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Notation

{F:} Filtration of sub sigma algebras

M Space of square integrable continuous martingale
My Space of square integrable martingale

(X,Y) cross variation of X and Y. (X, X) = X

Metee Space of continuous local martingale

XT3 E [y Xpd(M),

L(M) measurable with [X]7 < oo

L*(M) Progressively measurable with [X]; < oo

L(L*[0,7],Q) Random variables adapted and fOT E(|X]?)dt < o
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Abstract

The aim of the project is to understand the construction of Brownian Motion and that
of stochastic integral. The construction of stochastic integral with respect to martin-
gales has been carried out rigorously. Further, the stochastic integration developed
by Ito was for a nice measurable class of functions; was in 2008 expanded to a larger
class by Kuo. In this project I have also studied about the extension of stochastic
integration developed by Kuo recently. The idea behind the new stochastic integral
has been conveyed through many examples. I have also talked about the existence
and uniqueness of solutions to the stochastic differential equations which are also used

to study the trajectory of a particle undergoing random motion.
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Chapter 1

Martingales and Brownian Motion

In this chapter we study about Martingales, Brownian motion and properties of Brow-
nian motion. In the next chapter we will see how we integrate measurable functions
with respect to some nice martingales. We will observe that Brownian motion is also
a Martingale and in many areas integration with respect to Brownian motion is also

carried out. The majority of the notions in this chapter can also be referred from [,

2.

1.1 Discrete Parameter Martingales

We consider a Probability triple (£, F,P) where F is the sigma algebra on (.

Definition 1.1. Filtration can be defined as a sequence of increasing sub o-algebras

of F. We write it as Fo C F; C Fo C ... C F.

In general we will work on a filtered space (2, F, {F },,P) where n varies over the

set of non-negative integers.

Definition 1.2. A Stochastic Process (also written as Process) X = {X,,n > 0} is

called an adapted process if for every n, X,, is F,, measurable.

Definition 1.3. A Process X is called a martingale if it satisfies the following:
e X is adapted relative to ({F,},P)
e E(]X,]) < >

® E(Xn|Fn_1) = Xn—l- Vn



In above condition if we replace the equality by > then we get a sub- martingale.
If we replace it by < then we get a super-martingale. A martingale is both a sub-
martingale and a super-martingale and therefore any result which is valid for a sub-

martingale or a super-martingale also holds true for a martingale.

Definition 1.4. A map T : Q — {1,2....;00} is called a stopping time if {T < n} €
F. ¥ n.

Definition 1.5. If X = {X,,,n > 0} is a process and T is a stopping time, then the

process X1 = {Xrpp,,n > 0} is the stopped process.

Lemma 1.1. We show that if X = {X,,, F,,n > 0} is a martingale then the stopped

process X1 = {Xrpn, Fn,n > 0} is also a martingale.

Proof Xr,, is one of the random variables whose index is less than or equal to n
hence it is a random variables.
Xran = Xo + Z?:o(Xi - Xi—l)XiST = Xtan — X1ran-1 = (Xn - Xn—l)XiST-

We take conditional expectation of above to get the desired result.

Definition 1.6. A process C = {X,,, F,,n > 0} is a previsible process if for every

n, X, 18 F,_1 measurable.

Theorem 1 (Doob’s Optional Sampling Theorem). Let X be a martingale and T a
stopping time. Then Xr is integrable and E(X7) = E(Xy) in each of the following

cases.
1. X is uniformly bounded and T is finite
2. E(T) < oo with bounded increments

3. T is bounded.

Proof

1. X7n, is a random variable and since X is a martingale X1 is a stopped process
and a martingale. We further have that E(Xo — X7a,) = 0. With n — oo and

using Bounded convergence theorem we have the desired result.

2. Using Dominated Convergence Theorem we get the desired result.
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3. As T is bounded hence assume that T'(w) < A. Therefore let n = A and hence

we have the desired result.

Theorem 2 (Doob’s Decomposition). Let X = {X,,, F,;n € Z'} with X,, € L',V n.

Then X has a decomposition called Doob’s decomposition.
X, =M,+A,+Xy; Vn. (1.1)

This decomposition is unique modulo indistinguishability. We further say that if X is

a sub-martingale then A is an increasing process.

Proof We define 4, = > ;_, (E[Xk|]-"k,1] — Xk,l) and M, = X, + Zzzl(Xk —
E[X} | Fi-1]). On proceeding with the algebraic computation we see that E(M, —
M,_1) =0.
For uniqueness we assume that X,, = M,, + A,, and X,, = M) + A! henceforth the
process Y, = M, — M,,_; = A,_1 — A, which gives us 0 while taking conditional
expectation.

To see that A, is increasing when X, is a sub martingale, we note that

E(Xn - Xn—1|~’rn—1) - E(Mn - Mn—1|~Fn—1) + E(An—l - An|fn—1)
— 0+ (A1 — A).

Henceforth we have

3

We further quote a result.

Theorem 3 (Martingale /Doob’s Convergence Theorem). If X is super-martingale
and sup,, B X,| < oo then we have almost surely X,, — X, where X, = lim,, o, X,,

exists and is finite.

Proof We show that the set

S :={w: X,(w) does not converge to a limit in [—o0, 00|}

has measure 0. Further the notion of Up-crossing lemma is used to prove the theorem.



1.2 Continuous Parameter Martingales

In this section we study about the continuous parameter martingales where the pa-

rameter t € RTU{0} against the natural numbers as observed in the previous section.
Definition 1.7. A Process X is called a martingale if it satisfies the following:

o X is adapted relative to ({F;},P)

o E(]X;|) < o0

o E(Xy|Fs) = X, ; s<t

Here t varies over the set non negative real numbers.

Definition 1.8. A filtration {F;} is said to satisfy usual conditions if Fy contains all

the null sets and the filtration is right continuous.
We say that the filtration is right continuous if 7, = F, where Fip = () oo Fite

Definition 1.9. The stochastic process X is called progressively measurable with
respect to the filtration F; if, for each t >0 and A € B(R?), the set

{(5,w);0 < s <t,w e N X (w) € A} belongs to the product o-field B([0,t]) ® Fi. In
other words the mapping (s,w) — X,(w) : ([0, x Q,B([0,1]) @ F;) — (RY, B(R?)) is

measurable for each t > 0.

Definition 1.10. A random T is a stopping time of the filtration F;, if the event
{T <t} e RVt Itis called optional time if {T <t} € F; V t.

Theorem 4 (Optional Sampling Theorem). Let {X;, F;;0 < t < oo} be a right
continuous submartingale with a last element X, and let S and T be two optional

times of the filtration {F;}. We have
E(XT|F5+) Z XS a.s P.

If S is a stopping time, then Fs can replace Fs. in the above inequality. In particular
we have

EXr > EXy.



Definition 1.11. An adapted process A is called increasing if for P a.e w € Q we

have
L] Ao(W) =0
e A, (w) is non-decreasing and right continuous in t.

Definition 1.12. An increasing process A is called natural if for every bounded and

right continuous martingale { My, F;0 < t < co} we have

E M dA, = F M, dAs ¥V te€ (0,00).

(0,¢] (0,¢]

Definition 1.13. The right continuous process X = {X;, F;;0 < t < oo} is said to
be of class S if the family {Xr}rec, is uniformly integrable with 0 < a < oo. Here g,
is a class of all stopping times for the filtration F; with P(T < a) = 1 for some fized

a < 0.

Theorem 5 (Doob-Meyer Decomposition). Let {F;} satisfy the usual conditions. Let
{X4, F1;0 < t < oo} be a right continuous sub-martingale in class S, then it admits

the decomposition

Xt:Mt+At

where M = {M;, F;;0 < t < oo} is a right continuous martingale and A = { Ay, F;;0 <
t < oo} an increasing process. If the process A is natural then the decomposition is

unique.

Definition 1.14. Let X = {X;, F;,0 <t < oo} be a right continuous (continuous)

martingale. We say that X is a square integrable martingale if
EX? <oo VYV t>0.

If also Xo =0 then X € My (X € Mj).

Definition 1.15. If X € Ms, we define quadratic variation of X to be the process

(X)) = Ay, where A is a natural increasing process.

We further define the cross variation of two process in M.



Definition 1.16. For any two martingales X, Y € My, we define their cross variation

process (X,Y) by
(X,Y) = %[<X+Y>t— (X = Y)); 0<t< oo (1.2)
Remark 1.1. (.,.) is a bilinear form. Also
El(X; — X,)(Y: = Y)] = E(X,Y: — XJYo)|F] = E[(XiY:) — (X Yo) | Fd

as XY — (X,Y) is a martingale.

We state a few results which will be used in the proof of Ito’s formula in the next

chapter.

Definition 1.17. For a stochastic process we define the pth variation on the interval

0,t] with the partition = = {0 = to,t1, ..., t, =t} by
VIP(E) =Y1K — X
i=1

If p=2 then we call it as quadratic variation.

Proposition 1.1. If X € My with | X;| < C < oo V s € [0,t] asP. If=Z be a

partition with to < t; < .... <'t, then we have
EV;?E)P < 6K*.

Proof Consider E[> " | X;, — X4, |*|F,,] then using martingale property we get

i=m-+1
Bl Y (X=X )1 F) = Bl Y (X2 - XE )R, < BIX;|F,] < K°
i=m+1 i=m+1
therefore,
n—1 n n
E[Z (Xti o Xti71)2(th B th71>2] < KZE[ Z (Xti - th‘&)z] < K*.
=1 i=m+1 i=m+1



Further we have

E[i(‘){tz - Xti—1)4] < K2E[§:<th - Xti—1)2] < 4K4

=1 i=1

Hence due to above inequalities we have
E[V?(2)]? < 6K".

Lemma 1.2. [f X € M¢ is bounded uniformly by K. Then for partitions = of [0,t],
we have
lim EV,* = 0.

[E—ool

Proof We consider m;(X;0) := sup{|X, — X,|;p,q < t,|p—q| < }. We now write
VY < Vmi(X,0).

We further proceed using Holder’s inequality to obtain the desired result.

Theorem 6. Let X € MS. For partitions = we have
P[VP(2) = (X)u] > A <
t = t €.

Proof We divide the proof in two parts
Case 1: X is bounded

Using the above lemma we get the desired result.

Case 2: X is unbounded In this case we use the technique of localization by defining



a sequence stopping time
T, =inf{t > 0;|X| >n or (X);>n}

with this X" = Xinr, and X7 — (X)iar, is a martingale. With the help of this

and in limit 7, — oo we get the desired result.

Definition 1.18. Let X = {X;, F;,0 <t < oo} be a (continuous) process. If there
exist a non decreasing sequence {1}, such that Ty = 0 and lim, o, T,, = oo of
stopping time of {F;} such that {Xt(n) = Xiar,, F1, 0 < t < oo} is a martingale for
each n > 1, then we say that X is a (continuous) local martingale. If in addition

Xo =0 a.s we write X (M) € Mo,

Remark 1.2. If X is a sub-martingale then by optional sampling theorem we get
{X7rne, Fi, 0 < t < 00} is also a sub-martingale implying the fact that every martingale

s a local martingale.

Lemma 1.3. Let X, Y € M. Then there is a unique adapted, continuous process
of bounded variation (X,Y) satisfying (X,Y)o = 0 a.s P, such that XY — (X,Y) €
Mc,loc_

For X,Y € M®!°¢ we say that the process (X,Y) is the cross variation of X,Y

and (X) the quadratic variation of X.

1.3 Brownian Motion

Definition 1.19. An adapted process W = {Wy, Fy,t > 0} is said to be a standard

Brownian Motion if it satisfies following

o Wy =0 and W, s continuous in t.
e Increments are independent, i.e Wy — Wy is independent of F;.

e The increments Wy — Wy are normally distributed with mean 0 and variance

t— s.

As Brownian Motion is continuous hence the canonical underlying space which we
consider is the C[0,00) space. We try to build a measure such that the coordinate

mapping process of the form W;(w) = w(t) becomes a Brownian motion.
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1.3.1 Construction of Brownian Motion

We define a metric on the space of real valued continuous functions on [0, co) by

[e.o]

Wlanzs) = 3 o ma (o () — aa(t)} A1)
n=1 -

due to which the space under this metric is complete and separable.

Definition 1.20. e Let {IP,}°°, be a sequence of probability measures on (S, B(S)),
and let P be another measure on this space. We say {P,}>2, converges weakly

to P iff
lim [ f(s)dP,(s) = /S £(5)dP

n—oo S

for every bounded, continuous real valued function f on S.

o Let {X,}22, be defined on {2, Frn, P} with values in (S, p). We say{ X, }5°,
converges to X in distribution, if the sequence of measures {P, X1}, con-
verges weakly to {PX~'}. Equivalently X, converges in distribution to X iff

lim E,f(X,) = Ef(X)

n—o0
for every bounded, continuous real valued function f on S.

Definition 1.21. Let (S, p) be a metric space and let IT be a family of probability
measures on (S,B(S)). We say that II is relatively compact if every sequence of
elements of Il contains a weakly convergent subsequence. We say that Il is tight if
for every e > 0, there exist a compact set K C S such that P(K) > 1 — ¢, for every
Pe Il

We now need a few results to arrive at Wiener space. Since we will be be talking
about the C[0, 00) which is complete and separable space under the given metric, we

take a note of next result due to Prohorov.

Theorem 7. Let = be a family of probability measures on a separable and complete

metric space then Z it is tight iff it is relatively compact.



We define the modulus of continuity essential for the next result.

T _. _

' (w,8) = maxf(s) — (o)
Theorem 8. A sequence {P,}°°; of Probability measures on C[0, 00), (’B(C’[O, oo)))
18 tight iff

hﬁm sup P, [w; |w(0)] > A] =0 (%)

n>1

(lsirn sup P, [w; m” (w,8) > €] =0 VT > 0,e >0 (k)

0 n>1

To prove this result we in turn use a result stated below.

Lemma 1.4. The set S C C[0,00) has a compact closure iff following are satisfied

sup |w(0)] < oo
wes

limsupm” (w,6) =0 VT >0.

Theorem 9. Let {X™}>°  be a tight sequence of continous processes with the prop-
erty that whenever 0 < t; < ..... < tg < 00, then the sequence of random vectors
{th ,...,Xf;)};jozl converges in distribution as n — oo. Let P, be the measure in-
duced on {C[0,00),B(C[0,00)} by X™. Then {P,}>, converges weakly to P.
Define

1
X" = "y, where Y;=S t— It +>0. 1.3
t O'\/ﬁ t where t [ﬂ+( H)? = ( )

With {X™} as defined above and 0 < t; < ... <tg <oo,d>1 we have
(n) (n)y D .
Xl X0 = Wy, o, Wiy n — 00

where {Wy, FB:t > 0} is a standard one dimensional Brownian Motion.

Theorem 10 (Donsker Invariance Principle). Let (Q, F,P) be a Probability Space on
which sequence {&;} of i.i.d random variable with 0 mean and finite variance o* > 0
is given. Define X = {Xt(");t >0} as in above mentioned and let P, be the
measure induced by X™ on {C[0,00),B(C[0,00)}. Then {P,}2, converges weakly
to P, under which the coordinate mapping process Wi(w) = w(t) on C[0,00) is a

standard, one dimensional Brownian Motion.

10



Definition 1.22. The probability measure P, on {C[0, 00), B(C[0,00)}, under which
the coordinate mapping process Wi(w) = w(t) is a standard, one dimensional Brownian

motion s called Wiener measure.

1.3.2 Properties

W ={W,, F;0 <t < oo} is a standard Brownian Motion.

1. Markov Property: The property of the Brownian motion that it has stationary

and independent increments makes it a Markov Process.

2. Martingale Property: Proof

E[W,|F.)] = E[W, — W, + W,|F\]
— E[W, — W,|F.] + E|W,|F,]
= E[W, - W]+ W, = W,

3. Scaling : X = {X;, F.2;;0 < t < oo} for ¢ > 0 defined by

1
Xt:_ 2t 0§t<OO
C

Proof Continuity and stationary increments are preserved. We note that

Var[X, — X,] = Var[c"V(W(*t) — W(c?s))] = 2 (Pt — Ps)

=t —s.

The expectation is 0. Here X, — X, = c=V(W (c*t) — W (c?s)) is distributed as
cN(0,c2(t —s)) ~ N(0, (t — s)).

4. Time inversion Y = {Y; FY:0 <t < oo} defined by

th/t O0<t< o
0 t=20

11



Proof Here we see that the new process is continuous and 0 at origin. We have
EY,] = tE[Wy] = 0 and Y} is a Gaussian process also we have the covariance

1 1
function E[Y;Y;] = st(— A ;) =S At.
s

5. Symmetry:
Proof If W is a Brownian motion so is -W as continuity and stationary incre-
ments are preserved. mean and variance are not affected by the negative sign.

The distribution (can be seen with the help of probability law) does not change.

6. Finite Quadratic variation Let {I7,}5°, be a sequence of partitions of the

interval [0,t] with lim,,_, ||I1,|| = 0.

with
Xi= Wy, =Wy )? = (ti — ti1)

We have E(X,;X;) = 0 for i # j since the increments are independent; also
E[(W;, — W;._ )] = t; — t;_1. We also see using computations that E[(W; —
W) = 3(t — s)?

E(Xf) - E{(Wt1 - Wti—1)4 - 2t(Wt1¢ - th’,—1>2 - t2}

n n

=3 (=t +2 > (t—t)(te — teer) — 17

k=1 1<j<k<n
=2 (b —tp)’
k=1

< 2t | AL[0, 4] [—posine O.

7. For almost every w € 2, the sample path W (w) is monotone in no interval

Proof Our idea is to show that the measure of the set

S ={w € Q;W(w) is non decreasing on [0, 1]}

12



is 0 and the set belongs to F. We can write S = (), S, where

n—1

Sn = ﬂ{w - Q; W(i+1)/n(w) — m/n(w)} e F.

=0

has probability P(S,,) = H;:Ol PWit1)/m(w) — Wijn(w) > 0] = 2™, Therefore,
P(S) < limy o P(S,) = 0

. For almost every w € €2, the Brownian sample path W (w) is nowhere differen-

tiable.

Proof To prove this we show the set
{w € Q; for each t € [0,00), either D"W;(w) = oo or D, W;(w) = —oo}

has a subset of measure 1.

13
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Chapter 2

Stochastic Integration

In this chapter we will discuss about the integrals with respect to martingales fol-
lowed by integration with respect to local martingale. After this we will also see the
celebrated Ito’s formula which uses the previous discussed notions. We will end this
chapter by looking at the Girsanov’s theorem. Majority of the text in this chapter

can be referred from [2].

2.1 Construction of Stochastic Integration

In calculus courses we have seen Riemann integration as area under the curve. We
will now see Stochastic Integration where we integrate a progressively measurable
adapted process with respect to a square integrable continuous martingale. We will
deal with the class of square integrable continuous martingales and integrate appro-

priate X with respect to the square integrable continuous martingale.

[2] For any X € My and 0 <t < oo we define

X [l AL
X (1= —on
n=1

where (A)

| X =2/ E(XP).

15



With the just defined metric My is complete and M is a closed subspace of M.
We define

X =5 | " X2y,

Definition 2.1. Let L(M) denote the set of equivalence class of all measurable {F;}
adapted process X, for which [X]r < oo for all T > 0. We define a metric on L by
[X-Y], where

n=1
Consider an equivalence class £*(M) of progressively measurable processes having
property that [X]7 < oo for all 7' > 0 and a metric in a similar way. When (M );(w)
is absolutely continuous in t then the stochastic integral can be constructed for all X

in L(M), if not then for all X in L£*(M).

We define a measure on ([0, 00) x 2, B([0,00) ® F) by

pn(A) = E/OOO 1a(t,w)d{M)y(w).

Our space on which we are about to work is a subspace of the Hilbert space

H = L*([0,00) x 2, B(]0,00) @ F, ); the space of square integrable functions. This
fact can be seen that if {X(™}22  is a convergent sequence in £*(M) and it converges
to X in H then as it is measurable and adapted it has a progressively measurable
modification Y. X and Y are equivalent with respect to the measure piy;.

We will start this section by first defining the stochastic integral for simple process..

Definition 2.2. A process X is called a simple process if there exist a sequence of
random variables {&,}52 with sup,, 5o [§n(w)| < L < oo as well as strictly increasing
sequence of real numbers {t,}° o with ty = 0 and lim,, . t, = 00, &, is Fy, measurable

and

Xi(w) = &o(w)1o(t) + th(w)l(ti,ti+1](t) 0<t<o0.

16



The class of all simple processes is denoted by L, and for X in £, we define the

martingale transform as

n—1
L(X) =Y &(My,,, — My,) + &u(M; — M,,) (2.1)
i—1
= Zfi(Mt/\tiH — Mips,) 0<t<oo. (2.2)
i—1

After observing the integral for simple process we would like to extend this to the

class L*(M). To get there we require a couple of results.

Lemma 2.1. For every X in L(M) there exist a sequence {X ™} in L0such that

T
sup lim E/ X" — X,|dt =0
0

T>0 n—oo

We divide the proof of this lemma into three cases namely when X is continuous,

X is progressively measurable and X is measurable and adapted.

Proposition 2.1. If (M),(w) is absolutely continuous in t with respect to Lebesque

measure then L0 is dense in L(M) with respect to the metric in definition 2.1.

The proof can be divided into the case of bounded process and unbounded process
and then using the above lemma and localization technique respectively.
We can further say that £ is dense in £*()M) with respect to the metric in

definition 2.1.
Lemma 2.2. Let {A;, Fi,t > 0} be an increasing process, M = {M;, F;,t > 0} a
martingale and X = {X;, F,t > 0} a progressively increasing process, agreeing to
T
E / X?2dA, < oo.
0

Then there exist a sequence of simple process {X ™}, such that

T
sup lim E/ X" — X,|dA; = 0.
0

T>0 m— 00

We now have the required tools to begin with the construction of stochastic inte-

gral. The basic idea is to satisfy the below mentioned equations for the simple process
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and then for X € £*(M) in limiting sense.

I(X)=0 a.s P (2.3)

IaX 4+ 38Y) =al(X)+ BI(Y) a,feR (2.4)
[ (XIF] = 1,(x) (2.5)

/ X2d(M (2.6)

1(X)) = [X] 2.7

EI(L(X) — L,(X))?\F,] = B / X3d<M> b3 (2.5

We have defined through equations the integral for simple process and using

that definition we prove the above mentioned properties.

i=n—1

As [(X) = Z fi(MtHl — My,) + & (My — My,).

Hence for t = 0 we have Io(X) = 0. Therefore it satisfies equation[2.3] We now show
how the integral satisfy [2.4]

It(aX + /BY) - (Oégz + 6Pi)(Mti+1 - Mti) + (Oéfn + ﬁpn)(Mt -

i=1

i=n—1 1=n—1

= Y (a&)(My,,, — M) + (&) (M, — My,) + > (Bpi)(My,,, — My,) + (Bpa) (M, —

i=1 =1

and as «, 5 € R equation holds true for simple stochastic integrals.

Taking conditional expectation in equation ({2.1]) with respect to F;s we have

Z El&(Mipg,,, — Ming,)|F] Zﬁz sntipr — Mnt,) 0<s<t<oo.

=1

Hence we have shown that simple process satisfy equation [2.5] We can observe this
by considering for cases i < s <t;1<s<i1+1<tand s <i <t Hence we also see
that I(X) = {[,(X), F;,t > 0} is a continuous martingale.

We proceed to prove the next property for simple integrals. Using the fact that for
p < q<r<swehave E[(My— M,)(M,— M,)] =0. For s < t and t;_; < s < t; and

18
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t, <t <ty we have

B[(1:(X) = L(X))*| ] = E[{&—1(My, — M,) + ifi(th = M) + & (M, — M,, ) }*| 7]

= BlG_ (M, — My)? + 30706 (My,, — My,)? + E2(M, — M, )?|F).

i+1

Using the Doob - Meyer decomposition and the fact that E[My] = 0 we write the

preceding equation as

= B (M), = (M) + 3 (M = (M) + E(M): = (M), I
— B[ X207

which proves [2.8] and also implying that
t
ACO) = [ Xzd(aa)..
0

We set s = 0 to get E[([(X))?] = E[fot X2d(M),]. With this the we also get equation
2.6l From (A) we get equation 2.7 as well.

For X € L£*(M) by lemma 2.2 there exist a sequence {X™}>  in £ such that
(X" — X] — 0 as n — oo By [2.7] we say that [|[I(X™) — [(X®)|| = ||I(X™ —
XE)|| = [X™ — X®)). Therefore as n,k — oo [X™ — X®] — 0. This helps us
in concluding that {I(X™)} forms a cauchy sequence in M$. From the discussion
preceding definition 2.1 we know that MS$ is closed in My and therefore the limit
I(X) ={[,(X);0 <t < oo} (say) exists and belongs to MS§.

We now satisfy the properties [2.3| to [2.8|for I(X) so that we can call it as a stochastic
integral for any X € £*(M). Equations|2.3|and [2.5/are valid as I(X) € M§. As equa-
tion holds true for X,Y € £°; in the limiting sense it also holds for X,Y € £*.

Consider {I(X{™)}, {I(X™)} converging to I,(X) and I,(X) respectively in square
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norm. Then for A € F;

E[La(L(X) — L,(X))*] = lim B[14(I(X™) — L,(X™))?]

= lim B[ty [ (X0)2d00),

— Bl [ ((X2d(0).)

Showing that I(X) also satisfies equation . By taking s=0 it also satisfies equation
[2.6] and consequently equation [2.7]

Since X and M are progressively measurable fst((Xi(Ln)))zd(M )u is also F; measurable

for fixed s < t and therefore it also implies

(1(X)) = / X2d(M),

Hence we define

Definition 2.3. For X € L*, the stochastic integral of X with respect to the
martingale M in M is the unique square integrable martingale

I(X) = {L(X),F;0 < t < oo} (limit of cauchy sequence as discussed above) which
satisfies || I(X™)—I(X)|| = 0 for every sequence { X ™} C L£° with lim,, [ X™ —
X]=0. We write

t
L(X) :/ X,dM,; 0<t<oo (2.9)
0

2.2 Integration with respect to Local Martingale

Let M € M. We then define a class of processes.

Definition 2.4. Let P be the equivalence class of measurable, adapted process X =

{X4, F1;0 < t < oo} satisfying
T
]P’([/ X2d(M); < x]) =1 vV T € 0,00)
0

Let P* be the class of progressively measurable process agreeing to above condition.
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[2] Since M € M¢!°¢ hence there exists a sequence of stopping times {7}, }°°, such
that lim,, ., 7, = 0o and M;,r, is a martingale for every n. For X € P we construct
a sequence

¢
R,=nAinf{0 <t < oo;/ X2d(M); > n}.
0

Note that lim,, ., R, = 0o. Set
S,=R,NT,

MM (W) = Myps, (0); XV (W) = Xo() liryyzny 0 <1t <00

By constructing such a sequence we can say that M™ ¢ M and X ") ¢ LM (”))
hence we define for X € P*

(n)
L(X) = 1M (x 0y, (2.10)

This process is a local martingale. By the discussion above we define

Definition 2.5. For M € M%'°¢ and X € P* the stochastic integral of X with respect
to M is I,(X) = {I(X), F; 0 < t < oo} € M¢ defined by |(2.10.

We state couple of results which will be required for the next section

Proposition 2.2. Let M € M and { XM, € P*(M) and X € P*(M) and
let for some stopping time T of {F;} we have lim,,_, fOT XM — X, |d(M), = 0 in
probability. Then

lim sup | tX§">dMs — X, dM,| 5 0. (2.11)

Proposition 2.3. Let M € M and X € P*(M). Then there exist a sequence of
simple process {X ™M} | such that, for every T >0,

T

lim [ |XM — X|d(M),=0
n—oo 0
also
lim sup |L(X™)—I(X)| =0
Nn—00 0<t<T
holds a.s P

21



2.3 Ito’s Formula

This Formula provides us with simple rules through which we can compute stochastic

integral.

Definition 2.6. A continuous semi martingale X = {X;, F;,0 < t < oo} is an

adapted process which has a decomposition as

where M = {M;, F;,0 < t < oo} € M and B; = {B;, F;,0 < t < 0o} is a process

. . . / 1" ! " . .
of bounded variation i.e for every t, B, = A,— A, where A,, A, are increasing process.

Theorem 11 (Ito’s Rule). Let f be a C*(R) function. Let X be a continuous semi-

martingale with above decomposition. Then

(X)) = f(Xo) + /f 5 )dM, +/f ,)dB, + = /Otf”(XS)cMM)S (2.13)

Proof We divide the proof into three steps
Step 1: We define the stopping time of [2.13] for the purpose of localisation

(

T, = inf{t > 0; |M;| >nor By >nor (M), >n} if [ Xo| <n

00 if | Xo| <nand inf{t > 0;|M;| >nor B, >nor (M), >n}=10
\
(2.14)

Thus we have a sequence of stopping time {7,}2°; with lim, . T,, = oo for [2.13
If we prove the theorem for Xiar, (w), Minr, (W), (M):(w) then we will be done. We
hence make a legitimate assumption that all our process are uniformly bounded by
some constant K € [0,00). Therefore | X;(w)| < 3K. We also make an assumption

that f has a compact support on [-3K,3K| making f7 and f/7 bounded.

Step 2 : Using the Taylor expansion. We fix a ¢ > 0 and consider the parti-
tion {to,t1, -+ ,tpm} with A = {tq =0 < t; < --- < t,, = t}. For the partition we
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get
F(X0) = f(Xo) = ij{f(th) — F(Xu )}
é F(Xe){Xe, = Xo )+ 5 ; ) { Xy, = Xi, 3P
Here n, = X, (w) + 0k (w){X;, — X;,_,}. where 0 < 0;(w) < lwherew € Q.
We write the above equation as
f(Xy) — f(Xo) = J1(A) + Jo(A) + J3(A) (2.15)

where

(D) = f1(Xe )My, — My}
JJ(A) = Zf//(nk>{th th 1}2

Step 3 : Convergence of J’s

We start with J;(A), which can be also realized as a Lebesgue-Stieltjes integral hence
this converges to fot f'(Xs)dBs almost surely as the size of partition tends to 0 ( or
size of mesh goes to 0).

We next take Jo(A) and observe that f/(X;,_,) is an adapted, bounded and continu-

ous. We consider a simple process

m

Y& = f(Xo(w) L) (8) + D f (X1 (@) Lty (9)-

k=1

Hence due to bounded convergence theorem we have
EI?(v4 / YA~ Y2 d(M), —
as the size of partition tends to 0. Therefore as IZ(Y2 —Y) — 0 in quadratic mean
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we get Jo(A) — fot Y dM;

Finally we consider J3(A) and write it as

J3(A) = Ja(A) + Jb(A) + ‘]C(A)

where

Ja(A) = Z f”(nkz>{Btk - Btk_1}2

k=1

Jo(A) = Z f,/<7]k){Btk - Btkﬂ}{Mtk - Mtkﬂ}

k=1

JC<A> = Z fl/<7]k){Mtk - Mtkfl}Z

k=1

As the total variation of B is bounded by K we have for
Ja(A) + Jb<A> < 2K||f”||00(12}€a§}§n |Btk - Btk—ll + lg}gaé}in |Mtk - Mtk—1|)

Due to continuity of B and the bounded convergence theorem this converges to 0.

We now consider

JZ = E?:lf”(th—l){Mtk - Mtk71}2

We observe using Theorem 6 in previous chapter that

[Je = Ji] < VA(A) - max |f"(m) — (X))

1<k<m

Hence by the proposition 1.1 in previous chapter we have

B|J(w) = J2 (@) < B(VA(A) - max | () = (X))

< \/6K4\/E(1r<j}§gn () — (X))
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This converges to zero as the size of mesh decreases to 0. This is due to the fact that

X is continuous. From here we focus on the term

< 2||f”||2o ’ E[Z(Mtk - Mtk—1>4 + Z(<M>tk - <M>tk—1)2]

k=1

<2/l £"11%, - E[(VP(A)) + (M), max ((M),, — (M), ,)]

1<k<m

by lemma 1.2 E[(Vt(4)(A)] — 0 as size of mesh goes to 0. Hence we have shown the

convergence in L? which implies convergence in L' which lets us conclude that

J3(A) = lim J.(A)= lim JI(A) = hm /f”

lim
lAll—0 |All—0 lAll—0

Further if we have a sequence of partitions {A,)}o2, of [0,] such that ||Ag,|| — 0

then for some subsequence {A,,)}72; we have

klggj J1(Amy) / f(X,)dBs a.s
lim Ja (A, / f(X)dM, a.s
k—o00

hm J5(Aeny)) /f” )s .S

Hence in the limiting sense we see that (2.16) holds. O

This result can be generalized for a d-dimensional local martingale also.
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Remark 2.1. Let f(t,x) : [0,00) x R — R be of class CY*(R) function. Let X be a

continuous semi-martingale with similar decomposition. Then

t 2

) b6 b 1 ("9
X;) = X — X — X)dM, —f(t, Xs)dBs+= | — X )d(M)s,.
F050 = 1050+ [ S50 Xdst [ L Xador [ S XaBorg [ 5 X a0,
(2.16)
The proof of this much like proof of Ito’s formula (above). In step 2 we apply

Taylor’s expansion to

f(tkvth) - f(tk—lth—l) = [f(tkvth) - f(tk—hth)] + [f(tk—lath) - f(tk—17th—1)]'

Example 1 In the Ito’s Formula if f(z) = 2> and B; = 0 Vt and M = W =

Brownian Motion then we have
t
W? = 2/ WedW, + t.
0
Example 2 Let M = W a standard brownian motion and X € P. We define
t 1 t
G(X) = / X, dW, — 5/ XZ2du

The process {exp(¢:(X)), Fi;0 <t < oo} is a super martingale.
We see here that exp(fot X, dW,,) is a martingale since the process {fot X dW,, Fit >

0} is a martingale and exp(x) is a continuous function. Also
1 [ 1 [
—/ Xidu>—/ XZdu
2 Jo 2 Jo

We further see that by Ito’s rule that process {exp(¢;(X)), Fi;0 < t < oo} satisfies

for 0 <s <t < o0.
the stochastic integral equation
t
Zt:1+/ZSXSdWS; 0<t< o
0
where Z; = exp(G(X)). {G(X),F;0 < t < oo} is a semimartingale with M, =

1
fst X,dW, as a local martingale part and B, = ) f; X2du as bounded variation
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part. To apply the Ito’s formula we take f(z) = exp(x) hence we have

2= 16) = s + [ Feat+ [ ricaapg [ riciann,

t t 1 1 t
:1+/ ZsXdes+/ ZS(——Xf)der—/ Z,X2ds
0 0 2 2 0

t
= 1+/ L X dWs
0

Note: We have a martingale characterisation theorem which states that if X is a

continuous local martingale with {X, = 0}, then, the following are equivalent.
e X is standard Brownian motion on the underlying filtered probability space.

e X has quadratic variation {[X]; = t}.

2.4 Girsanov’s theorem

In this section we show that if we have a Brownian motion on the probability space
(Q, F,P) then we construct a new probability measure under which a translated pro-
cess becomes a brownian motion.

We consider a d-dimensional brownian motion W = {W,, 7,0 <t < oo} on (2, F,P).
We take a adapted d-dimensional stochastic process X = {X; = {X}, X7, .. X2}, F,0 <

t < oo process satisfying

P[/OT<X§“)2 <oo] = 1. (2.17)

Consider

d t t
1
Zy(X) = eXp(E / Xuqu—§ / XZ2du) (2.18)
i=1 "% s

it is a local martingale by Example 2 of previous section.

As seen in example 2.3 we have this in the form

t d
Zt:1+/ Y ZX AW 0<t<oo
0 ._

=1
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Using the Radon -Nikodym theorem we have an absolutely continuous measure given

by

]P:/ZT(X) Ae Fr
A

We use a couple of results before proving the main result of this section. In these we

assume that Z(X) is a martingale.

Lemma 2.3. For a F; measurable random variable Y satisfying Er|Y| < oo, where

0 < s <t<Tisanon-negative but fired constant, then we have the Bayes Rule

Ep[Y|F = E[Y Z,(X)|F.] almost surely P, P. (2.19)

Zs(X)

Proof

Eﬁuﬁmmxnm}

= E{14E[Y Z,(X)|F.]} = E1,Y Z,(X)] = Er[14Y].

Our main result will is a corollary of the next proposition.

Proposition 2.4. With a fired non-negative T if M € MG then
M := M, — Z/ XOdM W, F.  0<t<T (2.20)
i=1 70
is in M. If N € MY and

t
N := M, — Z/ XOAUN WD, F;  0<t<T (2.21)
0

then

(M,N)y=(M,N); 0<t<Tas P and Py.

Here we say that M3 is the class of continuous local martingale on (€, F, P)
with P[M, = 0] = 1 and similarly the class M5 on (Q, F,P). In this proof we use

a few things.
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Proposition 2.5 (Kunita Watanabe Inequality). If M, N € M$ and X € L*(M)
andY € L*(N) then

/ | X,Y.|d(M, N) / X2d( 1/2(/ Y2d(N),)"/? (2.22)
Lemma 2.4 (Integration by Parts). For X, Y semi martingales we have
t t
/ X dYs = XY, — XoYy — / YidX, — (X,Y) (2.23)
0 0
Proof

(X037 = (o =10 =2 [ (X~ 1K, - X))~ (X - 7)

t
(4 VP = (o Yo =2 [ (X4 V(X +Yo) - (X +Y),
0
We get on subtraction

t t
AX,Y; — 4XoY, = 4/ X,dY, + 4/ VidX,+ (X +Y) — (X =Y.
0 0

By rearranging the terms we get the desired result.

Proof As W is of bounded quadratic variation and we require this result for
W hence we assume that M, N are of bounded variation. We also assume that Z;(X)
and Zl 1 fo st are bounded in w and t. Using Kunita Watanabe Inequality we
can say that M is also bounded. Using the m Integration by parts formula we say
that

Zt(X)Mt:/ X)dM, +Z/ M, XD Z,(X)dW}.

This is a martingale under P. By the lemma we have

Ep[M,|F,] = E[Z(X)M,|F,] = M,, asP and.

Zs(X)
This shows local (because of T) martingale property and because of continuity it

belongs Mtoe.

29



t t
M;N, — (M, N) :/ MudNu—l—/ N,dM,
0 0
+3 ] / M, XDN, WOy, + / N XOd(M, WDY,]
i=1 /0 0
Hence also

20NN - 01,3 = [ ' Zu(X)idN, + / ' ZJX)N,dM,

d t t
+3 ] / Z(X)M XD AN, WD), + / Z(X)N XD d(M, Wy, ]
0 0

=1

The above process turns out to be a martingale and hence lemma can be applied
to yield
Er[M;N; — (M, N);|F,] = M,N, — (M, N),

Theorem 12 (Girsanov’s Theorem). Let Z(X) as in be a martingale and W
a Brownian motion as discussed in the beginning of the section. We now let W =

{Wt = (Wt(l)a' ’ Wt(d))} where
- . . t .
0

This new process for each fired 0 < T < 00 is a d-dimensional brownian motion with

respect to the changed probability measure (due to Radon Nikodym theorem).

Proof This follows by putting M = W in and by martingale characterization

theorem.

2.5 Some Interesting Results

The condition under which the process Z;(X) as in is a martingale. The condition
is known as Novikov Condition. We had seen in the examples discussed earlier that

Z;(X) as described here is a super martingale.
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Theorem 13. If W s a d dimensional Brownian Motion and X is a d dimensional

measurable adapted process satisfying 2.17]. If
T
E[exp(l/Q/ 1, |2ds)] < 00 0<T < oo
0

then Z(X) from[2.18 is a martingale.

We also have representations of martingale in terms of Brownian motion.

Theorem 14. If M is a d dimensional local martingale on (2, F,P) and the cross
variation (M@, M), (w) is an absolutely continuous function in t for almost every
w. Then there ezist an extension (0, F',P') of (Q,F,P) on which is defined a d
dimensional Brownian Motion W = {(W}))L,, F';0 < t < oo} and a matriz X =
{(Xf’j)zjzl,]:';o <t < oo} of adapted processes with P’[f;(Xg’j)st < oo] =1 for

1 <i,57 <dwitht € [0,00) such that a.s P’ we have the representations
d ¢
M;:Z/ XHdwi 1<i<d
j=1"0

d t
(M©, M)y, = Z/ XUXPAW] 1< i,j <d.
j=1"0
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Chapter 3

Stochastic Differential Equation

3.1 Introduction

Stochastic Differential Equations (SDEs) are used to model diverse phenomena such
as fluctuating stock prices or physical systems subject to thermal fluctuations. The

stochastic differential equation is of the form
dXt = b(t, Xt)dt + O'(t, Xt)th (31)

This may be interpreted as the stochastic process X; changes in time ¢, its value
by an amount that is normally distributed with expectation b(¢, X;)d; and variance
o(t, X;)*0;. The solutions to are also known as diffusion process and are written
as

t t
X: = Xo —|—/ b(s, Xs)ds +/ o(s, Xs)dWs; 0<t<oo0.
0 0

The Stochastic differential equations has many applications in mathematical eco-
nomics like in option pricing theory where SDE’s are used to model fluctuating stock
prices.

Consider

dX, = X}dW, + X}dt, Xo=1

which can also be written as

t t
Xt:1+/ deWﬁ/ X3ds.
0 0
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We now apply [to’s formula

d(1/X¢) = 5(2/X7)(dX:)* = (1/X7)dX,

1

2
1

= 5 (2/X)(dX0)* — (1/X7)(XZdW, + Xdt)

= Xydt — (1) X} (X2 AW, + X}dt)

Now with a constant C=1 and Xy = 1 we can say that X; = =
- Wy
In the subsequent sections we discuss the uniqueness and existence of solutions. Ma-

jority of the text in this chapter can be referred from [2].

3.2 Strong Solutions

Equation (3.1) can also be written as

dX? = bi(t, X))dt + Y o8, X)W, 1<i<d. (3.2)
j=1

We treat here b;(t,z),0;;(t,z), 1 < i < d as borel measurable functions. b(¢,z) =
{bi(t, x) }1<i<aq is the drift vector and o(t,z) = {04;(t, ) }1<i<a 1<j<r is the dispersion
matrix. Here X is the solution of the equation and W is the r-dimensional Brownian
Motion.
To define the notion of strong solution we require a suitable filtration . We consider
a probability triple (2, F,P) and an r-dimensional Brownian Motion
W = {W,, FV,0 <t < oo} defined on it. We also consider a random vector ¢ with
values in R? independent of F%. This vector helps us in defining the notion of strong
solution.

We start with construction of the filtration. We consider

gt = 0’(57 W570 S S S t)
We augment it with null sets
N ={N CQ;3G € G, with NC G and P(G)=0}
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to get

Note: The Brownian motion W will remain a Brownian motion with respect to the

new filtration.

Definition 3.1. A strong solution of the stochastic differential equation 3.1, on
(Q, F,P) and with respect to the fivred Brownian motion W and initial condition &, is
a process X = {X;;0 <t < oo} with continuous sample paths and with the following

properties :
1. X is adapted to the filtration {F;} of 3.3
2 PlXg=¢] =1

3. PLf{|bi(s, Xs)| + 02(s, X,)} < o0] holds for every 1 <i<d, 1<j<r and

0<t< oo

4. The integral version of 3.1

t t
X=X+ / bi(s, X,)ds + £_, / 0ij(s, X3 )dW
0 0
holds almost surely.

Lets us define the notion of uniqueness as follows

Definition 3.2. If X and X are two strong solutions of 3.1 with respect to the r-
dimensional Brownian Motion W, initial condition &, drift vector b;(s,x) dispersion
matriz and (s, ) then P[X = X;0 <t < 0o] = 1. In such a case strong uniqueness

holds for the SDE.

We now need conditions for the uniqueness and existence of solutions. We first

see the uniqueness of the solution. We use Gronwall inequality in the proofs of these.

Proposition 3.1 (Gronwall Inequality). Let continuous g(t) satisfy

0<g(t) < f(t)+ a/otg(s)ds; 0<t<T (3.4)
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with a > 0 and f : [0,T] — R integrable. Then we have

g(t) < £(1) +a / £(t) expla(t — ))ds

Proof We have

Gesp(=at) [ g(s)as) = (o) =a [ g(s)ds)exp(=at) < J(O)exp(at)

This will give us the required result

Theorem 15. Let coefficients b;(s, X,) and 0;;(s, X;) be locally Lipschitz continuous
that is for every n > 1 there exist a constant C,, such that for every t > 0, ||z|| < n

and [ly|| < n:
16(¢,2) = bt y)|| + [|o(t,z) — o(t, y)|| < Cullz =yl (3.5)
Then strong uniqueness holds for[3.1]

Proof Let X and X be the solution of as in definition . Define the stopping
time be 7, = inf{t > 0; || X|| > n} n>1 and
7, = inf{t > 0;||X|| > n;n > 1}. We further define S,, = 7, A 7.

We have lim,,_,, .S, = o0o.

tASn R tASn ~
Xins, — Xt/\gn = /o {b(u, X)) — b(u, (X,))} + /0 {o(u, X\,) — o(u, (X,)).

Using the vector inequality, Holder inequality and we have for 0 <t < T

R tASn 5
El|Xins, — Xons, | < E / 1b(us X.) — blu, (X.))du} |2

a r tASh ~ .
eSS / o, X) = a3, (X)W D2

=1 =1 S )
=8 [ 00 = s (X)) HP
tASy, ’ N
4B / o, X.) — o(u, (X.))}|*du

t
< 4T+ 1)02/ El| Xins, — Xt/\SnHQdU'
0
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Apply Gronwall inequality to get that X and X are modifications of one another.

For existence of a solution we impose stronger conditions.

Theorem 16. Let coefficients b;(s, Xs) and o0;;(s, Xs) satisfy global Lipschitz and

linear growth conditions

16, 2) = bt y)|| + [lo(t, ) — ot y)|| < Cullz =yl (3.6)
lo(t, )1 + llo(t, 2)|I* < C*(1 + [|=[|*) (3.7)

every 0 < t < oo, z € RY y € RY and C € [0,00). Now on some probability
triple (2, F,P) let F; be as in let € be an R?* valued random variable which is
independent of the r-dimensional Brownian motion W = {W,, F}V.0 <t < oo}, and

with finite second moment

Bll¢]* < oo. (3.8)

Then there exist a continuous adapted process X = {X;, F;,0 < t < oo} which is a
strong solution of the[3.1] relative to initial condition & and Brownian motion W. This

process is also a square integrable process.

We use the idea of iterations and make it converge to a solution of [3.3] The

iterations look like
t t
X = ¢ +/ b(s, XM)ds +/ o(s, XINdW,: 0<t < oo. (3.9)
0 0

Proposition 3.2. Let M be a d-dimensional vector with M® & MJE Let

d
I84]; = mass |, A= 4r), (3.10)
Then for every stopping time T we have the inequality
A B(AT) < E(|M|7)*" < AnE(AT). (3.11)

Proposition 3.3. If M{" = 37| IN XidW where W is a r dimensional brownian
motion and

X={X;,=X/7;1<i<d; 1<j<r t>0}

37



Here X, is F; measurable and

1]1° = ZZ (X;7)*.

i=1 j=1

T
Ap = / 1XP
0

Then with

the above proposition holds
Proof
t t
B [ (0o X0) (s, X5 s M= [ o5, XE) = (s XEaw,
0 0
Then from the just stated results (above) and Lipschitz condition we have
t t
Bl M. < AE [ o5, XE) — o(s, X ds < ACE [ ¢ - x4 s,
8= 0 0

We also have

t
E||B)* < O%E/ 1 XF — X1 %ds.
0

Hence
t
Elimax| X4 = XE?) < 4C%(A+ TE [ X - X2 P
s< 0

Hence using successive iterations we get

(AC2(A + T)t)*
Kl '

E[max|| X — X7°] < max || X, — ¢||*
s<t s<T

By Chebyshev’s inequality we now get

1

(4-4C%(A + T)t)*
2k '

k!

k1L k)2 > < 1 2.
P| max||X;™ — X" = o | < dmax||X; — £

From Borel Cantelli lemma get that 3 Q* such that P(2*) = 1 and an integer valued
random N (w) variable such that ¥V w € Q*
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m<a%<||X§+1 — XM <1/2 VE> N(Ww)

m<a72<||Xf+m — XM <1/2" VE>NWw)Vm>1

Hence by this we can say that the sequence of sample paths are convergent in sup
norm from where the existance of continuous {X;;¢ < T} is established. Since T is
arbitrary and the process is continuous the sample paths uniformly converge on the

compact sets. Finally we show that
X, =limXF t>0

satisfies the 4th condition of the definition. Since the process is square integrable and
satisfy linear growth condition we have property 3 being satisfied of the definition.

The X which we get also clearly satisfies condition 1 and 2 of the definition.

Proposition 3.4. Let d = r = 1. Let us suppose that the coefficients of the one

dimensional equation satisfy

[b(t, 2) — b(t,y)| < Clo -yl (3.12)

|o(t, ) —o(t,y)| < h(lz—yl) (3.13)

Vite[0,00) and x,y € R, where Cis a positive constant and ’h’ is a strictly increasing

function with h(0) =0 and
/ h™%(u)du = oco; Ve > 0.
(0,¢)
Then we have strong uniqueness for [3.1]

Proof There exists a decreasing sequence {a,}>  in [0,1) such that lim,, . a, =0

and [ h™*(u)du = n ¥V n > 1. For each n there exist a continuous function p,

2
on R with support in (a,_1,a,) such that 0 < p,(z) < (W)’ Vz € (0,00) and
nh?(x

39



faan"’l pn(z) = 1. Then we have

lzl  ry
() ::/0 /Opn(u)dudy; z € R. (3.14)

This is a C?(R) function such that ¢/ (z)| < 1 and the sequence {1, }22; is non
decreasing. Let us take two solutions of [3.1] X, X®). By definition we take

t
E/ lo(s, X,)|?ds < 00; 0<t< o0,
0

t t
== X X = [ s, X0) = b X s + [ ol X0) — o5, X))
0 0

s

We further employ Ito’s Formula to get

n(E) = / UL (E)B(s, X{) — b(s, X)]ds + 3 / Un(Edlo(s, XP) = o (s, XP)ds

* / | U (Z6)[o(s, X)) — o(s, X P,
0

We now have E[ [} ¥/, (Z,)[0(s, XM —o(s, X{P)]2dW,] = 0 as W is a brownian motion

and E[folt lo(s, X;)|?ds] < 00;0 <t < co. Further we have for the second term
¢ ¢
Bl [ W(En ol X00) = (s, XIds] < B [ WS HIENPds) < 2¢/m.
0 0
Hence forth

t
BGu(20 = E [ UE)Ib(s, X1 — b5, X)ds + 1/
0
t
< C’/ E|Zslds +t/n
0
as n — oo gives us F|Z;| < C fot E|Z4|ds. Now by Gronwall inequality our result
follows.

The proof of the existence of the solution of [3.1] follows in a similar fashion as in the
proof of Theorem [16]
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3.3 Weak Solutions

Definition 3.3. (X, W) on (2, F,P) is a weak solution of the equation[3.1] if following
happens

1. F; is a filtration of F satisfying usual conditions.

2. W = {W, F,0 <t < oo} is an r-dimensional brownian motion and X =

{X;, F:,0 <t < oo} is an adapted RY valued process.

3. PLfod|bi(s, Xs)| + 075(s, Xs)} < oc] holds for every 1 <i <d1<j <7 and
1 <t <o0.

4. The integral version of 3.1
X=X+ / bi(s, X )ds + $5_, / 0ij(s, X3 )dW
0 0
holds almost surely.

With this definition one can say that strong solution satisfies all the conditions of

being a weak solution.
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Chapter 4

New Stochastic Integral

4.1 Introduction and Motivation

In chapter two we constructed the stochastic integral where the integrand was an
adapted process. The process is adapted to the filtration to which the Brownian
motion is adapted. But if the integrand is not adapted with respect to the filtration
(upto that time) then we cannot integrate using that definition. This chapter presents
the idea of the Kuo’s paper [3], [4],[5] published after 2008 to integrate the anticipating
integrals with respect to the Brownian motion. Let W = {W,, F;,0 <t < oo} be a
Brownian motion and let X = {X;,0 <t < oo} be a stochastic process. Then how
we define a stochastic integral such that [ X;(w)dW;(w) is a martingale. Our idea is
to make this a stochastic integral.

We draw some ideas from the authors book [6]. Let X; = W;; Vt and consider a
partition A, = {0 = to, t1,...,t, =t} of [0,¢]. Let L,, R, be

L, = Z Wt'Lfl(Wti - Wtifl) (4'1)
=1
R, = Z Wti(Wti - Wtifl) (4'2)
=1
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Further

Rn - Ln = Z(Wtz - V[/ti—l)Q (43)
i=1
Ry+Ly=Y (W2 =W2 )=W?-W; (4.4)
=1

Henceforth

R, = %(;m WY )

(Wf . Z(Wti _ Wti_l)Q).

i=1

1
L,==
2
is regarded as the quadratic variation and hence by the properties of Brownian
motion we say that it is non zero and hence L, # R, as ||A,|| = 0
We note that as ||A,| — 0 we have

Ri— lim Ry — (W2—W2)+1)
| An[—0 2

1
@:mn%:?W—W—w

[An]|—0

As mentioned previously we want to assign meaning to the integral so that it satisfies
martingale property and becomes a stochastic integral. Here EFR; = t which is not
constant as required in the case of martingales, on the other hand FL; comes out to
be a constant which also falls in place with expectation of any martingale. We now

check that is L; a martingale

E(W2|F,) = E(W, — W, + W,)*|F.)
= E((Wt - W5)2 + QWS(Wt - Ws) + W3|~Fs)
= E((W, — W,)?) 4+ 2W.E(W; — W,)) + W7

=t—s+ W2

Taking this into account we have E(L;|Fs) = Ly and hence we can conclude that we
should take left end point of each subinterval as the evaluation point as it gives us

the martingale property. With L; other properties of integral discussed in chapter 2
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are also satisfied. Hence we can use L; to compute the stochastic integral as it goes

by the definition.

We know that the integrand should be adapted to the the filtration but what if it

is not adapted. Take for example
t
0

We note that E[W;W;] = min{1,t}; 0 <t < 1 which is not a constant. This by
definition is not a ‘defined’ integral as W; is not adapted to the filtration o{Ws; s <
t0<t<1}.

The new idea defined in the Kuo’s paper is something like: we break the above inte-
grand Wy into Wy = (W — W,)+W,. Now [, WidW, = [5}(Wy —W,)dW,+ [ W,dW,.
Here we have the second integral as the stochastic integral which through the Ito’s
formula gives us %(Wf —t). The term Wj — W is not adapted (i.e anticipating). This
integral is then taken forward by defining

n

t
/ (Wy = W)dW, = lim Y (Wy — W,)(W,, = W,,_,)
0

A—00

=1

We pause to note that here we have taken the right end points whereas in case
of the stochastic integral of adapted integrand we had taken the left end points to

evaluate the integral.
Z(Wl - Wsz)(WSZ - WSi—1)

=1
n

=W Z<Wsl - Wsi—l) - Z W3i<Wsi - WSz’—l)
=1

i=1

- WIWt - {Z(Wsz - W3i71)2 + Z Wsz‘ﬂ (WS'L - W8i71)}
i=1 i=1

1
— WiW, — {t + 5(Wt2 —t)}.
Which gives us
t Lo Lo
WiW, = WiW, — {t + g(Wt — )} + §(Wt —t) =W W, —t.
0
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We further note that E[W W, —t] = min{1,¢} —¢ =0 for 0 <t¢ < 1. This is one of
the properties of stochastic integral that E[[ X;dW;] = 0.

4.2 Stochastic Integral

To take this idea forward we need a few notions. We fix a brownian motion W =

{Wt,ﬂ,o S t < OO}

Definition 4.1. A stochastic process & and a filtration {F;}is said to be instantly

independent with respect to each other if & and F; are independent for every instant.

Both W7 — W, and W; are not adapted for 0 < t < 1 but W; — W, is instantly

independent process with respect to F;.

Definition 4.2. Let X = {X;, F,0 < s < t}, be adapted and let ,0 < s < t be

instantly independent. Define the stochastic integral of X &, by

t n
](Xf) = /0 ngdes - krgoiz:;Xti—lgti(Wti - Wti—l)' (45)

If& =1 V t then we have the stochastic integration defined in chapter 2. Carrying

on further we observe that

E{Xtiflfti(wti - Wtifl)} = E{E[th‘Agti(Wti - Wti&)’f.ti]}
Fil}

E{Xti—l (Wh - Wtifl )E[gtl

E [gtb

Fi.l = El&,] as & is instantly independent. Hence we have

= Bl&, | E{B[X,, (Wi, — Wi, )| Fi ]}

=0.

Hence E(I(X¢)) = 0. This is also one of the properties of the stochastic integral
defined in chapter 2.

We now discuss some examples.

Example 1 We now evaluate f(f WEdW, We do it case by case
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Casel: 0<t<1
Wi = (W, —W,)*+2W, (W, —W,)+W?2. By definition of the corresponding stochastic
Integral this is

S AW = W2) +2W,,_, (Wh = W) + W2 (W, = W) (4.6)
=1
= WPW, = 2w, > (W, = W,,_,) Z W, )% (4.7)
=1

Here we make use of the fact that if X = {X;, 5,0 < t < oo} is a continuous

stochastic process with the property that

lim V/”(A) = A,

A[l=0

where A, € [0,00) is a random variable then limjaj_o V/(A) = 0 where 0 < p < q.

We prove this fact by using that

lim V/(A) < lim VP(A) sup(|Wy — Wi[;0 <r <s<t)!?
Al =0 A=

Hence as partition goes to zero V,7(A) — 0
Therefore the second summation in goes to t and third one goes to 0. By this

we have
t
/ Wdes = Wth — 2Wiht, 0<t<I1.
0

Case 2: t > 1

/WldW /WldW +/WldW
=W} —2W; + WEH(W, — W)
:WEWt—2W1
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Example 2 Let us evaluate fot WiWdW,
Case 1 0 <t <1: We write W W, as

WiW, = W(Wy — W,) + W2

Once again we look at
Z{&l W)+ Wo W = W)

:WIZWSi 1(W WSL 1) ZW‘” 1(W Ws‘ 1)
=1

This converges in probability to

t t
Wl/ WsdW, —/ Wds.
0 0

Hence

/Wﬂ/VdW —W1 2 1) /st 0<t<1

/ Wi W, dW, = §W1(Wf —1) —/ Weds  t> 1.
0 0

Example 3
Let £(x) be a continuous function. we evaluate fo W1E(Ws)dWy where t € [0, 1]. We

write the integrand as

Wig(Wy) = (W1 = Wi)§(Ws) + W (Ws).

Then we have

n

D> LWy = W )EW,,_) + W W) H W, — (W, )

=1
=W Zf(Wsi—l W Wsz 1) ZE(WSFl)(WSz - WS'L 1)2'
i=1 =1
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This converges in probability to

W /0 (W aw, - /0 E(W.)ds

which gives us for 0 <t <1

[ weavgaw, = wi [ ewaaw.— [ covas
/0 W)W, = W, /0 (W aw, /0 (s

4.3 TIto’s Formula

Fort>1

In this section we try and give Ito’s formula for the newly defined stochastic integral

[4]. Consider a partition A = {so, ...., s, } of [0,T].

Lemma 4.1. Let f(z) be a continuous and g(z) be a C'-function. Let h(z,y) =
f(x)g(y — x). Then for each t € [0,T]

zn:h(Wsil,WT)(W - W)

=1

t s
— / B, W) dW, +
0

5y — (W5, Wr)ds

in probability as ||A]|— 0.

Proof

Z h Si 17 W WS'L 1) Z f(WSz‘A)g(WT - Wsifl)(W WS'L 1)

i=1

~ Zf(Wsifl){g(WT - Wsz) + g/(WT - Wsz)(W Wsz 1)}(W Wsz 1)

i=1

The above approximation is due to Euler’s method. As ||A|| — 0 this converges to

—>/f oW — W, }dW+/f g (W — W,)ds
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which gives the desired result.
Using the above rule we give a proof of a formula which can be considered as the

Ito’s integral of the new stochastic integral.

Theorem 17. let f(z),g(x) € C? and h(x) be as defined above. Then the following
equality holds for 0 <t <T

16%h 5%h

W(Wi, W) = h(Wo, W) / S, W dW+/{25 (V. Wi (V. W) s

(4.8)

Proof With the same partition we proceed
h(We, Wr) = > {h(W,,, Wr) = h(W;,_,, Wr)}

<y (g—Zm(Wsi_l,wT»(W — W)

162 ,
+§ﬁ(W3i71’ WT)(Wsz - Wsifl) )

The above approximation is due to Taylors expansion. Using the lemma to the

function — we get
ox

Y oh )

% (W, W) dW, + - (W, Wr)ds

and the second sum converges in probability to

162%h
\/O\ 25 Q(WSJWT>

with these two limits together we get the desired result.

This theorem can only be applied to the case where h is a function of W;. Even if

t
/ WidWs
0

then we have to decompose this as Wy = (W; — Wy) + W

we want to integrate

We try and define a Ito’s formula which is valid for a bigger class.
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Definition 4.3. An Ito’s Process is a stochastic process of the form
t t
X =Xo+ / p(s)dWs + / q(s)ds, 0<t<T. (4.9)
0 0

Here X; 1s F; measurable Vt and p € L(, L*[0,T]) and g € L(Q, L*[0,T]).

Here for any stochastic process X = {X;,0 < t < T} in £(Q, L?[0,T]) it is F;
adapted such that fOT | X;|? < oo. Similarly for £(Q, L'[0,T]).
Consider another process which we require for the next result which is generalized

version of earlier Ito’s theorem.
T T
Y, = Yr + / u(s)dW, + / o(s)ds (4.10)
t t

where Y7 is independent of Fr and the functions v € L?[0,7] and v € L'[0,T).
Our motive is to replace f(W;) with f(X;) where X; is of the form and g(Wy)
with ¢(Y;) where Y; is of the form |4.10}

Theorem 18. Let h(z,y) = f(x)g(y), where f,g € C*(R). Let X, be as in[{.9 and Y,
as in[{.10. Then for 0 <t <T.

Y oh 1 ["6%h 5
X, Y) = h(Xo, Yo) + | — (X, Yo)dXs+ 5 [ (X, Y,)(dXS) (4.11)
0 Oz 2 ), oz

tsh 1 [t§2h
— (X, Y)Y, + = | —(X,,Y.)(dY.)>. 4.12
A 5y( Sy s) s+2/0 5y2( Sy 8)( S) ( )

We make a note of a few things required for the proof.
(dW)? =dt (dt)> =0 dW,dt = 0.

Proof We use the partition as introduced in the beginning.
h(Xt7 Y;f) - h(X07 Yb) = Z[h(XSza Ysl) - h(XSi—17 Ygifl)] (413)

i=1

= Z[f(Xsi)g(Ysi) — F(Xsi)g(Ysi )] (4.14)
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We note that we can write 4.9 and 4.10 in the differential form.

dX, = p(t)dW, + ¢(t)dt
dY; = —u(t)dWy — v(t)dt

Using taylors expansion of f and g to obtain

f(st) ~ f(XSz'—1) + f/(XSi—l)(Xsi - st'—l) + %f”(Xsi—1>(Xsi - Xsi—1)2

9e ) % Ve )+ g (Ve (Ve = Ve )+ 50" (Ve )~ (Vi = Vi)

by [4.15, 4.16| and 4.14] we have

h(Xt7 }/1;/) - h’(X07 }/0)

= D)+ O K = X)X ) (X = Xe ) 000

=1

1) (800 4 )0V = Vi) 5 0LV = Vo))

- Z[<f,<XSz—1)g(Y;z)<XSz - XSi—l) + %f”(XSi—l)g(}/Si)(XSi - XSi—1)2)

=1

—(f(XsH)g’(Y D0 = Yo )P 4 0 ) () =0 = i )P

h 16%h

< s Xs- - Xs- ac o Xs- 7Y;- Xs- - Xs- 2
Z 5 i— 17 ( i 1—1)+25x2( i—1 z)( i 2—1)

oh 16%h

— (X, ,, Y5, (Ys, = Y, — (X, ,, Y5, (Ys, — Y, .

6y( Si—1) sz)( Si— l) 25y2( Si—19 81)( Si— 1) ]

Now as ||Al|, — 0 this expression converges in probability to the RHS of [4.12]

(4.15)

(4.16)

The above integral does not apply directly to the integrals of the form fol WidWs.

We give the next result from [4]. In this theorem we can evaluate the integrals

whose

integrand is not adapted or not instantly independent. The difference from the last

theorem will be that the instantly independent process Y; as given in 4.10| can be just

Y}, (k is constant) because of which it does not have to depend on t parameter.

In the

proof the notion of infinite radius of convergence of function g is used so as to move

freely from Y}, to Y;.
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Theorem 19. Suppose that h(x,y) = f(z)g(y), where f € C*(R), and g € C*(R)

has Maclaurin expansion with infinite radius of convergence. Let X, be as in Fquation

and Y; be as in Equation[. 10, Then fora <t <b

Y oh
WX, Yo) = h(Xo, Ya) + | = (X, Ya)dX, (4.17)
o O
1 [*6%h )
- | (X, Yo)(dX,)? — X, Y,)(dX,)(dY, 4.1
43 | Y — [ S (LY x @) (118)
n+1l, m
Example: Let h(z,y) = 1 with m, n as integers. If we take X; and Y, as

Wy and Wy — W, respectively on the interval [0, 1]

Wln-‘erlm, W(’)rL—i-lWlm, 1 n 1 =
= WIPW AW, + — Wr—W"dt
n+ 1 n+ 1 +/0 Lo t+2/0 £
1
+m / WrWdt. (4.19)
0
Hence we have
1 Wn+m+1 1 n
/ Wrwrtdw, = ——— — Ww! / W (S Wi 4+ mWV,)dt.
0 n+1 0 2

4.4 Stochastic Differential Equation
We try to solve a SDE in which the initial condition is not adapted. Consider
1
dXt — Xtth + WXtdt X() — W1 0 S t S 1
1

which can be written in the integral form as

t t
1
X, =W + / X, dW, + / — X,ds. (4.20)
; o W

1

We try and solve this equation using iteration technique. Let Xt(l) = Wj. Then

using the integral computed in the first section and 4.20

t t
1
X =w, + / X dW, + / - Xads = Wi(1+W)).
0 0

1
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Using one of the examples of section 2 we write

¢ b1 1 1
x® =w, +/ X@aw, + / — XPds = Wi (1+ W, + -W2 — -t).
; . W 2 2

Due to the last example of section 2 and &(x) = 2% we have

1 1 1 1
Xt(4) =Wi(1+W,+ ivvf - ét + thS - §tWt)’

We also note that this is a Hermite polynomial where

|

—~
n/2 n

where H;(W,,t) = Z (2k — 1)(—t)F -2k,
k=0 \ 2k
In general we can write
m—1
x™ =w, > mHn(Wt, t)
i=0

For say

X® = Wy [Ho(W,, t) + Hy (W, 1)]
- Wl[l + Wl]

1
Xt(g) = Wl[HO(Wta t) + Hl(Wtyt) + §H2(Wt’t)]

1
= W1[1 + W1 + §Wt2 — t]

Hence by the above discussion we can say that

1
Xy = Wiexp(W, — 575)

which is the desired solution.
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4.5 Some open problems

1. What is the class of stochastic processes & for which the new stochastic integral

exists.

2. Can we have Conditions of Existence and Uniqueness for general stochastic

differential equation.
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