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Abstract

Given a vector bundle, a natural question to ask is whether it is trivial. This is equiv-

alent to the statement that the bundle admits as many nowhere vanishing, linearly

independent vector fields as its rank. Hence, the obstruction to triviality is vanishing

of some section. We try to understand this question by studying some well-known

topological invariants of real and complex vector bundles. We will construct Stiefel-

Whitney classes of real vector bundles and Chern classes of complex vector bundles.

These invariants are actually cohomology classes in the cohomology ring the base

space B and trivial bundles have trivial invariants. In addition, they also help in

distinguishing between different bundles over the same base: in that, bundles with

different invariants are different.

We first study Chern-Weil theory which uses differential geometry to construct de

Rham cohomology classes for a differential manifold.

We will then study Stiefel-Whitney and Chern classes using algebraic topology for

CW complexes.

vii



viii



Contents

1 Chern-Weil Theory 1

1.1 Principal Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Invariant Polynomials and Characteristic Classes . . . . . . . . . . . 5

2 Classifying Spaces 7

2.1 Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Classification Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Cell Structure for Grassmannians 13

4 Characteristic Classes 17

4.1 Leray-Hirsch Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Stiefel-Whitney and Chern Classes . . . . . . . . . . . . . . . . . . . 19

4.3 Cohomology of Gn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



x



Chapter 1

Chern-Weil Theory

In this section we will define Principal Bundles and construct some canonical de Rham

cohomology classes for the base. We follow the treatment in [4, 6, 7].

1.1 Principal Bundles

Definition 1.1. Let π : E → B be a map between smooth manifolds. We say that the

quadruple ξ = (E, π,B, F ) is a locally trivial smooth fibre bundle with typical fibre F

if for every point b ∈ B,

1. There is an open neighbourhood U of b such that π−1(U) is diffeomorphic to

U × F .

2. The fibre over b, viz., π−1(b) := Eb is isomorphic to F .

such that the following diagram commutes.

π−1(U) U × F

U

................................................................................................................................................................ ............
φ

............................................................................................................................... ........
....

π

................................................................................................................................
....
............

pr1

Definition 1.2. The quadruple (P, π,M,G) with π : P →M is said to be a Principal

fibre bundle with Lie group G, if there is a smooth free right action µ : P × G → P

such that,

1. The action preserves the fibres: π(ug) = π(u) for all u ∈ P and g ∈ G.
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2. For each p ∈ M , there is a bundle chart (U, φ) containing p such that if φ =

(π,Φ) : π−1(U)→ U ×G is a diffeomorphism and,

Φ(ug) = Φ(u)g

for all u ∈ π−1(U) and g ∈ G.

We note that the base manifold is in fact the quotient of P by the G action, i.e,

M ' P/G.

Proposition 1.3. Let (P, π,M,G) be a Principal Bundle. The right G-action re-

stricted to the fibres is transitive.

Proof. It follows from the definition that any orbit is contained in some fibre. Let

u1, u2 ∈ Pm the fibre over the point m ∈ M . Consider a coordinate chart (U, φ)

containing Pm. Now, let g := Φ(u2)−1Φ(u1). So that, Φ(u1) = Φ(u2)g = Φ(u2g).

Then,

φ(u1) = (π(u1),Φ(u1)) = (π(u1g),Φ(u2g)) = φ(u2g)

Since, φ is a diffeomorphism, u1 = u2g

For the map π : P →M , at any point u ∈ P we have the sequence,

0→ ker(π∗u)→ TuP → Tπ(u)M → 0

A vector v ∈ TuP is said to be vertical if v ∈ ker(π∗u).
For a fixed g ∈ G, we will the action of this element on P by Rg.

Let g be the lie algebra of G. Let conjg : G → G denote conjugation by g ∈ G.

This is an isomorphism of G and therefore, also induces an isomorphism of g, which

is denoted by Ad(g).

For any X ∈ g, we have an associated one-parameter subgroup exp(tX) of G given

by the exponential map.

Let µ : P × G → P be the right action of G on P . This gives rise to the action,

P × exp(tX)→ P , which is a flow on P . The vector field associated with this flow is

called the fundamental vector field generated X and is denoted by X†. Alternately,

we may define,

Definition 1.4 (Fundamental Vector Field). Let X ∈ g be a vector in the lie algebra

of G. Define, (X†)p = µ∗(p,e)(0p, X), for p ∈ P and e ∈ G. Then the vector field, X†

is called the fundamental vector field generated by X.
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Let P × g be the trivial vector bundle with fibre the lie algebra g of G. The above

discussion also gives rise to a map

ψ : P × g→ ker(π)

(p,X) 7→ (X†)p

Notice that if (X†)p is zero at some point p, then the one parameter subgroup

exp(tX) fixes p, i.e, µ(p, exp(tX)) = p for all t. As the action of G is free, this means

that exp(tX) = e for all t. Thus, X = 0. This tells us that any non-zero vector in

g gives rise to a nowhere vanishing vector field on ker(π). So, the map ψ gives a

trivialisation of ker(π).

We can now define the notion of a connection on the principal bundle P .

Definition 1.5. A connection on P is a g-valued one form ω : TP → g satisfying

1. If A† is fundamental vector field on P generated by A ∈ g, then ω(A†) = A

2. R∗gω = Ad(g−1)ω

A vector v ∈ TuP is said to be horizontal, if ω(v) = 0

Note that a connection on a principle bundle always exists. This is because locally

P looks like Ui × G and we can easily a connection ωi on every such Ui. The global

one form is constructed from these ωi’s by using partitions of unity. In this case the

curvature of ω is trivial.

Definition 1.6. Let ω be a connection on P . We define its curvature to be the

g-valued two form given by,

Ω(u, v) = dω(u, v) + [ω(u), ω(v)]

We will denote the collection of all k-forms on a manifoldM byAk(M). A principal

bundle π : P →M gives rise to the inclusion π∗ : Ak(M) ⊂ Ak(P ).

Definition 1.7. Let η ∈ Ak(P ).

1. η is basic if it lies in the image of π∗.

2. η is semi-basic or horizontal if η(v1, . . . , vk) = 0 whenever v1 is tangent to a

fibre.
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As η is a skew-symmetric form, the above condition is sufficient since

η(v1, . . . , vi, . . . , vj, . . . , vk) = −η(v1, . . . , vj, . . . , vi, . . . , vk)

The following two lemmas will be crucial in our discussion of Chern-Weil Theory.

They will, in effect, allow us construct invariants for the bundle in the cohomology of

the base space.

Lemma 1.8. 1. Basic forms are horizontal.

2. η is horizontal ⇔ each p ∈ P has a neighbourhood U on which there are basic

forms ηi such that η =
∑
aiηi for some functions ai : U → R.

Proof. (i) If η is basic, then η = π∗ξ for some form ξ on M . If v1 is vertical, then

π∗(v) = 0, so η(v1, . . . , vk) = ξ(π∗(v1), . . . , π∗(vk)) = 0

(ii)⇐: As ηi’s are basic, they are also horizontal and so is their linear combination

η =
∑
aiηi.

⇒: Fix p ∈ P . Choose a trivialisation around the point π(p). Let V be coordinate

neighbourhood of the point π(p) so that π−1(V ) ' V × G. Write the point p as

p = (pM , pG). Then choose a coordinate neighbourhood W around pG. This gives

a local coordinate system (x, y) on the neighbourhood ψ−1(V ×W ) of p. η can be

written in this coordinate neighbourhood as, η =
∑
aIJdxI ∧ dyJ . Let bI and eJ

denote the dual bases to dxI and dyJ . Since η is horizontal, aKL = η(bK , eL) = 0 if

L 6= ∅. Thus η =
∑
aIdxI .

The above result can be used to prove the following lemma

Lemma 1.9. Let π : P → M be a principal G-bundle with right action Rg : P →
P, g ∈ G. Let η be a k-form on P . Then

η is basic⇔ η is horizontal and right G-invariant

Proof. ⇒: By the previous lemma, we only need to show that η is right G-invariant.

As η is basic η = π∗(ξ) for some form ξ on M . Then R∗gη = R∗gπ
∗ξ = (πRg)

∗ξ =

π∗ξ = η.

⇐: Since η is horizontal, we can write it locally as, η =
∑
aiηi for some basic

forms ηi and functions ai : U → R. Now, the G-invariance implies that

∑
aiηi = R∗g(

∑
aiηi) =

∑
(R∗gai)ηi.

This means that R∗g(ai) = ai. Thus, ai(pg) = ai(p), i.e, the coefficients ai are constant

along the fibres and so are basic functions. Thus, η is basic.
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1.2 Invariant Polynomials and Characteristic Classes

Let π : P →M be a principal G-bundle with a connection. Let Ω be the curvature.

Consider the lie algebra g of G. Let Sk(g) be the collection of symmetric k-multilinear

functions on g, or equivalently,

Sk(g) = {f |f : g⊗ . . .⊗ g︸ ︷︷ ︸
k−times

→ R, f is symmetric and linear}.

We will use these two notions interchangeably. Let Ik(G) denote the collection of all

symmetric k-multilinear functions on g which are invariant under the adjoint action

of G, i.e, for any a ∈ G

f(Ad(a)v1, . . . , Ad(a)vk) = f(v1, . . . , vk).

For any f ∈ Ik(G) define,

f(Ωk)(v1, . . . , v2k) := f ◦ Ω ∧ . . . ∧ Ω︸ ︷︷ ︸
k−times

(v1, . . . , v2k),

where v′is ∈ TuP and Ωk ∈ A2k(E, g⊗ . . .⊗ g). Thus f(Ωk) ∈ A2k(P ).

As R∗hΩ = Ad(h−1)Ω, and f is invariant, f(Ωk) is right invariant. Also, since Ω is

horizontal, so is f(Ωk). Hence, f(Ωk) ∈ π∗A(M), and gives rise to a 2k-form f̄(Ωk)

on M .

Proposition 1.10. f̄(Ωk) ∈ A2k(M) is a closed form, i.e, d(f̄(Ωk)) = 0

Proof. As π∗ : Ak(M) → Ak(P ) is injective, we prove that the form f(Ωk) is closed.

This result follow from the Bianchi identity, dΩ = [Ω, ω]. We have

df(Ωk) = f(d(Ωk)) = k f([Ω, ω] ∧ Ωk−1).

using the symmetry of f . As the above form is horizontal, it suffices to show

that it vanishes on (2k + 1)-tuples of horizontal vectors. But, as [Ω, ω] vanishes on

horizontal vectors, this is true.

We denote the cohomology class associated with f̄(Ωk) by w(f, P ) ∈ H2k
DR(M,R).

We will now show that w(f, P ) are independent of the choice of a connection. To

do this, we will use the following version of the Poincaré lemma.
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Lemma 1.11. Let i0, i1 : M → M × R be the inclusions i0(p) = (p, 0) and i1(p) =

(p, 1). Then, there is an operator h : Ak(M × R) → Ak−1(M) such that, for η ∈
A(M × R),

(dh(η)− hd(η)) = i∗1(η)− i∗0(η)

Theorem 1.12. The cohomology classes w(f, P ) ∈ H2k
DR(M,R) are independent of

the choice of a connection on P .

Proof. Let ω0 and ω1 be two connections on P and consider the principal bundle

(P × R, π × id,M × R). This has a connection defined by,

ω̃(x,s) = (1− s)ω0x + sω1x

where (x, s) ∈ P × R. Note that ι∗ν(ω̃) = ων for ν = 0, 1.

Hence, ι∗ν(Ω̃) = Ων .

From 1.11, we obtain

dh(f(Ω̃k)) = ι∗1(f(Ω̃k))− ι∗0(f(Ω̃k))

= f(Ω1)− f(Ω0)

The classes w(f, P ) have the following important property:

Theorem 1.13. Let (ξ, ξ̄) : (E,N, π′) → (P,M, π) be a morphism of principal G-

bundles, then w(f, E) = ξ̃∗w(f, P ).

Proof. Let ω be a connection on P . This induces a connection ξ∗ω on E, such that

the curvature is given by ξ∗Ω. Then,

f((ξ∗(Ω))k) = ξ∗f(Ωk)

= ξ∗π∗f(Ωk)

= π′
∗
ξ̃∗f(Ωk)

which proves the result.

As seen above if the bundle is trivial, then it has a canonical connection such that

the curvature is identically zero. Then all classes w(f, P ) are trivial.
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Chapter 2

Classifying Spaces

From now onwards, we will work in the topological category, at times restricting our

attention only to CW complexes

We will prove the following classification theorem. This material follow [2]

Theorem 2.1 (Classification Theorem). Let B be a paracompact Hausdorff space.

There is a one-one correspondence between homotopy classes of maps f : B → Gk

and isomorphism classes of rank k-vector bundles over B, given by,

[B,Gk]→ V ectk(B)

f 7→ f ∗(γk)

2.1 Grassmannians

We will start with the definition of a vector bundle.

Definition 2.2. Let V be a finite dimensional vector space over R or C. A vector

bundle with typical fibre V is a quadruple (E, π,B, V ) with π : E → B such that:

1. For any p ∈ B there is an open neighbourhood U of p such that φ : π−1(U) →
U × V is a homeomorphism.

2. For any x ∈ U , φ|Ex : Ex → V is a vector space isomorphism.

The Stiefel manifold Vk(Rn) is the open subset of Rn×k defined as,

Vk(Rn) = {A ∈ Rn×k|rk(A) = k}

We write such an A as A = (v1, v2, . . . , vk). Then, there is natural action of GL(k,R)

on Vk(Rn) given by the usual matrix multiplication on the left.
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Then one defines the Grassmannian, Gk(Rm), as the quotient of Vk(Rm) by the

action of GL(k,R) and we have a map,

p : Vk(Rm)→ Gk(Rm)

(v1, . . . , vk) 7→ span{v1, . . . , vk}.

Consider,

γk(Rm) = {(p, v)|p ∈ Gk(Rm), v ∈ p}.

Let X ∈ Gk(Rm). Let Π : Rn → X be the projection onto X.

Choose, U = {V ∈ Gk(Rm)|V ∩X⊥ = 0}. This is an open set of Gk(Rm).There is a

local trivialisation on U given by,

Φ : π−1(U)→ U × Rn

(V, v) 7→ (V, v · v1, v · v2, . . . , v · vk)

Where, {v1, v2, . . . , vk} is an orthogonal basis of X.

Now, for Rm ⊂ Rm+1 ⊂ . . .Rn ⊂ . . ., we have the inclusionsGk(Rm) ⊂ Gk(Rm+1) ⊂
. . . Gk(Rn) ⊂ . . ..

We define the infinite Grassmannian as,

Gk =
⋃
m≥k

Gk(Rm)

A set U ⊆ Gk is open if and only if its intersection with Gk(Rm) is open for all m.

This is called the weak (or direct limit) topology.

Just as in the finite case, we may construct a tautological bundle γk over the

infinite Grassmannian. We have,

γk =
⋃
m≥k

γk(Rm)

Lemma 2.3. π : γk → Gk is a vector bundle.

To prove this, we need to use the following lemma

Lemma 2.4. Let A1 ⊂ A2 ⊂ . . . and B1 ⊂ B2 ⊂ . . . be sequences of locally compact

spaces with direct limits A and B. Then the product topology on A×B coincides with

the direct limit topology associated with the sequence A1 ×B1 ⊂ A2 ×B2 ⊂ . . ..

8



Proof. If W is open in the product topology, then for any (a, b) ∈ W , basic open sets

with a ∈ U and b ∈ V such that (a, b) ∈ U×V ⊂ W . But U is open in A if and only if

U∩Ai is open for all Ai (similarly for V ), and note that U×V ∩Ai×Bi = U∩Ai×V ∩Bi

for all i. Hence, U×V is open in the direct limit topology associated with the sequence

A1 ×B1 ⊂ A2 ×B2 ⊂ . . ., and so is W .

Conversely, Let W be open in the direct limit topology, and let (a, b) be any point

in W . Suppose that (a, b) ∈ Ai×Bi. Choose a compact neighbourhood Ki of a in Ai

and a compact neighbourhood Li of b in Bi, so that Ki × Li ⊂ W . It is now possible

to choose a compact neighbourhood Ki+1 of Ki in Ai+1 and Li+1 of Li in Bi+1, so

that Ki+1 × Li+1 ⊂ W . Continuing by induction, we get sequences Ki ⊂ Ki+1 ⊂ . . .

with union U and Li ⊂ Li+1 ⊂ . . . with union V . Then U and V are open sets, and

(a, b) ∈ U × V ⊂ W . Thus, W is open in the product topology.

Proof of 2.3. As in the finite case, take X ∈ Gn and let Π : R∞ → X be the projection

onto X. Choose U = {V ∈ Gn |V ∩X⊥ = 0}. Then,

Uk = U ∩Gn(Rn+k) = {V ∈ Gn(Rn+k) |V ∩X⊥ = 0}

so that U is open in the direct limit topology. Taking the map,

Φ : π−1(U)→ U ×X

(V, v) 7→ (V, v · v1, v · v2, . . . , v · vk)

(where {v1, v2, . . . , vk} is an orthogonal basis of X), we see that Φ is continuous in

the direct limit topology and, therefore, by the previous lemma, it is continuous in

the product topology.

2.2 Classification Theorem

We will now prove the following theorem,

Theorem 2.5. Let B be a paracompact space and (E, p,B × I) be a vector bundle.

Then, the restrictions of E over B × {0} and B × {1} are isomorphic.

Proof. Compact Case: Let us first prove this in the compact case. The general case

is similar.

By compactness of B × I, we can find finitely many open sets, U1, U2, . . . , Um such
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that p−1(Ui × I) is trivial.

Choose a partition of unity {φi} subordinate to Ui such that supp(φi) ⊂ Ui. Define

ψi : B → I by ψi(x) :=
i

Σ
ν=1

φν .

Let Xi := {(x, ψi)|x ∈ B} be the graph of ψi. Then we have a homeomorphism,

πi : Xi → Xi−1

(x, ψi(x)) 7→ (x, ψi−1(x)).

We will construct a homeomorphism hi : Ei → Ei−1.

Since supp(φi) ⊂ Ui, on W = B \ Ui, ψi = ψi−1.

Thus, p−1(Xi|W ) = p−1(Xi−1|W ) and the homeomorphism over W is just the identity

map. Now, by construction, the bundle is trivial over Xi|Ui
. Hence, we have,

p−1(Xi|Ui
) 'θi Ui × I × Rm

fi→ Ui−1 × I × Rm 'θi−1
p−1(Xi−1|Ui−1

)

where θi’s are the trivialisations. Patching these maps together we obtain a bundle

isomorphism, hi : Ei → Ei−1.

Notice that Em = p−1(B × {1}) and E0 = p−1(B × {0}).
Then, the composition h := h1 ◦ h2 ◦ . . . ◦ hm is the required isomorphism.

General Case: As B is paracompact, we can find a countable open cover {Vi}i∈I
and a partition of unity {φi}i∈I subordinate to {Vi}i∈I , such that each Vi = t(Vi∩Uα).

Thus, E is trivial over Vi. Also, choose a well-ordering for the indexing set I. Then,

by similar arguments as before, we can construct the infinite composition h := h1 ◦
h2 ◦ . . ., using the well-ordering on I. By paracompactness, for any point x ∈ B has a

neighbourhood U such that only finitely may Vi’s intersect it. Let {Vi1 , Vi2 , . . . , Vin}
be the collection of Vi’s which intersect U , so that U = tk(Vik ∩U). Then, on U , the

above map takes the form h = hi1 ◦ hi2 ◦ . . . hin , which is well-defined, continuous and

therefore the required isomorphism.

Definition 2.6. Let π : E → B be a rank k vector bundle and f : A → B be a

continuous map. Then the pullback of E along f is defined as,

f ∗(E) := {(a, e) ∈ A× E|f(a) = π(e)}

is a vector bundle over A of rank k such that the following diagram commutes,
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f ∗(E)
prj2−−−→ Eyprj1 yπ

A
f−−−→ B

Let f0, f1 : A→ B two homotopic maps. This gives us a homotopy F : A×I → B

such that F |0 = f0 and F1 = f1. Now, if E is a vector bundle over B, we get a

pullback F ∗(E) over A× I. Using the previous theorem, we have proved:

Theorem 2.7 (Homotopy Invariance of Pullbacks). Let f0, f1 : A→ B be homotopic

maps and E → B be a vector bundle. Then, f ∗0 (E) ∼= f ∗1 (E).

We can now prove the classification theorem.

Let E → B be any vector bundle of rank k with B paracompact Hausdorff.

Theorem 2.8 (Classification Theorem). Let B be a paracompact Hausdorff space.

There is a one-one correspondence between homotopy classes of maps f : B → Gk

and isomorphism classes of rank k-vector bundles over B, given by,

[B,Gk]→ V ectk(B)

f 7→ f ∗(γk)

Proof. Note that an isomorphism E ' f ∗(γk) is equivalent to a map g : E → R∞

which is a linear injection on each fibre of E. Similarly, given such a map g : E → R∞,

we define f : B → Gk by f(x) = g(p−1(Ex)).

Surjectivity: As before, we take a countable cover {Ui} of B with a partition of

unity {φi} subordinate to {Ui}, such that E is trivial over each Ui. Let, gi be the

composition of the local trivialization on Ui with the projection onto Rk, i.e,

gi : p−1(Ui)→ Ui × Rk
prj→ Rk

Then define, g : E → R∞ by,

v 7→ (φ1(p(v))g1(v), φ2(p(v))g2(v), . . .)

This is well-defined by local finiteness of the cover and is a linear injection on each

fibre.

Injectivity: Let E ' f ∗0 (γk) ' f ∗1 (γk), for two maps f0, f1 : B → Gk.

Then we have maps g0, g1 : E → R∞ which are linear injections on the fibres.

Let, g0(v) = (x1, x2, . . .). Then, g0 is homotopic to the map g′0(v) = (x1, 0, x2, 0, . . .).

Similarly, g1 is homotopic to the map g′1(v) = (0, y1, 0, y2, 0, . . .). And, g′t = (1− t)g′0 +

11



tg1 is a homotopy from g′0 to g′1.

Hence, g0 is homotopic to g1. Let gt be such a homotopy.

Then, ft(x) = gt(p
−1(Ex)) is a homotopy between f0 and f1.
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Chapter 3

Cell Structure for Grassmannians

This section mirrors the treatment in [1].

Definition 3.1. A CW-complex consists of a Hausdorff space K, together with a

partition of K into a collection {eα} of disjoint subsets, such that,

1. Each eα is homeomorphic to an open ball of dimension n(α) ≥ 0. Furthermore,

for each eα there exists a continuous map,

f : Dn(α) → K

which carries the interior of the closed ball Dn(α) homeomorphically onto eα

2. Each point x ∈ (ēα \ eα) lies in an eβ of lower dimension.

3. Each point of K is contained in a finite subcomplex. A subcomplex of K is a

closed subset which is a union of finitely many eα’s.

4. K is topologised as the direct limit of its finite subcomplexes.

We shall now exhibit a cell structure for the Grassmannian, Gn(Rm). As the

infinite Grassmannian Gn is a direct limit of {Gn(Rm}m≥n, the cell structure for

Gn(Rm) induces a cell structure for Gn.

Fix a collections of subspaces for Rm,

R0 ⊂ R1 ⊂ . . .Rm−1 ⊂ Rm

Then any n-plane X ⊂ Rm gives rise to a sequence of integers,

0 ≤ dim(X ∩ R1) ≤ dim(X ∩ R2) ≤ . . . ≤ dim(X ∩ Rm) = n

Any two consecutive integers in this sequence differ by at most 1.
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By a Schubert symbol σ = (σ1, σ2 . . . , σn) we mean a sequence of n integers satis-

fying

1 ≤ σ1 ≤ σ2 ≤ . . . ≤ σn ≤ m.

For each Schubert symbol σ, let e(σ) ⊂ Gn(Rm) denote the set of all n-plane X

such that,

e(σ) = {X | dim(X ∩ Rσi) = i, dim(X ∩ Rσi−1) = i− 1∀ i}

Each X ⊂ Gn(Rm) belongs to precisely one of the sets e(σ). We will now show

that each e(σ) is an open cell of dimension d(σ) = (σ1− 1) + (σ2− 2) + . . .+ (σn−n).

Let Hk ⊂ Rk denote the upper half-space consisting of all x = (ξ1, . . . , ξk, 0, . . . , 0)

with ξk > 0. Then, it is easy to see that an n-plane X ∈ e(σ) if an only if it possesses

a basis x1, . . . , xn so that x1 ∈ Hσ1 , . . . , xn ∈ Hσn .

Lemma 3.2. Each n-plane X ∈ e(σ) possesses a unique orthonormal basis (x1, . . . , xn) ∈
Hσ1 × . . .×Hσn

Proof. Let x1 lie in the one dimensional space X ∩ Rσ1 . Then, the conditions that

x1 is a unit vector and that its σ1-th coordinate is positive determines it. Now x2

is a unit vector in the two dimensional space X ∩ Rσ2 , orthogonal to x1. Again, it

is determined by the condition that the σ2-th coordinate is positive. Continuing by

induction, we get the required basis.

Definition 3.3. Let e′(σ) denote the set of all orthonormal n-frames (x1, . . . , xn) such

that each xi ∈ Hσi. Let e′(σ) denote the set of all orthonormal frames (x1, . . . , xn)

such that xi ∈ H
σi

.

Lemma 3.4. The set e′(σ) is topologically a closed cell of dimension d(σ) = (σ1−1)+

(σ2−2)+. . .+(σn−n), with the interior e′(σ). Furthermore, there is a homeomorphism

e′(σ) ' e(σ).

Proof. Note that the map q : e′(σ)→ Gn(Rm) just sends an n-frame to the subspace

spanned by it.

The proof will be by induction on n. For n = 1, the set e′(σ1) consists of all vectors

x1 = (x11, x12, . . . , x1σ1 , 0, . . . , 0).

with
∑
x2

1i = 1, x1σ1 ≥ 1. Evidently, e′(σ1) is a closed hemisphere of dimension σ1−1,

and therefore is homeomorphic to the disc Dσ1−1.
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Given unit vectors u, v ∈ Rm consider the map,

T (u, v)x = x− (u+ v) · x
1 + u · v

(u+ v) + 2(u · x)v.

Evidently, T (u, u) = Id and T (v, u) = T (u, v)−1. This map carries u to v and leaves

everything orthogonal to u and v fixed. It follow that T (u, v) is a continuous function

in three variables and that if u, v ∈ Rk then T (u, v)x ≡ x (mod Rk).

Let bi ∈ Hσi denote the vector with the σi-th coordinate equal to 1, and all other

coordinates equal to zero. Thus (b1, . . . , bn) ∈ e′(σ). For any n-frame (x1, . . . , xn) ∈
e′(σ) consider the rotation,

T = T (bn, xn) ◦ T (bn−1, xn−1 ◦ . . . ◦ T (b1, x1))

of Rm. This rotation carries the n-frame (b1, . . . , bn) to the n-frame (x1, . . . , xn).

Given an integer σn+1 > σn, let D denote the set of all unit vectors u ∈ Hσn+1
with

bi · u = 0 ∀ i. Then D is closed hemisphere of dimension σn+1 − n − 1, and hence is

topologically a closed cell. We will now a homeomorphism,

f : e′(σ1, . . . , σn)×D → e′(σ1, . . . , σn+1).

To do this, define f by the formula,

f((x1, . . . , xn), u) = (x1, . . . , xn, Tu),

Note that xi · Tu = Tbi · Tu = bi · u = 0, ∀ i, and that Tu · Tu = u · u = 1,

where Tu ∈ Hσn+1
since Tu ≡ u (mod Rσn). The map f is continuous because T is

continuous. One may, similarly, define the inverse of f by sending the last coordinate

xn+1 7→ T−1xn+1.

Thus, we have e′(σ1, . . . , σn+1) is homeomorphic to the product e′(σ1, . . . , σn)×D.

By induction, it follows that each e′(σ) is a closed cell of dimension d(σ).

To see that q is a homeomorphism, observer that q carries e′(σ) in one-one fashion

onto e(σ). If (x1, . . . , xn) belongs to the boundary e′(σ) \ e′(σ), then the n-plane X

spanned by this n-frame does not belong to e(σ), for one of the vectors xi must lie in

the boundary Rσi−1 of the half-space Hσi
. This means that, dim(X ∩Rσi−1) ≥ i, and

so X does not lie in e(σ).

Now let A ⊂ e′(σ) be a relatively compact subset. Then A∩ e′(σ) = A, where the

closure A ⊂ e′(σ) is compact. Hence, q(A) is closed. Then, q(A) ∩ e(σ) = q(A), and

it follows that q(A) ⊂ e(σ) is a relatively closed set. Thus q is a homeomorphism.

15



Theorem 3.5. The

(
m

n

)
sets e(σ) form the cells of a CW complex with the under-

lying space Gn(Rm). Further, taking the direct limit one obtains a CW complex with

the underlying space Gn.

Proof. We need to show that a point in the boundary of an e(σ) lies in an e(τ) of lower

dimension. As e′(σ) is compact, the image q(e′(σ)) = e(σ). Hence, every n-plane X

in the boundary e(σ) \ e(σ) has a basis (x1, . . . , xn) belonging to e′(σ) \ e′(σ). Also,

the Schubert symbol associated with X must satisfy τi ≤ σi ∀ i.
Since, X lies in the boundary, one of the vectors xi must actually belong to Rσi−1,

hence the corresponding τi must be strictly less than σi. Therefore, d(τ) ≤ d(σ).

Then, the map q gives the required boundary map on various cells. This completes

the proof that Gn(Rm) is a finite CW complex.

In the case of Gn, the topology is by definition the direct limit topology. Also, any

n-plane X in R∞ is contained in some finite dimensional Rm for m sufficiently large,

so that X ∈ Gn(Rm). This gives the closure finiteness condition.

The above CW structure may be easily adapted to the complex case for Gn(Cm).

In that case all dimensions will increase by a multiple of 2.
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Chapter 4

Characteristic Classes

This section is based on the approach described in [2, 3]

4.1 Leray-Hirsch Theorem

In this section, we will give a topological construction of Stiefel-Whitney classes of

real vector bundle and Chern classes of complex vector bundles. Our construction

will depend on the Leray-Hirsch Theorem (4.2). We will prove this result for CW

complexes, though it is valid in general. We begin with the following lemma which

will be used in the proof of that result.

Note: All spaces are assumed to be CW complexes.

Lemma 4.1. Given a fibre bundle p : E → B and a subspace A ⊂ B such that (B,A)

is k-connected, then (E, p−1(A)) is also k-connected.

Proof. For a map g : (Di, ∂Di) → (E, p−1(A)) with i ≤ k, there is by hypothesis a

homotopy ft : (Di, ∂Di) → (B,A) of f0 = pg to a map f1 with image in A. The

homotopy lifting property then gives a homotopy gt : (Di, ∂Di) → (E, p−1(A)) of g

to a map with image in p−1(A).

Theorem 4.2 (Leray-Hirsch Theorem). Let E → B be a fibre bundle with fibre F

such that for some commutative coefficient ring R:

1. Hn(F ;R) is a finitely generated free R-module for each n.

2. There exist classes cj ∈ Hkj(E;R) whose restrictions i∗(cj) form a basis for

Hn(F ;R) in each fibre F , where i : F → E is the inclusion map for some

chosen base point.
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Then the map Φ : H∗(B;R)⊗H∗(F ;R)→ H∗(E;R), given by

Σijbi ⊗ i∗(cj) 7→ Σijp
∗(bi) ^ cj

is an isomorphism of H∗(B;R)-modules.

Proof. We prove the result in two step.

Step 1: Let B be a finite dimensional CW complex. We proceed by induction on

dimension of B. If B is zero dimensional, then the claim holds trivially.

So, assume that the dimension of B is n and let B′ ⊂ B obtained by deleting a point

xα from each n-cell enα, that is, B′ = Bn−1
⊔

(t
α

(enα \ {xα})). Let E ′ = p−1(B′). Then

we have a commutative diagram,

. . . −−−→ H∗(B,B′)⊗RH∗(F ) −−−→ H∗(B)⊗RH∗(F ) −−−→ H∗(B′)⊗RH∗(F ) −−−→ . . .yΦ

yΦ

yΦ

. . . −−−→ H∗(E,E ′) −−−→ H∗(E) −−−→ H∗(E,E ′) −−−→ . . .

The map Φ is defined exactly as in the absolute case, as

H∗(B,B′)⊗RH∗(F )→ H∗(B,B′)⊗RH∗(F )
^→ H∗(E)

where the last map is the relative cup product. As H∗(F ) is a free module, the first

row is exact. The second row is also exact. By construction, the two squares are

commutative, for the other square involving coboundary maps, take

b⊗ i∗(cj) ∈ H∗(B′)⊗RH∗(F ). Mapping this horizontally, we get δb⊗ cj which maps

vertically onto p∗δb ^ cj. On the other hand, first mapping b⊗ i∗(cj) vertically we

get p∗b ^ cj which maps horizontally onto δp∗b ^ cj = p∗δ(b) ^ cj since δcj = 0.

Note that B′ deformation retracts onto Bn−1 and hence, the right-hand vertical

arrow is an isomorphism. Thus, we need to show show that the left-hand arrow is an

isomorphism. Then the theorem will follow by the five-lemma.

By the fibre bundle property there are open disc neighbourhood’s Uα ⊂ enα of the

points xα such that the bundle is a product over each Uα. Let U = Uα and

U ′ = U ∩B′. By excision we have H∗(B,B′) ' H∗(U,U ′), and

H∗(E,E ′) ' H∗(p−1(U), p−1(U ′)). This reduces the problem to showing that

Φ : H∗(U,U ′)⊗RH∗(F )→ H∗(U × F,U ′ × F ) is an isomorphism. As U,U ′

deformation retract onto complexes of dimensions 0 and n− 1, respectively, applying

five-lemma to long exact cohomology sequence for the pair (U,U ′), we get

H∗(U,U ′)⊗RH∗(F ) ' H∗(U × F,U ′ × F ) and therefore the theorem in the finite
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case.

Step 2: Next we look at the case where B is an infinite dimensional CW complex.

In this case we have the commutative diagram,

H∗(B)⊗RH∗(F ) −−−→ H∗(Bn)⊗RH∗(F )yΦ

yΦ

H∗(E) −−−→ H∗(p−1(Bn))

Since (B,Bn) is n-connected, the lemma implies that the same is true for

(E, p−1(Bn)). Thus the horizontal maps are isomorphism below dimension n. Then

as the right-hand Φ is an isomorphism, we have that the left-hand is also an

isomorphism below dimension n. As n was arbitrary this gives the theorem.

4.2 Stiefel-Whitney and Chern Classes

We will use the Theorem 4.2 to construct Stiefel-Whitney classes (Chern classes,

respectively) of real (complex, respectively) vector bundles.

Theorem 4.3. Let E → B be a real vector bundle of rank n. There exist a sequence

of functions w1, w2, . . ., each assigning to E a class wi(E) ∈ H i(B;Z2), such that,

1. wi(f
∗(E)) = f ∗(wi(E)) for the pullback f ∗(E).

2. Let w = 1 + w1 + w2 + . . . ∈ H∗(B;Z2), then w(E1 ⊕ E2) = w(E1) ^ w(E2).

3. wi(E) = 0 if i > n.

4. For the canonical line bundle γ1 → RP∞, w1(γ1) is a generator of H1(RP∞ :

Z2).

Similarly, for complex vector bundles, we have:

Theorem 4.4. Let E → B be a complex vector bundle of rank n. There exist a

sequence of functions c1, c2, . . . each assigning to E a class ci(E) ∈ H2i(B;Z), such

that,

1. ci(f
∗(E)) = f ∗(ci(E)) for the pullback f ∗(E).

2. Let c = 1 + c1 + c2 + . . . ∈ H∗(B;Z), then c(E1 ⊕ E2) = c(E1) ^ c(E2).

3. ci(E) = 0 if i > n.
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4. For the canonical line bundle γ1 → CP∞, c1(γ1) is a generator of H1(CP∞ : Z),

specified in advance.

Notice that for Chern classes, the generator ofH1(CP∞;Z) be specified in advance,

while no such condition is required for Stiefel-Whitney classes. This is because, in

the case of Stiefel-Whitney classes, the coefficient ring is Z2, hence there is a unique

generator for H1(RP∞;Z2).

We will only prove 4.3. The proof of 4.4 is exactly the same obtained by replacing

RP∞ with CP∞ and taking cohomology with Z coefficients.

But first, we note an important result which will be required to establish the

uniqueness of these characteristic classes.

Lemma 4.5 (The Splitting Principle). Let E
π→ B be a vector bundle. Then, there

exists a space F (E) and map p : F (E) → B such the p∗(E) splits as a direct sum of

line bundles and p∗ : H∗(B;Z2)→ H∗(F (E);Z2) is injective.

Proof. Let E → B be a vector bundle. Consider the deleted bundle E ′ = E \ {0}
with the zero section removed. Then, we may construct P (E) as the space of all

lines through the origin in all the fibres of E. This has a natural projection map

P (p) to B sending each line in p−1(b) to b ∈ B. Note that P (E) = E ′�{v ∼ λv|v ∈
p−1(b), λ ∈ R}. Thus, P (E) inherits the quotient topology from E ′. Locally, if U

is a neighbourhood of a point x ∈ B then p−1(U) ' U × Rn. So, on E ′|p−1(U) the

above quotient is U × RP n−1. This gives a fibre bundle structure on P (E) over B.

Now, we would like to apply 4.2 to the bundle P (E) for Z2 coefficients. Recall that

there is a map g : E → R∞, that is a linear injection on each fibre. Projectivising

this map we get P (g) : P (E) → RP∞. Let α be the generator of H1(RP∞;Z2)

and let x = P (g)∗(α) ∈ H1(P (E);Z2). Also, the injection Rn ↪→ E ↪→ R∞ gives

an embedding RP n−1 ↪→ P (E) ↪→ RP∞ for which α pull back to a generator of

H1(RP n−1;Z2), so that αi ∈ H i(RP∞;Z2) pulls back to a generator of H i(RP n−1;Z2).

Thus, from the maps above, the classes xi restrict to generators of H i(RP n−1). Note

that any two linear maps Rn → R∞ are homotopic through linear injections, so the

induced embeddings RP n−1 ↪→ RP∞ of different fibres are all homotopic. As any two

choices of the map g are homotopic through maps that are linear injections on fibres,

so the classes xi are independent of the choice of g.

Consider the pullback P (π)∗(E) of the map P (π) : P (E) → B. This contains a

natural one-dimensional sub-bundle

L = {(`, v) ∈ P (E)× E| v ∈ `}
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. Equipping P (π)∗(E) with an inner product we get a decomposition P (π)∗(E) =

L ⊕ L⊥. Now, 4.2 applied to P (E) → B, gives H∗(P (E);Z2) as a free H∗(B;Z2)-

module with 1 as basis element. So, in particular, the induced map p∗ : H∗(B;Z2)→
H∗(P (E);Z2) is injective. Repeating this construction with L⊥ → P (E) in place

E → B, finitely many times gives the desired result.

We can now prove 4.3.

Existence and Uniqueness of Stiefel-Whitney Classes. The idea is to simply apply 4.2

to the bundle P (E)→ B. Doing so, we can write xn ∈ H∗(P (E);Z2) uniquely as

xn =
n∑
i=1

(−1)i−1wi(E)xn−i,

for certain classes wi(E) ∈ H i(B : Z2). Here,

wi(E)xn−i = P (p)∗(wi(E)) ^ xn−i.

For completeness, we define wi(E) = 0 for i > n and w0(E) = 1.

We now check that these wi(E) indeed satisfy the given properties.

Consider the diagram,

E ′
f̃−−−→ Eyπ′ yπ

B′ −−−→
f

B

If g : E → R∞ is a linear injection on fibres then so is gf̃ . It follows that P (f̃)∗

take the canonical class x = x(E) of P (E) to the canonical class c(E ′) for P (E ′).

Then,

P (f̃)∗(
n∑
i=1

(−1)i−1P (π)∗(wi(E)) ^ x(E)n−i)

=
n∑
i=1

(−1)i−1P (f̃)∗P (π)∗wi(E) ^ P (f̃)∗x(E)n−i

=
n∑
i=1

(−1)i−1P (π′)∗P (f)∗wi(E) ^ x(E ′)n−i

so the defining equation for x(E)n pulls back to an equation for x(E ′)n with

coefficients f ∗(wi(E)). By our construction, we get wi(E
′) = f ∗(wi(E)).
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To prove property (2), note that the inclusions of E1 and E2 into E1 ⊕ E2 give

inclusions of P (E1) and P (E1) into P (E1 ⊕ E2) with P (E1) ∩ P (E2) = ∅. Let U1 =

P (E1⊕E2)\P (E1) and U2 = P (E1⊕E2)\P (E2). These are open sets in P (E1⊕E2)

that deformation retract onto P (E1) and P (E2), respectively. Let g : E1 ⊕E2 → R∞

be a continuous map which is linear injection on each fibre, then the canonical class x ∈
H1(P (E1⊕E2);Z2) for E1⊕E2 restricts to canonical classes for E1 and E2, following

the natural injections. If E1 and E2 have dimensions m and n, respectively, consider

classes ω1 =
∑

i(−1)iwi(E1)xm−i and ω2 =
∑

j(−1)j−1wj(E2)xn−j in H∗(P (E1 ⊕
E2);Z2). Taking cup product,ω1ω2 =

∑
r(−1)r[

∑
i+j=r wi(E1)wj(E2)]xm+n−r. By

the definition, ωi pull back to zero in H∗(P (Ei);Z2). This means that, on considering

the long exact sequence associated the pairs P (E1⊕E2), P (E1), ω1 gives a class in the

relative group Hm(P (E1 ⊕ E2), P (E1);Z2) ' Hm(P (E1 ⊕ E2), U2;Z2), and similarly

for ω2. Then, we have the following commutative diagram with Z2 coefficients,

Hm(P (E1 ⊕ E2), U2)×Hn(P (E1 ⊕ E2), U2)
^−−−→ Hm+n(P (E1 ⊕ E2), U1 ∪ U2) = 0y y

Hm(P (E1 ⊕ E2))×Hn(P (E1 ⊕ E2))
^−−−→ Hm+n(P (E1 ⊕ E2))

Thus, ω1ω2 = 0 and so is the defining relation for the Stiefel-Whitney classes for

E1 ⊕ E2, so that wr =
∑

i+j=r wi(E1)wj(E2), and this proves property (2).

Property (3) is true by definition. For property (4), take the canonical line bundle

over RP∞, γ1 = {(`, v) ∈ RP∞×R∞| v ∈ `} and the map P (π) is identity. Then, the

map g(`, v) = v is a linear injection on fibres, and this gives that P (g) is identity. So,

x(γ1) is a generator of H1(RP∞;Z2). From the defining relation, x(γ1)+w1(γ1)·1 = 0,

we have that w1(γ1) is a generator of H1(RP∞;Z2).

To prove uniqueness, we use the splitting principle. Let w(E) and v(E) be classes

satisfying the above properties. By the splitting principle, there is a space F (E) with

a map F (E)
p→ B, such that p∗(E) = `1 ⊕ . . .⊕ `n. Then,

p∗(w(E)) =w(`1 ⊕ . . .⊕ `n)

=w(`1) . . . w(`n)

=v(`1) . . . v(`n)

=v(`1 ⊕ . . .⊕ `n)

=p∗(v(E))
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as the induced map p∗ : H∗(B;Z2) → H∗(F (E);Z2) is injective, we get w(E) =

v(E).

We now prove the result we stated earlier,

As immediate consequence of the above theorem is the following,

Corollary 4.6. Let Θk → B be a trivial (real or complex) vector bundle. Then

x(Θk) = 1 (here, x(Θk) is total Stiefel-Whitney or Chern class, depending on the

context). Further, if E → B is another (real or complex) vector bundle, then x(E) =

x(E ⊕Θk).

Proof. The trivial bundle is induced by a constant map of B into the infinite grass-

mannian. Thus, map induced in cohomology is trivial. Hence, x(Θk) = 1. The second

part simply follows from the product formula for the direct sum.

4.3 Cohomology of Gn

We now use the above result to compute the cohomology of the infinite grassmannian,

H∗(Gn). This was original done in [8].

Theorem 4.7. H∗(Gn;Z2) = Z2[w1, . . . , wn], where wi = wi(γ
n) of the universal

bundle γn → Gn.

Proof. Consider the bundle , ξ = (γ1)n → (RP∞)n. Then w(ξ) = (1 + a1)(1 +

a2) . . . (1 + an). Thus, each wk(ξ) is a symmetric polynomial in the a′is. Note

that, by K’́unneth formula H∗((RP∞)n;Z2) = Z2[a1, . . . , an]. So, we have that

w1(ξ), . . . , wn(ξ) are algebraically independent over Z2.

If f : (RP∞)n → Gn such that f ∗(γn) = ξ, then f ∗(wi(γ
n)) = wi(ξ), so that

each wi(γ
n) is also algebraically independent over Z2. Thus, H∗(Gn;Z2) contains

the polynomial algebra Z2[w1(γn), . . . , wn(γn)]. We will show that this subalgebra

actually coincides with H∗(Gn;Z2).

Now, the number of r-cells in the CW complex Gn is equal to the number of

partitions of n into at most n integers and the rank of Hr(Gn;Z2) is bounded by this

number.

On the other hand, the number of distinct monomials w1(γk)r1 . . . wn(γn)rn is

also equal to number of partitions of n into at most n integers. For each sequence

r1, r2, . . . , rn we may associate

(r1, r2, . . . , rn)↔ rn ≤ rn + rn−1 ≤ . . . ≤ rn + rn−1 + . . .+ r1
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Such a partition becomes the sequence σ1−1 ≤ σ2−2 ≤ . . . ≤ σn−n, corresponding to

the strictly increasing sequence σ1 < σ2 < . . . < σn. But such sequences precisely give

a CW structure on Gn and, since the monomial are known to be linearly independent,

the theorem follows.

Note that the above discussion can be easily adapted to prove the analogous

statement in the complex case, i.e, H∗(Gn(C∞);Z) = Z[c1(γn(C∞)), . . . , cn(γn(C∞))].

In this case, the c′is are 2i dimensional and the CW structure has an extra factor of 2

in the dimension of its cells. Moreover, all cells are even dimensional, so the cellular

boundary maps are zero. Hence, each non-zero cohomology group consists of as many

copies Z as the number of cells in that dimension.
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