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Notation

{Ft} Filtration of sub sigma algebras

Mc
2 Space of square integrable continuous martingale

M2 Space of square integrable martingale

〈X, Y 〉 cross variation of X and Y. 〈X,X〉 = X

Mc,loc Space of continuous local martingale

[X]2T E
∫ T

0
X2
t d〈M〉t

L(M) measurable with [X]T <∞

L∗(M) Progressively measurable with [X]T <∞

L(L2[0, T ],Ω) Random variables adapted and
∫ T

0
E(|X|2)dt <∞

i



ii



Abstract

The aim of the project is to understand the construction of Brownian Motion and that

of stochastic integral. The construction of stochastic integral with respect to martin-

gales has been carried out rigorously. Further, the stochastic integration developed

by Ito was for a nice measurable class of functions; was in 2008 expanded to a larger

class by Kuo. In this project I have also studied about the extension of stochastic

integration developed by Kuo recently. The idea behind the new stochastic integral

has been conveyed through many examples. I have also talked about the existence

and uniqueness of solutions to the stochastic differential equations which are also used

to study the trajectory of a particle undergoing random motion.
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Chapter 1

Martingales and Brownian Motion

In this chapter we study about Martingales, Brownian motion and properties of Brow-

nian motion. In the next chapter we will see how we integrate measurable functions

with respect to some nice martingales. We will observe that Brownian motion is also

a Martingale and in many areas integration with respect to Brownian motion is also

carried out. The majority of the notions in this chapter can also be referred from [1],

[2].

1.1 Discrete Parameter Martingales

We consider a Probability triple (Ω,F ,P) where F is the sigma algebra on Ω.

Definition 1.1. Filtration can be defined as a sequence of increasing sub σ-algebras

of F . We write it as F0 ⊆ F1 ⊆ F2 ⊆ ... ⊆ F .

In general we will work on a filtered space (Ω,F , {F}n,P) where n varies over the

set of non-negative integers.

Definition 1.2. A Stochastic Process (also written as Process) X = {Xn, n ≥ 0} is

called an adapted process if for every n, Xn is Fn measurable.

Definition 1.3. A Process X is called a martingale if it satisfies the following:

• X is adapted relative to ({Fn},P)

• E(|Xn|) <∞

• E(Xn|Fn−1) = Xn−1. ∀ n
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In above condition if we replace the equality by ≥ then we get a sub- martingale.

If we replace it by ≤ then we get a super-martingale. A martingale is both a sub-

martingale and a super-martingale and therefore any result which is valid for a sub-

martingale or a super-martingale also holds true for a martingale.

Definition 1.4. A map T : Ω→ {1, 2....;∞} is called a stopping time if {T ≤ n} ∈

Fn ∀ n.

Definition 1.5. If X = {Xn, n ≥ 0} is a process and T is a stopping time, then the

process XT = {XT∧n, n ≥ 0} is the stopped process.

Lemma 1.1. We show that if X = {Xn,Fn, n ≥ 0} is a martingale then the stopped

process XT = {XT∧n,Fn, n ≥ 0} is also a martingale.

Proof XT∧n is one of the random variables whose index is less than or equal to n

hence it is a random variables.

XT∧n = X0 + Σn
i=0(Xi −Xi−1)χi≤T =⇒ XT∧n −XT∧n−1 = (Xn −Xn−1)χi≤T .

We take conditional expectation of above to get the desired result.

Definition 1.6. A process C = {Xn,Fn, n ≥ 0} is a previsible process if for every

n, Xn is Fn−1 measurable.

Theorem 1 (Doob’s Optional Sampling Theorem). Let X be a martingale and T a

stopping time. Then XT is integrable and E(XT ) = E(X0) in each of the following

cases.

1. X is uniformly bounded and T is finite

2. E(T ) <∞ with bounded increments

3. T is bounded.

Proof

1. XT∧n is a random variable and since X is a martingale XT is a stopped process

and a martingale. We further have that E(X0 −XT∧n) = 0. With n→∞ and

using Bounded convergence theorem we have the desired result.

2. Using Dominated Convergence Theorem we get the desired result.
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3. As T is bounded hence assume that T (ω) ≤ A. Therefore let n = A and hence

we have the desired result.

Theorem 2 (Doob’s Decomposition). Let X = {Xn,Fn;n ∈ Z+} with Xn ∈ L1,∀ n.

Then X has a decomposition called Doob’s decomposition.

Xn = Mn + An +X0 ; ∀n. (1.1)

This decomposition is unique modulo indistinguishability. We further say that if X is

a sub-martingale then A is an increasing process.

Proof We define An =
∑n

k=1

(
E[Xk | Fk−1] − Xk−1

)
and Mn = X0 +

∑n
k=1

(
Xk −

E[Xk | Fk−1]
)
. On proceeding with the algebraic computation we see that E(Mn −

Mn−1) = 0.

For uniqueness we assume that Xn = Mn + An and Xn = M ′
n + A′n henceforth the

process Yn = Mn − Mn−1 = An−1 − An which gives us 0 while taking conditional

expectation.

To see that An is increasing when Xn is a sub martingale, we note that

E(Xn −Xn−1|Fn−1) = E(Mn −Mn−1|Fn−1) + E(An−1 − An|Fn−1)

= 0 + (An−1 − An).

Henceforth we have

An =
n∑
k=1

E(Xn −Xn−1|Fk−1).

We further quote a result.

Theorem 3 (Martingale /Doob’s Convergence Theorem). If X is super-martingale

and supnE|Xn| <∞ then we have almost surely Xn → X∞ where X∞ = limn→∞Xn

exists and is finite.

Proof We show that the set

S := {ω : Xn(ω) does not converge to a limit in [−∞,∞]}

has measure 0. Further the notion of Up-crossing lemma is used to prove the theorem.

3



1.2 Continuous Parameter Martingales

In this section we study about the continuous parameter martingales where the pa-

rameter t ∈ R+∪{0} against the natural numbers as observed in the previous section.

Definition 1.7. A Process X is called a martingale if it satisfies the following:

• X is adapted relative to ({Ft},P)

• E(|Xt|) <∞

• E(Xt|Fs) = Xs ; s ≤ t

Here t varies over the set non negative real numbers.

Definition 1.8. A filtration {Ft} is said to satisfy usual conditions if F0 contains all

the null sets and the filtration is right continuous.

We say that the filtration is right continuous if Ft = Ft+ where Ft+ =
⋂
ε>0Ft+ε

Definition 1.9. The stochastic process X is called progressively measurable with

respect to the filtration Ft if, for each t ≥ 0 and A ∈ B(Rd), the set

{(s, ω); 0 ≤ s ≤ t, ω ∈ Ω, Xs(ω) ∈ A} belongs to the product σ-field B([0, t]) ⊗ Ft. In

other words the mapping (s, ω)→ Xs(ω) : ([0, t]× Ω,B([0, t])⊗ Ft)→ (Rd,B(Rd)) is

measurable for each t ≥ 0.

Definition 1.10. A random T is a stopping time of the filtration Ft, if the event

{T ≤ t} ∈ Ft ∀ t. It is called optional time if {T < t} ∈ Ft ∀ t.

Theorem 4 (Optional Sampling Theorem). Let {Xt,Ft; 0 ≤ t < ∞} be a right

continuous submartingale with a last element X∞, and let S and T be two optional

times of the filtration {Ft}. We have

E(XT |FS+) ≥ XS a.s P.

If S is a stopping time, then FS can replace FS+ in the above inequality. In particular

we have

EXT ≥ EX0.

4



Definition 1.11. An adapted process A is called increasing if for P a.e ω ∈ Ω we

have

• A0(ω) = 0

• At(ω) is non-decreasing and right continuous in t.

Definition 1.12. An increasing process A is called natural if for every bounded and

right continuous martingale {Mt,Ft; 0 ≤ t <∞} we have

E

∫
(0,t]

MsdAs = E

∫
(0,t]

Ms−dAs ∀ t ∈ (o,∞).

Definition 1.13. The right continuous process X = {Xt,Ft; 0 ≤ t < ∞} is said to

be of class S if the family {XT}T∈ςa is uniformly integrable with 0 < a < ∞. Here ςa

is a class of all stopping times for the filtration Ft with P(T ≤ a) = 1 for some fixed

a <∞.

Theorem 5 (Doob-Meyer Decomposition). Let {Ft} satisfy the usual conditions. Let

{Xt,Ft; 0 ≤ t < ∞} be a right continuous sub-martingale in class S, then it admits

the decomposition

Xt = Mt + At

where M = {Mt,Ft; 0 ≤ t <∞} is a right continuous martingale and A = {At,Ft; 0 ≤

t < ∞} an increasing process. If the process A is natural then the decomposition is

unique.

Definition 1.14. Let X = {Xt,Ft, 0 ≤ t < ∞} be a right continuous (continuous)

martingale. We say that X is a square integrable martingale if

EX2
t <∞ ∀ t ≥ 0.

If also X0 = 0 then X ∈M2 (X ∈Mc
2).

Definition 1.15. If X ∈ M2, we define quadratic variation of X to be the process

〈X〉t = At, where A is a natural increasing process.

We further define the cross variation of two process in M2.
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Definition 1.16. For any two martingales X, Y ∈M2, we define their cross variation

process 〈X, Y 〉 by

〈X, Y 〉 =:
1

4
[〈X + Y 〉t − 〈X − Y 〉t]; 0 ≤ t <∞. (1.2)

Remark 1.1. 〈., .〉 is a bilinear form. Also

E[(Xt −Xs)(Yt − Ys)] = E[(XtYt −XsYs)|Fs] = E[〈XtYt〉 − 〈XsYs〉|Fs]

as XY − 〈X, Y 〉 is a martingale.

We state a few results which will be used in the proof of Ito’s formula in the next

chapter.

Definition 1.17. For a stochastic process we define the pth variation on the interval

[0, t] with the partition Ξ = {0 = t0, t1, ....., tn = t} by

V
(p)
t (Ξ) =

n∑
i=1

|Xti −Xti−1
|p.

If p=2 then we call it as quadratic variation.

Proposition 1.1. If X ∈ M2 with |Xs| ≤ C < ∞ ∀ s ∈ [0, t] a.s P. If Ξ be a

partition with t0 ≤ t1 ≤ .... ≤ tn then we have

E[V
(2)
t (Ξ)]2 ≤ 6K4.

Proof Consider E[
∑n

i=m+1 |Xti−Xti−1
|2|Ftm ] then using martingale property we get

E[
n∑

i=m+1

(Xti −Xti−1
)2|Ftm ] = E[

n∑
i=m+1

(X2
ti
−X2

ti−1
)|Ftm ] ≤ E[X2

tn|Ftm ] ≤ K2

therefore,

E[
n−1∑
j=1

n∑
i=m+1

(Xti −Xti−1
)2(Xtj −Xtj−1

)2] ≤ K2E[
n∑

i=m+1

(Xti −Xti−1
)2] ≤ K4.

6



Further we have

E[
n∑
i=1

(Xti −Xti−1
)4] ≤ K2E[

n∑
i=1

(Xti −Xti−1
)2] ≤ 4K4.

Hence due to above inequalities we have

E[V
(2)
t (Ξ)]2 ≤ 6K4.

Lemma 1.2. If X ∈ Mc
2 is bounded uniformly by K. Then for partitions Ξ of [0,t],

we have

lim
‖Ξ→∞‖

EV
(4)
t = 0.

Proof We consider mt(X; δ) := sup{|Xp −Xq|; p, q ≤ t, |p− q| < δ}. We now write

V
(4)
t ≤ V

(2)
t .mt(X, δ).

We further proceed using Holder’s inequality to obtain the desired result.

Theorem 6. Let X ∈Mc
2. For partitions Ξ we have

P[|V (2)
t (Ξ)− 〈X〉t| > λ] < ε.

Proof We divide the proof in two parts

Case 1: X is bounded

E[V
(2)
t (Ξ)− 〈X〉t]2 =

n∑
i=1

E[{(Xti −Xti−1
)2 − (〈X〉ti − 〈X〉ti−1

)}]2

≤ 2
n∑
i=1

E[(Xti −Xti−1
)4 + (〈X〉ti − 〈X〉ti−1

)2]

≤ 2EV
(4)
t (Ξ) + 2E[〈X〉tmt(〈X〉,Ξ)]

Using the above lemma we get the desired result.

Case 2: X is unbounded In this case we use the technique of localization by defining

7



a sequence stopping time

Tn = inf{t ≥ 0; |X| > n or 〈X〉t ≥ n}

with this X
(n)
t = Xt∧Tn and X2

t∧Tn − 〈X〉t∧Tn is a martingale. With the help of this

and in limit Tn →∞ we get the desired result.

Definition 1.18. Let X = {Xt,Ft, 0 ≤ t < ∞} be a (continuous) process. If there

exist a non decreasing sequence {Tn}∞n=1 such that T0 = 0 and limn→∞ Tn = ∞ of

stopping time of {Ft} such that {X(n)
t := Xt∧Tn ,Ft, 0 ≤ t < ∞} is a martingale for

each n ≥ 1, then we say that X is a (continuous) local martingale. If in addition

X0 = 0 a.s we write X(Mc,loc) ∈Mloc.

Remark 1.2. If X is a sub-martingale then by optional sampling theorem we get

{XT∧t,Ft, 0 ≤ t <∞} is also a sub-martingale implying the fact that every martingale

is a local martingale.

Lemma 1.3. Let X, Y ∈ Mc,loc. Then there is a unique adapted, continuous process

of bounded variation 〈X, Y 〉 satisfying 〈X, Y 〉0 = 0 a.s P, such that XY − 〈X, Y 〉 ∈

Mc,loc.

For X, Y ∈ Mc,loc we say that the process 〈X, Y 〉 is the cross variation of X,Y

and 〈X〉 the quadratic variation of X.

1.3 Brownian Motion

Definition 1.19. An adapted process W = {Wt,Ft, t ≥ 0} is said to be a standard

Brownian Motion if it satisfies following

• W0 = 0 and Wt is continuous in t.

• Increments are independent, i.e Wt −Ws is independent of Fs.

• The increments Wt − Ws are normally distributed with mean 0 and variance

t− s.

As Brownian Motion is continuous hence the canonical underlying space which we

consider is the C[0,∞) space. We try to build a measure such that the coordinate

mapping process of the form Wt(ω) = ω(t) becomes a Brownian motion.

8



1.3.1 Construction of Brownian Motion

We define a metric on the space of real valued continuous functions on [0,∞) by

ψ(x1, x2) =
∞∑
n=1

1

2n
max
0≤t≤n

(|x1(t)− x2(t)|∧1)

due to which the space under this metric is complete and separable.

Definition 1.20. • Let {Pn}∞n=1 be a sequence of probability measures on (S,B(S)),

and let P be another measure on this space. We say {Pn}∞n=1 converges weakly

to P iff

lim
n→∞

∫
S

f(s)dPn(s) =

∫
S

f(s)dP

for every bounded, continuous real valued function f on S.

• Let {Xn}∞n=1 be defined on {Ωn,Fn,Pn}∞n=1 with values in (S, ρ). We say {Xn}∞n=1

converges to X in distribution, if the sequence of measures {PnX−1
n }∞n=1 con-

verges weakly to {PX−1}. Equivalently Xn converges in distribution to X iff

lim
n→∞

Enf(Xn) = Ef(X)

for every bounded, continuous real valued function f on S.

Definition 1.21. Let (S, ρ) be a metric space and let Π be a family of probability

measures on (S,B(S)). We say that Π is relatively compact if every sequence of

elements of Π contains a weakly convergent subsequence. We say that Π is tight if

for every ε > 0, there exist a compact set K ⊆ S such that P(K) ≥ 1 − ε, for every

P ∈ Π.

We now need a few results to arrive at Wiener space. Since we will be be talking

about the C[0,∞) which is complete and separable space under the given metric, we

take a note of next result due to Prohorov.

Theorem 7. Let Ξ be a family of probability measures on a separable and complete

metric space then Ξ it is tight iff it is relatively compact.

9



We define the modulus of continuity essential for the next result.

mT (ω, δ) =: max
|s−t|<δ; s,t≤T

|ω(s)− ω(t)|

Theorem 8. A sequence {Pn}∞n=1 of Probability measures on C[0,∞),
(
B(C[0,∞))

)
is tight iff

lim
λ↑∞

sup
n≥1

Pn[ω; |ω(0)| > λ] = 0 (∗)

lim
δ↓∞

sup
n≥1

Pn[ω;mT (ω, δ) > ε] = 0 ∀T > 0, ε > 0 (∗∗)

To prove this result we in turn use a result stated below.

Lemma 1.4. The set S ⊆ C[0,∞) has a compact closure iff following are satisfied

sup
ω∈S
|ω(0)| <∞

lim
δ→0

sup
ω∈S

mT (ω, δ) = 0 ∀ T > 0.

Theorem 9. Let {X(n)}∞n=1 be a tight sequence of continous processes with the prop-

erty that whenever 0 ≤ t1 < ..... < td < ∞, then the sequence of random vectors

{X(n)
t1 , ..., X

(n)
td
}∞n=1 converges in distribution as n → ∞. Let Pn be the measure in-

duced on {C[0,∞),B(C[0,∞)} by X(n). Then {Pn}∞n=1converges weakly to P.

Define

X
(n)
t =

1

σ
√
n
Ynt where Yt = S[t] + (t− [t]), t ≥ 0. (1.3)

With {X(n)} as defined above (1.3) and 0 ≤ t1 < ... < td <∞, d ≥ 1 we have

{X(n)
t1 , ..., X

(n)
td
} D−→ (Wt1 , ...,Wtd); n→∞

where {Wt,FBt ; t ≥ 0} is a standard one dimensional Brownian Motion.

Theorem 10 (Donsker Invariance Principle). Let (Ω,F ,P) be a Probability Space on

which sequence {ξj} of i.i.d random variable with 0 mean and finite variance σ2 > 0

is given. Define X(n) = {X(n)
t ; t ≥ 0} as in (1.3) above mentioned and let Pn be the

measure induced by X(n) on {C[0,∞),B(C[0,∞)}. Then {Pn}∞n=1 converges weakly

to P∗ under which the coordinate mapping process Wt(ω) = ω(t) on C[0,∞) is a

standard, one dimensional Brownian Motion.
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Definition 1.22. The probability measure P∗ on {C[0,∞),B(C[0,∞)}, under which

the coordinate mapping process Wt(ω) = ω(t) is a standard, one dimensional Brownian

motion is called Wiener measure.

1.3.2 Properties

W = {Wt,Ft; 0 ≤ t <∞} is a standard Brownian Motion.

1. Markov Property: The property of the Brownian motion that it has stationary

and independent increments makes it a Markov Process.

2. Martingale Property: Proof

E[Wt|Fs] = E[Wt −Ws +Ws|Fs]

= E[Wt −Ws|Fs] + E[Ws|Fs]

= E[Wt −Ws] +Ws = Ws.

3. Scaling : X = {Xt,Fc2t; 0 ≤ t <∞} for c > 0 defined by

Xt =
1

c
Wc2t 0 ≤ t <∞.

Proof Continuity and stationary increments are preserved. We note that

V ar[Xt −Xs] = V ar[c(−1)(W (c2t)−W (c2s))] = c(−2)(c2t− c2s)

= t− s.

The expectation is 0. Here Xt −Xs = c(−1)(W (c2t)−W (c2s)) is distributed as

cN(0, c2(t− s)) ∼ N(0, (t− s)).

4. Time inversion Y = {Yt,FYt ; 0 ≤ t <∞} defined by

Yt =

 tW1/t 0 < t <∞

0 t = 0

11



Proof Here we see that the new process is continuous and 0 at origin. We have

E[Yt] = tE[W1/t] = 0 and Yt is a Gaussian process also we have the covariance

function E[YsYt] = st(
1

s
∧ 1

t
) = s ∧ t.

5. Symmetry:

Proof If W is a Brownian motion so is -W as continuity and stationary incre-

ments are preserved. mean and variance are not affected by the negative sign.

The distribution (can be seen with the help of probability law) does not change.

6. Finite Quadratic variation Let {Πn}∞n=1 be a sequence of partitions of the

interval [0,t] with limn→∞ ‖Πn‖ = 0.

n∑
i=1

[(Wti −Wti−1
)2 − (ti − ti−1)] =

n∑
i=1

Xi

with

Xi = (Wti −Wti−1
)2 − (ti − ti−1)

We have E(XiXj) = 0 for i 6= j since the increments are independent; also

E[(Wti −Wti−1
)2] = ti − ti−1. We also see using computations that E[(Wt −

Ws)
4] = 3(t− s)2

E(X2
i ) = E{(Wti −Wti−1

)4 − 2t(Wti −Wti−1
)2 − t2}

= 3
n∑
k=1

(tj − tj−1)2 + 2
n∑

1≤j<k≤n

(tj − tj−1)(tk − tk−1)− t2

= 2
n∑
k=1

(tk − tk−1)2

≤ 2t | ∆n[0, t] |→n→+∞ 0.

7. For almost every ω ∈ Ω, the sample path W (ω) is monotone in no interval

Proof Our idea is to show that the measure of the set

S = {ω ∈ Ω;W (ω) is non decreasing on [0, 1]}
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is 0 and the set belongs to F . We can write S =
⋂∞
n=1 Sn where

Sn =
n−1⋂
i=0

{ω ∈ Ω;W(i+1)/n(ω)−Wi/n(ω)} ∈ F .

has probability P(Sn) =
∏n−1

i=0 P[W(i+1)/n(ω)−Wi/n(ω) ≥ 0] = 2(−n). Therefore,

P(S) ≤ limn→∞ P(Sn) = 0

8. For almost every ω ∈ Ω, the Brownian sample path W (ω) is nowhere differen-

tiable.

Proof To prove this we show the set

{ω ∈ Ω; for each t ∈ [0,∞), either D+Wt(ω) =∞ or D+Wt(ω) = −∞}

has a subset of measure 1.
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Chapter 2

Stochastic Integration

In this chapter we will discuss about the integrals with respect to martingales fol-

lowed by integration with respect to local martingale. After this we will also see the

celebrated Ito’s formula which uses the previous discussed notions. We will end this

chapter by looking at the Girsanov’s theorem. Majority of the text in this chapter

can be referred from [2].

2.1 Construction of Stochastic Integration

In calculus courses we have seen Riemann integration as area under the curve. We

will now see Stochastic Integration where we integrate a progressively measurable

adapted process with respect to a square integrable continuous martingale. We will

deal with the class of square integrable continuous martingales and integrate appro-

priate X with respect to the square integrable continuous martingale.

[2] For any X ∈M2 and 0 ≤ t <∞ we define

‖ X ‖=
∞∑
n=1

‖ X ‖n ∧1

2n

where (A)

‖ X ‖t=:
√
E(X2

t ).
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With the just defined metric M2 is complete and Mc
2 is a closed subspace of M2.

We define

[X]2T =: E

∫ T

0

X2
t d〈M〉t.

Definition 2.1. Let L(M) denote the set of equivalence class of all measurable {Ft}

adapted process X, for which [X]T < ∞ for all T > 0. We define a metric on L by

[X-Y], where

[X] =
∞∑
n=1

[X]n ∧ 1

2n
.

Consider an equivalence class L∗(M) of progressively measurable processes having

property that [X]T <∞ for all T > 0 and a metric in a similar way. When 〈M〉t(ω)

is absolutely continuous in t then the stochastic integral can be constructed for all X

in L(M), if not then for all X in L∗(M).

We define a measure on ([0,∞)× Ω,B([0,∞)⊗F) by

µM(A) = E

∫ ∞
0

1A(t, ω)d〈M〉t(ω).

Our space on which we are about to work is a subspace of the Hilbert space

H = L2([0,∞) × Ω,B([0,∞) ⊗ F , µ); the space of square integrable functions. This

fact can be seen that if {X(n)}∞n=1 is a convergent sequence in L∗(M) and it converges

to X in H then as it is measurable and adapted it has a progressively measurable

modification Y. X and Y are equivalent with respect to the measure µM .

We will start this section by first defining the stochastic integral for simple process..

Definition 2.2. A process X is called a simple process if there exist a sequence of

random variables {ξn}∞n=0 with supn≥0 |ξn(ω)| ≤ L < ∞ as well as strictly increasing

sequence of real numbers {tn}∞n=0 with t0 = 0 and limn→∞ tn =∞, ξn is Ftn measurable

and

Xt(ω) = ξ0(ω)10(t) +
∞∑
t=0

ξt(ω)1(ti,ti+1](t) 0 ≤ t <∞.

16



The class of all simple processes is denoted by L0 and for X in L0 we define the

martingale transform as

It(X) =:
n−1∑
i=1

ξi(Mti+1
−Mti) + ξn(Mt −Mtn) (2.1)

=
∞∑
i=1

ξi(Mt∧ti+1
−Mt∧ti) 0 ≤ t <∞. (2.2)

After observing the integral for simple process we would like to extend this to the

class L∗(M). To get there we require a couple of results.

Lemma 2.1. For every X in L(M) there exist a sequence {X(n)}∞n=0 in L0such that

sup
T>0

lim
n→∞

E

∫ T

0

|X(n)
t −Xt|dt = 0

We divide the proof of this lemma into three cases namely when X is continuous,

X is progressively measurable and X is measurable and adapted.

Proposition 2.1. If 〈M〉t(ω) is absolutely continuous in t with respect to Lebesgue

measure then L0 is dense in L(M) with respect to the metric in definition 2.1.

The proof can be divided into the case of bounded process and unbounded process

and then using the above lemma and localization technique respectively.

We can further say that L0 is dense in L∗(M) with respect to the metric in

definition 2.1.

Lemma 2.2. Let {At,Ft, t ≥ 0} be an increasing process, M = {Mt,Ft, t ≥ 0} a

martingale and X = {Xt,Ft, t ≥ 0} a progressively increasing process, agreeing to

E

∫ T

0

X2
t dAt <∞.

Then there exist a sequence of simple process {X(n)}∞n=1 such that

sup
T>0

lim
m→∞

E

∫ T

0

|X(n)
t −Xt|dAt = 0.

We now have the required tools to begin with the construction of stochastic inte-

gral. The basic idea is to satisfy the below mentioned equations for the simple process

17



and then for X ∈ L∗(M) in limiting sense.

I0(X) = 0 a.s P (2.3)

I(αX + βY ) = αI(X) + βI(Y ) α, β ∈ R (2.4)

E[It(X)|Fs] = Is(X) (2.5)

E(It(X))2 = E

∫ t

0

X2
ud〈M〉u (2.6)

‖I(X)‖ = [X] (2.7)

E[(It(X)− Is(X))2|Fs] = E[

∫ t

s

X2
ud〈M〉u|Fs] (2.8)

We have defined through equations 2.1 the integral for simple process and using

that definition we prove the above mentioned properties.

As It(X) =
i=n−1∑
i=1

ξi(Mti+1
−Mti) + ξn(Mt −Mtn).

Hence for t = 0 we have I0(X) = 0. Therefore it satisfies equation 2.3. We now show

how the integral satisfy 2.4.

It(αX + βY ) =
i=n−1∑
i=1

(αξi + βρi)(Mti+1
−Mti) + (αξn + βρn)(Mt −Mtn)

=
i=n−1∑
i=1

(αξi)(Mti+1
−Mti) + (αξn)(Mt −Mtn) +

i=n−1∑
i=1

(βρi)(Mti+1
−Mti) + (βρn)(Mt −Mtn)

and as α, β ∈ R equation 2.4 holds true for simple stochastic integrals.

Taking conditional expectation in equation (2.1) with respect to Fs we have

∞∑
i=1

E[ξi(Mt∧ti+1
−Mt∧ti)|Fs] =

∞∑
i=1

ξi(Ms∧ti+1
−Ms∧ti) 0 ≤ s < t <∞.

Hence we have shown that simple process satisfy equation 2.5. We can observe this

by considering for cases i < s < t; i < s ≤ i+ 1 < t and s ≤ i < t. Hence we also see

that I(X) = {It(X),Ft, t ≥ 0} is a continuous martingale.

We proceed to prove the next property for simple integrals. Using the fact that for

p < q < r < s we have E[(Ms −Mr)(Mq −Mp)] = 0. For s < t and tk−1 < s < tk and
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tn < t < tn+1 we have

E[(It(X)− Is(X))2|Fs] = E[{ξk−1(Mtk −Ms) +
n−1∑
i=k

ξi(Mti+1
−Mti) + ξn(Mt −Mtn)}2|Fs]

= E[ξ2
k−1(Mtk −Ms)

2 + Σn−1
i=k ξ

2
i (Mti+1

−Mti)
2 + ξ2

n(Mt −Mtn)2|Fs].

Using the Doob - Meyer decomposition and the fact that E[M0] = 0 we write the

preceding equation as

= E[ξ2
k−1(〈M〉tk − 〈M〉s)2 +

n−1∑
i=k

ξ2
i (〈M〉ti+1

− 〈M〉ti)2 + ξ2
n(〈M〉t − 〈M〉tn)2|Fs]

= E[

∫ t

s

X2
ud〈M〉u|Fs]

which proves 2.8 and also implying that

〈I(X)〉t =

∫ t

0

X2
ud〈M〉u.

We set s = 0 to get E[(It(X))2] = E[
∫ t

0
X2
ud〈M〉u]. With this the we also get equation

2.6. From (A) we get equation 2.7 as well.

For X ∈ L∗(M) by lemma 2.2 there exist a sequence {X(n)}∞n=1 in L0 such that

[X(n) − X] −→ 0 as n → ∞ By 2.7 we say that ‖I(X(n)) − I(X(k))‖ = ‖I(X(n) −

X(k))‖ = [X(n) − X(k)]. Therefore as n, k → ∞ [X(n) − X(k)] → 0. This helps us

in concluding that {I(X(n))} forms a cauchy sequence in Mc
2. From the discussion

preceding definition 2.1 we know that Mc
2 is closed in M2 and therefore the limit

I(X) = {It(X); 0 ≤ t <∞} (say) exists and belongs to Mc
2.

We now satisfy the properties 2.3 to 2.8 for I(X) so that we can call it as a stochastic

integral for any X ∈ L∗(M). Equations 2.3 and 2.5 are valid as I(X) ∈Mc
2. As equa-

tion 2.4 holds true for X, Y ∈ L0; in the limiting sense it also holds for X, Y ∈ L∗.

Consider {I(X
(n)
s )}, {I(X

(n)
t )} converging to Is(X) and It(X) respectively in square
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norm. Then for A ∈ Fs

E[1A(It(X)− Is(X))2] = lim
n→∞

E[1A(It(X
(n))− Is(X(n)))2]

= lim
n→∞

E[1A

∫ t

s

((X(n)
u ))2d〈M〉u]

= E[1A

∫ t

s

((X2
ud〈M〉u].

Showing that I(X) also satisfies equation 2.8. By taking s=0 it also satisfies equation

2.6 and consequently equation 2.7.

Since X and M are progressively measurable
∫ t
s
((X

(n)
u ))2d〈M〉u is also Ft measurable

for fixed s < t and therefore it also implies

〈I(X)〉 =

∫ t

0

X2
ud〈M〉u

Hence we define

Definition 2.3. For X ∈ L∗, the stochastic integral of X with respect to the

martingale M in Mc
2 is the unique square integrable martingale

I(X) = {It(X),Ft; 0 ≤ t < ∞} (limit of cauchy sequence as discussed above) which

satisfies ‖I(X(n))−I(X)‖ = 0 for every sequence {X(n)}∞n=1 ⊆ L0 with limn→∞[X(n)−

X] = 0. We write

It(X) =

∫ t

0

XsdMs; 0 ≤ t <∞ (2.9)

2.2 Integration with respect to Local Martingale

Let M ∈Mc,loc. We then define a class of processes.

Definition 2.4. Let P be the equivalence class of measurable, adapted process X =

{Xt,Ft; 0 ≤ t <∞} satisfying

P([

∫ T

0

X2
t d〈M〉t <∞]) = 1 ∀ T ∈ [0,∞)

Let P∗ be the class of progressively measurable process agreeing to above condition.
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[2] Since M ∈Mc,loc hence there exists a sequence of stopping times {Tn}∞n=1 such

that limn→∞ Tn =∞ and Mt∧Tn is a martingale for every n. For X ∈ P we construct

a sequence

Rn = n ∧ inf{0 ≤ t <∞;

∫ t

0

X2
t d〈M〉t ≥ n}.

Note that limn→∞Rn =∞. Set

Sn = Rn ∧ Tn

M
(n)
t (ω) = Mt∧Sn(ω); X

(n)
t (ω) = Xt(ω)1{Tn(ω)≥n} 0 ≤ t <∞

By constructing such a sequence we can say that M (n) ∈ Mc
2 and X(n) ∈ L∗(M (n))

hence we define for X ∈ P∗

It(X) = I
(M(n))
t (X(n)). (2.10)

This process is a local martingale. By the discussion above we define

Definition 2.5. For M ∈Mc,loc and X ∈ P∗ the stochastic integral of X with respect

to M is It(X) = {It(X),Ft; 0 ≤ t <∞} ∈Mc,loc defined by 2.10.

We state couple of results which will be required for the next section

Proposition 2.2. Let M ∈ Mc,loc and {X(n)}∞n=1 ∈ P∗(M) and X ∈ P∗(M) and

let for some stopping time T of {Ft} we have limn→∞
∫ T

0
|X(n)

s − Xs|d〈M〉s = 0 in

probability. Then

lim
n→∞

sup
0≤t≤T

|
∫ t

0

X(n)
s dMs −XsdMs|

P−→ 0. (2.11)

Proposition 2.3. Let M ∈ Mc,loc and X ∈ P∗(M). Then there exist a sequence of

simple process {X(n)}∞n=1 such that, for every T > 0,

lim
n→∞

∫ T

0

|X(n)
s −Xs|d〈M〉s = 0

also

lim
n→∞

sup
0≤t<T

|Is(X(n))− I(X)| = 0

holds a.s P
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2.3 Ito’s Formula

This Formula provides us with simple rules through which we can compute stochastic

integral.

Definition 2.6. A continuous semi martingale X = {Xt,Ft, 0 ≤ t < ∞} is an

adapted process which has a decomposition as

Xt = X0 +Mt +Bt; 0 ≤ t <∞ (2.12)

where M = {Mt,Ft, 0 ≤ t < ∞} ∈ Mc,loc and Bt = {Bt,Ft, 0 ≤ t < ∞} is a process

of bounded variation i.e for every t, Bt = A
′
t−A

′′
t where A

′
t, A

′′
t are increasing process.

Theorem 11 (Ito’s Rule). Let f be a C2(R) function. Let X be a continuous semi-

martingale with above decomposition. Then

f(Xt) = f(X0) +

∫ t

0

f
′
(Xs)dMs +

∫ t

0

f
′
(Xs)dBs +

1

2

∫ t

0

f
′′
(Xs)d〈M〉s (2.13)

Proof We divide the proof into three steps

Step 1: We define the stopping time of 2.13 for the purpose of localisation

Tn =


0 if |X0| ≥ n

inf{t ≥ 0; |Mt| ≥ n or Bt ≥ n or 〈M〉t ≥ n} if |X0| < n

∞ if |X0| < n and inf{t ≥ 0; |Mt| ≥ n or Bt ≥ n or 〈M〉t ≥ n} = ∅
(2.14)

Thus we have a sequence of stopping time {Tn}∞n=1 with limn→∞ Tn = ∞ for 2.13.

If we prove the theorem for Xt∧Tn(ω),Mt∧Tn(ω), 〈M〉t(ω) then we will be done. We

hence make a legitimate assumption that all our process are uniformly bounded by

some constant K ∈ [0,∞). Therefore |Xt(ω)| ≤ 3K. We also make an assumption

that f has a compact support on [−3K, 3K] making f ′ and f ′′ bounded.

Step 2 : Using the Taylor expansion. We fix a t > 0 and consider the parti-

tion {t0, t1, · · · , tm} with ∆ = {t0 = 0 < t1 < · · · < tm = t}. For the partition we
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get

f(Xt)− f(X0) =
m∑
k=1

{f(Xtk)− f(Xtk−1
)}

=
m∑
k=1

f ′(Xtk){Xtk −Xtk−1
}+

1

2

m∑
k=1

f ′′(ηk){Xtk −Xtk−1
}2

Here ηk = Xtk−1
(ω) + θk(ω){Xtk −Xtk−1

}. where 0 ≤ θk(ω) ≤ 1whereω ∈ Ω.

We write the above equation as

f(Xt)− f(X0) = J1(∆) + J2(∆) + J3(∆) (2.15)

where

J1(∆) =
m∑
k=1

f ′(Xtk−1
){Btk −Btk−1

}.

J2(∆) =
m∑
k=1

f ′(Xtk−1
){Mtk −Mtk−1

}.

J3(∆) =
m∑
k=1

f ′′(ηk){Xtk −Xtk−1
}2.

Step 3 : Convergence of J’s

We start with J1(∆), which can be also realized as a Lebesgue-Stieltjes integral hence

this converges to
∫ t

0
f ′(Xs)dBs almost surely as the size of partition tends to 0 ( or

size of mesh goes to 0).

We next take J2(∆) and observe that f ′(Xtk−1
) is an adapted, bounded and continu-

ous. We consider a simple process

Y (∆)
s = f ′(X0(ω)1{0})(s) +

m∑
k=1

f ′(Xtk−1
(ω))1(tk−1,tk](s).

Hence due to bounded convergence theorem we have

EI2
t (Y ∆ − Y ) = E

∫ t

0

|Y ∆
s − Ys|2d〈M〉s −→ 0

as the size of partition tends to 0. Therefore as I2
t (Y ∆ − Y ) −→ 0 in quadratic mean
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we get J2(∆) −→
∫ t

0
YsdMs

Finally we consider J3(∆) and write it as

J3(∆) = Ja(∆) + Jb(∆) + Jc(∆)

where

Ja(∆) =
m∑
k=1

f ′′(ηk){Btk −Btk−1
}2

Jb(∆) =
m∑
k=1

f ′′(ηk){Btk −Btk−1
}{Mtk −Mtk−1

}

Jc(∆) =
m∑
k=1

f ′′(ηk){Mtk −Mtk−1
}2

As the total variation of B is bounded by K we have for

Ja(∆) + Jb(∆) ≤ 2K‖f ′′‖∞( max
1≤k≤m

|Btk −Btk−1
|+ max

1≤k≤m
|Mtk −Mtk−1

|)

Due to continuity of B and the bounded convergence theorem this converges to 0.

We now consider

J∗c = Σm
k=1f

′′(Xtk−1
){Mtk −Mtk−1

}2

We observe using Theorem 6 in previous chapter that

|Jc − J∗c | ≤ V 2
t (∆) · max

1≤k≤m
|f ′′(ηk)− f ′′(Xtk−1

)|

Hence by the proposition 1.1 in previous chapter we have

E|Jc(ω)− J∗c (ω)| ≤ E(V 2
t (∆) · max

1≤k≤m
|f ′′(ηk)− f ′′(Xtk−1

)|)

≤
√

6K4
√
E( max

1≤k≤m
|f ′′(ηk)− f ′′(Xtk−1

)|)
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This converges to zero as the size of mesh decreases to 0. This is due to the fact that

X is continuous. From here we focus on the term

Jd(ω) =
m∑
k=1

f ′′(Xtk−1
){(〈M〉tk − 〈M〉tk−1

)}.

E|J∗c (ω)− Jd(ω)|2 = E|
m∑
k=1

f ′′(Xtk−1
){(Mtk −Mtk−1

)2 − (〈M〉tk − 〈M〉tk−1
)}|2

= E|
m∑
k=1

[f ′′(Xtk−1
)]2{(Mtk −Mtk−1

)2 − (〈M〉tk − 〈M〉tk−1
)}2|

≤ 2‖f ′′‖2
∞ · E[

m∑
k=1

(Mtk −Mtk−1
)4 +

m∑
k=1

(〈M〉tk − 〈M〉tk−1
)2]

≤ 2‖f ′′‖2
∞ · E[(V

(4)
t (∆)) + 〈M〉t max

1≤k≤m
(〈M〉tk − 〈M〉tk−1

)]

by lemma 1.2 E[(V
(4)
t (∆)] −→ 0 as size of mesh goes to 0. Hence we have shown the

convergence in L2 which implies convergence in L1 which lets us conclude that

lim
‖∆‖→0

J3(∆) = lim
‖∆‖→0

Jc(∆) = lim
‖∆‖→0

J∗c (∆) = lim
‖∆‖→0

Jd(∆) =

∫ t

0

f ′′(Xs)d〈M〉s

Further if we have a sequence of partitions {∆(n)}∞n=1 of [0, t] such that ‖∆(n)‖ −→ 0

then for some subsequence {∆(nk)}∞k=1 we have

lim
k→∞

J1(∆(nk)) =

∫ t

0

f ′(Xs)dBs a.s

lim
k→∞

J2(∆(nk)) =

∫ t

0

f ′(Xs)dMs a.s

lim
k→∞

J3(∆(nk)) =

∫ t

0

f ′′(Xs)d〈M〉s a.s

Hence in the limiting sense we see that (2.16) holds. �

This result can be generalized for a d-dimensional local martingale also.
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Remark 2.1. Let f(t, x) : [0,∞)×R −→ R be of class C1,2(R) function. Let X be a

continuous semi-martingale with similar decomposition. Then

f(t,Xt) = f(0, X0)+

∫ t

0

δ

δt
f(s,Xs)ds+

∫ t

0

δ

δx
f(t,Xs)dMs+

∫ t

0

δ

δx
f(t,Xs)dBs+

1

2

∫ t

0

δ2

δt2
f(t,Xs)d〈M〉s.

(2.16)

The proof of this much like proof of Ito’s formula (above). In step 2 we apply

Taylor’s expansion to

f(tk, Xtk)− f(tk−1Xtk−1
) = [f(tk, Xtk)− f(tk−1, Xtk)] + [f(tk−1, Xtk)− f(tk−1, Xtk−1

)].

Example 1 In the Ito’s Formula if f(x) = x2 and Bt = 0 ∀t and M = W =

Brownian Motion then we have

W 2
t = 2

∫ t

0

WsdWs + t.

Example 2 Let M = W a standard brownian motion and X ∈ P . We define

ζst (X) :=

∫ t

s

XudWu −
1

2

∫ t

s

X2
udu

The process {exp(ζt(X)),Ft; 0 ≤ t <∞} is a super martingale.

We see here that exp(
∫ t

0
XudWu) is a martingale since the process {

∫ t
0
XudWu,Ft; t ≥

0} is a martingale and exp(x) is a continuous function. Also

1

2

∫ t

0

X2
udu >

1

2

∫ s

0

X2
udu

for 0 ≤ s < t <∞.

We further see that by Ito’s rule that process {exp(ζt(X)),Ft; 0 ≤ t < ∞} satisfies

the stochastic integral equation

Zt = 1 +

∫ t

0

ZsXsdWs; 0 ≤ t <∞

where Zt = exp(ζt(X)). {ζt(X),Ft; 0 ≤ t < ∞} is a semimartingale with Mt =∫ t
s
XudWu as a local martingale part and Bt = −1

2

∫ t
s
X2
udu as bounded variation
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part. To apply the Ito’s formula we take f(x) = exp(x) hence we have

Zt = f(ζt) = f(ζ0) +

∫ t

0

f ′(ζs)dMs +

∫ t

0

f ′(ζs)dBs +
1

2

∫ t

0

f ′′(ζs)d〈M〉s

= 1 +

∫ t

0

ZsXsdWs +

∫ t

0

Zs(−
1

2
X2
s )ds+

1

2

∫ t

0

ZsX
2
sds

= 1 +

∫ t

0

ZsXsdWs

Note: We have a martingale characterisation theorem which states that if X is a

continuous local martingale with {X0 = 0}, then, the following are equivalent.

• X is standard Brownian motion on the underlying filtered probability space.

• X has quadratic variation {[X]t = t}.

2.4 Girsanov’s theorem

In this section we show that if we have a Brownian motion on the probability space

(Ω,F ,P) then we construct a new probability measure under which a translated pro-

cess becomes a brownian motion.

We consider a d-dimensional brownian motion W = {Wt,F , 0 ≤ t <∞} on (Ω,F ,P).

We take a adapted d-dimensional stochastic processX = {Xt = {X1
t , X

2
t , ...X

d
t },Ft, 0 ≤

t <∞ process satisfying

P[

∫ T

0

(X
(i)
t )2 <∞] = 1. (2.17)

Consider

Zt(X) := exp(
d∑
i=1

∫ t

s

XudWu −
1

2

∫ t

s

X2
udu) (2.18)

it is a local martingale by Example 2 of previous section.

As seen in example 2.3 we have this in the form

Zt = 1 +

∫ t

0

d∑
i=1

ZsXsdWs; 0 ≤ t <∞
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Using the Radon -Nikodym theorem we have an absolutely continuous measure given

by

P̃ =

∫
A

ZT (X) A ∈ FT

We use a couple of results before proving the main result of this section. In these we

assume that Z(X) is a martingale.

Lemma 2.3. For a Ft measurable random variable Y satisfying ET |Y | < ∞, where

0 < s ≤ t ≤ T is a non-negative but fixed constant, then we have the Bayes Rule

ẼT [Y |Fs] =
1

Zs(X)
E[Y Zt(X)|Fs] almost surely P, P̃. (2.19)

Proof

ẼT{1A
1

Zs(X)
E[Y Zt(X)|Fs]}

= E{1AE[Y Zt(X)|Fs]} = E[1AY Zt(X)] = ẼT [1AY ].

Our main result will is a corollary of the next proposition.

Proposition 2.4. With a fixed non-negative T if M ∈Mc,loc
T then

M̃ := Mt −
d∑
i=1

∫ t

0

X(i)
s d〈M,W (i)〉s Fs; 0 ≤ t ≤ T (2.20)

is in M̃c,loc
T . If N ∈Mc,loc

T and

Ñ := Mt −
d∑
i=1

∫ t

0

X(i)
s d〈N,W (i)〉s Fs; 0 ≤ t ≤ T (2.21)

then

〈M̃, Ñ〉t = 〈M,N〉t; 0 ≤ t ≤ T a.s P and P̃T .

Here we say that Mc,loc
T is the class of continuous local martingale on (Ω,F ,P)

with P[M0 = 0] = 1 and similarly the class M̃c,loc
T on (Ω,F , P̃). In this proof we use

a few things.
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Proposition 2.5 (Kunita Watanabe Inequality). If M,N ∈ Mc
2 and X ∈ L∗(M)

and Y ∈ L∗(N) then

∫ t

0

|XsYs|d〈M,N〉 ≤ (

∫ t

0

X2
sd〈M〉s)1/2(

∫ t

0

Y 2
s d〈N〉s)1/2 (2.22)

Lemma 2.4 (Integration by Parts). For X, Y semi martingales we have

∫ t

0

XsdYs = XtYt −X0Y0 −
∫ t

0

YsdXs − 〈X, Y 〉 (2.23)

Proof

(Xt − Yt)2 − (X0 − Y0)2 = 2

∫ t

0

(Xs − Ys)d(Xs − Ys)− 〈X − Y 〉t

(Xt + Yt)
2 − (X0 + Y0)2 = 2

∫ t

0

(Xs + Ys)d(Xs + Ys)− 〈X + Y 〉t

We get on subtraction

4XtYt − 4X0Y0 = 4

∫ t

0

XsdYs + 4

∫ t

0

YsdXs + (〈X + Y 〉t − 〈X − Y 〉t).

By rearranging the terms we get the desired result.

Proof [2.4] As W is of bounded quadratic variation and we require this result for

W hence we assume that M,N are of bounded variation. We also assume that Zt(X)

and
∑d

i=1

∫ t
0
(X

(i)
s )2ds are bounded in ω and t. Using Kunita Watanabe Inequality we

can say that M̃ is also bounded. Using the 2.23 Integration by parts formula we say

that

Zt(X)M̃t =

∫ t

0

Zu(X)dMu +
d∑
i=1

∫ t

0

M̃uX
(i)
u Zu(X)dW i

u.

This is a martingale under P. By the lemma 2.3 we have

ẼT [M̃t|Fs] =
1

Zs(X)
E[Zt(X)M̃t|Fs] = M̃s, a.s P and .

This shows local (because of T) martingale property and because of continuity it

belongs M̃c,loc.
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M̃tÑt − 〈M,N〉 =

∫ t

0

M̃udNu +

∫ t

0

ÑudMu

+
d∑
i=1

[

∫ t

0

M̃uX
(i)
s d〈N,W (i)〉u +

∫ t

0

ÑuX
(i)
s d〈M,W (i)〉u]

Hence also

Zt(X)[M̃tÑt − 〈M,N〉] =

∫ t

0

Zu(X)M̃udNu +

∫ t

0

Zu(X)ÑudMu

+
d∑
i=1

[

∫ t

0

Zu(X)M̃uX
(i)
s d〈N,W (i)〉u +

∫ t

0

Zu(X)ÑuX
(i)
s d〈M,W (i)〉u]

The above process turns out to be a martingale and hence lemma 2.3 can be applied

to yield

ẼT [M̃tÑt − 〈M,N〉t|Fs] = M̃sÑs − 〈M,N〉s

Theorem 12 (Girsanov’s Theorem). Let Z(X) as in 2.18 be a martingale and W

a Brownian motion as discussed in the beginning of the section. We now let W̃ =

{W̃t = (W̃
(1)
t , . , , W̃

(d)
t )} where

W̃
(i)
t = W

(i)
t −

∫ t

0

X(i)
s ds; 1 ≤ i ≤ d t ∈ [0,∞). (2.24)

This new process for each fixed 0 ≤ T <∞ is a d-dimensional brownian motion with

respect to the changed probability measure (due to Radon Nikodym theorem).

Proof This follows by putting M = W in 2.4 and by martingale characterization

theorem.

2.5 Some Interesting Results

The condition under which the process Zt(X) as in 2.18 is a martingale. The condition

is known as Novikov Condition. We had seen in the examples discussed earlier that

Zt(X) as described here is a super martingale.
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Theorem 13. If W is a d dimensional Brownian Motion and X is a d dimensional

measurable adapted process satisfying 2.17. If

E[exp(1/2

∫ T

0

‖Xs‖2ds)] <∞ 0 ≤ T <∞

then Z(X) from 2.18 is a martingale.

We also have representations of martingale in terms of Brownian motion.

Theorem 14. If M is a d dimensional local martingale on (Ω,F ,P) and the cross

variation 〈M (i),M (j)〉t(ω) is an absolutely continuous function in t for almost every

ω. Then there exist an extension (Ω,F ′,P′) of (Ω,F ,P) on which is defined a d

dimensional Brownian Motion W = {(W i
t )
d
i=1,F ′; 0 ≤ t < ∞} and a matrix X =

{(X i,j
t )di,j=1,F ′; 0 ≤ t < ∞} of adapted processes with P′[

∫ t
0
(X i,j

s )2ds < ∞] = 1 for

1 ≤ i, j ≤ d with t ∈ [0,∞) such that a.s P′ we have the representations

M i
t =

d∑
j=1

∫ t

0

X i,j
s dW

j
s 1 ≤ i ≤ d

〈M (i),M (j)〉t =
d∑
j=1

∫ t

0

X i,j
s X

k,j
s dW j

s 1 ≤ i, j ≤ d.

31



32



Chapter 3

Stochastic Differential Equation

3.1 Introduction

Stochastic Differential Equations (SDEs) are used to model diverse phenomena such

as fluctuating stock prices or physical systems subject to thermal fluctuations. The

stochastic differential equation is of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt. (3.1)

This may be interpreted as the stochastic process Xt changes in time δt its value

by an amount that is normally distributed with expectation b(t,Xt)δt and variance

σ(t,Xt)
2δt. The solutions to 3.1 are also known as diffusion process and are written

as

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs; 0 ≤ t <∞.

The Stochastic differential equations has many applications in mathematical eco-

nomics like in option pricing theory where SDE’s are used to model fluctuating stock

prices.

Consider

dXt = X2
t dWt +X3

t dt, X0 = 1

which can also be written as

Xt = 1 +

∫ t

0

X2
sdWs +

∫ t

0

X3
sds.
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We now apply Ito’s formula

d(1/Xt) =
1

2
(2/X3

t )(dXt)
2 − (1/X2

t )dXt

=
1

2
(2/X3

t )(dXt)
2 − (1/X2

t )(X2
t dWt +X3

t dt)

= Xtdt− (1/X2
t )(X2

t dWt +X3
t dt)

= −dWt

Now with a constant C=1 and X0 = 1 we can say that Xt =
1

1−Wt

.

In the subsequent sections we discuss the uniqueness and existence of solutions. Ma-

jority of the text in this chapter can be referred from [2].

3.2 Strong Solutions

Equation (3.1) can also be written as

dX
(i)
t = bi(t,Xt)dt+

r∑
j=1

σij(t,Xt)dW
(j)
t ; 1 ≤ i ≤ d. (3.2)

We treat here bi(t, x), σij(t, x), 1 ≤ i ≤ d as borel measurable functions. b(t, x) =

{bi(t, x)}1≤i≤d is the drift vector and σ(t, x) = {σij(t, x)}1≤i≤d 1≤j≤r is the dispersion

matrix. Here X is the solution of the equation and W is the r-dimensional Brownian

Motion.

To define the notion of strong solution we require a suitable filtration . We consider

a probability triple (Ω,F ,P) and an r-dimensional Brownian Motion

W = {Wt,FWt , 0 ≤ t < ∞} defined on it. We also consider a random vector ξ with

values in Rd independent of FW∞ . This vector helps us in defining the notion of strong

solution.

We start with construction of the filtration. We consider

Gt := σ(ξ,Ws, 0 ≤ s ≤ t)

We augment it with null sets

N := {N ⊆ Ω;∃G ∈ G∞ with N ⊆ G and P(G) = 0}
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to get

Ft = σ(Gt ∪N ) (3.3)

Note: The Brownian motion W will remain a Brownian motion with respect to the

new filtration.

Definition 3.1. A strong solution of the stochastic differential equation 3.1, on

(Ω,F ,P) and with respect to the fixed Brownian motion W and initial condition ξ, is

a process X = {Xt; 0 ≤ t <∞} with continuous sample paths and with the following

properties :

1. X is adapted to the filtration {Ft} of 3.3

2. P[X0 = ξ] = 1

3. P[
∫ t

0
{|bi(s,Xs)| + σ2

ij(s,Xs)} < ∞] holds for every 1 ≤ i ≤ d, 1 ≤ j ≤ r and

0 ≤ t <∞

4. The integral version of 3.1

X i
t = X i

0 +

∫ t

0

bi(s,Xs)ds+ Σr
j=1

∫ t

0

σij(s,Xs)dW
(j)
s

holds almost surely.

Lets us define the notion of uniqueness as follows

Definition 3.2. If X and X̃ are two strong solutions of 3.1 with respect to the r-

dimensional Brownian Motion W, initial condition ξ, drift vector bi(s, x) dispersion

matrix and σij(s, x) then P[X = X̃; 0 ≤ t <∞] = 1. In such a case strong uniqueness

holds for the SDE.

We now need conditions for the uniqueness and existence of solutions. We first

see the uniqueness of the solution. We use Gronwall inequality in the proofs of these.

Proposition 3.1 (Gronwall Inequality). Let continuous g(t) satisfy

0 ≤ g(t) ≤ f(t) + a

∫ t

0

g(s)ds; 0 ≤ t ≤ T (3.4)
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with a ≥ 0 and f : [0, T ]→ R integrable. Then we have

g(t) ≤ f(t) + a

∫ t

0

f(t) exp(a(t− s))ds

Proof We have

d

dt
(exp(−at)

∫ t

0

g(s)ds) = (g(t)− a
∫ t

0

g(s)ds) exp(−at) ≤ f(t) exp(−at).

This will give us the required result

Theorem 15. Let coefficients bi(s,Xs) and σij(s,Xs) be locally Lipschitz continuous

that is for every n ≥ 1 there exist a constant Cn such that for every t ≥ 0, ‖x‖ ≤ n

and ‖y‖ ≤ n:

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ Cn‖x− y‖ (3.5)

Then strong uniqueness holds for 3.1.

Proof Let X and X̃ be the solution of 3.2 as in definition 3.1. Define the stopping

time be τn = inf{t ≥ 0; ‖X‖ ≥ n} n ≥ 1 and

τ̃n = inf{t ≥ 0; ‖X̃‖ ≥ n;n ≥ 1}. We further define Sn = τn ∧ τ̃n.

We have limn→∞ Sn =∞.

Xt∧Sn − X̃t∧Sn =

∫ t∧Sn

0

{b(u,Xu)− b(u, ˜(Xu))}+

∫ t∧Sn

0

{σ(u,Xu)− σ(u, ˜(Xu)).

Using the vector inequality, Holder inequality and 3.5 we have for 0 ≤ t ≤ T

E‖Xt∧Sn − X̃t∧Sn‖2 ≤ E[

∫ t∧Sn

0

‖{b(u,Xu)− b(u, ˜(Xu))du}‖]2

+4E
d∑
i=1

[
r∑
i=1

∫ t∧Sn

0

‖{σij(u,Xu)− σij(u, ˜(Xu))dW
(j)
u }‖]2

= E

∫ t∧Sn

0

‖{b(u,Xu)− b(u, ˜(Xu))}‖2du

+4E

∫ t∧Sn

0

‖{σ(u,Xu)− σ(u, ˜(Xu))}‖2du

≤ 4(T + 1)C2
n

∫ t

0

E‖Xt∧Sn − X̃t∧Sn‖2du.
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Apply Gronwall inequality to get that X and X̃ are modifications of one another.

For existence of a solution we impose stronger conditions.

Theorem 16. Let coefficients bi(s,Xs) and σij(s,Xs) satisfy global Lipschitz and

linear growth conditions

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ Cn‖x− y‖ (3.6)

‖b(t, x)‖2 + ‖σ(t, x)‖2 ≤ C2(1 + ‖x‖2) (3.7)

every 0 ≤ t < ∞, x ∈ Rd, y ∈ Rd and C ∈ [0,∞). Now on some probability

triple (Ω,F ,P) let Ft be as in 3.3, let ξ be an Rd valued random variable which is

independent of the r-dimensional Brownian motion W = {Wt,FWt , 0 ≤ t < ∞}, and

with finite second moment

E‖ξ‖2 <∞. (3.8)

Then there exist a continuous adapted process X = {Xt,Ft, 0 ≤ t < ∞} which is a

strong solution of the 3.1 relative to initial condition ξ and Brownian motion W. This

process is also a square integrable process.

We use the idea of iterations and make it converge to a solution of 3.3. The

iterations look like

X
(k+1)
t := ξ +

∫ t

0

b(s,X(k)
s )ds+

∫ t

0

σ(s,X(k)
s )dWs; 0 ≤ t <∞. (3.9)

Proposition 3.2. Let M be a d-dimensional vector with M (i) ∈Mc
∈. Let

‖M‖∗t = max
s≤t
‖Ms‖ ; At =

d∑
i=1

〈M (i)〉t (3.10)

Then for every stopping time T we have the inequality

λmE(AmT ) ≤ E(‖M‖∗T )2m ≤ ΛmE(AmT ). (3.11)

Proposition 3.3. If M
(i)
t =

∑r
i=1

∫ t
0
X i,j
s dW

(j)
s where W is a r dimensional brownian

motion and

X = {Xt = X i,j
t ; 1 ≤ i ≤ d; 1 ≤ j ≤ r; t ≥ 0}.
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Here Xt is Ft measurable and

‖Xt‖2 =
d∑
i=1

r∑
j=1

(
X i,j
t

)2
.

Then with

AT =

∫ T

0

‖Xt‖2

the above proposition holds

Proof

Bt =

∫ t

0

{bi(s,Xk
s )− bi(s,Xk−1

s )}ds Mt =

∫ t

0

{σi(s,Xk
s )− σi(s,Xk−1

s )}dWs

Then from the just stated results (above) and Lipschitz condition we have

E[max
s≤t
‖Ms‖2] ≤ ΛE

∫ t

0

‖σ(s,Xk
s )− σ(s,Xk−1

s )‖ds ≤ ΛC2E

∫ t

0

‖Xk
s −Xk−1

s ‖2ds.

We also have

E‖Bt‖2 ≤ C2tE

∫ t

0

‖Xk
s −Xk−1

s ‖2ds.

Hence

E[max
s≤t
‖Xk+1

s −Xk
s ‖2] ≤ 4C2(Λ + T )E

∫ t

0

‖Xk
s −Xk−1

s ‖2ds.

Hence using successive iterations we get

E[max
s≤t
‖Xk+1

s −Xk
s ‖2] ≤ max

s≤T
E‖X1

t − ξ‖2 (4C2(Λ + T )t)k

k!
.

By Chebyshev’s inequality we now get

P
[

max
s≤T
‖Xk+1

s −Xk
s ‖2 ≥ 1

2k

]
≤ 4 max

s≤t
‖X1

t − ξ‖2 · (4 · 4C2(Λ + T )t)k

k!
.

From Borel Cantelli lemma get that ∃ Ω∗ such that P(Ω∗) = 1 and an integer valued

random N(ω) variable such that ∀ ω ∈ Ω∗
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max
s≤T
‖Xk+1

s −Xk
s ‖ ≤ 1/2k+1 ∀ k ≥ N(ω)

max
s≤T
‖Xk+m

s −Xk
s ‖ ≤ 1/2k+1 ∀ k ≥ N(ω) ∀ m ≥ 1

Hence by this we can say that the sequence of sample paths are convergent in sup

norm from where the existance of continuous {Xt; t ≤ T} is established. Since T is

arbitrary and the process is continuous the sample paths uniformly converge on the

compact sets. Finally we show that

Xt = limXk
t t ≥ 0

satisfies the 4th condition of the definition. Since the process is square integrable and

satisfy linear growth condition we have property 3 being satisfied of the definition.

The X which we get also clearly satisfies condition 1 and 2 of the definition.

Proposition 3.4. Let d = r = 1. Let us suppose that the coefficients of the one

dimensional equation satisfy

|b(t, x)− b(t, y)| ≤ C|x− y| (3.12)

|σ(t, x)− σ(t, y)| ≤ h(|x− y|) (3.13)

∀ t ∈ [0,∞) and x, y ∈ R, where C is a positive constant and ’h’ is a strictly increasing

function with h(0) =0 and

∫
(0,ε)

h−2(u)du =∞; ∀ε > 0.

Then we have strong uniqueness for 3.1.

Proof There exists a decreasing sequence {an}∞n=0 in [0,1) such that limn→∞ an = 0

and
∫ an−1

an
h−2(u)du = n ∀ n ≥ 1. For each n there exist a continuous function ρn

on R with support in (an−1, an) such that 0 ≤ ρn(x) ≤ (
2

nh2(x)
); ∀x ∈ (0,∞) and
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∫ an−1

an
ρn(x) = 1. Then we have

ψn(x) :=

∫ |x|
0

∫ y

0

ρn(u)dudy; x ∈ R. (3.14)

This is a C2(R) function such that |ψ′n(x)| ≤ 1 and the sequence {ψn}∞n=1 is non

decreasing. Let us take two solutions of 3.1 X(1), X(2). By definition we take

E

∫ t

0

|σ(s,Xs)|2ds <∞; 0 ≤ t <∞.

Ξt = X
(1)
t −X

(2)
t =

∫ t

0

{b(s,X(1)
s )− b(s,X(2)

s )}ds+

∫ t

0

{σ(s,X(1)
s )− σ(s,X(2)

s )}ds

We further employ Ito’s Formula to get

ψn(Ξt) =

∫ t

0

ψ′n(Ξs)[b(s,X
(1)
s )− b(s,X(2)

s )]ds+
1

2

∫ t

0

ψ′′n(Ξs)[σ(s,X(1)
s )− σ(s,X(2)

s )]2ds

+

∫ t

0

ψ′n(Ξs)[σ(s,X(1)
s )− σ(s,X(2)

s )]2dWs.

We now have E[
∫ t

0
ψ′n(Ξs)[σ(s,X

(1)
s )−σ(s,X

(2)
s )]2dWs] = 0 as W is a brownian motion

and E[
∫ t

0
|σ(s,Xs)|2ds] <∞; 0 ≤ t <∞. Further we have for the second term

E[

∫ t

0

ψ′′n(Ξs)[σ(s,X(1)
s )− σ(s,X(2)

s )]2ds] ≤ E[

∫ t

0

ψ′′n(Ξs)[h|Ξs|]2ds] ≤ 2t/n.

Hence forth

Eψn(Ξt) = E

∫ t

0

ψ′n(Ξs)[b(s,X
(1)
s )− b(s,X(2)

s )]ds+ t/n

≤ C

∫ t

0

E|Ξs|ds+ t/n

as n → ∞ gives us E|Ξt| ≤ C
∫ t

0
E|Ξs|ds. Now by Gronwall inequality our result

follows.

The proof of the existence of the solution of 3.1 follows in a similar fashion as in the

proof of Theorem 16.
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3.3 Weak Solutions

Definition 3.3. (X,W ) on (Ω,F ,P) is a weak solution of the equation 3.1 if following

happens

1. Ft is a filtration of F satisfying usual conditions.

2. W = {Wt,Ft, 0 ≤ t < ∞} is an r-dimensional brownian motion and X =

{Xt,Ft, 0 ≤ t <∞} is an adapted Rd valued process.

3. P[
∫ t

0
{|bi(s,Xs)| + σ2

ij(s,Xs)} < ∞] holds for every 1 ≤ i ≤ d 1 ≤ j ≤ r and

1 ≤ t <∞.

4. The integral version of 3.1

X i
t = X i

0 +

∫ t

0

bi(s,Xs)ds+ Σr
j=1

∫ t

0

σij(s,Xs)dW
(j)
s

holds almost surely.

With this definition one can say that strong solution satisfies all the conditions of

being a weak solution.
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Chapter 4

New Stochastic Integral

4.1 Introduction and Motivation

In chapter two we constructed the stochastic integral where the integrand was an

adapted process. The process is adapted to the filtration to which the Brownian

motion is adapted. But if the integrand is not adapted with respect to the filtration

(upto that time) then we cannot integrate using that definition. This chapter presents

the idea of the Kuo’s paper [3], [4],[5] published after 2008 to integrate the anticipating

integrals with respect to the Brownian motion. Let W = {Wt,Ft, 0 ≤ t < ∞} be a

Brownian motion and let X = {Xt, 0 ≤ t < ∞} be a stochastic process. Then how

we define a stochastic integral such that
∫ a

0
Xt(ω)dWt(ω) is a martingale. Our idea is

to make this a stochastic integral.

We draw some ideas from the authors book [6]. Let Xt = Wt; ∀t and consider a

partition ∆n = {0 = t0, t1, ..., tn = t} of [0, t]. Let Ln, Rn be

Ln =
n∑
i=1

Wti−1
(Wti −Wti−1

) (4.1)

Rn =
n∑
i=1

Wti(Wti −Wti−1
) (4.2)
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Further

Rn − Ln =
n∑
i=1

(Wti −Wti−1
)2 (4.3)

Rn + Ln =
n∑
i=1

(W 2
ti
−W 2

ti−1
) = W 2

t −W 2
0 (4.4)

Henceforth

Rn =
1

2

( n∑
i=1

(Wti −Wti−1
)2 +W 2

t −W 2
0

)
Ln =

1

2

(
W 2
t −W 2

0 −
n∑
i=1

(Wti −Wti−1
)2
)
.

4.3 is regarded as the quadratic variation and hence by the properties of Brownian

motion we say that it is non zero and hence Ln 6= Rn as ‖∆n‖ → 0

We note that as ‖∆n‖ → 0 we have

Rt = lim
‖∆n‖→0

Rn =
1

2
((W 2

t −W 2
0 ) + t)

Lt = lim
‖∆n‖→0

Ln =
1

2
(W 2

t −W 2
0 − t)

As mentioned previously we want to assign meaning to the integral so that it satisfies

martingale property and becomes a stochastic integral. Here ERt = t which is not

constant as required in the case of martingales, on the other hand ELt comes out to

be a constant which also falls in place with expectation of any martingale. We now

check that is Lt a martingale

E(W 2
t |Fs) = E((Wt −Ws +Ws)

2|Fs)

= E((Wt −Ws)
2 + 2Ws(Wt −Ws) +W 2

s |Fs)

= E((Wt −Ws)
2) + 2WsE((Wt −Ws)) +W 2

s

= t− s+W 2
s .

Taking this into account we have E(Lt|Fs) = Ls and hence we can conclude that we

should take left end point of each subinterval as the evaluation point as it gives us

the martingale property. With Lt other properties of integral discussed in chapter 2
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are also satisfied. Hence we can use Lt to compute the stochastic integral as it goes

by the definition.

We know that the integrand should be adapted to the the filtration but what if it

is not adapted. Take for example

∫ t

0

W1dWt; 0 ≤ t ≤ 1.

We note that E[W1Wt] = min{1, t}; 0 ≤ t ≤ 1 which is not a constant. This by

definition is not a ‘defined’ integral as W1 is not adapted to the filtration σ{Ws; s ≤

t; 0 ≤ t ≤ 1}.

The new idea defined in the Kuo’s paper is something like: we break the above inte-

grand W1 into W1 = (W1−Ws)+Ws. Now
∫ t

0
W1dWs =

∫ t
0
(W1−Ws)dWs+

∫ t
0
WsdWs.

Here we have the second integral as the stochastic integral which through the Ito’s

formula gives us
1

2
(W 2

t − t). The term W1−Ws is not adapted (i.e anticipating). This

integral is then taken forward by defining

∫ t

0

(W1 −Ws)dWs = lim
∆→∞

n∑
i=1

(W1 −Wsi)(Wsi −Wsi−1
)

We pause to note that here we have taken the right end points whereas in case

of the stochastic integral of adapted integrand we had taken the left end points to

evaluate the integral.

n∑
i=1

(W1 −Wsi)(Wsi −Wsi−1
)

= W1

n∑
i=1

(Wsi −Wsi−1
)−

n∑
i=1

Wsi(Wsi −Wsi−1
)

= W1Wt − {
n∑
i=1

(Wsi −Wsi−1
)2 +

n∑
i=1

Wsi−1
(Wsi −Wsi−1

)}

−→ W1Wt − {t+
1

2
(W 2

t − t)}.

Which gives us

∫ t

0

W1Wt = W1Wt − {t+
1

2
(W 2

t − t)}+
1

2
(W 2

t − t) = W1Wt − t.
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We further note that E[W1Wt − t] = min{1, t} − t = 0 for 0 ≤ t ≤ 1. This is one of

the properties of stochastic integral that E[
∫
XtdWt] = 0.

4.2 Stochastic Integral

To take this idea forward we need a few notions. We fix a brownian motion W =

{Wt,Ft, 0 ≤ t <∞}.

Definition 4.1. A stochastic process ξt and a filtration {Ft}is said to be instantly

independent with respect to each other if ξt and Ft are independent for every instant.

Both W1 −Wt and W1 are not adapted for 0 ≤ t ≤ 1 but W1 −Wt is instantly

independent process with respect to Ft.

Definition 4.2. Let X = {Xs,Fs, 0 < s < t}, be adapted and let ξs, 0 < s < t be

instantly independent. Define the stochastic integral of Xsξs by

I(Xξ) =

∫ t

0

XsξsdWs = lim
‖∆‖→0

n∑
i=1

Xti−1
ξti(Wti −Wti−1

). (4.5)

If ξt = 1 ∀ t then we have the stochastic integration defined in chapter 2. Carrying

on further we observe that

E{Xti−1
ξti(Wti −Wti−1

)} = E{E[Xti−1
ξti(Wti −Wti−1

)|Fti ]}

E{Xti−1
(Wti −Wti−1

)E[ξti |Fti ]}

E[ξti |Fti ] = E[ξti ] as ξt is instantly independent. Hence we have

= E[ξti ]E{E[Xti−1
(Wti −Wti−1

)|Fti−1
]}

= 0.

Hence E(I(Xξ)) = 0. This is also one of the properties of the stochastic integral

defined in chapter 2.

We now discuss some examples.

Example 1 We now evaluate
∫ t

0
W 2

1 dWs We do it case by case
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Case1: 0 ≤ t ≤ 1

W 2
1 = (W1−Ws)

2+2Ws(W1−Ws)+W 2
s . By definition of the corresponding stochastic

Integral this is

n∑
i=1

{(W1 −W 2
si

) + 2Wsi−1
(W1 −Wsi) +W 2

si−1
}(Wsi −Wsi−1

) (4.6)

= W 2
1Wt − 2W1

n∑
i=1

(Wsi −Wsi−1
)2 +

n∑
i=1

(Wsi −Wsi−1
)3. (4.7)

Here we make use of the fact that if X = {Xt,Ft, 0 ≤ t < ∞} is a continuous

stochastic process with the property that

lim
‖∆‖→0

V p
t (∆) = At

where At ∈ [0,∞) is a random variable then lim‖∆‖→0 V
q
t (∆) = 0 where 0 < p < q.

We prove this fact by using that

lim
‖∆‖→0

V q
t (∆) ≤ lim

‖∆‖→0
V p
t (∆) sup(|Wt −Ws|; 0 ≤ r ≤ s < t)q−p.

Hence as partition goes to zero V q
t (∆)→ 0

Therefore the second summation in 4.6 goes to t and third one goes to 0. By this

we have

∫ t

0

W 2
1 dWs = W 2

1Wt − 2W1t, 0 ≤ t ≤ 1.

Case 2: t > 1

∫ t

0

W 2
1 dWs =

∫ 1

0

W 2
1 dWs +

∫ t

1

W 2
1 dWs

= W 3
1 − 2W1 +W 2

1 (Wt −W1)

= W 2
1Wt − 2W1.
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Example 2 Let us evaluate
∫ t

0
W1WsdWs

Case 1 0 ≤ t ≤ 1: We write W1Ws as

W1Ws = Ws(W1 −Ws) +W 2
s

Once again we look at

n∑
i=1

{Wsi−1
(W1 −Wsi) +W 2

si−1
}(Wsi −Wsi−1

)

= W1

n∑
i=1

Wsi−1
(Wsi −Wsi−1

)−
n∑
i=1

Wsi−1
(Wsi −Wsi−1

)2

This converges in probability to

W1

∫ t

0

WsdWs −
∫ t

0

Wsds.

Hence

∫ t

0

W1WsdWs =
1

2
W1(W 2

t − t)−
∫ t

0

Wsds 0 ≤ t ≤ 1∫ t

0

W1WsdWs =
1

2
W1(W 2

t − t)−
∫ 1

0

Wsds t > 1.

Example 3

Let ξ(x) be a continuous function. we evaluate
∫ t

0
W1ξ(Ws)dWs where t ∈ [0, 1]. We

write the integrand as

W1ξ(Ws) = (W1 −Ws)ξ(Ws) +Wsξ(Ws).

Then we have

n∑
i=1

{(W1 −Wsi)ξ(Wsi−1
) +Wsi−1

ξ(Wsi)}(Wsi − (Wsi−1
))

= W1

n∑
i=1

ξ(Wsi−1
)(Wsi −Wsi−1

)−
n∑
i=1

ξ(Wsi−1
)(Wsi −Wsi−1

)2.

48



This converges in probability to

W1

∫ t

0

ξ(Ws)dWs −
∫ t

0

ξ(Ws)ds

which gives us for 0 ≤ t ≤ 1

∫ t

0

W1ξ(Ws)dWs = W1

∫ t

0

ξ(Ws)dWs −
∫ t

0

ξ(Ws)ds.

For t > 1 ∫ t

0

W1ξ(Ws)dWs = W1

∫ t

0

ξ(Ws)dWs −
∫ 1

0

ξ(Ws)ds

4.3 Ito’s Formula

In this section we try and give Ito’s formula for the newly defined stochastic integral

[4]. Consider a partition ∆ = {s0, ...., sn} of [0,T].

Lemma 4.1. Let f(x) be a continuous and g(x) be a C1-function. Let h(x, y) =

f(x)g(y − x). Then for each t ∈ [0, T ]

n∑
i=1

h(Wsi−1
,WT )(Wsi −Wsi−1

)

−→
∫ t

0

h(Ws,WT )dWs +

∫ t

0

δh

δy
(Ws,WT )ds

in probability as ‖∆‖→ 0.

Proof

n∑
i=1

h(Wsi−1
,WT )(Wsi −Wsi−1

) =
n∑
i=1

f(Wsi−1
)g(WT −Wsi−1

)(Wsi −Wsi−1
)

≈
n∑
i=1

f(Wsi−1
){g(WT −Wsi) + g′(WT −Wsi)(Wsi −Wsi−1

)}(Wsi −Wsi−1
).

The above approximation is due to Euler’s method. As ‖∆‖ → 0 this converges to

→
∫ t

0

f(Ws){g(WT −Ws)}dWs +

∫ t

0

f(Ws)g
′(WT −Ws)ds
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which gives the desired result.

Using the above rule we give a proof of a formula which can be considered as the

Ito’s integral of the new stochastic integral.

Theorem 17. let f(x), g(x) ∈ C2 and h(x) be as defined above. Then the following

equality holds for 0 ≤ t ≤ T

h(Wt,WT ) = h(W0,WT )+

∫ t

0

δh

δx
(Ws,WT )dWs+

∫ t

0

{1

2

δ2h

δx2
(Ws,WT )+

δ2h

δxδy
(Ws,WT )}ds

(4.8)

Proof With the same partition we proceed

h(Wt,WT ) =
n∑
i=1

{h(Wsi ,WT )− h(Wsi−1
,WT )}

≈
n∑
i=1

(
δh

δx
(h(Wsi−1

,WT ))(Wsi −Wsi−1
)

+
1

2

δ2h

δx2
(Wsi−1

,WT )(Wsi −Wsi−1
)2

)
.

The above approximation is due to Taylors expansion. Using the lemma 4.1 to the

function
δh

δx
we get

∫ t

0

δh

δx
(Ws,WT )dWs +

∫ t

0

δ2h

δxδy
(Ws,WT )ds

and the second sum converges in probability to

∫ t

0

1

2

δ2h

δx2
(Ws,WT )

with these two limits together we get the desired result.

This theorem can only be applied to the case where h is a function of Wt. Even if

we want to integrate ∫ t

0

W1dWs

then we have to decompose this as W1 = (W1 −Ws) +Ws

We try and define a Ito’s formula which is valid for a bigger class.
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Definition 4.3. An Ito’s Process is a stochastic process of the form

Xt = X0 +

∫ t

0

p(s)dWs +

∫ t

0

q(s)ds, 0 ≤ t ≤ T. (4.9)

Here Xt is Ft measurable ∀t and p ∈ L(Ω, L2[0, T ]) and q ∈ L(Ω, L1[0, T ]).

Here for any stochastic process X = {Xt, 0 ≤ t ≤ T} in L(Ω, L2[0, T ]) it is Ft
adapted such that

∫ T
0
|Xt|2 <∞. Similarly for L(Ω, L1[0, T ]).

Consider another process which we require for the next result which is generalized

version of earlier Ito’s theorem.

Yt = YT +

∫ T

t

u(s)dWs +

∫ T

t

v(s)ds (4.10)

where YT is independent of FT and the functions u ∈ L2[0, T ] and v ∈ L1[0, T ].

Our motive is to replace f(Wt) with f(Xt) where Xt is of the form 4.9 and g(Wt)

with g(Yt) where Yt is of the form 4.10.

Theorem 18. Let h(x,y) = f(x)g(y), where f, g ∈ C2(R). Let Xt be as in 4.9 and Yt

as in 4.10. Then for 0 ≤ t ≤ T .

h(Xt, Yt) = h(X0, Y0) +

∫ t

0

δh

δx
(Xs, Ys)dXs +

1

2

∫ t

0

δ2h

δx2
(Xs, Ys)(dXs)

2 (4.11)∫ t

0

δh

δy
(Xs, Ys)dYs +

1

2

∫ t

0

δ2h

δy2
(Xs, Ys)(dYs)

2. (4.12)

We make a note of a few things required for the proof.

(dWt)
2 = dt (dt)2 = 0 dWtdt = 0.

Proof We use the partition as introduced in the beginning.

h(Xt, Yt)− h(X0, Y0) =
n∑
i=1

[h(Xsi , Ysi)− h(Xsi−1
, Ysi−1

)] (4.13)

=
n∑
i=1

[f(Xsi)g(Ysi)− f(Xsi−1
)g(Ysi−1

)] (4.14)
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We note that we can write 4.9 and 4.10 in the differential form.

dXt = p(t)dWt + q(t)dt

dYt = −u(t)dWt − v(t)dt

Using taylors expansion of f and g to obtain

f(Xsi) ≈ f(Xsi−1
) + f ′(Xsi−1

)(Xsi −Xsi−1
) +

1

2
f ′′(Xsi−1

)(Xsi −Xsi−1
)2 (4.15)

g(Ysi−1
) ≈ g(Ysi−1

) + g′(Ysi−1
)(−(Ysi − Ysi−1

)) +
1

2
g′′(Ysi−1

)(−(Ysi − Ysi−1
))2 (4.16)

by 4.15, 4.16 and 4.14 we have

h(Xt, Yt)− h(X0, Y0)

≈
n∑
i=1

[

(
f(Xsi−1

) + f ′(Xsi−1
)(Xsi −Xsi−1

) +
1

2
f ′′(Xsi−1

)(Xsi −Xsi−1
)2

)
g(Yti)

−f(Xsi−1
)

(
g(Ysi) + g′(Ysi)(−(Ysi − Ysi−1

)) +
1

2
g′′(Ysi)(−(Ysi − Ysi−1

))2

)
]

=
n∑
i=1

[

(
f ′(Xsi−1

)g(Ysi)(Xsi −Xsi−1
) +

1

2
f ′′(Xsi−1

)g(Ysi)(Xsi −Xsi−1
)2

)
−
(
f(Xsi−1

)g′(Ysi)(−(Ysi − Ysi−1
))2 +

1

2
f(Xsi−1

)g′′(Ysi)(−(Ysi − Ysi−1
))2

)
]

=
n∑
i=1

[
δh

δx
(Xsi−1

, Ysi)(Xsi −Xsi−1
) +

1

2

δ2h

δx2
(Xsi−1

, Ysi)(Xsi −Xsi−1
)2

δh

δy
(Xsi−1

, Ysi)(Ysi − Ysi−1
) +

1

2

δ2h

δy2
(Xsi−1

, Ysi)(Ysi − Ysi−1
)2].

Now as ‖∆‖n → 0 this expression converges in probability to the RHS of 4.12.

The above integral does not apply directly to the integrals of the form
∫ 1

0
W1dWs.

We give the next result from [4]. In this theorem we can evaluate the integrals whose

integrand is not adapted or not instantly independent. The difference from the last

theorem will be that the instantly independent process Yt as given in 4.10 can be just

Yk (k is constant) because of which it does not have to depend on t parameter. In the

proof the notion of infinite radius of convergence of function g is used so as to move

freely from Yk to Yt.
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Theorem 19. Suppose that h(x, y) = f(x)g(y), where f ∈ C2(R), and g ∈ C∞(R)

has Maclaurin expansion with infinite radius of convergence. Let Xt be as in Equation

4.9 and Yt be as in Equation 4.10. Then for a ≤ t ≤ b

h(Xt, Ya) = h(Xa, Ya) +

∫ t

a

δh

δx
(Xs, Ya)dXs (4.17)

+
1

2

∫ t

a

δ2h

δx2
(Xs, Ya)(dXs)

2 −
∫ t

a

δ2h

δxδy
(Xs, Ya)(dXs)(dYs) (4.18)

Example: Let h(x, y) =
xn+1ym

n+ 1
with m, n as integers. If we take Xt and Ya as

Wt and W1 −W0 respectively on the interval [0, 1]

W n+1
1 Wm

1

n+ 1
=
W n+1

0 Wm
1

n+ 1
+

∫ 1

0

W n
t W

m
1 dWt +

n

2

∫ 1

0

W n−1
t Wm

1 dt

+m

∫ 1

0

W n
t W

m−1
1 dt. (4.19)

Hence we have

∫ 1

0

W n
t W

m−1
1 dWt =

W n+m+1
1

n+ 1
−Wm−1

1

∫ 1

0

W n−1
t

(n
2
W1 +mWt

)
dt.

4.4 Stochastic Differential Equation

We try to solve a SDE in which the initial condition is not adapted. Consider

dXt = XtdWt +
1

W1

Xtdt X0 = W1 0 ≤ t ≤ 1.

which can be written in the integral form as

Xt = W1 +

∫ t

0

XsdWs +

∫ t

0

1

W1

Xsds. (4.20)

We try and solve this equation using iteration technique. Let X
(1)
t = W1. Then

using the integral computed in the first section and 4.20

X
(2)
t = W1 +

∫ t

0

XsdWs +

∫ t

0

1

W1

Xsds = W1(1 +Wt).
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Using one of the examples of section 2 we write

X
(3)
t = W1 +

∫ t

0

X(2)
s dWs +

∫ t

0

1

W1

X(2)
s ds = W1(1 +Wt +

1

2
W 2
t −

1

2
t).

Due to the last example of section 2 and ξ(x) = x2 we have

X
(4)
t = W1(1 +Wt +

1

2
W 2
t −

1

2
t+

1

3!
W 3
t −

1

2
tWt).

We also note that this is a Hermite polynomial where

exp(Wt −
1

2
t) =

∞∑
i=0

Hi(Wt, t)

n!

where Hi(Wt, t) =

n/2∑
k=0

 n

2k

 (2k − 1)!!(−t)kW n−2k
t .

In general we can write

X
(m)
t = W1

m−1∑
i=0

1

n!
Hn(Wt, t).

For say

X
(2)
t = W1[H0(Wt, t) +H1(Wt, t)]

= W1[1 +W1]

X
(3)
t = W1[H0(Wt, t) +H1(Wt, t) +

1

2
H2(Wt, t)]

= W1[1 +W1 +
1

2
W 2
t − t].

Hence by the above discussion we can say that

Xt = W1 exp(Wt −
1

2
t)

which is the desired solution.
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4.5 Some open problems

1. What is the class of stochastic processes ξt for which the new stochastic integral

exists.

2. Can we have Conditions of Existence and Uniqueness for general stochastic

differential equation.
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