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Abstract

This thesis aims to study the the dynamic transitions in unzipping of an ad-

sorbed polymer from a surface (or wall), a homopolymer double stranded DNA (ds-

DNA), and the block copolymer dsDNA subjected to an external periodic pulling

force. The unzipping transition, in the presence of a static pulling force, is well

studied and is a first-order phase transition. The polymer unzips from the surface,

and the DNA unzips to two single strands, only when the pulling force exceeds a

critical value which depends on temperature. For the static force case the results

do not depend on the DNA sequence. In the presence of a periodic force, it is found

that the DNA, or the adsorbed polymer, can be unzipped from a zipped state to an

unzipped state dynamically, either by varying the frequency of the periodic force

keeping the amplitude fixed, or by varying the amplitude of the force at a constant

frequency. The force-distance isotherms obtained from the time series of extension

between the end monomers of the DNA (or the distance between the surface and

the end monomer of the polymer) show hysteresis whose area acts as a dynamical

order parameter. It is found that, at fixed force amplitude, the area of the hys-

teresis loop first increases, reaches to a maximum at some frequency that depends

on the force amplitude, and then decreases as the frequency of the periodic force

is increased. The area of the loop is found to scale differently at higher and the

lower frequencies. The thesis studies how the dynamical order parameter behaves

for various types of surfaces and various sequences for the block copolymer DNA.

The thesis also studies the Stochastic Resonance phenomena in the unzipping of a

homopolymer and block copolymer DNA by a periodic force.
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Chapter 1

Introduction

Polymers play a significant role in our life, and their use touches many aspects of

human life. Because they fulfill the demands of modern life, our survival in this

time is very hard without polymers. Over time, we are becoming more dependable

on polymer. The term polymer in Greek means ‘many parts’ and refers to large

molecules whose structure comprises multiple repeating units known as monomers,

bound together by covalent chemical bonds. The polymer can have identical struc-

tural units (homopolymer) or different (heteropolymer). Broadly, polymers are of

two types: naturally occurring polymers and synthetic polymers. Those found in

plants and animals are natural polymers. Some of the well-known natural polymers

are rubber, cellulose, etc., whereas plastics, nylon, polyethylene, to name a few, are

synthetic polymers produced by a process known as polymerization [1]. A poly-

mer can be produced from a monomer through a process called polymerization.

For example, ethylene, which is a monomer, polymerizes to form polyethylene, a

polymer.

nCH2 = CH2
polymerisation−−−−−−−−→ −[−CH2 − CH2−]n−

The type of polymerization mechanism used depends on the type of functional

groups attached to the reactants. Biopolymers like proteins and nucleic acids play

essential roles in biological processes. Polymers can also be classified based on

the structure of the monomer chain. This category has the following classifica-

tions: linear, branched, or network polymers. In a linear polymer, the monomers

are arranged linearly to form a long chain known as a backbone. The backbone
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chain may have hundreds or thousands of monomers. Whereas in a branched-chain

polymer, linear chains of a polymer form branches giving it a tree-like structure.

Henceforth, by a polymer, we shall mean a linear polymer. A polymer contains

a large number of single bonds around which rotations are possible, and various

conformational states can exist. As a result, a polymer molecule can have a huge

number of conformational states, and statistical methods can be used to explore

the conformation of a polymer chain. The main interest is to know the global

properties of the polymer, which remain valid for a large class of polymer chains.

For this purpose, we need to omit the details of the polymer structure as much as

possible and extract simple and universal features from it [2]. The simplest model

used to describe a polymer is an ideal chain (or freely-jointed chain). It only as-

sumes a polymer as a random walk and neglects any interactions among monomers.

In this model, a chain consists of N links, each of length a, which can point in any

direction independent of each other. The size of the polymer is given by the root

mean square of the end to end vector r⃗ [2, 3]

R ∼ ⟨r2⟩1/2 ∼ N2ν (1.1)

with ν = 1/2. But, for real polymers, there is an excluded volume effect, i.e., two

monomers cannot occupy the same space. This is a long-range (along the chain

but short-range in space) interaction that swells the polymer. A model which takes

care of excluded volume effect is a self-avoiding walk (SAW) on a lattice and is a

suitable candidate to study real polymers. The size of the polymer is again given by

Eq. (1.1) but with an exponent ν = 3/(d+2) in d−dimensions, obtained by Flory

within a mean field approach. In one-, two- and three-dimensions, the values of ν

are 1, 3/4 and 3/5, respectively, which are very close to the experimentally [4, 5]

observed values and the numerical simulations [6].

1.1 Directed Polymer

A polymer configuration can be seen as a trajectory of a particle moving between

two points. If all the trajectories between these points do not contain loops or

overhangs, then these configuration are of a directed polymer. Formally, a directed

polymer (DP) in D = d + 1 dimensions is a polymer which grows in a preferred

direction and can have transverse fluctuations in d dimensions. A discretized ver-
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Figure 1.1: Schematic diagram of a DRW on a D = 1+ 1 square lattice. The walk
is directed towards the diagonal (z direction) of the square but can have transverse
fluctuations along x-direction.

sion of this is a directed random walk (DRW) on a lattice and can be defined as

follows: If we choose z⃗ as a preferred direction, then for a DRW, the projection of

each step on z⃗ is non zero [7] . For example, in D = 1 + 1, a directed walk that

takes steps only along the positive diagonal of a square lattice can be mimicked as

a directed polymer. A DRW , on a square lattice of D = 1 + 1 dimension, is illus-

trated in Fig. 1.1. Since there are two possible steps at each lattice point, therefore

a polymer of length N has total 2N configurations. In general, a directed polymer

of length N in D = d+ 1 dimensional hypercubic lattice has (2d)N configurations.

A free DP or a DRW in continuum, is described by the Hamiltonian [8]

H0 = γ

∫ N

0

(
∂r(z)

∂z

)2

dz, (1.2)

where r(z) is the d-dimensional position vector of a monomer at a length z along

the contour of the polymer from one end z = 0 and γ is the elastic constant.

The above Hamiltonian represents purely entropic contribution which arises due

to various conformation of the polymer. The partition function for the polymer is

given by the path integral

Z(r, z) =

∫ r,z

0,0

Dr(z)e−βH0 , (1.3)

or equivalently, in differential form, by a Schrodinger equation (Diffusion equation)

in imaginary time [3, 7]
∂Z(r, z)

∂z
= D∇2Z(r, z), (1.4)
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where D = 1/4βγ s the thermal diffusion constant. Its solution

Z(r, z) =
1√

4πDz
exp

(−r2

2Dz

)
, (1.5)

gives a normalized probability distribution of the position vector r at length z from

the end at (0, 0). For a polymer of length N , the above distribution gives

⟨r⟩ = 0, ⟨r2⟩ = N, (1.6)

where ⟨· · · ⟩ denotes thermal averaging. The transverse size of the polymer is

therefore given by

R⊥,N ∼ ⟨r2⟩1/2 ∼ N2ν⊥ with ν⊥ = 1/2. (1.7)

Along the z direction the polymer advances with a constant speed, therefore, the

longitudinal size of the polymer is equal to its length

R∥,N ∼ N2ν∥ with ν∥ = 1. (1.8)

The DRW on a two dimensional lattice was studied numerically by Chakrabarti

and Manna [9] and analytically by Szpilka [10]. The exponents ν⊥ = 1/2 and ν∥ = 1

are obtained by Cardy [11] using the field-theoretical description (in analogy with

the work of de Gennes [12] on the self avoiding walk problem) and by Privman and

Svrakic [13] using the generating function techniques in d ≥ 2. These exponents

are independent of dimensionality.

1.1.1 Applications as a model system

The DP model has many vital applications in statistical physics. For over five

decades, it has been used (both in a pure as well as in a random medium) to un-

derstand a variety of interesting physical situations where one is concerned with

the statistical fluctuations exhibited by an essentially linear elastic object, such as

longitudinally stretched polymers in a gel matrix, vortex lines in ceramic supercon-

ductors, growing surfaces, morphology, and statistics of self-affine fractal tear lines

in paper, domain walls in 2d dirty magnets, dislocation lines in disordered solids,

spin glasses, etc. (see Halpin-Healy and Zhang [14] and references therein). By the
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Figure 1.2: Schematic representation of an adsorbed polymer chain at the solid-
liquid interface.

passage of time, its application has been growing. The DP model has also been used

to study the homopolymer DNA unzipping transition [15, 16, 17, 18, 19, 20, 21],

and block copolymer DNA unzipping transition [22], which is the first step towards

biological processes like DNA replication and RNA transcription. Recently, the DP

model has been adapted in the study of stochastic resonance in the unzipping of

DNA.

1.2 Polymer Adsorption

Polymers in solution may readily get adsorbed onto various surfaces where there is

an attractive interaction between segments of the polymer and the surface, which

overcompensates for the conformational entropy loss of the polymer upon adsorp-

tion. This is one of the most important phenomena and has enormous implications

in many processes such as lubrication, adhesion, surface protection, coating of sur-

faces, wetting, vortex lines, biology, etc [23]. The adsorption process of polymers

onto a surface is largely governed by the prevailing conditions under which poly-

mer, solvent, and surface interact. The adsorption process depends on the type

of surface on which the polymer is adsorbed, with its internal structure. There

are three different kinds of surfaces where polymers are adsorbed. The surface can

either be penetrable (to be called soft-wall) or it can be impenetrable (hard-wall).

Furthermore, a soft-wall can be either homogeneous or heterogeneous. For the for-

mer case, the polymer has the same affinity on either side of the wall, whereas it has

different affinities for the heterogeneous case. An adsorbed polymer chain on the

interface of solid-liquid is represented in Fig. 1.2. A review of polymer adsorption

can be seen in Netz and Andelman [24].
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1.2.1 Adsorption-desorption transition

In the above section, we have defined the physical situation under which a polymer

gets adsorbed onto an attractive surface. This adsorbed polymer needs to be

desorbed from the surface, which can be done by increasing the temperature. At low

temperatures, the polymer remains in an adsorbed phase because it gains energy

due to attraction with the wall, whereas at high temperatures, the desorbed phase

dominates and the polymer gains entropy. This competition between the energy

and the entropy (to minimize the total free energy) causes a phase transition known

as the adsorption-desorption transition. This happens at a critical temperature Td,

which is known as the desorption temperature [25] . The adsorption-desorption

transition of a polymer, up to an extent, is similar to the denaturation transition of

a double-stranded DNA (dsDNA), where the two strands of the DNA get separated

at melting temperature TM . The transition is monitored by a physical quantity,

⟨m⟩, which is the fraction of monomers adsorbed on the surface. Above the critical

temperature Td, polymer favors to being in desorbed phase with ⟨m⟩ = 0. Below

the critical temperature Td, the fraction ⟨m⟩ is finite and increases as temperature

T decreases. At low T , the polymer is in a completely adsorbed phase with fraction

⟨m⟩ = 1. At critical temperature

⟨m⟩ ∼ Nϕ, (1.9)

where ϕ is the crossover exponent. In d = 2, the value ϕ = 1/2, has been obtained

exactly using the conformal invariance and numerically by using Monte Carlo sim-

ulations and transfer matrix studies [7]. The adsorption-desorption transition has

been studied over six decades [26, 27, 28, 29, 30, 31, 32, 33, 34]. The scaling

arguments were given by deGennes [27] which were supported by the mean-field

calculations [23]. The exact solutions for the Gaussian (non self-avoiding) polymer

were found by Rubin [26], and for the self-avoiding directed polymers by Privman

et al. [28, 29] in two and three dimensions.

1.2.2 Unzipping transition

An adsorbed polymer can also be removed from the surface by applying a pulling

force (see the Fig. 1.3). The adsorption-desorption transition induced by force is

known as unzipping transition. When a pulling force g is applied on one end of the

8
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Figure 1.3: Schematic diagram of unzipping of an adsorbed polymer by a force g.

polymer keeping the other end fixed, it is found that the polymer unzips from the

surface if the force exceeds a critical value gc [35, 36, 37, 38, 39, 40]. The polymer

remains in an adsorbed phase below this critical force, while above it, the polymer

is in the unzipped phase. The unzipping of an adsorbed polymer from the surface

is a first-order phase transition. The unzipping transition of a directed polymer is

studied by Kapri and Bhattacharjee [35] by using generating function and the exact

transfer matrix techniques in a pure as well as in a random medium. Whittington

et. al. [36] studied the unzipping of a directed copolymer and Mishra et al. [38]

used exact enumeration to study the unzipping of a self-avoiding polymer.

1.3 Copolymer

A copolymer is a polymer that is made up of more than one species of monomer.

Several commercially essential polymers are copolymers. For example, polyethylene-

vinyl acetate (PEVA), nitrile rubber, and acrylonitrile butadiene styrene (ABS)

are copolymers. Schematic diagram of PEVA is shown in Fig. 1.4. The process of

forming a copolymer by the use of multiple species of monomers is known as copoly-
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Figure 1.4: Monomer and structure of Poly(ethylene-co-vinyl acetate)(PEVA)
copolymer.

merization. It is frequently used to improve or modify specific properties of plas-

tics. A homopolymer is a polymer that is formed only from one type of monomer

unit. Copolymers derived from copolymerization of two monomer species are some-

times called bipolymers. Copolymers can be built in various patterns. They are

categorized based on their structures. Single chain copolymers are known as lin-

ear copolymers, whereas those having polymeric side chains are called branched

copolymers. On the basis of the arrangement of the monomers on the main chain,

the linear copolymers can be further divided into several categories such as block

copolymers, statistical copolymers, alternating copolymers, periodic copolymers,

gradient copolymers, and stereoblock copolymers. Whereas a branched copolymer

is a polymer in which the monomers form a branched structure. Some essential

types of branched copolymers are star, comb, grafted, and brush copolymers [41].

1.3.1 Block Copolymer

When more than one homopolymer unit is attached chemically, the resulting single-

chain macromolecule is called a block copolymer [41]. The intermediate non-

repeating unit at which the two homopolymer chains are attached is known as a

junction block. There are two homopolymer blocks in a diblock copolymer, whereas

a triblock copolymer contains three different blocks of homopolymers. A famous

example of such a block copolymer is acrylonitrile butadiene styrene, commonly re-

ferred to as SBS rubber. Automobile tires are made up of SBS rubber. The blocks

in SBS rubber are polystyrene and polybutadiene (StyreneButatineStyrene). An

example describing the structure of a block copolymer which is made up of the

monomers ‘A’ and ‘B’ is provided below.

10



−A− A− A− A−B −B −B −B − A− A− A− A−B −B −B −B−

is a block copolymer where −A−A−A−A− and −B −B −B −B− groups are

the blocks.

1.4 DNA: The genetic information carrier of life

1.4.1 DNA structure

DNA is known as Deoxyribonucleic Acid, which is a genetic material that is inside

all living organisms. It is an organic compound with a unique molecular structure.

It is a very long, double-stranded polymer, where each strand contains a sequence

of nucleotides and its two complementary polymeric chains twisted about each

other in the form of a regular right-handed double helix [42]. There are three

components in a nucleotide: sugar, phosphate, and nitrogen base. In a polymeric

chain of nucleotides, the sugar of each nucleotide is attached by a phosphate group

to the sugar of the adjacent nucleotide. The sugar and phosphate groups are always

attached together by the same chemical bonds, known as the sugar-phosphate

backbone.The two strands run in opposite directions. The sugar and the phosphate

are the same for each nucleotide, whereas there are four possible bases in the

DNA alphabet: cytosine (C), guanine (G), adenine (A), and thymine (T). The two

strands in the molecule are held together by hydrogen bonds between the bases

according to the Watson-Crick pairing scheme, shown in Fig. 1.5. Adenine (A)

on one chain is always paired with thymine (T) on the other chain, and, likewise,

guanine (G) is always paired with cytosine (C). An important feature of Watson-

Crick pairing is that the base pairs have exactly the same geometry. The two

strands are complementary to each other. It means, if one knows the sequence

of one strand, the sequence of the other can be figured out, as the bases will

be those that form hydrogen bonds with the bases in the first strand. Formally,

this is known as double-stranded DNA(dsDNA). But, DNA molecule is not always

double-stranded helical structures, sometimes they occur in single-stranded form

called ssDNA. Even though both have the same chemical composition and can act

as genetic material, they also show some characteristics differences.

Two factors primarily responsible for the stability of the DNA double helix are

11



Figure 1.5: The DNA base pairs. Dashed lines represent the hydrogen bonds.

base pairing between complementary strands and stacking interaction between ad-

jacent bases. The hydrogen bonds between complementary bases are a fundamental

feature of the DNA double helix, which contributes to the thermodynamic stability

of the helix and the specificity of base pairing. However, hydrogen bonds are not

the only force that stabilizes the double helix. Another significant contribution

comes from stacking interactions between the bases. The bases are flat, relatively

water-insoluble molecules, and they tend to stack above each other roughly per-

pendicular to the direction of the helical axis [42]. The structure of the dsDNA is

shown in Fig. 1.6.

DNA is a hereditary material responsible for carrying and transmitting genetic

information that passes from one generation to the next. Apart from being respon-

sible for inheriting genetic instructions in all living organisms, DNA also plays a

crucial role in producing proteins. Each strand of the DNA double helix carries the

same information – their base sequences are complementary. This information can

be read only if the strands of the DNA come apart, which is essential in the biolog-

ical processes like DNA replication and RNA transcription [45]. In the following,

we briefly introduce these processes.

12



Figure 1.6: Structure of the B-DNA Duplex CGCGGTGTCCGCG in solution.
(a) The stick model, and (b) the space filling model. The coordinates are
taken from the protein data bank [43] (PDB key 1LAI [44]) and plotted us-
ing Jmol: An open-source Java viewer for three-dimensional molecular structures
(http://www.jmol.org/).

Summary of DNA replication

DNA replication is one of the most important processes in biology. DNA encodes

all the information that is passed on to the next generation of cells, and it must

be rapidly and faithfully copied when the time comes for cells to divide. The

replication of DNA is executed by molecular machines called DNA polymerase,

which travel along the DNA molecule as it replicates it. DNA replication is semi-

conservative, where each strand in the DNA double helix acts as a template for

the synthesis of a new, complementary strand. The basic mechanisms of DNA

replication are similar across organisms. During the process, the two parental

strands of DNA separate, and each acts as a template to direct the synthesis of

a new complementary daughter strand following the normal base pairing rules (A

with T; G with C). The two new double-stranded molecules then pass to the two

daughter cells at cell division. The point at which separation of the strands and

synthesis of new DNA takes place is called the replication fork (or Y-fork). The
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Figure 1.7: Schematic representation of DNA replication.

schematic diagram of DNA replication is shown shown in Fig. 1.7. Several studies

suggest that the force acting at the junction of the Y-fork on the DNA is periodic

in nature [46, 47, 48, 49]. Molecular motors like helicases are driven by adenosine

triphosphate (ATP) in a living system. The periodic hydrolysis of ATP to adenosine

diphosphate (ADP) can generate a continuous push and pull type of motion. These

chemomechanical cycles suggest that biological machines act like repetitive force

generators, and it is believed that biomolecules in many physiological conditions

experience forces with periodic signatures. For example, it has been postulated that

DNA-B, a ringlike hexameric helicase, pushes through the DNA like a wedge and

produces unidirectional motion and strand separation [50]. The active rolling model

and the inchworm model are two mechanisms which suggest that plasmid copy

reduced (PcrA) helicase goes through a cycle of pulling the dsDNA part of the DNA

and then moving on the ssDNA part during the ATP hydrolysis [51]. Similarly,

the viral RNA helicase NPH-II hops cyclically from the double-stranded to the

single-stranded part of the DNA and back during the ATP hydrolysis cycle [52].
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Summary of RNA transcription

RNA transcription is a cellular process in which RNA is synthesized using DNA

as a template. It is the first step of gene expression that involves the formation of

an RNA molecule from DNA. The genetic information flows from DNA to protein,

and this flow of information takes place in a sequential process of transcription

and translation [53]. Only one strand of DNA is copied during the process of

transcription, known as the template strand, and the RNA formed is called the

mRNA. RNA polymerase is the enzyme involved in transcription. It uses single-

strand DNA to synthesize a complementary RNA strand. RNA polymerase binds

to specific DNA sequences called promoters to initiate RNA synthesis, resulting in

local DNA unwinding. The position of the first synthesized base of the RNA is

called the start site. RNA polymerase moves along the DNA and sequentially syn-

thesizes the RNA chain. DNA has unwound ahead of the moving polymerase, and

the helix is reformed behind it. RNA synthesis always occurs in a fixed direction,

from the 5′- to the 3′-end of the RNA molecule. RNA polymerase recognizes the

terminator sequence on the DNA that causes no further ribonucleotides to be in-

corporated. These sequences often contain self-complementary regions, which can

form a stem-loop or secondary hairpin structure in the RNA product. These cause

the polymerase to pause and subsequently cease transcription [42]. A schematic

diagram of RNA transcription is shown in Fig. 1.8.
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1.4.2 Block copolymer DNA

DNA can be particularly designed and conjugated with synthetic polymers to pro-

duce DNA block polymers, named as DBCs [54]. DBCs behave like DNA and

polymers since they are made out of DNA segments. As a result of incorporat-

ing the DNA segment into the block copolymer, DBCs will have several unique

qualities not found in traditional block copolymers, such as exact chemical struc-

ture segment, specialized self-assembly driving force, and molecular recognition,

etc. Although the first DBC was synthesized in the late 1980s [55], this new ma-

terial class has gotten much attention and has been a popular candidate for novel

nanostructure design and construction in the last two decades [56, 57].

1.5 Melting of DNA

The hydrogen bonds between the bases of the complementary strands in the dsDNA

can be easily broken to form two separate strands of the DNA. This process is

known as melting of DNA. This can be carried out in various ways:

1. By chemical agents in neutral pH, known as chemical denaturation.

2. By increasing the temperature of the solution of DNA, known as thermal

denaturation or melting of dsDNA.

3. By applying an external pulling force on the two strands of dsDNA. This

process is known as DNA unzipping.

1.5.1 Chemical denaturation of DNA

Compounds, such as urea (H2NCONH2) and formamide (HCONH2), can cause

the denaturation of DNA at neutral pH by disrupting the hydrophobic forces be-

tween the stacked bases. Urea and formaldehyde contain functional groups that

can form H-bonds with the electronegative centers of the N-bases. At the high con-

centrations (8M urea or 70% formamide) of the denaturant, the competition for

H-bonds favor interactions between the denaturant and the N-bases rather than

between complementary bases. As a result, the two strands separate. The dsDNA
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Figure 1.9: Schematic diagram showing thermal denaturation of a double-stranded
DNA into two single strands and vice-versa.

can also be denatured by the extreme pH conditions. In the acidic medium, the

ring nitrogens of A, G, and C get protonated by the acid while the ring nitrogens

of G and T get deprotonated in the alkaline medium. This changes their electronic

configuration, so they no longer donate electrons to the aromatic rings. Therefore,

the bases are no longer planar or aromatic. The protonation state of the non-ring

nitrogens are also changed. This affects the specific hydrogen bonding between the

base pairs, with the result that the double-stranded structure breaks down; that is,

the DNA becomes denatured [45]. The pH of melting depends on the mole fraction

of GC pairs on the DNA. Larger the mole fraction of GC pairs, the higher the pH

of melting.

1.5.2 Thermal denaturation

When a DNA solution is heated enough, the dsDNA unwinds, and the hydrogen

bonds that hold the two strands together weaken and finally break. This process is

known as DNA denaturation. The denaturation (melting) of the DNA is a cooper-

ative phenomenon. The melting of the ends of the DNA and a more mobile AT-rich

internal region will destabilize adjacent areas in the helix, leading to a progressive

and concerted melting of the whole structure at a well-defined temperature known

as the denaturation or melting temperature (Tm). At Tm, 50% base-pairs of the

DNA are broken. The amount of strand separation, or melting, is measured by the

absorbance of ultraviolet (UV) light passed through a solution of the DNA. Nucleic

acids absorb maximum UV light at a wavelength of λmax = 260 nm because of the

electronic structure of their bases. The absorbance at 260 nm (A260) is greatest
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for isolated nucleotides, intermediate for ssDNA, and least for the dsDNA. When

two strands of DNA come together, the close proximity of the bases in the strands

quenches some of this absorbance. When the two strands separate, this quenching

disappears, and the absorbance rises 30% to 40%. The melting temperature Tm

is a function of the G+C content of the DNA sample and ranges from 80◦C to

100◦C for long DNA molecules. While the ratio of G (Guanine) to C (Cytosine)

and A (Adenine) to T (Thymine) in an organism’s DNA is fixed, the GC content

(percentage of G +C) can vary considerably from one DNA to another. Because

G-C pairs form three hydrogen bonds, while A-T pairs form only two, the higher

the percentage of GC content, the higher its Tm. Thus, A double-stranded DNA

rich in G and C needs more energy to denature than the one rich in A and T,

thus having higher melting temperature (Tm). However, this complete separation

of DNA strands by thermal denaturation is reversible. When the solution of denat-

urated DNA is slowly cooled, the single strands often meet their complementary

strands and renature to a regular double helix. A schematic diagram showing the

thermal denaturation and renaturation of DNA is shown in Fig. 1.9. For a review

on the thermal denaturation of DNA, see Ref. [58]. In experimental study, it is

customary to obtain the differential melting curves, i.e., dA260/dT vs T. These

curves either show a single peak or several peaks whose positions and heights de-

pend on the sequence length, composition and the salt concentration. For very

short sequences (about 102−103 base pairs), the melting curve shows a single peak

indicating a sudden denaturation of the two strands. This peak is quite broad and

gets rounded due to the strong finite-size effects. For chains of intermediate lengths

(≈ 103 − 104 base pairs) there are several peaks of typical width of about 0.5◦C or

less. These peaks are the signatures of sharp transitions of cooperatively melting

regions. For very long chains (≈ 106 base pairs), there is again only a single broad

peak covering about 15◦C to 20◦C, which is the overlap of many individual peaks

associated with the denaturation of single domains. On the theoretical side, the

DNA denaturation has been studied over six decades and various models have been

proposed [18, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74]. These

studies are based either on the Poland Sheraga model [60] or the Peyrard Bishop

model [62]. All these models agree that the thermal denaturation of the DNA is a

phase transition, but the order of the transition depends on the model used. Some

models [18, 59, 60, 61, 62] predict thermal denaturation is a continuous transition

while the others [63, 64] predict it is a discontinuous transition.
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1.5.3 Force induced unzipping

The separation of the strands of a dsDNA into two single strands, either by increas-

ing the temperature (around 80 − 100◦C) or in extreme pH conditions cannot be

relevant processes in the physiological conditions (37◦C and at neutral pH) found

in living organisms. Instead, in biological processes, like DNA replication and RNA

transcription, it is found that the enzymes and other proteins exert mechanical force

on the DNA to separate the two strands apart. This separation by a mechanical

force is known as unzipping transition [15]. In the last two and half decades, the

advent of single-molecule manipulation techniques have made it possible to apply

a piconewton force on a single DNA molecule to study the unzipping transition. In

the following subsections, we review the theoretical and experimental studies done

so far to understand the unzipping transition.

Theoretical studies

The simple coarse-grained models have been used to study DNA unzipping theo-

retically. In these models, the two strands of the DNA are described as two inter-

connected polymeric chains. These chains are either defined on a lattice as a self-

avoiding walks [19, 20, 21, 22], or in the continuum as worm like chain [75, 76, 77,

78, 79, 80]. A constant pulling force is applied at one end of the DNA, which pulls

apart it’s two strands. These simple models can be solved analytically and predict

the universal properties of the unzipping transitions, such as the order of transition,

phase diagram etc. quite well. The two important models worth mentioning are

Poland Scheraga (PS) model [60, 81, 82], and the Peyrard–Bishop–Dauxois (PBD)

model [62, 83, 84, 85] whose simple extensions are used extensively to study the

unzipping transition.

Consider a homopolymer DNA of length N which is under the influence of an

applied pulling force g at one end (z = N ) while the other end (z = 0) is kept

fixed. The Hamiltonian of dsDNA in the continuum can be written as [15]

HD = H0 +Hg

=

∫ N

0

dz

[
1

2

(
∂r1(z)

∂z

)2

+
1

2

(
∂r2(z)

∂z

)2

+ V (r(z))

]
−
∫ N

0

g.
r(z)

z
dz

(1.10)
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where ri(z) is the d-dimensional position vector of a monomer at a length z along

the contour of the ith strand from the anchored end, V (r(z)) is the binding poten-

tial, and r(z) = r1(z)− r2(z) is the relative coordinate. By mapping Eq. (1.10) to

a non-Hermitian quantum Hamiltonian [86, 87, 88]

Hq(g) =
1

2
(p+ ig)2 + V (r) (1.11)

with p as momentum, Bhattacharjee [15] found that the dsDNA unzips to two

single strands if the pulling force exceeds a critical value. The separation between

the strands of DNA shows a discontinuous increase as g approaches gc from below,

which implies that the unzipping is a first-order phase transition. The above model

has been generalized to study the unzipping for the heterogeneous DNA case [89,

90, 91, 92, 93, 94, 95]. The unzipping of DNA can be studied in two different

ensembles: (1) fixed force ensemble, and (2) fixed distance ensemble. In the fixed

force ensemble, a constant pulling force g is applied on the strands of the DNA,

whereas in the fixed distance ensemble, the separation x between the strands is kept

constant. A class of exactly solvable models for a homopolymer DNA in D = d+1

dimensions are studied by Merenduzzo et al. [17, 18], and the phase diagram of

unzipping have been obtained in the force-temperature plane. The phase diagrams

contain two different phases of the dsDNA named as the zipped and the unzipped

phases. In the zipped phase, the DNA is a double-stranded chain i.e., the hydrogen

bonds between the base pairs are not broken; however, in unzipped phase, the

hydrogen bonds between the base pairs are broken, and the strands of the DNA

get separated from each other like a zipper. In these models, the existence of a

cold unzipping transition was observed towards low temperatures, where the critical

pulling force increases with increasing temperature. The dynamics of dsDNA in

unzipping transition has also been studied [18, 96]. Based on such models, a phase

coexistence based mechanism [97] and a front propagation [98] for helicase motion

is proposed. These models have also been extended to investigate the transcription

of RNA by applying a force pulling at an intermediate point [99, 100, 101, 102]. In

these studies, in addition to the usual zipped and the unzipped phases, a new phase,

which was called the eye phase, appeared in the phase diagram. The eye phase

resembles the transcription bubble produced at the initiation of RNA transcription.

The complete phase diagram of DNA unzipping was observed by Kapri et al. [99]

in both the fixed distance and the fixed force ensembles. The phase diagrams are

found to be independent of the ensemble used for the end case but showing strong

ensemble dependence for the intermediate point. Using exact enumeration, Giri and
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Kumar [103] studied the effect of saturation of hydrogen bonding on a dsDNA. They

found the eye phase and ensemble dependence even for the DNA of finite lengths.

They also studied pulling direction dependence on the phase diagrams and obtained

various intermediate phases [104]. The nature of the unzipping transition is found

to be the same even after introducing the semiflexibility of the DNA strands [105]

The role of single-strand binding proteins on DNA unzipping has also been studied

by modeling the nature of binding by a randomly oriented force [106, 107]. It was

found that the DNA unzips, even in the absence of a constant pulling force at the

end, to two singles strands if the force fluctuation is increased. The transition,

however, in this case, becomes continuous. The possible applications of DNA

unzipping have also started coming up. There are some studies [108, 109, 110] that

see mechanical unzipping as a potential tool for DNA sequencing.

Over the past one decade, unzipping of biomolecules by a periodic force has

drawn some attention. If biomolecules are subjected to a periodic forcing, they

can unbind and rebind with a hysteresis in their force-distance isotherms. The

study of hysteresis in unbinding and rebinding of biomolecules can provide useful

information on the kinetics of conformational transformations, the potential energy

landscape, controlling the folding pathway of a single molecule, and in force sensor

studies[111, 112, 113, 114, 115]. In recent years, the behavior of a dsDNA under a

periodic force has been studied using Langevin dynamics simulation of an off-lattice

coarse-grained model for a short homo-polymer DNA chains [75, 76, 77, 78, 79] and

Monte Carlo simulations on a relatively longer chains of directed self-avoiding walk

(DSAW) model of a homo-polymer dsDNA [19, 20, 21], and a block copolymer

DNA [22] on a 2-dimensional square lattice. In both type of studies, a dynamical

phase transition was found to exist, where the DNA can be taken from the zipped

state to an unzipped state with an intermediate dynamic state. It was found that

the area of the hysteresis loop, Aloop, which represents the energy dissipated in the

system, depends on the frequency of the periodic force for the homo-polymer chains,

however for block copolymer DNA, Aloop depends on the frequency of periodic force

as well as the block copolymer DNA sequence and on the base pair type on which

the periodic force is acting. At higher frequencies, it decays with frequency as

Aloop ∼ 1/ω, whereas at lower frequencies, it scales with the amplitude g0 and

frequency ω of the oscillating force as Aloop ∼ gα0ω
β. The values of exponents α

and β are however found to be different in these studies. In a recent study [80],

using Langevin dynamics simulations on longer double-stranded DNA chains, the

value of exponents has been obtained. These values are same as the exponents
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Figure 1.10: Schematic diagrams of various experimental setups used to study DNA
unzipping. (a) Atomic force microscope (AFM), (b) Laser optical tweezers (LOTs),
(c) Glass microneedle. They all work in the fixed-distance ensemble.

obtained in Monte Carlo simulation studies of a directed self-avoiding walk model

of a homopolymer DNA [20] and the block copolymer DNA [22].

Experimental Studies

In this section, we briefly introduce a few single-molecule micro-manipulation tech-

niques used to study DNA unzipping. The developments of these techniques

have opened up the possibility of applying a mechanical force in the pico-newton

range on a single DNA molecule. These studies have revealed information about

the unzipping kinetics, thermodynamic information, and sequence-dependent ef-

fects [116, 117, 118, 119, 111, 120, 121, 122]. Similar to theoretical studies, the

DNA unzipping experiments are also done either in the fixed distance or in the

fixed force ensembles.

The various experimental techniques used to probe DNA unzipping are shown

schematically in Figs. 1.10 and 1.11.
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1. Fixed distance ensemble: The various techniques which work in the fixed dis-

tance ensembles are atomic force microscope (AFM), laser optical tweezers

(LOTs), and glass microneedles. The schematic diagrams of these experimen-

tal techniques are shown in Figs. 1.10(a), 1.10(b) and 1.10(c), respectively.

Optical Tweezers use light to manipulate microscopic objects. The working

principle of LOT is based on the optical gradient force generated by a focused

beam of light acting on an object with an index of refraction higher than that

of the surrounding medium. The radiation pressure from a focused laser beam

can trap small objects. In the biological sciences, these instruments have been

used to apply forces in the pN range and to measure displacements in the

nm range of objects ranging in size from 10 nm to over 100 mm. For more

information on optical tweezers and its applications see Ref. [123].

Microneedle (MNs) device consists of needles of micron size, which are ar-

ranged on a small patch. In the glass microneedle set-up, a calibrated glass

microneedle tip acts as a force lever whose deflection can be resolved with

great precision to give a force resolution of the order of 0.1 pN. It can be

done by analyzing a videotape of the microscope image recorded during the

opening experiment [124, 125, 126].

To perform DNA mechanical unzipping experiment using LOT and glass mi-

croneedle, a specific DNA construction has to be designed, in which linker

arms prolongate the strands of the DNA to be unzipped to reduce as far

as possible non-specific interaction between the DNA to be unzipped and

the apparatus used to perform such experiments (e.g., the microscope slide

and the bead). These linker arms consist of dsDNA, which contain, close to

one of their extremities, multiple, modified base pairs. One type of linker

is modified with biotin groups to react to streptavidin-coated bead, and the

other type is modified with digoxigenin groups to react to anti-digoxigenin

coated microscopic slides [124, 125, 126, 116]. The bead is either held in an

optical trap [116] or attached with the glass microneedle tip [124, 125, 126],

and the microscope slide is laterally displaced, which leads to a progressive

opening of the double helix. The force is obtained from a measurement of the

bead position within the trap, or the deflection of the tip of the micronee-

dle under microscope, which is measured on the video imageas a function of

this displacement. Optical tweezers have also been used to study RNA tran-

scription [127], folding-unfolding transitions in single titin molecules [128],

folding-unfolding kinetics in RNA molecules [129, 130], for the detection of
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the position and dynamic nature of Protein-DNA interactions [131] etc. Re-

cently, optical tweezers has been used to investigate stochastic resonance

(SR) in single DNA hairpins driven by oscillatory mechanical forces [132].

For recent advances of OTs in single-molecule manipulation see Ref. [133].

Atomic Force Microscopy, or AFM, is a high-resolution form of scanning

probe microscopy that employs a sharp tip in a raster motion to measure and

visualize materials at the atomic- and nano-scales. The AFM is based on the

principle that a very soft cantilever with a tip that is moved to the vicinity of a

surface can sense the roughness of the surface and deflect by an amount which

is proportional to the proximity of the tip to the surface (Fig. 1.10(a)). AFMs

can be used to apply mechanical force on the dsDNA [134, 135, 136, 137].

At the same time, AFMs can be used to sweep surfaces and take images of

the DNA molecule. The surface is coated with the DNA molecules to be

unzipped, and the AFM tip is coated with molecules that can bind to the

DNA. By moving the tip to the substrate, contact between the tip and one of

the strands of the DNA molecules adsorbed on the substrate is made. The tip

is now pulled back at a constant speed, and its deflection is measured. This

measures the force acting on the DNA as a function of its extension, known

as the force-extension curve. Depending upon the stiffness of the cantilever,

the AFM can measure forces in the (20 pN - 10 nN) range. Other than DNA

unzipping, AFMs have also been used for the unfolding of individual titin

molecule [138], identification of binding mechanisms in single molecule-DNA

complexes [139] etc. In recent past, AFMs has been used to measure the

elasticity of dsDNA [140].

2. Fixed force ensemble: Magnetic tweezers (MTs) are devices used for study-

ing the mechanical properties of biomolecules like DNA or proteins in single-

molecule experiments. It works in the fixed-force ensemble. MT is based on

the principle that a magnetized bead experiences a force in a magnetic field

gradient. A single molecule is tethered to a surface at one end and attached to

a magnetic bead at the other; the bead is manipulated with the help of an ex-

ternal magnetic field. The DNA is pulled by moving the translation stage that

supports the magnets, and the bead’s position is recorded [117, 118]. MTs

can also be used to generate torque [141, 142]. MT has been used to study the

elasticity of DNA molecules [143, 144, 145], unfolding RNA molecules [146],

unwinding by RNA polymerase [147], etc. Almost two decades ago, Danilow-

icz et al. [117, 118] used MT to study the mechanical unzipping of lambda
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Figure 1.11: Schematic diagrams of Magnetic tweezers (MTs). It works in the
fixed-force ensemble

phage DNA and obtained the unzipping phase diagram for a range of tem-

peratures [118]. They have also measured the hysteresis in the unzipping

and rezipping of dsDNA [111]. The schematic diagram of the basic set-up is

shown in Fig. 1.11.

1.6 Stochastic Resonance

Stochastic resonance (SR) is one of the many interesting phenomena arising from

the interplay between the noise and the nonlinearity in externally driven systems.

When SR is triggered, the response of a system embedded in a noisy environment

acquires an enhanced sensitivity towards small external time-dependent forcing.

The concept of SR was first coined in 1981 by Benzi et al. [148] in an attempt to

understand the climatic changes during the ice ages. SR has been studied in a large

variety of systems, including climate dynamics [148, 149], colloidal particles [150,

151, 152], biological systems [132, 153, 154, 155], and quantum systems [156, 157].

With an advent of single-molecule manipulation techniques, it is now possible to

measure SR at the level of individual molecules. Using the optical tweezers, the

first experimental study of SR in single DNA hairpins, has been done in recent

past [132].
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Figure 1.12: Classical particle in the symmetric double well potential V0(x). Parti-
cle transits between the two wells due to thermal noise, with the Kramers transition
rate W = W1 = W2 given by Eq. 1.12.

1.6.1 Theoretical understanding

A. Standard example: a classical particle in the double well

The mechanism of stochastic resonance is straightforward to explain. Consider a

heavily damped particle of mass m and viscous friction γ, moving in a symmetric

double-well potential V0(x) (see Fig. 1.12). The particle is subject to a random

force which is induced by the coupling to a heat bath. The fluctuating force causes

the particle to transit between the two potential minimas at x = −c and x = +c,

respectively. If the parameter κ measures the strength of the noise and ∆V is

the height of the potential barrier separating the two minimas, then in the case

κ < ∆V , the rate of transition between the two potential wells from x = −c to +c,

is given by Kramers formula [158]

W = ⟨τ⟩−1 =

√
|V ′′

0 (0)|V ′′
0 (c)

2π
exp

(−2∆V

κ

)
, (1.12)

τ is the inverse of the transition rate, i.e. the mean passage time from x = −c

to +c. The transition rate depends on noise strength, κ, the height, ∆V , of the

potential barrier and the curvature at the extrema. Let us now add a small periodic
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Figure 1.13: In the presence of an optimal degree of noise, stochastically activated
transitions between the two metastable states are most likely after one half-cycle
of the periodic injected signal. As a result, at non-vanishing noise strength, the
response is optimally synced with the external modulation of the double-well po-
tential. .

modulation of the potential

V (x, t) = V0(x) + V1
x

c
sin(ωst). (1.13)

Here by ‘small’ we mean V1 < ∆V , such that the driving does not cause deter-

ministic transitions between two wells. Since the modulation is linear in x, it does

affect the height of the barrier seen by the particle but not the second derivatives

in the Kramers rate (Eq. 1.12). If the modulation frequency, ωs, is not too large,

we get

W1,2(t) =

√
|V ′′

0 (0)|V ′′
0 (c)

2π
exp

(−2

κ
(∆V ± V1 sin(ωst))

)
(1.14)

for the two rates W1 (from −c to +c) and W2 (vice versa). Hence, at a certain

phase of the driving, the probability to go from state 1 to state 2 is increased,

whereas the opposite transition is decreased.

The SR can now be illustrated using the preceding description. When the noise

is small, the average residence time in the two states is much longer than the driv-

ing period 2π/ωs. Consequently, the individual transitions occur at unpredictable
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times. However, when the noise level is increased to a certain point, we see almost

a periodic transitions: the particle usually jumps from state 1 to state 2 and back

once per modulation period. The transitions are most likely to occur at those in-

stants of time when the corresponding transition rates, W1,2, are maximized and

the average residence times in both the metastable states is equal to the half of

the modulation period [see Fig. 1.13]. As the noise strength increases further, too

many transitions are activated by the noise during one cycle of the periodic drive,

and the cooperation between the signal and the noise is lost again. This is the SR

effect: the system’s response is most regular at a finite, non-vanishing noise level!

B. General model: Two-state model

In the two-state model, the system can be found in one of the two metastable states

at any given time. The dynamics within the states is completely neglected. The

output variable of the system can have only two values:

x =

−c in state 1

+c in state 2
(1.15)

The dynamics of the system can be described in terms of two transition rates W1

and W2. These rates indicate the probability that the system will move from state

1 to state 2 (W1∆t) or state 2 to state 1 (W2∆t) within a short time interval ∆t.

The transition rates depend on the strength of the noise (more noise enhances the

transition rates), the amplitude and frequency of the external signal.

Given W1(t) and W2(t), the time evolution of the probabilities p1 and p2 of

finding the system in state 1 or 2 is given by

ṗ1 = −W1(t)p1 +W2(t)p2, (1.16)

ṗ2 = W1(t)p1 −W2(t)p2. (1.17)

Using the conservation of total probability, p1 + p2 = 1, these equations reduce to

ṗ1 = −(W1 +W2)p1 +W2. (1.18)
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In the limit t → ∞, the above equation has the unique asymptotic periodic solution

p1(t)
(as) =

1

1− exp(−⟨W ⟩tS)

∫ tS

0

dt′W2(t− t′) exp

(
−
∫ t

t−t′
dt′′W (t′′)

)
(1.19)

Where W (t) = W1(t) + W2(t) and ⟨W ⟩ is the average of W (t) over the driving

period. Therefore the asymptotic ensemble average of the output variable,x(t), is

⟨x(t)⟩(as) = −cp1(t)
(as) + cp2(t)

(as) = c(1− 2p1(t)
(as)) (1.20)

This is the main quantity in quantitative characterization of SR for the two-state

model.

C. Quantifying SR

The power spectrum of the output variable, x(t), is used to measure SR. It exhibits

a strong peak (‘signal peak’) at the signal frequency, ωs. The area under this peak,

known as output signal power, is the measure of SR. Often the signal-to-noise ratio

(SNR) is also used. It is defined by the height of the signal peak divided by the

height of the background noise at frequency ωs. When the output signal power (or

the SNR) reaches a maximum as a function of noise strength, we term it as SR.

Power spectrum: The power spectrum, P (Ω), of the position x(t) of the particle

in the double well, is defined as [159]:

P (Ω) =
1

2πtmax

∣∣∣∣∫ tmax

0

dt x(t) exp(−iΩt)

∣∣∣∣2 . (1.21)

In the limit tmax → ∞, the Wiener-Khintchine theorem [160] expresses the power

spectrum,

P∞(Ω) = 4

∫ ∞

0

dτC(τ) cos(Ωτ), (1.22)

in terms of the autocorrelation function,

C(τ) =
1

ts

∫ ts

0

dt ⟨x(t+ τ)x(t)⟩(as). (1.23)

The brackets ⟨· · · ⟩as denote an average over the stochastic realization of the noise

in the asymptotic limit. For large time differences τ → ∞, we can factorize the
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correlation ⟨x(t+ τ)x(t)⟩ = ⟨x(t+ τ)⟩⟨x(t)⟩, indicating the fact that at large τ the

only correlation between x(t + τ) and x(t) is due to periodic drive. In this limit,

the autocorrelation function approaches a periodic function of τ , which permits us

to write its Fourier transform (Eq. 1.22) as a sum of δ peaks at integer multiples

of the driving period and of a smooth background PN(Ω):

P∞(Ω) =
∞∑

n=−∞

Snδ(Ω− nωs) + PN(Ω). (1.24)

The weights, Sn, of the signal peaks are given by

Sn =
2π

t2s

∣∣∣∣∫ ts

0

dt ⟨x(t)⟩as exp(−iωsnt)

∣∣∣∣2 , (1.25)

where ⟨x(t)⟩as is the periodic asymptotic limit of the expectation value of x(t). The

weight, S1, of the main signal peak at Ω = ωs is called the output signal power. It

is the stronger the ‘more periodically’ the transitions between the two metastable

states occur and can therefore be regarded as a quantitative measure of SR. In

other words, the SNR,

SNR =
P (ωs)

PN(ωs)
, (1.26)

can be used also for this purpose.

Power spectrum in the two-state model: The output signal power, for two-state

model, is obtained by inserting the Eq. 1.20 into Eq. 1.25. The noise background,

without modulation has Lorentzian shape

P
[no signal]
N (Ω) = 4c2

W

Ω2 +W 2
, (1.27)

with W = W1 +W2.

Now let us add small modulation and assume that assume that the rates vary

symmetrically and sinusoidally under periodic forcing

W1(t) =
1

2
⟨W ⟩ − ϵ sin(ωSt), (1.28)

W2(t) =
1

2
⟨W ⟩+ ϵ sin(ωSt). (1.29)

30



Using these both equations in to Eq. 1.19, we get

p1(t)
(as) =

1

2
+ ϵ

sin(ωSt− ϕ)√
⟨W ⟩2 + ω2

S

, (1.30)

where ϕ is the phase difference between drive and response. This equation, via

Eqs. 1.20 and 1.25, gives us the output signal power which is is proportional to the

squared amplitude of the periodic response:

S1 =
4πc2ϵ2

⟨W ⟩2 + ω2
S

. (1.31)

This expression is valid generally for all symmetric two-state systems with sinu-

soidally modulated transition rates.

After dividing S1 by the level, PN(ωS), of the noise spectrum at Ω = ωS (see

Eq. 1.27), we get

SNR ∝ ϵ2

⟨W ⟩ . (1.32)

For a more detail description of SR, see the review in Ref. [159].

1.7 Summary of Monte Carlo simulation

In this section, we give a brief summary about Monte Carlo simulation which

has been adopted to study the problems in this thesis. First, we describe how

the estimates for the observables are done by using the Monte Carlo simulation.

There are many textbooks on Monte Carlo simulations. One such textbook which

describes MC simulations in details is given in Ref. [161].

The states of the system, which is in equilibrium with a reservoir at inverse

temperature β = 1/kBT (kB is Boltzmann constant), are sampled according to the

Boltzmann probability distribution

pµ =
1

Z
e−βEµ , (1.33)

where Eµ is the energy of the system in state µ and Z is the partition function
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which is given by

Z =
∑
µ

e−βEµ . (1.34)

The expectation value ⟨X⟩ of an observable X is given by

⟨X⟩ =
∑

µXµe
−βEµ∑

µ e
−βEµ

. (1.35)

Monte Carlo techniques work by choosing a subset of states at random from

some probability distribution pµ which is to be specified. If we choose {µ1...µM}
as M such states, then the best estimate of the quantity X is given by

XM =

∑M
i=1Xµi

p−1
µi
e−βEµi∑M

j=1 p
−1
µj
e−βEµj

. (1.36)

We call XM as the estimator of X. The estimator XM becomes more and more

accurate estimate of ⟨X⟩ as the sample size M increases and in the limit M → ∞
we have XM = ⟨X⟩.

The essence of the idea behind Monte Carlo simulation is that if we can pick

M states from those states which make important contributions to the sums in

Eq. (1.35) and ignore contributions from all other states. Importance sampling is

used to accomplish this where instead of picking our M states in such a way that

every state of the system is as likely to get chosen as every other, we pick them so

that the probability that a particular state µ gets chosen is pµ = Z−1e−βEµ . Then

the estimator for ⟨X⟩, Eq. (1.36), becomes

XM =
1

M

M∑
i=1

Xµi
. (1.37)

In Monte Carlo simulations, the states are generated by using the mechanism

of Markov process. Markov process generates a new state ν of the system from a

given state µ in random fashion. The probability of generating the state ν given µ

is referred as transition probability P (µ → ν) for the transition from µ to ν. The

transition probabilities should satisfy the following two conditions: (i) they should

not vary over time, and (ii) should depend only on the properties of the current

states µ and ν, and not on any other states the system has passed through. The
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transition probabilities P (µ → ν) should also satisfy

∑
ν

P (µ → ν) = 1, (1.38)

because given a state µ of the system, Markov process must generate some state

ν. There is a finite probability that the system can stay in the original state µ,

therefore P (µ → µ) need not to be zero.

We choose the Markov process in such a way that when it runs for long enough

time starting from any state of the system, it eventually reaches to equilibrium pro-

ducing the states with their correct Boltzmann probabilities. It should be possible

for our Markov process to reach any state of the system from any other state, when

we run it for long enough time. This requirement is called condition of ergodicity.

We also have to ensure that the states we generate after the system reaches to

the equilibrium are generated according to the Boltzmann probability distribution,

rather than any other distribution. We call it condition of detailed balance which

tells that in equilibrium the transition probabilities must satisfy

P (µ → ν)

P (ν → µ)
=

pν
pµ

= e−β(Eν−Eµ). (1.39)

If we satisfy the Eqs. (1.38) and (1.39) along with the condition of ergodicity

then the states generated by our Markov process in the equilibrium are according

with Boltzmann distribution. The Metropolis algorithm satisfies all the necessary

requirements which we will discuss next.

1.7.1 Metropolis algorithm

If µ and ν are two states generated by a Markov process such that Eµ < Eν , then

the Metropolis algorithm chooses the transition probabilities between the states µ

and ν according to

P (µ → ν) =

e−β(Eν−Eµ) if Eν − Eµ > 0

1 otherwise.
(1.40)
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We implement the above rule to study the problems in this thesis.

1.8 Outline of the Thesis

Finally, we present an outline of the work done in this thesis. We have considered

three problems, and we give the central ideas of these problems as follows:

In chapter 2, we study the dynamic transitions in the unzipping of an adsorbed

polymer from a surface (or the wall) which is subjected to a periodic force on one

end (free end) while keeping its other end fixed. We consider three different type

of the walls:

1. The surface is impenetrable, i.e., the polymer is allowed to stay only on one

side of the wall. We refer such a surface as hardwall in the thesis.

2. The surface is penetrable, i.e., the polymer is allowed to cross the surface,

and the polymer has an equal affinity on either sides of the surface. We call

such a surface as softwall.

3. The surface is penetrable but the polymer has different affinities on either

sides of the surface. This can be thought of as an interface between the two

immiscible liquids in which the polymer has different degrees of solubility.

We shall obtain the results for the static force case using the Monte Carlo simula-

tions and shall compare them with the analytical results obtained earlier using the

generating function technique to verify the validity of our simulation. We shall also

discuss the results obtain for the dynamic force case. In this case force-distance

isotherms show the hysteresis.

In chapter 3, we study the unzipping of a double-stranded block copolyer DNA

by a periodic force. We shall obtain the phase diagram for the static force case

using the generating function technique and exact transfer matrix method. We

will see that the results obtain for the static force case are independent of DNA

sequence. Then we shall show that when DNA is subjected to a periodic force it

unbinds and rebinds with a hysteresis in its force-distance isotherm. We will show

that the results thus obtain for the periodic case depend on the DNA sequence.
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Chapter 4 is devoted to the study of the stochastic resonance phenomenon in the

unzipping of a homo-polymer DNA and a block copolymer DNA by periodic force.

We shall measure the output signal(OS), which is resonance quantifier. We shall

see how the OS shows a peak when it is plotted as a function of the frequency of

the applied force confirming the occurrence of stochastic resonance in periodically

driven DNA.
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Chapter 2

Dynamic Transitions in Unzipping

of an Adsorbed Polymer

In this chapter, we study the dynamic transitions in the unzipping of an adsorbed

polymer on a surface (or wall) by a pulling force. We consider three different types

of walls:

1. In the first type of wall, the polymer is allowed to stay only on one side of

the wall, i.e., the wall is impenetrable. We refer such a surface as hard-wall.

2. In the second type of wall, the polymer is allowed to cross the surface, and

it has equal affinity on both the sides of the surface. We call such a surface

as soft-wall.

3. In the third type of wall, the polymer is allowed to cross the surface, but

it has different affinities on either sides of the surface. This can be thought

of as an interface between two immiscible liquids in which the polymer has

different degree of solubility.

Let us first define our model.
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2.1 Model

We model the polymer by a directed self-avoiding random walk in d = 1 + 1

dimensional square lattice. The walk starts at the origin O, and is restricted to go

towards the positive direction of the diagonal axis (z direction). The directional

nature of the walks takes care of the self-avoidance. We put an attractive wall

along z-axis at x = 0. Whenever a monomer is on the wall, polymer gains an

energy −ϵ(ϵ > 0). One end of the polymer is always kept anchored to the wall at

the origin, and other end monomer is subjected to a time-dependent periodic force

g(t), which acts along the transverse direction (x direction) and is given by

g(t) = g0 sin(ωt), (2.1)

where g0 is the amplitude and ω is the angular frequency. Throughout the chapter,

by frequency we mean the angular frequency.

The three different possibilities for the wall, as mentioned above, can be modeled

by assigning a repulsive potential V (> 0) on one side of the wall, say x < 0. In

the two extreme limits, i.e., (i) for V = 0, the wall behaves as a softwall, and

(ii) for V = ∞, it behaves like a hardwall. All other values of V , the wall acts

like an interface between the two immiscible liquids with different affinities with

the polymer. The schematic diagram of the model is shown in Fig. 2.1. For the

static case, i.e., ω = 0, this model has been solved analytically using generating

function and exact transfer matrix techniques and exact phase diagram has been

determined [35]. However, for the dynamic case, i.e., ω ̸= 0, the model cannot

be solved analytically. We perform Monte Carlo simulations using the Metropolis

algorithm. The polymer chain undergoes Rouse dynamics that consists of local

corner-flip or end-flip moves [3]. It does not violate mutual avoidance with hard

wall. The elementary move consists of selecting a random monomer from the

chain and flipping it. If the move results in the adsorption of the monomer on

the wall, it is always accepted as a move. The opposite move, i.e., desorption

of the monomer from the wall, is chosen with the Boltzmann probability η =

exp(−∆E/kBT ), where ∆E is the energy difference between two states. The move

involving movement of monomer from one desorbed state to another is always

accepted. The time is measured in units of Monte Carlo steps (MCSs). One MCS

consists of N flip attempts, which means that on average, every monomer is given a

chance to flip. Throughout the simulation, the detailed balance is always satisfied
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Figure 2.1: Schematic diagram of a directed polymer adsorbed on a surface (along
z-axis) at x = 0. (a) Soft-wall: polymer is allowed in the whole region. (b)
Wall separating two different types of media: polymer is allowed in whole region,
however there is an extra repulsive potential V (> 0) on side x < 0. (c) Hard-wall:
polymer is not allowed in the region x < 0. One end of the polymer is anchored
at the origin (O), and the chain on the free end is subjected to a time-dependent
periodic force with frequency ω and amplitude g0.
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and the algorithm is ergodic in nature. It is always possible, from any starting

polymer configuration, to reach any other configuration by using the above moves.

We have checked that we get the same results from a completely stretched polymer

configuration. Before taking any measurements, we let the simulation run for

400π/ω in lower frequency regime, and 4000π/ω in higher frequency regime, to

achieve the stationary state.

We report quantities in the dimensionless units. The quantities having dimen-

sions of energy are measured in units of ϵ, and the quantities that have dimensions

of length are measured in terms of the lattice constant a. The time is measured in

units of MCS. We have taken kB = 1, ϵ = 1 and a = 1.

2.1.1 Quantities of interests

The various quantities that are of interest to us are:

• Displacement of end monomer from the wall: The displacement, x(t), of the

end monomer of the polymer from the wall is the response to the oscillating

force g(t). The displacement x(t) is monitored as a function of time t for

various force amplitudes g0 and frequency ω.

• Dynamical order parameter: The time averaging of x(t) over a complete

period,

Q =
ω

2π

∮
x(t)dt. (2.2)

The quantity Q can be used as a dynamical order parameter [162].

• Force-distance isotherms: From the time series x(t), we can obtain the ex-

tension x(g) as a function of force g. On averaging it over many cycles of

the periodic force, we can obtain the average extension ⟨x(g)⟩ as a function

of g. The average extension, ⟨x(g)⟩, depends on the frequency ω of the os-

cillating force. At higher frequencies, the system does not get enough time

to get equilibrated and therefore the ⟨x(g)⟩ is not same for the forward and

backward paths. This results in a hysteresis loop in force-extension plane.

• Area of the hysteresis loop: The area of hysteresis loop, Aloop, which is defined

by

Aloop =

∮
⟨x(g)⟩dg, (2.3)
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depends upon the frequency ω and the amplitude g0 of the driving force and

can serve as an another candidate for the dynamical order parameter.

2.2 Results and Discussions

In this section, we discuss the results obtained in our simulations for both the static

and dynamic cases. Let us first discuss the static force case briefly.

2.2.1 Static Case

In the static limit, this model has been solved analytically using the generating

function and exact transfer matrix techniques [35]. We first briefly mention the

generating function technique and obtain the exact phase diagrams for all the

three cases. We then validate our Monte Carlo simulation results by obtaining

the force-distance isotherms for various system sizes and then extract the critical

unzipping force values at various temperatures using finite-size scaling. We then

compare them with the analytical results.

A. Phase diagram

The directed nature of our model makes it possible to calculate the partition func-

tion for the polymer via a recursion relation. The generating function technique

can then be used to obtain the phase boundary. In this method, the singularities

of the generating function are determined. The singularity nearest to the origin

gives the phase of the polymer and the phase transition occurs whenever the two

singularities cross each other. The method is described as follows: Let Zn(x) repre-

sents the partition function, in the fixed-distance ensemble, of a polymer of length

n with separation x between the nth monomer and the wall. Let each lattice site

on one side (say x < 0) of the wall has a repulsive potential V (V > 0). The

soft-wall and the hard-wall are then the limiting cases for V → 0 and V → ∞,

respectively. In the presence of potential V , the recursion relation satisfied by the
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partition function is given by

Zn+1(x) =


[Zn(x+ 1) + Zn(x− 1)]e−βV for x < 0

Zn(x+ 1) + Zn(x− 1) for x > 0

[Zn(x+ 1) + Zn(x− 1)]eβϵ for x = 0.

(2.4)

If the above recursion relation is iterated N times with an initial condition Z0(x) =

eβϵδx,0, we get the partition function of a polymer of length N . The generating

function for the partition function Zn(x), can be taken to be of the form (ansatz)

Ẑ(z, x) =
∑
n

znZn(x) =

ηx(z)K(z) for x > 0

η′−x(z)K(z) for x < 0.
(2.5)

When the ansatz Eq. (2.5) is used in the above recursion relation (Eq. (2.4)), we

obtain η = (1 −
√
1− 4z2)/2z, η′ = (1 −

√
1− 4z2e−2βV )/2ze−βV and K(z) =

1/{1 − [η′ + η]zeβϵ}. The singularities coming from η and η′ are z1 = 1/2 and

z′1 = 1/2 exp (−βV ), respectively, and K(z) has the singularity

z2 =
1

2

√
1−

(
1− 2e−βϵ(1− e−βV e−βϵ)

1 + e−βV (1− 2e−βϵ)

)2

, (2.6)

which depends on both the adsorption energy, ϵ, and the potential V . In the

large length limit, the relevant partition function in fixed-distance ensemble is

approximated as ZN(x) ≈ ηx(z2)/z
N+1
2 for x > 0, with free energy βF = N ln z2 −

x ln η(z2). The force needed to maintain the separation x is given by g = ∂F/∂x.

The phase boundary, in a fixed-distance ensemble, is then given by

g(T ) = −kBT ln η(z2). (2.7)

The zero force melting takes place at Tc = ∞ for the soft-wall and Tc = ϵ/ ln 2 for

the hard-wall case. There is a nonzero Tc for any V < ∞.

In the fixed-force ensemble, there is an additional force-dependent singularity,

z3(βg0) = [2 cosh (βg0)]
−1, which comes from the generating function

G(z, βg0) =
∞∑
n=0

zn
∑
x

Zn(x)e
βg0x. (2.8)

The phase boundary comes from equating the two singularities z2 = z3 and is
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Figure 2.2: Critical unzipping force gc as a function of temperature T for soft-wall
(V = 0.0), wall separating two different types of media (V = 1.0), and hard-wall
(V = ∞). The lines are the exact results obtained from the generating function
approach, and the points are obtained by using finite-size scaling of the force-
distance isotherms as obtained from the Monte Carlo simulations.

given by

gc(T ) = T cosh−1

[{
1−

(
1− 2u(1− vu)

1 + v(1− 2u)

)2
}−1/2]

, (2.9)

with u = e−βϵ, and v = e−βV . This phase boundary obtained in the fixed-force

ensemble (Eq. (2.9)) is identical to the phase boundary obtained in the the fixed-

distance ensemble (Eq. 2.7). In the limits V → 0 and V → ∞, the above equation

simplifies to the phase boundaries for the soft-wall and hard-wall cases, respectively

gc(T ) =

T tanh−1 [1− e−βϵ] for soft-wall

T tanh−1 [1− 2e−βϵ] for hard-wall.
(2.10)

The phase boundary separating the adsorbed and the unzipped phases for all the

three cases: hard-wall (V → ∞), soft-wall (V → 0) and the wall separating two

different media (V = 1.0) are shown in Fig. 2.2 by lines. The region below the phase

boundary represents the adsorbed phase while above it represents the unzipped

phase. From Eq. 2.9, we obtained the critical force as gc(T = 0.5) = 0.6557....,

0.4959.... and 0.4636.... for soft-wall, wall separating two media (V = 1.0) and
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hard-wall, respectively, at temperature T = 0.5 used in this study.

B. Force-distance isotherms

We perform Monte Carlo simulations on the model to obtain the force g vs average

extension, ⟨x⟩, of the end monomer of the polymer from the wall. Every data point

in the force-distance isotherms is obtained by equilibrating the system for 2× 105

MCSs and then averaged over 104 different realizations.

In Fig. 2.3, we have plotted the scaled extension ⟨x⟩/N , as a function of constant

pulling force g for the polymer of various lengths N = 128, 256, and 512 at T = 0.5

obtained by using Monte Carlo simulations for (i) the soft-wall [Fig. 2.3(a)], (ii) the

wall separating two different media [Fig. 2.3(c)], and (iii) the hard-wall [Fig. 2.3(e)].

From the figure, we can clearly see the existence of the zipped and the unzipped

phases. The polymer is in the zipped phase at lower g values with ⟨x⟩/N ≈ 0,

and in the unzipped phase with ⟨x⟩/N ≈ 1 when the external pulling force g

exceeds a critical value gc. Furthermore, with the increase in the chain length N ,

the transition becomes sharper. In the thermodynamic limit, N → ∞, it would

become a step function at a critical value gc. The critical value of the force, gc, is

obtained by using the finite-size scaling on polymer lengths N = 128, 256, and 512

⟨x⟩ = NdF
((

g − gc
)
Nϕ
)
, (2.11)

where d and ϕ are the critical exponents. The data shows a very nice collapse for

the values:

1. gc = 0.65± 0.02, d = 0.96± 0.05, and ϕ = 1.0± 0.02 for the soft-wall case,

2. gc = 0.49± 0.02, d = 0.93± 0.10, and ϕ = 1.0± 0.02 for the wall separating

two different media case, and

3. gc = 0.46± 0.02, d = 0.90± 0.10, and ϕ = 1.0± 0.02 for hard-wall case.

The data-collapse obtained using the above exponents are shown in Figs. 2.3(b),

2.3(d), and 2.3(f) for the soft-wall, the wall separating two different media, and

the hard-wall cases, respectively. The critical force values are obtained by using

the above method at various temperatures are plotted by points in Fig. 2.2. They
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Figure 2.3: Scaled extension ⟨x⟩/N , as a function of constant pulling force g,
obtained using Monte Carlo simulations, for different chain lengths N = 128, 256,
and 512 at T = 0.5 for (a) soft-wall . (b) ⟨x⟩/Nd as a function of (g−gc)N

ϕ showing
a nice collapse of data for gc = 0.65 ± 0.02, d = 0.96 ± 0.05, and ϕ = 1.0 ± 0.02.
(c) For wall separating two different types of media. (d) data collapse of (c) for
gc = 0.49 ± 0.02, d = 0.93 ± 0.10, and ϕ = 1.0 ± 0.02. (e) For hard-wall case. (f)
Collapse of data shown in (e) for gc = 0.46±0.02, d = 0.90±0.10, and ϕ = 1.0±0.02
.

are found to match the analytical results [Eq. 2.9] obtained using the generating

function technique. Let us now use our Monte Carlo simulations to the dynamic

case.
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2.2.2 Dynamic Case

In the previous section, we have seen that for the static force case, the exact results

are available due to the generating function technique. However, for the dynamic

force case, where the polymer is subjected to an oscillating force, the exact results

are not available. We therefore use the Monte Carlo simulations, to study the

unzipping of polymer subjected to an oscillatory force. We will discuss results for

all the three types of walls as defined at the beginning of the chapter.

The oscillating force g(t) defined in Eq. (2.1) has both the positive and negative

cycles. For the soft-wall and the wall separating two different media, the polymer

can cross the wall and therefore both the positive and negative cycles are used in

pulling the polymer. However, for the hard-wall case, the polymer cannot cross it

and remains adsorbed on the wall during the negative cycle of the force. Therefore,

for the hard-wall case, we take the absolute value of the force g(t) to convert the

negative cycles also to positive cycles and define

gh(t) = g0| sin(ωht)|, (2.12)

where ωh is the frequency of the force gh(t). On comparing Eqs. (2.1) and (2.12),

we see that for same time period, the frequency of the force for the hard-wall case

is ωh = ω/2. Henceforth, we will remember this and drop the subscript h from

both ω and force g(t).

A. Extension

The response of an oscillating force g(t) is seen in the extension x(t) of the end

monomer of the polymer from the wall. In Fig. 2.4, we have plotted the time

variation of the scaled extension, x(t)/N , for the polymer of length N = 128 as a

function of time t along with the time variation of the external force g(t), at force

amplitude g0 = 1.2, for two different frequencies ω = 1.42× 10−2 and 6.28× 10−4

for the soft-wall (V = 0.0), the wall separating two different media (V = 0.5), and

the hard-wall (V = ∞) at temperature T = 0.5. The magnitude of the force rises

from 0 to a peak value of g0, which is greater than the critical force gc required to

unzip the polymer at equilibrium, and then falls back to 0 in both the positive and

negative cycles. The scaled extension x(t)/N follows the force g(t) with a lag and
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Figure 2.4: The scaled extension x(t)/N from the wall of end monomer of the
polymer of length N = 128 as a function of time t when it is subjected to a
periodic force of amplitude g0 = 1.2 at frequency ω = 1.42 × 10−2. For the (a)
soft-wall (V = 0.0), (b) wall separating two different media (V = 0.5), and (c)
hard-wall (V = ∞). Plots (d), (e), and (f) are same as plots (a), (b), and (c) at
frequency ω = 6.28×10−4. The time variation of force, g(t), is represented by solid
lines.

its value depends on the frequency of the oscillating force. At a higher frequency,

ω = 1.42×10−2, the force changes very rapidly and the polymer does not get enough

time to relax. Therefore, fewer number of monomers are unzipped from the wall

resulting in smaller scaled extension. For the soft-wall case, since the polymer

experiences similar environment on either sides of the wall, the scaled extension is
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almost symmetrical in the positive and the negative cycles of the pulling force g(t)

[Fig. 2.4(a)]. However, this is not the case for the wall separating the two different

media. In this case, the polymer feels a repulsive potential (V = 0.5) on side x < 0

and prefers to remain adsorbed on the wall. On the other side of the wall x > 0,

the potential is V = 0. Therefore, the scaled extension is not the same for both

the positive and negative cycles of the force [see Fig. 2.4(b)]. For the hard-wall

case, the polymer is unable to cross the wall at x = 0 and only a positive scaled

extension is observed, which is shown in Fig. 2.4(c). When the force is oscillating

at a lower frequency, ω = 6.28× 10−4, the polymer gets enough time to relax and

attains a fully stretched configuration in the response to the oscillating force. This

results a larger scaled extension [see Figs. 2.4(d) – 2.4(f)]. However, the extension

is still smaller for the negative cycle of the force in case of the wall separating

the two media because the force pulls only a few monomers from the wall due to

the presence of a repulsive potential V = 0.5 [see Fig. 2.4(e)]. The time series of

extension x(t) accumulated for many different cycles can be used to obtain various

quantities.

B. Hysteresis loops

In the preceding subsection, we have seen that the response, x(t), of the system

during the rise of the magnitude of the force from 0 to g0 and fall of the magnitude

of the force from g0 to 0 is not the same in both the positive and the negative cycles

of the force. At a given temperature, we can obtain the average extension ⟨x(g)⟩
as a function of force g by averaging x(t) over a significant number of cycles. The

force-distance isotherms thus obtained show hysteresis loops.

In Fig. 2.5, we have plotted average extension ⟨x(g)⟩, averaged over 104 cycles,

as a function of force g for a polymer of length N = 128 at five different frequencies

ω = 1.57 × 10−2, 1.57 × 10−3, 1.57 × 10−4, 4.18 × 10−5, and 1.57 × 10−5 at two

force amplitudes g0 = 1.0, and 2.5 for the soft-wall (V = 0.0), wall separating two

different media (V = 1.0), and the hard-wall (V = ∞), respectively. The values of

the force amplitude g0 is always chosen higher than the critical force gc needed to

unzip the polymer from the wall. The force-distance isotherms for all the three cases

show hysteresis loops of various shapes and sizes. At T = 0.5, the force amplitude

g0 = 1.0 is slightly above the phase-boundary, gc = 0.6557 . . . , 0.4636 . . ., and

0.4959 . . ., for the soft-wall, the hard-wall and the wall separating the two different
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Figure 2.5: The force g vs extension ⟨x(g)⟩ curves averaged over 104 cycles of
a polymer of length N = 128 for the various frequencies for (a) soft-wall, (b)
wall separating two different type of media, and (c) hard-wall at force amplitudes
g0 = 1.0. Plots (d), (e) and (f) are the same as the plots (a), (b) and (c) respectively,
at g0 = 2.5. The line joining the points in these plots is just a guide for the eye.

media, respectively, and most of the monomers are adsorbed on the wall. For the

soft-wall and the wall separating two different media, the polymer can penetrate

the wall to gain the configurational entropy and due to this extra entropy, the

stationary state of the polymer for the soft-wall case is an adsorbed state. At any

finite temperature, the value of the critical force needed to unzip it from the wall

is more than at it is at T = 0 (see Eq. (2.9)). Similarly, for the wall separating

the two media, the critical force depends on the strength of the repulsive potential

V and for smaller values V the phase diagram shows a reentrance region at lower
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temperatures [35]. When the polymer is subjected to an oscillating force with

a higher frequency, ω = 1.57 × 10−2, the force changes very rapidly and it can

only unzip a few monomers from the wall. Therefore, we obtain a small hysteresis

loop for all the three cases [Fig 2.5(a)-2.5(c)]. For the soft-wall case, as the polymer

experiences similar environment on both sides of the wall, the loop is divided about

⟨x(g)⟩ = 0 into two equal and symmetrical parts. Whereas, in case of the wall

separating two different media having different affinities for the polymer, the fast

changing force, during the negative cycle, is unable to pull the monomers from the

wall against the repulsive potential V = 1.0, in the region x < 0. Therefore, during

the negative cycle of the force, the extension ⟨x(g)⟩ remains 0 with no hysteresis.

In contrast, for the hard-wall case, at any finite temperature, few monomers of

the adsorbed polymer at the free end are unzipped to gain the configurational

entropy, and therefore, the stationary state of the polymer is a partially zipped

state. Therefore, the average extension ⟨x(g)⟩ of the polymer even at g = 0 is

finite (see Fig. 2.5(c)). When the frequency is decreased to a relatively lower value,

ω = 1.57× 10−3, the polymer gets relatively more time to relax. As a result more

number of monomers are separated from the wall and the area of hysteresis loop

increases. For the soft-wall case, we get two symmetrical loops for the positive

and the negative cycles of the oscillating force [see Fig. 2.5(a)]. In case of the

wall separating two different media, the polymer remains adsorbed on wall with no

hysteresis in the negative cycle of the force [see Fig. 2.5(b)]. In the positive cycle

of the force loop looks similar to the loop obtained for the hard-wall case as shown

in Fig. 2.5(c). At this frequency, the polymer gets fully unzipped at the maximum

force value for the hard-wall and the wall separating two different media, resulting

in larger loop area. As the frequency is decreased further, the polymer now has

ample time to relax and therefore, the isotherms for the forward and backward

paths begin to retrace each other at higher an lower force values but with a small

hysteresis loop at intermediate forces. The area of the hysteresis loop decreases

with the decrease in the frequency.

The force-distance isotherms for the higher force amplitude g0 = 2.5 are shown

in Figs. 2.5(d) – 2.5(f). The force amplitude g0 = 2.5 is far far above the phase-

boundary for all the three cases. For the soft-wall and the wall separating two

different type of media, the stationary state is still the adsorbed polymer on the

wall (i.e., ⟨x(g)⟩ = 0 at g = 0). The shape of loops for the soft-wall case are

similar to the loops obtained for the lower force amplitude g0 = 1.0 but with larger

area (Fig. 2.5(d)). In case of the wall separating two different types of the media
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(Fig. 2.5(e)), the polymer remains adsorbed on the wall during the negative cycle

of the force at higher frequencies ω = 1.57 × 10−2 and 1.57 × 10−3 even for force

amplitude g0 = 2.5 resulting no hysteresis loop. During the positive force cycle,

the loops are similar to g0 = 1.0 case with slightly higher loop area. However, on

decreasing the frequency to a value, ω = 1.57 × 10−4, the polymer gets enough

time to relax and at higher force values it can overcome the repulsive potential

V = 1.0 on x < 0 and explore the region during the negative cycle of the pulling

force. This results in a hysteresis loop in the region x < 0 (see Fig. 2.5(e)) which

was absent for g0 = 1.0 [Fig. 2.5(b)]. The loops thus obtained in the positive and

negative cycles are not symmetric. For the hard-wall case, the stationary state at

g0 = 2.5 is an unzipped state. This can be seen by larger a value for ⟨x(g)⟩ at g = 0

at a higher frequency 1.57 × 10−2. Under the influence of an oscillating force, at

this frequency, few monomers at the anchored end of the the completely stretched

polymer gets adsorbed on the hard-wall in the backward cycle and are unzipped

in the forward cycle resulting in a smaller hysteresis loop (see Fig. 2.5(f)). On

decreasing the frequency, more and more number of monomers will get adsorbed

on the wall resulting in hysteresis loops of varying shapes and area. In the next

section, we will see that this change of the stationary state from a partially zipped

state at lower force amplitude g0 = 1.0, to an unzipped state for higher force

amplitude g0 = 2.5 will give oscillatory behavior in the loop area.

C. Loop Area

In this subsection, we explore the behavior of the hysteresis loop area, Aloop (defined

by Eq. (2.3)), of the curves discussed in the previous subsection. We determine

the area of the hysteresis loops using the trapezoidal method. In this method the

abscissa is divided into equally spaced intervals and the area of the curve is then the

sum of the trapezoids formed by these intervals. In our study, the force g(t) changes

as a sine function (Eqs. (2.1) and (2.12)) resulting in a non-uniformly spaced

intervals. To make evenly spaced intervals, we divide the force interval g ∈ [0, g0]

into 1000 equal intervals for both the rise and fall of the force, in the positive as

well as in the negative cycles, and then interpolate the value of ⟨x(g)⟩ at the end

points of these intervals using cubic splines from the GNU Scientific Library [163].

On these intervals, the loop area, Aloop, is then numerically calculated using the

trapezoidal rule.
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Figure 2.6: Area of the hysteresis loop Aloop as a function of frequency ω, in a
semilog scale, for the polymer of lengths N = 128, 256, and 512 at force amplitudes
(a) g0 = 1.0 and (b) g0 = 2.5 when it is adsorbed on a soft-wall (V = 0.0). Plots
(c) and (d) are Aloop/N vs ωN of the data shown in (a) and (b), respectively. The
line joining the points in these plots is just a guide for the eye.

In Figs. 2.6(a) and 2.6(b), we have plotted Aloop as a function of frequency ω

for the polymer of three different lengths N = 128, 256, and 512 at two different

force amplitudes g0 = 1.0 and 2.5 for the soft-wall case (V = 0). We find that the

loop area Aloop depends non-monotonically on the frequency ω of the periodic force.

At very high frequencies, the area of the loop is almost zero. As the frequency of

the pulling force decreases, the loop area started increasing. It reaches a maximum

value at a specific frequency ω∗, to be called as resonance frequency, and then begins

to decrease as the frequency is decreased further. At ω∗, the natural frequency of

the polymer matches with the frequency of the externally applied force and we

obtain the maximum loop area. In the limit ω → 0, the loop area Aloop → 0.

At higher force amplitudes (e.g., g0 = 2.5), loop area shows similar behavior as
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for g0 = 1.0 but with larger magnitudes. We can also see that the frequency ω∗

also depends on the amplitude g0 of the oscillating force. From these figures, it is

obvious that the resonance frequency, ω∗(g0), at which the area of the hysteresis

loop is maximum, depends on length N of the polymer. The frequency ω∗(g0)

decreases as the length of the polymer increases and in the thermodynamic limit

N → ∞, we have ω∗(g0) → 0. This suggests that Aloop satisfies the scaling of the

form,

Aloop = N δY(ωN z), (2.13)

with δ and z as critical exponents. On plotting Aloop/N data for various chain

lengths as a function of ωN (i.e., for exponents δ = 1.00±0.05 and z = 1.00±0.05),

we obtain a nice collapse. The data collapse for g0 = 1.0 and g0 = 2.5 is shown in

Figs. 2.6(c) and 2.6(d), respectively. The above scaling (Eq. 2.13) with exponents

δ = 1 and z = 1 implies that the loop area scales as Aloop ∼ 1/ω in the high-

frequency regime (i,e., ω → ∞).

The loop area Aloop as a function of ω for the wall separating two different

media, with V = 1 for x < 0, are shown in Fig. 2.7(a) and 2.7(b) for two different

force amplitudes g0 = 1.0 and 2.5, respectively. For lower force amplitude, g0 = 1.0,

the Aloop curve behaves similarly as the soft-wall case but with slightly lower Aloop

values at ω∗ (see Fig. 2.6(a)). The Aloop curves at higher force amplitude g0 = 2.5

(Fig. 2.7(b)) are very different from the soft-wall case (see Fig. 2.6(b)). In the

present case a new peak starts emerging on decreasing the frequency from ω∗. This

new peak appears because of the hysteresis loops emerging for the negative cycle of

the force at lower frequencies for higher force amplitude (see Fig. 2.5(e)). The Aloop

keeps on increasing till the frequency ω∗∗ (say), where it reaches another maximum,

and then decreases on decreasing the frequency further to ω → 0. From Figs. 2.7(a)

and 2.7(b), we can see that both ω∗ and ω∗∗ decreases as N is increased, and in the

thermodynamic limit N → ∞, both ω∗ → 0 and ω∗∗ → 0. The above finite-size

scaling form (Eq. 2.13) is applicable for this case also. In Figs. 2.7(c) and 2.7(d), we

have plotted Aloop/N vs ωN for various chain lengths at force amplitudes g0 = 1.0

and 2.5, respectively. The nice data collapse obtained for both force amplitudes

again implies that Aloop ∼ 1/ω in the high-frequency regime.

The loop area Aloop as a function of ω for the hard-wall (V = ∞ for x < 0)

are shown in Fig. 2.8(a) and 2.8(b) for two different force amplitudes g0 = 1.0 and

2.5, respectively. For lower force amplitude, g0 = 1.0, the Aloop curve for this case

also behaves similarly as the soft-wall, and the wall separating two different type of
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Figure 2.7: Area of the hysteresis loop Aloop as a function of frequency ω, in a
semilog scale, for the polymer of lengths N = 128, 256, and 512 at force amplitudes
(a) g0 = 1.0 and (b) g0 = 2.5 when it is adsorbed on wall separating two different
media (V = 1.0). Plots (c) and (d) are Aloop/N vs ωN of the data shown in (a)
and (b), respectively. The line joining the points in these plots is just a guide for
the eye.

media cases (see Figs. 2.6(a) and 2.7(a)). However, for higher force amplitudes (e.g.,

g0 = 2.5), the Aloop curves show oscillatory behavior in the higher frequency regime.

These oscillations are similar to the Aloop observed for a homopolymer DNA [20]

and a block copolymer DNA [22] subjected to a periodic force. The secondary

peaks, which are seen only for the hard-wall case at higher force amplitudes, are

possible due to the stationary state of the polymer(unzipped configuration) for the

hard-wall case at these amplitudes. For all other cases, the stationary state of the

polymer is an adsorbed (or zipped) configuration (see previous section). Therefore,

whenever the force drops below the critical value during the fall and the rise of the

force, few monomers of the polymer at the anchored end get adsorbed on the wall

and unzipped giving rise to small loop area. On decreasing the frequency, more
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Figure 2.8: Area of the hysteresis loop Aloop as a function of frequency ω, in a
semilog scale, for the polymer of lengths N = 128, 256, and 512 at force amplitudes
(a) g0 = 1.0 and (b) g0 = 2.5 when it is adsorbed on a hard-wall (V = ∞). Plots
(c) and (d) are Aloop/N vs ωN of the data shown in (a) and (b), respectively. The
line joining the points in these plots is just a guide for the eye.

number of monomers take part in this zipping and unzipping process resulting in

increase in loop area. It is observed that the number of secondary peaks increases

as the length N of polymer increases. These secondary peaks are higher Rouse

modes, whose frequencies are given by ωp = (2p − 1)π/2N , with p = 1, 2, ... as

integers. The finite-size scaling form given in Eq. (2.13) is applicable for this case

too. When Aloop/N is plotted as a function of ωN for various chain lengths a nice

data collapse is obtained for force amplitudes g0 = 1.0 and 2.5. The collapse is

shown in Figs. 2.8(c) and 2.8(d), respectively. This again implies that Aloop ∼ 1/ω

in the high-frequency regime.

To obtain the scaling behavior in the low-frequency regime (i.e., ω → 0), we have

plotted in Fig. 2.9, the area of hysteresis loop, Aloop, as a function of ωβ(g0−gc)
α for
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Figure 2.9: Aloop as a function of (g0 − gc)ω
1.25 for the polymer of lengths N =

128, 256, and 512 at various force amplitudes for (a) soft-wall (V = 0.0), (b) wall
separating two different media (V = 1.0), and (c) hard-wall (V = ∞).

the polymer of lengths N = 128, 256, and 512 at force amplitudes g0 = 1.0, 1.5, and

2.5 for (i) the soft-wall (V = 0.0) [Fig. 2.9(a)], (ii) the wall separating two different

media (V = 1.0) [Fig. 2.9(b)], and (iii) the hard-wall (V = ∞) [Fig. 2.9(c)] cases. In

the above expression gc is the critical force, needed to unzip the polymer adsorbed

from the wall for the static force case at temperature T = 0.5. An excellent

data collapse is obtained for the values of the exponents α = 1.00 ± 0.05 and

β = 1.25± 0.05 in all the three cases. The values of these exponents are found to

be similar to the exponents obtained in the the Monte Carlo simulation studies of

a homopolymer DNA [20] and a block copolymer DNA [22] subjected to a periodic

force. In both these studies the DNA is also modelled, same as the polymer model

studied in this chapter, by a directed self-avoiding walk in (1+1)-directions. In

a recent study, it was shown by Langevin dynamics simulations of a longer DNA

chain in 2-dimensions that these exponents remain the same [80].

D. Order parameter

In the previous sections, we have studied the response of the polymer by keeping

the force amplitude g0 fixed and varying the frequency ω of the oscillating force.

It was found that the polymer can be taken from the zipped configuration to an

unzipped configuration by varying ω at constant g0. However, such a transition is

also possible by keeping the frequency fixed and varying the force amplitude. Let
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Figure 2.10: The normalized probability distribution P (Q) of order parameter Q of
a polymer of length N = 128 at various force amplitudes g0 = 0.8, 1.0, 1.1, 1.2, 1.5,
and 2.5 at two different frequencies (a) ω = 1.57 × 10−2 and (b) ω = 3.14 × 10−3

for the soft-wall (V = 0.0) case. The line joining the points in these plots is just a
guide for the eye.

P (Q) represents the probability distributions of the dynamical order parameter Q

defined in Eq. (2.2). At a fixed frequency ω, the probability distribution P (Q)

is obtained by binning the Q values accumulated from 106 different cycles of the

periodic force for different force amplitudes.

In Fig. 2.10, we have plotted, the normalized P (Q) for polymer of length

N = 128 for the soft-wall case (V = 0) at six different force amplitudes g0 =

0.8, 1.0, 1.1, 1.2, 1.5, and 2.5 and two different frequencies ω = 1.57 × 10−2 and

ω = 3.14 × 10−3. In this case, the polymer can cross the wall, for all frequencies

and force amplitudes, without any difficulty. Therefore, the distributions P (Q) are
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Figure 2.11: The normalized probability distribution P (Q) of order parameter Q of
a polymer of length N = 128 at various force amplitudes g0 = 0.8, 1.0, 1.2, 1.5, 2.5,
and 5.0 at two different frequencies (a) ω = 1.57 × 10−2 and (b) ω = 3.14 × 10−3

for the wall separating two different media (V = 1.0) case. The line joining the
points in these plots is just a guide for the eye.
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Figure 2.12: Average extension ⟨x(g)⟩ as a function of force g of a polymer of
length N = 128 for various force amplitudes g0 = 0.7, 1.0, 1.1, 1.2, 1.5, and 2.8 at
two different frequencies (a) ω = 1.57× 10−2 and (b) ω = 3.14× 10−3 for hard-wall
(V = ∞) case. The normalized probability distribution P (Q) of order parameter
Q at frequencies (c) ω = 1.57× 10−2 and (d) ω = 3.14× 10−3. The line joining the
points in these plots is just a guide for the eye.

peaked about Q = 0 for all force amplitudes at both frequencies [Figs. 2.10(a) and

2.10(b)]. The width of the distribution are found to depend on the frequency. At

higher frequencies, the distributions are sharply peaked but their width increases

on decreasing the oscillating frequency.

The normalized P (Q) for the wall separating two different media (V = 1.0)

are plotted in Fig. 2.11. The distributions P (Q), for all the force amplitudes, are

peaked at different Q values. At a higher frequency ω = 1.57 × 10−2 and lower

amplitudes (e.g., g0 = 0.8), the peak of the distribution is around Q = 5 showing

a zipped configuration which implies that the polymer is in the adsorbed phase.

On increasing the force amplitude, the distribution starts becoming broader and

its peak also shifts towards the higher Q values but is still smaller in magnitude

(e.g., Q ≈ 10 at g0 = 2.5) implying that the polymer is in the adsorbed (Z) phase

[Fig. 2.11(a)]. From the figure, it is observed that as the force amplitude g0 in-

creases, the distribution P (Q) moves slowly towards right and its width increases.
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The trend of moving of the distributions towards right side with higher force am-

plitude is also present in the lower frequency ω = 3.14×10−3, but the distributions

become sharper on increasing the force amplitude [see Fig. 2.11(b)].

The normalized probability distributions P (Q) for the hard-wall case (V =

∞) for various values of force amplitudes, and corresponding hysteresis loops are

plotted in Fig. 2.12. At a higher frequency ω = 1.57 × 10−2, the distributions

P (Q) for the lower values of force amplitude g0 = 0.7 and 1.0 are sharply peaked

at lower values of Q implying that the polymer is in the zipped (Z) phase. When

the amplitude is increased to g0 = 1.1, the distribution P (Q) becomes broader and

spans both the zipped (Z) and dynamic (D) phases (see Fig. 2.12(c)). A similar

behavior was earlier found in the unzipping of dsDNA by the periodic force [76, 21].

At an amplitude g0 = 1.2, the distribution starts becoming narrower again with a

peak at an intermediate Q value which lies in the boundary of the dynamic (D)

and the unzipped (U) phases. On increasing the amplitude further (i.e., g0 = 1.5

and 2.8), the distributions are again sharply peaked at higher Q values indicating

that the polymer in in the unzipped (U) phase. However, at a lower frequency

ω = 3.14 × 10−3, the two peak structure in the distribution P (Q), which was

present for the intermediate force amplitudes in Fig. 2.12(c)], disappears and we

have sharply defined phases (see Fig. 2.12(d)).

2.3 Conclusions

In this chapter, we studied the dynamic transitions in the unzipping of an adsorbed

polymer on a attractive surface ( or the wall) subjected to a periodic force with

amplitude g0 and frequency ω using Monte Carlo simulations. We considered the

three different cases for the walls: the soft-wall, the wall separating two different

media, and the hard-wall. We have studied both the static as well as the dynamic

force cases. We obtained the force-distance isotherms for various system sizes and

extracted the critical values of the unzipping force at various temperatures using

finite-size scaling. They are found to match the analytical phase-boundary ob-

tained using the generating function technique. For the dynamic case, the system

is not in equilibrium and the results depend on the amplitude g0 and frequency ω of

the periodic force. We observed that the force-distance isotherms show hysteresis

loops in all the three cases. The loop depends on the frequency of the force. For
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the soft-wall case, as the polymer experiences similar environment on both sides of

the wall, the loop is divided about ⟨x(g)⟩ = 0 axis into two equal and symmetrical

parts. Whereas, in case of the wall separating two different media having different

affinities for the polymer, loops obtained in the positive and negative cycles are not

symmetric. On the other hand, for the hard-wall case, loop is obtained only for

the region x > 0. The behavior of the loop area, Aloop, depends on the force ampli-

tudes. It is found that at lower force amplitudes, loop area exhibits only one peak

at resonance frequency ω∗(g0), and it decreases monotonically for the frequencies

higher than ω∗(g0) for all the three cases. However, for higher force amplitudes, it

still shows only one peak for the soft-wall and hard-wall cases, respectively, whereas

for the wall separating two different types of media, it shows two peaks of different

heights. The higher peak occurs at higher frequency. Similar to the case of lower

force amplitudes, loop area, for the soft-wall and wall separating two different me-

dia, decreases monotonically for the frequencies higher than the ω∗(g0), while for

the hard-wall it shows oscillatory behavior in the regime ω → ∞. The number

of secondary peaks increases with the length of the polymer. For the hard-wall

case, it is observed that the steady state configuration of the polymer at higher

frequencies and lower values of force amplitude is a zipped (Z) state. At higher

frequencies and higher values of force amplitude, the steady state configuration of

the polymer is completely stretched state, i.e., the unzipped (U) state.
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Chapter 3

Unzipping of a Block Copolymer

DNA by Periodic Force

In this chapter, we study the unzipping of a block copolymer DNA. We consider

a hetero-polymer DNA as a block copolymer DNA, in which the heterogeneity is

considered in the form of repeated blocks, AnBn or BnAn, where 2n is the block

length, A and B are different types of base pairs with two- and three-hydrogen

bonds, respectively. One end of this DNA sequence is subjected to a pulling force

while the other end is kept anchored. We considered both the constant and the

periodic pulling force cases. The unzipping of a block copolymer DNA by a constant

pulling force is found to be a first-order phase transition. The equilibrium phase

boundary separating the zipped and the unzipped phases does not depend on the

DNA sequence and is found to follow the same exact expression, as obtained for

the homo-polymer DNA case [17, 99, 19], but with a different effective base pair

energy. The results for the unzipping of a block copolymer DNA subjected to a

periodic force are however found to be sequence dependent. For sequences of higher

block lengths, the results also depend on whether the periodic force is acting on A

type or B type base-pairs.

The chapter is organized as follows: In Sec. 3.1 we define our model and simula-

tion details. Section 3.2 is devoted for discussions on our results for both the static

and the periodic pulling force cases. We finally summarize the results in Sec. 3.3.
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Figure 3.1: Schematic diagram of a heterogeneous dsDNA of the type (B4A4)2,
where A and B represents base pairs having three and two hydrogen bonds, re-
spectively. One end of the DNA is anchored at the origin (O and O′), and the
strands on the free end are subjected to a time-dependent periodic force with fre-
quency ω and amplitude g0.

3.1 Model

We define hetero-polymer DNA as a block copolymer DNA of type (AnBn)M ,

where A and B are two different types of base pairs, 2n is the total number of base

pairs in a block unit, also be called as block length, and M = N/2n represents

the total number of blocks in the DNA of length N . We consider block lengths

2n = 4, 8, 16, 32, 64, 128 and 256. The two strands of the DNA are represented

by two directed self-avoiding random walks on a (d = 1 + 1) dimensional square

lattice. The walks starting from the origins O and O′, which are unit distance

apart, are restricted to go towards the positive direction of the diagonal axis (z

direction) without crossing each other. The directional nature of the walks take

care of the self-avoidance. Whenever the complementary bases are unit distance

apart they gain energy of −2ϵ (ϵ > 0) for the base pair of type A and −3ϵ for the

base pair of type B. Here we have assumed that ϵ (ϵ > 0), represents the strength

of a hydrogen bond.

Two strands of the DNA at one end are always kept fixed at origins O and O′

and the other end monomers are subjected to a time-dependent periodic force g(t)

g(t) = g0 | sin(ωt) |, (3.1)
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where g0 is the amplitude and ω is the frequency. The schematic diagram of the

model is shown in Fig. 3.1.

We consider the following two cases: (i) the base pairs having two hydrogen

bonds are anchored at the origins and the time varying force is applied on the base

pairs that are bound by three hydrogen bonds, represented by (AnBn)M , and (ii)

the opposite case, i.e., the base pairs having three hydrogen bonds are anchored at

the origins and the force is acting on monomers that are bound by two hydrogen

bonds (represented by (BnAn)M). While the equilibrium results for both the cases

are found to be the same, the nonequilibrium results show marked differences.

We perform Monte Carlo simulations of the model using the Metropolis algo-

rithm. The strands of the DNA undergo Rouse dynamics that consists of local

corner-flip or end flip moves that do not violate mutual avoidance [3]. The elemen-

tary move consists of selecting a random monomer from a strand, which itself is

chosen at random, and flipping it. If move results in the overlapping of two com-

plementary monomers, thus forming a base-pair between the strands, it is always

accepted as a move. The opposite move (i.e., unbinding of monomers) is chosen

with the Boltzmann probabilities η = exp (−2ϵ/kBT ) or η = exp (−3ϵ/kBT ) for

base pairs of types A and B, respectively. If the chosen monomer is from the

unbound base-pair, which remains unbound even after the move is perform (thus

no change in the energy), is always accepted. The time is measured in units of

Monte Carlo steps (MCSs). One MCS consists of 2N flip attempts, which means

that on average, every monomer is given a chance to flip. Throughout the sim-

ulation, the detailed balance is always satisfied and the algorithm is ergodic in

nature. It is always possible, from any starting DNA configuration, to reach any

other configuration by using the above moves.

We let the simulation run for 2000π/ω MCSs, so that system reaches the station-

ary state before taking measurements. Throughout this chapter, we have chosen

dimensionless quantities. The quantities having dimensions of energy are mea-

sured in units of ϵ and the quantities that have dimensions of length are measured

in terms of the lattice constant a. We have taken kB = 1, ϵ = 1, and a = 1.

The separation between the end monomers of the two strands, x(t), changes

under the influence of the applied external force g(t), is monitored as a function of
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time t. The time averaging of x(t) over a complete period

Q =
ω

π

∮
x(t)dt (3.2)

can be used as a dynamical order parameter[162]. From the time series x(t), we

obtain the extension x(g) as a function of force g and average it over 10000 cycles to

obtain the average extension ⟨x(g)⟩ as a function of g. For systems far away from

equilibrium, the average extension, ⟨x(g)⟩, for the forward and backward paths

for the periodic force is not the same, and we see a hysteresis loop. The area of

hysteresis loop, Aloop, is defined by

Aloop =

∮
⟨x(g)⟩dg (3.3)

depends upon the frequency ω and the amplitude g0 of the oscillating force. This

quantity also serves as another dynamical order parameter.

3.2 Results and Discussions

In this section we discuss the results obtained for both the static and the dynamic

cases. Let us first take the static case.

3.2.1 Static Case (ω = 0)

In the static case, this model can be solved exactly using the generating function

and the exact transfer matrix techniques. If the partition function of the dsDNA

of length n with separation x between monomers of the strands is represented by

Dn(x), in the fixed distance ensemble, then Dn(x) satisfies the recursion relation:

Dn+1(x) = [Dn(x+ 1) + 2Dn(x) +Dn(x− 1)]× C, (3.4)

where

C =

1 +
(
e2βϵ − 1

)
δx,1, for base pair type A

1 +
(
e3βϵ − 1

)
δx,1, for base pair type B.

(3.5)
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The above recursion relation can be iterated N times, with an initial condition

D0(x) = δx,1 to obtain the partition function of the DNA of lengthN . The recursion

relation (Eq. (3.4)) with a single base pairing energy (say ε) for each base pair such

that C =
[
1 +

(
eβε − 1

)
δx,1
]
has been solved exactly via the generating function

technique [17, 18, 99] to obtain the exact unzipping phase diagram. In this method,

the singularities of the generating function are calculated. The phase of the DNA

is given by the singularity closest to the origin and when the two singularities

cross each other a phase transition takes place. Taking the following form for the

generating function for Dn(x),

D̂(z, x) =
∑
n

znDn(x) = κx(z)Y (z), (3.6)

and used in the above recursion relation (Eq.(3.4) with initial condition D0(x) =

δx,1), we obtain κ(z) = (1−2z−
√
1− 4z)/(2z) and Y (z) = 1/

[
1− z (2 + κ(z)) eβε

]
.

The singularities of κ(z) and Y (z) are 1/2 and z2 =
√
1− e−βε − 1 + e−βε, respec-

tively. The zero force melting, which comes from z1 = z2, takes place at a temper-

ature Tm = ε/ ln(4/3). In the large length limit, Dn(x) can be approximated as

DN(x) ≈ κx(z2)/z
N+1
2 , with the free energy βF = N ln z2−x lnκ(z2). The average

force required to maintain the separation x, in a fixed distance ensemble, is then

given by

g(T ) =
∂F

∂x
= −kBT lnκ(z2). (3.7)

In the fixed force ensemble, the generating function can be written as

G(z, β, g0) =
∑
x

e2βg0x
∑
n

znDn(x) =
∑
x

e2βg0xκx(z)Y (z)

=
Y (z)

1− κ(z)e2βg0
, (3.8)

which has an additional force-dependent singularity z3 = 1/[2+2 cosh(2βg0)]. The

phase boundary comes from z2 = z3, and is given by

gc(T ) = kBT cosh−1

[
1

2

1√
1− e−βε − 1 + e−βε

− 1

]
, (3.9)

which is same as the phase boundary obtained in the fixed distance ensemble

[Eq. (3.7)]. In the above expression, ε is the only free parameter, which can be

tuned. For the block copolymer DNA case, in every block, we have n base pairs

each of types A and B, giving the total base pairing energy (2ϵ + 3ϵ)n. Since the
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total energy of the block remains the same irrespective of the sequence (AnBn)M

or (BnAn)M , we seek if an effective base pairing energy ε = 5ϵ/2 in Eq. (3.9) can

give us the exact phase boundary for the block copolymer DNA as obtained by

iterating the recursion relation Eq. (3.4). The phase diagram of unzipping of a

block copolymer DNA (with ε = 5ϵ/2) is shown in Fig. 3.5 by solid line.

The exact transfer matrix technique can be used to obtain many other equilib-

rium properties which are based on thermal averaging for a finite system size. In

this technique, the partition function DN(x) for the DNA of length N , at any tem-

perature, can be obtained numerically by iterating the above recursion relation [i.e.

Eq.(3.4)] N times, with an initial condition D0(1) = 1. The equilibrium average

separation between the end monomers, ⟨x⟩eq, can then be obtained by

⟨x⟩eq =
∑

x x DN(x)e
βg0x∑

x DN(x)eβg0x
. (3.10)

In Fig. 3.2, we have plotted the scaled extension ⟨x⟩/N , as a function of constant

pulling force g for different chain lengths N = 256, 512, and 1024 at T = 1.5 ob-

tained by iterating the recursion relation Eq. (3.4) for the heterogeneous sequences

(A16B16)M [Fig. 3.2(a)], in which the base pair of type A is anchored at the ori-

gin and an external force g is applied on the base pair type B, and (B16A16)M

[Fig. 3.2(c)], which is the opposite of the above. From the figure, we can clearly

see that the DNA is in the zipped phase at lower g values and in the unzipped

phase when g exceeds a critical value gc. Furthermore, as the length N of DNA

increases, the transition becomes sharper. In the thermodynamic limit, it would

become a step function at a critical value gc. The point of intersection of these

isotherms for various lengths is very close to the critical force gc. We use chain

lengths N = 256, 512, and 1024, and the finite-size scaling of the form

⟨x⟩ = NpF
((

g − gc
)
N q
)
, (3.11)

to extract the critical force gc. A nice collapse is obtained for p = 0.97 ± 0.02,

q = 1.0± 0.02 and gc = 3.31± 0.05 for sequence (A16B16)M [shown in Fig. 3.2(b)]

and for p = 1.0± 0.02, q = 1.0± 0.02 and gc = 3.31± 0.05 for sequence (B16A16)M

[shown in Fig. 3.2(d)]. The critical force, gc = 3.31 ± 0.05 (at T = 1.5), is found

to be same for both the sequences (A16B16)M and (B16A16)M implying that, at

equilibrium, it does not matter whether the DNA is unzipped from the end having
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Figure 3.2: Scaled extension ⟨x⟩/N , as a function of constant pulling force g,
obtained using the exact transfer matrix approach, for different chain lengths N =
256, 512, and 1024 at T = 1.5 for (a) the heterogeneous sequence (A16B16)M .
(b) ⟨x⟩/Np as a function of (g − gc)N

q showing a nice collapse of data for gc =
3.31±0.05, p = 0.97±0.05, and q = 1.0±0.02. (c) For the heterogeneous sequence
(B16A16)M . (d) Collapse of data shown in (c) for gc = 3.31± 0.05, p = 1.0± 0.05,
and q = 1.0 ± 0.02. The line joining the data points in plots (a) and (c) is just a
guide for the eye.

base pairing with three hydrogen bonds (stronger) or the base pairing with two

hydrogen bonds (weaker). This is because the unzipping transition is a first-order

phase transition. We have obtained the same behavior for various other sequences.

In Fig. 3.3, this is shown for sequences (A4B4)M and (B4A4)M at T = 1.0 for

chain lengths N = 256, 512, and 1024, and in Fig. 3.4 for sequences (A64B64)M

and (B64A64)M at T = 2.0 for chain lengths N = 512, 1024, and 2048. The critical

forces obtained at various temperatures using the transfer matrix method are shown

in Fig. 3.5 by points for the sequences (A16B16)M . They match exactly with the

analytical results given by Eq. (3.7). The same exact transfer matrix technique

could also be used to obtain the melting temperature of the DNA. We again iterate

the recursion relations now at zero force value g = 0 and obtain the equilibrium

separation between strands at the free end as a function of temperature. We use
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Figure 3.3: Scaled extension ⟨x⟩/N , as a function of constant pulling force g,
obtained using the exact transfer matrix approach, for different chain lengths N =
256, 512, and 1024 at T = 1.0 for (a) the heterogeneous sequence (A4B4)M . (b)
⟨x⟩/Np as a function of (g − gc)N

q showing a nice collapse of data for gc = 3.12±
0.05, p = 1.0 ± 0.02, and q = 0.95 ± 0.05. (c) For the heterogeneous sequence
(B4A4)M . (d) Collapse of data shown in (c) for gc = 3.12 ± 0.05, p = 1.0 ± 0.02,
and q = 0.95± 0.05. The line joining the data points in plots (a) and (c) is just a
guide for the eye.

chain lengths N = 1024, 2048, and 4096, and the finite-size scaling of the form

⟨x⟩ = NdmG
((

T − Tm

)
Nϕm

)
, (3.12)

to obtain the melting temperature Tm. A nice collapse is obtained for dm = 0.52±
0.02, ϕm = 0.48 ± 0.02 and Tm = 8.45 ± 0.25 for sequence (A16B16)M [shown in

Fig. 3.6(a)]. The melting temperature obtained by the transfer matrix method is

also shown in Fig. 3.5 by a diamond. We have tried various other sequences [see

Fig. 3.6(b) for sequence (A64B64)M ] and found that the melting temperatures for

all the heterogeneous sequences allowed in our model are the same.
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Figure 3.4: Scaled extension ⟨x⟩/N , as a function of constant pulling force g,
obtained using the exact transfer matrix approach, for different chain lengths N =
256, 512, and 1024 at T = 2.0 for (a) the heterogeneous sequence (A64B64)M .
(b) ⟨x⟩/Np as a function of (g − gc)N

q showing a nice collapse of data for gc =
3.39±0.05, p = 0.95±0.05, and q = 0.95±0.05. (c) For the heterogeneous sequence
(B64A64)M . (d) Collapse of data shown in (c) for gc = 3.40± 0.05, p = 1.04± 0.05,
and q = 1.0 ± 0.05. The line joining the data points in plots (a) and (c) is just a
guide for the eye.

3.2.2 Dynamic Case

In the previous section, we have seen that the unzipping of a block copolymer DNA

in equilibrium does not depend on whether the force acts on the base pairs of type

A or type B. However, for the time-dependent periodic force, we find that the

unzipping depends on which base pairs are unzipped first.

A. Scaled extension

In Fig. 3.7, we have plotted the time variation of external force g(t) and scaled

extension x(t)/N for the DNA of length N = 256 with respect to time t for five

consecutive cycles when it is subjected to a periodic force of amplitude g0 = 5
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Figure 3.5: Critical unzipping force gc as a function of temperature T for the
heterogeneous sequence (A16B16)M . The line is the exact result obtained from
the generating function approach [Eq. (3.9)], and the points are obtained by using
finite-size scaling of the force-distance isotherms [Eq. (3.10)] as obtained from the
exact transfer matrix approach

.

at two different frequencies ω = 6.28 × 10−3 and 1.57 × 10−3 at T = 4. The

force increases from zero to a maximum value of g0, which is much larger than

the critical force gc needed to unzip the DNA at equilibrium, and then decreases

to zero again. The DNA responds to this external force and starts unzipping

slowly. We can see that there is always a lag between the scaled extension and the

force. It is easy to understand that, for a homopolymer DNA, the time required

to unzip a dsDNA is directly proportional to its length. The larger the length of

the DNA, the more is the unzipping time. However, for a block copolymer DNA,

the unzipping time for the DNA of same length can be quite different as it also

depends on its sequence. Figure 3.7(a) shows the time variation of the distance

between end monomers of the two strands for sequences of smaller block sizes 8

[(A4B4)32 and (B4A4)32]. The scaled extension for both sequences is almost the

same. Other sequences of smaller block sizes such as 16, 32 and 64, which are shown

in Figs. 3.8(a), 3.8(b) and 3.8(c), respectively, show the similar behavior. However,

on increasing the block sizes to 128 but keeping the frequency and amplitude same,

the scaled extension for the sequence (B64A64)2 is more than that for the opposite

sequence (A64B64)2 [Fig. 3.7(b)]. On increasing the block size further to 256, the

scaled extension for the sequence (B128A128)1 becomes almost double that for the

opposite sequence (A128B128)1 as shown in Fig. 3.7(c). This can be understood as
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Figure 3.6: Data collapse of the average distance, ⟨x⟩, for the chain lengths N =
1024, 2048, and 4096. (a) of the heterogeneous sequence (A16B16)M . The exponents
are dm = 0.52±0.02, ϕm = 0.48±0.02 with melting temperature Tm = 8.45±0.25.
(b) of the heterogeneous sequence (A64B64)M . The exponents are dm = 0.50±0.02,
ϕm = 0.48± 0.02 with melting temperature Tm = 8.45± 0.25.

follows. In one cycle of the periodic force with higher frequency (ω = 6.28× 10−3),

the force changes faster and the system gets less time to relax. Since it is easier to

break base pairs with two hydrogen bonds (type A) in comparison with base pairs

with three hydrogen bonds (type B), more base pairs are broken for the sequence

(B128A128)1 than for the sequence (A128B128)1, and we see the higher extension.

However, on lowering the frequency of the external force to 1.57×10−3, the system

gets enough time to relax, and the extension between the strands become almost

comparable for both the sequences for all block sizes as shown in Figs. 3.7(d)-3.7(f)

and Figs. 3.8(d)-3.8(f).

B. Hysteresis loops

We have seen that the extension x(t) follows the driving force g(t) with a lag.

When it is averaged over various cycles, we obtain the average extension ⟨x(g)⟩ as
a function of force g showing a closed loop. The shape of a loop tells much about the

dynamics of the system and depends on the frequency ω and the force amplitude

g0. For the present problem, the hysteresis loop also depends on the sequence of

the block copolymer DNA. In Fig. 3.9, we have plotted ⟨x(g)⟩ as a function of

force g at four different frequencies ω = 6.28× 10−3, 1.57× 10−3, 3.14× 10−4, and

3.49 × 10−5 at force amplitude g0 = 5 for the DNA of length N = 256 with block
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Figure 3.7: The extension x(t) between the end monomers of the two strands of
the block copolymer DNA of length N = 256 as a function of time t when it is
subjected to a periodic force of amplitude g0 = 5 at frequency ω = 6.28 × 10−3.
For the sequences (a) (A4B4)32 and (B4A4)32, (b) (A64B64)2 and (B64A64)2, and
(c) (A128B128)1 and (B128A128)1. Plots (d), (e), and (f) are same as plots (a), (b),
and (c) at frequency ω = 1.57 × 10−3. The variation of force with time, g(t), is
represented by solid lines.

sizes 8, 128, and 256 at T = 4, and with block sizes 16, 32, and 64 in Fig. 3.10.

All of them show hysteresis loops but with different shapes. The loops for DNA

of smaller block sizes, e.g., (A4B4)32 and (B4A4)32 [Figs. 3.9(a)-3.9(d)], are almost

the same, irrespective of which base pair is acted upon by the driving force. To

understand the shapes of the loop, we first note that at higher frequency, i.e.,

ω = 6.28× 10−3, the stationary state of the DNA at g = 0 is a partially unzipped

72



0

0.2

0.4

0

2

4

6
N = 256

(a)

g0 = 5

0

0.2

0.4

0.6

0

2

4

6
(b)

0

0.2

0.4

0.6

0 500 1000 1500 2000 2500
0

2

4

6
(
)

ω = 6.28× 10−3

0

0.2

0.4

0.6

0.8

0

2

4

6
N = 256

(d)

g0 = 5

0

0.2

0.4

0.6

0.8

0

2

4

6
(e)

0

0.2

0.4

0.6

0.8

0 2000 4000 6000 8000 10000
0

2

4

6
(f)

ω = 1.57× 10−3

x
(t
)/
N

(A8B8)16
(B8A8)16

x
(t
)/
N

(A16B16)8
(B16A16)8

x
(t
)/
N

t

(A32B32)4
(B32A32)4

g
(t
)

(A8B8)16
(B8A8)16

g
(t
)

(A16B16)8
(B16A16)8

g
(t
)

t

(A32B32)4
(B32A32)4

Figure 3.8: The extension x(t) between the end monomers of the two strands of
the block copolymer DNA of length N = 256 as a function of time t when it is
subjected to a periodic force of amplitude g0 = 5 at frequency ω = 6.28 × 10−3.
For the sequences (a) (A8B8)16 and (B8A8)16, (b) (A16B16)8 and (B16A16)8, and (c)
(A32B32)8 and (B32A32)8. Plots (d), (e), and (f) are same as plots (a), (b), and (c)
at frequency ω = 1.57× 10−3. The variation of force with time, g(t), is represented
by solid lines.

state with an average extension ⟨x(g)⟩ = 35. At this frequency, the force changes

very rapidly and the strands of the DNA do not get enough time to relax, and only

a small loop is traced by the extension between them. However, for a relatively

lower frequency ω = 1.57×10−3, the stationary state of the DNA at g = 0 is a fully

zipped configuration with an average extension ⟨x(0)⟩ = 0. The strands now get

relatively more time to relax, and the loop area increases. Even at this frequency,
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Figure 3.9: The force g vs extension ⟨x(g)⟩ curves averaged over 104 cycles for
the block copolymer DNA of length N = 256 and block sizes 8 (first column), 128
(second column), and 256 (third column) at frequencies ω = 6.28×10−3 (first row),
ω = 1.57 × 10−3 (second row), ω = 3.14 × 10−4 (third row), and ω = 3.49 × 10−5

(fourth row) at force amplitude g0 = 5 and temperature T = 4. The data shown in
this plot are obtained using Monte Carlo simulations. The line joining the points
is just a guide for the eye.

the DNA does not get fully unzipped at the maximum force value. This is shown

by the rounding of the loop at the maximum force value. The extension increases

even though the force decreases. It reaches a maximum for some lower force value,
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Figure 3.10: The force g vs extension ⟨x(g)⟩ curves averaged over 104 cycles for
the block copolymer DNA of length N = 256 and block sizes 16 (first column), 32
(second column), and 64 (third column) at frequencies ω = 6.28× 10−3 (first row),
ω = 1.57 × 10−3 (second row), ω = 3.14 × 10−4 (third row), and ω = 3.49 × 10−5

(fourth row) at force amplitude g0 = 5 and temperature T = 4. The data shown in
this plot are obtained using Monte Carlo simulations. The line joining the points
is just a guide for the eye.

in the backward cycle, and then decreases to zero when g = 0. On decreasing the

frequency further, the isotherms at higher and lower force values start following the

same curve for the forward and backward cycles but with a loop in between whose
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area decreases with decreasing frequency. A similar trend can be seen in the closed

loops of sequences of block sizes 16, 32 and 64 [Figs. 3.10(a)-3.10(l)]. The situation

for the higher block lengths are, however, different. For the sequence (A128B128)1

(third column in Fig. 3.9), the stationary state at frequency ω = 6.28 × 10−3 is

a completely zipped configuration with an average extension ⟨x(g)⟩ ≈ 0 at g = 0

[see Fig. 3.9(i)]. This is because the driving force is acting on base pairs with

three hydrogen bonds having higher strength, and hence only a few base pairs are

broken. Therefore the area of the loop traced by the extension between the strands

is also small. In contrast, for the sequence (B128A128)1, the stationary state (at the

same frequency) is a partially unzipped DNA. In this case, the driving force can

break more bonds as it is acting on the base pairs with two hydrogen bonds and

therefore is weaker than the previous case. Therefore, the average extension ⟨x(g)⟩
traces a loop with larger area. On decreasing the frequency to ω = 1.57×10−3, the

stationary state (at g = 0) for the sequence (B128A128)1 changes to a fully zipped

configuration [see Fig. 3.9(j)] as the strands now get enough time to relax and get

re-zipped again for forces far below the critical value. On decreasing the frequency

further to ω = 3.14 × 10−4 [Fig. 3.9(k)], the strands get equilibrated for smaller

and larger force values, and therefore the extension starts following the equilibrium

curve at these force values. However, there is still a hysteresis curve at the transition

region that decreases on decreasing the frequency of the force. It is found that the

size of the hysteresis loop for the sequence (B128A128)1 decreases much faster. The

shape of the loop for this sequence starts closing at the center, and the loop divides

into two smaller loops and a plateau starts emerging [see Fig. 3.9(k)]. At frequency

ω = 3.49 × 10−5, one of the smaller loop completely disappears, and the other

loop is also very small [Fig. 3.9(l)]. The shape of loop is markedly different for the

opposite sequence (A128B128)1 at the same frequency with considerable loop area.

For sequences of intermediate block lengths, for example, (A64B64)2 and (B64A64)2

with block length 128 [Figs. 3.9(e)-3.9(h)], the hysteresis loops show mixed features

as seen for sequences with smaller and larger block lengths (columns one and three

of Fig. 3.9).

C. Loop area

We calculate the area of the hysteresis loops, shown in Figs. 3.9 and 3.10 , numer-

ically using the trapezoidal rule. For the trapezoidal rule to work properly, the

intervals should be uniformly spaced. For the problem considered in this chapter,
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Figure 3.11: Area of the hysteresis loop Aloop as a function of frequency ω (in log-
log scale) at force amplitude g0 = 5 and length N = 256 for the block copolymer
DNA sequences (a) (A4B4)32 and (B4A4)32, (b) (A64B64)2 and (B64A64)2, and (c)
(A128B128)1 and (B128A128)1. The inset shows the higher frequency region (in linear
scale), where secondary peaks are visible in Aloop for the sequence (B128A128)1 but
are absent for the opposite sequence. In all the plots, the line joining the points is
just a guide for the eye.

the force increases as sine function which gives us non uniformly spaced force val-

ues. To convert it into a uniformly spaced interval, we divide the force interval

g ∈ [0, g0], for both the rise and fall of the cycle, into 1000 equal intervals, and

then obtain the value of ⟨x(g)⟩ at the end points of these intervals by interpolation

using cubic splines of the GNU Scientific Library [163]. The loop area, Aloop, is

then evaluated numerically by using the trapezoidal rule on these intervals.

In Figs. 3.11 and 3.12, the area of the hysteresis loop, Aloop, is plotted as a

function of the frequency, ω, of the external pulling force for sequences of various

block sizes 8, 128, and 256 of block copolymer DNA of length N = 256 at force am-

plitude g0 = 5 and temperature T = 4. On decreasing the frequency of the pulling

force, it is found that the loop area first increases, reaches a maximum value at

some frequency ω∗, and then decreases with decreasing the frequency further, sim-

ilar to the hysteresis loop area behavior for a homopolymer DNA under periodic

forcing [20]. At a frequency ω∗, the natural frequency of the block copolymer DNA

matches the frequency of the externally applied force, and we have a resonance with

a maximum loop area. For the block copolymer DNA case, the behaviour of Aloop

also depends on the DNA sequence used. For sequences of smaller block lengths,

e.g., (A4B4)32 and (B4A4)32, the loop area is same, and hence ω∗ is same for both
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Figure 3.12: Area of the hysteresis loop Aloop as a function of frequency ω (in log-log
scale) at force amplitude g0 = 5 and length N = 256 for the block copolymer DNA
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and (B16A16)8, and (d) (A32B32)4 and (B32A32)4. In all the plots, the line joining
the points is just a guide for the eye.

the sequences [see Fig. 3.11(a)]. Sequences of block sizes 4, 16, 32, and 64, behave

in similar fashion as it can be seen in Fig. 3.12. However, this is no longer true

for sequences of higher block sizes, where clear differences are seen for the opposite

sequences. For example, for block length 256, we can observe that the frequency ω∗

is higher for the sequence (B128A128)1 than its opposite sequence (A128B128)1 [see

Fig. 3.11(c)]. At frequencies higher than ω∗, the former sequence shows secondary

peak structures, whereas the sequence (A128B128)1 falls off smoothly without show-

ing any such peaks [see inset of Fig. 3.11(c)]. On the lower side of frequency ω∗,

the loop area Aloop falls sharply to zero for the sequence (B128A128)1, whereas it

decreases very slowly for the opposite sequence (A128B128)1. The secondary peaks

in Aloop are the frequencies ωp = (2p − 1)π/2N , with p = 1, 2, . . . as integers, and

78



are higher Rouse modes [20]. These modes are more pronounced for the sequence

(B128A128)1, where the pulling force is applied to A type base pairs that can be

broken at relatively lower force values than B type base pairs, and hence more base

pairs are broken. The two strands thus separated with each other can explore more

configurations and can trace a hysteresis loop [See Fig. 3.9(l)]. This loop has larger

area whenever the frequency of the periodic force is ωp, i.e., higher harmonics of the

natural frequency of the DNA. In contrast, for the opposite sequence (A128B128)1,

more force is required to break B type of base pairs where force is applied, and

at higher frequencies only a few base pairs are broken, and the loop traced by

unzipped strands is very small and hence no secondary peaks are visible.

We have plotted Aloop, vs ω for various sequences at force amplitude g0 = 5

for block copolymer DNA of three different lengths N = 512, 768, and 1024 in

Figs. 3.13(a) and 3.13(b). The maximum value of the loop area Aloop is directly

proportional to the length of the DNA used in the simulation. Furthermore, the

resonance frequency ω∗, where Aloop is maximum, decreases with the length of the

DNA, suggesting the scaling form

Aloop = NdF(ωN z), (3.13)

where d and z are exponents, for the loop area Aloop. When Aloop/N , is plotted

with the scaled frequency ωN (i.e., for exponents d = 1 and z = 1) , we find a

nice data collapse for sequences of all the block sizes [Figs. 3.13(c) and 3.13(d)],

implying that the loop area for the block copolymer DNA decreases with frequency

ω as Aloop ∼ 1/ω at higher frequencies (i.e., ω → ∞), similar to the homopolymer

case [20].

To obtain the scaling behavior at lower frequencies, we have plotted Aloop, for

sequences of various block lengths obtained for a block copolymer DNA of length

N = 512, with respect to (g0− gc)
αωβ, at three different force amplitudes g0 = 5.0,

6.5, and 8 in the low-frequency regime (i.e., ω → 0). In the above expression we

have subtracted the critical force gc needed to unzip the block copolymer DNA for

the static force case [gc(T = 4) = 3.0467..]. A similar type of scaling was found

earlier for the unzipping of a homopolymer DNA using Brownian dynamics [75, 78]

and Monte Carlo simulations [20]. The exponents α and β are, however, found to be

different for these studies. The earlier studies on Brownian dynamics simulations

suggested α = 1/2 and β = 1/2 [75], which were later modified to α = 0.33 and

β = 1/2 [78]. On the other hand, the exponents obtained for the Monte Carlo
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Figure 3.13: Area of the hysteresis loop Aloop as a function of frequency ω for the
block copolymer DNA of lengths N = 512, 768, 1024 at force amplitude g0 = 5 for
sequences (a) (A4B4)M and (b) (A128B128)M . Plots (c) and (d) are Aloop/N vs ωN
for respective sequences in (a) and (b). The line joining the points in these plots
is just a guide for the eye.

studies were α = 1 and β = 5/4 [20]. In Figs. 3.14(a) and 3.14(b), we have plotted

the scaled data for three sequences (A4B4)64, (A64B64)4, and (A128B128)2 and the

data for the opposite sequences (B4A4)64, (B64A64)4, and (B128A128)2, respectively.

For all these sequences, we obtain a nice collapse for values α = 1.0 ± 0.05 and

β = 1.25±0.05, the same as the exponents obtained in earlier Monte Carlo studies

for the unzipping of a homopolymer DNA by a periodic force [20].
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Figure 3.14: Scaling of Aloop with respect to ω1.25(g0 − gc) in the low-frequency
regime at force amplitudes g0 = 5.0, 6.5, 8.0 of a block copolymer DNA of length
N = 512 for the sequences (a) (A4B4)64, (A64B64)4, and (A128B128)2 and (b)
(B4A4)64, (B64A64)4, and (B128A128)2.

D. Order parameter

In this section, we study the unzipping transition in the DNA block copolymer

achieved by keeping the frequency fixed and varying the force amplitude. As defined

in the previous chapter, let P (Q) represents the probability distributions of the

dynamical order parameter Q. At a fixed frequency ω, the probability distribution

P (Q) is obtained by binning the Q values accumulated from 106 different cycles of

the periodic force at different force amplitudes.

In Figs. 3.15 (a) and 3.15(b), we have plotted the average extension ⟨x(g)⟩ as a
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Figure 3.15: Average extension ⟨x(g)⟩ as a function of force g of a block copolymer
DNA of length N = 256 for various force amplitudes g0 = 5.0, 5.4, 5.6, 8.0, 10.0, and
17.0 at frequency ω = 1.57× 10−2 for the sequences (a) (A4B4)32 and (b) (B4A4)32
respectively. The normalized probability distribution P (Q) of order parameter Q
for the sequences (c) (A4B4)32 and (d) (B4A4)32 respectively. The line joining the
points in these plots is just a guide for the eye.

function of g for various force amplitudes g0 = 5.0, 5.4, 5.6, 8.0, 10.0 and 17.0 at fre-

quency ω = 1.57× 10−2 for the block copolymer sequences (A4B4)32 and (B4A4)32,

respectively. The length of the DNA is taken as N = 256. The corresponding prob-

ability distributions P (Q) for the two sequences are shown in Figs. 3.15 (c) and

3.15(d) respectively. From the figure, it can be seen that the distributions P (Q)

are the same for both the sequences. For a lower force amplitude g0 = 5.0, the

distribution P (Q) is sharply peaked at lower Q value implying that block copoly-

mer DNA is in the zipped (Z) phase. At amplitudes g0 = 5.4 and 5.6, P (Q)

becomes broader and its peak moves towards right, but DNA is still in zipped (Z)

phase. As amplitude increases to g0 = 8.0 and 10.0, the distribution P (Q) again

starts becoming narrower and is peaked at intermediate Q values in the dynamic

(D) phase. When the amplitude is increased further to g0 = 17.0, the distribution

P (Q) is sharply peaked at higher Q value showing that the DNA is in the unzipped

(U) phase (see Figs. 3.15(c) and 3.15(d)).
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Figure 3.16: Average extension ⟨x(g)⟩ as a function of force g of a block copolymer
DNA of length N = 256 for various force amplitudes g0 = 5.0, 5.4, 5.6, 8.0, 10.0,
and 17.0 at frequency ω = 1.57 × 10−2 for the sequences (a) (A128B128)1 and (b)
(B128A128)1 respectively. The normalized probability distribution P (Q) of order
parameter Q for the sequences (c) (A128B128)1 and (d) (B128A128)1 respectively.
The line joining the points in these plots is just a guide for the eye.

The average extension ⟨x(g)⟩ as a function of g for the block copolymer se-

quences (A128B128)1 and (B128A128)1 at frequency ω = 1.57 × 10−2 for various

force amplitudes g0 = 5.0, 5.4, 5.6, 8.0, 10.0 and 17.0 are plotted in Figs. 3.16(a)

and 3.16(b), and the corresponding probability distributions P (Q) are shown in

Figs. 3.16 (c) and 3.16(d), respectively. At a lower force amplitude g0 = 5.0, the

distribution P (Q) for the sequence (A128B128)1 is sharply peaked at a very low

value of Q which shows that DNA is in zipped (Z) state. When the amplitude is

slightly increased to values g0 = 5.4 and 5.6, P (Q) becomes broader and shows two

peak structures which are peaked at lower and intermediate Q values respectively.

In this scenario DNA is said to coexist in the zipped (Z) and the dynamic (D)

phases. As the amplitude is increased further (i.e., g0 = 8.0 and 10.0), the dis-

tributions become narrower again with peaks at intermediate Q values which are

in the dynamic (D) phase. On increasing the amplitude further to g0 = 17.0, the

distribution P (Q) is peaked at a higher Q value showing that the DNA is in the

unzipped (U) phase (see Fig. 3.16(c)). The situation for the opposite sequence, i.e.,
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(B128A128)1 as shown in Fig. 3.16(d), is slightly different. The two peak structure

from the distribution at intermediate force amplitudes (g0 = 5.4 and 5.6) disappear

and for these amplitudes the DNA lies purely in the zipped phase. However, for

the higher force amplitudes g0 = 8.0, 10.0 and 17.0, the behavior of the distribution

P (Q) is very similar to distribution for the sequence (A128B128)1.

3.3 Conclusions

In this chapter, we have studied the unzipping of a block copolymer DNA subjected

to a periodic force with amplitude g0 and frequency ω using Monte Carlo simula-

tions. We obtained results for the static force case and found that the equilibrium

results do not depend on the block copolymer DNA sequence and, the temperature-

dependent phase boundary gc(T ), separating the zipped and the unzipped phases,

could be obtained by replacing the binding energy in the exact expression previ-

ously obtained for the homopolymer DNA case, by an effective average binding

energy per block of the block copolymer DNA sequence. For the dynamic case,

the system, however, is not in equilibrium, and results depend on the amplitude

and frequency of the periodic force as well as on the DNA sequence. We moni-

tor the separation between the strands of the block copolymer DNA as a function

of time at various frequencies and force amplitudes. The averaged separation ⟨x⟩
plotted as a function of force value g shows a hysteresis loop. The shape of the

hysteresis loops is found to be dependent on the frequency of the periodic force

and the sequence of block copolymer DNA. For sequences of shorter block lengths,

e.g., (A4B4)32 and (B4A4)32, the loops are found to be the same, with equal area,

irrespective of periodic force acting on A- or B-type base pairs at all frequencies.

However, for longer block lengths, e.g., (A128B128)1 and (B128A128)1, the shape of

the loops strongly depends on whether the periodic force is applied on A- or B-type

base pairs. We also obtain the area of the hysteresis loops, Aloop as a function of

frequency ω. The resonance frequency, ω∗, at which the loop area Aloop is maximum

is higher for the sequence (B128A128)1. For frequencies higher than ω∗, the loop area

for the sequence (B128A128)1 is always more than that for the opposite sequence

(A128B128)1. Another difference is the oscillatory behavior of the Aloop seen for the

sequence (B128A128)1, whereas it is absent for the opposite sequence. For frequen-

cies lower than ω∗, we find that the rate at which Aloop decreases with frequency

also depends on the block length. The loop area for the sequence (B128A128)1 is
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found to decrease much faster than the sequence (A128B128)1. In the lower fre-

quency regime Aloop scales as Aloop ∼ (g0 − gc)
αωβ with exponents α = 1 and

β = 5/4 same as the exponents obtained for periodic forcing of a homopolymer

DNA studied earlier [20], whereas in the higher frequencies, the loop area Aloop is

found to scale with frequency as Aloop ∼ 1/ω [76, 20]. The differences in exponents

observed in Brownian dynamics simulations and the current study requires further

investigation and will be the subject of a future study.
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Chapter 4

Stochastic Resonance in the

Unzipping of a DNA by Periodic

Force

In this chapter, we study the stochastic resonance in a periodically driven ho-

mopolymer double-stranded DNA (dsDNA) and a block copolymer DNA by using

Monte Carlo simulations. We obtain T − G − ωres phase diagram by performing

the simulations at different force amplitudes and temperatures. We observe that

the resonance frequency increases as the temperature or amplitude increases. We

observe that the resonance frequencies obtained at G = 1, T = 1 and G = 3, T = 1

are same as the frequencies at which the area of the hysteresis loop is maximum

reported in [20].

This chapter is organized as follows: in section 4.1, we describe our model and

define resonance quantifiers that are used to identify the stochastic resonance. We

discuss our results in section 4.2 and give concluding remarks in section 4.3.

4.1 Model

The model used in this chapter has been used previously to study periodically

driven DNA [20, 21, 22]. In this model, the two strands of a homopolymer DNA

are represented by two directed self-avoiding walks on a (d = 1 + 1)-dimensional
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Figure 4.1: (a) Schematic diagram of the model. The strands of the DNA are
shown by thick solid lines. The one end of the DNA is anchored at origin (O),
and the free end monomers of the strands are pulled along x− direction with a
periodic force g(t) = G |sin(ω0t)|, where ω0 is the frequency and G is the amplitude
of the force. (b) Variation of the force g(t) as a function of the time t for the three
consecutive cycles at a frequency ω0 = 3.06×10−3 and amplitude G = 1.0. (c) The
separation between the end monomers, x(t), follows the external force g(t) with a
lag. The length of the DNA is taken as N = 128. (d) Power spectral density S(ω)
of the extension x(t) obtained using the TISEAN package for a DNA of length
N = 128.

square lattice. The walks, which start from the origin, are restricted to go towards

the positive direction of the diagonal axis (z-direction) without crossing each other.

The self-avoidance and the correct base pairing of the DNA are taken care of by

the directional nature of walks. The complementary monomers of the strands are

allowed to occupy the same lattice site. For each such overlap there is a gain in

energy −ϵ (ϵ > 0). One end of the DNA is anchored at the origin and a time-

dependent periodic force

g(t) = G |sin (ω0t)| (4.1)

with angular frequency ω0 and amplitude G acts along the transverse direction

(x− direction) at the free end. Throughout the chapter, by frequency we mean the

angular frequency. The schematic diagram of the model is shown in Fig. 4.1(a).

Although the above model ignores finer details such as bending rigidity of the
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dsDNA, sequence heterogeneity, stacking of base pairs, etc., it was found that the

basic features, such as the first order nature of the unzipping transition and the

existence of a re-entrant region allowing unzipping by decreasing temperature, are

preserved by this two dimensional model [17, 18]. For this model the zero force

melting takes place at a temperature Tm = ε/ ln(4/3) [19]. In this chapter, we work

on temperatures which are lower than the melting temperature Tm ≈ 3.476. We

present most of the results at a temperature T = 1.0, for which the critical force

gc(1) = 0.6778...

We perform Monte Carlo simulations of the model by using the Metropolis

algorithm. In our model, the directional nature of the walks prevents the self-

crossing of strands. To avoid mutual crossing of strands, we allow strands to

undergo Rouse dynamics with local corner-flip or end-flip moves [3] that do not

violate mutual avoidance. The elementary move consists of selecting a random

monomer, from a randomly chosen strand, and flipping it. If the move results in

the overlapping of two complementary monomers, thus forming a base-pair between

the strands, it is always accepted as a move. The opposite move, i.e., the unbinding

of monomers, is chosen with the Boltzmann probability ξ = exp(−ε/kBT ). If the

chosen monomer is unbound, and it remains unbound after the move is performed,

is always accepted. The time is measured in units of Monte Carlo Steps (MCS).

One MCS consists of 2N flip attempts, i.e., every monomer is given a chance to flip

on average. Throughout the simulation, the detailed balance is always satisfied.

From any starting configuration, it is possible to reach any other configuration by

using the above moves. Throughout this chapter, we have chosen ε = 1 and kB = 1.

At any given force amplitude G and frequency ω0, as the time t is increased by

unity, the external force g(t) changes, according to Eq. (4.1), from 0 to a maximum

value G and then decreases to 0. Between each time increment, the system is

relaxed by a unit time (1 MCS). Upon increasing t further, the above cycle gets

repeated again and again. The simulation is run for 2000 cycles to allow the system

to reach the stationary state and then measurements are done.

In our simulations, the distance between the end monomers of the two strands,

x(t), as a function of time for various force amplitudes G and frequencies ω0 is

monitored. From the time series x(t), we then obtain the power spectral density,
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S(ω), defined as the Fourier transform of auto-correlation function of x(t),

S(ω) =

∫ ∞

−∞
⟨x(t)x(t+ τ)⟩ exp−iωτ dτ. (4.2)

Here ⟨·⟩ denotes time average over the series. S(ω) can be described as the su-

perposition of a background power spectral density SN(ω) and a structure of delta

spikes centred at ω = (2n + 1)ω0 with n = 0, 1, 2, .. and ω0 being the frequency

of applied force [164, 165]. From the power spectral density S(ω), we can define

resonance quantifier output signal (OS) as,

η =

∫ ω0+∆ω

ω0−∆ω

S(ω)dω, (4.3)

where ∆ω is taken as half of the full width at half maximum.

In case of few bistable systems, η does not show a peak at resonance frequency

for which, we need to calculate SNR (signal-to-noise ratio) to identify stochastic

resonance [166]. SNR is defined as

ξ = η/SN(ω0) (4.4)

where SN(ω0) is background noise at ω0 [165]. However, both η and ξ are equally

valid to identify stochastic resonance. In our system however, η proves to be an

excellent quantifier to identify stochastic resonance.

We performed Monte Carlo simulations by considering DNA of various chain

lengths at various frequencies and amplitudes of force at different temperatures.

We monitored the extension x, and calculated the power spectral density using

TISEAN 3.0.1 software package [167]. We repeated the whole process with 50 dif-

ferent initial stationary states for each set of frequency, amplitude and temperature

values and obtained the average power spectral density.
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Figure 4.2: Variation of η as a function of applied force frequency of a DNA of length
N = 128 for (a) force amplitude G = 1.0 at various temperatures T = 1.0, 1.4, 1.8
and 2.2. (b) η as a function of the applied frequency ω0 for various force amplitudes
G = 1.0, 1.5, 2.0, 2.5 and 3.0 at temperature T = 1, (c) The T − G − ωres phase
diagram mapped on a two dimensional space. (d) The T −G−ηωres phase diagram
mapped on a two dimensional space.

4.2 Results

4.2.1 Influence of force amplitude and temperature

In Fig. 4.1(b), we have plotted the time variation of the external periodic force g(t)

for the DNA of length N = 128 at a given value of G and ω0 for three consecu-

tive cycles. In Fig. 4.1(c), the corresponding time variation of the extension x(t)

captures the folding and unfolding dynamics of the DNA with a largely unzipped

state at the maximum of x(t) and a zipped state when x(t) ≈ 0. The Fourier

transform of the stationary correlation function of x(t) gives the power spectral

density S(ω). As shown in Fig. 4.1(d), S(ω) can be described as the superposition

of a background spectral density and delta peaks at frequencies which are multiples

of ω0. We then calculate the output signal using Eq. (4.3). The resulting η as a

function of the oscillating frequency are depicted in Figs. 4.2(a,b) for various values
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of force amplitude and temperatures. We observe that as the frequency increases,

the η increases up to a frequency and decreases on further increment in frequency

confirming stochastic resonance in DNA on periodic forcing. We have observed how

both effects change the resonance frequency of the system. The output signal shows

a peak for all the different variations of G and T . The position and strength of the

peak however varies across the different parameter values. At a given temperature,

the strength of the peak increases with increasing force amplitude. Further, the

peak frequency ω∗ shifts to higher frequencies with increasing force amplitudes. In

Fig. 4.2(c,d), we show the detailed phase diagram in the G−T plane of the η peak

positions and magnitudes respectively. As seen in Fig. 4.2(a), the peak position

is at lower frequencies for low values of G and T . For a fixed G, increasing T

shifts peak to higher frequencies. The peak values of the output signal increases

monotonically with increasing force amplitude at a fixed temperature (Fig. 4.2(d)).

The presence of multiple peaks in the η /ξ indicates multiple stable and metastable

states in the system and transitions between them. For G = 1 (see Fig. 4.3(a-c)),

which lies slightly above the critical force gc needed to unzip the DNA, the majority

of the beads of the DNA are in the zipped state. At very high frequencies ω0, the

fluctuating force opens only a few of the base pairs. With decreasing frequencies,

the possibility of the DNA to relax to the fluctuating force increases, leading to

more base pair openings. At a certain critical frequency, we observe a peak in η

signalling stochastic resonance (Fig. 4.3(a)). For very low frequencies, the system

is nearly in the equilibrium state and the η is low.

The situation for G = 3 (see Fig. 4.3(b-d)), is very different. Starting at high

frequencies, as we lower ω0, we see the appearance of a small peaks in η, signifying

stochastic resonance. The appearance of the smaller peaks signifies that at high G

there are multiple dynamical states. At this force value which lies far above the

phase boundary, the steady state of the system is an unzipped one at a constant

force. As the frequency is decreased and the DNA gets time to relax, it settles into

metastable states of partially zipped conformations. This shows up as multiple

peaks in the η versus ω0 plot. While multiple peaks in stochastic resonance have

been observed earlier in FPU chains [168] and arrays of monostable oscillators [169],

we believe this is the first report of the same in a periodically driven DNA system.
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Figure 4.3: Variation of η as a function of applied force frequency ω0 for three
different chain lengths N = 128, 192, and 256 at force amplitudes (a) G = 1.0 and
(b) G = 3.0. When the scaled η/N for various chain lengths are plotted as ω0N ,
we get a nice data collapse for (c) G = 1.0 and (d) G = 3.0.

4.2.2 Influence of changing DNA lengths

In order to see what happens when we vary the length of the DNA, we observed

the response of the system to periodic driving as N is increased. For both G = 1

and G = 3, we find a shift of the resonance peak(s) towards lower frequencies as we

increase the length. Further, the peak value also increases with increasing length.

These features suggests a scaling of η as

η ∼ N δG(ω0N
z), (4.5)

similar to scaling of hysteresis loop area in earlier theoretical studies of periodically

driven DNA. Here δ and z are critical exponents. Data collapse for both G = 1

and G = 3 is achieved for δ ≈ 1 and z ≈ 1.
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Figure 4.4: Optical signal, η, as a function of frequency ω0 of the driving force for
a block copolymer DNA of length N = 256 at force amplitude G = 5.0 for the
opposite sequences (a) (A4B4)32 and (B4A4)32, (b) (A64B64)2 and (B64A64)2, and
(c) (A128B128)1 and (B128A128)1 at temperature T = 4.0.

4.2.3 Influence of heterogeneity on DNA

To see if the above features are preserved for hetero-polymer DNA, we consider

the periodic forcing of a block copolymer DNA. The heterogeneity on the DNA

chain is introduced in the form of repeated blocks, −AnBn− or −BnAn−, where

2n is the block length, and A and B are different types of base pairs with two- and

three-hydrogen bonds, respectively. The variation of η as a function of frequency

at a force amplitudes G = 5.0 for different block lengths ((A4B4)32, (A64B64)2, and

(A128B128)1 and its opposite sequence) are plotted in Fig. 4.4. The length of the

DNA is taken as N = 256.

In the presence of static force it has been found that the critical force required

to unzip the DNA is enhanced for block copolymer DNA. Further, the critical

force is independent of the sequence of the DNA i.e. it does not matter whether

the DNA is unzipped from the end having base pairing with three hydrogen bonds

(stronger) or the base pairing with two hydrogen bonds. For periodic forcing with

G = 5, we find that for smaller block sizes like (A4B4)32, the η shows a single

resonance peak at lower frequency. For these block sizes, it again does not matter

which end is being unzipped first (see Fig. 4.4(a)). However, as the block sizes

increase, η starts showing additional peaks at higher frequencies and there is a

strong dependence on which end is unzipped first. For G = 5, multiple peaks are

observed for sequences −BnAn− (see Fig. 4.4(b-c)). At these G values, the steady

state of the polymer is a zipped one at constant forces. With periodic forcing, it

is easier to unzip the polymer end if the bonding is weaker. This is true where
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the pulling force is applied to A-type base pairs i.e. for the −BnAn− sequences.

The strands are therefore separated easier and these separated strands can explore

more configurations. Again the peaks are observed whenever the frequency of the

periodic force is ωp which are the higher harmonics.

4.3 Conclusions

We have studied stochastic resonance phenomenon in a double stranded DNA sub-

jected to a periodic force. Power spectral density of extension x(t) is calculated

by using TISEAN package. From the power spectral density, we have measured

the resonance quantifier η as a function of applied force frequency at different

amplitudes and different temperatures. For a given amplitude and temperature, η

increases upto a frequency and decreases as the frequency decreased. The frequency

where we get maximum η is taken as resonance frequency. We have inferred that

at the resonance frequencies, the area of the hysteresis loop that formed due to the

lag between the response of the system and the applied force will be maximum. We

also obtained a phase T −G−ωres by measuring resonance frequencies at different

amplitudes and temperatures and observed that resonance frequency increases as

the amplitude or temperature is increases.
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Chapter 5

Summary

To summarize, in this thesis, we have studied the dynamic transitions in the un-

zipping of an adsorbed polymer from an attractive surface (or the wall) and a

double-stranded block copolymer DNA under the influence of a time-dependent

periodic force. We have also studied the stochastic resonance phenomenon in the

unzipping of a homopolymer dsDNA and a block copolymer DNA by a periodic

force. For the investigation of these problems in details, we have used three differ-

ent techniques like generating function, exact transfer matrix, and the Monte Carlo

simulations and a software package TISEAN (acronym for Time Series Analysis).

At the very first, we have defined the polymer and its different types in de-

tails. Polymer as a statistical mechanical model in physics has been also described.

We then introduced the DP model and highlighted its various applications as a

model system in statistical physics. We gave a brief introduction about the poly-

mer adsorption on a surface. We talked about adsorption-desorption transition

and unzipping transition which are two different types of the transitions that a

polymer undergoes. We discussed both of them with examples. After that we gave

a short introduction about the copolymer and block copolymer. We then gave

an introduction to DNA and mentioned its different structures. We discussed the

DNA replication and RNA transcription in brief. We introduced the DNA block

copolymer and highlighted its some applications. We also discussed different melt-

ing processes of DNA, like chemical denaturation, thermal denaturation and the

force induced unzipping, in which two strands of the DNA are separated. Several

theoretical models which are used to investigate the dynamic transitions in the

force induced unzipping of DNA were discussed. To study the unzipping of DNA
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experimentally, various single molecule micro-manipulation techniques were also

discussed. Lastly, we introduced the stochastic resonance phenomenon and de-

scribed different theories which explain it. To quantify the SR, we have discussed

about the different quantifier.

In the first problem of the thesis, we have studied the dynamic transitions in

the unzipping of an adsorbed polymer from an attractive surface (or the wall) by

a periodic force with frequency ω and amplitude g0. We have considered three

different types of surfaces:

1. The surface is impenetrable, i.e., the polymer is allowed to stay only on one

side of the wall. We refer such a surface as hard-wall in the thesis.

2. The surface is penetrable, i.e., the polymer is allowed to cross the surface,

and the polymer has an equal affinity on either sides of the surface. We call

such a surface as soft-wall.

3. The surface is penetrable but the polymer has different affinities on either

sides of the surface. This can be thought of as an interface between the two

immiscible liquids in which the polymer has different degrees of solubility.

We first reproduced the results of static force case using Monte Carlo simulations

and studied the response of the polymer in the presence of a periodic force. We

observed that the force-distance isotherms show hysteresis loops in all the three

cases. It was found that the shape and the size of the loop depends on the frequency

of the periodic force. For the softwall case, as the polymer experiences similar

environment on both sides of the wall, the loop is divided about ⟨x(g)⟩ = 0 axis

into two equal and symmetrical parts. Whereas, in case of the wall separating

two different media having different affinities for the polymer, loops obtained in

the positive and negative cycles are not symmetric. On the other hand, for the

hardwall case, the hysteresis loops are possible only in the region x > 0. The

behavior of the loop area, Aloop, depends on both the frequency and the amplitude

of the force. We found that Aloop shows nonmonotonic behavior as the frequency is

varied keeping the amplitude constant. On increasing the frequency, the loop area

first increases, it reaches a maximum at frequency ω∗(g0), and then decreases on

increasing the frequency further. For small force amplitudes, Aloop shows only one

peak at a resonance frequency ω∗(g0), and it decreases monotonically on increasing

the frequencies for all the three cases. However, for higher force amplitudes, the
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Aloop still shows only one peak for the softwall and hardwall cases, whereas, it shows

two peaks of different height for the wall separating two different types of media.

Furthermore, secondary peaks are also present at higher frequencies. For all the

three cases, we found that Aloop scales as 1/ω in the higher frequency regime, and

as gα0ω
β with exponents α = 1 and β = 1.25 in the lower frequency regime.

We studied the unzipping of a block copolymer DNA. We considered a hetero-

polymer DNA as a block copolymer DNA, in which the heterogeneity is considered

in the form of repeated blocks, AnBn or BnAn , where 2n is the block length, and

A and B are different types of base pairs with two- and three-hydrogen bonds,

respectively. One end of this DNA sequence is subjected to a pulling force while

the other end is kept anchored. We have considered both the constant and the

periodic pulling force cases. The unzipping of a block copolymer DNA by a constant

pulling force was found to be a first-order phase transition. The equilibrium phase

boundary separating the zipped and the unzipped phases does not depend on the

DNA sequence and is found to follow the same exact expression, as obtained for

the homopolymer DNA case, but with a different effective base pair energy. The

results for the unzipping of a block copolymer DNA subjected to a periodic force

were, however, found to be sequence dependent. For sequences of higher block

lengths, the results also depend on whether the periodic force is acting on A-type

or B-type base pairs. The force-distance isotherms again show hysteresis loops. It

was found that Aloop scales as 1/ω in the higher frequency regime, and as gα0ω
β

with exponents α = 1 and β = 1.25 in the lower frequency regime.

We have also studied the stochastic resonance phenomenon in the unzipping of

a homopolymer double-stranded DNA (dsDNA) and a block copolymer DNA by

a periodic force using Monte Carlo simulations at different force amplitudes (G)

and temperatures (T ). We measured the resonance quantifier, output signal(OS)

from power spectral density of extension (distance between the end monomers of

two strands) as a function of applied force frequency ω. We found that the output

signal increases as a function of frequency up to a certain frequency ωres which is

called the resonance frequency and decreases as we increase the frequency further.

We obtained T −G−ωres phase diagram by measuring the resonance frequencies at

different applied force amplitudes and temperatures and observe that the resonance

frequency increases as we increase the amplitude or temperature.
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