurewicz fibration.

Definition 3.3 If p: E — B 1s a fibration, then we call the space B as the base
space and E as the total space of the fibration. If b is a point in B, then we
call F, = p~1(b) as the fiber of p over b.
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Proposition 3.4 Suppose p: E — B 15 a fibration and that B is path-connected.
Then, for bo,b1 € B, Fy, 15 homotopy equivalent to Fy, .

Proof Given a fibration E -5 B, let the free path space be denoted by W B :=
map([0,1],B) = {A:[0,1] — B|A is continuous}, with the compact-open topology.
The evaluation map evg : WB — B, defined by evo(A) = A(0), is continuous. Let
Up={(Ae) € WB x E|A(0) = p(e)} denote the pullback of p: E — B over evg as in

the following diagram

The homotopy H : U, x I — B given by H((A,e),t) = A(t) poses the homotopy lifting
problem:

Up

(=0 Iz

U, xI-2~B

E

|

pr2

7
? 7
‘. p

When p: E — B is a fibration , we get a solution H: Upyx1:H:

|

br2
Up - /E
(0| 7

Up X

LU

p
H

LN

~ 0\

Let

A:U,—»WE

(A,e) = AN e)
denote the adjoint of H given by:

AM\e):[0,1] = E

A\ e)(t) = H((Ae),t)

where WE :=map([0,1], F). A is called a lifting function for p. Note that the

map A satisfies the following properties
poA(Ae) =2, and A(Xe)(0)=e.
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Which are easy to see since

poA(Xe)(t) = p(H((M\e),t))
= H((\e),t) (since po H = H)
= A(t)

and
A(Ne)(0) = ﬁ((A,e),O)

= pra(A,e) (since Ho(—,0)=pry by HLP)

= €.

Now suppose o : I — B is a path with o(0) = by and a(1) = b;. Consider the following

composite.
By :Fypy Uy SWESS E
z— (o,z)— Aa,z) — Ao, z)(1)
Then since, po A(a,z) = a, so we have
pol(a,z)(1) =a(l)=b;
= Aa,z)(1) € p_l(bl) =: Fp,.
Therefore, the following map
<I>a :Fbo — Fbl

z — Ao, z)(1)

is continuous. The adjoint of the composite Fp, — W E gives a homotopy h : Fp, X
I — E between the inclusion of Fp, and ®, : Fp, — Fp, — E. Similarly, if we reverse
the path we can obtain the homotopy inverse of the mapping. Thus Fp, and Fp, are

homotopy equivalent. This completes the proof of the proposition.
[ |

Thus, as a consequence of above Proposition we have a unique fiber upto homotopy

of a fibration over a path-connected base space.
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The lifting function provides some further structure. For b € B, let QB = Q(B,b)
denote the loops in B based at b and let F' = F,. Then QB x F' C Uy and for the map
u=evio\:QBx F — E we have vm u C F. Since poevioA(f,e) =poA(B,e)(1) =
B(1) = b, we have ev; o A(B,e) € p~1(b) = F. Thus, tm u C F which determines an

action F,

u=evioA:QBxF — F
Let a=1(t) := a(1—t).

Proposition 3.5 To the action u =evioA: QB X F — F and a loop a € QB
associate the mapping ho = u(at,—): F — F. Then

(1) If a ~ B, then hq >~ hg.
(2) If o is homomorphic to a constant map, hy ~ idp.

(3) If axp denotes the loop multiplication of a and B, then hasxg >~ hqohg.
Proof (1) Since o ~ § so there exists a homotopy:
K:IxI—B
K(s,0) =a"(s)
K(s,1)=B7"(s)
K(0,t) =b=K(1,%).
Now, consider the adjoint of K, K : I — W B given as t — K (t) where,
K(t):[0,1]— B
K(t)(s) = K(s,t).
Then, K(0)(s) = K(s,0) = a~1(s) and K(1)(s) = K(s,1) = B~1(s) which im-

plies that K(0) =a~! and K(1) = L. Also, K(t)(0) = K(0,t) =b=K(1,t) =
K(t)(1), therefore K(t) is a loop in B based at b, K(t) € QB. Thus,

FxI—F

(z,t) — w(K(t),z)

(2,0) = p(a™,z) = ha(z)
(z,1) — p(B~',2) = hp(z)

is a homotopy between h, and hg. Therefore ho ~ hg.
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(2) Note that if ¢ = a constant map, then Q(c,z)(1) = z since the lifting problem
is solved by constant maps. Now since a ~ ¢, thus by part (1) we have hy =~ h,

and hc(z) = u(c7t,z) = A(c™!,z)(1) = z. Therefore h. = idp. Hence hy ~ 1dp.

(3) Observe that, hgsp = p((a*xB),—) = A((axB)~1,—)(1) and
hao h',B = :U'(a_lnu'(ﬁ_lx _)) = A(a_l’A(:B_l’ _)(1))(1) But since,

A(axB) Lz) (1) =A(B xa L, z)(1) (since (axB) '=p"1xa™?)
= Ao A7 2)(1))(D),

we obtain hqsg ~ ho o hg.
[ |

Corollary 3.6 Let G denote an abelian group. If p: E — B 1s a fibration,
b€ B, a path-connected space, then there i1s an action of the fundamental group

m1(B,b) on Hy(F;G) and on H*(F;G) induced by [a| — hqx and b}, respectively.

Example 3.1 Let X be a path-connected space and zy a basepoint in X. Define
PX ={X:[0,1] = X | A is continuous and A(0) = zp} to be the space of based
paths in X. Then the continuous map p: PX — X, given by p(A) = A(1), is a

fibration.

We prove this as follows. Let g: Y — PX and G:Y x I — X be maps such that
G(y,0) = p(g(y)), then define G:Y x I — PX by
g()(s(t+1)),  for0<s<1/(t+1),

G(y,t)(s) =
G(y,s(t+1)—1), forl/(t+1)<s<1.

Thus p has the homotopy lifting property with respect to all spaces, hence is a
fibration. Note that, the fiber over z, is the space of based loops QX ={A:[0,1] —
X | A(0) =z9 = A(1)}.

Definition 3.7 The above fibration, QX — PX — X, 1s called the path-loop

fibration over X.

Example 3.2 For a pair of spaces B and F', the projection map p: Bx F' — B, is
called the trivial fibration with base B and fiber F.
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Example 3.3 From the definition of a covering space, f: E — X, the covering map
is a fibration. For example the real projective spaces yield an interesting example

of this. The covering map S™ — RP(n) is a fibration with fiber S°.
The complex analog of this also gives us a fibration:

Example 3.4 S' — §?"*! 5 CP(n) is a fibration, where S?**! is the unit sphere
in C™*! and CP(n) is viewed as the quotient space of S?"*! under the equivalence
relation (20, -+ ,2n) ~ A(20," "+ ,2n) for A € S!, the unit circle in C. The projection
p: S+ CP(n) sends (20, ,2x) to its equivalence class [2o,- - ,2x], 50 the fibers

are copies of S!. This construction also works for n = co.
Next is the special case of above fibration for n = 1.

Example 3.5 Since CP(1) is homeomorphic to S?, the above fibration becomes
St — S — S? with fiber, total space and base all spheres. This is known as the Hopf

fibration. The projection S® — S? is defined as (zo0,21) + 20/21 € CU{o0} = S2.

We will also see some of the above examples of fibrations in Chapter 4 where we

will look at some applications of the key result: The Leray-Serre spectral sequence.

Definition 3.8 A pair of maps (f,f): (E',B') — (E,B) is called a morphism

of fibrations if the following diagram commutes:

f

E ——

A

B 5B

with p and p' fibrations.

Definition 3.9 A fibration s called locally trivial if there 1s a covering of B
by open sets {Vy}tacs and a set of homomorphisms {¢a : Va x F — 0 (Vo) }acs,

each of which induces a morphism of fibrations

Vi X Fﬂ)p_l(va) =~ E

b

Vy——= >V, S .B
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Suppose p: E — B is fibration and f : X — B a continuous map. Then we can define

the pullback of p over f which will give rise to the following fibration.

Definition 3.10 Define the pullback of p over f by letting Ef denote the set
{(z,e) e X x E | f(z) =p(e)}. The projection maps on E; gwve the following
diagram

Ef—>E

o f l

X——B
The universal property of a pullback has as input datamapsu:Z - X andv:Z — FE

such that fou =pov and associates to them a unique map w: Z — Ey with all the

triangles and squares in the following diagram commutative

The universal property of pullbacks and the fact that p is a fibration implies that
the map py satisfies the homotopy lifting property, thus ps : By — X is a fibration

and the fiber space is same as the fiber of p.

3.2 Long exact sequence of homotopy groups

In this section we consider the exactness properties of fibrations.

Theorem 3.11 Let E 2 B be a fibration and by a basepoint in B. If Z s a
space, then for F = p~1(b)

1Z,F| = [2,E) 5 2, B]

18 an ezxact sequence of pointed sets. The same conclusion holds if p 1s a Serre

fibration and Z has the homotopy type of a finite CW-complez.
Proof We are given that the maps 7, and p, are defined as
2,F] % [2,B] % (2, B]

grr10g — poiog
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where [X,Y] denotes the homotopic class of maps from X to Y and

ker b 1= {h € [2,E] | p.(h) ~ o, € |7, B]}
={h:Z > E|poh~cpy,:Z— B}

where ~ denotes homotopic equivalence of maps. Now in order to show that this is
an exact sequence we need to show that ker p. =1m 1,. So let us start by considering
amap g € ker p.. So we have the map g: Z — E such that pog~cy,: Z — B. Then
we need to show that it is also in the image of the map .. But first note that since
pog is homotopic equivalent to cp,, so there exists a homotopy, say G: Z xI — B
such that G(y,0) =pog(y,0) and G(y,1) = cp,(y, 1) = bo. Thus we have the following
diagram
Zx{0}2~E
o]
ZxI—S-B

Then since p is a fibration, therefore by HLP there exists a map G-

Z x {0} % E
R
ZxI1—C. B
such that po& = G and G(y,0) = g(v,0). Then consider the map f: & | Zx{1}:
Z x {1} — B. Since G(y,1) = cp,(y,1) = by and poG = G, thus poG(y,1) = by which
implies that G(y,1) € p~*(bo) =: F and hence f(y,1) € F. Therefore f determines a
map into F, f: Z x {1} — F. Further, it is clear that G : Z x I — E is a homotopy
from g to fy =iof:Z — F — E since, G(y,0) = g(y,0) and G(y,1) = f(y,1) =
f«(y,1). So, f«~g:Z — E and since f, € tm t, therefore [g] € vm ¢,. Hence
ker p, C 1m 4.

Now for the other direction im i, C ker p, we let a, € 1m 14, then

pi(a)(2) = ps(10a)(z) = po (1o a)(z) = p(a(z))

C p(p™" (bo)) = bo-

Therefore, p. ooy >~ cp, = ax € ker p,. Hence ker p, =1m 1,. This finishes the proof

of the theorem.
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The following theorem shows how we can extend a fibration to a sequence of fibra-
tions . The key point of the construction is that, PX the space of based paths is

contractible which is clear since we have the following contraction

H:PBx]|0,1] - PB
H(\t)=A(1-1).

Theorem 3.12 [6, Theorem 4.30] Giwven a fibration p: E — B with B path

connected and fiber F', there 1s a sequence of fibrations up to homotopy
R orp YRorp L orlE

QB FS5ELB

Proof First step in proving this theorem is to form the pullback of the path-loop
fibration over B with respect to the fibration p: F — B.

QB =~ - QB
F~E,—~PB
| im

E 5 B

where by definition Ep := {(A,e) | A: (1,0) — (B,bo),A(1) =p(e)} and QB := {\:
(I1,0) = (B,bo) | A(0) = bp = A(1)} is the loop-space at by € B. The map : QB — Ep
is given by w — (w,eq) where eg denotes some choice of basepoint for E in the fiber
over byg. Let c = cp, be the constant loop at by € B then define the map : F — E,
by z — (c,z). Then since PB is contractible, this map induces the homotopy
equivalence of F' and E,. Hence F' ~ E,. Thus we obtain a fibration upto homotopy:
QB — F — E. This gives us the following last part of the sequence of fibrations in

the theorem
QB F-%ED B,

Proceeding in the same manner as above, we obtain the pullback of the path-loop
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fibration over E with respect to the map pro : B, — F

QF

l

QB~FE ——~PE

|

F:EPPT-E

1

where E':={(n,A,e) |n:(I,0) = (E,e0),A: (I,0) = (B,bo),n(1) = e, A(1) = p(e)}
and QF is the loop-space. Then again, the space E' is homotopy equivalent to QB
by the map: (n,A,e) — Ax(pon), where * is loop multiplication. The map of QF

to E' is given by @ — (@,c,ep) and continuing through to Q2B we get
QF — QB
@ cx(po) ~pod
Thus we obtain the fibration QF — QB — F with Qp as the ‘inclusion’ of the
fiber QF in QB. This gives us the next part of the sequence of fibrations given in
theorem QE % 0B - F 4 E X B. Finally, we iterate the above process to obtain

the sequence of fibrations as defined in theorem. This completes the proof of the

theorem.
[ |

Thus as a consequence of above theorem we obtain the following corollary (to be

used in the proof of Theorem 4.5).

Corollary 3.13 For a Serre fibration, F'— E — B with B path connected, there

15 a long ezxact sequence,

oo T(F) 25 T B) 25 1 (B) — 1 (F) — -+

— m1(B) — mo(F) - mo(E) 25 mo(B).

Proof Apply [S° —] to the sequence in Theorem 3.12 and use 7, (X) = [S?, Q"(X)]
to obtain the sequence of homotopy groups as described. Note that the exactness

of the sequence follows by Theorem 3.11.
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The above long exact sequence shows how a fibration is a sort of exact sequence in

the category of topological spaces, up to homotopy.

Remark 3.1 Note that the last part of the sequence need not be onto in general
since B could have path-components B, such that p~1(B,) is empty. However,

in the case when E and B are path-connected the sequence typically ends with

7T1(B) — 7T0(F) — 0.
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Chapter 4

The Leray-Serre spectral sequence

It was an important problem to relate the cohomology of spaces making up a fibra-
tion. In 1946, Leray [4] developed the powerful technique of spectral sequence to
solve this problem. The theory was later developed for singular homology by Serre
[7] in 1950.

Throughout we assume that R is a commutative ring with unit and we will only

consider the cohomology spectral sequence.

Theorem 4.1 (The cohomology Leray-Serre spectral sequence) [6, Theorem
5.2] Suppose F — E L B is a fibration, where B is path-connected and F is con-
nected. Then there 1s a first quadrant spectral sequence of algebras, {E:’*,dr},

converging to H*(E;R) as an algebra, with
EY? = HP(B; H!(F;R)),

the cohomology of the space B with local coefficients in the cohomology of the
fiber of m. Thas spectral sequence 1s natural with respect to fiber-preserving
maps of fibrations. Furthermore, the cup product — on cohomology with local
coefficients and the product -5 on Ey" are related by u-,v = (—1)plqu — v when

]I
uc EY? andvc BT,

Thus the above theorem defines the spectral sequence associated to a fibration.

Further, it also defines the ring structure on the cohomology ring.
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4.1 Construction of the spectral sequence

We will prove the above theorem in parts. First, we determine the E;-term.
Let us begin by motivating the ideas for the construction of the above spectral
sequence and defining the Fj-term and the differential d;. For that we have the

following proposition.

Proposition 4.2 Given a fibration F — E 5 B with base space a CW-complez,

there is a first quadrant spectral sequence, {Ey",d,}, with
BP9 = gP4a(n (B, n (BC V) R)

and di = A, the boundary homomorphism in the exact sequence 1n cohomology
for the triple (x=Y(BGTD), 7= 1(B)),7=1(BG—Y). The spectral sequence con-
verges to H*(E;R).

Proof Consider the fibration F < F 5 B and assume that B is homotopic equiv-
alent to a CW-complex. Then B has an obvious filtration induced by the suc-

cessive skeleta
BDO---D B(s) D) X(S—l) D B(S—z) DD B(O) D .

Now we can lift this filtration to a filtration of E by defining J° = 7~1(B()) to
be the subspace of E lying over the s-skeleton of B. Thus we have the following

situation
T O - D JJ O JT D - D Jf o 0
B o> ... o BG& o pBs=1) -~ .. o5 O S5 ¢

Now we will obtain an exact couple from this filtration which will give us a spectral
sequence using the construction we did in Chapter 2. So consider the long exact

sequence of cohomology groups for the pair (J%,J571)
o= HY(J°, 7S R) L HY(J% R) 5 HM(J* L R) & HYL(J%, I L R) — -
where

H™(J%,J°"!; R) := the cohomology groups of the cochain complex
{c™(J*,J°"YR),6}
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and C™(J*,J*"L; R) ;= Hom(Cn(J%,J°"1); R). Now if we define,
DP4 .= gP+a-1(jP=1) and EP9:= HPT4(JP, JP~1) then we obtain the following exact

couple

HPT=1(JP; R) : HPT=1(gP~1: R)

)

HPFa(Jp, P~ R)

HPT(JP; R)

Thus by Theorem 2.5 we have a first quadrant spectral sequence with, E}'? =
HPFa(JP, P~ R) and

dy = doj*: HPTI(JP, JP~L; R) EN HPF(JP; R) LA HPratl( g+l P R)
which is the boundary homomorphism in the long exact sequence in cohomology
for the triple (JP+1, JP, JP71).
Another way of doing this is by directly defining the filtration for C*(E;R), the
cochain complex of F with coefficients in R, and hence appealing to the first method
of construction we did in Chapter 2, that is spectral sequence via filtered differential
graded module. So define,

FSC*(E;R) := ker(C*(E;R) — C*(J*"1;R))

Then this is a decreasing filtration. Thus by Theorem 2.1, we get a spectral sequence
with

B =~ HPYY(FPC*(E; R)/FPY'C*(E; R)) = HP(J?, JP~1, R)

Also note that the above mentioned filtration is bounded, hence by the second part
of the Theorem 2.1 it follows that this spectral sequence converges to H*(E;R). It
can also be seen by Proposition 2.8, that the two spectral sequences we obtained

above turn out to be the same.
[ |

The next step in proving Theorem 4.1 is to determine the Es-term. We consider

the simplest case of a trivial fibration where £ = B x F,

F—BxFLB.
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Then, since J° = 7~1(B(%)) is homeomorphic to B) x F and B®) 5 B~ so we
have (J°,J°~1) = (B(9), B(s=1) x F. Thus by Kiinneth theorem [6, Theorem 2.12]

we have that
grra(ge gp=1y = gr+e((BP) glp-1)) i F) =~ gP(BP) B(P-)g HI(F).
Therefore, using Proposition 4.2 we conclude
BP9~ Cell’(B)® H!(F;R)

where the cellular cochain complex of X: (Cell*(X),5%!") is defined as Cell™(X) =
H™(X™), X(»=1)) and d; is given by d; = 6 ® 1. Thus E5? = HP(B; Hi(F;R)).
In the case of an arbitrary filtration, the ‘twisting’ of the fiber and base spaces in
the total space leads to a non-trivial complex expression for E; and hence for Es.

The following result defines the F»-term in the case of simplified hypothesis:

Proposition 4.3 Suppose that the system of local coefficients on B determined
by the fiber is simple, F' 1s connected and F' and B are of finite type, then for
a field k, we have

EYY =~ HP(B;k) @) HY(F;k).
Proof By Universal coefficient theorem [, Theorem 2.16] we have

EY?~ HP(B;HI(F;R))
=~ HP(B;k)® H(F; k) P Tor{ (HP"}(B;k), H(F;k))
~ HP(B; k) @ HI(F;k)

Suppose that the system of local coefficients is simple and that B and F' are con-

nected. Then

E}” = HP(B; H'(F; R)) = H?(B; R),

Ey? = H%(B; HU(F; R)) = H1(F;R).

For any bigraded algebra, like F,'*, both E;’O and Eg’* are subalgebras.
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Proposition 4.4 [6, Proposition 5.6] When restricted to the subalgebras B3
and Eg’*, the product structure in the spectral sequence on Ey* coincides with
the cup product structure on H*(B; R) and H*(F'; R), respectively. Furthermore,
if for all p,q, HP(B;R) and HY(F;R) are free R-modules of finite type, and the
system of local coefficients on B is simple, then Ey”* = H*(B;R)®r H*(F;R) as
a bigraded algebra.

The first part of this proposition is a consequence of theorem 4.6 which we will talk
about in the next section. The second part is again an application of the Universal

coefficient theorem.

4.2 Some formal consequences

Theorem 4.5 [6, Theorem 5.7] Suppose F — R" 5 B is a locally trivial fibra-
tion with B a polyhedron and F' connected. Then B and F are acyclic spaces.

By an acyclic space we mean that H*(B) = {0} = H*(F).
Proof By Corollary 3.13, we have the following part of homotopy exact sequence
coo = m(R™) = m(B) — mo(F) — -

Now since R™ is contractible so 71 (R™) = {0} and also F' being connected and locally
path-connected (which follows because B is a polyhedron and F' is pullback under
) is therefore path-connected. Hence mo(F') is also trivial. Then it follows from the
above sequence that 71(B) = {0}. Therefore the system of local coefficients induced
by F' on B is simple.

Now we claim that H*(B) and H*(F) are trivial for all > n. First note that F is
a subset of R™, so for any ¢ > n, H*(F) is trivial. Secondly, let B has a system of
neighborhoods, {U}, so that 771(U) is homeomorphic to U x F for each U in the
system. Then since m~1(U) is also a subset of R”, thus U must have dimension < n.
Therefore the claim follows.

Suppose p and g are the greatest non-zero dimensions in which B and F' have non-
trivial integral cohomology, respectively. Then by Universal coefficient theorem

[6, Theorem 2.16] we have that E;° = H"(B)® H°(F)@TorZ(H™1(B),H*(F)).
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And since H™(B) = {0} for r > p and H*(F) = {0} for s > g, thus E5’ is non-zero
only for » < p and s < g that is only in the box pictured below.

Now consider the differential dy : EZ'? — EZT>97" = {0}, therefore dy = 0 and sim-
ilarly all subsequent differentials are also zero maps. Thus our spectral sequence
collapses at 7 = 2 and hence E5! = E)? =~ HP(B)® H(F). And since the spectral
sequence converges to H*(R") and H™(R") & @, ,,—, Fob as a vector space im-
plies that H*(R™) = {0} for 1 > p+q. ER is the only vector space contributing to
HPT4(R™), therefore

HPTI(R™) = HP(B)® HI(F).

Finally R™ is acyclic implies that p+ g = 0 and since p,q > 0 therefore B and F' are

also acyclic. This finishes the proof of the theorem.
[ |

Example 4.1 (The Gysin Sequence) Suppose F < E 5 B is a fibration with
B path-connected and the system of local coefficients on B induced by the fiber is
simple. Suppose further that F' is a homology m-sphere, that is, H,(F) = H,(S"),

for some n > 1. Then,

(i) there exists following exact sequence called the Gysin Sequence
— H¥(B;R) 2 H™Y(B; R) & HMH (B, R) % HEY(B; R) —
where 7(u) = z ~— u for some z € H""!(B; R) and,
(ii) if n is even and 2 # 0 in R, then 2z =0.
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Proof (i) We are given that

R, when m =0 or n,
H™(F;R) =
{0}, otherwise
Thus, with B path-connected, the E,-term of the spectral sequence which
is given by E5? =~ HP(B;R)® HI(F;R) (using Proposition 4.4) is non-trivial

only for ¢ =0 or n as pictured below

Then since the only non-zero differential is d,41, therefore By = F3 = ... =

Epy1and H(Epi1,dpt1) = Epg2 = -+ 2 Fo. Thus,
ni12 H(B;R)® H*(F;R).
Recall example 1.3, so we also have the following exact sequence
— g dntt ghtntl0 | pkintl gy, ghtln dng phint20

Now suppose h is the generator of H"(F;R) = R (note that, in general A is
different from 1, the unity of R). Then we claim that,

e There exists a z € H""1(B;R) such that d,11(1®h) = 2®1.

[ dn+1($®1) =0

Now we prove our claims. Consider the map dn+1: Epnt+1 — Epny1. Recall that

E™1, is non-trivial only for ¢ =0 or n. Now for ¢ = 0 we have
. p,0 p+n+1l,—n
dn+1 : En,-l-l - En+1 '

47



where B2 = {0} since by Theorem 4.1 we have a first quadrant spectral

sequence. Hence, dn’il = 0. Thus the only non-zero differential is when ¢ = n.

So let ¢ =n and p=0. Then we have the following map
dni1: Bpty = Bpf1”.
But since by Proposition 4.4, EX'Y, =~ HP(B;R) ® g HY(F; R), therefore

EyT =~ HY(B;R)®r H"(F;R) and E,'1°=~ H""(B;R)®rH’(F;R)

~ Rr H"(F;R) ~ H"*(B;R)®rR.

Thus we have the differential d,, ;1 : R®g H"(F;R) — H"*(B; R)® R. So con-
sider 1®@h € Bo?, then dyy1(1®@h) € H"(B; R)®R, that is 3 z € H"1(B;R)
such that d,+1(1®h) = 2z® 1. Hence the claim.

Now using the property, Leibniz rule, of a derivation, that is:
d(a-a') = d(a)-a'+(—1)%9% -d(a’)
and the claim above, we have

dny1(2®h) = dny1((1 —2)® (h 1))
=dn41((1®Ah) — (z®1))
=dn+1(1QR) < (z®1)+(-1)"(1®h) — dpnt1(z®1)
=(2®1)—(z®1)

=(z—1z)®1
where 1Qh € EE;L = deg(1®h) =n. Thus we have the following map

dni1: E¥" = H*(B;R)®@h — H"**+1(B;R) @12 EF*+10

dnt1(z®h)— (2 —z)Q 1.

So define the map v: H*(B;R) — H"***1(B; R) by v(z) = dns1(z®h). This
gives us the first part of the long exact sequence. Now for the second part note

that the fibration £ = B induces the following map
H*(B)S H*(E)
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which gives us the second part of the long exact sequence. Finally making use

of the exact sequence from example 1.3, we obtain:
Q: H**"(B;R) — ES*'" = H*1(B;R).
Thus we obtain the Gysin sequence as described.

(ii) If n is even then again using Leibniz rule we obtain:

0=dnt1(1® (A~ h)) =dn11((1®h) — (1QR))
=(z01)— (1®h)+(-1)"(1®h) — (2®1)
=2((2®1)—(1Qh))=2(z®h)

=22Qh=2Q® 2h.

Now since 2h # 0, hence 2z = 0.

This completes the proof.
[ |

Example 4.2 (An application of Gysin sequence) We use the Gysin sequence to
compute the cohomology of n-dimensional complex projective space as an algebra

which is given by
H*(CP(n); R) = R[zz]/(z5™),
the truncated polynomial algebra of height (n+1) on one generator of degree 2.

Proof Since the n-dimensional complex projective space is the quotient of S?7*1,

CP(n) = S?"+1 /S, therefore it sits in the following fibration with spherical fiber
St e 8"+ CP(n).

Thus CP(n) is simply-connected for all n. Hence the system of local coefficients
is always simple. So we obtain a Gysin sequence associated to this fibration. Also
observe that CP(1) 22 S?. Note that since CP(n) is a 2n-dimensional manifold,
therefore H*(CP(n);R) is trivial for all k£ > 2n. Therefore,
2n
H*(CP(n); R) = P H*(CP(n); R).
k=0

Now for k < 2n we have two cases, £k = even and k = odd. We claim the following:
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e (z,)* generates H?*(CP(n); R), the even dimensional cohomology for all k < n,

where z5 = y(1).
¢ The odd dimensional cohomology, H***1(CP(n);R) is trivial for all k.

Now we prove our claims. We begin with the case k = 1. Consider the following

initial part of the Gysin sequence
H°(CP(n); R) s H?(CP(n); R) — H*(S*"*;R) — -

Note that since H°(CP(n); R) = R therefore zo = (1) generates H2(CP(n); R).

We also have the following short exact sequence from the Gysin sequence

H?(S?"*1; R) =~ {0} — H(CP(n); R) 5 H3(CP(n);R)

— {0} = H3(S*™*L; R).

Therefore v is an isomorphism. Now since CP(n) is simply-connected, H*(CP(n); R)
is trivial and hence H3(CP(n);R) is also trivial. Now by induction suppose that
(z2)* generates H?*(CP(n);R). Then consider the following portion of the Gysin

sequence

H#H (s R) — H**(CP(n); R) - H***2(CP(n); R)

N {0} o H2k+2(82n+1;R) N

Then since H?**1(S?"*1; R) is trivial for k < n, therefore -y is an isomorphism for
k <n. S0, v((z2)*) = 2o — (22)* = (z2)**! generates H***+2(CP(n); R). Similarly,
in odd dimensions, the pattern of trivial modules continues. Finally for k =n, we

have the following short exact sequence

H2(CP(n);R) = {0} — H*™1($**1; R) <L H*™(CP(n); R)

L, {0} = H*™2(CP(n);R).

Thus + is the trivial homomorphism and @ is an isomorphism. Since v((z2)") =

(z2)™*1, we conclude that (z2)"*! = 0. Therefore,

H*(CP(n); R) = 9"9 H*(CP(n); R) & Rlzs)/(e3").
=0
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Theorem 4.6 Given a fibration F é E 5 B with B path-connected, F con-
nected, and for which the system of local coefficients on B s simple; then the

composites

HYB;R)=E}° - E® — ...

— B - BY, = B’ C HY(E;R)

and HY(E;R) — B3 = ngl C B? C--- C EY? = HY(F;R) are the homomor-

phisms
7" : HY(B;R) — HY(E;R) and i*:HYE;R)— HY(F;R).

Thus, the above Theorem establishes a relation of the cohomology of the total space
E with the base space B and the fiber F', respectively.

An immediate consequence of this theorem is Proposition 4.4. Since the induced
maps are morphisms of algebras, thus this establishes Proposition 4.4 on the product

0 0
structure of ;" and E;".

Definition 4.7 F' s said to be totally nonhomologous to zero in E with re-

spect to the ring R if the homomorphism 1*: H*(E;R) — H*(F;R) s onto.

Note that in the case of a trivial fibration, F' is totally nonhomologous to zero in E

for obvious reasons. Now the following theorem gives a converse (in some sense).

Theorem 4.8 (The Leray-Hirsch theorem [6, Theorem 5.10]) Given a fibra-
tion F< E~ B with F connected, B of finite type, path-connected, and for
which the system of local coefficients on B 1s simple;, then, if F 1is totally

nonhomologous to zero in E with respect to a field k, we have
H*(E;k) 2 H*(B;k)® H*(F;k)
as vector spaces.

Thus, the Leray-Hirsch theorem above, gives us the cohomology of the total space
E in terms of the cohomology of the base space B and fiber F' and this isomorphism

is an isomorphism of vector spaces.
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4.3 Some computations

(1) Computation of H*(SU(n); R)
Let SU(n) be the group of (n x n) complex-valued unitary (AA* = I) matrices of
determinant 1. Then the consecutive quotients are spheres: that is S?”~! is the

quotient SU(n)/SU(n —1). So we obtain a fibration:
SU(n—1)— SU(n) 5 s}

by defining p for a fixed £y € C™ as p(A) = AT, with fiber the subgroup of SU(n) that
fixes o, which is SU(n —1). Also SU(2) can be identified with S®. We claim that
H*(SU(n);R) = A(z3,zs,...,Z2n—1), the exterior algebra on generators z;, where

degz; =1.
Proof We prove this by induction on n. For n = 2, we have
H*(SU(2); R) = H*(S*% R) = R[z]/(z*) = A(z3).
Consider the fibration
SU(n—1) — SU(n) 5 s?n71,

then since S?"~! is path-connected and SU(n —1) is connected, so we can apply the

Leray-Serre spectral sequence to obtain
ED? >~ HP(B;HY(F;R)) = HP(S*"" ', HI(SU(n - 1); R)).

Let yon,—1 be generator of H*(S?"~1; R) as an exterior algebra. By induction suppose
that H*(SU(n—1); R) = A(z3,zs,...,Ton—3). Since we obtain a spectral sequence of
algebras according to Theorem 4.1, so we can consider only the algebra generators
while describing the differentials. Since for n > 2, S?»~! is simply-connected, thus
the system of local coefficients on the base space is simple. So we can apply the

Universal coefficient theorem [6, Theorem 2.16] to obtain

Ey* = H*(S*" 1, R)® H*(SU(n —1); R))
= AMy2n—1) ® A(z3,T5, - .., T2n—3)

= A(z3,Z5,...,T2n-3,Y2n—1)-
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Since the algebra generators are found in bidegrees so all the differentials are zero

and the spectral sequence collapses at the Es-term. Thus,
EY =2 A(z3,Ts5,...,Tan—3,Yan—1)-
Then,
H*(SU(n);R) 2 Total B = A(z3,T5,. .., Ton—3,Yon—1)

where H™(SU(n); R) = (Total Exy')" = @pq—n E5’ and hence the claim.

(2) Computation of H*(U(n); R)
U(n) is the group of linear transformations of C™ which preserve the complex inner

product. Note that U(1) =2 S'. Consider the determinant map:
det:U(n) — U(1) =St

which gives a group homomorphism and the kernel of this homomorphism is the set
of unitary matrices with determinant 1, that is SU(n). So we have the following

fibration

SU(n) 225 U(n) 24 s!

Further, U(n) ~ U(1) x SU(n) ~ St x SU(n). Thus,
H*(U(n);R) = H*(S' x SU(n); R) = H*(S*; R) ® H*(SU(n); R)
= A(z1) ® A(z3,T5,"+ ,T2n—1)

= A($1)$31$51 T 1:1;211,—1)-

(3) Computation of H*(V%(C™);R)
The Stiefel manifold V4(C™) consists of the orthonormal k-frames in C". One can
see that V;(C™) is homeomorphic to SU(n)/SU(n — k), thus we have the following

fibration
SU(n—k) 25 SU(n) — Vi(C™)

where the map SU(n) — V%(C") is given by A — (Ae1, Aes, ... Aey) where e; € C™

denote the ** elementary vector, e; = (0,...,0,1,0,...0) with i in the ** place.
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It is immediate from the definitions that V1 (C") = S?"~! and V,,(C") = SU(n). Now
the inclusion: SU(n—k—1) C SU(n —k) C SU(n) gives us the fibration:

0—-SU(n—k)/SUn—-k—-1)— SU(n)/SU(n—k—1)— SU(n)/SU(n—k) —0
which may be identified as:
SAn—K)=1 16 11 L (CP) — Vi(TM).
Proposition 4.9 H*(Vi(C"); R) = AZ2(n—k)+1, Z2(n—k)+3, " * 1 Tan—1)-
Proof We prove this by induction on k. For k = 1, we have
H*(Vi(C™);R) = H*(S*™ 1, R) = A(z2n_1)

thus the proposition holds. Now suppose it is true for k, then the Leray-Serre

spectral sequence for the following fibration
SAn—k)=1 8 11 (C™) — Vi(CT)
has E»-term given by
By" = H*(Vi(C™); B (S*" 87 R)).
But since the system of local coefficients is simple and applying the Universal coef-
ficient theorem [6, Theorem 2.16| gives
Ey* = H*(Vi(C™); R)® H*(S*" =1 R)

= AMTo(n—k)+1:T2(n—k)+31 - - - » Tan—1) ® AY2(n—k)—1)

= MYa(n—k)—1) To(n—k)+1: L2(n—k)+31 - - - » L2n—1)-
Again for dimensional reasons, the spectral sequence collapses at E»-term and so

B3 = AY2(n—k)—1:T2(n—k)+1 T2(n—k)+3s - - -» T2n—1)-

Finally we have that

H(Vis1(C")R) 2 (D BRS
ptg=n
which completes the induction.

Remark 4.1 We can also reproduce the cohomology ring H*(U(n); R), of the
unitary group U(n) by putting k = n in the above computation and using

Ve(C")~U(n)/U(n—k).
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