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Abstract

The Gauss’s Theorema Egregium and the Gauss Bonnet theorem are few

of the foundational results in Differential geometry that present non trivial

hypothesis about curvature. The former asserts that curvature is an invari-

ant of the metric.

In higher dimensions there is a well known theorem by F. Schur :

THEOREM. Let M be a Riemannian manifold with dim(M) ≥ 3 . If the

sectional curvature K of M is constant at each point of M , then K is actually

constant on M .

In this thesis we have attempted to give an exposition of a celebrated the-

orem of R.S Kulkarni that relates the geometry of the curvature with the

underlying metric. We consider all manifolds and functions to be smooth.

Also all manifolds are assumed to be connected. The theorem is stated as

follows:

FUNDAMENTAL THEOREM (R.S Kulkarni, 1970). If dimension ≥ 4, then

isocurved manifolds with analytic metric are globally isometric except in the

case of diffeomorphic, non-globally isometric manifolds of the same constant

curvature.

In other words, under the above hypothesis, a curvature preserving diffeo-

morphism itself is an isometry.

We will prove the theorem in two chapters. In the first chapter we derive

the necessary results required to prove the theorem. One of the result needed

is the Weyl’s theorem that is stated in the end of the first chapter. In the

second chapter we give the complete proof. We have assumed a knowledge

of John M. Lee’s book on Riemannian geometry for reading the thesis.
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Notation

• (M, g)= Riemann Manifold equipped with metric g.

• TpM= Tangent space at a point p ∈M .

• T (M)= Tangent bundle of M .

• T ∗(M)= Cotangent bundle of M

• O(n)= Orthogonal group.

• K= Sectional curvature.

• R= Curvature tensor.



Contents

1 Preliminaries 3

1.1 Curvature tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Conformal change of a metric . . . . . . . . . . . . . . . . . . . . . . . 10

2 The Fundamental theorem 13

2.1 Conformally non-flat case . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Conformally flat case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Complete proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1



2



Chapter 1

Preliminaries

The reference sources for this chapter are primarily [1], [3].

1.1 Curvature tensor

Definition 1.1. A Riemannian metric on a smooth manifold M is a two tensor field

that is symmetric and positive definite, and thus determines an inner product on each

tangent space TpM . We denote g(X, Y ) by 〈X, Y 〉 for X, Y ∈ TpM . We also denote

any inner product on a vector space by g.

Definition 1.2. Let V be a real vector space with inner product g. A curvature tensor

with respect to g is a bilinear map

R : V × V −→ End(V )

which satisfies the following properties :

1. R(X, Y ) +R(Y,X) = 0

2. R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0

3. 〈R(X, Y )Z,W 〉 = 〈R(Z,W )X, Y 〉.

Remark 1.1. In the Riemannian case, we shall take R(X, Y ) = ∇[X,Y ] − ∇Y∇X −
∇X∇Y , where ∇ is the Levi Civita connection.

Definition 1.3. We define sectional curvature as follows: If σ = {X, Y } is a 2-plane

⊆ V then

K(X, Y ) =
〈R(X, Y )X, Y 〉

〈X,X〉〈Y, Y 〉 − 〈X, Y 〉2
.
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For (M, g), a Riemann manifold let G2(M) denote the Grassman bundle of 2-plane

sections of M and π : G2(M)→M the canonical projection.

Remark 1.2. The sectional curvature K is a real-valued function on G2(M).

Definition 1.4 (Isotropic point). Let dim(M) > 3. We say a point p ∈M is isotropic

if K|π−1(p) is constant; otherwise, we call p non-isotropic.

Theorem 1.1. Let V, V̄ be two real vector spaces of dimension n > 3 endowed with

inner products g, ḡ respectively. let

R : V × V −→ End(V )

R̄ : V̄ × V̄ −→ End(V̄ )

be two curvature tensors (with respect to g, ḡ respectively), and let K, K̄ be correspond-

ing sectional curvatures. Suppose that K 6≡ constant, and

f : V → V̄

a sectional curvature preserving linear isomorphism. Then f is a homothety, i.e.,

ḡ(f(x), f(y)) = c.g(x, y),

where c is any constant.

Lemma 1.1. Let V be a vector space with inner product g, and curvature tensor R.

The following are equivalent:

1. The sectional curvature is constant.

2. R(X, Y )Z = c.(〈X,Z〉Y − 〈Y, Z〉X).

Definition 1.5 (Acceptable frame). We define a frame to be an orthonormal basis

of a vector space V . A frame would be called acceptable if for every triple of distinct

indices i, j, k the values K(ei, ej), K(ei, ek), K(ej, ek) are all distinct. Henceforth, we

denote K(ei, ej) as Kij.

Lemma 1.2. Under the hypothesis of Theorem 1.1, V admits an acceptable frame.
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Proof Let dim(V ) = 3. Let {ei, ej, ek} be any frame. If Kij, Kik, Kjk are not all

distinct, we have the following two cases:

1. Kij = Kik = Kjk = Ko. We suppose Rikjk to be non-zero, otherwise in view

of Lemma 1.1 curvature would be constant if all the mixed components of the

curvature tensor were zero.

Let T be an orthogonal transformation which rotates the {ei, ej}-plane through

an angle θ, and leaves ek fixed. Then

Tei = cos θei + sin θej

Tej = − sin θei + cos θej.

Let Ter = fr, r = i, j, k. Consider,

K(fi, fj) =
〈R(fi, fj)fi, fj〉

〈fi, fi〉〈fj, fj〉 − 〈fi, fj〉2

substituting for fi , fj we evaluate the numerator as

〈R(fi, fj)fi, fj〉 =〈R(cos θei + sin θej,− sin θei + cos θej)(cos θei + sin θej),

− sin θei + cos θej〉

Using bilinearity of the curvature tensor and metric, we evaluate R.H.S

〈R(cos θei ,− sin θei) cos θei , cos θej 〉+ 〈R(cos θei , cos θej ) cos θei , cos θej 〉

+ 〈R(sin θej, cos θei) cos θei, cos θej〉+ 〈R(sin θej,− sin θei) cos θei, cos θej〉

+ 〈R(cos θei,− sin θei) sin θej, cos θej〉+ 〈R(cos θei, cos θej) sin θej, cos θej〉

+ 〈R(sin θej, cos θei) sin θej, cos θej〉+ 〈R(sin θej,− sin θei) sin θej, cos θej〉

+ 〈R(cos θei,− sin θei) cos θei,− sin θei〉+ 〈R(cos θei, cos θej) cos θei,− sin θei〉

+ 〈R(sin θej, cos θei) cos θei,− sin θei〉+ 〈R(sin θej,− sin θei) cos θei,− sin θei〉

+ 〈R(cos θei,− sin θei) sin θej,− sin θei〉+ 〈R(cos θei, cos θej) sin θej,− sin θei〉

+ 〈R(sin θej, cos θei) sin θej,− sin θei〉+ 〈R(sin θej,− sin θei) sin θej,− sin θei〉.
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By cancelling terms and furthur simplification we have,

(cos2 θ + sin2 θ)〈R(ei, ej)ei, ej〉 = 〈R(ei, ej)ei, ej〉

= K(ei, ej)

= Kij.

It is easy to check that the denominator is equal to 1. Hence,

K(fi, fj) = Kij = Ko.

Similarly we get,

K(fi, fk) = cos2 θ〈R(ei, ek)ei, ek〉+ sin 2θ〈R(ei, ek)ej, ek〉+ sin2 θ〈R(ej, ek)ej, ek〉

= cos2 θ Rikik + sin 2θ Rikjk + sin2 θRjkjk

= Ko + sin 2θRikjk.

And, K(fj, fk) = Ko − sin 2θRikjk.

So we can have for some value of θ, sin 2θ 6= 0 for which the new frame would

become acceptable.

2. Let Kij = Kik 6= Kjk and let
∣∣Kij −Kjk

∣∣ = ε. In this case we have

(a) K(fi, fj) = Kij

(b) K(fi, fk)−Kik = sin2 θ(Kjk −Kik) + sin 2θRikjk

(c) K(fj, fk)−Kjk = sin2 θ(Kik −Kjk)− sin 2θRikjk

Again to make the frame acceptable, we choose θ to be small such that the

R.H.S in (b) and (c) is non-zero and
∣∣K(fi, fk)−Kik

∣∣, ∣∣K(fj, fk)−Kjk

∣∣ is < ε
2
.

The above proof was for a vector space of dimension 3. For a general proof con-

sider a frame f = {e1, e2, ...., en} for an n dimensional vector space. To each frame

associate a number N(f) given by the number of distinct triples {i, j, k} such that

the Kij, Kik, Kjk are distinct.

By continuity of curvature, it can be shown that there exists a small variation via

T ∈ O(n) in the neighbourhood of the identity element such that the acceptable
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triplet remains acceptable i.e N(f) 6 N(Tf). We may choose f such that N(f) is

maximum. If f is not acceptable then there exists a triplet such that the acceptability

condition is not satisfied.

Let that triplet be {ei, ej, ek}. If the variation of {ei, ej, ek} by all transformations

in the neighbourhood of the identity in O(n) resulted in the same constant curvature

then the curvature itself would be a constant everywhere which is not the case. So

we may say that there exists sufficiently small variations of {ei, ej, ek} such that the

triplet becomes acceptable, which would contradict the choice of f as we started with

N(f) being maximum and hence the proof.

�

Now we are ready to give the proof of Theorem 1.1 .

Proof Using Lemma 1.1 , let {e1, . . . , en} be an acceptable frame. Set

fei = ēi

and

ḡ(ēi, ēj) = aij.

We denote the components of R̄ with respect to the basis {ēi}. Under the hypothesis

we have

K(ei, ej) = K̄(ēi, ēj)

i.e,

〈R(ei, ej)ei, ej〉 =
〈R̄(ēi, ēj)ēi, ēj〉
aiiajj − (aij)2

Hence, we have

(aiiajj − (aij)
2)Rijij = R̄ijij. (1.1)
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Now let {i, j, k} be a distinct triplet and x, y be two real numbers such that atleast

one is non-zero. Now we compute the following:

K(xei + yej, ek) =
〈R(xei + yej, ek)(xei + yej), ek〉

〈(xei + yej), (xei + yej)〉〈ek, ek〉 − (〈xei + yej, ek〉)2

=
〈R(xei + yej, ek)(xei + yej), ek〉

x2 + y2
(1.2)

Numerator of Equation (1.2) is given as follows:

〈R(xei + yej, ek)xei, ek〉+ 〈R(xei + yej, ek)yej, ek〉 = 〈R(xei, ek)xei, ek〉+ 〈R(yej, ek)xei, ek〉+

〈R(xei, ek)yej, ek〉+ 〈R(yej, ek)yej, ek〉

= x2〈R(ei, ek)ei, ek〉+ 2xy〈R(ei, ek)ej, ek〉+

y2〈R(ej, ek)ei, ek〉

= x2Rikik + 2xyRikjk + y2Rjkjk

Therefore, we have

K(xei + yej, ek) =
x2Rikik + 2xyRikjk + y2Rjkjk

x2 + y2
=
N

D
. (1.3)

Similar calculations yield,

K̄(xēi + yēj, ēk) =
x2R̄ikik + 2xyR̄ikjk + y2R̄jkjk

(x2aii + 2xyaij + y2ajj)akk − (xaik + yajk)2
=
N̄

D̄
. (1.4)

From the hypothesis, we have

K(xei + yej, ek) = K̄(xēi + yēj, ēk).

So computing,

D̄N = ((x2aii + 2xyaij + y2ajj)akk − (xaik + yajk)
2)(x2Rikik + 2xyRikjk + y2Rjkjk)

= x4(aiiakk − a2ik)Rikik + x3y(2aiiakkRikjk + 2aijakkRikik − 2a2ikRikjk − 2aikajkRikik)+

x2y2(aiiakkRjkjk + 4aijakkRikjk + ajjakkRikik − a2ikRjkik − a2jkRikik − 4aikajkRikjk)+

xy3(2aijakkRjkjk + 2ajjakkRikjk − 2a2jkRikjk − 2aikajkRjkjk)+

y4(ajjakkRjkjk − a2jkRjkjk)
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and

DN̄ = (x2 + y2)(x2R̄ikik + 2xyR̄ikjk + y2R̄jkjk)

= x4R̄ikik + 2x3yR̄ikjk + x2y2(R̄jkjk + R̄ikik) + 2xy3R̄ikjk + y4R̄jkjk

By comparing coefficients of x3y, xy3, x2y2, we get the following:

1. R̄ikjk = Rikjk(aiiakk − a2ik) +Rikik(aikakk − aikajk).

2. R̄ikjk = Rikjk(ajjakk − a2jk) +Rjkjk(aijakk − aikajk).

3. R̄ikik + R̄jkjk = Rikik(ajjakk − a2jk) +Rjkjk(aiiakk − a2ik) +

4Rikjk(aijakk − aikajk).

(1)-(2) gives

(aijakk − aikajk)(Rikik −Rjkjk) + ((aiiakk − a2ik)− (ajjakk − a2jk))Rikjk = 0. (1.5)

Using (1.1), we get

4(aijakk − aikajk)Rikjk − ((aiiakk − a2ik)− (ajjakk − a2jk))(Rikik −Rjkjk) = 0. (1.6)

Since the frame is acceptable, Rikik − Rjkjk 6= 0, so from the Equations (1.5) and

(1.6) we get

(aiiakk − a2ik)− (ajjakk − a2jk) = aijakk − aikajk = 0. (1.7)

Let

∠(ēi, ēj) = θ,

∠(ēj, ēk) = φ,

∠(ēk, ēi) = ψ.

Then

cos θ =
〈ēi, ēj〉

〈ēi, ēi〉〈ēj, ēj〉
=

aij
aiiajj

From Equation (1.7), it follows

aij
aiiajj

− ajk
ajjakk

aki
aiiakk

= cos θ − cosφ cosψ = 0.
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By symmetry, we also have,

cosφ− cos θ cosψ = 0

cosψ − cos θ cosφ = 0.

This is possible only if {ēi, ēj, ēk} are orthogonal. From Equation (1.7), we also have

aiiakk − a2ik = ajjakk − a2jk = aiiajj − a2ij.

This shows that {ēi, ēj, ēk} is an orthogonal frame whose vectors are of the same

length i.e f is a homothety.

�

As an immediate consequence of Theorem 1.1 we have,

Theorem 1.2. Let

f : M −→ M̄

be a curvature preserving diffeomorphism of two Riemann manifolds of dimension ≥ 3.

Then f is conformal on the closure of set of non-isotropic points.

1.2 Conformal change of a metric

In this section we state the propositions that compare different tensors and connec-

tions obtained by a conformal change of a metric. We also state the celebrated Weyl’s

theorem and conformal invariant curvature tensor.

Let (M, g) be a Riemann manifold. Let f be a positive real-valued function on M .

Consider the new Riemann metric

ḡ = fg.

Proposition 1.1. For any two vector fields X, Y , we have

∇̄XY = ∇XY + S(X, Y )
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where

S(X, Y ) =
1

2f
{(Xf)Y + (Y f)X − 〈X, Y 〉grad f}.

Here, grad f= gradient of f with respect to the metric g, such that for a vector field

X we have,

〈X, grad f〉 = Xf.

Now we define hessian of a real-valued function φ on M .

Definition 1.6. For any two vector fields X, Y ,

hessφ(X, Y ) = XY φ− (∇XY )φ.

or

hessφ(X, Y ) = 〈Y,∇X(grad φ)〉. (1.8)

Remark 1.3. Hessian is a symmetric, bilinear (0, 2)-tensor field.

Using hessian of a real-valued function φ on M , we define another symmetric,

bilinear (0, 2)-tensor field as follows:

Q(X, Y ) = hessφ(X, Y )−XφY φ

where Q defines a bundle map

Q0 : T (M) −→ T ∗(M)

such that for any two vector fields X, Y , we have

(Q0(X))(Y ) = Q(X, Y ).

If G = grad φ, then from Equation (1.8), we have

Q0(X) = ∇XG−XφG.

Now we state the propositions that describe the deformation of various tensors

under the considered conformal change.

Proposition 1.2. For any three vector fields X, Y, Z,

R̄(X, Y )Z = R(X, Y )Z + T (X, Y )Z
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where

T (X, Y )Z = {Q(Y, Z)+〈Y, Z〉‖G‖2}X−{Q(X,Z)+〈X,Z〉‖G‖2}Y+〈Y, Z〉Q0(X)−〈X,Z〉Q0(Y ).

Definition 1.7. Ricci tensor is a symmetric, bilinear (0, 2)-tensor field defined as:

for X,Z ∈ Tp(M)

Ric(X,Z) = Trace{Y −→ R(X, Y )Z}.

Remark 1.4. Ric defines an endomorphism of the tangent bundle:

Ric0 = T (M)
c−→ T ∗(M)

i−→ T (M)

where c is the canonical map defined by Ric and i is the usual identification of T ∗(M)

with T (M).

Definition 1.8. Scalar curvature:

Sc : M −→ R

at a point p ∈M is defined as

Sc(p) = Trace Ric0(p).

Definition 1.9 (Weyl conformal curvature tensor). Weyl conformal curvature tensor

is the conformal invariant defined as follows:

C(X, Y )Z = R(X, Y )Z+

1

n− 2
{Ric(Y, Z)X − Ric(X,Z)Y + 〈Y, Z〉Ric0(X)− 〈X,Z〉Ric0(Y )}−

Sc

(n− 1)(n− 2)
{〈Y, Z〉X − 〈X,Z〉Y }.

Theorem 1.3 (Weyl). Let (M, g) be a Riemann manifold of dimension ≥ 4, then M

is conformally flat iff C ≡ 0.

12



Chapter 2

The Fundamental theorem

The reference sources for this chapter are primarily [1], [2], [3].

Definition 2.1. Let (M, g), (M̄, ḡ) be two Riemann manifolds. We say, M, M̄ are

isocurved if there exists a sectional-curvature preserving diffeomorphism

f : M −→ M̄

i.e., for every p ∈ M and for every σ, a 2-plane section of tangent space TpM , we

have

K(σ) = K̄(f∗σ).

Theorem 2.1 (Fundamental theorem). If dim ≥ 4, then isocurved manifolds with

analytic metric are globaly isometric except in the case of diffeomorphic but non-

globally isometric manifolds of the same constant curvature.

To give a complete proof of the fundamental theorem we consider the following

cases:

2.1 Conformally non-flat case

Under the “curvature preserving” hypothesis the following proposition relates the

second order tensors with respect to g and ḡ respectively.

Proposition 2.1. Let V be a real vector space equipped with two inner products g, ḡ

and two curvature tensors R, R̄ such that

1. ḡ = λg for some λ(> 0) ∈ R.
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2. K̄ = K

Then R̄ = λR, R̄ic = λRic, R̄ic0 = Ric0, S̄c = Sc, C̄ = λC.

Proof The condition

K̄ = K

implies

〈R̄(X, Y )X, Y 〉
〈X,X〉 〈Y, Y 〉 − 〈X, Y 〉2

=
〈R(X, Y )X, Y 〉

〈X,X〉〈Y, Y 〉 − 〈X, Y 〉2
.

or

〈R̄(X, Y )X, Y 〉 = λ〈R(X, Y )X, Y 〉.

Replacing Y by Y + Z, we get

〈R̄(X, Y )X,Z〉 = λ〈R(X, Y )X,Z〉.

Since this holds for all Z, we have

R̄(X, Y )X = λR(X, Y )X.

By replacing X by X + Z, we get

R̄(X, Y )Z − R̄(Y, Z)X = λ{R(X, Y )Z −R(Y, Z)X}.

By symmetry, we also have

R̄(Y, Z)X − R̄(Z,X)Y = λ{R(Y, Z)X −R(Z,X)Y },

R̄(Z,X)Y − R̄(X, Y )Z = λ{R(Z,X)Y −R(X, Y )Z}.

From the usual property of the curvature tensor, we have

R̄(X, Y )Z + R̄(Y, Z)X + R̄(Z,X)Y = R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0.

Hence

R̄(X, Y )Z = λR(X, Y )Z.

The rest of the propositions follow from this.

�
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Now we state the fundamental theorem incase of conformally non-flat manifold.

Theorem 2.2. Let (M, g), (M̄, ḡ) be isocurved manifolds. Suppose dim(M) ≥ 4 and

M not conformally flat. Then a curvature preserving diffeomorphism is an isometry.

Proof Let

f : M −→ M̄

be a sectional curvature preserving diffeomorphism.

We identify M with M̄ via f so that we have the situation where M is equipped

with two metrics g, f ∗ḡ such that the identity map,

IdM : (M, g) −→ (M̄, f ∗ḡ)

is curvature preserving. Since M is assumed to be conformally non-flat and dim

(M) ≥ 4, it follows from the Theorem 1.3 that C 6≡ 0 on an open dense subset of M

and that if a point is isotropic then C = 0. Hence, non-isotropic points are dense.

And by Theorem 1.2 , we know that f is conformal on the closure of the set of

non-isotropic points. So we may write f ∗ḡ = φg for some real valued positive function

φ on M . In such a case by the previous proposition we have C̄ = φC. But C is

a conformal invariant we have C̄ = C and since C 6≡ 0 on a dense subset, we have

φ ≡ 1. Hence, f is an isometry.

�

2.2 Conformally flat case

Theorem 2.3. Let (M, g), (M̄, ḡ) be isocurved manifolds with dim ≥ 4, and M

conformally flat. Moreover, assume that the set of non-isotropic points is dense. Then

the curvature preserving diffeomorphism is an isometry.

Remark 2.1. In this case, since M is conformally flat we take

g = e2σg0

where g0 is the flat metric and σ is a smooth function on M . Like in the conformally

non-flat case we reduce the situation to the one in which M is equipped with two
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metrics g, ḡ and the Identity map

IdM : (M, g) −→ (M̄, ḡ)

is curvature preserving. Moreover, we have assumed the set of non-isotropic points to

be dense so by Theorem 1.2 we may write

ḡ = e2ϕg

where ϕ : M −→ R.

Before giving the proof for the above Theorem we make the following observations

in view of the Propositions 1.1 and 1.2 stated in the Section 1.2 :

Observations

1. For any three orthonormal vector fields X, Y, Z with respect to the metric g0,

we have

Q(X,Z)Y ϕ−Q(Y, Z)Xϕ = 0.

2. Let {X1, . . . , Xn} be a set of orthonormal vector fields with repect to g0, so that,

grad0(ϕ) =
∑
i

(Xiϕ)Xi.

Again for any three orthonormal vector fields X, Y, Z with respect to the metric

g0, we have

Q(X,Z)Xϕ+Q(Y, Z)Y ϕ− {Q(X,X) +Q(Y, Y )}Zϕ+ 2
∑
i

Q(Z,Xi)Xiϕ = 0.

Lemma 2.1. Consider (M, g) be conformally flat with dim(M) ≥ 4. Suppose for a

point p ∈M , (grad0ϕ)p 6= 0, where grad0 is the gradient with respect to the flat metric

g0. Then p is isotropic.

Proof Let

X1 =
grad0ϕ

‖grad0ϕ‖0
,
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and let {X2, . . . , Xn} be orthonormal vector fields with respect to g0 which are tangent

to the level surface of ϕ in a neighbourhood of p. Then Xi are orthonormal,

(X1ϕ)(p) = ‖grad0ϕ‖0 6= 0, Xiϕ = 0 for i > 1

In Observations (1) and (2), we set X = X1, Y = Xi, Z = Xj, where {1, i, j} are

distinct. Then we have the following:

1. Q(Xi, Xj) = 0, i 6= j, i > 1, j > 1.

2. Q(X1, Xi) = 0, i > 1.

3. Q(Xi, Xi) = Q(X1, X1).

From the above conditions we conclude that p is isotropic 1 .

Now we are ready to give a proof of the Theorem 2.3 .

Proof In view of the situation to which we have reduced the hypothesis of Theo-

rem 2.3, if grad ϕ 6≡ 0, then by the above Lemma, the set of isotropic points has

non-empty interior which contradicts our hypothesis of non-isotropic points being

dense.

Hence grad ϕ ≡ 0 or ϕ ≡ c, where c is a constant. Since we started with

ḡ = e2ϕg

which implies,

K̄ =
K

e2ϕ

And since we our not considering the case of K ≡ 0, the “curvature-preserving”

hypothesis implies

ϕ ≡ 0.

�
1We have used the fact that for orthonormal vector fields {X1, . . . , Xn}, Q(Xi, Xj) = λδij , where

λ : M −→ R, the condition implies M is of constant curvature.

17



2.3 Complete proof

So far we have shown that a sectional curvature preserving diffeomorphism f is an

isometry on the closure of the set of non-isotropic points. Thus to show that f is

indeed a global isometry, a sufficient condition is that the set of non-isotropic points

is dense.

We state the fundamental theorem again and the following argument will establish

the complete proof.

Theorem 2.4 (Fundamental theorem). If dim ≥ 4, then isocurved manifolds with

analytic metric are globaly isometric except in the case of diffeomorphic but not globally

isometric manifolds of the same constant curvature.

Proof If the set of isotropic points has a non-empty interior, then by Schur’s theo-

rem we would have the sectional curvature to be constant on each of its connected

components. In particular, it would be constant on an open subset of G2(M). Hence

by the analyticity of the sectional curvature (equivalently, that of the metric) it would

be constant everywhere.

�
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