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Abstract

The phenomenon of superconductivity has been studied intensively not only for the
fundamental physics involved but also for the promise of technological applications. The
transition from the normal to the superconducting phase is accompanied by remarkable
changes in measurable properties like electric transport, magnetization, and heat capacity,
among others. Measurements of these properties provide a powerful tool to address the
nature of superconductivity. Superconductors with anomalous properties, which are dif-
ferent from conventional superconductors, are always interesting to study and challenging
to understand. Multigap superconductivity is an example of this kind. In multigap super-
conductors, energy gaps of different magnitudes exist on different, disconnected parts of
the Fermi surface, giving rise to non-BCS observations of various physical properties.
Following the report of high Tc superconductivity in MgB2 and subsequent discovery of
its multigap nature, there has been increased interest in investigating metal borides with
similar structures. MgB2 has a layered crystal structure that is composed of flat graphite-
like sheets of boron atoms separated by hexagonal close packing layers of transition metal
atoms. These sheets of Boron atoms are considered to be crucial in giving MgB2 its novel
properties.

This thesis presents our investigations on the superconducting properties of polycrys-
talline samples of TB2 (T = Ru, Os) and RRuB2 (R = Y, Lu). These materials have
several ingredients which make them a candidate for novel superconductivity. The tran-
sition metal elements provide the possibilities of multiple orbitals, which can make up
a Fermi surface with many sheets. The light mass of Boron could provide for a high
Tc. Additionally, these materials have layered or quasi-low-dimensional structure mo-
tifs. OsB2, which crystallizes in an orthorhombic structure (Pmmn) containing deformed
Boron sheets instead of a flat Boron array as in MgB2, has previously been reported to
exhibit multigap superconductivity and RuB2 is isoelectronic and isostructural to OsB2.
(Y, Lu)RuB2 compounds crystallize in an orthorhombic structure (space group Pnma),
having a zigzag chain of rare-earth atoms, with dimerized Boron and have been reported
to exhibit a relatively large value of superconducting temperature. Magnetization, resis-
tivity, and heat capacity measurements were performed on the polycrystalline samples
of RuB2. The temperature dependence of heat capacity in the superconducting state, a
reduced heat capacity anomaly at superconducting transition, and the value of Ginzberg-
Landau parameters indicate that RuB2 is a rare two gap type-I superconductor. Theo-
retical calculations of band structure and the Fermi surface for RuB2 also support the
possibility of multigap superconductivity. Various measurements on RRuB2 (R = Y, Lu)



x

and estimation of the various superconducting parameter has been carried out. The mag-
netic field-temperature (H-T) phase diagram shows an anomalous linear trend, pointing
to possible unconventional superconductivity. In LuRuB2, the ∆(T) dependence which
deviates from BCS predictions and the small ∆/kBTc value also suggest unconventional
superconductivity, supporting conclusions from the H-T phase diagram. On the other
hand, Tc of both OsB2 and LuRuB2 reduces with the application of pressure, supporting
an electron-phonon mediated superconductivity in both these families of compounds.
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CHAPTER 1

Introduction

1.1 Introduction

In 1911, just three years after the successful liquefaction of Helium, H. Kamer-
lingh Onnes and his assistant Gilles Holst discovered the phenomenon of super-
conductivity when they observed a sharp drop in resistance of pure Mercury at 4.2
K [2]. Since then, this phenomenon has attracted a lot of attention from both ex-
perimentalists and theorists due to its promising potential for applications in real-
life scenarios. W. Meissner and R. Ochsenfeld found in 1933 that when a metal
becomes a superconductor, it completely expels a weak magnetic field from its
interior [3]. It means that a superconductor is more than just a perfect conduc-
tor; they also show perfect diamagnetism. The exclusion of magnetic fields was
discovered to be a non-classical occurrence since it could not be described using
Maxwell’s equations. In 1934, Gorter and Casimir proposed a phenomenological
two-fluid model of superconductivity, which can explain superconductors’ thermal
and acoustic properties [4]. In 1935, the London brothers published two equations
that provided a phenomenological explanation for perfect diamagnetism in super-
conductors and provided a characteristic length scale called London penetration
depth [5]. In 1937, L. V. Shubnikov and coworkers reported the mixed state, also
known as the Shubnikov phase, in which a magnetic field can penetrate into a su-
perconductor in the form of flux tubes [6]. Ginzburg and L. Landau provided a phe-
nomenological theory of superconductivity in 1950, which can explain the behav-

1
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ior of superconductors in strong magnetic fields [7], and A. Abrikosov theoretically
explained the Shubnikov phase using this theory [8]. Already in 1950, Frohlich
and, independently, Bardeen had proposed that superconductivity is caused by vi-
brating atoms in the material and suggested an isotope effect, which was proven
experimentally by E. Maxwell and C. A. Reynolds in the same year [9, 10, 11]. In
1957, Bardeen, Cooper, and Schrieffer presented the first successful microscopic
theory of superconductivity, establishing that it is a quantum phenomenon that oc-
curs on a macroscopic scale [12]. The BCS theory provides a satisfactory picture
for so-called conventional superconductors where superconducting phase transition
is governed entirely by the opening of an isotropic superconducting energy gap
around the Fermi surface.

Many new superconductors were discovered in the 1970s and 1980s that show
unconventional superconductivity, which does not fit into the BCS picture. These
include, e.g., heavy fermion and organic superconductors. In 1986, Bednorz and
Muller discovered copper oxide-based high-temperature superconductors (HTS),
having quasi-two-dimensional layered structures [13]. Although many models are
proposed to explain unconventional behaviors in these superconductors [14, 15, 16],
the question regarding the basic microscopic mechanism of superconductivity still
remains very challenging to date. In the year 2001, the layered crystal structure
compound MgB2 was found to superconduct at 39 K [17], which is highest in non-
oxide compounds and shows anomalous superconducting properties [18, 19, 20,
21]. This discovery revived the interest in non-oxide compounds, especially in
Boron containing compounds with similar structures.

1.2 Basic Properties of superconducting State

The superconducting state, like any other state of matter, has its own set of fun-
damental features, which any superconductor will exhibit regardless of the mecha-
nism of superconductivity or the material. The following are the basic properties of
the superconducting state.

1.2.1 Absence of Resistance

A fascinating property of superconductors that led Kamerlingh Onnes [2] to the
discovery of the phenomenon of superconductivity is their zero resistance to a small
dc current. In a typical metal, the thermal vibrations disrupt the periodicity of the
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Figure 1.1: The temperature dependence of electrical resistivity in case of a metal with
impurities (Red curve ) and a superconductor (Blue curve). As temperature decreases, re-
sistivity of metals decreases and then saturates to a value ρo near absolute zero temperature.
The blue curve shows abrupt drop in resistivity to zero at Tc signaling the transition to a
superconducting phase.

lattice and produce phonons, which cause the conduction electrons to scatter. This
is the dominating scattering process at high temperatures (e.g., 300 K). Impurities
or lattice defects also cause the scattering of conduction electrons, which are more
dominant at low temperatures. Lowering the temperature reduces the thermal vi-
brations of atoms. As a result, a metal’s resistivity decreases as the temperature
drops. At absolute zero, the resistivity is mainly due to impurities and lattice de-
fects which gives a residual resistivity ρo (Fig. 1.1). If the metal is pure and free
of lattice imperfections, we can expect zero resistivity at absolute zero temperature.
For superconductors, the situation is different; resistivity abruptly falls to zero as it
is cooled below a certain temperature called the critical temperature Tc (Fig. 1.1).
The critical temperature Tc is characteristic of the material. Above Tc, the material
is said to be in the normal state, and below Tc, it is in the superconducting state.
In the presence of impurities, the transition from the normal to the superconducting
state at Tc may get broadened. The sharpness of transition is, therefore, a measure
of the quality or purity of the sample.
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Figure 1.2: The expulsion of a weak magnetic field from the bulk of material below su-
perconducting transition temperature Tc. (a) The material is cooled below Tc in zero field
(ZFC), then the field is applied, which is excluded from the superconductor. (b) The mate-
rial is cooled below Tc in the presence of field (FC), showing expulsion of the field in the
superconducting state.

1.2.2 Perfect Diamagnetism

In 1933, Meissner and Ochsenfeld [3] discovered that a superconducting mate-
rial always expels weak magnetic field lines from its bulk (Fig. 1.2), implying that
B = 0 inside the superconductor. This phenomenon is called the Meissner effect.
In a magnetic field, screening currents are formed and flow through the supercon-
ductor’s surface, canceling the flux density in its interior. This current produces a
magnetization M = −H ( perfect diamagnetism) in the superconductor’s interior.
Perfect diamagnetism in superconductors has two main aspects, as illustrated in
Fig. 1.2. The first is, if the material is zero-field-cooled (ZFC) that is cooled below
Tc in the absence of a magnetic field and then is exposed to a magnetic field, the
field will be excluded from the superconductor (Fig. 1.2a). The second is that if the
same material in the normal state is first placed in a magnetic field, the field will
penetrate the material. If this material is then field-cooled (FC), that is, cooled be-
low Tc in the presence of this field, the field will still be expelled from the material
(Fig. 1.2b). The magnetic field decays to zero over an extremely thin surface layer
with a thickness of the order of λL (discussed in section 1.3).
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Figure 1.3: The variation of critical field with temperature T. The Curve Hc(T ) separates
the superconducting phase from the normal phase.

1.2.3 Critical field

Each superconductor has a critical magnetic field Hc beyond which the supercon-
ducting state is destroyed, and the material returns to the normal state. The variation
of thermodynamic critical field Hc with temperature is approximately given by the
following phenomenological expression:

Hc(T )' Hc(0)
[
1− (T/Tc)

2
]
, (1.1)

where Hc(0) represents the critical field value at zero temperature. This tempera-
ture dependence of critical field is shown in Fig. 1.3; the curve Hc(T ) separates the
superconducting phase from the normal phase. The applied magnetic field raises
the superconductor’s free energy by an amount given by

fn− fs =
H2

c
8π

, (1.2)

where fn and fs are the free energy densities in the normal and superconducting
state, respectively, at zero fields. Because the normal state free energy is approxi-
mately independent of the applied magnetic field, the superconductor’s free energy
density is reduced by amount H2

c
8π

. This difference is called the condensation energy
of the superconducting state at absolute zero temperature.
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Figure 1.4: The magnetic field penetration into a superconducting material. Outside the
material magnetic field is H(0) and inside falls exponentially with characteristic length λL.

1.3 London Equations

In 1935, the London brothers [5, 22], proposed two equations to explain perfect
conductivity and perfect diamagnetism seen in superconductors. These equations
are:

∂ jjjs
∂ t

=
e2ns

m
E, (1.3)

∇× jjjs =−
e2ns

mc
H. (1.4)

Where, jjjs is the current density, E and H represents electric and magnetic fields
respectively, m and e denote the electronic mass and charge, ns denotes the su-
perfluid density, i.e., fraction of electrons participating in superconducting current.
The above equations are derived in the domain of the two-fluid model of super-
conductivity [22, 23]. In this model, the total number density n of free electrons
is assumed to be made up of superconducting electrons and normal electrons, with
number densities ns and nn, respectively. As the temperature rises from 0 to Tc, the
ns value falls from n to 0 and nn from 0 to n.

The first equation describes a situation of perfect conductivity through the free
acceleration of an electric charge [22]. The second equation, when combined with
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Figure 1.5: The variation of penetration depth λL with temperature T. At T= Tc, λL diverges.

Ampere’s law, gives

∇
2H =

1
λ 2

L
H, (1.5)

where λL is called London penetration depth, which determines the length scale of
magnetic field penetration in a superconductor and is given by

λL =

√
mc2

4πe2ns
. (1.6)

The penetration depth of most elemental superconductors is typically in the
range of 10-2000 nm. In one dimension, the solution of Eq. (1.5) is

H(x) = H(0)exp(−x/λL) . (1.7)

This shows that the magnetic field inside the superconductor diminishes exponen-
tially (Fig. 1.4), giving zero fields inside the bulk, resulting in the Meissner effect.

As ns depends upon the temperature so does λL. The temperature dependence of
penetration depth is given by following empirical relation:

λL(T ) = λL(0)
[
1− (T/Tc)

4
]−1/2

. (1.8)

As shown in Fig. 1.5, at the transition temperature Tc, λL diverges, resulting in
complete penetration of magnetic field inside the material.
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1.3.1 Pippard’s Coherence Length

The electrodynamics of superconductors discussed above was based on local
electrodynamics. It means that in Eq. (1.4), current at any position is determined
by the magnetic field at that position. However, this is only true if the current car-
riers are significantly smaller than the length scale over which the magnetic field
varies, i.e., smaller than the penetration depth λL. Otherwise, local London elec-
trodynamics is not appropriate. Pippard [24] developed the nonlocal generalization
of the London equations and established the second fundamental length scale in
a superconductor. He argued that the wave function of a superconducting state
should have a characteristic dimension ξ0 over which superconducting properties
such as superfluid density varies. Only electrons possessing energy within kBTc of
the Fermi energy play a role in superconductivity. These electrons participating
in superconducting current have a momentum range of ∆p ≈ kBTc

vF
, where vF is the

Fermi velocity and kB denotes the Boltzmann constant. Using uncertainty principle,
ξ0 can be estimated to be

ξ0 = α
h̄vF

kBTc
, (1.9)

here, α is a numeric constant; with a value of 0.18 predicted by BCS theory.
ξ0 is called the coherence length of the pure superconductor. In BCS theory, ξ0 is
physically related to the size of the Cooper pairs. λL << ξ0, is the case of non-
local electrodynamics. As temperature increases and approaches Tc, λL diverges at
Tc whereas ξ0 is independent of temperature. So near Tc, all superconductors be-
have in the Local electrodynamics regime, so they can be described by the London
equations.

Another important factor is the mean free path ’l’ of the electron. In metals
containing impurities and imperfections, the mean free path reduces due to in-
creased scattering. So in an impure metal, effective coherence length ξ is given by
1
ξ
= 1

l +
1
ξ0

[25, 22]. For disordered systems, where l << ξ0, the superconductor is
said to be in the "dirty limit," and its opposite limit is referred to as the "clean limit."
In the clean limit, i.e., for pure metals, it gives ξ ≈ ξ0. In the next section, we’ll
see that the Ginzburg Landau (GL) theory of superconductivity also introduced the
concept of a coherence length.
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1.4 Ginzberg-Landau Theory of Superconductivity

In this section, we’ll look at Ginzburg and Landau’s (GL) [7, 26] phenomenolog-
ical approach to the superconducting phase transition. Many natural processes, such
as the boiling of liquid and magnetic transitions, can be considered as a transition
from an ordered to a disordered state. Each of these transitions has an order parame-
ter which is zero in the disordered state and non zero in the ordered state. GL theory
starts with some assumptions that are later validated by the fact that they accurately
describe numerous properties of the superconducting state of the material. In this
theory, the superconducting state is described by a complex order parameter Ψ(r),
which is nonzero in the superconducting state and disappears in the normal state.
The order parameter can be written as Ψ(r) = |Ψ(r)|eiθ , where θ is the phase of or-
der parameter and the square of the modulus of order parameter, |Ψ(r)|2, gives the
superfluid density. The Ginzburg-Landau theory’s basic assumption is that, close
to the transition temperature below Tc, where Ψ(r) is small and changes slowly in
space, free-energy density fs in superconducting state can be expanded as series in
|Ψ(r)|2 [22],

fs = fn +α|Ψ|2 + β

2
|Ψ|4 + 1

2m∗

∣∣∣∣(−ih̄∇− e∗

c
A
)

Ψ

∣∣∣∣2 + h2

8π
, (1.10)

where, fn is the normal state free energy; e∗ and m∗ are the effective charge and
effective mass of the Cooper pairs; respectively, α and β are temperature-dependent
phenomenological coefficients that depend upon the material.

Minimization of the free energy with respect to Ψ and A gives the order pa-
rameter Ψ(r). From this minimization, the Ginzburg-Landau equations are given
as:

1
2m∗

(
h̄
i
∇− e∗

c
A
)2

Ψ+β |Ψ|2Ψ =−α(T )Ψ, (1.11)

and corresponding equation of current is,

jjjs =
e∗h̄

i2m∗
(Ψ∗∇Ψ−Ψ∇Ψ

∗)− e∗2

m∗C
|Ψ|2AAA. (1.12)

With Ψ = |Ψ|eiθ and using Eq. (1.11), velocity of a super electron can be written
as:

vvvs =
h̄

2m∗

(
∇θ − 2e∗

h̄c
AAA
)
. (1.13)
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Eqs. (1.11) and (1.12) are two coupled differential equations that may be solved to
determine superconducting state parameters. The equations can be solved numeri-
cally in most cases. However, in some simple cases, closed-form solutions can be
found, and in others, approximate solutions are obtained. In simple cases, GL equa-
tions can be converted to a normalized form, and solutions for other cases can be
obtained. Many superconducting parameters emerge as a consequence when these
equations are expressed in a normalized form.

If we consider a case of zero field inside a superconductor and with homoge-
neous boundary conditions i.e ∇2Ψ = 0, Eq. (1.10) becomes:

fs = fn +α|Ψ|2 + β

2
|Ψ|4; (1.14)

The minimization of above equation with |Ψ(r)|2 inside a superconductor gives

|Ψ|2 =−α

β
. (1.15)

Using this in Eq. (1.14), we get

fn− fs =
α2

2β
. (1.16)

As free energy in the superconducting state is lower than the normal state, so above
equation implies that β must be positive. At T = Tc, Ψ must be zero , and below Tc

it is finite. Then it follows from Eq. (1.15) that α = 0 at T = Tc, and is negative for
T < Tc. As a result, in a first approximation ( in the vicinity of Tc );

α ∝ (T −Tc) . (1.17)

Eq. (1.16) can be written as

fs = fn−
1
2

(
α2

β

)
= fn−

1
2
(α0)

[
1− T

Tc

]2

,

where α0 is some constant. The quantity 1
2

(
α2

β

)
represents the energy released by

the transition of normal electrons to the super electron and is called condensation
energy per unit volume of superconducting electrons. From Eq. (1.2), this is related
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to the thermodynamical critical field Hc, as:

1
2

(
α2

β

)
=

H2
c

8π
. (1.18)

Flux quantization is another crucial characteristic that emerges from the GL the-
ory. The phase coherence and a single-valued requirement of the wave function are
proven to generate quantized magnetic flux in a small superconducting ring. The
quantum of flux is denoted by Φ0 and is equal to hc/2e [27].

1.4.1 Two Fundamental Length Scales

G-L equations, when solved in case of inhomogeneous boundary conditions e.g.,
at the superconducting-insulating interface, introduces two characteristic length
scales [22]:

ξ
2
GL =

h̄2

4m∗|α|
, (1.19)

and

λ
2 =

m∗c2β

8πe∗2|α|
. (1.20)

Where ξGL is called the coherence length, and it differs from the Pippard coher-
ence length fundamentally. Physically, ξGL is the length scale measured from the
superconductor’s surface across which the order parameter varies significantly. For
most of the elemental superconductors, ξGL values are in the range of 10 to 100
nm. The second fundamental length scale λ , which arises when one investigates
the behavior of applied magnetic field in the vicinity of boundary, is called penetra-
tion depth and is the same as London penetration depth defined in section 1.3. So,
London equations can also be obtained from GL theory. Using Eq. (1.17), it can be
seen that in the vicinity of Tc, the temperature dependence of ξGL and λ are similar.
Therefore, their ratio is unaffected by temperature. Combining Eqs. (1.18), (1.19),
and (1.20) one gets an important relation:

ξGL(T ) =
Φ0

2
√

2πHc(T )λL(T )
. (1.21)

The GL theory shows that near Tc, ξGL evolves differently in the clean and dirty
limit as follow [22]:
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In clean limit
ξGL(T ) = 0.74

ξ0

(1−T/Tc)
1/2 ,

and in dirty limit

ξGL(T ) = 0.855
(ξ0l)1/2

(1−T/Tc)
1/2 .

1.4.2 Type-I and Type-II Superconductors

Superconductors are divided into two categories based on their response to an
external magnetic field. If we consider a very thin superconducting slab ( thick-
ness< λL), the magnetic field at the core does not drop to zero. As a result, the
amount of energy that must be expelled in going from normal to superconducting
state is reduced, implying that a very thin sheet’s critical field is considerably larger
than that of a thick slab. Therefore, it seems energetically favorable for a thick slab
to partition itself into an alternating sequence of thin normal and superconducting
segments. Although the magnetic energy is reduced in this manner, there is another
energy to consider: the energy required to create the normal-superconductor inter-
faces. Such subdivisions are possible only if the magnetic energy is more than the
interface energy. The interface energy approximately is given by:

σns ≈
H2

c
8π

(ξGL−λL) . (1.22)

At a normal-superconductor interface, the number density of supercurrent carri-
ers does not rise abruptly from zero to its value in the core of the superconductor
but rises gradually over a distance ξGL. Magnetic field, on the other hand, enters a
surface layer with a width of λL, and full expulsion happens only in the core of the
superconductor. The first term in Eq. (1.22) represents free energy acquired by con-
densation into the superconducting state, whereas the second term represents the
cost of rejecting flux from the boundary layer.

The variation of order parameter and a magnetic field near the metal-superconductor
interface for the type-I and type-II superconductors are shown in Fig. 1.6. Whether
a material is of type I or type II superconductor is determined by the relative size of
the coherence length and London penetration depth. The Ginzburg-Landau theory
gives a more refined treatment and introduces the Ginzburg-Landau parameter

κ = λL/ξGL. (1.23)
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Figure 1.6: Variation of the order parameter Ψ(x) and magnetic field H at metal-
superconductor boundary. (a) for type-I superconductor (κ < 1/

√
2) and (b) for type-II

superconductor (κ > 1/
√

2)

Figure 1.7: Phase diagram for a typical type II superconductor. Below Hc1(T ), material
exists in Meissner state in which it shows complete expulsion of magnetic field, between
Hc1(T ) and Hc2(T ) it shows mixed state in which magnetic field can penetrate the material
in the form of flux tubes and above Hc2(T ) it is in the normal phase.
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Figure 1.8: Spatial Variation of magnetic field H, and super current density ns around the
vortex center. At the vortex center ns is zero and has maximum value at a distance ξGL from
the vortex center.

In 1957, Abrikosov [8] showed that σns = 0 for κ = 1/
√

2. The criteria for super-
conductivity of type-I or type-II is determined as

type I: κ < 1/
√

2,

type II: κ > 1/
√

2.

We have already seen the phase diagram of type-I superconductors (Fig. 1.3).
At all fields below a critical field Hc, type-I superconductors exhibit perfect dia-
magnetism, and above Hc, superconductivity is completely lost. Type-I supercon-
ductors make up the majority of elemental superconductors. Abrikosov established
that for κ > 1/

√
2 (type-II), σns is negative, which results in an equilibrium state in

which the field lines can enter the superconductor in the form of flux tubes called
vortex that forms a triangle pattern [28, 29]. Figure 1.7 shows the phase diagram
for type-II superconductors. Two critical fields, Hc1 and Hc2, characterize Type II
superconductors, both of which are temperature-dependent. Below Hc1, the mate-
rial is perfect diamagnetic. Vortices emerge above the lower critical field Hc1, and
flux penetration continues to increase until the higher critical field Hc2 where vor-
tex cores almost overlap, at which point superconductivity is destroyed completely.
The phase between Hc1 and Hc2 is called the mixed-phase or Shubnikov phase [6].
We can say that λL is the vortex’s width, i.e., it defines the radius containing the
magnetic flux. The super electron density ns is zero at the vortex’s center, and ξGL

is the distance across which ns reaches its maximum value (Fig. 1.8). A large co-
herence length hinders ns from rising quickly and can provide the shielding current
required to restrict the flux, preventing the formation of a vortex. The magnetiza-
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Figure 1.9: Magnetization M as a function of magnetic field H for type-I (Red line) and
type-II (Green line) superconductors.

tion M as a function of magnetic field H for type-I and type-II superconductors are
shown in Figure(Fig. 1.9). The area under the M-H curve is the same as for a type-
I superconductor as it represents the difference in free energy between normal and
superconducting states. In the mixed-phase, a type II material has a lower magnetic
moment than a type-I material.

The mean free path of conduction electrons in alloys and compounds is consid-
erably shorter than in pure metals. As a result, type-II superconductivity is common
in alloys and compounds. The upper critical field in the framework of Ginzburg-
Landau theory is given by [22]:

Hc2 =
√

2κHc. (1.24)

Using Eqs. (1.21) and (1.23), one obtains

Hc2 =
√

2κHc =
Φ0

2πξ 2
GL

. (1.25)

The lower critical field in the limit κ >> 1, is given by

Hc1 ' Hc
lnk√

2k
. (1.26)
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1.5 BCS Picture of Superconductivity

In 1956, Cooper showed that when two electrons with an attractive potential are
added to a filled Fermi sphere, they can bound to form a pair. This bound state
is called the Cooper pair [30]. Only Cooper pairs with net momentum zero (K =
k1 + k2 = 0) are likely to form, which means electrons have equal and opposite
momentum and also opposing spin in pairs. Following this idea, Bardeen, Cooper,
and Schrieffer (BCS) in 1957 gave the first successful microscopic theory of su-
perconductivity [12, 31]. The basic idea of the theory is that at sufficiently low
temperature, electrons near the Fermi surface become unstable against the forma-
tion of Cooper pairs, and it is electron-lattice interaction, no matter how weak,
which is responsible for creating an attractive potential resulting in the binding of
two electrons. Gor’kov showed that Ginzburg-Landau’s theory can be developed
from the BCS theory [32]. In the language of second quantization, the BCS pairing
Hamiltonian is written as:

H = ∑
kσ

εknkσ +∑
kk′

Vkk′c
∗
k↑c
∗
−k↓c−k′↓ck′↑. (1.27)

The first term in the Eq. (1.27) describes the kinetic part of the non-interacting
electron gas, whereas the second term represents the pairing interaction, in which
electrons scatter from state k’ to state k via exchange of phonon. c−k′↓ck′↑ rep-
resents annihilation of pair and c∗k↑c

∗
−k↓ represents the creation of pair with equal

and opposite momenta and spin. Vkl is a scattering matrix element, and BCS the-
ory replaces it with an effective constant potential -|V|. This pairing interaction can
crudely be seen to arise as follows. An electron creates lattice distortion as it attracts
the positive ions. The second moving electron will experience this distortion. As a
result, a weak indirect attractive interaction between these electrons may emerge.

Only a small fraction of electrons participate in the electron-lattice interaction
to form cooper pairs, particularly those in a shell of thickness h̄ωD (ωD is Debye
frequency) in the vicinity of the Fermi surface (Fig. 1.10). All Cooper pairs con-
dense into the same phase-coherent macroscopic quantum state resulting in zero
resistance. As a result of this pairing, an energy gap opens around the Fermi sur-
face (Fig. 1.11). Each electron gains energy ∆ and a pair gains 2∆. Cooper pairs
only exist in the BCS ground state, and excitation is equivalent to separating them
into normal electrons. This gap must be overcome in order for the electrons to go
into their normal state. A Cooper pair’s binding energy turns out to be very low,
around 10−4−10−3 eV; this means very low temperatures are required to keep the
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Figure 1.10: In the BCS theory, only electrons that lie within a shell of thickness h̄ωD near
the Fermi surface interact through phonons.

binding intact.

From BCS theory, the energy gap is given by the relation

∆(0) = 2h̄ωD exp
(
− 1

V N (εF)

)
, (1.28)

where, V is the effective electron-lattice interaction potential and N(εF) represents
density of states at Fermi level. ∆(0) is the energy gap at absolute zero temperature.

Bogoliubov-Valatin [33, 34] canonical transformation of the BCS Hamiltonian
and mean-field approximations gives a self-consistent approach to deal with excited
states at finite temperature. In superconductors, the elementary excitations are elec-
tron and hole-like quasi particles that result from the Cooper pairs breaking. Energy
of these quasi particles is determined as:

Ek =
√

ε2
k +∆2, (1.29)

where εk is the energy of single particle relative to Fermi energy. It means that
there is a gap of magnitude ∆ in the energy spectrum. The dependence of gap on
temperature can be found numerically using:

1
N (εF)V

=
∫ h̄ωD

0

tanh 1
2β
(
ε2 +∆2) 1

2

(ε2 +∆2)
1
2

dε, (1.30)

where ε is the single-particle energy relative to the Fermi energy and β = 1/kBT .
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Figure 1.11: The density of states of a superconductor is compared to that of a normal
metal. In case of superconductor, an energy gap of magnitude 2∆ opens up in the density of
states around the Fermi level.

Figure 1.12: Variation of the normelized superconducting gap with temperature. At T=0
K, gap has maximum value and becomes zero at transition temperature Tc.
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The superconducting transition temperature (Tc) in BCS theory is the temperature
at which the binding energy of Cooper pairs becomes zero. Taking ∆(T )→ 0 at
T→Tc in Eq. (1.30), one can get the expression for the critical temperature Tc as:

kBTc = 1.13h̄ωD exp
(
− 1

V N (εF)

)
. (1.31)

Compairing Eq. (1.28) and (1.31), we get one of the most important BCS pre-
dictions;

∆(0)
kBTc

= 1.76. (1.32)

The temperature dependence of superconducting gap in weak coupling limit can be

approximated as ∆(T )
∆(0) ≈ 1.76

(
1− T

Tc

)1/2
and this dependence is shown in Fig. 1.12.

1.5.1 BCS Coherence Length

Using the uncertainty principle, one can find the size of the Cooper pair. It is
characterized by the BCS coherence length ξBCS = h̄vF/π∆, where vF is the Fermi
velocity of electron. Because of the weak binding strength, the coherence length is
very long. For most superconductors, ξBCS is 100-1000 nm. So a Cooper pair is an
extended object, 100-1000 lattice constants long. Therefore, around a million other
Cooper pairs are present in the space spanned by a Cooper pair resulting in overlap
of all the pairs and creating a collective state.

1.5.2 Heat capacity

The specific heat of superconductors is one of the most investigated properties.
In heat capacity measurement, the entire sample responds, in contrast to many other
measurements that are only sensitive to a portion of the sample. So it represents a
bulk measurement that considers the entire sample.

At temperatures much below the Debye temperature θD, a normal metal’s heat
capacity Cn is the sum of a linear component Cel arising from conduction electrons
and a phonon term Cph i.e

Cn = γnT +βT 3, (1.33)

γn is called the Sommerfeld coefficient [35]. The electronic contribution to the
specific heat in the free-electron approximation is given by
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Figure 1.13: The temperature variation of difference of thermodynamic variable in super-
conducting state and their values in the normal state. All curves are in zero magnetic field.
The symbol f represents the free energy, S represents the entropy and and C represents the
electronic heat capacity.

γnT =
π2N (εF)k2

B
3

T.

In the Debye model, the phonon contribution is given by

Cph = βT 3 =

(
12π4R

5

)(
T
θD

)3

,

where R represents the molar gas constant. From heat capacity C versus temera-
ture T measurements one can easily find out Debye temperature θD and density of
states N (εF).

In a zero magnetic field, the transition from the normal to the superconducting
phase is a second-order phase transition. In second-order phase transition, Gibbs
free energy and its first-order derivatives are always continuous, whereas the second
derivatives exhibit finite-step discontinuities. From the temperature dependence
of difference of entropy in superconducting and normal phase (Ss− Sn), shown in
Fig. 1.13, Ss = Sn at Tc. This implies that no latent heat is involved in the transition.
However, there is a jump in the specific heat. At 0 < T < Tc, Ss < Sn, indicating
that the superconducting phase is more ordered than the normal state.

The BCS theory (in the weak electron-phonon coupling limit), electronic specific
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Figure 1.14: The temperature dependence of electronic heat capacity of a superconductor.
At T=Tc, heat capacity shows a jump with normalized jump height of Cs−γTc

γTc
= 1.43 (BCS

prediction). Below Tc, heat capacity rises exponentially with temperature ≈ Aexp
(
− ∆

kBT

)
.

heat at the superconducting transition jumps abruptly from its normal-state value
γnTc and the normalized jump height is:

∆C
γTc

=
Cs− γTc

γTc
= 1.43, (1.34)

where Cs is the electronic heat capacity in the superconducting state. In super-
conducting state for temperatures T << Tc, BCS theory predicts that electronic
contribution to the specific heat will have exponential dependence on temperature
(Fig. 1.14)

Cs ≈ Aexp
(
− ∆

kBT

)
(1.35)

The exponential dependence of specific heat on temperature means that in the
superconducting state, electrons that condense in Cooper pairs no longer contribute
to energy transfer. The value of specific-heat jump increases in the strong electron-
phonon coupling limit, i.e. when ∆ > 1.76kBTc, ∆C/γTc > 1.43. In an applied
magnetic field, the latent heat of transition is not zero. It means that in the presence
of a magnetic field, the transition from normal to superconducting phase is the first-
order phase transition.
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1.5.3 Isotope effect

In the BCS picture of superconductivity, electron-lattice interaction is responsi-
ble for creating attraction between electron pairs. Finding experimental confirma-
tion for this mechanism is always of great interest. From Eq. (1.31) , Tc ∝ ωD. If
we model lattice vibrations as coupled harmonic oscillations, then the frequency of
lattice vibrations is inversely proportional to

√
M, where M is the mass of lattice

ion. This gives
Tc ∝ 1/

√
M. (1.36)

It implies that different isotopes of the same superconducting metal have differ-
ent superconducting transition temperatures, and the majority of superconducting
materials are experimentally found to obey the above equation [22, 23, 9]. The ex-
istence of the isotope effect shows that the vibrations of the crystal lattice play a
key role in superconductivity [10].

1.5.4 Electron-phonon coupling strength

The parameter λep = N(εF)V is called the electron-phonon coupling constant.
The calculation of Tc in section 1.5 assumed a mean-field approach, in which λep

was taken as constant, which is valid only for weak coupling limit i.e. for λep =

N(εF)V << 1. In the weak coupling limit Coulomb interaction can be added in Eq.
(1.31) as:

kBTc = 1.13h̄ωD exp
(
− 1

λep−µ∗

)
(1.37)

where µ∗ is called the coulomb pseudo-potential. However, the details of the
electron-phonon interaction must be considered in strong coupling superconduc-
tors (λep >> 1). As illustrated in Eliashberg calculations [36], the electron-phonon
interaction strength λep is determined by the function α2(ω)F(ω), where F(ω)

represents the density of states of phonon spectrum, α2(ω) describes the electron-
phonon interaction. McMillan [37] gives the superconducting transition tempera-
ture as:

Tc =
θD

1.45
exp
[
−

1.04(1+λep)

λep−µ∗(1+0.62λep)

]
, (1.38)

where θD is Debye temeprature defined as h̄ωD = kBθD. The Debye frequency ap-
pears in McMillan’s Tc formula in both the pre-exponential factor and the electron-
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phonon coupling constant. This explains the deviation from mass isotope effect in
most superconductor.

1.6 Effect of Pressure on Superconductivity

The high-pressure studies on superconductors are significant because pressure
has a considerable impact on the superconducting transition temperature Tc [38].
The variation in temperature primarily alters the occupancy of energy levels, whereas
the variation in pressure application mainly results in modifying these energy lev-
els. The rate of change of Tc values as a function of pressure/chemical compo-
sition can be used to determine if a novel superconducting material is capable of
exhibiting high Tc values or not. The greater the dTc/dP value, the more likely the
novel material will have higher Tc values at ambient pressure as a result of chem-
ical substitution. Some non-superconducting materials have also been discovered
to exhibit superconductivity when subjected to high pressures [39]. The study of
the dependence of superconducting properties on pressure can help in testing theo-
retical models and provide insight into the pairing mechanism.

In the BCS expression of critical temperature Eq. (1.31), the variations in the
isotopic mass M mainly affect the prefactor ωD, with a minor effect on exponent,
whereas under the application of pressure, the exponent factor is mainly modified
as pressure effectively changes both the density of states as well as the lattice
vibrations. The main cause for the observed fall in Tc with increasing pressure in
some BCS superconductors is a significant decrease in the pairing interaction rather
than a decrease in N(εF). The argument can be further supported if we look at the
McMillan’s [37] expression without Coulomb potential, as change in coulomb po-
tential with pressure is negligible. Using this, the electron-phonon coupling param-
eter can be expressed as

λep =
N(εF)

〈
I2〉

M 〈ω2〉 , (1.39)

where
〈
I2〉 denotes the average square electron-phonon scattering matrix element

and
〈
ω2〉 represents mean square phonon frequency. In simple approximation

M
〈
ω2〉 ≈ M〈ω〉2 ≈ M(k/M) = k, where k denotes the lattice spring constant.

Therefore Eq. (1.31) can be written as

Tc ≈
√

k/M · exp[−k/η ], (1.40)

where η = N(εF)
〈
I2〉 is called the Hopfield parameter and changes very gradually
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with pressure [40, 41]. Under pressure, the spring constant k increases signifi-
cantly. As a result, a rapid decrease in Tc with increasing pressure is observed as
drop in the (−k) component in the exponent dominates over the increment in the
prefactor

√
k.

In the BCS picture of superconductivity, high density of states at Fermi energy
results in higher transition temperature Tc. In transition metals, the d-electron states
at Fermi energy has high density of states as d-band is narrow and can accommodate
up to ten electrons, favoring superconductivity at greater temperatures than basic s,
p metals. In many cases, Tc rises as the Hopfield parameter rises rapidly under
pressure. The multiatom systems have greater Tc values than single-atom systems
because their structural flexibility allows for more optimization. The highest Tc

values are seen in quasi 2D solids like MgB2 and high-Tc cuprate oxides. These
compounds, under both ambient and high-pressure conditions, exhibit a tremendous
deal of structural and electrical complexity, which has hampered attempts to gain
a basic understanding of the mechanisms that cause the superconductivity. The
measured dTc/dP dependence in the case of MgB2 is compatible with BCS picture
(electron-phonon coupling) [42, 43].

1.7 Unconventional superconductor

In conventional superconductors, Cooper pairs with opposite spin and momen-
tum (k1 + k2 = 0 and s1 + s2 = 0) are formed through electron-electron interaction
mediated by phonons. Angular momentum l of each Cooper pair is zero resulting
in a BCS ground state with zero angular momentum. In conventional supercon-
ductors, the gap ∆ is isotropic means it has no k dependence, as illustrated in Fig.
1.10. This illustrates that no matter from which section of the Fermi surface you
try to excite the electron, you must supply the same amount of energy to bridge the
gap and such a superconducting ground state is commonly described as having an
s-wave symmetry (just using the shape of atomic orbitals as an analogy). The order
parameter ψ of a superconducting state is a complex quantity . The variations in |ψ |
are proportionate to variations in ∆. If |ψ | or energy gap ∆ is positive everywhere,
then order parameter is also said to have an s-wave symmetry. If ∆ is constant, it
is called isotropic s-wave symmetry and if ∆ varies in real space, then it is said to
have anisotropic s-wave symmetry.

Unconventional characters can result from a variety of reasons.[14, 15, 16]. In
most unconventional superconductors, each Cooper pair’s electrons still have the
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opposite momentum and spin; however, the angular momentum of a Cooper pair
is non-zero in most cases [44]. In the finite momentum pairing, the pair’s angular
momentum l can be either an even multiple of h̄ (singlet pairing) or an odd multiple
of h̄ (triplet pairing).

When l = 2, it is common to refer to the superconducting ground state as having
a d-wave symmetry. If we look at the Fermi surface of the filled fermi sea, the
superconducting gap ∆ is k dependent. In d wave- symmetry, The energy gap has
two positive and two negative lobes, as well as four nodes or gapless points between
the lobes. d wave pairing is accepted to exist in many high Tc superconductors
[45]. The density of cooper pairs at nodal sites is zero; hence the single-particle
excitation spectrum has no gaps in this direction. The angular resolved spectroscopy
confirmed the presence of d wave superconductivity. Triplet pairing or p wave
pairing occurs when l = 1.

1.8 Multigap Superconductivity

Multigap superconductors are another kind that shows anomalous superconduct-
ing behaviors. As we have discussed in the above section, in conventional su-
perconductors collective behavior of electrons on the Fermi surface makes equal
contributions to the pairing mechanism, resulting in a constant isotropic supercon-
ducting gap. If distinct superconducting gaps exist on different disconnected parts
of the Fermi surface, a different situation can arise, resulting in anomalous super-
conducting behaviors which are different from conventional superconductors. The
multi-band superconductivity was first studied theoretically by Suhl et al. [46].

In the situations in which two bands with more or fewer wandering electrons
overlap, the Hamiltonian of BCS theory can be extended as

H = ∑
kσ

εk1ckσ
∗ckσ +∑

kσ

εk2d∗kσ dkσ −∑
kk′

V11c∗k↑c
∗
−k↓c−k′↓ck′↑−V22 ∑

kk′
d∗k↑d

∗
−k↓d−k′↓dk′↑

−V12 ∑
kk′

(
c∗k↑c

∗
−k↓d−k′↓dk′↑+d∗k↑d

∗
−k↓c−k′↓ck′↑

)
,

(1.41)

where ck, c∗k represents annihilation and creation operators of elctrons from first
band and dk, d∗k represents annihilation and creation operators of elctrons from
second band. V11 and V22 represents effective interaction energies resulting from
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Figure 1.15: Evolution of the superconducting gaps. (a) If there is no inter band pairing,
(b) If inter band pairing is weak, and (c) If there is strong inter band pairing.

electron-phonon scattering processes arising with in first band and second band
respectively, whereas V12 represents interband scattering processes.

According to the two-band framework, when electrons on different Fermi sheets
in the material have different electron-phonon-coupling strengths, distinct super-
conducting energy gaps can occur. The amount of interplay between the bands is
determined by their relative ability for pair exchange. In most superconductors ex-
hibit multi-band conduction, but strong inter-band pairing ( V12 >> V11,V2 ) leads
to the same gap magnitude on all the bands (Fig. 1.15 c). Due to interband pair-
ing, a smaller band will be pushed to the same transition temperature as the strong
coupling band, resulting in a single transition temperature for the material.

If there is no interband pairing, i.e., V12 = 0, then each of the superconduct-
ing bands will behave differently and have different critical temperatures as shown
(Fig. 1.15 a).

If V12 <<
√

(V11V22) , then only weak interband pairing occurs. In this case, if
two gaps have sufficiently different magnitudes, then they can be resolved experi-
mentally. The evolution of gaps in the case of weak pairing is depicted in Fig. 1.15
b. For measurements like resistivity, the fingerprint of a second band is usually
weak because the zero resistance transition that occurs already from the stronger
coupling band; will mask the resistance transition of the weak coupling band. In
order to investigate the two bands, the momentum resolved probes like directional
PCAR spectroscopy (point contact Andreev reflection) are the most effective ways.

Although this multigap or multi-band superconductivity was already addressed
theoretically in 1959, it was first conclusively found in the MgB2 compound only
in 2001-2002 [17, 18, 47]. This compound has unusual superconducting proper-
ties, including a reduced heat capacity jump, a highly anisotropic critical field with
extremely high values (20 T in bulk, 32 T in thin films), and non-BCS behaviors
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of various superconducting parameters like superfluid density and superconducting
heat capacity [18, 19, 20, 21],. All of these anomalous features have been success-
fully explained using two-gap s-wave models of superconductivity. Further, band
structure calculations of the Fermi surface also confirmed the existence of at least
two bands with different characters. One band is a heavy hole band made up of
Boron-σ orbitals, whereas the other has a smaller gap and is made up of Boron-
π orbitals. There are now many other superconductors known to exhibit multigap
superconductivity.

Some Iron based superconductors are also reported to show unconventional be-
haviour similar to that observed in MgB2. Lu2Fe3Si5 [48, 49], FeSex [50] and FeS
[51] compounds also show multigap superconductivity. The so-called "11" and
"122" families of Fe-based high temperature superconductors (Fe-HTSs) are also
reported to show multiple superconducting energy gaps [52]. Measurements on
single crystal of these compounds showed that the penetration depth anisotropy and
upper critical field anisotropy resembles with that of MgB2.

1.9 Layered Borides

The BCS theory of superconductivity suggests that elements having low atomic
mass can result in higher phonon frequencies which may, in turn, cause higher su-
perconducting transition temperatures. Light elements such as Lithium (Li) and
Beryllium (Be) have been shown to exhibit superconductivity but at high pressures
[53]. However, the discovery of superconductivity in MgB2 at 39 K [17] strongly
supports the prediction of higher Tc in materials with lighter elements. This dis-
covery has sparked a renewed interest in this material and materials with similar
structural characteristics. The critical temperature of MgB2 is higher than the value
of Tc predicted by the BCS theory. MgB2 shows traits of conventional superconduc-
tors such as isotope effect, and shift of Tc to lower values with the application of the
magnetic field. However, the quadratic T-dependence of the penetration depth λ (T )

and reversal of the sign of Hall coefficient indicates the unconventional behavior as
observed in high-Tc cuprates. The observation of conventional and unconventional
behavior in MgB2 is interesting, and the key to this behavior may lie in the crystal
structure of MgB2 [18, 19, 20, 21].

MgB2 exhibits a hexagonal structure (Fig. 1.16) of AlB2 type with space group
P6/mmm. This type of structure is common among the boride compounds [53]. The
structure of MgB2 is a layered structure (as observed in cuprates) with graphite-type
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Figure 1.16: Crystal structure of MgB2. ( Reprinted from Supercond. Sci. Technol. 14
R115)

layers of Boron separated by hexagonal closed pack (HCP) layers of magnesium.
Each magnesium atom lies on top of the center of the hexagons formed by the Boron
atoms and donates their electrons to the underlying Boron layer. Calculations of
the band structure of MgB2 revealed that there are at least two types of bands at
the Fermi surface. The first is a small band made up of boron σ orbitals, whereas
the second is a larger band made up mostly of π boron orbitals with a reduced ef-
fective mass. The distance between boron layers leads to a very strong coupling
of -bonding states to in-plane vibrations of boron atoms. This strong coupling re-
sults in the formation of strong electron pairs, which are the principal contributors
to the superconducting properties of MgB2 [47]. The possibility of unconventional
superconductivity and high Tc in diborides has led to a lot of work on diboride com-
pounds. A lot of structurally related compounds (TB2; T= Ti, Zr, Hf, V, Cr, Nb, Ta,
and Mo) have since been investigated for superconducting properties. Among the
binary diborides, OsB2 and RuB2 are compounds that form an orthorhombic struc-
ture with Pmmn space group and are reported to become superconductors at 2.1 K
and 1.6 K respectively[54, 55]. These materials also exhibit a layered structure, but
it is different from that of MgB2 and other compounds in this family with AlB2

type structure. Instead of the graphite-like arrays of boron atoms which are sepa-
rated by layers of transition metal atoms in an HCP arrangement, OsB2 and RuB2

have sheets of a deformed 2-dimensional network of puckered boron hexagons.
These boron sheets lie between the layers of transition metal atoms, as shown in the
(Fig. 1.17)[56, 57, 58, 54].

Early experimental studies on MgB2 [59, 60, 61, 62, 63] indicate the presence of

https://iopscience.iop.org/article/10.1088/0953-2048/14/11/201/meta
https://iopscience.iop.org/article/10.1088/0953-2048/14/11/201/meta
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Figure 1.17: Crystal structure of AB2 (A= Os, Ru)

multiple superconducting gaps, and the ab-initio studies on MgB2 in reference [47]
explaining these gaps opens an avenue of multi-band superconductivity in boride
superconductors. The superconducting properties of OsB2 have been investigated
by previously [54, 64] and it was reported that the materials show the signature of
unconventional superconducting properties like MgB2. Although many supercon-
ducting properties of OsB2 can be explained in the two-gap models of superconduc-
tivity, there is another study that suggests superconductivity in OsB2 with single but
highly anisotropic gap [65]. However, the mechanism of superconductivity is still
uncertain. The pressure measurements and mass isotope effect suggest that MgB2

is an electron-phonon coupling superconductor. Similar studies need to be done
on OsB2. The RuB2 compound, which is isoelectronic and isostructural to OsB2

can also be a candidate to exhibit similar anomalous superconducting properties as
observed in OsB2 and MgB2. Another class of metallic boride compounds with in-
teresting superconducting features are rare earth ternary borides RTB2 that exhibit
a relatively large value of superconducting temperature [66]. Stoichiometric RTB2

(R: Rare earth; T: transition metal) phase crystallizes in an orthorhombic structure
(space group Pnma), having a zigzag chain of rare-earth atoms, with dimerized
Boron. Compounds with R = Y, Lu have been reported to exhibit a large super-
conducting transition temperature of Tc≈ 7, and 10 K [67, 68], and have also been
reported to have a reduced heat capacity anomaly at Tc compared to weak-coupling
BCS predictions. It is important to investigate the superconducting properties of the
RRuB2 (R = Y, Lu) compounds in detail in the search for unconventional behavior
and mechanism of superconductivity exhibited by these compounds.

In this thesis we have studied the superconducting properties of TB2 ( T = Os,
Ru) and RRuB2 (R = Y, Lu).





CHAPTER 2

Experimental Details

This thesis contains an extensive study on poly-crystalline RuB2, OsB2, LuRuB2

and YRuB2 materials. This chapter discusses the detailed procedure of synthesis,
structural characterization, and physical property measurement. The arc melting
furnace has been used to synthesize the poly-crystalline samples of RuB2, OsB2,
LuRuB2 and YRuB2. In order to improve the quality of the materials, further an-
nealings were done in a vacuum tube furnace/box furnace.

2.1 Sample Preparation: Arc melting technique

Arc melting technique is commonly used to synthesize alloys by melting the
metals [69]. In this technique, the materials are heated through an electric arc gen-
erated using high voltage/current via tungsten electrodes. The sample is placed on a
copper hearth, which remains cool through cold water circulation using a commer-
cial water chiller. The chamber is evacuated using a turbopump and then slightly
filled with inert (Argon) gas to avoid material oxidation at high temperatures. The
following significant steps were used to synthesize materials using arc melting tech-
niques.

• The sample is placed below the tungsten electrode on a copper hearth. In
this thesis, the furnace used to synthesize materials contains four tungsten
electrodes, a so-called tetra arc furnace.

31
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Figure 2.1: Tetra Arc Furnace, Left-side: The electric control unit and monitor screen ,
Right-side: Sample Chamber.

• The sample chamber is first evacuated using turbopump up to 1x10−6 mbar,
then a low amount of argon gas (≈3mbar) is filled to help make the electric
arc.

• , In the beginning, a titanium getter is heated on a second small copper hearth
in the chamber, since, at high temperature, titanium is a good absorber of gases
which helps further purification of the sample chamber.

To make the material homogeneous, several heat treatments were given to the mate-
rials. In order to remove thermal defects, further annealing is done in a tube furnace
in the presence of argon gas.

In the following, we describe the synthesis procedure used to make specific ma-
terials discussed in this thesis.

2.1.1 The synthesis procedure of RuB2, OsB2, LuRuB2 and YRuB2

compounds.

The polycrystalline sample of RuB2 has been synthesized using arc melting tech-
niques. The starting materials of Ru (5N, Alfa Aesar) and B (6N, Alfa Aesar) were
taken in stoichiometric ratio. The materials are placed on a copper hearth, cooled
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Figure 2.2: Image of material during melting

with a water chiller at 17◦C. Zr was used as a getter to absorb all remaining Oxygen
present in the vacuum chamber. The sample was flipped and melted 7-10 times
to ensure homogeneous mixing. After melting, any weight loss was compensated
by adding the required amount of boron and again melting. Figure 2.2 showed the
images of material during melting.

As mentioned above, a similar procedure has been used to synthesize OsB2,
LuRuB2, and YRuB2. RuB2 and OsB2 compounds melt congruently. However,
the LuRuB2 and YRuB2 compounds contain some small impurity phases even after
several arc melting. Further annealing of the above samples was done after sealing
in an evacuated quartz tube to improve the desired phase.

2.2 Structure Characterization: X-ray diffraction

The X-ray diffraction method is a frequently used technique for determining
the crystal structure of any solid compound. It determines how the crystal’s inner
atoms or molecules are arranged. The first step after preparing any sample is the
characterization of a crystalline material’s phase. To do so, we first looked at its
crystal structure and checked the sample’s phase purity. X-rays are electromagnetic
waves with wavelengths 0.5−2.5 Å that are similar to the spacing between atoms
in crystalline substances. The X-ray diffraction experiment has shown to be a handy
tool for characterizing crystal structures. The systematic diagram of Bragg’s X-ray
diffraction is shown in figure 2.3.

W. L. Bragg and W. H. Bragg proposed an x-ray diffraction theory. According to
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Figure 2.3: Schematic diagram of X-ray diffraction fullfilling Bragg’s law

this idea, a crystal is made up of various sets of parallel atomic planes with identical
interplanar spacing. Incident X-rays are reflected by parallel planes in the crystal,
and the reflected rays are subsequently subjected to constructive interference. Bragg
established Bragg’s law, a simple mathematical condition Eq. 2.1 for observing a
Bragg reflection [70].

2dsinθ = nλ (2.1)

where d is the inter-planar spacing between the (hkl) crystal planes, λ is the incident
x-ray wavelength, θ is the incidence angle, and n is the order of reflection as a
positive integer. To fulfill Bragg’s criteria, either θ or λ needs to vary. The most
common way is to fix the wavelength of the X-ray source and vary θ , and the
intensity is measured vs 2θ . Bragg reflections are acquired at various 2θ values
that satisfy the Bragg criterion. The intensity of peaks can be used to determine the
unit cell characteristics of crystal structure and the arrangement of atoms.

where d is the inter-planar spacing between the (hkl) crystal planes, λ is the
incident x-ray wavelength, θ is the incidence angle, and n is the order of reflection
as a positive integer. To fulfill Bragg’s criteria, either θ or λ needs to vary. The
most common way is to fix the wavelength of the X-ray source and vary θ , and the
intensity is measured vs. 2θ . Bragg reflections are acquired at various 2θ values
that satisfy the Bragg criterion. The intensity of peaks can be used to determine the
unit cell characteristics of crystal structure and the arrangement of atoms.

All polycrystalline samples were subjected to powder X-ray diffraction studies
at the powder x-ray diffraction (PXRD) facility IISER Mohali, utilizing a Rigaku
Ultima high-resolution X-ray diffractometer. We chose an angular range of 10◦ to
90◦ with a step size of 0.02◦ and a sample rotation speed of 120 rpm for our exper-
iments. We examine phase purity by matching the obtained x-ray pattern with the
expected data from the International center for diffraction database (ICDD) PDF-4
using PCW software after collecting experimental x-ray data of manufactured ma-
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terials. General Structure Analysis Software (GSAS) [71] is used to refine Rietveld
for better quantitative analysis.

2.3 Physical Property Measurement

After the synthesis and characterization of materials, the next step is to mea-
sure their physical properties. In this thesis, we investigated the superconducting
properties of some rare-earth and transition metal borides, for which temperature
and field-dependence magnetization, electrical resistivity, and heat capacity mea-
surements were required. We used the Quantum Design (QD) Evercool-II Physical
Property Measurement System (PPMS) with a superconducting magnet up to 9T.

Figure 2.4: Quantum Design (QD) Physical Property Measurement System (PPMS)

2.3.1 Electrical Resistivity Measurements

The temperature and field dependence electrical resistivity between 2 K and
300 K is measured using the standard four-probe electrical transport option (ETO)
in Quantum Design PPMS Evercool-II. Standard PPMS sample pucks as shown in
figure 2.5 are used to attach samples for four-wire resistance measurements. The
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Figure 2.5: Quantum Design Resistivity Puck

resistivity sample pack has four contacts, two for sending current and two for mea-
suring voltage [72]. The contribution of the leads and joints to the resistance mea-
surement is considerably reduced when a sample is attached to a sample puck using
four wires figure 2.6. Two current leads carry current through a sample, and two
separate voltage leads detect the potential difference across the sample in a four-
wire resistance measurement. The voltage leads draw a tiny current since the volt-
meter has a very high resistance. A perfect voltmeter, in theory, draws no current
at all. As a result, using the four-wire method can determine both the current and
the voltage drop across the sample with a high degree of precision and compute the
resistance using Ohm’s law. The silver epoxy or paint from Ted Pella, INC has been
used to make contacts on the sample. Quantum Design Resistivity option provides
the current limit between 0.01−5000 µA and voltage limit between 1−95 mV.

2.3.2 Vibrating sample magnetometer (VSM)

Experiments on magnetic materials necessitate using a device that can precisely
measure the magnetization of any magnetic substance. The technique of vibrating
sample magnetometry (VSM) is an effective way to determine the magnetization
of any magnetic substance. S. Foner is the inventor of this technology [73], which
works on the idea of electromagnetic induction.

In the VSM option, the magnetic sample oscillates sinusoidally inside a pick-up
coil figure 2.7. The oscillating sample (magnet) produces an electromotive current
in the pick-up coil, which is proportional to the magnetization of the magnetic sam-
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Figure 2.6: Four probe electrical resistivity measurement diagram

ple. Hence the VSM option consists of a pick-up coil to pick the current, a linear
motor to move the sample up and down, a lock-in amplifier to lock the drive fre-
quency signal, and an electronic setup to control the motion of the linear motor.
The pick-up coil of VSM has two counter-wounded coils (clockwise wounded coil
with x sign and counterclockwise with · sign) separated by a few mm, as shown in
figure 2.7. The magnetic sample oscillates around one coil, and the second coil is
used to cancel the signals coming from the background and sample holder. An os-
cillating sample produces an inductive voltage in pick-up coils which are separated
by background signals. Hence, we finally get the value of magnetization from the
sample only. We have used the commercial VSM option of QD PPMS to measure
all the magnetization data. The time-dependent voltage induced by the motion of
the magnetic sample in the pick-up coil follow the following equation:

Vcoil =
dφ

dt
=

dφ

dz
dz
dt

(2.2)

Where φ is the change in magnetic flux by the motion of the magnetic sample,
z is the vertical position of the sample, and t is time. The linear motor can operate
up to 40 Hz frequency which gives high sensitivity and can measure the magnetic
moment down to 10−6 emu. The vibrating sample magnetometer gives the magnetic
moment of any magnetic sample in emu (CGS unit) or Am2 (SI) unit.
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Figure 2.7: Left: Pick up coil, Middle: Pick up coils setup, Right: sample mounting plat-
form

2.3.3 High Pressure Magnetic Measurements

In this thesis, we have studied the effect of pressure on the superconducting
transition temperature using a High-Pressure Cell manufactured by Quantum De-
sign Japan. The high-pressure cell is made of Beryllium Copper, which can hold a
maximum of up to 1.3 GPa. It can be used with the QD-PPMS VSM option. The
systematic diagram of the high-pressure cell is given in the figure 2.8. The sample
is placed in a Teflon tube with pressure transmitting media (Daphne 7373 oil). A
material whose pressure vs. magnetization is well known is used to calculate the
exact measure of applied pressure. Lead (Pb) and Tin (Sn) wires have been used
to calculate the applied pressure in this work. Figure 2.9 shows a typical cell com-
pression vs sample load for the pressure cell. The applied pressure can be estimated
by measuring the shift in Tc of Pb or Sn; e.g, for Pb if we know the shift in Tc, the
corresponding change in pressure is estimated using:

dP(GPa) =
dT (K)

0.379(K/GPA)
(2.3)

2.3.4 Heat Capacity

The thermodynamical measurements are essential in researching phase transition
because they provide additional information that cannot be gained from magnetiza-
tion data alone. The amount of heat required to raise a substance’s temperature by
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Figure 2.8: Diagram of High Pressure Cell Construction

Figure 2.9: Typical sample load vs cell compression. The sample load is determined by
measuring the shift in Tc of a Pb manometer.

one unit is known as its heat capacity. It is a material’s vast property. The heat ca-
pacity is divided by its mass to express the corresponding intense property (specific
heat capacity), which may be computed using the following formula:

C =
1
m

∆Q
∆T

(2.4)

Heat capacity is an excellent tool for studying structural and magnetic phase
transitions. All compounds addressed in this thesis have their heat capacity assessed
using the heat capacity option in QD PPMS. The heat capacity of any substance can
be measured using a variety of approaches; QD PPMS uses a relaxation technique
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Figure 2.10: Schematic of Heat capacity puck designed by QD

[74]. The sample is placed on a platform connected to a bath with a weak thermal
link and a constant temperature T0. The sample is given a well-defined heat pulse
that raises its temperature by ∆T (typically ∆T/T = 1%) to accomplish the measure-
ment. The heater is then turned off, and the sample’s temperature begins to fall until
it reaches the bath temperature. The relaxation time τ can be estimated using the
following relation:

TS = To +∆T (exp(−t/τ)) (2.5)

The heat capacity is then calculated using the relaxation time τ relationship,
which has the following relationship with the weak thermal link has known thermal
conductivity κ:

C = τκ (2.6)

Figure 2.10 shows the schematic design of a heat capacity puck. The platform’s
bottom side is where the heater and thermometer are linked. Apiezone-N grease
is used to adhere the sample to the platform. The grease also acts as a thermal
interface between the sample and the platform. A high vacuum of magnitude 10−6
mbar is used to achieve the adiabatic condition.

Since this technique of measuring heat capacity is dynamic in nature, the thermal
diffusivity and geometry of the sample must be such that the thermal diffusion time
in the sample should be small compared to the time constant of the measurement.
Otherwise sample will not reach the thermal equilibrium in time constant of mea-
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surement. In this thesis work, the materials under investigation are metallic means
good thermal conductor and hence have sufficiently low diffusion time.

2.3.5 Point-Contact Andreev Reflection Spectroscopy (PCAR)

Many superconducting properties such as superconducting energy gap, phonon
spectra and spin polariazation can be measured using PCAR spectroscopy tech-
nique [75, 76]. Isotropic as well as anisotropic superconducting energy gap can
be measured using this technique. In this method, electrons are given an eV en-
ergy boost when they travel via a microcontact between two electrodes separated
by a potential difference V. If the contact’s lateral dimension is less than the typical

Figure 2.11: Connection design of point-contact spectroscopy..

length scale of the electrode materials, the contact is referred to as a point contact.
In a metal the elastic and inelastic mean free paths of the electrons define the length
scale. this spectroscopy technique studies the non-linearity of the current-voltage
characteristics resulting from the elastic and inelastic scattering of the electrons.
The point-contact Andreev reflection spectroscopy’s connection design is depicted
in Figure 2.11. In this technique current is sent across two electrodes while mea-
suring the voltage drop across the other two electrodes.

When a voltage is applied to the normal-metal superconductor interface, the elec-
tron can be transported into the normal state on the superconducting side if the
energy gained by electrons is greater than the superconducting energy gap. Since
there is a superconducting energy gap and no states are available on the super-
conducting side, if the electron’s energy is less than the superconducting energy
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gap, it cannot enter the superconducting state. In order to save energy, an electron
that strikes the interface will then reflect back as a hole in the spin-down band,
which will then result in the formation of a single cooper pair at the Fermi level
on the superconducting side, turning a normal current into a supercurrent. This
phenomenon is known as Andreev reflection [77]. This Andreev reflection can be
measured using G(V )

Gn
vs. V characteristics, where G(V )

Gn
is called normalized con-

ductance with G(V) = dI
dV and V is the applied volatage. The point-contact An-

dreev reflection spectrum refers to this characteristic.This spectrum can be fitted
by Blonder-Tinkham-Klapwijk (BTK) model [78].



CHAPTER 3

Superconducting properties of the layered transition metal

borides TB2 (T = Os, Ru)

3.1 Introduction

Superconductors with anomalous properties, which are different from conven-
tional superconductors, are always interesting to study and challenging to under-
stand. Following the report of high Tc superconductivity in MgB2, which has a
layered crystal structure, and subsequent discovery of its multigap nature [18, 47],
there has been increased interest in investigating metal borides with similar struc-
tures. There are now several accepted candidate multi-gap superconductors such as
NbSe2 [79], RNi2B2C (R = Lu and Y) [80], Lu2Fe3Si5 [48, 49], Sr2RuO4 [81], and
more recently FeSe [50, 82]. As discussed in chapter 1, the distinct superconduct-
ing gaps exist on different disconnected sections of the Fermi surface in multigap
superconductors. Interbrand paring in most superconductors results in a single tran-
sition temperature for the material and the same gap magnitude on all bands. When
interband pairing is weak, and the magnitudes of two gaps are sufficiently differ-
ent, the distinct gaps can be resolved experimentally. Multigap superconductors
are associated with several anomalous superconducting properties. For example, a
reduced heat capacity jump at the superconducting critical temperature ∆C/γTc, a
non-BCS temperature dependence of the upper critical field, and a non-BCS pene-
tration depth versus temperature. These anomalous properties are mostly connected

43
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with Fermi surface sheets with very different characters. This is exemplified most
clearly in the case of MgB2 [83, 84, 85, 86]. Transition metal boride compounds
have several ingredients which make them candidates for novel superconductivity.
The transition metal elements provide the possibility of multiple orbitals, which can
make up a Fermi surface with many sheets. The light mass of Boron could provide
for a high Tc. Additionally, they have layered or quasi-low-dimensional structural
motifs.

Recently OsB2, which has a layered structure with puckered honeycomb Boron
planes alternating with Osmium planes stacked along the c-axis of an orthorhom-
bic cell, has been studied for its super-hardness as well as for its superconducting
properties. Several anomalous superconducting properties like upward curvature in
the Hc(T ) curve, reduced heat capacity anomaly at Tc, non-BCS temperature de-
pendence of the penetration depth, a small Ginzburg-Landau parameters κ ∼ 1–2,
and a first-order superconducting transition in a magnetic field have been observed
for OsB2 [54, 64]. These properties were interpreted as signatures of two-gap su-
perconductivity. A fit by a two-gap model to the T dependent penetration depth
data gave the values ∆1 ≈ 1.25kBTc and ∆2 ≈ 1.9kBTc for the two gaps, respectively
[64]. The Fermi surface of OsB2 consists of a quasi-two-dimensional sheet and two
nested ellipsoidal sheets [87]. The two gaps were argued to open on the two ellip-
soidal Fermi surface sheets which are very similar in character and size [64] unlike
the two gaps in MgB2 which open on two Fermi sheets which are very different in
character [86].

However, an alternate view has recently been put forward for these anomalous
properties of OsB2 with proposal of extreme Type-I superconductivity (very small
κ) and a single but highly anisotropic gap [65].

RuB2 is iso-structural to OsB2 and is also reported to become superconducting
below Tc ≈ 1.5 K [55]. Although its normal state properties have been studied
in detail [54], the superconducting properties have not been explored. Given the
anomalous superconducting properties of OsB2, it would be interesting to make a
detailed study of the superconducting properties of RuB2 to look for similar anoma-
lous properties. Although unconventional superconducting properties of OsB2 are
attributed to either two gaps or to a single anisotropic gap, It is interesting to find, by
different isotope substitution or by the effect of pressure on Tc that whether super-
conductivity is electron-phonon mediated or not. This chapter presents our investi-
gations on the superconducting properties of polycrystalline samples of RuB2 and
effect of pressure on superconducting properties of OsB2. Our high-pressure studies
of OsB2 suggest an electron-phonon mediated superconductivity in this compound.
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We confirm that RuB2 exhibits bulk superconductivity below a critical temperature
Tc = 1.5 K. The magnetization versus magnetic field data suggest Type-I super-
conductivity. We estimate an electron-phonon coupling constant λep = 0.39–0.45
suggesting moderate coupling superconductivity in RuB2. The extrapolated T = 0
critical field Hc(0)≈ 122 Oe is small and consistent with Type-I superconductivity.
The normalized heat capacity jump at Tc was estimated to be ∆C/γTc ≈ 1.1, which
is much smaller than the value 1.43 expected for a single s-wave BCS supercon-
ductor and suggests multi-gap superconductivity. This is confirmed by obtaining
an excellent fit of the electronic specific heat data below Tc to a phenomenological
two-gap model. The fit gave the gap values ∆1/kBTc ≈ 1.88 and ∆2/kBTc ≈ 1.13 for
the two gaps. The jump in the heat capacity at Tc becomes larger in applied mag-
netic fields again suggesting Type-I behaviour. These suggestions are confirmed
by estimates of the Ginzburg Landau parameter κ = 0.1–0.6 which is smaller than
the value 1/

√
2≈ 0.707, the border between Type-I and Type-II superconductivity.

Thus RuB2 could be the first multi-gap Type-I superconductor. Additionally we
calculate the band-structure and obtain the Fermi surface of RuB2. The band struc-
ture confirms metallic behaviour with majority contribution to the density of states
(DOS) at the Fermi energy (εF ) coming from Ru 4d and B 2p orbitals. We calcu-
late the total DOS at εF = 1.17 states/eV f.u., where “f.u.” stands for “formulae
unit”. This value is similar to the value reported for OsB2 [54] . The Fermi surface
consists of 4 sheets. There is one quasi-two-dimensional corrugated tubular sheet
and two nested ellipsoidal sheet, very similar to OsB2 [54]. An additional small 4th

sheet is found which was not obtained for OsB2.

3.2 Experimental and Theoretical Methods

Polycrystalline samples of RuB2 and OsB2 were synthesized by arc-melting
technique. High purity elements of Os (99.95%, Alpha Aeser), Ru (5N, Alfa Ae-
sar), and B (6N, Alfa Aesar) have been used in sample preparation. The required
elements have been taken in stoichiometric ratios and arc-melted 5–10 times to pro-
mote homogeneity [54]. Powder x-ray diffraction confirmed that the synthesized
materials are in single-phase and refinements, shown in Figure 3.1 of the powder
X-ray pattern provided lattice parameters that match well with the reported values
[54]. The magnetization M versus temperature T data for OsB2 sample were mea-
sured from 1.9 K to 2.6 K by applying different pressure using an Easylab Mcell-10
pressure cell with the VSM option of a Quantum Design Physical Properties Mea-
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Figure 3.1: Refinements of the OsB2 and RuB2 powder X-ray diffraction data. The open symbols
represent the observed X-ray diffraction pattern, the solid black lines represent the fitted pattern,
the solid blue lines represent the difference between the observed and calculated intensities and
the peak positions are represented by the vertical bars.

surement System (QD-PPMS). For RuB2 sample, various measurements have been
performed to find its superconducting properties. The dc magnetic susceptibility χ

versus temperature data in the temperature range T = 0.280 K to 2 K and magne-
tization M versus field H data at T = 310 mK were measured using a He3 insert
in a SQUID magnetometer from Cryogenics Limited, UK. The heat capacity C

data from 85 mK to 3 K was measured sample using the dilution refrigerator (DR)
option of a Quantum Design Physical Property Measurement System (QD-PPMS).
The electrical transport from 300 mK to 300 K was measured using the He3 insert in
a QD-PPMS. The first-principles density functional theory (DFT) calculations were
done using the QUANTUM-ESPRESSO code [88]. Electronic exchange and cor-
relation are described using the generalized gradient approximation (GGA) using
Perdew-Bruke-Ernzerhof functional [89]. In the DFT calculation, spin-orbit cou-
pling was not included. However, we have used scalar relativistic potential which
takes scalar relativistic effects into account.
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Figure 3.2: Magnetization M versus Temperature T for OsB2 measured at various pressures.

3.3 Pressure Measurements on OsB2 Superconduc-
tor

Figure 3.2 shows the results of magnetization M versus temperature T data for
OsB2 measured between 1.9 K to 2.6 K at various applied pressures. At 0 GPa
pressure, a sharp drop in M confirms the superconducting transition with transition
temperature ≈ 2.1 K. As we increase the pressure, a shift in Tc to lower values
is clearly visible. At pressure of 0.982 GPa, superconducting transition tempera-
ture shifts below 2 K. As we have discussed in chapter 1, for conventional BCS
superconductors the superconducting transition temperature is related to the lat-

tice spring constant k as Tc ≈
√

k
M exp

{
−k

N(εF)〈I2〉

}
, where N (Ef) is the electronic

density of states at Fermi level,
〈
I2〉 is the average square electron-phonon scatter-

ing matrix element. The spring constant k increases most rapidly under pressure,
whereas the denominator in the exponent is only weakly pressure-dependent. The
minor increase in the prefactor k is overwhelmed by the reduction from the -k in
the exponent, resulting in a decrease in Tc with increasing pressure for electron-
phonon coupled superconductors. From these observations, we conclude that OsB2

is an electron-phonon coupled superconductor.
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3.4 Superconducting Properties of RuB2

3.4.1 Electrical Resistivity

The electrical resistivity ρ versus temperature T data for RuB2 measured with
an excitation current of 5 mA in zero applied magnetic field are shown in Fig. 3.3
between T = 0.5 K and 315 K. The T = 315 K value of resistivity is ρ(315 K) ≈
22.5 µΩcm and the residual resistivity is ρ(1.6 K) ≈ 1.1 µΩcm giving a residual
resistivity ratio RRR ≈ 21. This indicates that the sample is of good quality. The
inset in Fig. 3.3 shows the ρ(T ) data below T = 5.25 K to highlight the sharp drop
to zero resistance below Tc = 1.5 K signalling the onset of superconductivity in
RuB2.
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Figure 3.3: The electrical resistivity ρ versus temperature T for RuB2 measured in zero magnetic
field between T = 0.4–310 K. The inset shows the data below T = 5.5 K to highlight the abrupt
drop at Tc = 1.5 K signalling the transition to the superconducting state.

3.4.2 Magnetic Properties

Figure 3.4 shows the results of magnetic measurements on RuB2. Fig. 3.4 (a)
shows the temperature dependence of the zero-field-cooled (ZFC) volume magnetic
susceptibility χv normalized by 1/4π . The data were measured in a field of 10 Oe
between 0.28 K and 1.8 K. The sharp drop in χv to diamagnetic values below
≈ 1.55 K confirms the onset of the superconducting state. The inset in Fig. 3.4 (a)
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Figure 3.4: (a) The temperature T dependence of the zero field cooled (ZFC) dimensionless vol-
ume susceptibility χv in terms of the superconducting volume fraction 4πχv of RuB2 measured
in a magnetic field H = 10 Oe. At low T , the 4πχv values are more negative than −1 due to de-
magnetization effects. The inset shows the dχ/dT versus T data to highlight the superconducting
transition at Tc = 1.5 K. (b) the volume magnetization Mv normalized by 1/4π , versus applied
magnetic field H measured at T = 310 mK. The inset shows the 4πMV versus effective magnetic
field Heff = H−NM corrected for the demagnetization effects. These data show behaviour typical
of Type-I superconductivity.
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shows the dχv/dT vs T data and the peak position is taken as the superconducting
critical temperature Tc = 1.5 K. The full-width-at-half-maximum (FWHM) of the
peak in dχv/dT gives an estimate of the superconducting transition width and is
≈ 50 mK. The χv data have not been corrected for the demagnetization factor N.
Thus, the observed value is 4πχv =

−1
1−N and therefore larger than −1 expected for

100% superconducting volume fraction. Assuming 100% superconducting volume
fraction we estimate N ≈ 0.32 from the data shown in Fig. 3.4 (a). However, often
in polycrystalline samples the superconducting fraction is smaller than 100% and to
estimate the actual superconducting fraction one needs the value of N. For idealized
shapes of measured samples, N has been calculated. For example, N = 1/3 for
a sphere and 1 for an ellipsoid of revolution. Our sample is an irregular shaped
piece which looks like a squashed ellipsoid with dimensions a ≈ b = 1.61 mm
6= c = 1.35 mm, broken from an arc-melted button. We therefore approximate our
irregular shaped sample with a prolate ellipsoid with c/a≈ 0.83. For such an object,
N ≈ 0.38 [90]. Using this value of N we find a superconducting volume fraction
of ≈ 90%.

Figure 3.4 (b) shows the volume magnetization Mv normalized by 1/4π versus
magnetic field H for RuB2 measured at a temperature T = 310 mK, well inside the
superconducting state. The shape of the 4πMv vs H data are very different from
those expected for typical Type-II superconductors but are similar to that expected
for a Type-I superconductor with demagnetization factors. To account for demagne-
tization effects the magnetization can be plotted versus an effective magnetic field
Heff = H−NM. This has been done using the N ≈ 0.38 estimated above and the
resulting M(Heff) data are shown in Figure 3.4 (b) inset. These data look like the
behaviour expected for a Type-I superconductor. The slight negative slope of the
data at the transition most likely occurs from a slightly overestimated N.

3.4.3 Heat Capacity

Figure 3.5 (a) shows the specific heat C versus T data for RuB2 measured be-
tween T = 85 mK and 3 K in magnetic fields H = 0 Oe and H = 250 Oe. A sharp
anomaly near Tc = 1.5 K in the H = 0 data confirms bulk superconductivity in
RuB2. The data at H = 250 Oe doesn’t show any signature of superconductivity
and will be used as the normal state data. We will later show that this field is in-
deed much higher than the estimated critical field. The C(T ) data at H = 250 Oe
were fit by the expression C = γnT + βT 3 where γn is the normal state Sommer-
feld coefficient and the second term is the contribution from the lattice. The fit
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Figure 3.5: (a) Specific heat C versus T for RuB2 measured in magnetic fields H = 0, and 250 Oe.
(b) The electronic specific heat divided by temperature Cel/T versus T for RuB2. An equal entropy
construction is shown to give a Tc = 1.46 K and ∆C/γTc = 1.1, where γ = γn− γres. (c) A two-gap
model fit (solid curve) to the Cel data and expectation for a single BCS gap with Tc = 1.5 K (see
text for details).
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Figure 3.6: (a) Specific heat C versus T for RuB2 measured in various magnetic fields H. (b) C
divided by temperature C/T versus T 2 for RuB2 at various H. The solid curve through the data is
a fit by the expression C = γT +βT 3. The peak height at Tc in zero field is characterised by the
ratio ∆C/γTc and is estimated to be 0.8 for RuB2.
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shown as the solid curve through the H = 250 Oe data in Fig. 3.5 (a) gave the
values γn = 1.65(2) mJ/mol K2 and β = 0.014(2) mJ/mol K4. This value of β

gives a Debye temperature of θD = 720(30) K which is similar to the value found
previously [64]. The lattice contribution βT 3 to the total specific heat C(T ) can
be subtracted to get the electronic contribution Cel(T ). The Cel(T ) so obtained
is shown in Fig. 3.5 (b). The sharp anomaly at Tc as well as the exponential fall
at the lowest temperatures expected for s-wave superconductors is clearly visi-
ble. We also note that Cel tends to a finite value as T → 0 suggesting some non-
superconducting fraction in the sample. The data below ≈ 0.3 K were fit by the
expression Cel/T = γres +(A/T )exp(−∆/T ), where γres is the residual Sommer-
feld coefficient from the non-superconducting fraction of the sample and the second
term is a phenomenological exponential decay expected for a gapped system. The
fit shown as the solid curve through the data below T ≈ 0.3 K in Fig. 3.5 (b) gives
the value γres = 0.36 mJ/mol K2. With the total γn = 1.65 mJ/mol K2 and the resid-
ual non-superconducting γres = 0.36 mJ/mol K2, the superconducting contribution
becomes γs = 1.29 mJ/mol K2. This suggests that ≈ 22% of the sample volume is
non-superconducting.

We can now analyze the specific heat jump height at Tc. The jump ∆C at Tc

is normalized as ∆C/γTc, where γ is the Sommerfeld coefficient of the supercon-
ducting part. The superconducting transition can be broadened and the jump height
suppressed in real materials due to a distribution of Tc arising from sample inho-
mogeneities or disorder. To get a better estimate of ∆C and Tc we use an entropy-
conserving construction. In such a construction the Cel data just below the maxi-
mum of the anomaly is fit by a polynomial and extrapolated to higher temperatures.
The entropy is then evaluated and equated to the normal state entropy γnTc. Such
a construction gave the jump height ∆C/Tc = 3.07− 1.65 = 1.42 mJ/mol K2 and
Tc = 1.46 K as shown in the Fig. 3.5 (b). The Tc found by this entropy-conserving
construction is quite close to the onset temperature 1.5 K indicating the sharp tran-
sition and suggesting a very good sample quality with very little disorder and inho-
mogeneities. Using the above ∆C/Tc = 1.42 mJ/mol K2 and the superconducting
contribution γs = 1.29 mJ/mol K2 we estimate ∆C/γsTc = 1.44/1.29 ≈ 1.12. This
value is much smaller than the value 1.43 expected for a single-gap s-wave super-
conductor. The reduced value of ∆C/γTc is similar to observations for MgB2 [83]
and OsB2 [54, 64] and suggests multi-gap superconductivity.

To confirm this possibility we have attempted to fit our Cel(T ) data below Tc to a
phenomenological two-gap model as has been reported for example for MgB2 [91].
The T = 0 value of the two superconducting gaps ∆1 and ∆2, the critical temperature
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Tc, and the fractional contribution of the first band x were the three fit parameters.
An excellent fit, shown in Fig. 3.5 (c) as the solid curve through the Cel/T data
below Tc, was obtained with the fit parameters ∆1/kBTc ≈ 1.88, ∆2/kBTc ≈ 1.13,
Tc ≈ 1.47 K, and x = 0.58. If we compare the values of the two gaps we estimate
above to the single band BCS value ∆/kBTc = 1.76 we see that our values agree
with the theorem that for a two-gap superconductor one of the gaps will always be
larger than the BCS value while the second gap will always be smaller [92]. For
comparison, we also show in Fig. 3.5 (c) the simulated data for superconductor with
a single BCS gap with Tc = 1.47 K which clearly doesn’t match the data. Thus,
the heat capacity data in Fig. 3.5 strongly indicate that RuB2 could be a two-gap
superconductor.

Figure 3.6 (a) shows the specific heat C versus T data for RuB2 measured be-
tween T = 85 mK and 3.5 K at various applied magnetic fields H. All data were
measured by cooling in zero field to the lowest temperature and then measuring
while warming up in the desired magnetic field. As expected, the SC transition is
pushed to lower temperatures in increasing fields and is not observed down to the
lowest temperature for fields H ≥ 250 Oe. The specific heat divided by temperature
C/T versus T at various magnetic fields is plotted in Fig. 3.6 (b). From Fig. 3.6 (b)
we observe that the magnitude of the peak at Tc initially increases in a magnetic
field. In a magnetic field the transition for a Type-I superconductor becomes first-
order. Thus, one should in principle observe a diverging anomaly at Tc. In real
materials however, the anomaly is broadened due to sample inhomogeneity and as
a consequence the anomaly looks like a jump larger than that in zero field. Thus the
observed behaviour in Fig. 3.6 (b) also points to Type-I superconductivity in RuB2.
This is similar to what was observed for OsB2[64] and for other Type-I supercon-
ductors like ScGa3 and LaGa3 [93, 94] and YbSb2 [95]. This is consistent with the
magnetization data of Fig. 3.4 (b) inset which also suggest Type-I superconductiv-
ity.

The above value of γ can be used to estimate the density of states at the Fermi
energy (εF ) for both spin directions N(εF) by using the expression γ = π2

6 k2
BN(εF).

Using γ = 1.65 mJ/mol K2 we obtain N(εF)≈ 1.40 states/eV f.u. We will compare
this value with estimations from band structure calculations later.

3.4.4 Superconducting Parameters

The C(T,H) data presented above were used to extract the critical temperature
at various magnetic fields. The critical field Hc versus T data thus obtained is



3.4 - Superconducting Properties of RuB2 55

Figure 3.7: The critical field HC versus T data extracted from the heat capacity C versus tem-
perature T at various H. The solid curve through the data is a fit to the phenomenological BCS
expression. The thermodynamic critical field Htc(T ) obtained from the C(T ) data is also plotted
for comparison. The solid curve through Htc(T ) data is a guide to the eye (see text for details).

shown in Fig. 3.7. The data were fit by the phenomenological expression Hc(T ) =

Hc(0)[1− ( T
Tc
)2] with Hc(0) and Tc as fitting parameters, where Hc(0) is the zero

temperature critical field. The fit, shown as the solid curve through the data in
Fig. 3.7, extrapolated to T = 0 gave the values Hc(0) = 122 Oe and Tc = 1.48 K.
The excellent fit to the above expression suggests BCS superconductivity in RuB2.

An estimate for the T dependent thermodynamic critical field Htc(T ) can be
made from the electronic heat capacity data obtained Cel(T ) using the expres-
sion [µ0Htc(T )]

2 /2=Fen−Fes =−γ
(
T 2 +T 2

c
)
/2+

∫ Tc
T Cel(T )dT +T

∫ T
0

Cel(T )
T dT ,

where Fen and Fes are the electronic free energies in the normal and supercon-
ducting state, respectively [22]. In particular, the T = 0 thermodynamic critical
field Htc(0) can be estimated by inserting T = 0 in the above expression giving
(µ0Htc(0))

2 /2=−γT 2
c /2+

∫ Tc
0 Cel(T )dT . Using γs = 1.3 mJ/mol K2 and Tc = 1.46

K obtained from an equal entropy construction above, we estimate the T = 0 ther-
modynamic critical field Htc(0) ≈ 114 Oe. This is slightly smaller but close to
the estimate 122 Oe made from the H−T phase diagram and suggest type- I su-
perconductivity in RuB2. This is supported by estimates of the Ginzburg Landau
parameter below. For comparison with the experimental H−T diagram obtained
from C(T,H) data, the Htc(T ) estimated by using the above expression are also



56 Chapter 3 - Superconducting properties of the layered transition metal borides TB2 (T = Os, Ru)

shown in Fig. 3.7.

The electron-phonon coupling λep can be estimated using McMillan’s formula
[37], which relates the superconducting transition temperature Tc to λep, the Debye
temperature θD, and the Coulomb pseudopotential µ∗. This formula can be inverted
to get λep in terms of the other parameters,

λep =
1.04+µ∗ln( θD

1.45Tc
)

(1−0.62µ∗)ln( θD
1.45Tc

)−1.04
.

Using, θD = 700 K obtained from heat capacity measurements above and using
Tc = 1.5 K, we get λep = 0.37 and 0.45 for µ∗ = 0.1 and 0.15, respectively. These
values are slightly smaller than values obtained for OsB2 [54] consistent with a
slightly smaller Tc compared to OsB2. These values of λep are consistent with
previous theoretical values [96] and suggest moderate-coupling superconductivity
in RuB2. The corresponding value for MgB2 is λep ≈ 1 [97].

We now estimate the T = 0 values of the penetration depth λ (0) and coherence
length ξ (0). RuB2 has 2 formulae units per unit cell. This means that there are 4
electrons in one unit cell volume V = 53.84 Å3. Therefore, the electron density is
n = 4/V = 7.4× 10−2 Å−3. Assuming a spherical Fermi surface, we can use the
above value of n to estimate the Fermi wave-vector kF = (3nπ2)1/3 = 1.3 Å−1. The
London penetration depth is given by λ (0) = (m∗/µ0ne2)1/2, where we take the
effective mass m∗ as the free electron mass me. Putting in values gives us λ (0) ≈
47 nm. The BCS coherence length can be estimated using the expression ξ =
0.18h̄2kF
kBTcm∗ ≈ 0.45 µm. The Ginzburg Landau (GL) parameter can now be estimated as

κ = λ (0)/ξ ≈ 0.1 which is much smaller than the value 1/
√

2≈ 0.707 separating
Type-I and Type-II superconductivity. The above value of κ suggests that RuB2

is an extreme Type-I superconductor. This is consistent with the low Hc and the
M(Heff) data presented above. The mean free path l can be estimated using the
expression l = vFτ , where the Fermi velocity is vF = h̄kF/m∗ and the scattering
time is given by the expression for the Drude conductivity τ = m∗/ne2ρ . Using
m∗ = me and the residual resistivity value ρ(1.6 K) = 1.1 µΩ cm, we estimate
l ≈ 72 nm. From the above estimates of ξ and l we conclude that ξ >> l, making
RuB2 a dirty limit superconductor. For a dirty limit superconductor we can make
another estimate of the GL parameter as κ = 0.75λ (0)/l ≈ 0.66 < 0.707, again
consistent with Type-I behavior. We add that the estimation of the mean free path l

is often affected by grain boundary scatterings, which can cause an underestimation
of l. Thus the evaluated κ ≈ 0.66 is an upper limit making our inference of type-I
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Table 3.1: Lattice parameters obtained from relaxing the experimental unit cell of RuB2

Lattice Parameters(Å) Experimental Calculated %Error
a 4.644795 4.66487 0.43
b 2.865153 2.89674 1.1
c 4.045606 4.05224 0.16
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Figure 3.8: The calculated electronic band structure of orthorhombic RuB2 along high symmetric
points. EF represents the Fermi level, which is set at 0 eV.

superconductivity even stronger.

3.4.5 Band Structure and Fermi Surface

RuB2 crystallises in the orthorhombic crystal system, space group Pmmn (no.
59). Each unit cell contains two formula units (two Ru atoms and four B atoms).
The ionic and lattice relaxation were performed to optimize the crystal structure
by using variable cell relaxation. We have used an energy cutoff of 55 Ry for
the plane wave basis. The Brillouin zone integration is conducted with a 11×
18× 13 Monkhorst-pack grid for the K-point sampling. In the optimized crystal
structure, the forces on all the atoms are less than 10−4 Ry/au. The calculated
lattice parameters of optimized RuB2 compound along with the experimental values
are tabulated in Table 3.1. The calculated lattice parameters are within 1% of the
experimental values [54].

The electronic band structure of RuB2 is shown in Fig. 3.8. It can be seen that
several energy bands are crossing the Fermi level EF confirming that RuB2 is a
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Figure 3.9: Calculated total density of states (DOS) and partial density of states (PDOS) for RuB2.
EF , represents the Fermi energy and is set at 0 eV.

Figure 3.10: The merged Fermi surface (FS) for RuB2 consisting of 4 different sheets. The
parallelepiped is in the first Brillouin zone.
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metal. Figure 3.9 shows the total and partial density of states (DOS) in units of
states/eV showing the contribution of individual elements and orbitals to the DOS
at various energies measured from the Fermi energy EF . From Fig. 3.9 it can be
seen that the 4d-orbital of Ru and the 2p-orbital of B make the main contributions to
the density of states in the vicinity of the Fermi level. The total DOS at εF is found
to be N(εF) = 1.15 states/eV f.u. for both spin directions. This value is slightly
smaller than the value N(εF) = 1.40 states/eV f.u. estimated from experimental
value of γ . An estimate for the electron-phonon coupling constant λep can be made
using the following relation:
N(εF) from heat capacity = (N(εF) from band structure )(1+λep).
A comparison of the above experimental and theoretical values of N(εF) gives
λep ≈ 0.22 which is close but slightly smaller than the values obtained above using
McMillan’s formula.

We have also obtained the Fermi surface for RuB2. The merged Fermi surface
within the first Brillouin zone is shown in Fig. 3.10. The Fermi surface consists
of 4 FS sheets: one quasi-two-dimensional tubular sheet and two nested ellipsoidal
sheets very similar to OsB2 [87]. An additional small 4th sheet nested inside the
tubular sheet is also found for RuB2.

3.5 Conclusion

High-pressure measurements of OsB2 indicate that the mechanism of supercon-
ductivity in this family of compounds is electron-phonon mediated . Using electri-
cal resistivity ρ(T ), magnetic susceptibility χ(T ), magnetization M(H), and spe-
cific heat C(T,H) data we have confirmed bulk superconductivity in RuB2 with
a superconducting critical temperature Tc = 1.5 K. The T = 0 critical field is es-
timated to be Hc(0) = 122 Oe. The magnitude of the anomaly in specific heat
at Tc in zero field is observed to be ∆C/γsTc ≈ 1.1, which is much smaller than
the value 1.43 expected for a single-gap BCS superconductor. This observation is
similar to what has previously been observed for MgB2 and OsB2, and suggests
multi-gap superconductivity in RuB2. This is confirmed by the excellent fitting of
the electronic specific heat below Tc to a two-gap model with the value of the two
gaps estimated as ∆1/kBTc ≈ 1.88 and ∆2/kBTc ≈ 1.13. The scanning tunneling
spectra measured in collaboration with Soumya Datta et al. [98] also confirm the
existence of two superconducting gaps on different grains of Polycrystalline RuB2.
Their temperature-dependent tunneling spectra measurements showed that the gaps
from different bands evolve with temperature in a different way [98]. The value
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of ∆C/γTc in a magnetic field becomes larger than its zero field value strongly in-
dicating Type-I behaviour. This is also similar to what was observed earlier for
OsB2 and also for other candidate Type-I superconductors like ScGa3 and LaGa3

[93] and YbSb2 [95]. The M(He f f ) behaviour are also consistent with Type-I su-
perconductivity. This is confirmed by estimates of the Ginzburg-Landau parameter
κ which comes out to be κ ≈ 0.1–0.6 < 0.707. For comparison of the supercon-
ducting state properties of OsB2 and RuB2, the various superconducting parameters
of these compounds are summarized here in Table 3.2.

Table 3.2: Comparison of superconducting properties of OsB2 and RuB2.

superconducting parameters

Tc

K

Hc(0)

Oe
λep

ξ

µm

l

nm

λ (0)

nm
κ

N(εF)

states/eV f.u.
∆C/γTc

∆1/kBTc,

∆2/kBTc

OsB2 2.1 153 0.5-1 0.133 137 300 1-3 0.55 1.3 1.25, 1.90

RuB2 1.5 122 0.37-0.45 0.45 72 47 0.1-0.6 1.40 1.1 1.88, 1.33

These results strongly suggest that RuB2 is a rare alloy Type-I superconduc-
tor and may be the first multi-gap Type-I superconductor. We note that both YbSb2

(κ ≈ 0.05 and ∆C/γTc < BCS) [95] and boron-doped SiC (κ ≈ 0.35 and ∆C/γTc <

BCS) [99] have been reported as Type-I superconductors and have specific heat
anomalies smaller than expected for single band BCS superconductivity. However,
both reported materials were multi-phase samples and in YbSb2, an additional su-
perconducting phase with a lower Tc than the bulk Tc was also observed, making it
complicated to estimate intrinsic superconducting parameters. Thus RuB2 seems to
be the best candidate for two-gap Type-I superconductivity so far.

However, a scenario (anisotropic Type-I superconductivity) like the one recently
suggested for OsB2 [65] could also be at play in RuB2 and future work like imaging
of magnetic flux entering the material may be useful to confirm the type of super-
conductivity in RuB2.



CHAPTER 4

Superconducting properties of the rare-earth ternary

boride compounds RRuB2 (R = Lu, Y)

4.1 Introduction

The rare-earth earth (R) ternary boride compounds have gained significant atten-
tion because of their superconducting and magnetic properties. After discovering
superconductivity in the rare-earth rhodium borides compounds like RRh3B2 and
RRh4B4 [100, 101], a considerable amount of experimental and theoretical study
on ternary boride superconductors has been conducted with the main emphasis on
the interplay between superconductivity and long-range magnetic order [102]. In
these materials, the superconducting transition temperature Tc has been found to
be relatively high [66]. In all crystal structures of RT4B4 (T is a transition metal)
compounds, the boron atoms are found to have dimerized into non-interacting B2

units. In the tetragonal structure of RT4B4, the T- atoms form linear or zig-zag
chains, whereas, in the orthorhombic structure of these compounds, T atoms are
arranged in a three-dimensional cluster that is interpenetrated [103, 101]. Across
the entire range of rare-earth elements; tetragonal polytype compounds have higher
Tc values than orthorhombic compounds, which shows that the dimensionality of
the T clusters may have a significant role in the superconductivity [104].

Another transition metal ternary boride family MTB2 (M = Sc, Y, Lu and T=
Ru, Os) compounds has been found to crystallize in an orthorhombic LuRuB2-type

61
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Figure 4.1: Crystal structure of RRuB2 (R = Lu, Y)( Reprinted from PhysRevB.97.094506)[1]

structure with space group Pnma and shows transition to the superconducting state
[67, 105]. The key features of LuRuB2-type structure are the absence of transition
metal clusters, the long distance between Ru atoms and short Lu-Lu interplanner
distance. Similar to the RT4B4 compounds, boron dimers also appear in this struc-
ture and rare-earth atoms are arranged to form zig-zag chains. The boron dimers
interact weakly, making straight chains that are perpendicular to the planes of R and
T atoms and run parallel to the main R-R zig-zag chains (Fig. 4.1). These struc-
tural similarities with RRh4B4 suggests that similar high Tcs could be acheived in
RRuB2.

The rare-earth ternary borides RRuB2 (with R = Y, Lu) compounds with LuRuB2-
type structure have been reported to show superconductivity below Tc = 7.7 and
10.6 K, respectively [67, 68], are significant as reference materials for ternary rare-
earth borides with the same crystal structure, because the 4f electron shell is empty
in the Y compound and is completely filled in the Lu compound. The high Tc values
in these compounds are comparable to the strong coupling superconductors V3Si
(A15 compound) and HfV2 (C15 Laves-phase compound) [106, 107]. The previ-
ous reported estimated values of upper critical field Hc2(0) are quite large in these
compounds (4.8 T for YRuB2 and 5.7 T for LuRuB2) [67, 68]. These large Tc and
Hc2(0) values suggest strong electron-phonon coupling in these compounds, with
a high superconducting carrier density. However, the µSR (the muon-spin rota-
tion and relaxation) and NMR measurements on these compounds indicate the con-
ventional s-wave superconductivity which can be described within the BCS weak-
coupling limit [1, 108]. Both these compounds appear in the same region in the

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.094506
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Uemura plots as borocarbide and rare-earth hexaborides superconductors [1, 109],
indicating that the superconductivity in these materials may not be entirely con-
ventional. Additionally, the heat capacity measurements on these compounds show
reduced heat capacity anomaly at Tc compared to weak-coupling BCS predictions
[110]. Thus there are contrasting reports about the nature of superconductivity in
RRuB2 materials.

In this chapter, we will present our investigation on superconducting properties
of rare-earth ternary borides RRuB2 (with R = Y, Lu) compounds. The electrical
resistivity ρ versus temperature T measurements on these samples in various mag-
netic fields is performed. The linear trend of upper critical field Hc2(T) curve for
both the samples suggests unconventional superconducting behavior. For LuRuB2,
point contact spectroscopy measurements show the non-BCS temperature depen-
dence of the superconducting gap, which again is a signature of unconventional
behavior. We have obtained various superconducting parameters for both the sam-
ples using the upper critical field Hc2 versus temperature T data. On the application
of pressure P, suppression in Tc of LuRuB2 is observed, which indicates electron-
phonon mediated superconductivity in this family of compounds.

4.2 Experimental Details

Polycrystalline LuRuB2 and YRuB2 samples were prepared by arc melting. First,
we have taken Ru powder (99.99%, Sigma Aldrich) and B chunks (99.999%, Alfa
Aesar) in stoichiometric ratios and arc melted to form RuB2 ingot. Then appro-
priate amount of Lu (or Y) (99.95%, Alfa Aesar) ingot and RuB2 was arc melted
to form LuRuB2 (or YRuB2) sample. All this arc melting was done on a water-
cooled copper hearth in a high-purity argon environment with a Ti button acting
as an oxygen getter. The samples were flipped and remelted several times (11-12
times) to ensure good homogeneity. Finally, the samples were sealed in evacuated
quartz tubes and annealed for 12 days at 10500C. Powdered x-ray data showed that
the majority of the sample crysttelize in the LuRuB2 structure with small (≈ 10%)
amount of non-superconducting impurity phases.

The electrical transport measurements from 2 K to 305 K were done on an an-
nealed sample of LuRuB2 using a commercial Quantum Design Physical Properties
Measurements System(QD-PPMS). The heat capacity C data ranged from 2 K to
12 K was collected using a Quantum Design PPMS. The magnetization M versus
temperature T data were measured from 7 K to 12 K by applying different pressures
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Figure 4.2: (a) The electrical resistivity ρ versus temperature T for LuRuB2 measured in zero
magnetic field between T = 2–305 K. The inset shows the data below T = 25 K to highlight the
abrupt drop at Tc = 9.4 K signalling the transition to the superconducting state. (b) The electrical
resistivity ρ versus temperature T for YRuB2 measured in zero magnetic field between T = 2–
300 K. The inset shows the data below T = 12 K to highlight the abrupt drop at Tc = 9.2 K
signalling the transition to the superconducting state.
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Figure 4.3: (a) The resistivity ρ(T) of LuRuB2 between 12 and 2 K measured with various applied
magnetic fields. (b) The resistivity ρ(T) of YRuB2 between 12 and 2 K measured with various
applied magnetic fields
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using a Cu-Be pressure cell with the VSM option of a Quantum Design PPMS. The
point-contact spectroscopy measurements at low temperatures were carried out on
a LuRuB2 sample in a liquid helium-based cryostat using sharp tips of pure palla-
dium (Pd) to create a metallic point-contact on the sample. The electrical transport
measurements from 2 K to 300 K were performed on an annealed sample of YRuB2

using a commercial PPMS from Cryogenics Limited.

4.3 Electrical Resistivity

The electrical resistivity ρ as a function of temperature T for LuRuB2 from 305
K to 2 K is shown in Fig. 4.2 (a). The negative curvature of the resistivity curve has
been observed, which is similar to high-Tc A-15 compounds and is in agreement
with previously reported results [110, 68]. The resistivity at T= 305 K is ρ(305K)
≈ 168 µΩcm and residual resistivity is ρ0(10 K)≈ 57 µΩcm, which gives residual
resistivity ratio RRR ≈ 3. In the inset of Fig. 4.2 (a), we can see resistivity starts
dropping abruptly below T ≈ 9.9 K and disappear by T≈ 9.1K, giving a transition
width ∆T ≈ 800 mK. The superconducting transition temperature Tc is defined
by the temperature at the half-height of the normal to the superconducting state
transition and is found to be Tc ≈ 9.45 K.

Figure 4.2 (b) shows ρ as a function of T for YRuB2 from 300 K to 2 K.
At T = 300 K, the resistivity is ρ(300K) ≈ 88 µΩcm, and the residual resistivity is
ρ0(9.5 K)≈ 7.3 µΩcm, giving a residual resistivity ratio RRR≈ 12. The ρ(T ) data
below T = 12 K is shown inset in Fig. 4.2 (b) to illustrate the abrupt drop to zero
resistance below Tc = 9.2 K, confirming the onset of superconductivity in YRuB2.
The observed transition temperature Tc value for YRuB2 is slightly higher than the
previously reported [68]. The small superconducting transition width ∆T ≈ 40 mK,
implies a very sharp transition compared to that in LuRuB2. A larger RRR value
and a sharp transition reflect the good quality of the YRuB2 sample.

The ρ vs T data measured between T = 2 K and 12 K at varied applied magnetic
fields H, for LuRuB2 and YRuB2 samples are shown in Fig. 4.3 (a) and Fig. 4.3 (b)
respectively. All data were collected by cooling in zero fields to a superconducting
state and then measuring while heating up in the desired field. As expected, the
superconducting transition temperature in both materials is pushed to lower tem-
perature with increasing field. In LuRuB2, the superconducting transition occurred
at Tc ≈ 3.2 K when we apply a magnetic field of 5.5 T. In the YRuB2 sample, the
superconducting transition occurred at Tc ≈ 2.9 K when we apply a magnetic field
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of 3.25 T. The onset Tc at various magnetic fields H was extracted from these data
in Fig. 4.3, and an H–T phase diagram was drawn for both the samples. These data
are plotted in Fig. 4.4. We will discuss these data in the next section.

4.4 The Upper Critical Field Measurements and Su-
perconducting Parameters

The upper critical field Hc2(T) for LuRuB2 was determined using the ρ(T) data
in Fig. 4.3(a) for magnetic fields up to H = 55 kOe. For YRuB2 sample, the ρ(T)
data in Fig. 4.3(b) for magnetic fields up to H = 40 kOe were used to extract the
upper critical field Hc2(T). The results of the upper critical field Hc2 as a function of
temperature T for annealed samples of LuRuB2 and YRuB2 are shown in Fig. 4.4(a)
and Fig. 4.4(b), respectively. An unusual near linear H-T diagram is observed for
both materials.

We now make estimates of several superconducting parameters for LuRuB2 and
YRuB2. We have used the dirty limit Werthamer-Helfand-Hohenberg (WHH) for-
mula [111] to analyze the critical field data for LuRuB2 compound. The upper
critical field Hc2 at zero temperature is calculated using the weak coupling for-
mula Hc2(0) = 0.693(−dHc2/dT )Tc

Tc, where (dHc2/dT )Tc
can be find out from

the slope of the Hc2(T) curve near Tc [112, 113, 114]. In Fig. 4.3(a), the linear fit
of data near Tc gives the slope (dHc2/dT )Tc

= -8.9 kOe/K. This will give Hc2(0) =
58.6 kOe, which is nearly same as reported previously [68].

The coefficient of electronic specific heat γ can be estimated using the relation
Hc2(0) = 3.06× 104ρ0 γTc, where units of γ are in erg/ cm3 K2,Hc in Oe, and ρ0

in Ωcm [112]. From ρ(T) data the residual resistivity ρ0 ≈ 57 µΩ cm, this gives
γ = 3.56×103 erg/ cm3 K2. Using this value of γ in relation κ = 7.49×103γ1/2ρ0

[115], the value of Ginzburg-Landau parameter is found to be κ ≈ 25. This puts
LuRuB2 in the Type-II superconducting regime. The relation Hc(0) = 4.23γ1/2Tc

[115] gives the thermodynamic critical field Hc(0)≈ 2.4 kOe. From the GL theory
the lower critical field Hc1(0) is given by the relation [115]:

Hc1(0) = Hc(0) lnκ/
√

2κ

This gives Hc1(0) ≈ 0.22 kOe.

Another estimate of Hc2(0) can be obtained by fitting the Hc2(T ) data using the
empirical power law expression Hc2(T ) = Hc2(0)

[
1−
(

T
Tc

)α]
with α and Hc2(0)
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Figure 4.4: (a) Upper critical magnetic field Hc2 versus temperature T diagram for LuRuB2 sam-
ple extracted from three different types of measurements as indicated. The curves through the
data are fits to different models (see text for details) The dashed curve is a fit by the expression

Hc2(T ) = Hc2(0)
[
1−
(

T
Tc

)α]
. (b) Upper critical magnetic field Hc2 versus temperature T for

YRuB2 sample, extracted from ρ(T) measurements. The solid curve is a fit by the expression

Hc2(T ) = Hc2(0)
[
1−
(

T
Tc

)α]
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as fitting parameters and with fixed value of Tc = 9.5 K. In Fig. 4.3(a), the fit is
shown as the dashed brown line curve. From fitting we obtain Hc2(0) = 82.4 kOe
and α = 1.03. This estimate of Hc2(0) is much higher than the value of 58.6 kOe
obtained above using the WHH formula.

The mean free path ’l’ can be calculated using resistivity data and relation: l =

1.27× 104
[
ρ0n2/3 (S/S f

)]−1
, where n is the density of conduction electrons in

units of cm−3 and S/S f is the ratio of the area of the Fermi surface to that of a
free-electron gas. Both YRuB2 and LuRuB2 has four formula units (f.u.) per unit
cell. This means that there are four electrons in one unit cell volume. For LuRuB2,
the unit cell volume is V≈190 Å3 and for YRuB2, V≈199 Å3 [105]. Therefore,
the electron density is n = 4/V = 2.10×10−2 Å−3 in LuRuB2 sample and 2.01×
10−2 Å−3 in YRuB2. Assuming a spherical Fermi surface, i.e., S/S f = 1 and using
above value of n in expression of l gives l = 29.3 Å for LuRuB2. For YRuB2, the
mean free path is found to be l = 235 Å . The Fermi wave vector can be estimated
using the relation kF =

(
3nπ2)1/3. For LuRuB2, we have found kF = 0.85 Å−1 and

for YRuB2, kF = 0.84 Å−1. The BCS coherence length is estimated using the BCS
expression ξ = 0.18h̄2kF

kBTcm∗ , where m∗ is the effective mass of electron. For LuRuB2,
m∗≈ 10me, whereas for YRuB2, m∗≈15me [68, 1]. This gives ξ ≈ 212 Å for
LuRuB2 and ξ ≈ 97 Å for YRuB2.

The above estimations of ξ and l for LuRuB2 show that ξ � l, making LuRuB2

a dirty limit superconductor.

For a type-II superconductor in the dirty limit, the superconducting coherence
length ξ can also be estimated using the Ginzburg-Landau relation [22]:

Hc2(0) = Φ0/4.54ξ (0)l

where φ0 = hc/2e = 2.068× 10−7Oe cm2 is a quantum of flux. Using Hc2(T =

0) = 82.4 kOe, we obtain ξ (0)≈ 188 Å .

For YRuB2 sample, the above estimated values of ξ and l shows that ξBCS(0)/ltr
is less than 1, making it a clean superconductor. For YRuB2 sample, we have ob-
tained Hc2(0) by fitting the Hc2(T ) data in Fig. 4.3(b) using the expression Hc2(T )=

Hc2(0)
[
1−
(

T
Tc

)α]
with α and Hc2(0) as fitting parameters and fixed Tc = 9.25 K.

From fitting, we obtain Hc2(0) = 45.2 kOe and α = 1.11. The linear fit of data near
Tc gives the slope (dHc2/dT )Tc

= -4.2 kOe/K.

As the upper critical field is smaller than the Pauli paramagnetic limiting field
Hp = 18.6Tc ( K Oe) [116], the spin effect can be ignored, and the YRuB2 sample
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can be analyzed using clean limit results of Ginzburg-Landau theory [115]. These
results are:

−(dHc2/dT )Tc
= 9.55×1024

γ
2Tc(n)−4/3,

ξ (0) = 7.95×10−17n2/3 (γTc)
−1 ,

Hc2(0) = Φ0/2πξ
2
GL(0)

and κ = 1.60×1024Tcγ
3/2n−4/3;

where ξGL(0) = 0.74ξ (0) is the GL coherence length at T = 0 K and the other
quantities are same as previously defined. Using these relations for YRuB2, we have
obtained γ = 5.09× 103 erg/ cm3 K2, κ = 9.8, ξ (0) ≈ 124 Å and Hc2(0) = 39.1
kOe.

The enhanced density of states at the Fermi energy can be find out using the
relation:

N(εF) =
(
π

2k2
B/3
)−1

γ,

where N(εF) is in states/ eV f.u. for each spin direction and γ is in units of mJ/mole
K2. For LuRuB2, the value of γ found above is 3.56×103 erg/ cm3 K2. Using z = 4
(f.u/unit cell) and unit cell volume ≈190 Å3 for LuRuB2, the value of γ = 10.2 mJ/
mole K2. Using this, the enhanced density of states for LuRuB2 is N (εF) = 0.54
states/ eV atom-spin direction. Similar analysis for YRuB2 has been done which
yield N (εF) = 0.79 states/ eV atom-spin direction for YRuB2.

4.5 Heat Capacity data for LuRuB2

Fig. 4.6 shows the specific heat C versus T data for LuRuB2 measured between
T = 2 K and 12 K in the zero magnetic fields. A jump in heat capacity near
Tc = 9.4 K in the H = 0 data is observed. As there are unknown impurity phases in
the sample, it is impossible to extract superconducting parameters from C(T) data.
However, the jump in the heat capacity data at Tc confirms the bulk superconduc-
tivity in LuRuB2.

4.5.1 Point Contact Spectra of LuRuB2

Unconventional superconductivity in RRuB2 was suggested from the nearly lin-
ear H-T phase diagram presented above. The unconventional character of supercon-
ductivity in LuRuB2 are also visible in point-contact spectroscopy measurements.
The spectrum in Fig. 4.6 (a) displays a symmetrical double-peak structure around
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Figure 4.5: The specific heat C versus T data for LuRuB2 measured between T = 2 K and 12 K
in zero magnetic fields H.

Figure 4.6: (a) The temperature dependence of point-contact spectra for LuRuB2 with BTK fits
(indicated by solid lines). The symmetrical double-peak structure in the spectrum is a feature of
Andreev’s reflection in NS point-contacts. (b) The temperature dependence of superconducting
gap delta extracted from BTK analysis of the temperature-dependent spectra. The solid line shows
the BCS prediction. (c) Magnetic field dependence of point-contact spectra of LuRuB2. The solid
lines show BTK fits. (d) The magnetic field dependence of superconducting gap ∆(T ).
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V = 0. Andreev reflection in ballistic normal metal-superconductor (NS) point-
contacts is characterised by a double peak structure like this. The amplitude of the
superconducting energy gap is estimated by the position of the peaks in such spec-
tra. Based on the Blonder, Tinkham, and Klapwijk (BTK) theoretical model [78] ,
We have estimated the superconducting energy gap value of 0.75 meV for spectra
obtained at 1.46 K. The behaviour of the superconducting energy gap as a function
of temperature has been studied. For this, the PCAR spectra at various tempera-
tures have been recorded and fitted using the BTK model. Fig. 4.6 (a) depicts the
temperature-dependent spectra as dotted lines and solid lines show the BTK fitting.
It is seen that the characteristics associated with Andreev reflection varies gradu-
ally with temperature and double-peak structure vanishes at 10 K. Though it can be
seen in Fig. 4.6 (a) that spectra become flat at 10 K, a reasonable fitting is possible
only up to 6 K. The Fig. 4.6 (b) depicts the temperature dependence of the super-
conducting energy gap ∆ extracted from Fig. 4.6 (a). The temperature dependene
of the superconducting gap deviates from the BCS prediction. With a Tc of 9.4 K,
the estimated low-temperature gap magnitude is 0.75 meV, which gives ∆/kBTc≈1
which is smaller than the BCS weak coupling lower limit.

Fig. 4.6 (c) shows evolution of the superconducting energy gap in LuRuB2 as a
function of the magnetic field H, with solid lines showing respective BTK fits. At a
field of around 6 Tesla, at which all double-peak features in the point contact spectra
disappears. This gives an estimate of the upper critical field Hc2 ≈ 6T . The unusual
∆(T) dependence which deviates from BCS predictions and the small ∆/kBTc≈1
value suggest unconventional superconductivity, supporting conclusions from the
H-T phase diagram.

4.6 Pressure Measurements on LuRuB2 Superconduc-
tor

The findings of magnetization M versus temperature T data for LuRuB2 mea-
sured between 8 K and 10 K at various applied pressures are shown in Figure 4.7
(a). A sharp drop in M at 0 GPa pressure indicates the superconducting transition,
with a transition temperature of ≈ 8.8 K. As the pressure is increased, a notice-
able shift in Tc to lower values can be seen. Sn was used as a manometer during
these measurements. The pressure was calculated using the superconducting Tc for
Sn (not shown) at various pressures. To reveal the superconductivity of LuRuB2

over the background of the pressure cell, we had apply a magnetic field of H = 50
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Figure 4.7: (a) The magnetization M versus temperature T measured at various pressures. (b) The
transition temperature Tc versus applied pressure P data extracted from magnetization M versus
Temperature T at various pressures.
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Oe . Figure 4.7 (a) shows that the Tc for LuRuB2 is suppressed to lower temper-
atures on increasing pressure and drops below 8.6 K at 1.12 GPa which was the
highest pressure possible in our setup. From Eq. (1.40), the superconducting transi-
tion temperature for electron-phonon BCS superconductors is related to the lattice
spring constant as Tc ≈

√
k/M · exp[−k/η ], where η = N(εF)

〈
I2〉 is called the

Hopfield parameter and changes very gradually with pressure. The spring constant
k rises significantly under pressure. As a result, the drop in the (−k) component of
the exponent dominates over the increase in the prefactor

√
k, resulting in a signif-

icant fall in Tc with increasing pressure. These data in Figure 4.7 (a) were used
to extract the onset Tc for each P. Figure 4.7 (b) shows the P–T phase diagram for
LuRuB2 for P ≤ 1.2 GPa. We found that the Tc is suppressed almost linearly with
pressure at a rate of dTc/dP ≈ −0.27 K/GPa. From these findings, we conclude
that LuRuB2 is an electron-phonon coupling superconductor.

4.7 Conclusion

In summary, we have synthesized the polycrystalline samples of LuRuB2 and
YRuB2 and investigated their properties in the superconducting state. The ρ(T)
measurements confirmed the occurrence of superconductivity with a Tc ≈ 9.5 K
in LuRuB2 and 9.2 K in YRuB2. The magnetic field -temperature (H–T ) phase
diagram extracted from ρ(T) data in various fields shows a nearly linear trend for
both materials. The point contact spectroscopy measurements on LuRuB2 shows
the non-BCS temperature dependence of the superconducting gap ∆(T) and a small
value of ∆/kBTc ≈ 1 which is less than the BCS value ∆/kBTc= 1.76. These obser-
vations point towards the unconventional superconductivity in these compounds.
The various superconducting parameters for the LuRuB2 compound have been
estimated by analyzing the critical field data in terms of the dirty limit theory
of Werthamer, Helfand, and Hohenberg (WHH). For the YRuB2 superconductor,
which is in the clean limit, the critical field data are analyzed in terms of the
Ginzburg-Landau theory. From the specific heat C(T ) data, we have confirmed the
bulk superconductivity in LuRuB2. The T = 0 upper critical filed Hc2(0) is deter-
mined by fitting the H-T data to the empirical relation Hc2(T )=Hc2(0)

[
1−
(

T
Tc

)α]
and is estimated to be 58.6 kOe for LuRuB2 and 45.2 kOe for YRuB2. Addition-
ally, from high pressure magnetic measurements on LuRuB2, we have found that
Tc is suppressed to lower temperatures almost linearly with increasing pressure P
at a rate dTc/dP ≈ −0.27 K/GPa. This suppression of Tc with pressure suggests
an electron-phonon mediated superconductivity in these materials. Thus in our in-
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vestigation, these materials have been found to show conflicting results about the
nature (conventional or unconventional) of superconductivity.





CHAPTER 5

Summary and Outlook

5.1 Summary

In this thesis, we have investigated the superconducting properties of rare earth
ternary boride RRuB2 (R = Y, Lu) and transition metal boride TB2 (T = Os, Ru)
compounds with the aim of understanding the anomalous behaviors exhibited by
these compounds. These materials have layered or quasi-low-dimensional struc-
tural motifs, which makes them potential candidates for novel superconductivity.
Polycrystalline samples of these compounds were prepared by arc melting. Pow-
der x-ray data showed that the TB2 (T = Os, Ru) crystallizes in an orthorhombic
structure, and the majority of the RRuB2 (R = Y, Lu) sample crystallize in the
LuRuB2-type structure with small (≈ 10%) amount of non-superconducting impu-
rity phases. Various experimental techniques such as dc magnetization, resistivity,
high pressure, specific heat, and point contact spectroscopic measurements have
been performed on these samples. The first-principles density functional theory
(DFT) calculations were done for the RuB2 compound in collaboration.

The first part of this thesis covers the pressure dependence of the supercon-
ducting Tc of OsB2 and a detailed study of bulk superconducting behavior in the
isostructural layered transition metal boride RuB2 with Tc ≈ 1.5 K. The Tc for
OsB2 reduces with pressure, supporting an electron-phonon mediated supercon-
ductivity. The polycrystalline sample of RuB2 was subjected to various measure-
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ments such as magnetic susceptibility (χ) vs. temperature (T), magnetization (M)
vs. the magnetic field (H), resistivity (R) vs. temperature (T), and heat capacity
(C) vs. temperature measurements at different fields. The Ginzberg Landau (GL)
parameter was found to be κ ≈ 0.1–0.6 showing that RuB2 is a rare alloy type-I
superconductor. A reduced heat capacity anomaly was observed at Tc, which was
characterized by ∆C/γTc≈ 1.1 indicating the presence of multigap superconductiv-
ity in this compound. Multigap superconductivity was further supported by the suc-
cessful fitting of electronic specific heat data to a two-gap superconductivity model
with gap values ∆/kBTc ≈ 1.88 and ∆/kBTc ≈ 1.13. The M vs. H measurements
showed behavior typical of type-1 superconductivity. We also calculate the band
structure and obtain the Fermi surface for RuB2. The Fermi surface consists of one
quasi-two-dimensional sheet and two concentric ellipsoidal sheets very similar to
OsB2. An additional small fourth sheet is also found for RuB2. These calculations
also support the possibility of multigap superconductivity in the sample. RuB2 has
thus been shown to be a rare candidate for a two-gap type-1 superconductor.

The second part of this thesis deals with the experimental investigations carried
out on (Y, Lu)RuB2 in their superconducting state. The superconducting state has
been thoroughly investigated by employing resistivity (ρ) vs. temperature (T), heat
capacity (C) vs. temperature (T), and magnetization (M) vs. temperature (T) mea-
surements at different applied fields. The Hc vs. T phase diagram was constructed
from ρ(T) data in various applied fields and was found to show a nearly linear
trend for both the samples, suggesting unconventional superconducting behavior.
The point contact spectroscopy measurements on LuRuB2 show the small value of
∆/kBTc≈1 and a non-BCS temperature dependence of ∆(T), which deviates from
BCS predictions, suggesting unconventional superconductivity. This supports our
conclusions from the H-T phase diagram. Pressure dependent M-T measurements
were also carried out on LuRuB2 to check the robustness of the superconducting
state under pressure. The application of pressure shifted the Tc to lower tempera-
tures indicating that these materials are electron-phonon coupling superconductors.

5.2 Outlook

The discovery of high Tc superconductivity in MgB2 with anomalous super-
conducting behavior and its large-scale applications revived the interest in Boron-
containing compounds with similar structures. There is a dispute on whether these
anomalous behaviors are caused by a single anisotropic gap or two energy gaps.
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The question of whether MgB2 represents a new class of superconductors is cur-
rently being debated. Although in our findings RuB2 shows two-gap type-I su-
perconductivity, a scenario of anisotropic type-I superconductivity could also be at
work in this compound, and further work such as imaging of magnetic flux enter-
ing into the material could be helpful in confirming the type of superconductivity.
The non-BCS superconducting behaviors of some of the properties in these lay-
ered boride compounds are all interesting issues that require further investigation.
Future studies of the anisotropic physical properties of single crystals will be very
helpful in these regards. These investigations may provide a general protocol for
the discovery of other type-I superconducting compounds. Such materials will, in
turn, give researchers more direct access to superconductivity regimes away from
the common type-II superconductivity mostly observed in alloys, which are par-
ticularly interesting in superconductors with multigap or with an anisotropic gap.
The High superconducting transition temperatures, as well as the interesting inter-
play between superconductivity and the magnetic order associated with rare-earth
4 f electrons are recurrent themes in the rare earth boride compounds. The anoma-
lous behavior of the H-T phase diagram of RRuB2 superconductors needs further
investigation, and the single-phase samples of these compounds are required for the
study of their intrinsic properties.
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