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Abstract

We investigate a simple nonlinear model, modelling the El Nino/ Southern Oscillation
phenomena, which arises through the strong coupling of the ocean-atmosphere system.
An important feature of this class of models is the inclusion of a delayed feedback
which incorporates oceanic wave transit effects, namely the effects of trapped ocean
waves propagating in a basin with closed boundaries. The model allows multiple
steady states. When these fixed points become unstable, one obtains self-sustained
oscillations. Thus this class of models provide a simple explanation of ENSO, and
provide insights on the key features that allow the emergence of oscillatory behaviour.
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1. Introduction

Due to large scale interaction between ocean and atmosphere, every 3 to 7 years an
event called El-Niño southern oscillator (ENSO) occurs in central and East central
Pacific Ocean. Ref. [2] It brings global changes in surface temperature and rainfall.
The air containing rain water disappears over north eastern Australia and the surface
temperature of the sea cools down. So no further rain clouds form. The air with high
temperature over the ocean is shifted to east. The winds in South America that cool
the ocean get weaker, and the surface water of sea heats up. Consequently rain clouds
are formed (see schematic figure). Thus the El-Niño is initiated. Ref. [5]

El-Niño refers to the name ‘Christ child’ as it appears around Christmas. Ref. [4]
During El-Niño the southern border of Ecuador, Peru, Chile, Southern Brazil and
northern Argentina faces heavy rain causing floods. It rains for more than six months
in the southern border of Ecuador and average rain is over 3 m rather than its usual
20 cm. While at the same time, places near Eastern Australia face drought for 2 years
or more. The temperature in these places goes up to 40 C and is a cause of forest fires.
Due to this event, the macro economy of many countries are considerably affected.
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2. Delay Differential Equation Model of the
El-Niño Effect

The temperature fluctuations arising in ENSO is described by the following differential
equation. Ref. [6]

dT

dt
= T − T 3 − αT (t− δs) (2.1)

Here T is temperature anomaly in mean sea surface temperature, α is the self-coupling
strength and δs is the (self-delay) time taken by the trapped Rossby wave to arrive at
and Kelvin waves to pass the region. The system is also interesting from the general
point of view of time- delayed dynamical system.

In this study we want to investigate the affect of delay on the temperature anoma-
lies. So, we focus on the changing δs and keep α fixed at 0.75 in equation 2.1.

For delay δs <= 1.55 temperature fluctuation in time always goes to a fixed point.

From the above plot it may be predicted that if the delay in equation 1 is more than
1.55 years, the temperature perturbations of the region are not stabilized and El-Niño
may arrive at this equatorial Pacific region.
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Python Programming language was used to study this model. The following program
was written:

from random import *
#---------------------variables-------------------------
delta=1.56 #self delay
dt=0.01 #time step
tr=900 #transient
tf=1000 #final time
ts=100 #time step
a=0.75 #alpha

#----------initiating random temperature values----------
n=int(’%0.0f’%(ts/dt))
T= [ (2*random()-1) for i in range(n)]

#------------------evolving temperature------------------

f=open(’elnino ds=%s.txt’%delta,’w’)

t=0
while t<=tr:

i = int( ’%0.0f’%(t/dt) ) %n
j = int(’%0.0f’%( ( (t-delta) /dt) -1 ) ) %n
dT = T[i-1] - T[i-1]**3 - a*T[j]
T[i] = T[i-1] + dT*dt
t+=dt

t=tr
while t<=tf:

i = int( ’%0.0f’%(t/dt) ) %n
j = int(’%0.0f’%( ( (t-delta) /dt) -1 ) ) %n
dT = T[i-1] - T[i-1]**3 - a*T[j]
T[i] = T[i-1] + dT*dt
f.write(’%s \t %s\n’%(t,T[i]))
t+=dt

f.close()
#-------------------------------
print ’done!’
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3. Model of Two Coupled Regions

Here we consider two such coupled non-identical sub-systems where the temperature
of the two regions are represented by following differential equations:

dT1
dt

= T1 − T 3
1 − αT1(t− δs1) + γT2

dT2
dt

= T2 − T 3
2 − αT2(t− δs2) + γT1

Here Ti 1, 2 and δsi (i = 1, 2) are the temperature and self-delay of the two regions.
Here γ is the coupling constant and it reflects the strength of interaction of the two
regions. We are interested in finding the phenomena that arise when δs1 6= δs2, namely,
the two sub-system are not identical.

Program to analyze the system is written below:

from random import *

def elnino(d_self1,d_self2,x):
#-------------parameters--------------
a=0.75
d_coupling1=0.0
d_coupling2=0.0
b=0.5
ts= 51
tr=850
dt=0.01
tf=1000

n=int(’%0.0f’ %(ts/dt))
T1= [ (2*random()-1) for i in range(n)]
T2= [ (2*random()-1) for i in range(n)]

f = open(’ds1=%s__ds2=%s__x=%s.txt’ \
%(d_self1,d_self2,x),’w’)

#---------------evolve------------
t=0
while t<=tr:

c = int(’%0.0f’%(t/dt)) %n
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e1 = int(’%0.0f’%( ( (t-d_self1) /dt) -1 ) ) %n
e2 = int(’%0.0f’%( ( (t-d_self2) /dt) -1 ) ) %n
g1 = int(’%0.0f’%( ( (t-d_coupling1)/dt) -1 ) ) %n
g2 = int(’%0.0f’%( ( (t-d_coupling2)/dt) -1 ) ) %n

dT1 = T1[c-1]-T1[c-1]**3 - a*T1[e1] + b*T2[g1]
dT2 = T2[c-1]-T2[c-1]**3 - a*T2[e2] + b*T1[g2]

T1[c] = T1[c-1] + dT1*dt
T2[c] = T2[c-1] + dT2*dt
t+=dt

t=tr
while t<=tf:

c = int(’%0.0f’%(t/dt)) %n

e1 = int(’%0.0f’%( ( (t-d_self1) /dt) -1 ) ) %n
e2 = int(’%0.0f’%( ( (t-d_self2) /dt) -1 ) ) %n
g1 = int(’%0.0f’%( ( (t-d_coupling1)/dt) -1 ) ) %n
g2 = int(’%0.0f’%( ( (t-d_coupling2)/dt) -1 ) ) %n

dT1 = T1[c-1]-T1[c-1]**3 - a*T1[e1] + b*T2[g1]
dT2 = T2[c-1]-T2[c-1]**3 - a*T2[e2] + b*T1[g2]

T1[c] = T1[c-1] + dT1*dt
T2[c] = T2[c-1] + dT2*dt
f.write(’%s \t %0.10f \t %0.10f\n’ %(t,T1[c],T2[c]))
t+=dt

ds1_range = [1.5+0.01*i for i in range(31)]
d_self2 = 24.0
b=0.5

for d_self1 in ds1_range:
for x in range(1):

elnino(d_self1,d_self2,x)

print ’done!’
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3.1 RESULTS:

The key observations from extensive numerical simulation are as follows:

• If inter region coupling strength of the system is zero then time period of oscil-
lation of both the oscillators are independent of each other, as expected.

Figure 3.1: α = 0.75, δs1 = 2, δs2 = 15 red color is T1, green is T2

• It was observed that with γ being non-zero, if temperature of one island is at
fixed point, then either both system go to fixed points or go to oscillations.

Figure 3.2: α = 0.75: γ = 0.1 δs1 = 0 δs2 = 2(left), γ = 0.2, δs1 = 0 δs2 = 15 (right)
red color is T1, green is T2

7



• For α = 0.75, γ = 0.2 oscillations arose when δs1 = δs2 = 1.9.

Figure 3.3: α = 0.75, δs1 = δs2 = 1.9, red color is T1 and green us T2 (left), Phase
portrait (right)

• The phase portrait shows that T1 and T2 are in phase and the oscillations are
synchronized from α = 0.75, γ = 0.2 δs1 = δs2 = 2.0 value.

Figure 3.4: α = 0.75, δs1 = δs2 = 2.0, red color is T1 and green us T2 (left), Phase
portrait (right)
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• If coupling γ increases, oscillations in the system arise for bigger δs values.

– For α = 0.75, δs1 = 0

Figure 3.5: Green points represent region where one obtain fixed points and red ones
are where oscillations emerge

– For α = 0.75, δs1 = 2

Figure 3.6: Green points represent region where one obtain fixed points and red ones
are where oscillations emerge

– For α = 0.75, δs1 = 5

Figure 3.7: Green points represent region where one obtain fixed points and red ones
are where oscillations emerge
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Program to obtain the above graph is as follows:

from random import *

def delta_plot(d_self1,d_self2,b):
#-------------parameters--------------
a=0.75
ts= 20
tr= 900
d_coupling1 = 0.0
d_coupling2 = 0.0
acc1=0.0001
acc2=0.0001
dt=0.01
#-------------------------------------
n=int(’%0.0f’ %(ts/dt))
T1= [ (2*random()-1) for i in range(n)]
T2= [ (2*random()-1) for i in range(n)]

tf=1000
m = int(’%0.0f’%((tf-tr)/dt))
dT = [0.0 for i in range(m)]
#---------------evolve------------
t=0
while t<=tr:

c = int(’%0.0f’%(t/dt)) %n

e1 = int(’%0.0f’%( ( (t-d_self1) /dt) -1 ) ) %n
e2 = int(’%0.0f’%( ( (t-d_self2) /dt) -1 ) ) %n
g1 = int(’%0.0f’%( ( (t-d_coupling1)/dt) -1 ) ) %n
g2 = int(’%0.0f’%( ( (t-d_coupling2)/dt) -1 ) ) %n

dT1 = T1[c-1]-T1[c-1]**3 - a*T1[e1] + b*T2[g1]
dT2 = T2[c-1]-T2[c-1]**3 - a*T2[e2] + b*T1[g2]

T1[c] = T1[c-1] + dT1*dt
T2[c] = T2[c-1] + dT2*dt
t+=dt

maxi1=T1[c]
mini1=T1[c]
maxi2=T2[c]
mini2=T2[c]

t=tr
while t<=tf:

c = int(’%0.0f’%(t/dt)) %n

e1 = int(’%0.0f’%( ( (t-d_self1) /dt) -1 ) ) %n
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e2 = int(’%0.0f’%( ( (t-d_self2) /dt) -1 ) ) %n
g1 = int(’%0.0f’%( ( (t-d_coupling1)/dt) -1 ) ) %n
g2 = int(’%0.0f’%( ( (t-d_coupling2)/dt) -1 ) ) %n

dT1 = T1[c-1]-T1[c-1]**3 - a*T1[e1] + b*T2[g1]
dT2 = T2[c-1]-T2[c-1]**3 - a*T2[e2] + b*T1[g2]

T1[c] = T1[c-1] + dT1*dt
T2[c] = T2[c-1] + dT2*dt

if(T1[c]>maxi1): maxi1=T1[c]
if(T1[c]<mini1): mini1=T1[c]
if(T2[c]>maxi2): maxi2=T2[c]
if(T2[c]<mini2): mini2=T2[c]

t+=dt

if acc1>= abs(maxi1-mini1):
c1=1

else:
c1=0

if acc2>= abs(maxi2-mini2):
c2=1

else:
c2=0

return [c1,c2]
#-----------------------------------------------

#----------------main programme-----------------
d_self1= 0.0
d_range =[0.0+(0.2*i) for i in range(51)]
b_range =[0.01*i for i in range(51)]

f11=open(’T1 oscillation %s.txt’%d_self1,’w’)
f12=open(’T1 fp %s.txt’%d_self1,’w’)
f21=open(’T2 oscillation %s.txt’%d_self1,’w’)
f22=open(’T2 fp %s.txt’%d_self1,’w’)

print "total iterations= ", len(d_range)*len(b_range)
count=0
for b in b_range:

for d_self2 in d_range:
count+=1
print "\r count = %s \t b=%s \t d_self=%s " \
%(count,b, d_self2) ,
s=delta_plot(d_self1,d_self2,b)
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if s[0]==0:
f11.write(’%s \t %s \t %s \n’ %(b,d_self2,s[0]))

else:
f12.write(’%s \t %s \t %s \n’ %(b,d_self2,s[0]))

if s[1]==0:
f21.write(’%s \t %s \t %s \n’ %(b,d_self2,s[1]))

else:
f22.write(’%s \t %s \t %s \n’ %(b,d_self2,s[1]))

print ’done!’

#----------------------------------------------
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4. Investigation of the Time Period of Os-
cillations

• The time period of oscillation increases with increasing δs value as evident from
fig 3.1.

Figure 4.1: γ = 0, δs1 = 0 (left) and γ = 0.2, δs1 = 0 (right),red is the time period of
T1, green is of T2

• If γ is nonzero, then irrespective of δs1 and δs2, the period of oscillation for both
islands are same. Fig 3.2 shows representative case of γ = 0.2:

Figure 4.2: δs1 = 2, δs2 = 10, T1 is red color, T2 is green color
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Programming was done in Python language. Code is given below:

from random import *

d_self1 = 2.0
delta = [4.0*i for i in range(11)]
f = open(’T1.txt’,’w’)
g = open(’T2.txt’,’w’)
lt1=[]
lt2=[]
j=0
while j <= len(delta)-1:

d_self2 = delta[j]
#-------------parameters--------------
a=0.75
b=0.0
ts= 55
dt=0.01
d_coupling1=0.0
d_coupling2=0.0

n=int(’%0.0f’ %(ts/dt))
T1= [ (2*random()-1) for i in range(n)]
T2= [ (2*random()-1) for i in range(n)]

tf=1000
#---------------evolve------------
t=0
while t<=tf:

c = int(’%0.0f’%(t/dt)) %n

e1 = int(’%0.0f’%( ( (t-d_self1) /dt) -1 ) ) %n
e2 = int(’%0.0f’%( ( (t-d_self2) /dt) -1 ) ) %n
g1 = int(’%0.0f’%( ( (t-d_coupling1)/dt) -1 ) ) %n
g2 = int(’%0.0f’%( ( (t-d_coupling2)/dt) -1 ) ) %n

dT1 = T1[c-1]-T1[c-1]**3 - a*T1[e1] + b*T2[g1]
dT2 = T2[c-1]-T2[c-1]**3 - a*T2[e2] + b*T1[g2]

T1[c] = T1[c-1] + dT1*dt
T2[c] = T2[c-1] + dT2*dt

if t>=800:
if T1[c-1]<0.0 and T1[c]>0.0:

lt1+=[t]
dlt1 = lt1[]-lt1
s1+=dlt1
c1+=1
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if T2[c-1]<0.0 and T2[c]>0.0:
dlt2 = t-lt
s2+=dlt2
c2+=1

t+=dt
f.write(’\n\n’)
g.write(’\n\n’)
j+=1
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5. Temporal Patterns

For different values of δs1, δs2 and γ, different patterns of oscillations were
found. Here T1 and T2 have same periods of oscillations. The temperature
v/s time plot with the corresponding phase portrait, are displayed below.

Figure 5.1: δs1 = 1 δs2 = 2 γ = 0.1 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right

Figure 5.2: δs1 = 1 δs2 = 20 γ = 0.2 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right
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Figure 5.3: δs1 = 2 δs2 = 6 γ = 0.1 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right

Figure 5.4: δs1 = 2 δs2 = 9 γ = 0.1 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right

Figure 5.5: δs1 = 2 δs2 = 13 γ = 0.1 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right
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Figure 5.6: δs1 = 2 δs2 = 23 γ = 0.1 : Temperature oscillation red color is T1 and
green is T2(left), Phase portrait(right)

Figure 5.7: δs1 = 2 δs2 = 26 γ = 0.1 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right

Figure 5.8: δs1 = 5 δs2 = 48 γ = 0.1 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right
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Figure 5.9: δs1 = 50 δs2 = 50 γ = 0.1 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right

Figure 5.10: δs1 = 2 δs2 = 5 γ = 0.2 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right

Figure 5.11: δs1 = 21 δs2 = 44 γ = 0.3 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right
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Figure 5.12: δs1 = 2 δs2 = 40 γ = 0.2 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right

Figure 5.13: δs1 = 3 δs2 = 20 γ = 0.2 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right

Figure 5.14: δs1 = 3 δs2 = 33 γ = 0.2 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right
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Figure 5.15: δs1 = 8 δs2 = 50 γ = 0.2 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right

Figure 5.16: δs1 = 21 δs2 = 44 γ = 0.4 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right

Figure 5.17: δs1 = 24 δs2 = 42 γ = 0.4 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right
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If δs1 = δs2, independent of the magnitude of δs, the temperature oscillation
will have simple pattern. Both T1 and T2 are in synchronization. Ref. [1]
(See figure 5.18 ).

Figure 5.18: γ = 0.4, δs1 = δs2 = 24 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right

As an unexpected result, it was found that if δs1 = δs2 = 50 independent
of coupling strength (γ), many of the initial conditions go to fixed points.
(See figure 5.19 ).

Figure 5.19: γ = 0.1, δs1 = δs2 = 50 : Evolution of Temperature fluctuations: Red
color representing T1 and green T2 in left, Phase portrait in T1-T2 is displayed on the
right
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6. Synchronization Error

1. We observe that with increasing coupling strength, the synchronization error
between T1 and T2 decreases. For δs1 = 0, as δs2 increases, synchronization
error between T1 T2 becomes zero for high values of γ.

Figure 6.1: For δs2 = 1 (green), δs2 = 2 (red), δs2 = 5 (blue) synchronization error as
a function of coupling strength γ

Program for the above plot is the following:

from random import *

def delta_plot(d_self1,d_self2,b):
#-------------parameters--------------
a=0.75
ts= 50
tr= 900
d_coupling1 = 0.0
d_coupling2 = 0.0
dt=0.01
#-------------------------------------
n=int(’%0.0f’ %(ts/dt))
T1= [ (2*random()-1) for i in range(n)]
T2= [ (2*random()-1) for i in range(n)]

tf=1000
m = int(’%0.0f’%((tf-tr)/dt))
dT = [0.0 for i in range(m)]
#---------------evolve------------
t=0
while t<=tf:
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c = int(’%0.0f’%(t/dt)) %n

e1 = int(’%0.0f’%( ( (t-d_self1) /dt) -1 ) ) %n
e2 = int(’%0.0f’%( ( (t-d_self2) /dt) -1 ) ) %n
g1 = int(’%0.0f’%( ( (t-d_coupling1)/dt) -1 ) ) %n
g2 = int(’%0.0f’%( ( (t-d_coupling2)/dt) -1 ) ) %n

dT1 = T1[c-1]-T1[c-1]**3 - a*T1[e1] + b*T2[g1]
dT2 = T2[c-1]-T2[c-1]**3 - a*T2[e2] + b*T1[g2]

T1[c] = T1[c-1] + dT1*dt
T2[c] = T2[c-1] + dT2*dt

if t>=tr:
dT[c]= abs(T1[c]-T2[c])

t+=dt
s=0
j=0
while j<=m-1:

s+=dT[j]
j+=1

avg = s/m
return avg

#---------------------------------------------

#----------------main programme---------------

d_self1= 2.0
d_self2_range= [2.0]

dT = [0.0 for i in range(10)]
b_range = [0+0.05*i for i in range(15)]

for d_self2 in d_self2_range:
f=open(’sync_b_ds1=%s ds2=%s.txt’%(d_self1,d_self2),’

w’)
for b in b_range:

i=0
s=0
while i<10:

dT[i] = delta_plot(d_self1,d_self2,b)
s+=dT[i]
i+=1

avg= s/10
f.write(’%s \t %s \n’ %(b,avg))

print ’done!:D ’
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2. Taking average over different initial conditions we see that for different values
of γ the synchronization error attains a fix valued for increasing δs2.

Figure 6.2: For δs1 = 0, synchronization error as a function of δs2 : γ = 0 (green),
γ = 0.1 (red), γ = 0.5 (blue)

Program for the above plot is the following:

from random import *

def delta_plot(d_self1,d_self2,b):
#-------------parameters--------------
a=0.75
ts= 50
tr= 900
d_coupling1 = 0.0
d_coupling2 = 0.0
dt=0.01
#-------------------------------------
n=int(’%0.0f’ %(ts/dt))
T1= [ (2*random()-1) for i in range(n)]
T2= [ (2*random()-1) for i in range(n)]

tf=1000
m = int(’%0.0f’%((tf-tr)/dt))
dT = [0.0 for i in range(m)]
#---------------evolve------------
t=0
while t<=tf:

c = int(’%0.0f’%(t/dt)) %n

e1 = int(’%0.0f’%( ( (t-d_self1) /dt) -1 ) ) %n
e2 = int(’%0.0f’%( ( (t-d_self2) /dt) -1 ) ) %n
g1 = int(’%0.0f’%( ( (t-d_coupling1)/dt) -1 ) ) %n
g2 = int(’%0.0f’%( ( (t-d_coupling2)/dt) -1 ) ) %n

dT1 = T1[c-1]-T1[c-1]**3 - a*T1[e1] + b*T2[g1]
dT2 = T2[c-1]-T2[c-1]**3 - a*T2[e2] + b*T1[g2]
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T1[c] = T1[c-1] + dT1*dt
T2[c] = T2[c-1] + dT2*dt

if t>=tr:
dT[c]= abs(T1[c]-T2[c])

t+=dt
s=0
j=0
while j<=m-1:

s+=dT[j]
j+=1

avg = s/m
return avg

#-----------------------------------------------

#----------------main programme-----------------

d_self1= 5.0
delta = [2.0+(0.5*i) for i in range(78)]
dT = [0.0 for i in range(5)]

b_range = [0.0]

for b in b_range:
print b,
f=open(’sync b=%s ds1=%s.txt’%(b,d_self1),’w’)
j=0
while j<=len(delta)-2:

d_self2 = delta[j+1]
dd = d_self2 - d_self1

i=0
s=0
while i<5:

dT[i] = delta_plot(d_self1,d_self2,b)
s+=dT[i]
i+=1

avg= s/5
f.write(’%s \t %s \n’ %(dd,avg))
j+=1

print ’done!’

#-----------------------------------------------
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3. Evaluation of Basin of attraction for fixed point state. If fraction is
one, fixed points are the global attractor, else if fraction is 0 < f < 1
then we have co-existence of attractors.

fraction of initial conditions going to fixed points as a function of δs2 is displayed
in the figures below. Here we average over different initial conditions at three
values of γ.

• δs1 = 0

Figure 6.3: γ = 0 is green, γ = 0.1 is red, γ = 0.5 is blue, T1 is at left, T2 is at right

• δs1 = 2

Figure 6.4: γ = 0 is green, γ = 0.1 is red, γ = 0.5 is blue, T1 is at left, T2 is at right

• δs1 = 5

Figure 6.5: γ = 0 is green, γ = 0.1 is red, γ = 0.5 is blue, T1 is at left, T2 is at right
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Program for the above plot is the following:

from random import *
import os

def delta_plot(d_self1,d_self2,b,x):
#-------------parameters--------------
a=0.75
ts= 15
tr= 900
d_coupling1 = 0.0
d_coupling2 = 0.0
acc1=0.0001
acc2=0.0001
dt=0.01
#-------------------------------------
n=int(’%0.0f’ %(ts/dt))
T1= [ (2*random()-1) for i in range(n)]
T2= [ (2*random()-1) for i in range(n)]

tf=1000
m = int(’%0.0f’%((tf-tr)/dt))
dT = [0.0 for i in range(m)]
#---------------evolve------------
t=0
while t<=tr:

c = int(’%0.0f’%(t/dt)) %n

e1 = int(’%0.0f’%( ( (t-d_self1) /dt) -1 ) ) %n
e2 = int(’%0.0f’%( ( (t-d_self2) /dt) -1 ) ) %n
g1 = int(’%0.0f’%( ( (t-d_coupling1)/dt) -1 ) ) %n
g2 = int(’%0.0f’%( ( (t-d_coupling2)/dt) -1 ) ) %n

dT1 = T1[c-1]-T1[c-1]**3 - a*T1[e1] + b*T2[g1]
dT2 = T2[c-1]-T2[c-1]**3 - a*T2[e2] + b*T1[g2]

T1[c] = T1[c-1] + dT1*dt
T2[c] = T2[c-1] + dT2*dt
t+=dt

maxi1=T1[c]
mini1=T1[c]
maxi2=T2[c]
mini2=T2[c]

t=tr
while t<=tf:

c = int(’%0.0f’%(t/dt)) %n
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e1 = int(’%0.0f’%( ( (t-d_self1) /dt) -1 ) ) %n
e2 = int(’%0.0f’%( ( (t-d_self2) /dt) -1 ) ) %n
g1 = int(’%0.0f’%( ( (t-d_coupling1)/dt) -1 ) ) %n
g2 = int(’%0.0f’%( ( (t-d_coupling2)/dt) -1 ) ) %n

dT1 = T1[c-1]-T1[c-1]**3 - a*T1[e1] + b*T2[g1]
dT2 = T2[c-1]-T2[c-1]**3 - a*T2[e2] + b*T1[g2]

T1[c] = T1[c-1] + dT1*dt
T2[c] = T2[c-1] + dT2*dt

if(T1[c]>maxi1): maxi1=T1[c]
if(T1[c]<mini1): mini1=T1[c]
if(T2[c]>maxi2): maxi2=T2[c]
if(T2[c]<mini2): mini2=T2[c]

t+=dt

if acc1>= abs(maxi1-mini1):
c1=1

else:
c1=0

if acc2>= abs(maxi2-mini2):
c2=1

else:
c2=0

return [c1,c2]
#------------------------------------------------

#----------------main programme------------------

b_range = [0.5]
ds1_range =[5.0]
ds2_range = [0.0+(0.2*i) for i in range(16)]
for d_self1 in ds1_range:

os.mkdir(’ds1=%s’%d_self1)
os.chdir(’ds1=%s’%d_self1)
for b in b_range:

f=open(’nfp_b=%s_ds1=%s.txt’%(b,d_self1),’w’)
for d_self2 in ds2_range:

c=[0,0]
i = 30
for x in range(i):

s = delta_plot(d_self1,d_self2,b,x)
c[0] += s[0]
c[1] += s[1]
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u=(1.0*c[0])/i
v=(1.0*c[1])/i
f.write(’%s \t %s \t %s \n’%(d_self2,u,v))

f.close()
os.chdir(’..’)

#-------------------------------------
print ’done! :)’
#-------------------------------------
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4. Basin of attraction for the fixed point: We calculate the fraction of initial con-
dition that are attracted to fixed point as a function of coupling strength γ.

(a) T1, δs1 = 0 δs2 = 4 (b) T2, δs1 = 5 δs2 = 2

Program corresponding to the above graph is give below:

import os
from random import *

def delta_plot(d_self1,d_self2,b,x):
#-------------parameters--------------
a=0.75
ts= 15
tr= 900
d_coupling1 = 0.0
d_coupling2 = 0.0
acc1=0.0001
acc2=0.0001
dt=0.01
#-------------------------------------
n=int(’%0.0f’ %(ts/dt))
T1= [ (2*random()-1) for i in range(n)]
T2= [ (2*random()-1) for i in range(n)]

tf=1000
m = int(’%0.0f’%((tf-tr)/dt))
dT = [0.0 for i in range(m)]
#---------------evolve------------
t=0
while t<=tr:

c = int(’%0.0f’%(t/dt)) %n

e1 = int(’%0.0f’%( ( (t-d_self1) /dt) -1 ) ) %n
e2 = int(’%0.0f’%( ( (t-d_self2) /dt) -1 ) ) %n
g1 = int(’%0.0f’%( ( (t-d_coupling1)/dt) -1 ) ) %n
g2 = int(’%0.0f’%( ( (t-d_coupling2)/dt) -1 ) ) %n

dT1 = T1[c-1]-T1[c-1]**3 - a*T1[e1] + b*T2[g1]
dT2 = T2[c-1]-T2[c-1]**3 - a*T2[e2] + b*T1[g2]
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T1[c] = T1[c-1] + dT1*dt
T2[c] = T2[c-1] + dT2*dt
t+=dt

maxi1=T1[c]
mini1=T1[c]
maxi2=T2[c]
mini2=T2[c]

t=tr
while t<=tf:

c = int(’%0.0f’%(t/dt)) %n

e1 = int(’%0.0f’%( ( (t-d_self1) /dt) -1 ) ) %n
e2 = int(’%0.0f’%( ( (t-d_self2) /dt) -1 ) ) %n
g1 = int(’%0.0f’%( ( (t-d_coupling1)/dt) -1 ) ) %n
g2 = int(’%0.0f’%( ( (t-d_coupling2)/dt) -1 ) ) %n

dT1 = T1[c-1]-T1[c-1]**3 - a*T1[e1] + b*T2[g1]
dT2 = T2[c-1]-T2[c-1]**3 - a*T2[e2] + b*T1[g2]

T1[c] = T1[c-1] + dT1*dt
T2[c] = T2[c-1] + dT2*dt

if(T1[c]>maxi1): maxi1=T1[c]
if(T1[c]<mini1): mini1=T1[c]
if(T2[c]>maxi2): maxi2=T2[c]
if(T2[c]<mini2): mini2=T2[c]

t+=dt

if acc1>= abs(maxi1-mini1):
c1=1

else:
c1=0

if acc2>= abs(maxi2-mini2):
c2=1

else:
c2=0

return [c1,c2]
#-----------------------------------------------

#----------------main programme-----------------

b_range = [0.0+i*0.01 for i in range(51)]
ds1_range =[0.0]
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ds2_range = [4.0]

for d_self1 in ds1_range:
os.mkdir(’ds1=%s’%d_self1)
os.chdir(’ds1=%s’%d_self1)
for d_self2 in ds2_range:

f=open(’nfp__ds1=%s_ds2=%s.txt’ \
%(d_self1,d_self2),’w’)

for b in b_range:
c=[0,0]
i = 40
for x in range(i):

s = delta_plot(d_self1,d_self2,b,x)
c[0] += s[0]
c[1] += s[1]

u=(1.0*c[0])/i
v=(1.0*c[1])/i
f.write(’%s \t %s \t %s \n’%(b,u,v))

f.close()
os.chdir(’..’)

print ’done! :)’
#-----------------------------------------
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7. Alternate Model For El-Niño Effect

Here we consider two coupled non-identical sub-systems where the temperature of the
two regions are represented by following differential equations:

dT1
dt

= T1 − T 3
1 − αT1(t− δs1) + γT2(t− δc1)

dT2
dt

= T2 − T 3
2 − αT2(t− δs2) + γT1(t− δc2)

Here Ti, δsi and δci, (i = 1, 2) are the temperature self-delay and coupling delay
of the two regions. The δci, (i = 1, 2) term represents the inter-feedback from the
temperature history of the other region.

Program to analyze the system is written below:

from random import *

delta1=1.6 #self delay of first island
delta2=1.6 #self delay of second island
dt=0.01 #time step
tf=80 #final time
a=0.75 #alpha
b=0.5 #gamma

c1=int(’%0.0f’%(delta1/dt)) - 1
c2=int(’%0.0f’%(delta2/dt)) - 1
n1=c1+1
n2=c2+1

T1=[0 for i in range(n1)]
T2=[0 for i in range(n2)]
L1=open(’elnino T1%s.txt’%delta1,’w’)
L2=open(’elnino T2%s.txt’%delta2,’w’)

t=-delta2
while t<=0:

i1=int(’%0.0f’%(t/dt)) %n1
i2=int(’%0.0f’%(t/dt)) %n2

T1[i1] = (2*random()-1)
T2[i2] = (2*random()-1)
L1.write(’%s\t%s\n’%(t,T1[i1]))
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L2.write(’%s\t%s\n’%(t,T2[i2]))
t+=dt

t=0
while t<=tf:

i1 = int( ’%0.0f’%(t/dt) ) %n1
i2 = int( ’%0.0f’%(t/dt) ) %n2
dT1 = T1[i1-1] - T1[i1-1]**3 - a*T1[i1] + b*T2[i2]
dT2 = T2[i2-1] - T2[i2-1]**3 - a*T2[i2] + b*T1[i1]

T1[i1] = T1[i1-1] + dT1*dt
T2[i2] = T2[i2-1] + dT2*dt

L1.write(’%s \t %s \n’%(t,T1[i1]))
L2.write(’%s \t %s \n’%(t,T2[i2]))

t+=dt

L1.close()
L2.close()
#-------------------------------
print ’done!’

We observed that for the uncoupled system (γ = 0) the two subsystems go to fixed
point if the value of δsi < 1.6. Oscillation in the temperature appears for δsi > 1.6
values. When δc1 = δs2 and δc2 = δs1, coupled systems show the behavior displayed
below:

• System is always in anti-phase synchronization. Ref. [3, 7]

Figure 7.1: δsi = δci = 2.0, (i = 1, 2) Red color represents T1 and Green color repre-
sents T2

• A system with low coupling strength and δs1 = 1.6, δs2 = 0.8 primarily attracts
to a fixed point. With increasing coupling strength, oscillation arise in the
subsystems for some initial conditions.
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• For δs1 = 1.6, δs2 = 0.8, γ = 0.1 all initial conditions go to fixed points. For
γ = 0.5, for both T1 and T2 we find that 58 to 66% of the initial conditions go
to fixed points while the rest are attracted to cycles.

• For δs1 = 1.6, δs2 = 1.6, and γ = 0.1 both T1 and T2 shift towards oscillations
with the increasing value of time delay.

Evaluation of Basin of attraction for fixed point state. If fraction is one,
fixed points are the global attractor, else if fraction is 0 < f < 1 then we
have co-existence of attractors.

Code for the above plots is as follows:

from random import random
import os
os.mkdir(’observations’)
os.chdir(’observations’)

#-------------function--------------

def timeEvolution(x,delta2):
dt=0.01
a=0.75
b=0.0
acc1=0.0001
acc2=0.0001
tf=200.0

n1= int(’%0.0f’%(delta1/dt) )
n2= int(’%0.0f’%(delta2/dt) )

T1=[0 for i in range(n1)]
T2=[0 for i in range(n2)]

f1=open(’data1 %s %s.txt’%(x,delta1),’w’)
f2=open(’data2 %s %s.txt’%(x,delta2),’w’)

t=-delta2
while t<=0.0:

i1= int( ’%0.0f’%(t/dt) ) %n1
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i2= int( ’%0.0f’%(t/dt) ) %n2
T1[i1]= (2*random()-1)
T2[i2]= (2*random()-1)
f1.write(’%0.2f \t %s\n’%(t,T1[i1] ))
f2.write(’%0.2f \t %s\n’%(t,T2[i2] ))
t+= dt

t=0.0
while t<=tf:

i1= int( ’%0.0f’%(t/dt) ) %n1
i2= int( ’%0.0f’%(t/dt) ) %n2
DT1 = T1[i1-1] - T1[i1-1]**3 - a*T1[i1] + b*T2[i2]
DT2 = T2[i2-1] - T2[i2-1]**3 - a*T2[i2] + b*T1[i1]
T1[i1] = T1[i1-1] + DT1*dt
T2[i2] = T2[i2-1] + DT2*dt
f1.write(’%0.2f \t %0.10f \t%s\n’%(t,T1[i1],i1 ))
f2.write(’%0.2f \t %0.10f \t%s\n’%(t,T2[i2],i2 ))
t+=dt

p1=int( ’%0.0f’%(tf/dt) )%n1
q1=int( ’%0.0f’%( (tf-100*dt)/dt ) )%n1

p2=int( ’%0.0f’%(tf/dt) )%n2
q2=int( ’%0.0f’%( (tf-100*dt)/dt ) )%n2

f1.close()
f2.close()

if acc1>= abs(T1[p1]-T1[q1]):
c1=1

else:
c1=0

if acc2>= abs(T2[p2]-T2[q2]):
c2=1

else:
c2=0

return [c1,c2]

#-------parameters of main program--------
d2i=0.8
d2f=1.8
dd2=0.1
iterate=5
#-------------------------
count=int((d2f-d2i)/dd2)*iterate
print "total iterations=%s \n"%count
count=0
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f=open(’nfp.txt’,’w’)
for delta1 in [0.8]:

delta2=d2i
while delta2 <= d2f:

os.mkdir(’delta1=%s delta2=%s’%(delta1,delta2))
os.chdir(’delta1=%s delta2=%s’%(delta1,delta2))

c=[0,0]
for x in range(iterate):

s=timeEvolution(x,delta2)
c[0] += s[0]
c[1] += s[1]

count+=1
print ’\r count=%s ’ %count ,

f.write(’%s \t %s \t %s \t %s \n’ \
%(delta1,delta2,c[0],c[1]))

os.chdir(’..’)
delta2+=dd2

raw_input()
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For different values of δs1, δs2, δc1, δc2 and γ, different patterns of oscillations
were found. Here T1 and T2 have same periods of oscillations. The temper-
ature v/s time plot with the corresponding phase portrait, are displayed
below.

Figure 7.2: δs1 = 4 δs2 = 9 δc1 = 0 δc2 = 1 and γ = 0.4 : Evolution of Temperature
fluctuations: Red color representing T1 and green T2 in left, Phase portrait in T1-T2
is displayed on the right

Figure 7.3: δs1 = 4 δs2 = 10 δc1 = 0 δc2 = 1 and γ = 0.4 : Evolution of Temperature
fluctuations: Red color representing T1 and green T2 in left, Phase portrait in T1-T2
is displayed on the right
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Figure 7.4: δs1 = 4 δs2 = 4 δc1 = 0 δc2 = 3 and γ = 0.4 : Evolution of Temperature
fluctuations: Red color representing T1 and green T2 in left, Phase portrait in T1-T2
is displayed on the right

Figure 7.5: δs1 = 3 δs2 = 6 δc1 = 0 δc2 = 4 and γ = 0.4 : Evolution of Temperature
fluctuations: Red color representing T1 and green T2 in left, Phase portrait in T1-T2
is displayed on the right

Figure 7.6: δs1 = 7 δs2 = 1 δc1 = 0 δc2 = 4 and γ = 0.4 : Evolution of Temperature
fluctuations: Red color representing T1 and green T2 in left, Phase portrait in T1-T2
is displayed on the right
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Figure 7.7: δs1 = 1 δs2 = 1 δc1 = 0 δc2 = 9 and γ = 0.4 : Evolution of Temperature
fluctuations: Red color representing T1 and green T2 in left, Phase portrait in T1-T2
is displayed on the right

Figure 7.8: δs1 = 7 δs2 = 8 δc1 = 1 δc2 = 6 and γ = 0.5 : Evolution of Temperature
fluctuations: Red color representing T1 and green T2 in left, Phase portrait in T1-T2
is displayed on the right

Figure 7.9: δs1 = 7 δs2 = 3 δc1 = 1 δc2 = 7 and γ = 0.4 : Evolution of Temperature
fluctuations: Red color representing T1 and green T2 in left, Phase portrait in T1-T2
is displayed on the right
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Figure 7.10: δs1 = 4 δs2 = 9 δc1 = 1 δc2 = 10 and γ = 0.5 : Evolution of Temperature
fluctuations: Red color representing T1 and green T2 in left, Phase portrait in T1-T2
is displayed on the right

Figure 7.11: δs1 = 1 δs2 = 6 δc1 = 2 δc2 = 7 and γ = 0.5 : Evolution of Temperature
fluctuations: Red color representing T1 and green T2 in left, Phase portrait in T1-T2
is displayed on the right

Figure 7.12: δs1 = 8 δs2 = 5 δc1 = 2 δc2 = 7 and γ = 0.5 : Evolution of Temperature
fluctuations: Red color representing T1 and green T2 in left, Phase portrait in T1-T2
is displayed on the right
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Figure 7.13: δs1 = 0 δs2 = 2 δc1 = 2 δc2 = 10 and γ = 0.4 : Evolution of Temperature
fluctuations: Red color representing T1 and green T2 in left, Phase portrait in T1-T2
is displayed on the right

Figure 7.14: δs1 = 4 δs2 = 10 δc1 = 3 δc2 = 3 and γ = 0.5 : Evolution of Temperature
fluctuations: Red color representing T1 and green T2 in left, Phase portrait in T1-T2
is displayed on the right

Figure 7.15: δs1 = 6 δs2 = 5 δc1 = 3 δc2 = 3 and γ = 0.5 : Evolution of Temperature
fluctuations: Red color representing T1 and green T2 in left, Phase portrait in T1-T2
is displayed on the right
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Figure 7.16: δs1 = 7 δs2 = 3 δc1 = 3 δc2 = 5 and γ = 0.4 : Evolution of Temperature
fluctuations: Red color representing T1 and green T2 in left, Phase portrait in T1-T2
is displayed on the right

Figure 7.17: δs1 = 8 δs2 = 5 δc1 = 3 δc2 = 6 and γ = 0.5 : Evolution of Temperature
fluctuations: Red color representing T1 and green T2 in left, Phase portrait in T1-T2
is displayed on the right
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8. Conclusion

The emergence of oscillations in models of the El-Niño effect is of utmost relevance.
Here we study the prevalence of oscillations in a system of coupled non-identical
delayed action oscillators modelling ENSO. We show how the non-uniformity in the
delays in the sub-systems affect the rise of oscillations. We find the basin of attraction
for the steady state vis-a-vis the oscillatory state of the two sub-systems. It is evident
that there are regimes where the oscillatory sub-system induces oscillations in sub-
system that would have gone to a steady state if uncoupled. We also find that there
exists a window of intermediate coupling strengths, in certain parameter regimes, that
gives oscillations. Namely, when the non-identical sub-systems are too strongly or too
weakly coupled one obtains steady states, while moderate coupling allows oscillations
to emerge. These results are of interest, as geographical sub-systems are most likely
to be non-identical and so it is important to understand the effect of non-homogeneity
in the emergence of oscillations.
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