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Abstract

This thesis focuses on the experimental study of foundational concepts of quantum
theory such as quantum contextuality, and nonlocality on an nuclear magnetic reso-
nance (NMR) quantum information processor. Contextuality and nonlocality are cru-
cial aspects of quantum mechanics, and their existence demonstrates the fundamental
departure from the classical theories such as hidden variable theories. Nonlocality and
quantum contextuality can be revealed via a violation of non-contextual inequalities
such as the Klyachko-Can-Binicioglu-Shumovski (KCBS) inequality and Bell-type in-
equalities such as the Clauser-Horne-Shimony-Holt (CHSH) inequality, respectively.
These fundamental ideas have emerged as a crucial tool for enhancing computation and
establishing secure quantum communications. Monogamy relationships can be used
to examine quantum contextuality and nonlocality simultaneously. Numerous quan-
tum information tasks, such as secure communication, self-testing, and randomness
certification, have found extensive use for monogamy of correlations.

One of the major areas of focus in experimental quantum computing is the experi-
mental study of the above quantum correlations. This thesis aims to conduct an exper-
imental study of quantum contextual correlations, nonlocal correlations, and monog-
amous relationships of these quantum correlations on an NMR quantum information
processor. Different types of experimental schemes, suitable for the NMR experimen-
tal set-up, have been developed that enable the precise measurement of the relevant
observables. Experimental demonstration of fully contextual quantum correlations has
been successfully experimentally demonstrated on two-qubit and three-qubit states.
A generalized quantum scattering circuit is presented which can be used to perform
a non-invasive measurement. Further, Peres-Mermin (PM) inequality is successfully
experimentally demonstrated on a three-qubit system. The monogamy relationship be-
tween contextuality and nonlocality has been successfully demonstrated on a ququart-
qubit system using three NMR qubits. The theoretical protocol has also been developed
to evaluate monogamy relationships of entropic non-contextuality (ENC) inequalities,
and the theoretical results have been verified experimentally. Finally, experimental im-
plementation of variational quantum algorithms is employed to predict the molecular
ground-state energy of the H2 molecule.
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0. Abstract

The content of this thesis has been divided into eight chapters as described below:

Chapter 1

This chapter contains the introduction to quantum computation followed by the basics
of NMR quantum processor. Further, this chapter introduces the concepts of quantum
contextuality and Bell nonlocality. The latter part describes the basics of variational
quantum algorithms. In the end, some concluding remarks with goals and motivations
for the work undertaken in this thesis.

Chapter 2

This chapter focuses on fully contextual correlations and their experimental implemen-
tations. The violation of two fully contextual inequalities is experimentally demon-
strated utilizing two-qubit and three-qubit systems. To eliminate the necessity for
quantum state tomography, the expectation values of the related observables have been
measured by decomposing all of the observables in terms of Pauli operators. Addi-
tionally, the behavior of each inequality has been examined by rotating the underlying
state. Results suggest that the violation of both inequalities follows a nonlinear pattern
with respect to the rotation angle of the underlying state.

Chapter 3

This chapter describes the generalization of the quantum scattering circuit, which is
capable of performing non-invasive measurements. The quantum scattering circuits
developed, can measure the n-point correlation function that is being measured se-
quentially without disturbing the outcome of subsequent measurements. On a three-
qubit NMR quantum processor, the experimental violation of the PM inequality has
been demonstrated using this quantum scattering circuit. The experimental violation
of the Bell-type inequality is also demonstrated using a quantum scattering circuit.

Chapter 4

This chapter explains the experimental construction of a symmetric three-qubit en-
tangled state, which is then utilized to violate the Bell-type inequality in the (3,2,2)
scenario. Two distinct entanglement measures, namely negativity, and concurrence,
are computed in order to confirm the presence of entanglement in the state. Also, a
theoretical analysis is performed to show that the Bell type inequality can be used as a
witness of entanglement.
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Chapter 5

This chapter focuses on the experimental simulation of a monogamy relation between
the contextuality and non-locality using a ququart-qubit system. Three NMR qubits
are used to physically implement the ququart-qubit system, with the first two qubits
combining to form a single ququart system. Additionally, it is shown experimentally
that at a single point, the quantum boundary and the no-disturbance principle coincide.

Chapter 6

This chapter develops a theoretical framework for studying monogamous relationships
of entropic non-contextuality (ENC) inequalities using a graph theoretic method. The
monogamous relation between two ENC inequalities has been derived using the pro-
posed theory in the context of the tripartite Bell-CHSH scenario. Further, the exper-
imental validation of the theoretical work has been demonstrated. For both the pure
state and the mixed state, the monogamy relation of the ENC inequalities has been
determined.

Chapter 7

This chapter describes hybrid quantum-classical algorithms that can be used to com-
pute the energy of molecules in their ground and excited states. The ground and the
excited state energies of H2 molecule are computed by using the variational quantum
algorithms. The simulated results are then experimentally verified using a two-qubit
system. Also, we developed the first simulation of the energy calculation of the H2

molecule, which is reduced to a single qubit system, and experimentally verified the
same.

Chapter 8

This chapter describes the conclusions of the thesis and some future directions.
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Chapter 1

Introduction

Quantum mechanics is the most successful quantitative theory ever invented. Quantum
computers use the quantum properties of systems to perform computation. Technolo-
gies based on quantum information theories can perform better than classical ones in
several key areas, including computation speed-up, secure communication, and quan-
tum simulation [1]. Paul Benioff started the research area of quantum computing in
1980, by proposing the quantum mechanical model of the Turing machine [2]. At the
same time, Richard Feynman was interested in the practicability of quantum computers
and introduced the idea as to how quantum computers can be used in quantum simu-
lation [3]. The first quantum algorithm was introduced by David Deutsch in 1985 [4],
however, the main breakthrough came in 1994, when Peter Shor discovered a quantum
algorithm having the capability of factorizing large numbers in polynomial time [5].
Another quantum algorithm, for search, was discovered by Lov Grover, the so-called
Grover’s search algorithm in 1996, capable of quadratic speed-up over an equivalent
classical algorithm [6]. Tremendous growth has been seen in the field of quantum
computation and quantum information over the years.

Quantum information processors take advantage of fundamentally novel models of
computation based on quantum mechanical phenomena and can solve some problems
much faster than classical computers [7, 8]. However, building a large-scale quantum
computer is hampered by the enormous practical challenges in controlling quantum
systems. Several systems are being utilized to implement small scale quantum proces-
sors and NMR has established itself as one of the successful platforms [8, 9, 10]. Novel
NMR methods have successfully been applied to other quantum systems as well.

In this chapter, we will first introduce the basic concepts of quantum computing
and quantum information theory and then the basic concepts of NMR quantum com-
puting. In the end, we will introduce fundamental properties of quantum theory such
as quantum contextuality and non-locality, that are dealt with in this thesis.
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1. Introduction

1.1 Quantum Computing and Quantum Information Pro-
cessing

Quantum computing is an area of research where computation is performed using the
quantum properties of physical systems [1, 8, 9]. One of the key features of quantum
theory is superposition, which refers to the fact that a quantum system can exist in mul-
tiple states at the same time. To carry out particular computational operations, quan-
tum computers make use of the superposition phenomenon, which can be substantially
more efficient than classical computing. The most notable advantages of superposition
can be witnessed in the search and factorization problems, where quantum algorithms
employ the property of quantum superposition to execute computations polynomially
and exponentially faster than classical computations. In order to find a specified item
in a disordered list containing N elements, the quantum search algorithm, invented by
Grover [6] is quadratically O(

√
N) faster than its classical counterpart. On the other

hand, Peter Shor’s factorization algorithm [5] is exponentially faster than the best clas-
sical algorithm. Entanglement is another important propery of quantum theory which
can be utilized as a resourse to perform computational and cryptographic tasks that are
impossible for classical systems [11, 12].

1.1.1 Qubits

In a classical computer, information is stored and processed using bits, which can either
be ’0’ or ’1’. It might be any system with two different and distinguishable choices,
such as a light bulb that is either on or off. The bits are represented by the absence (0)
or presence (1) of an electrical signal in classical computers.

A qubit (or quantum bit) is the quantum mechanical analogue of a classical bit. A
qubit is a two-level quantum system, and its two basis states are typically expressed as
|0〉 and |1〉. A qubit can exist in |0〉 or |1〉 states or it can also exist in superposition
states (unlike classical bits). The general state of the qubit is defined as [1]:

|ψ〉 = α|0〉+ β|1〉 (1.1)

where |0〉 and |1〉 represent two orthogonal basis states and {|0〉, |1〉} is called
the computational basis; α and β are complex numbers which obey the normalization
condition, |α|2 + |β|2 = 1.

The state of an N -qubit quantum register with the basis vectors of Hilbert space
having dimension 2N is given by:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉....⊗ |ψN〉 (1.2)

2



1.1 Quantum Computing and Quantum Information Processing

where the state of the N -qubit quantum register is obtained by taking the tensor
product of each individual qubit state.

The general state of the N -qubit quantum register can be rewritten as:

|ψ〉 =
2N∑
i=1

αi|αi〉 (1.3)

where |αi〉 denotes the N -qubit quantum register and |αi|2 = 1.

1.1.2 Density matrix representation
Density matrix representation is used for the study of a large number or collection of
systems called an ensemble. Consider a quantum system that has been prepared in
the state |ψ1〉 and we have n1 such systems constituting a pure ensemble. Consider
another ensemble made up of n2 quantum systems, each of which is in the state |ψ2〉.
How does one describe the quantum state of the new ensemble if one mixes these two
ensembles? What will happen if we now choose a quantum system from this ensemble
and perform a measurement on it? If NT = n1 + n2 is the total number of quantum
systems then there exist two probabilities for the action: (i) The probability (p1 = n1

NT
,

p2 = n2

NT
) with which the chosen quantum system can be either from ensemble |ψ1〉 or

|ψ2〉, and (ii) probability with which, the chosen quantum system after measurement
collapses to one of the basis states. It can be concluded that this situation does not fit
the state description given in Eqn. 1.3.

The density operator [1, 9] for an ensemble is defined as:

ρ =
∑
i

pi|ψi〉〈ψi| (1.4)

where pi is probability to be in the state |ψi〉 with
∑

i pi = 1. For a pure ensemble
i.e. all individuals belongs to the state |ψ〉, the density operator is defined as:

ρ = |ψ〉〈ψ| (1.5)

A density operator must meet the following requirements: (i) ρ must have positive
eigenvalues, (ii) ρ must be hermitian i.e. ρ† = ρ, and (iii) Trace should be 1 i.e.
Tr(ρ) = 1. For a pure state Tr(ρ2) = 1, while Tr(ρ2) < 1 for a mixed state.

1.1.3 Quantum gates
In a classical computer, Boolean operations are performed via Boolean logic gates,
such as AND, OR, NOT, NAND, and NOR gates. NAND and NOR gates are known as

3



1. Introduction

the universal logic gates as any logic gate can be realized with the help of these gates.
In a quantum computer, the manipulations of the quantum states are performed by
quantum gates. Quantum gates are unitary operators U(UU † = I) and are represented
by unitary matrices corresponding to some basis. There exist a set of universal quantum
gates in the sense that all unitary operations can be described via a set of quantum gates
which consist of one-qubit quantum gates [U(2)] and the two-qubit exclusive-OR gate.
Some important basic one and two-qubit quantum gates are given below:

Single-qubit gates

Pauli-X gate

The simplest possible single qubit gate is Pauli-X gate, also known as quantum NOT
gate. It inverts the state of the logical qubit. The matrix representation of Pauli-X gate
is given as:

X =

[
0 1
1 0

]
(1.6)

The action of Pauli-X gate on computational basis states (|0〉, |1〉) results in:

X|0〉 = |1〉 and X|1〉 = |0〉 (1.7)

Pauli-Y gate and Pauli-Z gate

The matrix representation of Pauli-Y and Pauli-Z gates are given as:

Y =

[
0 −1
1 0

]
Z =

[
1 0
0 −1

]
(1.8)

The action of Pauli-Y and Pauli-Z gates on computational basis states results in:

Y |0〉 = i|1〉 and Y |1〉 = −i|0〉 (1.9)

Z|0〉 = |0〉 and Z|1〉 = −|1〉 (1.10)

Hadamard gate

Another single-qubit quantum gate is the Hadamard gate (H) gate which can be de-
composed as a linear combination of Pauli-X and Pauli-Z quantum gates. An impor-
tant property of H gate is its self-reversibility i.e. H2 = 1. The matrix representation
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of H gate is

H =
1√
2

[
1 1
1 −1

]
(1.11)

The action of H gate is given by:

H|0〉 =
|0〉+ |1〉√

2
and H|1〉 =

|0〉 − |1〉√
2

(1.12)

Two-qubit gates

Controlled-NOT gate

The controlled-NOT, also called CNOT gate is a very important two-qubit gate in
quantum information processing. CNOT gate consists of a control and a target qubit
and this gate performs the NOT operation on the computational basis state of the target
qubit only when the control qubit is in the |1〉 state. The matrix form of the CNOT
gate is:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.13)

It has been proved that an arbitrary two-level unitary operation on the state space
of n qubits can be achieved with help of CNOT gates and single qubit gates [1].

1.1.4 Quantum measurements

To describe quantum measurements, a set of measurement operators {Mm} are typi-
cally used, where the indexm denotes the measurement results that could occur during
the experiment. Mm are the operators acting on the state space. For a given state |ψ〉,
the probability of getting the measurement outcome m, before the measurement, can
be expressed as [1]:

p(m) = 〈ψ|M †
mMm|ψ〉 (1.14)

After the measurement the state of the system is described as:

Mm|ψ〉√
〈ψ|M †

mMm|ψ〉
(1.15)
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The condition that all measurement operators add to identity, often known as "The
Completeness Condition", is an analogous representation of the sum of probabilities,
or
∑

m p(m) = 1. The completeness condition is given as:∑
m

M †
mMm = I (1.16)

The simplest example of a measurement would be the measurement of a qubit in
the computational basis. Consider the general state of a qubit |ψ〉 = α|0〉 + β|1〉
and the measurement operators M0 = |0〉〈0|,M1 = |1〉〈1| corresponding to two out-
comes. It can be observed that each measurement operator is Hermitian andM2

0 = M0,
M2

1 = M1. The completeness relation is: I = M †
0M0 + M †

1M1 = M0 + M1. After
the application of measurement operators on the qubit state, the probability of getting
measurement outcome 0, i.e p(0), is given by:

p(0) = 〈ψ|M †
0M0|ψ〉 = 〈ψ|M0|ψ〉 = |α|2 (1.17)

Similarly, p(1) can be calculated as p(1) = 〈ψ|M †
1M1|ψ〉 = 〈ψ|M1|ψ〉 = |β|2.

The post-measurement state in the two situations is given as:

M0|ψ〉
|α|

=
α

|α|
|0〉 (1.18)

M1|ψ〉
|β|

=
β

|β|
|1〉 (1.19)

Projective measurements, a special class of quantum measurements, are typically
involved in quantum computing and information. In projective measurements, a quan-
tum state collapses to the eigenstate of the observable, being measured.

As discussed earlier, in quantum computing, quantum mechanical phenomena such
as superposition and entanglement are employed to execute computations. Despite the
mathematical conception of computational algorithms, the physical implementation
of these algorithms requires a computer. In principle, classical computation can be
modelled using circuits comprised of universal logic gates. Similarly, quantum com-
putation can be processed via a quantum circuit that uses a variety of quantum gates.
Specific standards have been established for the physical realization of quantum com-
putation which are described in the next section.

1.1.5 Physical realization of quantum computation

With current technology, it is possible to build a system with a well-characterized qubit,
but it is more difficult to build a system with an arbitrary number of well-characterized
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qubits. The majority of quantum computation models require qubits which should
be initialized in a well defined state before performing a computation. A collection
of one and two-qubit gates can be used to build a universal quantum computer and
decoherence times that are substantially longer than the typical gate time are preferred.
The final measurement of any process that changes the quantum states of qubits is
crucial for performing computations.

In 2000, David P. DiVincenzo presented the requirements for building a quantum
computer, known as DiVincenzo criteria [13]. There are a total of seven requirements
in the DiVincenzo criteria. The first five are primarily concerned with the machine’s
computational capabilities and other two concern information transmission via qubits.
The first five criteria related to quantum computation are as follows:
1) A scalable physical system with a well-characterized qubit.
2) The ability to initialize the state of the qubits to a simple fiducial state.
3) Long relevant decoherence times.
4) A "universal" set of quantum gates.
5) A qubit-specific measurement capability.

Several quantum technologies have been tried for the physical implementation of a
quantum information processor, although none of them totally meets the DiVincenzo
requirement. A few physically implemented quantum processors are:

• Superconducting quantum computer: Qubits are realized by Josephson junc-
tions [14, 15, 16].

• Optical quantum computer: Qubits are realized by different modes of light [17,
18, 19, 20, 21].

• Diamond-based quantum computer: Qubits are realized by nitrogen-vacancy
centers in diamond [22, 23, 24].

• NMR quantum computers: Qubits are realized by nuclear spins [25, 26, 27, 28].

• Trapped ion quantum computer: Qubits are realized by trapped ions [29].

In this thesis, the NMR hardware is used as a quantum information processor.

1.2 Basics of NMR spectroscopy
NMR is one of the most established resonance techniques, along with ferromagnetic
resonance and electron spin resonance. NMR has numerous applications in the fields
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of materials science, petrophysics, biological, chemical, and physical sciences [9, 30].
NMR phenomena involves the study of the absorption of radio frequency waves by nu-
clei, subjected to a high static magnetic field [31]. A concise summary of fundamental
principles of NMR with a focus on those that are important for quantum computing
are described below.

1.2.1 Nuclear spins in a static magnetic field

For most nuclei with non-zero nuclear spin, the NMR phenomena can be observed
where nuclear spin is the total angular momentum of the nuclei [9]. The nuclear spin
operator is a vector operator, represented by ~ I with I denoting the total angular mo-
mentum of the nucleus. The atomic nuclei with non-zero nuclear spin possess a mag-
netic dipole moment and are related to spin angular momentum as:

µ = γn~I (1.20)

where the term γn refers to the gyromagnetic ratio, a characteristic of the nucleus.
When an NMR sample is placed in a strong static magnetic field Bo (Fig. 1.1(a)), an
interaction between the nuclear spins and the field occurs. The Hamiltonian describing
the interaction between the spin and magnetic field is given by:

H = −µ.B = −γn~I.B = −γn~B0Iz = −~ωnIz (1.21)

where Iz stands for the spin angular momentum’s z-component and ωn = −γnB0 is
the frequency of precession of spins about the z-axis (Fig. 1.1(b)), known as Larmor
frequency. All quantum operators operate in the subspace spanned by the magnetic
quantum number |m〉 with m = −I, −I + 1, ..., 0, ..., I − 1, I , when the magnetic
field B0 is applied in the z-direction. The expectation values of the x and y component
of the spin angular momentum i.e.〈Ix〉 and 〈Iy〉, show oscillatory behavior with time,
under the Hamiltonian. The eigenvalue of the above Hamiltonian (Eqn. 1.21) is given
by:

Em = −m~ωn (1.22)

With the energy gap of ~ωn, there exist equally spaced (2I + 1) energy levels where
I denotes the nuclear spin. The population of each energy level is determined by the
Boltzmann distribution for an ensemble of identical nuclei in thermal equilibrium. Let
us consider the two level system with I = 1

2
and the population of the energy level

m = 1
2

is described by n+ and similarly the population of the energy level m = −1
2

is
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Figure 1.1: (a) Illustration of alignment of the NMR tube with sample inside. (b) Creation
of bulk magnetisation M0 when there are more spins precessing in the field’s parallel
direction than in its anti-parallel direction.

described by n−. Then according to the Boltzmann distribution:

n−
n+

= e−(E−I−E+I)/kBT = e−~ωn/kBT (1.23)

where the Boltzmann constant is kB, and the spin ensemble’s absolute temperature
is T . For the ensemble of protons (1H) in the magnetic field of 14.1 Tesla at room
temperature, the Boltzmann factor is close to the unity i.e. there exists a fractional dif-
ference of populations about 1 part in 105. This minor population difference leads to a
net equilibrium magnetization in the z-direction (Fig. 1.1(b)) and the thermal equilib-
rium magnetization of n spin-1/2 nuclei is given by:

Mz =
µoγ

2~2Bo

4kBT
(1.24)

where the magnetic susceptibility is represented by µo (and should not be confused
with the magnetic moment µ).

1.2.2 Interaction of the nuclear spin with a radio frequency field
With a static magnetic field present, the unperturbed spin ensemble maintains its ther-
mal equilibrium state. The application of oscillating magnetic fields at the suitable
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Larmor frequency can produce transitions between the energy levels of spin states. For
the strength of the static magnetic field of a few Tesla, the Larmor frequency is of the
order of MHz, so to excite nuclear spins from their equilibrium state, a radiofrequency
(RF) field is required. The excitation is achieved by applying the oscillating magnetic
field, perpendicular to the static magnetic field which is given as:

B1(t) = 2B1 cos(Ωt+ φ)x̂ (1.25)

where î is the unit vector in the x-direction and Ω and φ are the RF field’s frequency
and phase, respectively. The RF field interaction Hamiltonian has the form:

HRF = −µ.B1(t) = −γ~Ix[2B1 cos(Ωt+ φ)] (1.26)

When compared to the static magnetic field, the RF field’s magnitude is relatively
small; of the order of a few Gauss. As a result, the Hamiltonian corresponding to
RF field (Eqn. 1.26) is considered as a perturbation to the interaction Hamiltonian
(Eqn. 1.21). In the light of this, time-dependent perturbation theory can be used to
examine the dynamics under HRF . In order to understand the key features of the re-
sults, let us recast B1(t) in terms of superposition of two fields rotating in the opposite
directions.

B1(t) = B1(cos(Ωt+φ)x̂+sin(Ωt+φ)ŷ)+B1(cos(Ωt+φ)x̂−sin(Ωt+φ)ŷ) (1.27)

To make things simpler, we can assume that φ = 0 and analyze Eqn. 1.27 in a
coordinate system which revolves around the static magnetic field at the frequency Ω.
Under this rotating frame, B1(t) can be described as:

Brot
1 (t) = B1x̂+B1(cos(2Ωt)x̂− sin(2Ωt)ŷ) (1.28)

From the above Eqn. 1.28, one can conclude that one component is static and the
other is rotating at twice the RF field frequency. The component rotating at twice the
RF field frequency can be ignored because only the component corresponding to the
static to the RF field frequency has an effect on nuclear spins. Utilizing the unitary
operator U(t) = eiωntIz/~, we can convert Hamiltonian HRF into the rotating frame
Hamiltonian, described as:

H rot
RF = −~(ωn − Ω)Iz − ~ω1Ix (1.29)

with ω1 = γnB1. Now if we consider φ is to be non-zero, then

H rot
RF = −~(ωn − Ω)Iz − ~ω1{Ix cos(φ) + Iy sin(φ)} (1.30)
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1.3 NMR quantum computing

The quantum ensemble’s evolution in the rotating frame under the effective field is
given by the following equation:

ρrot(t) = e−iH
rot
RF tρrot(0)eiH

rot
RF t (1.31)

with ρrot(0) represents the density matrix at t = 0.

1.3 NMR quantum computing
NMR hardware was proposed as a promising possibility for quantum information pro-
cessors at the end of the 20th century [25, 32, 33]. The NMR quantum processor uses
the spin ensemble of nuclear spins to do computations, whereas measurement results
are expressed in terms of expectation values of the observables. NMR has been a test
bed for various quantum algorithms and quantum information protocols. Quantum al-
gorithms such as Grover’s search algorithm [34], Shor’s algorithm [35], Deutsch-Jozsa
algorithm [26], and many more, have been experimentally demonstrated on an NMR
quantum information processor.

The next subsections examine NMR’s capabilities in light of the DiVincenzo crite-
rion [13].

1.3.1 Qubit realization in NMR
As was previously mentioned, when atomic nuclei with non-vanishing nuclear spin are
put in a static magnetic field, the nuclear energy spectrum composed of (2I+1) equally
spaced energy levels is produced. Each of these spin-1/2 nuclei is a two-level quantum
system can be encoded as a qubit and 1H, 13C, 15N, 19F, and 31P are most used spin-1/2
nuclei in NMR quantum information processor [25, 26, 32, 33, 34, 35, 36].

The Hamiltonian H , corresponding to the ensemble of N spin-1/2 particles, placed
in B0, is given as:

H = −ω0Iz (1.32)

with Iz = σz. The eigenvalues of H are {ω0

2
,−ω0

2
} corresponding to the eigen-

state {|0〉|1〉} and energy difference between the two energy levels is equal to ~ω0.
A molecule may include more than one spin-1/2 nucleus. These spins can communi-
cate directly through magnetic dipole-dipole interactions or indirectly through covalent
bonds known as scalar-coupling (J-coupling). J-coupling involves the interaction of the
nucleus with the electronic environment of the bonded electron cloud to the other nu-
clei while dipole-dipole interactions do not require a medium. Quantum computations
frequently involve controlling the states of two different qubits. The J-coupling be-
tween the spins is crucial, as controlled operations can be easily accomplished through
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1. Introduction

evolution under coupling[9]. For the n weakly interacting spins-1/2 nuclei, the Hamil-
tonian is described as:

H = −
n∑
i=1

~ωiI iz +
n∑

i,j=1
i<j

2π~JijI izIjz (1.33)

where ωi is the Larmor frequency and Jij denotes the scalar coupling constant
between the ith and jth spins.

1.3.2 Initialization
The quantum register should be initialized in a pure state for any quantum information
task. As was previously discussed, NMR deals with a large ensemble of nuclei that are
in a mixed state. Cory et al. [25] and Chuang et al. [32] produced excellent techniques
for producing the so-called effectively pure or pseudo pure states which can mimic
actual pure states. Due to the fact that NMR experiments only detect deviation part of
the density matrix, it is possible to establish the pseudo pure state (PPS). The concept
of the PPS is based on the observation that NMR experiments are only sensitive to the
traceless deviation density matrix. We could therefore look for transformations that,
when applied to the density matrix at thermal equilibrium, resulting a deviation density
matrix that has the same form as a pure state density matrix |ψ〉〈ψ|.

The spin ensemble’s thermal equilibrium state at temperature T and after the ap-
plication of magnetic field B can be expressed as:

ρth =
e−H/kBT∑
m e
−Em/kBT

(1.34)

At room temperature, the above thermal equilibrium state can be rewritable as:

ρth =
1

2I + 1
I +

∆

2I + 1
Iz (1.35)

with ∆ = ~ω
kBT

<< 1 ≈ 10−5 denotes a measure of thermal magnetization at temper-
ature T in magnetic field B. The first term in Eqn. 1.35 corresponds to the identity
operator I and the second term corresponds to the deviation part of thermal state Iz.
Further, the PPS state can be achieved from the thermal state Eqn. 1.35, which can be
written as:

ρPPS =
(1−∆)

2n
I +

∆

2n
|ψ〉〈ψ| (1.36)

with 1
2n

representing the maximally mixed state and |ψ〉 denoting pure state. The
term ∆ corresponds to a measure of state’s purity. In NMR experiments, only the
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1.3 NMR quantum computing

signal from the pure component is seen in NMR measurements because the maximally
mixed state ( 1

2n
) is not detectable. Because of this, the behaviour of a pseudo-pure state

behaves exactly like a pure state. However, the purity does affect the magnitude of the
detectable signal, therefore pseudo-pure states would produce considerably smaller
signals than pure states. The maximum pseudo-pure state signal obtained [37] from a
system of n identical spins in thermal equilibrium has been demonstrated to be limited
by the simple bound of

2 sinh(n~ω/2kBT )

2n coshn(n~ω/2kBT
) ≈ 2

2n
× ~ω
kBT

(1.37)

where the approximation holds at the high temperature limit, which is ~ω << kBT
and suitable for standard NMR experiments. The first term ( 2

2n
) of the result indicate

that the detectable signal drops exponentially with the size of the spin system. This
result seems to cap NMR quantum computing based on pseudo-pure states to about 10-
20 qubits. A variety of methods exist for preparing PPS in NMR, including temporal
averaging [38], spatial averaging [39], logical labelling [32], state initiation using long-
lived singlet states [40], and NMR line-selective pulses [41]. It is well known that the
NMR ensemble can be initiated in the PPS, replicating the behavior of the pure state.

1.3.3 Quantum gate implementation
This section contains the description of the physical realization of unitary gates on an
NMR quantum processor. The NMR quantum gates can be generated via RF pulses
and free evolution under the internal nuclear spin interactions. The deviation part of
the thermal state is given by:

∆ρth =
~ω

4kBT

[
1 0
0 −1

]
(1.38)

By taking rotating frame considerations into account, the interactions of RF fields
may be understood. It is possible to convert the rotating frame density operator ρlab

into a rotating frame density operator which is given as:

ρrot = e−iΩtIz .ρlab.eiΩtIz (1.39)

where e−iΩtIz represents the rotation operator. In a rotating frame, the resulting
effective Hamiltonian [9] can be expressed as:

Heff = −~(ω − Ω)Iz − ~ω1Ix (1.40)

When RF frequency ω1 >> (ω − Ω) commonly known as nutation frequency,
rotating frame Hamiltonian can be estimated as Heff ≈ 1 and for resonance condition
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ω = Ω, Heff = 1. The evolution operator for the RF pulse can be written down
explicitly as

Up = e−iHeff tp/~ = eiω1tpIx = Rx(−θp) (1.41)

where Rx(−θp) represents the rotation operator which is rotating about x-axis with
an angle −θp governed by the RF irradiation period tp. Explicit form of rotation oper-
ators that are achievable in NMR can be expressed as:

Rx(θp) =

 cos
(
θp
2

)
−i sin

(
θp
2

)
−i sin

(
θp
2

)
cos
(
θp
2

)  (1.42)

Ry(θp) =

 cos
(
θp
2

)
sin
(
θp
2

)
−sin

(
θp
2

)
cos
(
θp
2

) (1.43)

Rφp(θp) =

 cos
(
θp
2

)
−i sin

(
θp
2

)
e−iφp

−i sin
(
θp
2

)
eiφp cos

(
θp
2

)  (1.44)

The final rotation operator corresponds to an RF pulse with phase φp with the rotat-
ing frame’s x-axis. With the use of the aforementioned rotation operators, the resulting
state after the action of Heff (Eqn. 1.40) on deviation density operator (Eqn. 1.38) can
be calculated. For example if consider ω1tp = θp = π

2
, then the action of rotation

operator can be demonstrated as:

∆ρ(tp) = Rx

(
−π

2

)
.∆ρth.Rx

(π
2

)
=

~ω
2kBT

Iy (1.45)

Using these rotation operator, any single qubit quantum gate can be generated.
For instance, Ry(π/2) produces the Hadamard(H)-gate effect, whereas Ry(π) rotation
produces the NOT (X) - gate effect. Utilizing the scalar J-couplings of the spins allows
for the creation of two-qubit quantum gates such as CNOT gate. The following is the
NMR pulse sequence of CNOT gate:

UCNOT = R1
z

(
−π

2

)
R2
x

(π
2

)
R2
y

(
−π

2

) 1

2J
R2
y

(π
2

)
(1.46)

where the time span 1/2J describes the free evolution for spin systems.

1.3.4 NMR measurements
Reading out the result, which involves characterization of the final quantum state, is
the last step in a quantum computation. Normally, reading out the results would be
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Figure 1.2: Illustration of scheme to detect the NMR signal where bulk magnetisation is
brought in the xy plane with help of suitable RF field.

accomplished by the use of quantum measurements, which project the quantum state
onto the measurement basis. The detection of the NMR signal is not a strong pro-
jective measurement, but rather a weak ensemble measurement, making this method
unsuitable in standard NMR experiments. A weak ensemble measurement in an NMR
experiment monitors the spin system’s state without making any significant changes.

As described earlier, the NMR experiments deal with the ensemble of large nuclei,
and when they are placed in a static magnetic field (B0), the magnetic moments µ of
the nuclei at thermal equilibrium produces a bulk magnetization (M0) in the direc-
tion of the applied magnetic field (z - axis). By using an RF pulses, this developed
bulk magnetization is rotated to xy-plane from z-axis. This rotated bulk magnetization
process around the z-axis with the Larmor frequency ω0. The precessing bulk magneti-
zation causes a change in magnetic flux in the RF coil which in turn produces a signal
voltage. The bulk magnetization’s precession results in a change in magnetic flux,
which leads to produce a signal voltage in the RF coil placed in xy-plane (Fig. 1.2). A
time-domain NMR signal recorded and given the name "free induction decay" (FID)
as shown in Fig. 1.2. Due to multiple NMR relaxation mechanisms, FID often decays
with time. The transverse magnetization’s time-domain signal can be described as:

S(t) ∝ Tr{ρ(t)
∑
k

(σkx − iσky)} (1.47)

where
∑

k(σkx − iσky) represents the detection operator, Pauli spin operators σkx
and σky corresponds to the x and y components of the magnetization caused by the
kth spin, and the average state of the single molecule is reprented by ρ(t) [42]. The
time-domain signal (Eqn. 1.47) can be transformed using the Fourier transform (FT)
to produce the frequency-domain NMR signal.

Characterizing the output state is just as crucial to quantum information processing
as creating the initial state and implementing quantum gates. In many instances, we
want a full characterization of the system status rather than just a simple readout. This
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can be done by computing each component of the density matrix of the system. We can
calculate each element of the density matrix by using density matrix tomography, also
referred to as quantum state tomography (QST). QST is a technique for reconstructing
the density operator from different experimental settings [42, 43].

In a computational basis, any single-qubit density matrix [44] can be converted into
the following form:

ρ =
I
2

+ aσx + bσy + cσz (1.48)

which can again be rewritten as:

ρ =

[
1
2
− c a− i b

a+ i b 1
2

+ c

]
(1.49)

It is possible to observe that 〈σz〉ρ = Tr(ρσz) = c. Furthermore, by selecting
the correct rotation operators, it is possible to measure the parameters a and b as well
as to reconstruct the entire density operator ρ. In an NMR experiment, the signal is
proportional to the transverse magnetisation i.e. ρ12 = (a− i b) where the values of a
and b can be estimated by measuring the intensities of real and imaginary parts of the
NMR spectra, respectively. The value of c can be estimated by the measuring the real
intensity of NMR spectra on the application of π

2
pulse along y direction.

Chuang et al. [45] developed the first NMR QST approach for coupled spin sys-
tems. It involves preparing the state to be tomographed and using RF pulses to carry
out specific unitary rotations on the qubits. After that, the NMR readout spectrum is
acquired, and the line intensities are computed. This process is repeated for various
suitable RF pulses (tomographic pulses). After a specific number of readouts, a set
of equations involving the line intensities and the components of the original density
matrix can be constructed.

In NMR quantum computing, the Uhlmann-Jozsa relation is commonly used to
compute the state fidelity [46, 47], given as:

F =

[
Tr

(√√
ρthρex

√
ρth

)]2

(1.50)

where the theoretical and experimental density operators are denoted by the symbols
ρth and ρex, respectively.

1.4 Quantum Entanglement
Quantum entanglement is a key aspect of quantum theory and was first introduced in
1935 by Erwin Schrödinger [48]. It has been demonstrated that quantum entangle-
ment is a physical resource [1] that can be used to conduct quantum computational
operations [11] which cannot be carried out using classical resources.

16



1.4 Quantum Entanglement

Given a quantum system with two subsystems, A and B, whose quantum states
are defined in Hilbert spaces HA and HB of dimension dA and dB, respectively, it is
possible to express a vector in the joint Hilbert space HA ⊗HB as [11]:

|ψ〉 =

dA,dB∑
i,j=1

cij|ai〉 ⊗ |bi〉 ∈ HA ⊗HB (1.51)

where {|ai〉} and {|bi〉} are the basis in HA and HB, respectively, and cij ∈ C.
Normalization condition of |ψ〉 can be describes as

∑dA,dB
i,j=1 |cij|2 = 1.

If |ψ〉 ∈ H denotes a general pure state of the composite system AB, then it can
be expressed as:

|ψ〉 = |φA〉 ⊗ |φB〉 (1.52)

If |φA〉 ∈ HA, |φB〉 ∈ HB, then the state |ψ〉 is a separable or product state. If
on the other hand, |ψ〉 cannot be written in the above separable form, it is said to be
entangled.

Consider a more general scenario, where the system can be in any one of the states
|φi〉 ∈ H having the probability pi, a mixed state of the system can be written as

ρ =
∑
i

pi|φi〉〈φi| (1.53)

where
∑

i pi = 1 and pi ≥ 0. If the state of the composite system can be written as a
convex mixture, of the product states ρA ⊗ ρB:

ρ =
∑
i

wiρ
A
i ⊗ ρBi (1.54)

then ρ is separable, otherwise it is entangled. These formulae for bipartite entan-
glement can also be generalized to multipartite situations.

It is essential to produce, identify, and protect entangled states as they are the one
of the important resource of quantum information processing [49]. In quantum theory,
characterising and detecting entanglement is typically a difficult problem. Significant
experimental work has been put into creating entanglement in recent years. Several
solutions to these problems have been proposed, including the positivity under partial
transposition (PPT) [50] criterion, permutation-based estimates of quantum correla-
tions [51], and others. It is also a well-established field to detect entanglements using
entanglement witnesses [52]. Quantifying the entanglement in the state may be of rele-
vance in addition to entanglement detection. There are various entanglement measures
available to quantify the amount of entanglement present in the quantum state such as
concurrence [53] and negativity [54]. More details are provided in Chapter 4.
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1.5 Nonlocality and Quantum Contextuality

Since its inception, some aspects of quantum theory, including nonlocality [55, 56, 57],
and quantum contextuality [58, 59, 60] have been subject to debate. These phenom-
ena, despite their puzzling nature, enable some tasks that are either unfeasible or can-
not be carried out as effectively using classical computer. It is widely established that
the correlations corresponding to the measurements of quantum states contradict an
interpretation based on classical theories. Results of measurements made on single
indivisible systems or even spatially separated systems may show correlations that are
higher than their apparent classical values. For bipartite space-like separated and for
a single indivisible system, these correlations are referred to as Bell non-local or con-
textual, respectively. These correlations have been studied by means of inequalities
and suggest non-classical behaviour when violated. To test the contextual nature of the
correlations, the Klyachko, Can, Binicioğlu, and Shumovsky (KCBS) inequality [61],
the simplest and well-studied inequality, is used while Clauser-Horne-Shimony-Holt
(CHSH) inequality [62] is used to reveal the nonlocal nature of the correlations. Tasks
involving the processing of quantum information [63, 64, 65] have greatly benefited
from the use of the aforementioned quantum correlations. Also, a monogamy rela-
tionship between such quantum correlations has been developed [66, 67]. Utilizing
a variety of quantum information processors, the experimental tests of quantum con-
textuality [68, 69], nonlocality [70], monogamy of nonlocality and contextuality [71]
have been performed. Along with the previously described quantum properties, entan-
glement is a crucial aspect of quantum theory [11, 72, 73, 74, 75]. Entanglement is one
of the essential components of nonlocality, and studies have looked into how the two
are related [76].

In 1964, Bell inequality was developed to set bounds on classical situations de-
scribable by local realistic hidden variable models (LRHVM). Violation of the Bell
inequality implies the inconsistency of LRHVM with quantum mechanics. The cor-
relations which violate the inequality are termed as nonlocal. In 1967, Kochen and
Specker provided an alternate method of determining intrinsic quantumness for the
single quantum system and introduced the notion of quantum contextuality which is
not compatible with noncontextual hidden variable (NCHV) theories.

1.5.1 Kochen-Specker theorem

Kochen-Specker (KS) theorem [58], one of the crucial concepts of quantum foundation
theory was developed in 1967. According to the KS theorem, it is not always possi-
ble to pre-define the outcomes of the projective measurements in the Hilbert space
of dimension 3 or greater. For a particular set of commuting projectors {Πi}, with
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(a) (b)

1

0
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0

Figure 1.3: (a) Representation of orthogonality graph where each vertex corresponds to
the projectors and each of the edge represents the orthogonality relationship between the
two projectors. (b) Orthogonality graph, illustrating assignment of numerical values.

∑
i Πi = 1, it is impossible to associate the numerical values 0 or 1. Also, the sum of

outcomes associated with the projectors must be equal to 1 i.e.
∑

i v(Πi) = 1. It takes
the utilization of 117 distinct projectors in a three-dimensional Hilbert space to prove
the original KS theorem. The proof of the KS theorem involves the projectors having
more than one contexts. It has been demonstrated that one can reach a contradiction of
the non-contextuality hypothesis in which the assignment projectors’ numerical values
are independent of the context in which they appear.

1.5.2 Quantum contextual inequalities

As discussed in the previous section, the KS theorem describes the impossibility of
assignment of definite outcomes to observables. The KS theorem can be viewed as a
logical demonstration of contextuality and it is not suitable for implementation in the
lab.

1.5.2.1 State dependent quantum contextuality: KCBS inequality

The first simplest scenario suitable for the experimental implementation was developed
by Klyachko, Can, Binicioğlu, and Shumovsky and is known as KCBS scenario [61].
To test the KCBS inequality and reveal quantum contextuality, 3-dimensional Hilbert
space system are required. The KCBS inequality involves five projectors and the sce-
nario can be described via an orthogonality graph, depicted in Fig. 1.3(a).

In the orthogonality graph, the projectors are illustrated by the vertices, and an
edge joins two orthogonal projectors. Projectors commute pairwise and are orthogonal
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to one another. As a result, they can be evaluated together. A collection of such
co-measurable observables represent the context. It can be concluded that context is
defined by the edge and each projector is defined in two different contexts. According
to the deterministic non-contextual model, the values 0 or 1 can be assigned to the
vertex i with the probabilities Pi or (1− Pi). According to non-contextual assignment
of numerical values, one can assign the probability Pi = 1 to maximum number of
vertices is 2, regardless of the underlying state and one such possible assignment of
numerical values are depicted in Fig. 1.3(b). The KCBS inequality can be described
as:

K =
1

5

4∑
0

Pi ≤
2

5
(1.55)

where 2
5

represents the maximum values that can be achieved via the non-contextual
assignment of the numerical values. The KCBS inequality is an illustration of state-
dependent contextuality that is satisfied by all noncontextual hypotheses. For the set
projectors Πi and for the particular state |ψ〉, the KCBS inequality can be violated.
The maximum numerical value that can be achieved is

√
5

5
which is greater than 2

5
,

showing that quantum theory does not allow the noncontextual hypothesis. These
state-dependent scenarios exhibit violation depending on the observables and chosen
quantum state .

1.5.2.2 State independent quantum contextuality

There exists another type of contextuality test, known as state-independent quantum
contextuality [77, 78] where the inequality violation does not depend on the choice of
states. Similar to state-dependent proofs, state-independent scenarios of contextuality
can be constructed where each observable is a part of many contexts of commuting
observables. One example of state-independent contextuality is the Peres-Mermin in-
equality [79] where the inequality is violated by any two-qubit quantum state for a
particular set of nine observables.The observable set chosen is the “PM square” of
nine dichotomous and mutually compatible observables A,B,C, a, b, c, α, β, γ [80]:

A = σz ⊗ I, B = I ⊗ σz, C = σz ⊗ σz
a = I ⊗ σx, b = σx ⊗ I, c = σx ⊗ σx
α = σz ⊗ σx, β = σx ⊗ σz, γ = σy ⊗ σy.

(1.56)

Consider the expectation values of the above observable in certain combination
described as follows:

〈XPM〉 = 〈ABC〉+ 〈bca〉+ 〈γαβ〉+ 〈Aαa〉+ 〈bBβ〉 − 〈γcC〉 (1.57)
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The inequality values can be described as if we make non-contextual assignments:

〈XPM〉 ≤ 4 (1.58)

where the inequality known as Peres-Mermin inequality that is satisfied by all non
contextual hidden variable (NCHV) theories [80] and violated by quantum theory. A
value of 〈XPM〉 = 6 has been demonstrated for any four-dimensional quantum system
with a certain set of observables, exhibiting state-independent contextuality [81].

1.5.3 Bell-CHSH inequality
The Bell’s inequality [62] deals with nonlocal features which encompass the tensor
products of systems in different Hilbert spaces. The existence of nonlocality is a fun-
damental departure from the classical theory. Einstein et al. [82] initially introduced
the concept of nonlocality in 1935. They argued that the accuracy of the quantum me-
chanical description of reality should be examined. They constructed a scenario based
on the assumptions of reality and locality for two spatially separated observers and
demonstrated the paradoxical character of quantum theory [82].

According to John Bell’s famous inequality in 1964 [55], at least one of the afore-
mentioned premises must be false and has to be discarded. To establish the conven-
tional interpretations of quantum theory, the concept of reality is typically abandoned.
John Bell’s findings, which are presented as a theorem, demonstrate that nature is
intrinsically probabilistic and that no local realistic model can replicate it. More pre-
cisely, Bell’s theorem states that any model based on local realism i.e. which assigns
outcomes to measurements in a local manner can not reproduce the statistics of quan-
tum theory. Based on this premise, the probability distribution of the measurements
outcomes is given as:

p(a, b|A,B) =

∫
µ(λ)p(a|A, λ)p(b|B, λ)d(λ) (1.59)

where the outcomes of observables A and B are denoted by a and b, respectively
and λ denotes the hidden variable, and µ(λ) denotes the hidden variable state proba-
bility. According to the local assumption, it is assumed that observables are measured
on spatially distinct systems and hence cannot affect the outcomes of each other. Ac-
cording to Eqn. 1.59, given the probability distribution over the hidden variables λ, it
is possible to factorise the joint probability distribution p(a, b|A,B) into local distri-
butions over the observables A and B. Several Bell inequalities that put limits on the
behaviour of local hidden-variable models can be obtained using Eqn. 1.59.

The Bell-CHSH inequality is the most well-known and extensively studied Bell in-
equality. This inequality was developed for two parties, each having access to two mea-

21



1. Introduction

|Ψ⟩

Figure 1.4: Schematic diagram corresponding to Bell CHSH inequality where Ai, Bi are
the observables corresponding to Alice and Bob system, respectively, with i, j ∈ {0, 1}.
The observables outcome are represented a, b with a, b ∈ {+1,−1}.

surement basis and each of the measurements being assumed to have two outcomes.
The correlations that result from observations on two-qubit states are measured by the
Bell-CHSH inequality. Nonlocal correlations are all those that violate the Bell-CHSH
inequality.

Consider the two spatially separated parties Alice and Bob sharing an entangled
state |ψ〉depicted in Fig 1.4. Each party can perform two measurements, each having
±1 measurement outcomes . If A0, A1 and B0, B1 are the measurements performed on
Alice’s particle and on Bob’s particle, respectively, a joint operator, referred to as the
Bell operator, can be defined as:

B = A0 ⊗B0 + A0 ⊗B1 + A1 ⊗B0 − A1 ⊗B1 (1.60)

The expectation value of the above Bell operator B using any local realistic hidden
variable model (LRHVM) is bounded between the 2 and −2, which is written as:

〈S〉 ≡ |B| ≤ 2. (1.61)

In quantum theory, the violation of the above inequality can be achieved for some
quantum states. The fact that some quantum states defy this bound suggests that there
is no LRHVM for the above scenarios.

Major portion of the thesis is dedicated to the experimental study of quantum foun-
dational properties such as quantum contextuality and non-locality. These two quan-
tum phenomena were investigated separately for many years; however, it has recently
been demonstrated that quantum contextuality and nonlocality can be examined simul-
taneously via the development of a monogamy relationship between them. This mo-
tivates us to move towards the experimental study of monogamy relationship between
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Figure 1.5: Graphical illustration of summary of contents of the thesis.

quantum contextuality and non-locality. Furthermore, we develop the novel method to
derive the monogamy relation of entropic noncontextual inequalities and experimen-
tally verified the developed theoretical results. Final part of the thesis contains the
NMR implementation of quantum-classical hybrid algorithms, like variational quan-
tum algorithms. We have simulated the ground state energy and excited state energies
of H2 molecule using the VQE and VQD algorithms respectively. The simulated re-
sults are then verified on an NMR quantum processor. The graphical representation of
outline of this thesis is described in Fig. 1.5

1.6 Organization of the thesis

The work presented in this thesis focuses on the experimental exploration of key con-
cepts of quantum theory such as quantum contextuality and non-locality. The thesis
chapters are organized as follows:

Chapter 2 focuses on the experimental implementation of fully contextual corre-
lations. Two different state-dependent quantum contextuality have been demonstrated
using two and three NMR qubits. Section 2.1 introduces the notion of quantum con-
textuality. Section 2.2 describes the theoretical background of fully contextual cor-
relations in four dimensional Hilbert space and their experimental demonstration is
described in Section 2.3. Fully contextual correlations in eight-dimensional Hilbert
space are described theoretically in Section 2.4, and their experimental demonstration
is discussed in Section 2.5. Some concluding remarks of the chapter are presented in
Section 2.6.
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1. Introduction

Chapter 3 provides the construction of a quantum scattering circuit capable of per-
forming non-invasive measurements. We have utilized this circuit for the experimen-
tal demonstration of Peres-Mermin (PM) inequality as well as a Bell-type inequality
using a three-qubit system. Section 3.1 introduces the notion quantum contextual-
ity in temporal scenarios and non-invasive measurements. Section 3.2 describes the
generalization of quantum scattering circuit capable of performing the non-invasive
measurements. Section 3.3 describes the experimental demonstration of the violation
of temporal Peres-Mermin and Bell-type inequalities using the three qubit quantum
scattering circuit. Section 3.4 presents the chapter’s concluding remarks.

Chapter 4 provides the experimental construction of a symmetric three-qubit en-
tangled state, which is then utilized to violate a Bell-type inequality. Violation of the
inequality reveals the maximal nonlocal nature of the scenario. Section 4.1 provides
the description of tripartite entanglement states and its utility in tight Bell inequali-
ties. Section 4.2 describes the theoretical background of the tight Bell inequality in
the (3, 2, 2) scenario. Section 4.3 provides the experimental construction of the three-
qubit |S〉 entangled state and experimental demonstration of the violation of the tight
Bell inequality, revealing the maximal nonlocality. The conclusions of the chapter are
presented in Section 4.4.

Chapter 5 contains the experimental simulation of the monogamy relationship be-
tween non-locality and contextuality where a three-qubit system is used to realize the
ququart-qubit system. Section 5.1 provides introduction of monogamy relationship
between quantum contextuality and nonlocality. Section 5.2 contains the theoretical
of monogamy relationship between quantum contextuality and nonlocality in ququart-
qubit scenario and their experimental demonstration is presented in the Section 5.3. In
Section 5.4, the chapter’s conclusions are presented.

Chapter 6 uses a graph theoretical method based on the no-disturbance principle
to present a theoretical analysis of the monogamous relation of entropic noncontextual
(ENC) inequalities. Additionally, for pure and mixed states, we have experimentally
verified the theoretical results. Section 6.1 introduces the notion of the monogamous
relation of ENC inequalities. Section 6.2 describes the theoretical study of entropic in-
equalities and their monogamy relationship using the graph theoretical approach. Sec-
tion 6.3 provides the experimental demonstration of monogamy relationship of ENC
inequalities using the tripartite mixed and pure states. The chapter’s conclusions are
addressed in Section 6.4.

Chapter 7 contains an investigation of variational quantum eigensolver (VQE) and
variational quantum deflation (VQD) algorithms to simulate the H2 molecule’s ground
state and excited state energies. On an NMR quantum processor, the simulation find-
ings are then validated. Section 7.1 provides the introduction of variational quantum
algorithms and their applications in quantum chemistry. Section 7.2 contains the study
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1.6 Organization of the thesis

of simulation of energy calculation of H2 molecules using the quantum hybrid (VQE,
VQD) algorithms and their NMR implementation has been described in Section 7.3.
Section 7.4 describes the study used to reduce the resources required for the ground
state energy calculation of LiH molecule. Section 7.5 explains the chapter’s conclu-
sions.

Chapter 8 contains a summary of the thesis and future directions of work.
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Chapter 2

NMR implementation of fully
contextual quantum correlations

2.1 Introduction

The concept of the non-contextual hidden variable (NCHV) model was introduced by
Specker and Kochen in 1967 and proposed that quantum theory is inconsistent with
the NCHV model [56, 58]. This result is known as the Kochen-Specker (KS) theo-
rem which states that the outcome measurements are independent of other compatible
observables which are being measured simultaneously within the same measurement
setting [60]. The context of measurements of other compatible observables within the
same measurement environment have been shown to affect the measurement output,
demonstrating the contextual nature of the quantum theory [59, 83, 84]. For composite
systems, the Bell inequality can be used to test for quantumness, while noncontextual
inequality can be used to show quantumness for single individual systems [61]. There
are now several easier and more methodical methods of demonstrating quantum con-
textuality, especially those based on graph theory [85]. Using such approach several
new scenarios of contextuality have been identified [77, 86, 87, 88].

Another area of scientific interest is finding the physical principles that underlie
this kind of contextuality [89] and finding theories that are more contextual than quan-
tum mechanics has been a major research focus [90, 91, 92]. It is crucial to pinpoint
the basic contexts in which general theories cannot be more contextual than quantum
theory. There exist scenarios in which it is possible that the maximum quantum values
saturate the maximum for the general probability (GP) theories [68, 90].

Certain NC inequalities can be violated in order to reveal the contextuality, and
Kochen and Specker developed the first NC inequality, known as the KS theorem [58]
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2. NMR implementation of fully contextual quantum correlations

and later, Peres suggested an updated version of the KS scheme [93]. The KS theorem,
which was developed using counterfactual justification, is regarded as the logical proof
of contextuality. As a result, implementing the KS scheme in the lab is unfeasible. The
initial contextuality test suited for an experimental test was put forth by Klyachko,
Can, Binicioğlu and Shumovsky, known as KCBS inequality [61]. Tests of contex-
tuality can be classified as state-independent or state-dependent tests of contextuality.
The contextuality can be revealed for every quantum state using the state independent
tests [77, 94, 95], however the state-dependent tests can only reveal contextuality for
specific quantum states [61, 96].

The KCBS inequality is an illustration of a state-dependent contextuality test, mean-
ing that for a particular subset of quantum states, there is no joint probability distri-
bution for the results of measurements. The KCBS inequality can violated by a set
of five yes-no outcome observables on a three-level quantum system (qutrit). Uti-
lizing single photons, the state-independent test of contextuality has been experimen-
tally demontrated [97, 98]. Using four-dimensional photonic devices, the experimental
demonstration of a KS set of the quantum yes-no test has been carried out [99]. There
are further experimental studies that use photons to demonstrate quantum contextu-
ality [68, 100]. Furthermore, contextuality is experimentally demontrated by verious
groups using ions [101, 102], neutrons [103], and nuclear spins [69, 104].

In this chapter, we have used an NMR quantum processor to experimentally demon-
strate fully contextual correlations. Two distinct inequalities are used to reveal fully
contextual connections. The first inequality, contructed by Nagali et al. [68], utilizing
ten projectors and ten measurements on a specific state in the four-dimensional Hilbert
space. The second fully contextual inequality was proposed by Cabello [90] and known
as twin KCBS inequality as it utilizes the same number of measurements as KCBS
inequality. Twin KCBS inequality requires ten projectors and five measurements on a
state in the six-dimensional Hilbert space. States in an eight-dimensional Hilbert space
were used to realise the six-dimensional subspace. The graphical methodology for the
experimental demonstration of the twin KCBS inequality is given in Fig. 2.1.

We first recast the inequalities to make them appropriate for NMR measurements
in order to do the experimental demonstration. We decompose the projectors in terms
of Pauli operators and map these decomposed Pauli operators into the single-qubit op-
erator. The benefit of such mapping is that it does not require full state tomography,
enables us to measure the required observables directly, and lowers the number of ob-
servables required to implement the inequalities. In NMR experiments, the two-qubit
and three-qubit systems corresponding to four and eight-dimensional Hilbert spaces,
are physically realised by 13C-labeled chloroform and 13C-labeled diethyl fluoroma-
lonate molecules, respectively. Experimentally observed violations of the inequalities
are in good agreement with theoretical prediction. Additionally, by introducing some
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2.2 Fully contextual quantum correlations in four-dimensional Hilbert space

KCBS : Not Fully 
Contextual

Twin KCBS :  Fully 
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State Preparation

Correlation 
Measurement

Experimental 
Demonstration

Figure 2.1: Scheme to experimentally demonstrate twin KCBS inequality which involves
fully contextual correlations.

unitary rotation to the underlying quantum state, we studied how these inequalities
behave for various quantum states. In relation to the rotation angle of the underlying
state, the violation of both inequalities exhibits a nonlinear trend. Our findings indi-
cate that fully contextual correlations in the eight-dimensional Hilbert space are more
robust than those in the four-dimensional Hilbert space.

2.2 Fully contextual quantum correlations in four-dimensional
Hilbert space

In this section, we will first look at a contextuality inequality that can reveal fully
contextual quantum correlations as developed by Nagali et al. [68] which utilize states
in a Hilbert space of dimension four. We present a modified version of the inequality
by decomposition into Pauli matrices which we experimentally test on a four-level
quantum system using two NMR qubits.

The simplest test of quantum contextuality requires measurement of 5 different
projectors {Πi}, i ∈ {0, 1, 2, 3, 4} and Πi = |vi〉〈vi|, where |vi〉 are unit vectors. The
aforementioned projectors follow the exclusivity relation P (Πi = 1)+P (Πi⊕1 = 1) =
1, where P (Πi = 1) represents the probability of obtaining outcome Πi and addition is
taken modulo 5. For projective measurements, this relationship implies that only one
of Πi or Πi⊕1 can be obtained in a joint measurement of both. The corresponding test,
termed as KCBS inequality is of the form

K =
1

2

4∑
i=0

P (Πi + Πi⊕1 = 1)
NCHV
≤ 2

QM
≤
√

5
GP
≤ 5

2
, (2.1)
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Figure 2.2: A ten-vertex orthogonality graph with the labels 0, 1, 2, ...9 is used to depict
the inequality C. Each vertex represents a projector, and the orthogonal projectors are
connected by an edge.

where the inequalities correspond to the maximum value achievable for non-contextual
hidden variable (NCHV) theories, quantum mechanics (QM) and generalized proba-
bilitic (GP) theories.

As is evident from Eqn. (2.1), the maximum violation that can be achieved in quan-
tum mechanics is less than what can be attained if an underlying GP model is consid-
ered. Therefore, for the KCBS scenario, quantum correlations are not fully contextual.
Recently, it has been shown that there exist tests of contextuality for which quantum
correlations saturate the bound as imposed by GP models [105]. For these scenarios,
quantum correlations are either non-contextual or fully contextual.

Fully contextual quantum correlations can also be obtained for scenarios other than
KCBS as well. As shown in [68], one such scenario entails measurements correspond-
ing to 10 different projectors Πj = |uj〉〈uj|, j = {0, 1, ..., 9}. In this particular sce-
nario, the projectors follow exclusivity relationships as depicted in Fig. 2.2, where
each vertex represents a projector Πi and two projectors are connected by an edge if
and only if they are exclusive. The corresponding test of contextuality is then given by
the inequality,

C =
9∑
i=0

P (Πi = 1)
NCHV
≤ 3

QM, GP
≤ 7

2
. (2.2)

The scenario is reminiscent of the twin KCBS inequality as discussed above, how-
ever this test requires 10 different measurements rather than 5 and is capable of reveal-
ing fully contextual quantum correlations in a much smaller Hilbert space of dimension
at least 4. The inequality can be explicitly tested if we consider the unit vectors |ui〉 as

30



2.2 Fully contextual quantum correlations in four-dimensional Hilbert space

follows:

〈u0| =
1√
2

(0, 0, 1, 1), (2.3a)

〈u1| =
1

2
(1,−1, 1,−1), (2.3b)

〈u2| =
1

2
(1,−1,−1, 1), (2.3c)

〈u3| =
1√
2

(1, 0, 0,−1), (2.3d)

〈u4| =
1

2
(1, 1, 1, 1), (2.3e)

〈u5| =
1√
2

(0, 1, 0,−1), (2.3f)

〈u6| =
1

2
(−1, 1, 1, 1), (2.3g)

〈u7| =
1√
2

(1, 0, 0, 1), (2.3h)

〈u8| =
1

2
(1, 1, 1,−1), (2.3i)

〈u9| =
1

2
(1, 1,−1, 1). (2.3j)

The corresponding projective measurements are of the form

Mj = {Πj,1− Πj} ∀j ∈ {0, 1, ..., 9}, (2.4)

which are performed on the state

〈φ| = (0, 0, 0, 1). (2.5)

To experimentally demontrate the inequality C on a four-level quantum system us-
ing two NMR qubits, one has to determine the expectation value of the observables
involved for an experimentally prepared state. This can be achieved by decomposing
the observables as a linear superposition of Pauli operators. For a two-qubit system,
any observable can be decomposed as a linear superposition of 16 Pauli operators, and
the Pauli operator can be mapped to the single-qubit Pauli Z operator. This mapping is
particularly useful in the context of an NMR experimental setup where the expectation
value of the Z operator is easily accessible. In an NMR measurement schema, the ob-
served z magnetization of a nuclear spin in a particular quantum state is proportional to
the expectation value of the Z operator of the spin in that state. The time-domain NMR
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2. NMR implementation of fully contextual quantum correlations

signal, i.e., the free-induction decay with an appropriate phase, results in Lorentzian
peaks when Fourier transformed. These normalized experimental intensities give an
estimate of the expectation value of Z in that quantum state [106, 107].

For the experimental implementation of the inequality, we decompose the projec-
tors (Πj) in terms of Pauli operators {I,X, Y, Z}. The inequality Eqn. (2.2) can be
rewritten in terms of expectation values as:

C =
9∑
i=0

〈Πi〉 =
9∑
i=0

tr(Πiρ
′) (2.6)

where ρ′ = |φ〉〈φ|. Using Eqn. 2.2, Eqn. 2.7 the inequality C can be rewritten as:

C =
1

4
tr(B · ρ′)

NCHV
≤ 3

QM, GP
≤ 7

2
, (2.7)

where

B = XX + Y Y − ZI + 2ZZ − IZ + 10II (2.8)

which can be measured experimentally. For example if we want to determine the
expectation value 〈XX〉 in the state ρ = |ψ〉〈ψ|, we map the state ρ to ρ1 = U1.ρ.U

†
1

with U1 = CNOT12 Y2Y1, followed by observing 〈Z2〉 for the state ρ1. The expec-
tation value 〈Z2〉 for the state ρ1 is equivalent to the expectation value of 〈XX〉 in
the state ρ = |ψ〉〈ψ|. Table 2.1 details the mapping of Pauli basis operators (used in
this paper) to the single-qubit Z operator. The observables of interest are given in the
decomposition of Eqn. 2.8. By experimentally evaluating the expectation value of the
observables given in Eqn. 2.8, the value of C can be estimated.

The underlying state |φ〉 is unitarily rotated by an angle θ as:

|φ(θ)〉 = UθI|φ〉, (2.9)

where

Uθ =

[
cos θ

2
−sin θ

2

sin θ
2

cos θ
2

]
(2.10)

The corresponding theoretical value of the inequality C for the aforementioned
state Eqn. 2.9 is found to be C = 1

4
(11 + 3cosθ) and is plotted in Fig. along with the

experimentally observed values at various θ angles.
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NMR qubits

Table 2.1: Table providing the product operators for the two-qubit system that are utilised
in this chapter. These operators are mapped to the Pauli Z operators by mapping the initial
state ρ→ ρi = Ui.ρ.U

†
i .

Observables Unitary Operator

〈XX〉 = tr(ρ1.Z2) U1 = CNOT12 Y2Y1

〈Y Y 〉 = tr(ρ2.Z2) U2 = CNOT12X2X1

〈ZI〉 = tr(ρ3.Z1). U3 = Identity

〈ZZ〉 = tr(ρ4.Z2) U4 = CNOT12

〈IZ〉 = tr(ρ5.Z2) U5 = Identity

2.3 NMR implementation of fully contextual quantum
correlations using two NMR qubits

To implement the inequality on a four-dimensional quantum system, the molecule of
13C-enriched chloroform dissolved in acetone-D6 was used, with 1H and 13C spins
being labeled as qubit 1 and qubit 2, respectively (see Fig. 2.3 and Table 2.2 for details
of the experimental parameters).

The Hamiltonian for a two-qubit system is given by [107]

H = −νHI
H
z − νCI

C
z + JHCI

H
z I

C
z (2.11)

Table 2.2: Table listing the NMR parameters for 13C- labeled chloroform molecule used
as a two-qubit system

Qubit ν (Hz) J (Hz) T1 (s) T2 (s)

1H 4787.86 JHC = 215.11 7.9 2.95

13C 11814.09 16.6 0.3
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Figure 2.3: (a) Structure of 13C- labeled chloroform molecule with 1H and 13C spins
being realized as two-qubit system. (b) NMR spectra of 1H and 13C spins corresponding
to thermal equilibrium state and (c) pseudopure state after the application of π

2 detection
pulse. The logical state of the qubit, which is passive during the transition, is identified on
each peak.

where νH, νC are the chemical shifts, IH
z , IC

z are the z-components of the spin angu-
lar momentum operators of the 1H and 13C spins, respectively, and JHC is the scalar
coupling constant. The system was initialized in the pseudopure state (PPS), i.e., |00〉,
using the spatial averaging [108] with the density operator given by

ρ00 =
1

4
(1− ε)I4 + ε|00〉〈00| (2.12)

where I4 is the 4 × 4 identity operator and ε is proportional to spin polarization and
can be evaluated from the ratio of magnetic and thermal energies of an ensemble of
magnetic moments µ in a magnetic field B at temperature T ; ε ∼ µB

kBT
and at room

temperature and for a B ≈ 10 Tesla, ε ≈ 10−5. The state fidelity of the experimentally
prepared PPS was computed to be 0.99 using the fidelity measure [109]. For the exper-
imental reconstruction of the density operator full quantum state tomography [42, 110]
was performed using a set of preparatory pulses {II, IX ′, IY ′, X ′X ′}, where I implies
no operation and and X’(Y’) denotes a qubit-selective radio-frequency (rf) pulse of 90◦

flip angle of phase x(y). The durations of π
2

pulses for 1H, 13C were 9.56 µs at power
level 18.14 W, 16.15 µs at a power level of 179.47 W, respectively.

The quantum circuit to achieve the required states to test the inequality C on a four-
dimensional quantum system is shown in Fig. 2.4(a) and the corresponding NMR pulse
sequence is shown in Fig. 2.4(b). Eight different states were generated by varying
the flip angle θ over a range of values: 180◦, 120◦, 90◦, 69.23◦, 60◦,45◦, 30◦and 0◦.
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Figure 2.4: (a) Quantum circuit that modifies the flip angle θ to create the various two-
qubit states required (b) NMR pulse sequence associated with the quantum circuit. The
NMR pulse sequence for the PPS state |00〉 preparation is shown before the first dashed
black line with the value of flip angle β = 59.69◦. The various states are generated by
varying the flip angle θ. The interval τ12 is defined as 1

2JHC
where JHC is the scalar

coupling between 1H and 13C.
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Figure 2.5: The theoretical (up) and experimental (down) tomographs of the 〈φ1| =
(0,−1, 0, 0) state, with the experimental fidelity of 0.99.

The state that is prepared with the flip angle θ = 180◦ gives the minimum value of
C, while the state which is prepared without applying any rf pulse (θ = 0◦) gives
the maximum value. All the states required for testing the inequality on the four-
dimensional quantum system were experimentally prepared with state fidelities greater
than or equal to 0.97. The tomograph for one such experimentally prepared state with
the flip angle θ = 180◦ and state fidelity 0.99 is depicted in Fig. 2.5.

For each of these eight different initial states, the contextuality test was repeated
three times. The mean values and the corresponding error bars were calculated and
the results are shown in Fig. 2.6, where the inequality values are plotted for different
θ values. The maximum of the sum of probabilities using classical theory is 3 and the
maximum of the sum of probabilities using quantum theory is 3.5, which are shown
by dotted and dashed lines, respectively, Fig. 2.6. As can be seen from the values
tabulated in Table 2.3, the theoretically computed and experimentally measured values
of the inequality agree well to within experimental errors.

From Fig. 2.6 it can be seen that the violation for the inequality C decreases as the
original state |φ〉is rotated through an angle θ; no violation is observed for the angle
θ > 70◦. The corresponding curve is found to obey a nonlinear trend such that smaller
rotations lead to minor changes in the violation, while larger rotations may lead to a
situation where no violation is observed.
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Figure 2.6: Graph showing the inequality C values for the different states versus different
flip angles θ states. Dotted and dashed lines represent the maximum values using classical
and quantum theory, respectively.

Table 2.3: Table showing the values of the inequality C calculated theoretically and exper-
imentally for various states produced by rotating the initial state |φ〉 with different values
of flip angle θ.

θ Theoretical Experimental

180◦ 2.000 2.024±0.025

120◦ 2.375 2.433±0.031

90◦ 2.750 2.754±0.029

69.23◦ 3.016 2.989±0.040

60◦ 3.125 3.171±0.034

45◦ 3.280 3.334±0.035

30◦ 3.399 3.434±0.040

0◦ 3.500 3.501±0.032
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2. NMR implementation of fully contextual quantum correlations

2.4 Fully contextual quantum correlations in eight-dimensional
Hilbert space

In this section we first review a contextuality inequality which is capable of revealing
fully contextual quantum correlations as developed by Cabello [90], which requires
a Hilbert space dimensionality of at least 6. We then design a modified version of
the inequality via decomposition of the projectors into Pauli matrices, for ease of ex-
perimental implementation. We experimentally test the inequality on an eight-level
quantum system, physically realized via three NMR qubits.

One of the simplest tests of contextuality, capable of revealing fully contextual
quantum correlations, requires only five measurements, but of ten different projectors
{Πi}, and is of the form

K =
1

2

4∑
i=0

P (Πi + Πi+1 + Πi+5 + Πi+7 = 1)
NCHV
≤ 2

QM, GP
≤ 5

2
, (2.13)

where the sum in the indices is defined as standard addition except for three cases
where we define it as 4 + 1 = 0, 3 + 7 = 5, and 4 + 7 = 6 to ensure that only those
vertices connected by the same edge style in Fig. 2.7 appear in the sum. To elaborate,
the term corresponding to i = 4 will be of the form P (Π4 + Π0 + Π9 + Π6 = 1).

Since both the KCBS and the aforementioned inequality Eqn. 2.13 require only five
different measurements, the above scenario is termed a KCBS twin inequality, with
the only difference that it is capable of revealing fully contextual quantum correlations
and requires quantum systems having Hilbert space dimension at least 6. We will
henceforth refer to this inequality as the KCBS twin inequality.

The scenario corresponding to the KCBS twin inequality Eqn. 2.13 can be repre-
sented by an exclusivity graph as shown in Fig. 2.7. In this graph, each vertex corre-
sponds to a unit vector |vi〉 used to construct the projectors {Πi}, and two vertices are
connected by an edge if and only if they are exclusive. From the graph it is possible to
identify five different measurements Mi, which are defined as

Mi = {Πi,Πi+1,Πi+5,Πi+7}, ∀i ∈ {0, 1, ..., 9}. (2.14)

These measurements can be identified from the graph in Fig. 2.7 by five sets of four
interconnected vertices, each represented by a different line style.

An explicit form of the KCBS twin inequality Eqn. 2.13 which saturates the QM
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2.4 Fully contextual quantum correlations in eight-dimensional Hilbert space 
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Figure 2.7: A ten-vertex orthogonality graph, representing the twin KCBS inequality K

with ten vertices labeled 0, 1, 2, ....9 corresponding to five measurements. Each vertex
represents a projector, and an edge represents the orthogonality relationship between the
projectors. Five different measurements are represented by five different edge styles and
each of the measurements is joined by four vertices.

and GP bound can be obtained if we consider the unit vectors |vi〉 defined as,

〈v0| =
1√
8

(
√

2,−
√

2, 0, 0, 2, 0, 0, 0), (2.15a)

〈v1| =
1√
8

(
√

2, 0, 0,
√

2,−1,
√

3, 0, 0), (2.15b)

〈v2| =
1

2
(1,−1,−1,−1, 0, 0, 0, 0), (2.15c)

〈v3| =
1

2
(1,−1, 1, 1, 0, 0, 0, 0), (2.15d)

〈v4| =
1√
8

(
√

2, 0, 0,−
√

2,−1,
√

3, 0, 0), (2.15e)

〈v5| =
1√
8

(
√

2, 0,−
√

2, 0,−1,−
√

3, 0, 0), (2.15f)

〈v6| =
1√
8

(
√

2, 0,
√

2, 0,−1,−
√

3, 0, 0), (2.15g)

〈v7| =
1

2
(1, 1, 1,−1, 0, 0, 0, 0), (2.15h)

〈v8| =
1√
8

(
√

2,
√

2, 0, 0, 2, 0, 0, 0), (2.15i)

〈v9| =
1

2
(1, 1,−1, 1, 0, 0, 0, 0). (2.15j)
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2. NMR implementation of fully contextual quantum correlations

The state |ψ〉 on which the measurements Mi will be performed is chosen as

〈ψ| = (1, 0, 0, 0, 0, 0, 0, 0), (2.16)

so that 〈vi|ψ〉 = 1
2
∀i ∈ {0, 1, ..., 9} which subsequently ensures the exclusivity rela-

tion P (Πi + Πi+1 + Πi+5 + Πi+7 = 1) = 1, i = 0, 1, ..., 4.
To experimentally test the inequality K on an eight-level quantum system using

three NMR qubits, the expectation values of the observables involved have to be de-
termined for an experimentally prepared state. The expectation value of desired ob-
servables can be determined by decomposing the observables as a linear superposition
of the Pauli operators as has been detailed in Sec. 2.2. For a three-qubit system, any
observable can be decomposed as a linear superposition of 64 Pauli basis operators.

In order to evaluate the twin KCBS inequality experimentally, we first decompose
the projectors involved in terms of Pauli operators {I,X, Y, Z} for three qubits. Since
in an NMR quantum information processor it is only possible to measure the expecta-
tion value of the observables, we first translate Eqn. 2.13 in terms of expectation values
as

K =
1

2

4∑
i=0

P (Πi + Πi+1 + Πi+5 + Πi+7) =
9∑
i=0

〈Πi〉 =
9∑
i=0

tr(Πiρ) (2.17)

where ρ = |ψ〉〈ψ|. Using the decomposition, the inequality K Eqn. 2.13 can be rewrit-
ten as:

K =
1

8
tr(A · ρ)

NCHV
≤ 2

QM, GP
≤ 5

2
, (2.18)

and

A = IIZ + 4IZI + IZZ + 4ZII + ZIZ − 2ZZI + ZZZ + 10III (2.19)

which we experimentally verify using a three-qubit NMR information processor.
We note here in passing that the decomposition of the observable A consists only of
diagonal Pauli operators, which can be easily observed in an experiment. The fact that
the observable A can be decomposed as a combination of only diagonal Pauli operators
is an interesting coincidence. Furthermore, in an NMR setup, it is easier to implement
these diagonal operators as compared to other operators which have diagonal and off-
diagonal terms.

For example, the expectation value of 〈IIZ〉 can be obtained simply by measuring
the NMR peak intensities after applying a detection pulse on the third qubit. The
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2.4 Fully contextual quantum correlations in eight-dimensional Hilbert space

Table 2.4: Table listing the product operators used in this chapter for the three-qubit sys-
tem. These operators are mapped to the Pauli Z operators by mapping the initial state
ρ→ ρi = Ui.ρ.U

†
i .

Observables Unitary Operator

〈IIZ〉 = tr(ρ1.Z2) U1 = Identity

〈IZI〉 = tr(ρ2.Z2) U2 = Identity

〈IZZ〉 = tr(ρ3.Z1). U3 = CNOT23

〈ZII〉 = tr(ρ4.Z2) U4 = Identity

〈ZIZ〉 = tr(ρ5.Z2) U5 = CNOT13

〈ZZI〉 = tr(ρ5.Z2) U5 = CNOT12

〈ZZZ〉 = tr(ρ5.Z2) U5 = CNOT23CNOT12

underlying state |ψ〉 is unitarily rotated by an angle θ as

|ψ(θ)〉 = UθII|ψ〉, (2.20)

where U is as given in Eqn. 2.10. For the aforementioned state (2.20), the theoretical
value of the inequality (2.18) is found to be K = 1

2
(4 + cosθ), which is plotted in Fig.

along with the experimentally observed values at various θ angles. By experimentally
measuring the expectation value of the observable A for state ρ, the value of inequality
K can be estimated. For example, in order to determine 〈IZZ〉, the underlying state ρ
is mapped to the state ρ3 = U3.ρ.U

†
3 with U3 = CNOT23, followed by measuring 〈Z3〉,

which is is equivalent to the expectation value of 〈IZZ〉 for the state ρ. The explicit
mapping of the expectation value of the observables onto Pauli Z operators for three
qubits is given in Table 2.4.
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2. NMR implementation of fully contextual quantum correlations

2.5 NMR implementation of fully contextual quantum
correlations using three NMR qubits

To experimentally implement the KCBS twin inequality capable of revealing fully con-
textual quantum correlations for an eight-dimensional quantum system, we used the
molecule of 13C -labeled diethyl fluoromalonate dissolved in an acetone-D6 was used.
1H, 19F and 13C spin-half nuclei being encoded as qubit one, qubit two and qubit three,
respectively (see Fig. 2.8 for the molecular structure and corresponding NMR spectrum
of the PPS state, and Table 2.5 for details of the experimental NMR parameters).
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Figure 2.8: (a) Structure of 13C- labeled diethyl fluoromalonate molecule with 1H, 19F
and 13C spins being realized as the three-qubit system. (b) NMR spectra of 1H, 19F and
13C corresponding to thermal equilibrium state and (c) pseudo pure (PPS) state after the
application of π2 detection pulse. The logical state of the qubit, which is passive during the
transition, is identified on each peak.

The NMR Hamiltonian for a three-qubit system is given by

H = −
3∑
i=1

viI
i
z +

3∑
i>j,i=1

JijI
i
zI
j
z (2.21)

where the indices i, j = 1, 2, or 3 represent the qubit number and where νi is the
respective chemical shift in rotating frame, Jij is the scalar coupling constant, and I iz
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2.5 NMR implementation of fully contextual quantum correlations using three
NMR qubits

is z-components of the spin angular momentum operators of the ith qubit. The system
was initialized in the pseudopure state (PPS), i.e., |000〉, using the spatial averaging
[111] with the density operator given by

ρ000 =
1− ε

23
I8 + ε|000〉〈000| (2.22)

where ε is proportional to spin polarization and I8 is the 8×8 identity operator. The
fidelity of the experimentally prepared PPS state was computed to be 0.96. Full quan-
tum state tomography was performed to experimentally reconstruct the density opera-
tor via a set of preparatory pulses {III, IIY ′, IY ′Y ′, Y ′II,X ′Y ′X ′, X ′X ′Y ′, X ′X ′X ′},
where I implies no operation and X’(Y’) denotes a qubit-selective rf pulse of flip angle
90◦ of phase x(y).

Table 2.5: Table representing NMR parameters for 13C- labeled diethyl fluoromalonate
molecule used as a three-qubit system

Qubit ν (Hz) J (Hz) T1 (s) T2 (s)

1H 3334.24 JHF = 47.5 3.4 1.6

19F −110999.94 JHC = 161.6 3.7 1.55

13C 12889.53 JFC = −191.5 3.6 1.3

Experiments were performed at room temperature (294 K) on a Bruker Avance III
600-MHz FT-NMR spectrometer equipped with a QXI probe. Local unitary operations
were achieved by using highly accurate and calibrated spinselective transverse rf pulses
of suitable amplitude, phase, and duration. Nonlocal unitary operations were achieved
by free evolution under the system Hamiltonian, of suitable duration under the desired
scalar coupling with the help of embedded π refocusing pulses. The durations of π

2

pulses for 1H, 19F, and 13C were 9.36 µs at 18.14 W power level, 23.25 µs at a power
level of 42.27 W, and 15.81 µs at a power level of 179.47 W, respectively.

The quantum circuit to construct the states required to test fully contextual quantum
correlations is shown in Fig. 2.9(a) and the corresponding NMR pulse sequence is
shown in Fig. 2.9(b). Different states can be prepared by varying the value of the flip
angle θ of the rf pulse. We prepared seven different states by varying the flip angle θ
to attain a range of values: 180◦, 120◦, 90◦, 60◦, 45◦,36◦, and 0◦. The state prepared
with θ = 180 gives the minimum value of K, while the state prepared without applying
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Figure 2.9: (a) Quantum circuit that alters θ, the flip angle, to produce the different three-
qubit states needed (b) NMR pulse sequence associated with the quantum circuit. The
NMR pulse sequence for the PPS state |000〉 preparation is shown before the first dashed
black line with the value of flip angle α = 57.67◦. The various states are generated by
varying the flip angle θ. The broad white rectangles represent π pulses and the flip angle
and corresponding phases of other pulses are written alongside them. The intervals τ12,
τ13, τ23 are defined as 1

2JHF
, 1

2JHC
, 1

2JFC
respectively (JHF , JHC , JFC are the scalar

couplings between the respective NMR qubits).
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Figure 2.10: The theoretical (up) and experimental tomographs (down) tomographs of the
〈ψ1| = (0, 0, 0, 0, 1, 0, 0, 0) state, with an experimental fidelity of 0.97.

any rf pulse (θ = 0◦) gives the maximum value. All the states required to demonstrate
the KCBS twin inequality on an eight-dimensional Hilbert space which are capable of
revealing the transformation from classical correlations to fully contextual correlations
were experimentally prepared with state fidelities greater than or equal to 0.96.

The tomograph of one such experimentally reconstructed state with flip angle θ =
180◦ with state fidelity 0.97 is depicted in Fig. 2.10. For each of the initial states, the
contextuality test was repeated three times. The mean values and the corresponding
error bars were computed and the results are shown in Fig. 2.11. where the inequality
values are plotted for different values of the parameter θ. The maximum of the sum of
probabilities using classical theory is 2 and the maximum of the sum of probabilities
using quantum theory is 2.5; they are depicted by dotted and dashed lines, respec-
tively, in Fig. 2.11. The theoretically computed and experimentally obtained values of
the inequality for different values of the θ parameter are tabulated in Table 2.6. The
theoretical and experimental values match well, within the limits of experimental er-
rors. From Fig. 2.11 it can also be seen that the violation observed for the KCBS twin
inequality decreases as the original state |ψ〉 is rotated through an angle θ, with no vi-
olation when the transformed state is orthogonal to the original state. Furthermore, the
plot is nonlinear, indicating that smaller rotations lead to minor changes in violation,
while larger rotations may also lead to observing no violation at all.
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Figure 2.11: Graph denoting the inequality K values for the different states versus differ-
ent values of flip angle θ. Dotted and dashed lines represent the maximum values using
classical and quantum theory, respectively.

Table 2.6: Table displaying values of the inequality K calculated theoretically and ex-
perimentally for various states produced by rotating with angle θ, from the initial state
|ψ〉.

θ Theoretical Experimental

180◦ 1.500 1.522±0.042

120◦ 1.750 1.785±0.035

90◦ 2.000 2.016±0.031

60◦ 2.250 2.239±0.030

45◦ 2.353 2.33±0.033

36◦ 2.404 2.385±0.045

0◦ 2.500 2.449±0.046
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2.6 Conclusions
In this chapter, we experimentally demonstrated fully contextual quantum correlations
on an NMR quantum information processor. We studied two distinct inequalities ca-
pable of revealing such correlations: The first inequality used ten measurements on a
four-dimensional Hilbert space while the second inequality used five measurements on
an eight dimensional Hilbert space to reveal fully contextual correlations. However,
both inequalities involved the same number of projectors. For an experimental demon-
stration of each inequality, every projector was decomposed in terms of the Pauli basis
and the corresponding inequality recast in terms of Pauli operators, thereby reducing
the need for resource intensive full state tomography. Both inequalities C and K were
experimentally implemented with a fidelity greater than or equal to 0.96 by measuring
the expectation values of only five and seven Pauli operators, respectively, for the state
which maximizes the violation.

In addition to demonstration of fully contextual quantum correlations, we analyzed
the behavior of each inequality under rotation of the underlying state, which unitarily
transforms it to another pure state. The experiments were repeated for various states
rotated through an angle θ and were in good agreement with theoretical results. It was
seen that both the inequalities follow a nonlinear trend, while the inequality K offers a
greater range of violation than the inequality C with respect to the parameter θ.

An experimental implementation of fully contextual quantum correlations is an im-
portant step towards achieving information processing tasks, for which no postquan-
tum theory can do better. While the inequality C has been experimentally observed in
optical systems, an experimental demonstration of the inequality K is difficult owing
to the high dimensionality of the Hilbert space required. Our work asserts that NMR
is an optimal test bed for such scenarios. Results of this chapter are contained in Phys.
Rev. A 100, 022109(2019).
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Chapter 3

Implementation of state-independent
contextual inequalities on an NMR
quantum processor, using non-invasive
measurements

3.1 Introduction

The issue of hidden variables has been a point of contention ever since the development
of quantum theory. Einstein et al. derived a paradox (EPR paradox) [112] that claimed
quantum mechanics was incomplete and later Bell demonstrated [55] that no local
ontological model is consistent with the EPR argument. This suggests that quantum
correlations behave fundamentally different than those that can be accounted for by
classical models. As discussed in the previous chapter, the violation of a Bell inequal-
ity reveals the incompatibility of quantum theory with the local hidden variable model.
Kochen and Specker adopted a novel method for determining quantumness by intro-
ducing the notion of contextuality that does not fit in non-contextual hidden variable
(NCHV) theories [58, 113]. In order to disprove the NCHV hypotheses experimen-
tally, the hidden variable theorems were constructed in a form that allowed them to
be applied to experimental settings [114]. In order to identify minimal contextuality
scenarios, an efficient construction for minimal GHZ and Hardy-style demonstrations
of the Kochen-Specker theorem was put forth [115]. There exist a scenario where the
kinematics predictions of quantum theory and the NCHV model are compatible [116].

As mentioned in the previous chapter, several state independent and dependent tests
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of contextuality have been developed [77, 84, 87, 117]. Contextuality has been exper-
imentally verified by several experimental groups [68, 69, 97, 98, 99, 100, 101, 102,
103, 104]. The KCBS inequality, which uses the five measurements on the qutrit state,
revealed the first state-dependent test of contextuality [61]. To describe fully contex-
tual quantum correlations, a twin KCBS inequality was developed [90]. The Peres-
Mermin (PM) inequality, a state-independent contextuality inequality, is regarded as
the easiest way to demonstrate the KS theorem. PM inequality utilizes the six com-
patible measurements of nine dichotomic observables in the four-dimensional Hilbert
space [79, 118].

The Leggett-Garg (LG) inequality was developed, capable of capturing the quan-
tumness of temporal correlation under the assumptions of macroscopic realism and
noninvasive measurements [119]. LG inequality demands noncommuting observables
being sequentially measured at various times. Later, different LG-type inequalities has
been developed using different measurement scenarios [120, 121, 122, 123]. Tempo-
ral contextuality was tested via the violation of the temporal KCBS inequality [124].
Additionally, violation of temporal CHSH inequality, a Bell-type inequality, was devel-
oped, supporting the multipartite nature of temporal correlations [125]. The Tsirelson
bound, which has been explored for both Bell-type [126, 127, 128] and LG-type [129]
inequalities, is defined as the most degree to which inequality can be violated. Unex-
pected outcomes were reported in the case of some LG-type inequalities, where the
maximum degree of violation was higher than the Tsirelson bound and grew as the
system’s size increased [130]. Although Bell-inequalities, NC inequalities, and LG
inequalities are all produced under various conditions, they all address the same issue,
namely the results of context-free measurements of quantum mechanical observables.
It has been shown that contextual scenarios can be transformed into the LG- and Bell-
type inequalities [131].

The temporal contextuality inequality developed using noninvasive measurements.
Therefore, we must perform the noninvasive measurement, which is highly challeng-
ing to do in experiments, in order to capture the temporal quantum connection. Lower
bounds on the quantum dimension were obtained using state-independent temporal
noncontextuality inequalities [80]. Experimental implementation of LG-type inequal-
ities have been carried out using using polarized photons [132, 133], atomic ensem-
bles [134], a hybrid optomechanical system [135], NMR systems [136, 137, 138, 139,
140], bosonic systems [141] and superconducting qubits [142].

In this chapter, we used an NMR quantum processor for the experimental imple-
mentation of the PM inequality. Violation of the PM inequality reveals state-indepenendent
contextuality. Due to the fact that the PM inequality requires noninvasive measure-
ments, we must do the noninvasive measurements experimentally. This was accom-
plished by using a three-qubit system, physically realized by a 13C-labeled diethyl
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Non-invasive 
Measurement

Quantum 
Scattering Circuit

Peres-Mermin Inequality

Bell-Type Inequality

Experimental Demonstration

Figure 3.1: Scheme used to experimentally demonstrate violation of PM and Bell-type
inequality using a quantum scattering circuit.

fluoromalonate molecule. First, we have generalized the quantum scattering [136], ca-
pable of measuring the n-point correlation where the observables are measured sequen-
tially in time. We were able to perform a noninvasive measurement in the experiment
using this quantum scattering circuit. Our circuit, in contrast to existing measurement
techniques, can capture the desired temporal correlations in a single experimental run.
For the violation of the temporal PM inequality, we applied our quantum scattering cir-
cuit capable of measuring correlations, involved in the PM inequality. This was done
experimentally by sequentially measuring the three-point correlation function in order
to estimate the expectation value of the joint probability distributions, which were in-
volved in the PM inequality. Further, we have used a quantum scattering circuit to
demonstrate the violation of a Bell-type inequality that corresponds to the temporal
KCBS inequality. The graphical methodology for the experimental demonstration of
violation of PM and Bell-type inequality using a quantum scattering circuit is given in
Fig. 3.1.

3.2 Non-invasive measurements

Noninvasive measurements which do not disturb the subsequent evolution of a system
are in general not possible in quantum mechanics. Several noncontextual inequalities
such as the LG inequality or the temporal Bell-type inequalities require expectation
values of the product of an observable at different times, to capture temporal quan-
tum correlations. Ideally, one would imagine that non-invasive measurements would
be required to compute such quantities. Experiments to carry out such noninvasive
measurements are typically nontrivial to design and implement. It should be noted that
if these individual measurements were to be carried out one by one, they would not
be non-invasive in nature. While this equivalence is true according to a quantum me-
chanical description, it no longer holds if one assumes a nonclassical hidden variable
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description, and one would need to associate a measurement procedure with classical
variables using the same experimental setup.

In general, the concept of noninvasive measurability, implies the possibility of per-
forming a measurement without disturbing the subsequent evolution of a system. Such
type of measurement can be performed using quantum scattering circuit where the
ancillary qubit probes the time correlations of the ensemble without disturbing its sub-
sequent dynamics. A probe qubit (ancillary) on a scattering circuit interacts with the
system in such a way that a measurement of its state after the interaction brings the in-
formation about the system state. This requires that the input state of the probing qubit
can be known and the interaction can be controlled. Quantum scattering circuit’s op-
eration is demonstrated using NMR quantum information processor, which measures
the time correlation.

Simulating the non-invasive measurement of the expectation value of the product
of the same observable at different times via a single overall measurement is achieved
via the generalized scattering circuit.

3.3 Generalized quantum scattering circuit for non-invasive
measurements

Our generalized quantum scattering circuit is aimed at carrying out noninvasive mea-
surements which we will use to investigate the violation of temporal contextuality
inequalities. The standard quantum scattering circuit consists of a probe qubit (an-
cillary) and the system qubit. The generalized quantum scattering circuit which we
have designed to compute n point correlations functions involves performing n suc-
cessive noninvasive measurements on an N qubit quantum system, using only one
ancilla qubit as the probe qubit. The circuit measures the n-point correlation function
〈O(t1)O(t2)...O(tn)〉, wherein an observable is measured sequentially at time instants
t1, t2, ...tn.

Fig. 3.2 depicts a schematic diagram of the generalized quantum scattering circuit
to generate temporal correlations and demonstrate violation of temporal noncontextu-
ality. The system is prepared in a known initial state, which interacts with the ancilla
in such a way that a measurement over its state after the interaction, brings out the
information about the system state. The ‘probe qubit’ (ancillary qubit) is prepared in
a known initial state and the ‘system qubit’ is prepared in the state for which the ob-
servables are to be measured. The system is initially in the state |ψ〉, and is brought
in contact with an ancilla qubit prepared in the state |0〉. This ancilla acts as a ‘probe
particle’ in the quantum scattering circuit. The circuit is implemented in three steps:
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Figure 3.2: (a) Diagrammatic representation of a quantum scattering circuit capable
of measuring the n point time correlation function, defined as 〈[O1(t1) ⊗ O2(t1) · · · ⊗
ON (t1)][O1(t2) ⊗ O2(t2) · · · ⊗ ON (t2)] . . . [O1(tn) ⊗ O2(tn) · · · ⊗ ON (tn)]〉. The uni-

tary operators are defined as U∓1 = e±
iHt1

} ,... U∓n−1 = e±
iHtn−1

} , U∓n = e±
iHtn

} . (b)
Expanded circuit diagram of the generalized quantum scattering circuit between dotted
lines in panel (a). The circuit representing the reconstruction of the correlation function
〈[O1(tn) ⊗ O2(tn) · · · ⊗ ON (tn)]〉, such that Oi(tn) is measured on the ith qubit with
i = 1...N . |ψ〉 corresponds to the initial state and U∓n1 = e±

iHtn1
} , U∓n2 = e±

iHtn2
} ...,

U∓nN = e±
iHtnN

} .
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1. A Hadamard gate is applied on the ancilla qubit.

2. A Controlled-U operator is then applied (does nothing if the state of the ancilla
is |0〉).

3. A Hadamard gate is once again applied on the ancilla qubit and a measurement
is performed on this qubit to detect its polarization ( corresponding to measuring
the expectation values of Pauli operators σz).

For non-invasive measurements, the input state of the system qubit has to be pre-
pared in such a way that it is not affected by the application of the ‘Controlled-U’
operator. This is achieved as follows:

The initial state is |0〉 ⊗ |ψ〉. After applying Hadamard on ancilla qubit, the state is
transformed to 1√

2
(|0〉+ |1〉)⊗|ψ〉. Application of the Controlled-U operation changes

the state to 1√
2
(|0〉⊗|ψ〉+|1〉⊗U |ψ〉) withU = e−iHt1OeiHt1e−iHt2OeiHt2 · · · . Finally,

the state after application of the second Hadamard gate on the ancilla qubit turns out
to be:

(|0〉+ |1〉)⊗ |ψ〉+ (|0〉 − |1〉)⊗ U |ψ〉
2

=
|0〉 ⊗ (I + U)|ψ〉+ |1〉 ⊗ (I − U)|ψ〉

2

Thus, if a measurement of the ancilla qubit in the computational basis yields the
result |0〉, the state of the system qubit is (I + U)|ψ〉; however if the measurement
yields the result |1〉, the state of the system qubit is (I − U)|ψ〉. We note here that in
this case, the operator U is a unitary because the observableO is a unitary (having only
eigenvalues +1 or −1); however this is in general not true for an arbitrary observable.

Consider the input state:

ρin = ρprobe ⊗ ρsys = |0〉〈0| ⊗ |ψ〉〈ψ| (3.1)

where the ‘probe qubit’ is prepared in the |0〉 state and the ‘system qubit’ is prepared
in the state |ψ〉. After applying the unitary transformation shown in Fig. 3.2, the output
is given by:

ρout = |ψout〉〈ψout|, with

|ψout〉 = |0〉 ⊗ (I + U)|ψ〉+ |1〉 ⊗ (I − U)|ψ〉, and

U = e
iHt1

} Oe−
iHt1

} e
iHt2

} Oe−
iHt2

} · · · e iHtn} Oe−
iHtn

} (3.2)

The expectation of any operator A is given by
∑

i piλi, where pi is the probability
to get the eigenvalue λi. Hence

〈σz〉 = p0 − p1 (3.3)
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where p0 and p1 are the probabilities to measure |0〉 with eigenvalue 1 and |1〉 eigen-
value -1, respectively. However p0 and p1 are also equal to the probabilities of having
the state of the system in (I+U)|ψ〉with eigenvalue 1, and (I−U)|ψ〉with eigenvalue
-1, respectively.

Hence,

〈σz〉 = 〈U〉 = Tr(ρsysU)

= 〈ψ|e−iHt1OeiHt1e−iHt2OeiHt2 · · · |ψ〉
= 〈O(t1).O(t2)...〉 (3.4)

where the operators O(t1), O(t2).... commute. Therefore, the real part of the expec-
tation value of the z-component of the spin angular momentum of the ‘probe’ qubit
turns out to be related to the expectation values of the desired observables of the origi-
nal state.

The generalized quantum scattering circuit can be used to experimentally demon-
strate those inequalities which involve temporal correlation functions, such as the tem-
poral PM noncontextual inequality and the temporal KCBS inequality. While the ideal
negative measurement (INM) protocol described in Ref. [143] is similar to our mea-
surement scheme, in the INM protocol the ancilla is coupled to only one of the two
measurement outcomes and the protocol hence requires two experimental runs: with a
CNOT gate as well as with an anti-CNOT gate. Our circuit on the other hand, requires
only a single experimental run and does not require additional CNOT and anti-CNOT
gates for its implementation.

3.4 Violation of temporal Peres-Mermin and Bell-type
inequalities

3.4.1 Time-correlation functions
For the experimental implementation, we used the molecule of 13C -labeled diethyl
fluoromalonate dissolved in acetone-D6 as a three-qubit system ( for more details see
Chapter 2).

Consider performing a set of five dichotomic (i.e. the measurement outcomes are
±1) measurements of variables Xj, j = 1, ..5 on a single system. Each measurement
Xj is compatible with the preceding and succeeding measurements and the sums are
modulo 5. Compatible measurements implies that the joint or sequential measurements
of the variables Xj do not affect each other, which basically ensures that the measure-
ments are noninvasive. We note here in passing that compatibility of the measurements
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must be verified classically as well, and one cannot assume the quantum mechanical
properties (such as commutativity of operators) to justify noninvasive measurability
from a classical perspective. The existence of a joint probability distribution for all the
measurement outcomes can be tested by constructing the KCBS inequality [131]:

4∑
j=0

〈XjXj+1〉 ≥ −3 (3.5)

where −3 is the minimum value for an NCHV model. Noncontextual in this sense
implies that the NCHV theory assigns a value to an observable which is independent
of other compatible observables being measured along with it. By definition each cor-
relation function is given by By definition each correlation function is given by [131]:

〈XiXj〉 =
∑

xi,xj=±1

xixjp(xi, xj) (3.6)

A “pentagon LG” inequality was constructed wherein [120]∑
1≤i<j≤5

〈XiXj〉+ 2 ≥ 0 (3.7)

This inequality has 10 two-time correlation functions which can be computed from
one single experiment, wherein the measurements are performed in a manner such that
the measurement of Xj does not affect the measurement outcome of Xi (noninvasive
measurements). The two-time correlation function turns out to be [128]:

〈XiXj〉 =
1

2
Tr[ρ{Xi, Xj}] (3.8)

for a density matrix ρ. The five measurable observables were chosen to be:

X1 ≡ σz , X2 ≡ σθ , X3 ≡ σz , X4 ≡ σθ , X5 ≡ σz (3.9)

where σx, σz are the Pauli operators and σθ ≡ cos θ σz +sin θ σx. For this set of chosen
observables and with θ chosen such that cos θ = −3/4, the correlation function takes
the value [120] ∑

1≤i<j≤5

〈XiXj〉 = −9/4 (3.10)

which is the smallest possible value and violates the “pentagon” LG inequality given
in Eq. (3.7).

56



3.4 Violation of temporal Peres-Mermin and Bell-type inequalities

|ϕ⟩

(a)

(b)

(c)

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

U1 O U−
1 U2 O U−

2

O O

H H ⟨σz⟩

H H

R1 Z R−
1 R2 Z R−

2

ZZ

y z z z z z z z z y

zz

y z yy z y

τ13 τ13 τ12 τ12

Figure 3.3: (a) Diagrammatic representation of a quantum scattering circuit that can mea-
sure the three-point correlation function 〈Aαa〉 associated to the PM inequality. Parame-
ters corresponding to the circuit are defined as: O = σz , U±1,2 = e∓iσyθ/2 with θ = π/2.
(b) Quantum circuit representation in terms of rotation operators corresponding to above
quantum scattering circuit. The different notation are defined as: R±1,2 equals to (π2 )±y,
H represents Hadamard gates and Z corresponds to the rotations about the z axis. Corre-
sponding (c) NMR pulse sequence representation with π

2 and π NMR pulses denoted by
black and white rectangles, respectively. The time intervals τ12, τ13 are equals to 1

2JHF

and 1
2JHC

, respectively.
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Figure 3.4: Tomographs of the input state ρ = |0〉〈0| ⊗ |00〉〈00| with an experimental
state fidelity of 0.964±0.004.

3.4.2 Experimental violation of temporal Peres-Mermin inequality
A temporal equivalent of the KCBS inequality can be constructed similarly to the “pen-
tagon LG” inequality by considering a set of nine dichotomic variables, and three
successive measurements at two sequential times from the set of time points t =
{t1, t2, ..t5}. The observable set chosen is the “PM square” of nine dichotomous and
mutually compatible observables A,B,C, a, b, c, α, β, γ [80]:

A = σz ⊗ I, B = I ⊗ σz, C = σz ⊗ σz
a = I ⊗ σx, b = σx ⊗ I, c = σx ⊗ σx
α = σz ⊗ σx, β = σx ⊗ σz, γ = σy ⊗ σy.

(3.11)

Consider the combination of expectation values defined as follows:

〈XPM〉 = 〈ABC〉+ 〈bca〉+ 〈γαβ〉+ 〈Aαa〉+ 〈bBβ〉 − 〈γcC〉 (3.12)

If we make non-contextual assignments of values we get the inequality

〈XPM〉 ≤ 4 (3.13)

which is satisfied by all NCHV theories. This is the temporal PM inequality (XPM ) [80].
It has been shown that for a four-dimensional quantum system and a particular set of
observables, a value of 〈XPM〉 = 6 is obtained for any quantum state, demonstrating
state-independent contextuality [81].

We note here in passing that in this “PM square” set of measurements, each ob-
servable always occurs either in the first place or the second place or the third place
in the sequential mean value. This inequality is violated whenever a joint probability
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3.4 Violation of temporal Peres-Mermin and Bell-type inequalities

distribution cannot be found which assigns predetermined outcomes to the measure-
mentsXi at all times t1...t5, and this violation is termed contextual in time. The system
evolves under the action of a time-independent Hamiltonian H = ~ωσx,y, which can
be implemented in NMR using suitable rf pulses applied on the qubits. After state
preparation, the probe qubit interacts with the system qubit via suitable unitaries. The
temporal correlation functions are obtained by measuring the real part of the expecta-
tion value of z-component of the spin angular momentum of the probe qubit.

Our experimental task is to measure the expectation values of joint probabilities
which are measured sequentially. To violate the temporal PM inequality we need
to measure the three observables sequentially for any two-qubit state. We experi-
mentally violated the PM inequality by measuring the six correlation functions us-
ing the generalized quantum scattering circuit. Fig. 3.3 shows the quantum scattering
circuit, the operator decomposition and the corresponding NMR pulse sequence, to
calculate the correlation function 〈Aαa〉 which is one of the six correlation function
used in the PM temporal inequality. The PM temporal inequality is violated for any
two-qubit state. The probe qubit is prepared in known |0〉 state and system qubit is
prepared in |φ〉 = |00〉 state. The experimental tomograph of the state prepared in
ρ = |0〉〈0| ⊗ |00〉〈00| is given in Fig 3.4, achieved with a fidelity of 0.964±0.004.

We apply the transformation given in Fig. 3.3, with suitable values of O = σz and
θ = π/2. The correlation function 〈Aαa〉 for the |φ〉 = |00〉 state can be obtained by
measuring the real part of the expected value of the z-component of the spin for the
probe qubit. The other correlation functions involved in the PM temporal inequality
are measured in a similar fashion. The mean value of the correlation functions and their
error bars were calculated by repeating the experiment three times and the theoretically
expected and experimentally calculated values are given in Table 3.1. The theoretically
computed and experimentally measured values of the correlation functions agree well
to within experimental errors. We experimentally violated the temporal PM inequality,
obtaining 〈XPM〉Expt = 4.667± 0.013, showing the contextual nature of the measured
expectation values.

3.4.3 Experimental violation of a Bell-type inequality correspond-
ing to the temporal KCBS inequality

While it is clear that quantum correlations can violate spatial Bell-type and tempo-
ral LG-type inequalities, they do not go all the way to the values allowed by the no-
signaling condition, and thus satisfy a bound called the Tsirelson’s bound [126]. The
reasons for the existence of such a bound which limits the algebraic values of the cor-
relations between the measurement outcomes over and above the no-signaling condi-
tion, is still a matter of debate [127, 128]. We construct here an experimental situation
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Table 3.1: Table listing the values of correlation functions corresponding to the PM in-
equality that have been theoretically calculated and experimentally measured.

Observables Theoretical Experimental

〈ABC〉 1 0.928 ± 0.017
〈bca〉 1 0.706 ± 0.012
〈γαβ〉 1 0.817 ± 0.010
〈Aαa〉 1 0.685 ± 0.008
〈bBβ〉 1 0.755 ± 0.011
〈γcC〉 -1 -0.784 ± 0.019

where the maximum possible quantum correlation is achieved for four two-point cor-
relation functions involved in the temporal KCBS inequality when it is re-interpreted
as a Bell-type inequality [131].

The temporal KCBS noncontextual inequality can be constructed by considering
a dichotomic variable Xt with successive measurements performed at two sequential
times drawn from the time instants t = {t0, t1, ...., t4}. The two-point temporal corre-
lations thus obtained lead to the corresponding temporal KCBS inequality [131]:

4∑
i=0

〈XtiXti+1
〉 ≥ −3 (3.14)

The violation of this inequality can be termed as contextuality in time. The temporal
KCBS inequality can be transformed into a Bell-type inequality which tests the ex-
istence of a joint probability distribution for measurements on dichotomic variables,
performed on subsystems A and B. The Bell-type inequality is given by [131]

〈A0B1〉+ 〈A1B2〉+ 〈A2B3〉+ 〈A3B4〉+ 〈A4B0〉 ≥ −3 (3.15)

where Ai and Bj are measured on the subsystems with the additional constraint that

〈AiBi〉 = 1 for all i (3.16)

which implies that the outcomes of pairs of measurements are the same. Violation of
this inequality shows the non-existence of joint probability distribution for this sce-
nario.

We experimentally demonstrated the violation of the Bell-type inequality given
in Eq. (3.15) using the quantum scattering circuit on the same three-qubit system.
Fig. 3.5(a) shows the quantum scattering circuit to calculate the correlation function
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Figure 3.5: (a) Diagrammatic representation of a quantum scattering circuit that can mea-
sure the two-point correlation function 〈ArBq〉 used in the Bell-type inequality. The circuit
parameters are defined as: Ur,q = e

−i2πr,q
5 , O = σz with r, q = 0, 1, 2, 3, 4. (b) Schematic

circuit diagram for required quantum state and corresponding (c) NMR pulse sequence.
The PPS |000〉 state (initial state) is prepared by using the series of pulses that come be-
fore the first dashed black line. The white rectangles represent the π pulses, while the
phases and flip angles of the other pulses are listed next to each pulse. The time intervals
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Figure 3.6: Tomographs of the state 〈ψ1| = 1√
2
(1, 0, 0, 1, 0, 0, 0, 0) with an experimental

state fidelity of 0.947±0.009.

〈ArBq〉, involved in the Bell-type inequality on an eight-dimensional quantum system.
For the violation of the Bell-type inequality, we used the 1H as the probe qubit and 13C
and 19F as the system qubits. We apply the transformations given in Fig. 3.5(a) with
suitable values of O = σz and q, r = 0, 1, 2, 3, 4.

The optimal violation of the Bell-type inequality can be obtained for the state
〈ψ1| = 1√

2
(1, 0, 0, 1) with the probe qubit prepared in the state |0〉, and for the mea-

surementsAj = σj⊗I ,Bj = I⊗σj where j = 0, 1, 2, 3, 4 and σj = ei
2πj
5
σyσze

−i 2πj
5
σy .

The correlation functions 〈ArBq〉 for the state 〈ψ1| = 1√
2
(1, 0, 0, 1) can be obtained by

measuring the real part of the expected value of the spin z-component for the probe
qubit. The corresponding quantum circuit for state preparation is shown in Fig. 3.5(b)
and the NMR pulse sequence is shown in Fig. 3.5 (c). The sequence of pulses before
the first dashed black line achieves state initialization into the |000〉 state. After this
we apply the Hadamard gate (on 13C), followed by a CNOT23 gate, and the resultant
state corresponds to ρ1 = |0〉〈0| ⊗ |ψ1〉〈ψ1| with 〈ψ1| = 1√

2
(1, 0, 0, 1).

The tomograph of the state prepared in ρ1 = |0〉〈0| ⊗ |ψ1〉〈ψ1| with 〈ψ1| =
1√
2
(1, 0, 0, 1) is given in Fig. 3.6 with an experimental fidelity of 0.947±0.009. The

mean values of the correlation functions and their error bars were calculated by repeat-
ing the experiment three times and and calculated values are given in Table 3.2. As
seen from the values tabulated in Table 3.2, the theoretically computed and experimen-
tally measured values of the correlation functions agree well to within experimental
errors. We have experimentally violated the Bell-type inequality with the violation of
−3.755± 0.008.

It should be noted that there are no space-like separated measurements here. How-
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Table 3.2: Theoretically computed and experimentally measured values of quantum cor-
relations corresponding to the Bell-test.

Observables Theoretical Experimental

〈A0B1〉 -0.809 -0.684 ± 0.014
〈A1B2〉 -0.809 -0.754 ± 0.006
〈A2B3〉 -0.809 -0.756 ± 0.011
〈A3B4〉 -0.809 -0.746 ± 0.005
〈A4B0〉 -0.809 -0.815 ± 0.004

ever, the inequality given in Eq. (3.15), with the constraint specified in Eq. (3.16), will
be valid when the measurements on A and B are space-like separated and when the
no-signaling principle is relevant. Our limited goal here is to show the possibility of
maximally violating the Bell-type inequality given in Eq. (3.15).
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Figure 3.7: Individual quantum scattering circuits corresponding to measurements of
the nine observables used in the PM inequality. Parameters are defined as: R±l =

e
∓ iHσy

} ,R±2 = e
∓ iHσx

} , Sz = 〈σz〉.

3.4.4 Classical description of the experimental setup
All experimental tests of nonclassical properties of quantum correlations whether quan-
tum contextuality, Bell nonlocality, or nonclassical temporal correlations, ultimately
seek to disprove a classical theory, either local hidden variable models, or noncon-
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Table 3.3: Table containing the theoretically computed and experimentally measured val-
ues of the each individual observables in their eigenstates.

Input State Observables Experimental (Theoretical)
|00〉 σz ⊗ I + 0.945 ± 0.026 (+1)
|11〉 σz ⊗ I − 1.075 ± 0.027 (−1)
|00〉 I ⊗ σz + 0.914 ± 0.021 (+1)
|11〉 I ⊗ σz − 0.901 ± 0.015 (−1)
|00〉 σz ⊗ σz + 0.932 ± 0.026 (+1)
|10〉 σz ⊗ σz − 1.048 ± 0.029 (−1)
|00〉+|01〉√

2
I ⊗ σx + 0.969 ± 0.025 (+1)

|10〉−|11〉√
2

I ⊗ σx − 0.993 ± 0.026 (−1)
|01〉+|11〉√

2
σx ⊗ I + 0.984 ± 0.028 (+1)

|01〉−|11〉√
2

σx ⊗ I − 0.994 ± 0.029 (−1)
|00〉+|11〉√

2
σx ⊗ σx + 0.967 ± 0.025 (+1)

|00〉−|11〉√
2

σx ⊗ σx − 0.97 ± 0.027 (−1)
|00〉+|01〉√

2
σz ⊗ σx + 1.067 ± 0.023 (+1)

|10〉+|11〉√
2

σz ⊗ σx − 1.042 ± 0.021 (−1)
|00〉+|10〉√

2
σx ⊗ σz + 0.903 ± 0.025 (+1)

|01〉+|11〉√
2

σx ⊗ σz − 0.975 ± 0.027 (−1)
|01〉+|10〉√

2
σy ⊗ σy + 1.001 ± 0.012 (+1)

|00〉+|11〉√
2

σy ⊗ σy − 1.014 ± 0.026 (−1)
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Table 3.4: Table containing the experimentally determined expectation values for every
possible combination of each observables of the six sequences in order to verify their
commutativity.

Observables Experimental Observables Experimental Observables Experimental
〈A.B.C〉 0.928 ± 0.017 〈b.c.a〉 0.706 ± 0.012 〈γ.α.β〉 0.817 ± 0.010
〈A.C.B〉 0.935 ± 0.012 〈b.a.c〉 0.723 ± 0.010 〈γ.β.α〉 0.839 ± 0.012
〈B.A.C〉 0.919 ± 0.009 〈a.b.c〉 0.725 ± 0.019 〈α.β.γ〉 0.829 ± 0.010
〈B.C.A〉 0.935 ± 0.008 〈a.c.b〉 0.707 ± 0.015 〈α.γ.β〉 0.799 ± 0.018
〈C.A.B〉 0.929 ± 0.012 〈c.a.b〉 0.733 ± 0.018 〈β.α.γ〉 0.824 ± 0.014
〈C.B.A〉 0.908 ± 0.010 〈c.b.a〉 0.719 ± 0.017 〈β.γ.α〉 0.796 ± 0.016

〈A.α.a〉 0.685 ± 0.008 〈b.B.β〉 0.755 ± 0.011 〈γ.c.C〉 − 0.784 ± 0.019
〈A.a.α〉 0.672 ± 0.017 〈b.β.B〉 0.726 ± 0.019 〈γ.C.c〉 − 0.813 ± 0.010
〈α.A.a〉 0.671 ± 0.018 〈B.b.β〉 0.776 ± 0.017 〈C.γ.c〉 − 0.760 ± 0.020
〈α.a.A〉 0.644 ± 0.020 〈B.β.b〉 0.779 ± 0.009 〈C.c.γ〉 − 0.811 ± 0.012
〈a.A.α〉 0.714 ± 0.017 〈β.B.b〉 0.776 ± 0.015 〈c.C.γ〉 − 0.771 ± 0.019
〈a.α.A〉 0.639 ± 0.019 〈β.b.B〉 0.746 ± 0.019 〈c.γ.C〉 − 0.789 ± 0.013

textual or macrorealist theories. Hence any experimental test of quantum correlations
must subsume a classical description of the setup and one should be able to associate
a measurement procedure to any classical variable using this setup. For instance, in
order to measure the correlator 〈AB〉 one should in principle be able to measure A and
B independently.

Throughout in our analysis, we have considered expectation values of products
of observables to show that a quantum description may violate bounds derived from
classical ideas of assignment of outcomes to individual measurements. As mentioned
above, it is important to be able to measure the observables one by one, where it is
possible to imagine assigning outcomes from a classical description. To provide the
possibility of a classical description of our experimental setup, we validate the follow-
ing assumptions: (i) that each of the nine observables involved in the PM inequality
can be measured individually and has the eigenvalue ±1; and (ii) that the observables
involved in the sequences of the PM inequality are mutually compatible.

We first check that each observable in the PM inequality has the eigenvalue ±1.
To do so, we measure the expectation values of the nine individual observables using
the quantum scattering circuit given in Fig. 3.7. The input states are prepared in the
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quantum processor, using non-invasive measurements

eigenstates of each of the nine observables involved in the PM inequality. Table III
contains a comparison of the experimentally observable expectation values of each
observables with its theoretically expected value of ±1.

We then proceed to check the second assumption that the measurements in the six
sequences involved in the PM inequality are commutative i.e. each of the observables
is context-independent. We do this by switching the measurement sequence in the the
scattering circuit. Table IV contains the experimentally calculated expectation values
of all possible combinations of each observable in the six sequences involved in the
PM inequality.

3.5 Conclusions
We designed and experimentally implemented a generalized quantum scattering circuit
to measure an n-point correlation function on an NMR quantum information proces-
sor, with an observable being measured sequentially at these n time instants. We ex-
perimentally demonstrated the violation of a temporal noncontextuality PM inequality
using three NMR qubits, which involved performing sequential noninvasive measure-
ments. The generalized quantum scattering circuit we have constructed is independent
of the quantum hardware used for its implementation and can be applied to systems
other than NMR qubits. Our work asserts that NMR quantum processors can serve as
optimal test beds for testing such inequalities. Results of this chapter are contained in
Phys. Rev. A 105, 022216 (2022).
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Chapter 4

Simulation of maximal non-locality
using a three-qubit entangled state on
an NMR quantum simulator

4.1 Introduction

Entanglement is thought to be the most fundamental non-classical aspect of quantum
theory, noticed in 1935 [112]. As entanglement serves as the primary resource of
quantum information processing, it is crucial to create, identify, and protect entangled
states [11]. In quantum theory, detecting entanglement is typically a challenging issue.
Different methods for revealing the entanglement have been proposed [49, 145, 146,
147]. The full characterization of entanglement, despite the existence of sufficient cri-
teria for entanglement identification of quantum states in higher dimensional Hilbert
spaces, is still a work in progress. Extensive research has been conducted on three-
qubit entanglement, proving that there are two different ways in which three qubits can
be entangled [148, 149]. One of the foundational concepts in physics is symmetry, and
in quantum theory, the permutation symmetry corresponding to multipartite quantum
systems is equivalent to a natural symmetry. Studies on the entanglement of symmetric
states of multipartite systems have been conducted in-depth [150]. Several quantum
informational tasks have benefited from the usage of permutation symmetric entan-
gled states, which maintain their invariance through pair-wise qubit swapping [151,
152, 153]. The geometric measure of entanglement, which resembles a measure of
distance, describes the entanglement of symmetric multipartite states [154, 155]. In
order to achieve the permutation symmetric entangled states, quantum circuits were
developed [156].
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A crucial aspect of experimental quantum computing is the generation and detec-
tion of diverse multipartite entangled states. Several experimental schemes for three-
qubit entanglement have been carried out experimentally using an NMR quantum pro-
cessor. The experimental construction of a canonical form for generic three-qubit states
has been performed, which are capable of generating three-qubit entangled states such
as W and GHZ states [157]. In another NMR experiment, a three-qubit WW̄ entan-
gled state was created, demonstrating that even though WW̄ state belongs to the same
entanglement class as the GHZ state, it encodes information about multipartite corre-
lations entirely differently [158]. Decoherence of tripartite entangled states has been
studied using the dynamical coupling method on an NMR experimental setup. The
findings indicate that whereas the states corresponding to the W-class are the most
robust against the experimental noise, the GHZ-class states are the most fragile [159].

Nonlocality describes the ability of the observers to produce instantaneous effects
over specially separated systems. Quantum theory follows the notion of nonlocality,
which is inconsistent with the theories which follow the notion of locality such as
hidden variable theories [55]. As discussed in previous chapters, the violation of Bell
inequality like the Clauser-Horne-Shimony-Holt (CHSH) inequality demonstrates the
existence of nonlocality [160]. Nonlocality has immense application in the field of
secure communication [161], and information theory [162]. The violation of Bell-type
inequalities was demonstrated for the GHZ, Cluster, and W states using the N-partite
generalization of Wigner’s hypothesis [57]. The violation of CHSH inequalities in a
tripartite scenario has been used to characterize nonlocality [163, 164, 165]. For the
nonlocal correlations to exist, the state has to be entangled [166]. Various studies have
been conducted to determine what kind of entanglement causes the maximum quantum
violation of Bell-type inequalities, which reveals the maximum nonlocality [167, 168,
169].

The existence of incompatibility measurements, another key aspect of quantum
theory, demonstrates the fundamental departure from classical theory [170]. Studies
have demonstrated the necessity of incompatibility measurements in order to violate
the Bell-type inequality [171, 172, 173]. The quantification of measurement incom-
patibility has been investigated in relation to Bell nonlocality [174]. The significance
of the entanglement and incompatibility has been studied separately for the nonlocal-
ity. There exist scenarios where the entanglement and incompatibility are combined
to obtain the maximum nonlocality by obtaining the maximum violation of Bell in-
equalities [76]. It has been demonstrated that for the maximal incompatible local
measurements, there exists a maximal quantum violation of tight Bell inequality for
a few entangled states such as Bell state, GHZ state, and |S〉 state [118, 175]. Experi-
mental demonstrations of the tight Bell-inequalities have been performed on different
experimental set-ups [176, 177, 178, 179].
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Entangled State 

Maximally Incompatible 
Measurements 

Negativity Concurrence

NMR Simulation Violation of Bell 
Inequality

(2,2,3) Scenario

Maximal Non-locality 

Figure 4.1: Scheme to experimentally simulate the violation of a tight Bell-inequality
using the tripartite entangled |S〉 state.

In this chapter, we use the NMR experimental set-up to experimentally design
and construct the quantum circuit for the three-qubit |S〉 entangled state, involved in
the tight Bell inequality. By experimentally computing the two entangled measures,
namely concurrence and negativity, the entanglement of |S〉 state is validated. Further,
we use this |S〉 state to experimentally simulate the violation of tight Bell inequality,
This tight Bell ineqaulity corresponds to the inequality number 26 in Sliwa’s classifi-
cation in the (3, 2, 2) scenario [76]. Additionally, by including compatible measures
in the existing measurement configuration, maximum incompatibility was examined.
The methodology used in this chapter is depicted in Fig. 4.1. It should be highlighted
that we referred to our experimental demonstration as a simulation as the NMR ex-
periments are not suitable for the non-local scenario which require spacelike separated
events. In an NMR experimental set-up, the nuclear spins of the atoms in a single
molecule, serve as the qubits. The separation between the NMR qubits is of the order
of a few angstroms and are suitable for the local scenario [180].

4.2 The Bell inequality in the (3, 2, 2) scenario

A Bell inequality is tight when it corresponds to the facet of the local polytope which is
generated by the local-realistic joint probabilities model [160]. Quantum nonlocality
has been classified according to the combinations of entangled states and incompatible
measurements for 46 classes of tight Bell inequalities in the (3, 2, 2) scenario [76]. The
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inequality number 26 in Sliwa’s classification scheme is given by:

T26 = 〈A0〉+ 〈B0〉+ 〈A0B0〉+ 2〈A1B1〉+ 〈C0〉
+ 〈A0C0〉+ 〈B0C0〉 − 〈A0B0C0〉 − 2〈A1B1C0〉
+ 2〈A1C1〉 − 2〈A1B0C1〉 − 2〈B1C1〉
+ 〈A0B1C1〉 ≤ 5

(4.1)

where Ai, Bi, Ci are the measurement settings of the first, second and third party,
respectively. Each observable is dichotomous and can have ±1 outcomes. The maxi-
mum quantum violation of the inequality number 26 in Sliwa’s classification scheme
is achieved using the entangled |S〉 state given in Eq. 4.2 [181].

Three-qubit entanglement with genuine three-party entanglement, has been well
studied and falls into one of the two inequivalent classes namely, the GHZ class and the
W class [148]. The |S〉 state which is a three-qubit permutation-symmetric entangled
state, has been defined as [76]:

|S〉 =
1√
6

(|001〉+ |010〉 − |100〉) +
1√
2
|111〉 (4.2)

The |S〉 belongs to the W class of states and therefore is inequivalent to the GHZ
state under local operations and classical communication (LOCC). The qubit-qubit
concurrences for this state are all equal to 0.244, as opposed to the W state whose
qubit-qubit concurrences are all equal to 0.667 [178]. The |S〉 state has interesting
properties and as we shall see, plays an important role in the context of violation of
Bell’s inequalities for the (3, 2, 2) scenario.

For the particular set of observables A0 = B0 = C0 = σz and A1 = B1 = C1 = σx
which are maximally incompatible according to any quantifier of incompatibility, the
|S〉 state produces the maximum quantum violation given by [76]:

T26 = 1 + 4
√

3 ≈ 7.928 (4.3)

4.3 Experimental construction of |S〉 state and viola-
tion of Bell inequality

4.3.1 Experimental details
We used the molecule iodotrifluoroethylene dissolved in acetone-d6 with the three
(19F) spins encoding the three NMR qubits. The molecular structure and other experi-
mental details are given in Ref. [159]. The three-qubit Hamiltonian in a rotating frame
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is given by:

H = −
3∑
i=1

(ωi − ωRF )Iiz +
3∑

i>j,j=1

2πJijIizIjz (4.4)

where Iiz, ωi, Jij denote the spin angular momentum operator, the Larmor frequen-
cies, and the scalar coupling constants, respectively. The first term in the Hamiltonian
represents the Zeeman interaction between the spins and the applied static magnetic
field, while the second term represents the interaction term. More details are provided
in Ref. [9].

The NMR experiments were performed at room temperature and the system was
initialized in a pseudopure (PPS) state, which mimics a pure state [9, 39]. The PPS
state |000〉 was achieved via the spatial averaging technique [182] with the density
operator being given by:

ρ000 =
1− ε

8
I8 + ε|000〉〈000| (4.5)

where I8 is the 8 × 8 identity operator and ε is proportional to the spin polarization
which is ≈ 10−5 at room temperature.

The NMR pulse sequence for preparing the PPS state |000〉 can be found in Ref. [159]
which gives details of the specific sequence of RF pulses, four Z gradient pulses, and
three time evolution periods that are used. We used the Gradient Ascent Pulse Engi-
neering (GRAPE) technique [183, 184] for the optimization of all the RF pulses used
to construct the PPS state. The GRAPE optimized RF pulses are robust against RF
inhomogeneity, with an average fidelity of ≥ 0.999. We used four GRAPE pulses
(UP1, UP2, UP3, UP4) optimized to reach the PPS state from the thermal state, where
some RF pulses were combined into a single pulse. The duration of pulses UP1, UP2,
UP3, UP4 are 500 µs, 9000 µs, 7500 µs, 4000 µs respectively. The experimental
state was reconstructed using a least squares constrained convex optimization tech-
nique [185]. The set of tomographic operations {III, IIY, IY Y, Y II,XY X,XXY,
XXX} where the X(Y ) denotes the single spin operator implemented by a spin-
selective π

2
pulse and I denotes no operation were performed to reconstruct the final

density operator. All the seven tomography spin selective pulses were optimized using
GRAPE with the length of each pulse being ≈ 500µs. The PPS state |000〉 had an
experimental state fidelity of 0.997.

4.3.2 Experimental construction of the |S〉 state
After preparing the PPS state, we turn to the experimental preparation of the tripartite
|S〉 state on the three-qubit NMR system. The quantum circuit to prepare the |S〉 state
starting from the PPS |000〉 state is given in Fig. 4.2. The quantum circuit contains
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Figure 4.2: Diagrammatic representation of the quantum circuit used to create the |S〉
state. The full unitary, Us, includes all quantum gates needed for state preparation.
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Figure 4.3: Representation of sequence of NMR pulses capable of constructing the re-
quired |S〉 state. π

2 rotations are represented by grey rectangles, while π rotations are rep-
resented by empty rectangles. The other RF pulse rotations such as θ1 = 1.216π

2 , θ2 = 11π
12

and θ2 = 5π
12 are represented by black rectangles. The intervals are set to τ12 = 1

2J12
,

τ13 = 1
2J13

, τ23 = 1
2J23

with J12 = 69.65 Hz, J13 = 47.67 Hz, J23 = −128.23 Hz.
Each CNOT gates pulses are divided by dotted lines, and the total sum of all the gates is
represented by a single unitary Us.
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Figure 4.4: The tomographs of the |S〉 state representing the theoretically simulated and
experimentally observed values. The numbers 1, 2, 3..., 8 stand for the binary-coded rows
and columns that form the computational basis, ranging from |000〉 to |111〉.

several one-qubit gates and two-qubit gates. The NMR pulse sequence corresponding
to the quantum circuit is shown in Fig. 4.3. All the NMR pulses were numerically
optimized using the GRAPE algorithm and we were able to achieve high gate fidelities
with relatively small RF pulse durations. The unitary operator for the entire preparation
sequence of Fig. 4.3 contains four CNOT gates and eleven non-selective rotations; the
entire unitary was generated by a specially crafted single GRAPE pulse Us having a
duration of ≈ 4600µs.

To check the quality of the prepared |S〉 state, state tomography was performed
using the least squares optimization technique and an experimental state fidelity of
0.949± 0.003 was obtained. The tomographs of the |S〉〈S| state are shown in Fig. 4.4.

4.3.3 Entanglement verification of the |S〉 state
Next, we experimentally verified the entanglement of the |S〉 state. To quantify en-
tanglement, we used the well-known tripartite negativity measure [54]. The tripartite
negativity can be calculated using the bipartite negativity, where bipartite negativity
is the absolute value of the sum of the negative eigenvalues of ρTA with TA denoting
the partial transpose of ρ with respect to the subsystem A in the bipartition A|BC.
Negativity is zero if the partial transpose ρTA has no negative eigenvalues. Tripartite
negativity N then becomes (NA|BCNB|ACNC|BA)

1
3 . It ranges from 0 for a separable
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state to 1 for a maximally entangled state. We computed the tripartite negativity for the
experimentally prepared |S〉 state and obtained N = 0.794 ± 0.015, which is close to
the theoretically predicted value of 0.943. This clearly shows the presence of tripartite
entanglement in the |S〉 state.

We also verified the entanglement of the |S〉 state by using another entanglement
measure termed qubit-qubit concurrence [53]. The concurrence is calculated from the
eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ λ4 of the matrix R = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) where σy is
the Pauli matrix and ρ and ρ∗ denote the density matrix and its complex conjugate, re-
spectively. The qubit-qubit concurrence is given by C(ρ) = max(0,

√
λ1−
√
λ2−
√
λ3−√

λ4). The bipartite concurrence ranges between 0 and 1, with 0 implying no entangle-
ment is present in the system and 1 indicating maximal entanglement. The experimen-
tal values we obtained for the qubit-qubit concurrence, range from ≈ 0.094 − 0.32,
which verifies the presence of entanglement in the |S〉 state.

4.3.4 Non-locality inequality violation
The experimentally prepared |S〉 state was used to test the inequality T26 defined in
Eq. 4.1. The numerical value of the experimental violation we obtain is:

T26 = 6.531± 0.125 (4.6)

where the observables A0 = B0 = C0 = σz and A1 = B1 = C1 = σx are maximally
incompatible for each of the three parties.

In addition, we checked the maximal incompatibility of the observables of the three
parties by changing one of the observables out of the six local measurements while
leaving the other five in their initial configuration. These measurement modifications
led to a decrease in the inequality value of T26, fulfilling the requirement of maximal
incompatibility in the three parties for the T26 scenario.

4.4 Conclusions
In this chapter, we experimentally prepared a genuinely entangled three-qubit state
(|S〉) on an NMR quantum processor, and certified its entanglement using two differ-
ent entanglement measures namely, negativity, and qubit-qubit concurrence. We used
the |S〉 state to experimentally simulate the maximum quantum violation of a tripartite
tight Bell inequality. Our results show a clear violation of the tight Bell inequality,
revealing the maximally non-local nature of the state. We also tested the maximal in-
compatibility of the observables by modifying one of the six observables. An NMR
quantum processor is a good testbed to perform tests of foundational issues in quantum
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mechanics. Our results are a step forward in the direction of unearthing deeper connec-
tions between nonlocality, entanglement, and incompatibility. The results described in
this chapter are available in arXiv:2206.12870v1.
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Chapter 5

NMR simulation of monogamy
relationship between quantum
contextuality and nonlocality

5.1 Introduction

Nonlocality and contextuality, the fundamental properties of quantum theory, have
been extensively discussed in earlier chapters. Nonlocality and contextuality can be
revealed via the violation of CHSH and KCBS inequalities, respectively. It is crucial
to address the issue of whether it is conceivable to see both nonlocality and quantum
contextuality at the same time. Monogamy is the trade-off between the Bell or noncon-
textual inequalities [66, 186]. It was discovered that a monogamous relation between
contextuality and nonlocality is imposed by the quantum no-disturbance principle i.e.
nonlocality and contextuality can not be observed simultaneously. These two funda-
mentally quantum phenomena were investigated separately for many years, however
it has recently been demonstrated that contextuality and nonlocality can be examined
together [187].

The fundamental monogamy relation between the nonlocality and contextuality has
been derived using the graphical theoretic approach [188]. Different types of monog-
amous relationships, including monogamy of two KCBS inequalities [66], monogamy
of two Bell inequalities [189], and monogamy of Bell and KCBS inequalities [190],
have been presented using various scenarios. The no-disturbance concept, commonly
referred to as the no-signaling principle for parties who are physically separated, is
supported by QM [66]. The no-disturbance and no-signaling concept is the foundation
for the development of a monogamous relationship between the noncontextuality and
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Bell inequality [67]. Experimental simulation of such monogamy relation of noncon-
textuality and nonlocality has been proposed [191]. There are a variety of applications
in which monogamous relationships are used, including QKD protocols [192], causal-
ity quantification [193], and local realism studies [194].

A photonic qutrit-qubit system has been used to illustrate the experimental test of
the monogamous relationship between contextuality and nonlocality [71]. In this chap-
ter, we experimentally simulated the monogamous relationship between contextuality
and nonlocality on an NMR quantum information processor using a hybrid ququart-
qubit system. We first present experimental proof of the monogamous relationship be-
tween contextuality and nonlocality. We further show that a quantum barrier exists and
that it satisfies the no-disturbance principle at a single location, within the bounds of
the experiment. The required ququart-qubit system was realized by the 13C-labeled di-
ethyl fluoromalonate molecule, a three-qubit system. The hybrid ququart-qubit system
is achieved by merging the first two qubits into a single system with a four-dimensional
Hilbert space. After preparing the hybrid ququart-qubit state the expectation values,
involved in the monogamy inequality, were calculated by mapping the decomposed
observables into single qubit operator. For eight alternative ququart-qubit input states,
the values of the monogamous inequality between contextuality and nonlocality have
been determined. In passing, we should mention that since the NMR qubits are actually
the nuclear spins of atoms bonded together in a single molecule, separated by a few
angstroms [195], we considered our test as a "simulation." The scheme used to calcu-
late the monogamy relation of contextuality and nonlocality, in this chapter is depicted
in Fig. 5.1. The monogamy relationship has been demonstrated experimentally as the
violation of KCBS inequality for ququart state forbids the violation of CHSH inequal-
ity for the entangled ququart-qubit state. Our findings provide experimental evidence
of the trade-off between the contextuality and nonlocalty, imposed by no-disturbance
principle.

5.2 Monogamy relation between contextuality and non-
locality

Kurzynski et. al. [196] proposed a fundamental monogamy relation between the KCBS
inequality and the CHSH inequality which is based on the no-disturbance quantum
principle. Consider two spatially separated systems B and C. Two compatible di-
chotomous (i.e. having only two possible outcomes ±1) observables are randomly
chosen from a set of five observables {Ci}, i = 1..5 and measured on the system C.
Similarly, for the system B, two incompatible dichotomous observables B1, B2 are
chosen and performed. Fig. 5.2 illustrates a schematic of the compatibility relations
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Monogamy Inequality

State Preparation

Experimental Demonstration

Correlation
Measurement

Figure 5.1: Scheme used to experimentally simulate the monogamy relationship between
contextuality and nonlocality.

between the seven observables (five on system C and two on system B).
Quantum contextuality can be tested on the system C via the KCBS inequality

given by

KC = 〈C1C2〉+ 〈C2C3〉+ 〈C3C4〉+ 〈C4C5〉+ 〈C5C1〉 ≥ −3. (5.1)

where the violation of this inequality implies that the correlations cannot be captured
using a noncontextual hidden variable (NCHV) model. The maximum violation of the
KCBS inequality is 5− 4

√
5.

The CHSH inequality is given by:

βCB = 〈C1 ⊗B1〉+ 〈C1 ⊗B2〉+ 〈C4 ⊗B1〉 − 〈C4 ⊗B2〉 ≥ −2. (5.2)

and the violation of this inequality implies that the correlations cannot be captured
using a local hidden variable (LHV) model. The maximum violation for the CHSH
inequality is −2

√
2. The classical bounds of both the KCBS and CHSH inequalities

can be violated separately due to the lack of a joint probability distribution.
Quantum theory imposes a strict monogamy relation between NCHV and LHV

models by restricting values of KC, βCB to a region in the parametric space bounded
by the KCBS and CHSH inequalities. The ND principle leads to a non-trivial tradeoff
between the violation of CHSH and KCBS inequalities:

βCB + KC ≥ −5 (5.3)

The monogamy relation between these two inequalities posits that the violation of one
inequality in turn forbids the violation of the other inequality. The bound on maximal
violation arises due to the ND principle. This additional monogamy relation makes the
quantum region smaller than the ND principle bounded region.
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Figure 5.2: Graphical representation of measurement setting corresponding to the B and
C spatially separated systems. (a) The two distinct directions represent the measurements
corresponding to the qubit system B. Similarly, (b) the five distinct directions represent
the measurements corresponding to the ququart system C. The connection between the
observables are defined as: Ci are compatible with Ci+1 are when it is connected by black
edge and each Ci is compatible with The B1 and B2 observables.

Consider the scenario of the combined ququart-qubit system with basis states
{|00〉, |01〉, |10〉} and {|0〉, |1〉}, respectively. Measurements can be made of the five
observables Ci = 2|ui〉〈ui| − I where i = 1, ..., 5 and the state |ui〉 can be written as:

|ui〉 ∝
[
cos

4πi

5
|00〉+ sin

4πi

5
|01〉+

√
cos

π

5
|10〉

]
(5.4)

For the CHSH scenario, the observables are chosen to be B1 = σz and B2 = σx. The
restriction of possible values of βCB,KC within the parametric space spanned by the
value of these inequalities, quantum theory shows the additional monogamy relation
between NCHV and LHV. The boundary of the quantum state is more interesting be-
cause the more stringent monogamy relation makes the quantum region smaller than
that imposed by the ND.

The boundary of the quantum region can be produced by taking unnormalized
states of the form:

|ψφ〉 = f(φ)|001〉+ g(φ)|010〉+ |101〉 (5.5)

where

f(φ) ≈ −0.05 + 0.15 cotφ− 0.57 tanφ

g(φ) ≈ 0.72 + 0.32 cotφ+ 0.26 tanφ (5.6)

By choosing particular values of the states |ψφ〉 (φ = −0.27) such that the lower bound
of βCB+KC is minimized, the inequality becomes an equality. The quantum boundary
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touches the ND boundary at a single point where the average values of the operators are
〈CHSH〉 ≈ −2.89 and 〈KCBS〉 ≈ −2.11, respectively. The monogamy relation holds
even in the extreme cases i.e. when both inequalities are not violated simultaneously.

5.3 Experimental realization of monogamy relation be-
tween contextuality and nonlocality

5.3.1 Experimental setup

To experimentally implement the KCBS and CHSH inequalities on a ququart and a
qubit-ququart system, we used the molecule of 13C-labeled diethyl fluoromalonate dis-
solved in acetone-D6 as an eight-dimensional quantum system, with the 1H, 19F and
13C spin-1/2 nuclei being encoded as the three qubits. The three-qubit system can
be reinterpreted as a ququart-qubit bipartite system by clubbing the first two qubits
into a single system with a four-dimensional Hilbert space, with the four ququart basis
vectors being mapped to the logical state vectors ({|00〉, |01〉, |10〉, |11〉}) of the first
and second qubits. Experiments were performed at on a Bruker Avance III 600-MHz
FT-NMR spectrometer equipped with a QXI probe. Local unitary operations were
achieved by the rf pulses of suitable amplitude, phase, and duration and nonlocal uni-
tary operations were achieved by free evolution under the system Hamiltonian. The T1

and T2 relaxations of 1H, 19F, 13C spin-1/2 nuclei ranges from 4.16 sec to 7.16 sec and
0.99 sec to 3.56 sec, respectively. The durations of the π

2
pulses for 1H, 19F, and 13C

nuclei were 9.36 µs at 18.14 W power level, 23.4 µs at a power level of 42.27 W, and
15.8 µs at a power level of 179.47 W, respectively.

5.3.2 Experimental test of monogamy relation

To experimentally demonstrate the simulation of the monogamy relation between the
KCBS and CHSH inequality, we started with initializing the system into the pure state.
At room temperature, NMR experiments are only sensitive to the deviation density
matrix and the initial state is prepared from the thermal equilibrium into a pseudo-pure
state (PPS) i.e. |000〉 state. The PPS is prepared using spatial averaging technique
which is based on dividing the system in sub-ensembles and these sub-ensembles can
be accessed independently in NMR by using a combination of rf pulses and pulsed
magnetic gradients. After preparing the PPS state, we prepared the states |ψφ〉 and
calculated the average values of 〈KCBS〉 and 〈CHSH〉 inequalities for different values
of φ.
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To experimentally demonstrate the simulation of the monogamy relation between
the KCBS and CHSH inequalities, we prepared the states |ψφ〉 (Eqn. 5.5) and calcu-
lated the average values of 〈KCBS〉 and 〈CHSH〉 for different values of φ. We prepared
the |ψφ〉 states of a ququart-qubit system where the ququart is encoded by the 1H, 19F
NMR qubits and the qubit is encoded by the 13C NMR qubit. For the implementa-
tion of the monogamy inequality, we decomposed the projectors in terms of the Pauli
operators {I, σx, σy, σz}.

To experimentally test the inequalities on an NMR quantum processor, we exper-
imentally measured the expectation values for a prepared state. This can be achieved
by decomposing the observables as linear combinations of Pauli operators, which can
be mapped onto a single-qubit Pauli z operator. This mapping is particularly useful
in the context of an NMR experimental setup, where the observed z magnetization of
nuclear spins is proportional to the expectation value of the z operator of the spin in
that state.

5.3.3 Experimental study of quantum versus classical boundary
In an NMR quantum information processor it is only possible to measure the expecta-
tion value of the observables, so we first translate monogamy inequality (Eq.3), which
involves the KCBS and CHSH inequality, in terms of expectation values. We have
rewritten the KCBS and CHSH inequality in terms of expectation values so that we
can measure the inequalities in the NMR experiment. Since the observables involved
in the KCBS inequality (Eqn. 5.1) follow the exclusive scenario given in Fig. 5.2, the
KCBS inequality can be rewritten as:

KC = 5− 4P (C1 = 1)− 4P (C2 = 1)− 4P (C3 = 1)− 4P (C4 = 1)− 4P (C5 = 1)

= 5− 4
5∑
i=1

〈Πk
i 〉

= 5− 4
5∑
i=1

Tr[Πk
i ρφ] = Tr[Fρφ] (5.7)

where Πk
i are the projectors involved in the inequality and F is defined as the linear

combination of Pauli matrices as:

F = 0.559B12 + 0.132B48 − 0.559B60 + 1.25B64 (5.8)

where Bi are the Pauli matrices. The order of Bi is in the four-base subscript and the
base-four notation, 0, 1, 2, 3 can be directly mapped to either identity or the Pauli
x, y, z matrices. For example B15 has the form I1σ2

zσ
3
z where I , σz are identity and
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Figure 5.3: (a)Representation of NMR pulse sequence corresponding to the required state
ρφ = |ψφ〉〈ψφ|. The flip angles α, β vary according to the various values of φ of the
state ρφ. The empty rectangles corresponding to the π pulses of y rotation. The filled
rectangles denotes the π

2 pulses. The time intervals τ12 and τ23 are defined as 1
2JHF

and
1

2JFC
, respectively. CR12 and CN23 are control rotation and the control NOT gate, re-

spectively. (b) The theoretically simulated and experimentally observed tomographs of
the state ρφ = |ψφ〉〈ψφ| for φ = −0.27 radian, having an experimental state fidelity of
0.94.
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Pauli z matrices, respectively. Similarly we can find the forms of others Bi (details are
given in Ref. [106]. For instance, in order to determine the expectation value of 〈B15〉
for the state ρ = |ψ〉〈ψ|, we map the state ρ to ρ15 = U15ρU

†
15 where U15 = CNOT12

followed by observing the 〈σ3
z〉 in the state ρ15. The expectation value 〈σ3

z〉 for the state
ρ15 is equivalent to the observing the expectation value of 〈B15〉 for the state ρ.
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Figure 5.4: The graph representing the values of the inequalities 〈CHSH〉 and 〈KCBS〉
corresponding to the different values of φ. The red solid curve represents the region
spanned by the allowed average values of the 〈CHSH〉 and 〈KCBS〉 inequalities. The-
oretical and experimental results of 〈CHSH〉 and 〈KCBS〉 are represented by large black
dots and small black dots (with error bars), respectively. The ND boundary is shown by
the solid blue line.

The CHSH inequality (Eqn. 5.2) was simulated by measuring the expectation val-
ues of the projectors for the states ρφ = |ψφ〉〈ψφ| with different values of φ. To do this
we first rewrite the CHSH inequality as:

βCB = Tr[Πc
1ρφ] + Tr[Πc

2ρφ] + Tr[Πc
3ρφ]− Tr[Πc

4ρφ]. (5.9)

where Πc
1 = C1 ⊗ B1, Πc

2 = C1 ⊗ B2, Πc
3 = C4 ⊗ B1, Πc

4 = C4 ⊗ B2. Now
we decompose each Πc

i in terms of linear combinations of the Pauli matrices (Bi) and
calculate the expectation values for the physically realized ququart-qubit states ρφ with
different values of φ.

The NMR pulse sequence of state preparation is given in Fig. 5.3(a). The quantum
states ( for the different values of φ ) were prepared by varying the flip angles α and
β of the rf pulses. All the states required to demonstrate the simulation of monogamy
inequality (Eqn. 5.3) were prepared with the state fidelities greater than or equal to
0.93. The tomograph of one such experimentally reconstructed state with φ = −0.27
rad (flip angles α = 0.589 rad and β = 2.277 rad) with state fidelity 0.94 is depicted
in Fig. 5.3(b).
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5.4 Conclusions

Table 5.1: Experimentally obtained average values of the 〈CHSH〉 and 〈KCBS〉 operators
for eight input states.

State φ(rad) 〈CHSH〉 〈KCBS〉

|ψφ〉 -0.66 0.919±0.035 -3.626±0.055

|ψφ〉 -0.48 0.167±0.038 -3.693±0.057

|ψφ〉 -0.36 -0.993±0.041 -3.490±0.062

|ψφ〉 -0.27 -1.944±0.036 -2.687±0.037

|ψφ〉 -0.22 -2.412±0.029 -2.155±0.030

|ψφ〉 -0.16 -2.654±0.041 -1.493±0.072

|ψφ〉 -0.12 -2.532±0.050 -1.036±0.069

|ψφ〉 -0.08 -2.123±0.041 -0.847±0.064

We calculated eight points on the quantum boundary corresponding to eight dif-
ferent input states ρφ, and computed the average values of the related KCBS and
CHSH operators. The experimental results of the average values of the observables
〈CHSH〉 and 〈KCBS〉 are shown in Fig. 5.4 and Table 5.1. Our experimental results
demonstrate that the monogamy inequality (Eqn. 5.3) is always satisfied, in agree-
ment with the predictions of quantum theory. We also measured the average values
of 〈CHSH〉 = −1.944 ± 0.036 and 〈KCBS〉 = −2.687 ± 0.037 for the state ρφ with
φ = −0.27 rad, where the quantum boundary touches the ND boundary within ex-
perimental errors. Our experimental results are in good agreement with both quantum
theory and the photonics experiment [71].

5.4 Conclusions

In this chapter, we experimentally simulated the monogamy relation between con-
textuality and nonlocality on a ququart-qubit system. We calculated the values of
the monogamy inequality between contextuality and nonlocality for eight different
ququart-qubit input states, with experimental state fidelities greater than or equal to
0.93. We also measured the monogamy inequality having experimental values for
〈CHSH〉 = −1.944 ± 0.036 and 〈KCBS〉 = −2.687 ± 0.037 for the state ρφ (with
φ = −0.27) at the single point where the quantum boundary touches the ND bound-
ary, within experimental errors. Our experimental results are hence a direct validation
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of the monogamy relation between contextuality and nonlocality imposed by the no-
disturbance quantum principle. An NMR quantum processor can hence be used to
perform real tests of foundational issues in quantum mechanics. Our results are a step
forward in the direction of understanding the deeper connections between different
types of quantum correlations, namely contextual correlations and nonlocal correla-
tions. Results of this chapter are contained in J. Magn. Reson. Open 10-11 100058
(2022).
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Chapter 6

Theoretical and experimental study of
monogamous relation of entropic
non-contextual inequalities

6.1 Introduction

Quantum correlations have a wide range of applications in quantum information pro-
cessing tasks, and most of these applications share the characteristic of monogamy
of quantum correlations, which is discussed in the previous chapter. If there exists
a monogamy relation between the inequalities (contextual or Bell-type) then a viola-
tion of one inequality forbids the violation of another i.e. both the inequalities can
not be violated simultaneously. Braunstein and Caves provided a new perspective on
quantum correlations by introducing an information-theoretic framework to explain
non-local correlations [197, 198]. In this approach, the nonlocal correlations are stud-
ied in the form of inequalities, referred to as entropic inequalities. This method in-
volves the inequalities carried with the Shannon entropies of the observables and this
inequality must be satisfied in order to have the local realism of the correlations. In
contrast to conventional Bell inequalities, which are linear, the presence of Shannon
entropies makes such inequalities non-linear functions of probabilities. If the inequal-
ity is violated, there is no joint probability distribution over the observables, but if it
is satisfied, there is no conclusive answer. Later, the study was broadened to include
non-contextual situations [199, 200], referred to as entropic noncontextual (ENC) in-
equalities. These inequalities have undergone substantial exploration since their intro-
duction, as well as experimental realisation [138, 201, 202, 203].

In contrast to Bell inequalities, ENC inequalities do not rely on the number of mea-
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surement outcomes, making these inequalities more advantageous. In addition to nu-
merous other applications, this characteristic of ENC inequalities makes them suitable
candidates for nonlocality distillation [200] and bilocality situations. As discussed ear-
lier, the ENC inequalities are non-linear in nature and due to this nature, it is challeng-
ing to provide the general description of monogamy relationship of these inequalities.
It is possible to use the approach given in Ref. [198], to derive the monogamy of ENC
inequalities, but generalisation would require sophisticated calculations. The photonic
experimental setup has been used to experimentally implement the ENC inequalities,
where probabilities are calculated using the frequency of clicks. Nevertheless, the
monogamy of ENC inequalities has not yet been experimentally verified.

In this chapter, we have developed a theoretical method for evaluating the monogamy
relationships of ENC inequalities and experimentally demonstrated the results of this
approach on an NMR quantum information processor. In this method we utilize the
graph theoretical approach to construct the monogamy relationship of ENC inequal-
ities in arbitrary no-signalling scenarios. Next, we use our approach to construct the
monogamy relation for the tripartite scenario in the entropic Bell-CHSH scenario. For
the three parties, Alice, Bob, and Charlie, we have demonstrated that the monogamy
connection holds always, i.e., if Alice and Bob violated the Bell-CHSH inequality,
Alice and Charlie cannot do so (and vice-versa). Our method is also applicable to
arbitrary m ENC distributed over n parties, which is an added benefit.

Further, we move on to the experimental demonstration of entropic Bell-CHSH in-
equality on an NMR quantum processor. In order to do this, we start by considering the
case in which all three parties shared a mixed state with Alice-Bob and Alice-Charlie
sharing a maximally entangled state with probability of p and 1 − p, respectively.
Further, we consider the scenario in which all three parties share an entangled tripar-
tite pure state. We see that the monogamous relationship is always satisfied in both
situations, although only one of the inequalities can show a violation. It should be
highlighted that in NMR experimental set-up, it is only possible to extract expectation
values. Determining the entropies in NMR hardware becomes a difficult task due to
the inability to directly address the probabilities. We present a novel way to estimate
entropies on an NMR quantum information processor in our experimental demonstra-
tion. Our experimental demonstration will be of independent interest to those working
in this field. The scheme used to study monogamy relation of ENC inequalities in the
Bell-CHSH scenario is depicted in Fig. 6.1.

For the true experimental test, the probabilities should be estimated via the fre-
quency of clicks such as optical systems. As discussed above, on the NMR quantum
information processor, we have only access to estimate the expectation value of the
observable instead of probabilities. As a result, for NMR system, a true test of non-
classicality is impossible. Therefore, we assert that our experimental findings represent
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Monogamy relation

ENC-1 ENC-2

State Preparation

Entropy Measurement Experimental Demonstration

Figure 6.1: Scheme used to study monogamy relation of ENC inequalities in the Bell-
CHSH scenario.

a witness rather than a true test of the monogamous relationship of ENC inequalities.

6.2 Entropic inequalities and their monogamy
In this section, we describe our theoretical results, which will be used later in the paper.
We begin by providing a brief review of ENC inequalities and focus particularly on the
entropic version of the Bell-CHSH inequality.

6.2.1 The entropic inequalities

An experiment corresponding to a contextuality inequality can be represented by a
graph [204]. Mathematically, a graph G is defined by a set of vertices V and and
a set of edges E, such that G = (V,E). In relation to the contextuality inequality,
the set V can represent either events, projectors or observables depending upon the
scenario, while the set E represents a relationship between different elements of V ,
such as orthogonality, exclusivity or commutativity [204]. In this chapter, we use com-
mutativity graphs to study ENC inequalities, in which the set of vertices corresponds
to observables and two vertices are connected by an edge if they commute with each
other [205].

Consider an n-cycle commutation graph in which the n vertices represent observ-
ables Xi and the existence of an edge indicates that the corresponding observables
commute. An example of one such graph for n = 4 is given in Fig. 6.3 (top panel).

We assume that a non-contextual joint probability distribution exists over the entire
set of observables considered, even though most of them do not commute. It is our
aim to construct a condition based on the preceding assumption, for which a violation
would indicate that such a non-contextual joint probability distribution does not exist.
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The existence of a non-contextual joint probability distribution over the observables
Xi implies that it is possible to define a joint Shannon entropy H(X0, ..., Xn−1) of
them. We can then write

H(X0, Xn−1) ≤ H(X0, ..., Xn−1), (6.1)

where the relationship H(X) ≤ H(X, Y ) is physically motivated by the fact that two
random variables cannot contain less information than a single one of them. Further-
more, with repeated application of the chain ruleH(X, Y ) = H(X|Y )+H(Y ), where
H(X|Y ) denotes the conditional entropy of observable X given information about ob-
servable Y , the right hand side of the inequality can be re-written as,

H(X0, ..., Xn−1) ≤ H(X0|X1, ..., Xn−1) +H(X1|X2, ...Xn−1) + ...+H(Xn−2|Xn−1)

+H(Xn−1)

≤ H(X0|X1) +H(X1|X2) + ...+H(Xn−2|Xn−1) +H(Xn−1).
(6.2)

The latter inequality in Eq. (6.2) is a consequence of the relationship H(X|Y ) ≤
H(X), which implies that conditioning cannot increase the information content of a
random variable. Plugging Eq. (6.2) in Eq. (6.1) and usingH(X0|Xn−1) = H(X0, Xn−1)
−H(Xn−1), we finally get the required entropic non-contextuality inequality,

HK1 : H(X0|Xn−1) ≤ H(X0|X1) + ...H(Xn−2|Xn−1). (6.3)

A violation of Eq. (6.3) would then indicate that a non-contextual joint probability
distribution over the corresponding set of observables does not exist.

It should be noted that no assumptions have been made regarding the nature of
the observables Xi. For all intents and purposes they can correspond to projective
measurements or POVMs with any number of outcomes. Furthermore, the observables
could correspond to local scenarios or non-local, in which case the entropic inequality
would be termed as non-contextual or Bell non-local. Since we consider generalized
scenarios, we term all entropic inequalities as non-contextual as it subsumes the non-
local scenarios as well.

One of the many interesting cases arises for n = 4 observables, which corresponds
to the well known Bell-CHSH scenario. Consider two parties, Alice and Bob, each
having two observables labelled {A0, A1} and {B0, B1} respectively, such that observ-
ables of any one party do not commute, while observables of different parties commute.
Differing from the traditional Bell-CHSH scenario, it is also assumed that a measure-
ment of the observables can have an arbitrary number of outcomes. The corresponding
entropic inequality is written as,

HK1 : H(A1|B1)−H(A1|B0)−H(B0|A0)−H(A0|B1) ≤ 0. (6.4)
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1

X2 X3

X1 X4

Figure 6.2: Representation of the chordal subgraph having the vertices and edges. The
vertices corresponds to the observables Xi and the edges corresponds to commutativity
relationship between them.

A violation of the above inequality implies a non-existence of a joint probability
distribution over all the observables Ax and By ∀x, y ∈ {0, 1}. In the next section, we
show that ENC inequalities admit a monogamous relationship which can be derived
using a graph theoretic formalism. We particularly focus on the entropic Bell-CHSH
scenario described above and show that it admits a monogamous relationship.

6.2.2 Monogamy of entropic inequalities
We now elucidate the formalism to check and derive a monogamous relationship for
any arbitrary scenario using the graph theoretic formalism. It should be remembered
that a violation of the inequality (6.4) implies that a joint probability distribution cannot
exist over the given observables.

Proposition 6.2.1. A monogamous relationship for a set of n observables Xi, corre-
sponding to m non-contextuality scenarios exists if their joint commutation graph can
be vertex decomposed into m chordal subgraphs such that all edges appearing in the
original m non-contextuality graphs must appear just once in the decomposition. The
monogamous relationship then reads as,

HK1 +HK2 +HK3 + ....+HKm ≤ 0, (6.5)

where HKi denotes the ith ENC inequality.
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Proof. A chordal graph is a graph in which all cycles of four or more vertices have a
chord. A chord is an edge that is not part of the cycle but which connects two of the
vertices. It should be noted that the definition of chordal subgraphs implies that these
subgraphs must have an edge connecting two vertices, such that any induced cycles in
the subgraph have a length equal to three. Any induced cycles of length greater than 3

should then have an edge such that the resultant induced cycle satisfies the definition.
For these 3-cycle induced subgraphs, it is possible to write down the corresponding

entropic inequality. Since it is a 3-cycle graph, a joint probability distribution over the
observables always exists [66] and the entropic inequality is never violated. Therefore,
we can add all the entropic inequalities obtained in this fashion to obtain

∑
l

n∑
i,j=1

gl(H
′(Xi|Xj)), (6.6)

where H ′(Xi|Xj) = H(Xi|Xj) only if the vertices i and j belong to an edge and
zero otherwise, g(X) = ±X depending on the 3 cycle chosen and l is the number
of edges appearing in the m chordal graphs. It should be noted that Eq. (6.6) is a
linear combination of H(Xi|Xj) and since we require that all the terms appearing in
the individual m ENC inequalities appear in the decomposition, it is possible to obtain
the form in Eq. (6.5) via linear manipulation of the ENC inequalities of the 3-cycle
induced graphs. It should be noted that each term appearing in Eq. (6.3) corresponds
to an edge in the commutativity graph and missing even a single edge in the chordal
decomposition, would make one of the non-contextuality inequalities incomplete and
Eq. (6.5) unachievable. Furthermore, the linear manipulations required correspond to
choosing a suitable form of g(X) such that the m ENC inequalities can be obtained by
grouping certain terms together. This manipulation depends on the commutation graph
of the interested scenario.

As an example of our technique consider the chordal graph given in Fig. 6.2 which
is formed by two 3-cycle graphs. We assume that this is one of the subgraphs obtained
via vertex decomposition of a joint commutativity graph such that the term H(X2|X4)

corresponding to the edge (X2, X4) does not appear in Eq. (6.5), while the terms cor-
responding to the other edges do appear. In order to eliminate this term, we consider
the ENC inequality for the 3-cycle graph with vertices (X1, X2, X4), written in a cyclic
form as,

H(X1|X4)−H(X1|X2)−H(X2|X4) ≤ 0, (6.7)
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while for the other 3-cycle graph formed by the vertices (X2, X3, X4) we use an anti-
cyclic form of the ENC inequality as,

H(X2|X4)−H(X2|X3)−H(X3|X4) ≤ 0. (6.8)

Since all 3-cycle graphs admit a joint probability distribution, the aforementioned
inequalities are always satisfied and can therefore be added to give,

H(X1|X4)−H(X1|X2)−H(X2|X3)−H(X3|X4) ≤ 0, (6.9)

which is the ENC inequality over the graph in Fig 6.2 without the edge (X2, X4). We
use this technique to derive our monogamous relationships. In the case when such
a vertex decomposition cannot be found, we cannot guarantee that a monogamous
relation will exist.
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Figure 6.3: Representation of the joint Alice-Bob-Eve commutation graph (top) and its
chordal decomposition (bottom) corresponding to Proposition 6.2.1. Solid and dashed
lines represent the commutativity relationship between observables of Alice Bob, and Al-
ice Charlie, respectively.

We now apply this technique to derive a monogamous relationship of two entropic
CHSH inequalities. Consider a standard monogamous relationship between two en-
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tropic non-contextuality scenarios, K1 and K2 which should dictate,

HK1 +HK2 ≤ 0, (6.10)

As explained, in order to achieve a form of Eq. (6.10), the joint graph of the non-
contextuality scenarios must be decomposable into chordal subgraphs, which admit a
joint probability distribution. However, we also require an additional feature that all
edges of the individual non-contextuality graphs must appear at least once in any of
the chordal subgraphs.

Consider the CHSH scenario in which two parties Alice and Bob can perform a
measurement of the observables A0, A1 and B0, B1 respectively. We assume a third
party Charlie with observables E0 and E1, which commute with the observables of
Alice and Bob. The scenario is illustrated by a joint graph as shown in Fig. 6.3, where
vertices represent observables and edges indicate the commutation relationship. With-
out loss of generality we assume that Charlie would like to violate the entropic CHSH
inequality with Alice. The two corresponding Alice-Bob and Alice-Charlie entropic
CHSH inequalities are,

HK1 :H(A0|B0)−H(A0|B1)

−H(B1|A1)−H(A1|B0) ≤ 0,
(6.11)

HK2 :H(A0|E0)−H(A0|E1)

−H(E1|A1)−H(A1|E0) ≤ 0.
(6.12)

The joint commutation graph is decomposed into two chordal graphs while keeping the
edges appearing in the individual Alice-Bob and Alice-Charlie CHSH scenarios intact
in the decomposition, as shown in Fig. (6.3). The corresponding ENC inequalities for
each 3-cycle graph in every chordal subgraph are given as,

H(A0|E0)−H(A0|B1)−H(B1|E0) ≤ 0, (6.13)

H(B1|E0)−H(B1|A1)−H(A1|E0) ≤ 0, (6.14)

H(A0|B0)−H(A0|E1)−H(E1|B0) ≤ 0, (6.15)

H(E1|B0)−H(E1|A1)−H(A1|B0) ≤ 0, (6.16)

Being cyclic and chordal, all the above inequalities are a necessary and sufficient
condition for a joint probability distribution to exist. Furthermore, we have carefully

94



6.3 Experimental demonstration

chosen the terms with positive and negative coefficients so as to achieve a final form ac-
cording to Eq. (6.10). Adding the above inequalities and grouping the terms according
to HK1 and HK2 , we obtain

HK1 +HK2 ≤ 0, (6.17)

which is the required monogamy relationship. We note that this monogamy relation-
ship was also derived in [198], albeit in a different manner and specifically for the
entropic CHSH inequality. However, our formalism can be readily generalized to n
observables distributed among m parties.

The derived monogamy relationship (6.17) imposes severe restrictions on the vio-
lation of Alice-Charlie entropic CHSH inequality.

6.3 Experimental demonstration
In this section, we experimentally demonstrate the monogamy relationship derived for
the entropic Bell-CHSH scenario (6.17) on an NMR quantum information processor,
using two different set of states. We show that for both the sets of states, the entropic
Bell-CHSH obeys the monogamy relationship we derived above.

6.3.1 Implementation using a mixed tripartite state
We experimentally implement the monogamy inequality (6.17) using a mixed tripartite
state which is a classical mixture of two pure maximally entangled states given as:

ρ = p(|ψ1〉〈ψ1|) + (1− p)(|ψ2〉〈ψ2|), (6.18)

where

|ψ1〉 =
1√
2

(|001〉+ |111〉),

|ψ2〉 =
1√
2

(|010〉+ |111〉),
(6.19)

and p ∈ [0, 1]. As can be seen, the state ρ physically implies that Alice and Bob share
a maximally entangled state with probability p while Charlie is separable, and with
probability 1 − p, Alice and Charlie share a maximally entangled state while Bob is
separable.

The observables of Alice, Bob and Charlie are assumed to lie in the X − Z plane
and correspond to Pauli spin measurements along the unit vectors a,a′, b, b′ and e, e′
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respectively. The vectors a, b′,a′ and b are successively separated by an angle θ
3
,

while the vectors e and e′ are taken to be the same as Bob’s. The corresponding Pauli
observables are then given as:

A0 =

[
1 0
0 −1

]
, A1 =

[
cos 2θ

3
− sin 2θ

3

sin 2θ
3

cos 2θ
3

]
B0 =

[
cos θ − sin θ
sin θ cos θ

]
, B1 =

[
cos θ

3
− sin θ

3

sin θ
3

cos θ
3

]
,

(6.20)

while the observables of Charlie (E0, E1) are the same as Bob’s but acting in a different
Hilbert space. All of the aforementioned observables have eigenvalues ai, bi, ei ∈
{−1,+1} and follow the commutativity conditions as shown in Fig. 6.3.

For the set of observables given in Eq. (6.20), the maximum violation of the Alice-
Bob entropic CHSH inequality HK1 = 0.237 bits is found to be at θ = 0.457 radians
when the parties share the state |ψ1〉. The same also holds for Alice-Charlie entropic
CHSH inequality when the parties share the state |ψ2〉.

We experimentally implemented the monogamy relation given in Eq. (6.17) on
an eight-dimensional quantum system. We used a molecule of 13C -labeled diethyl
fluoromalonate dissolved in acetone-D6 ( for more details see Chapter 2). Experiments
were performed on a Bruker Avance III 600-MHz FT-NMR spectrometer equipped
with a QXI probe. Local unitary operations were achieved by RF pulses of suitable
amplitude, phase, and duration and nonlocal unitary operations were achieved by free
evolution under the system Hamiltonian.

The system is initialized in the PPS state i.e. |000〉 using the spatial averaging
technique [111], which is based on dividing the system in sub-ensembles which can
be accessed independently in NMR by using a combination of RF pulses and pulsed
magnetic gradients. The state tomography was performed using the least square opti-
mization technique [206] with an experimental state fidelity of 0.98.

We began by preparing the mixed tripartite state given in Eq. (6.18) for different
values of p. In order to achieve this, we utilized the temporal averaging technique [9,
207]. Using this technique, it is possible to prepare arbitrary mixed states on an NMR
quantum information processor, by applying suitable unitary transformations on some
common initial PPS. The different experiments are performed on common initial states,
the results of which are independently stored. Finally, these results are combined to
produce an average state which simulates the behavior of a mixed state.

In our case, we prepared the mixed state given in Eq. (6.18), which is a mixture
of two pure states |ψ1〉, |ψ2〉. We first prepared these two states by applying suit-
able unitaries on the initial state |000〉〈000| in two different and independent exper-
iments [208]. The states of these two experiments are then added with appropriate
probabilities to achieve the desired mixed state given in Eq. (6.18). To demonstrate
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Figure 6.4: The theoretical and experimental tomographs of the tripartite state ρ, with an
experimental state fidelity of 0.97 corresponding to p = 1.

the monogamy relation, we chose different values of p to experimentally prepare the
desired mixed state with experimental state fidelities ≥ 0.956. The tomograph of one
such experimentally prepared state with p = 1 is shown in Fig. 6.4.

After experimentally preparing the states, we measured the desired probabilities in
order to calculate the entropies involved in the inequality given in Eq. (6.17). In or-
der to calculate the probabilities, we transformed the required probabilities in terms of
expectation values. This is necessary because experiments on an NMR quantum infor-
mation processor yield only expectation values of the observables. These expectation
values are evaluated by decomposing the observables in terms of linear combinations
of Pauli operators which can be mapped to the single-qubit Pauli Z operator. This
mapping is particularly useful in the context of an NMR experimental setup where
the expectation value of the Z operator is easily accessible and corresponds to the ob-
served z magnetization of a nuclear spin in a particular quantum state. The normalized
experimental intensities of the NMR signal then provide an estimate of the expectation
value of the Pauli Z operator in that quantum state [209].

The probabilities can be written as P (Ai = ai, Bj = bj) = tr(ρ|ai〉〈ai|⊗ |bj〉〈bj|⊗
I) and P (Ai = ai, Ej = ej) = tr(ρ|ai〉〈ai| ⊗ I ⊗ |ej〉〈ej|) where |ai〉, |bj〉, |ej〉 are the
eigenvector of the observables corresponding to Alice, Bob and Charlie, respectively.
The observables (|ai〉〈ai| ⊗ |bj〉〈bj| ⊗ I) , (|ai〉〈ai| ⊗ I ⊗ |ei〉〈ei|) are decomposed in
terms of linear combinations of Pauli operators and details are given in Appendix-A.
The idea is to unitarily map the state ρ to another state ρ′, such that 〈X〉ρ = 〈Iiz〉ρ′
where X is the observable to be measured in the state ρ and Iiz is the z-spin angular
momentum of the qubit. This can be achieved by measuring the Iiz on the state ρ′. For
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Figure 6.5: Representation of quantum circuit and associated NMR pulse sequence that
are used to map the state ρ to the state ρ′ such that (a) 〈σx ⊗ σx ⊗ I〉ρ = 〈I2z〉ρ′ , (b)
〈σx ⊗ I ⊗ σx〉ρ = 〈I3z〉ρ′ . The black and white rectangles represent the π

2 and π RF
pulses. The τ12, τ13 represent the free evolutions.

example, one can find the expectation values of 〈σx ⊗ σx ⊗ I〉ρ and 〈σx ⊗ I ⊗ σx〉ρ
which are involved in the evaluation of probabilities, by using the quantum circuit and
corresponding NMR pulse sequence given in Fig.6.5(a) and Fig.6.5(b) respectively,
where the implementation is followed by a measurement of the spin magnetization of
the second and third qubits, respectively.

We experimentally calculated the ENC inequalitiesHK1,HK2 and the ENC monogamy
relationHK1+HK2 for the tripartite mixed state given in Eq. (6.18) for different values
of p. Experimental values of HK1, HK2, HK1 + HK2 with respect to various values
of p are plotted in Fig. 6.6. It can be seen that HK1 is violated for the tripartite state
with p = 1, while HK2 is violated for the state with p = 0. The monogamy relation
HK1 + HK2 is never violated for any value of p and the results are in good agreement
with the theoretical predictions.

It is seen that the experimental values are always lower than the corresponding
theoretical values. This is due to the fact that the maximum value of the inequality
is always achieved for a pure state and any addition of noise makes it a mixed state.
Therefore, the value is always observed to be lower than the theoretical one. The
difference between them also increases with increasing values of p upto p = 0.5. For
this region, the state prepared for p = 0.0 is the dominant one which is shown to
violate HK1 . Furthermore, the corresponding inequalities are logarithmic in nature,
which also compounds the errors for states till p = 0.5. However, after this value the
state prepared for p = 1.0 dominates and the errors again follow a similar trend. It
should be noted that the experimental curve follows the same trend as the theoretical
curve.
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monogamy inequality monogamy inequality Eq. (6.17) for the tripartite mixed states cor-
responding to various p values. The black dotted line represents the highest non-contextual
value that inequalitiesHK1,HK2 andHK1+HK2 can achieve. Red points with error bars
and a red line show the experimental and theoretical computed values for the inequality
HK1. The inequalities HK2 and HK1 +HK2 are represented in a similar way.

6.3.2 Implementation using a pure tripartite state
In this subsection, we experimentally test the monogamy relation Eq. (6.17) for a pure
tripartite state, having two parameters which we can vary. We show that the monogamy
relation holds and is in good agreement with theoretical predictions.

We take a pure tripartite state of the form,

|φ〉 = N(p1|001〉+ p2|010〉+ (p1 + p2)|111〉), (6.21)

where N = 1√
p2

1+p2
2+(p1+p2)2

is the normalization factor. We experimentally prepared

five different states corresponding to various values of p1 and p2. The quantum circuit
and the corresponding NMR pulse sequence is given in Fig. 6.7(a), (b). Different pure
states corresponding to various values of p1 and p2 were generated by suitably choosing
the values of θ1, θ2 and θ3. Tomograph of one such experimentally prepared state with
p1 = 0.25 and p2 = 0.50 is depicted in Fig. 6.8, with an experimental state fidelity of
0.93. After preparing the states, we measured the desired probabilities by mapping the
state onto the Pauli basis operators in order to calculate the entropies involved in the
inequality Eq. (6.17) as discussed earlier in Sec. 6.3.1.

We experimentally evaluateHK1 , HK2 andHK1 +HK2 with respect to the different
values of p1 and p2 and the results are given in Table-6.1. We see that the inequality
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Table 6.1: Theoretically computed and experimentally measured values of the monogamy
inequalities for a pure state.

HK1 HK2 HK1 +HK2

p1 p2 Theory Experiment Theory Experiment Theory Experiment

1.00 0.00 0.236 0.156±0.032 -1.436 -1.522±0.035 -1.200 -1.366±0.034

0.50 0.25 -0.492 -0.606±0.021 -1.338 -1.413±0.027 -1.830 -2.019±0.024

0.50 0.50 -1.017 -1.103±0.022 -1.017 -1.082±0.030 -2.034 -2.185±0.026

0.25 0.50 -1.338 -1.397±0.021 -0.492 -0.598±0.024 -1.830 -1.995±0.023

0.00 1.00 -1.436 -1.523±0.028 0.236 0.149±0.025 -1.200 -1.374±0.027

HK1 is violated for p1 = 1 and p2 = 0 and HK2 is violated for p1 = 0 and p2 = 1,
while the monogamy relationship HK1 +HK2 is never violated for any value of p1 and
p2. This shows that the monogamy relation between the ENC inequalities is obeyed
for all such possible states.

6.4 Concluding Remarks

In this chapter, we develop a theoretical framework to analyze when a scenario will
exhibit a monogamous relationship. We perform our analysis of the monogamy rela-
tions expected in a general tripartite scenario for the entropic Bell-CHSH inequality
and give the first theoretical study of the monogamy of entropic inequalities based on
the graph theoretic formalism. We also give the first experimental demonstration of
monogamy of entropic correlations using three NMR qubits. Evaluating entropy on
an NMR quantum processor is quite hard and has not been performed earlier. We are
able to obtain information about entropies using measurements of only the expectation
values of observables. We experimentally show the monogamy of entropic inequality
for a pure tripartite state as well as for the mixed state. This indicates with certainty
that our formalism holds in general.

It should be noted that due to limitations of access to individual events, the NMR
implementation of such scenarios involves use of Born rule to interpret the results of
measurements. This is not the ideal way of carrying out such experiments and a more
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refined test would evaluate the requisite probabilities without assuming the Born rule.
This is possible on optical systems [202, 203], where the probabilities are calculated
by estimating the frequency clicks of the photodetectors rather than the Born rule.

The experimental implementation of monogamy inequalities is important for quan-
tum information processing tasks and our results are a step forward in this direction.
The results described in this chapter are available in arXiv:2201.02330.
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Chapter 7

NMR implementation of variational
quantum algorithms to calculate the
ground and excited state energies of
H2 molecule

7.1 Introduction

In the 21st century, the second quantum revolution is taking place and it has been
led by quantum computing [210]. It has been discovered in recent years that there
are a large number of problems that a quantum algorithm would be able to resolve
much more efficiently than its corresponding classical algorithm [1]. One such class
of problems is the quantum simulation, introduced by Feynman [211]. The goal of
quantum simulation is to efficiently simulate a quantum system and obtain information
about the system.

Finding the eigenstates of a given system’s Hamiltonian is one of the key problems
coming under the hood of quantum simulation[212]. Such problems involve the cal-
culation of energies of molecules and have been a prime focus in the field of quantum
chemistry [213]. Finding the ground and excited state energies of a molecule gives
enormous information about its properties like stability, rate of reactions, and orbitals
involved [214]. Calculation of energies of molecules becomes a challenging task for a
classical computer as the complexity of the molecules grows. The first thing to realize
when working with these problems is that there is no analytical way to solve them; the
only solution is a numerical one. However, because of the enormous number of degrees
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of freedom involved, even this becomes a difficult task for molecules with a significant
number of atoms and electrons. This is where a quantum algorithm proves superior to
its classical counterpart. On a quantum computer, a variety of quantum algorithms are
being created to effectively calculate the energy of the molecules [215, 216, 217].

Quantum algorithms may, however, become exceedingly error-prone and require
quantum error correction in the near future because we are still very far from creating
an error-free quantum computer. Given that we are in the NISQ age [218], a novel
class of algorithms that are partially classical and partially quantum has been devised.
These algorithms can minimize the necessary gate depth and help to mitigate errors
to a certain extent. One such algorithm, the Variational Quantum Eigensolver (VQE),
has been developed to compute the Hamiltonians’ ground state on a quantum com-
puter [219, 220, 221, 222]. Due to the low circuit depth of the VQE algorithm, the
quantum-enhanced computation may be possible in the near future [223].

The excited state energies of the molecules have various crucial applications in
addition to the ground state energy. There have been some attempts to create an al-
gorithm for a molecular Hamiltonian’s excited states determination. There have been
two proposals proposed for the same: a method that minimizes the Von Neumann en-
tropy [224] and the quantum subspace expansion method [225]. Variational quantum
deflation (VQD), an algorithm that is an extension of the VQE algorithm, has recently
been developed to determine the excited state energies of molecules. [226]. VQD typ-
ically detects excited states for almost no additional cost compared to Ref. [224, 225].
In this algorithm, the excited states are obtained by applying the VQE algorithm to
a modified Hamiltonian which has the excited states as its ground state. Using VQE
techniques, several experiments have been carried out to show the energy spectrum of
molecules [223, 225, 227, 228].

In this chapter, we have used the VQE and VQD algorithms to simulate the ground
state energy and excited state energies of H2 molecule, respectively. On an NMR quan-
tum computer, the simulation results are validated. In order to identify the state that
minimised the energy expectation value, we changed the states in the qubit space in
accordance with the variational principle. This is accomplished by using the Unitary
Coupled Cluster Singles and Doubles approach (UCCSD) [229]. For the experimental
verification, the expectation values, involved in the H2 molecule Hamiltonian, is deter-
mined experimentally using two NMR qubits. The expectation values for the required
state are experimentally calculated by measuring the single-qubit Pauli Z operator of
experimentally prepared states. We also simulated of the energies of the H2 molecule
for the reduced Hamiltonian, on a single-qubit system and verified the results on an
NMR quantum computer. This is the first experimental example of the H2 molecule’s
energy calculation using just one qubit (less resource compared to other works). Fi-
nally, we demonstrate how a similar approach can be used to cut down on the resources
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Figure 7.1: Scheme used to simulate the ground state energy of H2 molecule.

needed to calculate the LiH molecule’s ground state energy. The scheme used to sim-
ulate the ground state energy of H2 molecule is depicted in Fig. 7.1.

7.2 Energy calculation of H2 molecule using quantum
hybrid algorithms

7.2.1 Variational quantum eigensolver

Finding the eigenstates and eigenvalues is unarguably a crucial step in analyzing a
Hamiltonian system. Given that the quantum systems are described by Hamiltonians,
the matter of finding their spectra becomes increasingly difficult as their size grows.
This means that a fully classical method will not be a viable option for large systems
and hence its a task that falls into the bucket of quantum computer. Variational quantum
eigensolver (VQE) is one of the hybrid methods that can be used to solve a given
quantum many-body Hamiltonian to obtain its ground state and its energy.

The basic principle of VQE is the same as the variational principle used in quantum
mechanics to find the ground state of a Hamiltonian. The procedure is as follows.

1. Given a Hamiltonian H, choose an ansatz, a state with at least one free parameter,
say |ψ(θ)〉.

2. Take an initial value for the parameter and obtain the expectation value of the
Hamiltonian, εθ = 〈ψ(θ)|H|ψ(θ)〉

3. Now, varying θ try to iteratively minimize the energy expectation value.

Notice, if |Ei〉 are the energy eigenkets of the Hamiltonian (such that E0 < E1 <
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E2...,) then we can write

|ψ(θ)〉 =
∑
i

αi(θ) |Ei〉 (7.1)

εθ =
∑
i

|αi(θ)|2Ei (7.2)

Therefore, the least expectation value that can be obtained is the ground state en-
ergy of the Hamiltonian itself. In that case, the state |ψ(θ)〉 will be the ground state of
the given Hamiltonian. But this depends on the choice of the initial ansatz state as it
might not explore enough space to pass through the ground state. However, a clever
choice of the ansatz can give a very good approximation to the ground state of the
Hamiltonian.

The main crux of using a quantum computer is in using an actual quantum system to
store the quantum state instead of using a classical computer. This is of course resource
efficient than doing a fully classical calculation. The VQE algorithm is however hybrid
because we will use a classical computer to update the value of the parameter θ so as
to arrive at the right parameter value that minimizes the energy expectation.

7.2.2 Variational quantum deflation
As was introduced in [226], the excited states of a Hamiltonian can be obtained from
the variational principle using a method called Variational Quantum Deflation (VQD).
The procedure is that, after getting the ground state from VQE, the Hamiltonian is
modified such that the global minimum expectation value of the Hamiltonian only lies
in the space orthogonal to the ground state and it is minimized specifically by the ex-
cited state of the Hamiltonian. So, if VQE is now applied to minimize the expectation
of this new Hamiltonian, the excited state and its energy can be obtained.

If |φ0〉 is the ground state of the original Hamiltonian H , the VQD Hamiltonian for
the first excited state is given by,

H1 = H + β0|φ0〉〈φ0| (7.3)

where β0 is a parameter that is useful to obtain the excited state in a self correcting
manner. It means, if we have an arbitrary state |ψ(θ)〉, which can be expanded as,

|ψ(θ)〉 =
∑
i

αi |φi〉 (7.4)

〈ψ(θ)|H1|ψ(θ) = |α0|2(β0 + E0) +
∑
i=1

|αi|2Ei (7.5)
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So notice, if we choose β0 such that β0 + E0 > E1, then the minimum value of the
expectation will be equal to E1, the first excited state energy. Or in other words, if we
redefine β0 to be γ − E0, then

〈ψ(θ)|H1|ψ(θ) = |α0|2γ +
∑
i=1

|αi|2Ei (7.6)

So, the condition for getting the excited state energy will be that γ > E1. This acts
as a self-correcting method in the sense that, if VQE is performed on H1 with γ < E1,
then VQE gives minimum energy as γ. Thus if we keep on repeating VQE with an
increasing value of γ in each step, the point where VQE gives the minimum energy to
be less than γ can be taken to be the first excited state energy, E1.

This can be generalized to get the nth excited state by taking the VQD Hamiltonian
as,

Hn = H +
n−1∑
i=0

(γ − Ei)|φi〉〈ψi| (7.7)

where |φi〉 for i = 1 to n are the first n energy eigenstates of H. The condition
to obtain the nth excited state in this case is that, γ > En for which the minimum
expectation value of Hn will be equal to En.

In this work, we will apply the VQD to obtain the energy spectrum of the H2
molecule using an NMR quantum computer.

7.2.3 H2 molecule structure

Since many of the chemical properties of a molecule are determined by its ground
state and the immediate excited states, it becomes extremely important to accurately
measure the energies of these states. The Hamiltonian of the H2 molecule in the first
quantized form (in atomic units) is given by [225, 228],

H = −
∑
i

∇Ri

2Mi

−
∑
i

∇ri

2
+
∑
i,j>i

ZiZj
|Ri −Rj|

−
∑
i,j>i

Zi
|Ri − rj|

+
∑
i,j>i

1

|ri − rj|

(7.8)

where Ri,Mi, Zi stands for the position, mass and charge of the ith nuclei respec-
tively and ri stands for the position of the ith electron. In the above Hamiltonian, the
first two terms correspond to the kinetic energy of the nuclei and the electrons, the third
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term corresponds to the inter-nuclear Coulombic repulsion, 4th term to the nucleus-
electron Coulombic attraction, and the last term to the inter-electronic Coulombic re-
pulsion. This Hamiltonian is generally solved first by using the Born-Oppenheimer
approximation where the nuclei are assumed to be at rest and only electrons are mo-
bile. Then, the Hamiltonian is cast into the second quantized form using a specific
choice of N particle basis functions φi. The second quantized form of this Hamiltonian
will be given by [225, 228],

H =
∑
µ,ν

tµ,νc
†
µcν +

∑
µ,ν,µ′ν′

Vµ,ν,µ′ν′c
†
µc
†
νcν′cµ′

where,

tµ,ν =

∫
dσφ∗µ(σ)

(
−∇r

2
−
∑
i

Zi
|Ri − r|

)
φµ(σ)

Vµ,ν,µ′ν′ =

∫
dσ1dσ2

φ∗µ(σ1)φ∗ν(σ2)φµ′(σ1)φν′(σ2)

|r1 − r2|
where we have used σi = (ri, si) with ri the position index and si the spin index.
To solve the above Hamiltonian on a quantum computer using the VQD algorithm,

the Hamiltonian has to be mapped onto the Pauli operators acting on the qubits that
simulate the states of the H2 molecule. In this work, we will make use of the Parity
transformation [230] for this purpose although transformations like Bravyi-Kitaev or
Jordan-Wigner can be used.

Using the Parity transformation, the 2 qubit reduced form of the H2 Hamiltonian is
given by [231],

H = a0II + a1ZI + a2IZ + a3ZZ + a4XX (7.9)

The values of the coefficients ai for different internuclear distance can be obtained
from the qiskit.chemistry module.

7.2.4 Solving the H2 Hamiltonian using two-qubit system
To use the variational principle, we will have to vary the states in the qubit space so
as to find the state which minimized the energy expectation value. This can be done
using the technique of Unitary Coupled Cluster Singles and Doubles (UCCSD). The
parametrized ansatz state using UCCSD is given by,

|ψ(θ)〉 = U(θ) |ψ0〉 (7.10)
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where, |ψ0〉 is an initial reference state and U(θ) is the UCCSD evolution operator.
For the case of H2 molecule, the UCCSD operator is given by [227],

U(θ) = exp(θ(c†2c
†
3c1c0 − c†0c

†
1c3c2)) (7.11)

The choice of the reference state is the Hartree-Fock (HF) state which definitely
has support on the ground state of the Hamiltonian. After writing the HF state on the
Parity basis, the symmetry in the action of UCCSD operator and the HF state can be
exploited to give a 2 qubit UCCSD operator,

U(θ) = exp(iθXY ) (7.12)

with the HF state given by |01〉
The action of U(θ) on |01〉 can be easily seen to be,

U(θ) |01〉 = exp(iθXY ) |01〉
= cos θ |01〉+ sin θ |10〉

(7.13)

So the UCCSD ansatz only explores a 2D subspace of the 2 qubit space. The
numerical implementation of the VQD with this UCCSD ansatz is shown in the next
section. The action of U(θ) on |01〉 and then minimization of the energy expectation
leads to the ground state of the Hamiltonian. The classical minimization process is
done using the Nelder-Mead method given by the minimize function of scipy.optimize
module. For the excited state, we have used the VQD modified Hamiltonian and the
same ansatz circuit leads to an excited state of the H2 molecule.

Given that we obtained 2 energy eigenstates of the Hamiltonian in the space spanned
by the vectors |01〉 , |10〉, to ensure the orthogonality of the eigenstates, it follows that
the other two eigenstates must live in the space spanned by the other two computa-
tional basis vectors. So to explore this subspace, we use the initial state to be |00〉 and
apply the ansatz circuit which performs the evolution U(θ), same as in the previous
case, given by,

U(θ) = exp(iθXY )

U(θ) |00〉 = cos θ |00〉 − sin θ |11〉
(7.14)

The reason this has to give the remaining two eigenvectors is that the H2 Hamil-
tonian of Eqn. (7.9) is real on a computational basis and since it is also Hermitian,
it follows from theorems of linear algebra that there exists a real eigenbasis for the
Hamiltonian. This means, that the coefficients of the computational basis in the ex-
pansion of the eigenvectors are real. This implies we don’t have to explore the space
where the relative phase between the two computational basis vectors is complex.
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Like in the previous case, we can obtain the other two eigenstates of the Hamilto-
nian using the VQD algorithm. Notice, however, that we will not need to utilize the full
power of VQD in this case, in the sense that the modified VQD Hamiltonian need not
have to include both the eigenstates that were obtained in the previous case. Instead,
the two eigenstates lying in the space of {|01〉 , |10〉} can be obtained just by treating
it as a new problem of diagonalization i.e. finding the ground and the first excited
state within this subspace. The reason is that any vector in this subspace is already
orthogonal to the two eigenstates obtained earlier and hence the purpose of the modi-
fied Hamiltonian of VQD is already satisfied. The numerical results obtained from this
method are given in the next section. It turns out, that the excited state obtained from
the HF state is actually the third excited state while the excited states obtained starting
from |00〉 are the first and the second excited states.

7.2.5 Solving the H2 Hamiltonian on a single-qubit system
As was mentioned above, the UCC ansatz only explores a 2D subspace of the 4D space.
This creates a possibility of mapping the 2D subspace to a single qubit space such that
the whole problem of diagonalization in a subspace of a 2 qubit space is transformed
into a diagonalization problem in a single qubit space. This can be achieved as follows.

In the first case, we saw that the parametrized state was given by cos θ |01〉 +
sin θ |10〉 where, the initial state was |01〉 and the UCC operator was exp(iθXY ). Now
if we map |01〉 to |0〉 and |10〉 to |1〉, the UCC operator can be mapped to exp(−iθY ).
That is, under the above mapping, we can write

exp(iθXY ) |01〉 = exp(−iθY ) |0〉 (7.15)

Now that the basis and the ansatz are mapped in a consistent manner, it remains to
map the Hamiltonian in the 2 qubit space to a single qubit space. This can be done by
noting the action of the individual terms of the Hamiltonian on the states |01〉 and |10〉.

From the above table, we can directly identify,

II −→ I & ZZ −→ −I
ZI −→ Z & IZ −→ −Z

XX −→ X

Thus, the diagonalization of the Hamiltonian in the 2D subspace of the 2 qubit space
reduces to the diagonalization of the 1D Hamiltonian given by,

H = (a0 − a3)I + (a1 − a2)Z + a4X (7.16)
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Table 7.1: The action of the individual terms of the Hamiltonian on the states |01〉 and
|10〉.

II |01〉 = |01〉 II |10〉 = |10〉

ZI |01〉 = |01〉 ZI |10〉 = − |10〉

IZ |01〉 = − |01〉 IZ |10〉 = |10〉

ZZ |01〉 = − |01〉 ZZ |10〉 = − |10〉

XX |01〉 = |10〉 XX |10〉 = |01〉

Table 7.2: The action of the individual terms of the Hamiltonian on the states |00〉 and
|10〉.

II |00〉 = |00〉 II |11〉 = |11〉

ZI |00〉 = |00〉 ZI |11〉 = − |11〉

IZ |00〉 = |00〉 IZ |11〉 = − |11〉

ZZ |00〉 = |00〉 ZZ |11〉 = |11〉

XX |00〉 = |11〉 XX |11〉 = |00〉

with the UCC ansatz exp(−iθY ) and the initial state |0〉.

For the remaining two eigenstates we had, the initial state = |00〉, UCC operator =
exp(iθXY ). Here, we will map |00〉 to |0〉 and |11〉 to |1〉. Then the action of the UCC
operator can be mapped to exp(iθY ) such that, under the above mapping,

exp(iθXY ) |00〉 = exp(iθY ) |0〉 (7.17)

To map the Hamiltonian, we will again look at the action of its elements on the
basis vectors |00〉 and |11〉.
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Then we can clearly identify,

II −→ I & ZZ −→ I

ZI −→ Z & IZ −→ Z

XX −→ X

Thus the Hamiltonian in the single qubit can be written as,

H = (a0 + a3)I + (a1 + a2)Z + a4X (7.18)

with the UCC ansatz exp(iθY ) and the initial state |0〉.

Thus, diagonalizing these two Hamiltonians will give all four excited states of the
original 2 qubit H2 Hamiltonian. The reduction of the problem to a single qubit is
of course resource efficient for experimental implementation. Also, since it contains
only 3 terms in the Hamiltonian, the calculation of energy expectation becomes a lot
simpler. Additionally, the UCC ansatz, unlike in the 2 qubit case, is just a rotation
about the Y-axis which is trivial to implement on any quantum computer. Last but not
least, the initial state can be directly taken to be the pseudo-pure state instead of any
requirement to prepare a reference state. With all these advantages, we have shown
that the whole problem of diagonalization of the 2 qubit H2 molecule can be simply
recast into a problem of diagonalization in a single qubit space.

7.3 NMR implementation

7.3.1 NMR implementation of energy spectra of H2 molecule using
a two-qubit system

To experimentally calculate the energies simulated by variation quantum algorithms
of H2 molecule on a four-dimensional quantum system, the molecule of 13C enriched
chloroform dissolved in acetone-D6 was used, with the 13C and 1H spins being la-
beled as qubit 1 and qubit 2, respectively(see Fig. 7.2(a)). NMR experiments are only
sensitive to the deviation density matrix and the initial state is prepared from the ther-
mal equilibrium into a pseudo pure state (PPS) which can mimic the evolution and
observations of true pure states [9];

ρ00 =
1− ε

23
I4 + ε|00〉〈00| (7.19)

where ε ≈ 10−6 and I4 is 4 × 4 identity operator. We initialized system in the
pseudo pure state (PPS) |00〉 using the spatial averaging technique [9]. The spatial
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averaging technique is implemented in NMR by using a combination of RF pulses
and pulsed magnetic gradients and the NMR pulse sequence for the PPS is given in
Fig. 7.2(b).

Experiments were performed on a Bruker Avance III 600-MHz FT-NMR spectrom-
eter equipped with a TXI probe. Quantum gates, required for the NMR implementa-
tion, were achieved by using the suitable RF pulses of suitable amplitude, phase, and
duration and nonlocal unitary operations were achieved by free evolution under the
system Hamiltonian. The T1 and T2 relaxation times of 1H spin-1/2 nuclei are ≈ 8
sec and ≈ 3 sec, respectively. While the T1 and T2 relaxation times of 13C spin-1/2
nuclei are ≈ 17 sec and ≈ 0.5 sec, respectively. The duration of the π

2
pulses for 1H

and 13C nuclei are 7.14 s at 19.9 W power level, and 12.4 s at a power level of 237.3
W, respectively.

In order to experimentally calculate the energies of the H2 molecule, we need to
calculate the expectation values of 〈ZI〉, 〈IZ〉, 〈ZZ〉, 〈XX〉. In NMR experiment
these expectation values can be calculated experimentally by mapping the 〈ZI〉, 〈IZ〉,
〈ZZ〉, 〈XX〉 into the single-qubit Pauli Z operator. This mapping is particularly useful
in the context of an NMR experimental measurement as in NMR experiment the ob-
served z magnetization of a nuclear spin in a particular quantum state is proportional to
the expectation value of the Pauli-Z operator of the spin in that state [107, 209]. For ex-
ample, in order to determine the expectation value 〈ZZ〉 for the state, say ρ = |ψ〉〈ψ|,
we map the state ρ to ρ1 = U1ρU

†
1 , where U1 = CNOT12 followed by observing 〈Z2〉

for the state ρ1. The expectation value of 〈Z2〉 for the state ρ1 is equivalent to observing
the expectation value of 〈ZZ〉 for the state ρ.

The quantum circuit and corresponding NMR pulse sequence for the experimental
calculation of required expectation values are given in Fig. 7.2(c). The circuit contains
three parts. The first part is initializing the state in the HF state |01〉 that can be achieved
by applying the single qubit rotation on |00〉 state. The second part is to apply the
parametrized ansatz U(θ) on the initial state which is achieved by optimizing the value
θ and the optimization is done by using the Nelder-Mead method given by the minimize
function of scipy.optimize module. The third part is to calculate the expectation values
〈ZI〉, 〈IZ〉, 〈ZZ〉, 〈XX〉 for the parametrized ansatz, and this is achieved by mapping
〈ZI〉, 〈IZ〉, 〈ZZ〉, 〈XX〉 into the single-qubit Pauli Z operator. In the end, we will get
experimentally calculated energies by adding these expectation values with respective
electronic constants (ai, i = 0, 1, 2, 3, 4). The values of the electronic constants is is
tabulated in Table 7.3 for the different values of internuclear separations (R).

We have experimentally calculated the ground state and the excited state energies
using VQE and VQD algorithms, respectively, for the sixteen internuclear separations
(in angstroms) 0.30A◦ - 1.80A◦. For each of the internuclear separations, we have
different electronic constant a0, a1, a2, a3, a4 the given in H2 molecule Hamiltonian
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y ȳ x

z̄ ȳ
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Figure 7.2: (a) Molecular structure of 13C-labeled chloroform used as a two-qubit quan-
tum system. (b) NMR pulse sequence for the PPS |00〉state where the value of the flip
angle α is kept fixed at 59.69◦, while J represents the coupling between the 1H and 13C.
1
2J represents the total time evolution. (c) Quantum circuit for the required state, generated
with the optimized value of θ w.r.t. different intermolecular distances. The white rectan-
gles denote π pulses and the black rectangle represents the π

2 pulse. The flip angles and
phases of the other pulses are written below each pulse. Bar over the phase represents the
negative phase.
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Figure 7.3: (a)Mapping details for the measurement of the expectation values 〈ZI〉, 〈IZ〉,
〈ZZ〉, 〈XX〉. Identity represents no unitary operation. (b) NMR spectra of 1H, showing
the experimentally measured expectation values of 〈ZI〉 and NMR spectra of 13C, show-
ing the experimentally measured expectation values of 〈IZ〉, 〈ZZ〉, 〈XX〉 respectively
for the ground state energy for intermolecular distance R = 0.70A◦.
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Figure 7.4: All ground and excited state energy levels of H2 molecule calculated using
VQE and VQD algorithms over a range of internuclear separations. Simulated results
are represented by joined lines and experimentally calculated values are represented by
different points with error bars.

Eqn. (7.9). Fig. 7.3(a) contains the details of mapping that we have used in NMR
experiment for the calculation of expectation values required for the experimentally
prepared states. Fig. 7.3(b) contains the NMR spectra of 〈ZI〉, 〈IZ〉, 〈ZZ〉, 〈XX〉
for the ground state energy for the internuclear separation R = 0.70A◦, obtained after
theπ

2
detection RF pulses. In a similar fashion, we have experimentally calculated

the ground and excited state energies for the H2 molecule for other thirteen different
internuclear separations. The ground and excited state energies w.r.t. the internuclear
separations have been plotted in Fig. 7.4. As can be seen from the graph Fig. 7.4, the
simulated values and experimentally measured values agree well with the experimental
errors.

7.3.2 NMR implementation of energy spectra of H2 molecule using
a one-qubit system

To experimentally calculate the energies simulated by variation quantum algorithms
of H2 molecule on a two-dimensional quantum system, the molecule of chloroform
dissolved in acetone-D6 was used, with 1H spin as a qubit (see Fig. 7.5(a)). This time,
we need to calculate the only two expectation values 〈Z〉, 〈X〉 for the calculation of
energy spectra of H2 molecule. The mapping details for the experimental calculation
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Figure 7.5: (a) Molecular structure of chloroform used as a one-qubit quantum system. (b)
Mapping details for the measurement of the expectation values 〈Z〉, 〈X〉. Identity repre-
sents no unitary operation. (c) NMR spectra of 1H, showing the experimentally measured
expectation values of 〈Z〉 and 〈X〉

that we used are given in Fig. 7.5(b). Fig. 7.5(c), represents the NMR spectra the
expectation values of 〈Z〉, 〈X〉 for ground state energy of the H2 molecule for the
internuclear separation R = 0.70.

We have experimentally calculated the ground and excited state energies for the H2

molecule for sixteen different internuclear separations. The ground and excited state
energies w.r.t. the internuclear separations have been plotted in Fig. 7.6. The red line
curve color denotes the energy calculation corresponding to the reduced single qubit
Hamiltonian Eqn. (7.16). The green line curve color denotes the energy calculation
corresponding to the reduced single qubit Hamiltonian Eqn. (7.18). As can be seen
from the graph Fig. 7.6, the simulated values and experimentally measured values
agree well with experimental errors.

The experimental complexity is reduced due to the reduction of the two-qubit sys-
tem to one qubit system. We are able to calculate the energy spectra of H2 molecule by
measuring the only two expectation values 〈Z〉, 〈X〉 and in NMR experiments these
can be calculated by a single RF pulse for the experimentally prepared one state. This
is the first experimental demonstration on an NMR quantum computer of energy cal-
culation of H2 molecule that requires only one qubit system.
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Table 7.3: Hamiltonian coefficients for Eqn. (7.9) for the different internuclear separa-
tion(R).

R (A◦) a0 a1 a2 a3 a4

0.30 -0.75374 0.80864 -0.80864 -0.01328 0.16081

0.40 -0.86257 0.68881 -0.68881 -0.01291 0.16451

0.50 -0.94770 0.58307 -0.58307 -0.01251 0.16887

0.60 -1.00712 0.49401 -0.49401 -0.01206 0.17373

0.70 -1.04391 0.42045 -0.42045 -0.01150 0.179005

0.80 -1.06321 0.35995 -0.35995 -0.01080 0.18462

0.90 -1.07028 0.30978 -0.30978 -0.00996 0.19057

1.00 -1.06924 0.26752 -0.26752 -0.00901 0.19679

1.10 -1.06281 0.23139 -0.23139 -0.00799 0.20322

1.20 -1.05267 0.20018 -0.20018 -0.00696 0.20979

1.30 -1.03991 0.17310 -0.17310 -0.00596 0.21641

1.40 -1.02535 0.14956 -0.14956 -0.00503 0.22302

1.50 -1.00964 0.12910 -0.12910 -0.00418 0.22953

1.60 -0.99329 0.11130 -0.11130 -0.00344 0.23590

1.70 -0.97673 0.09584 -0.09584 -0.00280 0.24207

1.80 -0.96028 0.08240 -0.08240 -0.00226 0.24801
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Figure 7.6: All ground and excited state energy levels of H2 molecule are simulated and
experimentally demonstrated over a range of internuclear separations. Simulated results
are represented by joined lines and experimentally calculated values are represented by
different points with error bars.

7.4 Reducing the three-qubit approximated LiH diag-
onalization to a single-qubit

Like the case of H2, the ground state of Lithium hydride (LiH) can also be obtained
variationally on a quantum computer. After a few judicious assumptions and reduc-
tions, an approximate 3 qubit Hamiltonian for LiH under the BK transformation is
given by [227],

H =c0I + c1Z0 + c2Z1 + c3Z2 + c4Z1Z0 + c5Z2Z0

+c6Z2Z1 + c7X1X0 + c8Y1Y0 + c9X2X0 + c10Y2Y0

+c11X2X1 + c12Y2Y1

(7.20)

With the UCC operator:

U(α, β) = e−iαX0Y1e−iβX0Y2 (7.21)

Where the Hartree-Fock state is given by |111〉. Notice, like in the case of H2,
the action of the above UCC operator just explores a 4-dimensional subspace of the
8-dimensional 3 qubit space. Thus, we see this can be mapped to a 2 qubit system
using simple mappings like in the previous case. To explicitly write the mapping, first
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consider the exact action of the UCC operator on the Hartree-Fock state.

U(α, β) |111〉 = e−iαX0Y1(cos β |111〉 − sin β |010〉)
= cos β(cosα |111〉 − sinα |001〉)
− sin β(cosα |010〉 − sinα |100〉)

(7.22)

Now we will map |111〉 to |11〉, |001〉 to |01〉, |010〉 to |10〉 and |100〉 to |00〉. Under
this mapping, the UCC operator can be transformed as follows.

e−iαX0Y1e−iβX0Y2 |111〉
= cos β(cosα |111〉 − sinα |001〉)− sin β(cosα |010〉
− sinα |100〉)
≡ cos β(cosα |11〉 − sinα |01〉)− sin β(cosα |10〉
− sinα |00〉)
= cos β(cosα |1〉 − sinα |0〉)⊗ |1〉 − sin β(cosα |1〉
− sinα |0〉)⊗ |0〉
= (cosα |1〉 − sinα |0〉)⊗ (cos β |1〉 − sin β |0〉)
= e−iαY0 |1〉 ⊗ e−iβY1 |1〉

(7.23)

Notice, under the above mapping, the ansatz not just reduces to a two-qubit space
but also becomes separable in the two-qubit space. This in fact reduces the 3 qubit
problem to a single qubit problem as once the states are separable, the process of
taking averages of the Hamiltonian can be done independently of each other. Now, the
3 qubit Hamiltonian can also be mapped to a 2 qubit form by noting the action of each
of its terms like in the case of H2, as follows.

Z0 −→ −Z1Z0, Z1 −→ I1Z0, Z2 −→ Z1I0

Z1Z0 −→ −Z1I0, Z2Z0 −→ −I1Z0, Z2Z1 −→ Z1Z0

X1X0 −→ I1X0, X2X0 −→ X1I0, X2X1 −→ X1X0

Y1Y0 −→ Z1X0, Y2Y0 −→ X1Z0, Y2Y1 −→ Y1Y0

While of course the identity remains identity. Under this transformation, the Hamil-
tonian becomes,

H = c0I1I0 + (−c1 + c5)Z1Z0 + (c2 − c6)I1Z0

+ (c3 − c4)Z1I0 + c7I1X0 + c8X1X0 + c9X1I0

+ c10Z1X0 + c11Y2Y1 + c12X1Z0

(7.24)
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So now notice, as the ansatz is a separable state in the 2 qubit space, the prob-
lem of finding the expectation value of the above Hamiltonian reduces to just finding
the expectation value of the individual Pauli operators {I,X, Y, Z} in the single qubit
space w.r.t. the state exp−iθY |1〉 where θ ∈ {α, β} and then adding their appropriate
combination of products to produce the above Hamiltonian. Hence, the 3 qubit prob-
lem is reduced to an effective single qubit problem. Notice, however, that the energy
minimization should still be done in a two-parameter space and not one.

7.5 Conclusions
In this chapter, we have obtained the ground and excited states of the H2 Hamiltonian
in the Parity basis using the VQE and VQD algorithms. The corresponding results have
been verified on an NMR quantum computer for the first time. Following this, we have
shown a simple method to reduce the problem of H2 to a single qubit problem and
have also verified the results on the NMR quantum computer. For the experimental
verification, we have used two NMR qubits and the expectation values, involved in
the Hamiltonian are calculated experimentally by measuring the single qubit Pauli Z
operator of the experimentally prepared state. A similar method has been applied to an
approximate Hamiltonian of LiH as given in [225] and has been shown that it can be
reduced to a single qubit problem from a three-qubit problem.

The experimental implementation of variational quantum algorithms to calculate
the energies of the molecules is important for quantum information processing tasks in
the field of quantum chemistry and our results are a step forward in this direction.
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Chapter 8

Summary and future outlook

The thesis focuses on the experimental investigation of quantum contextuality and non-
locality, including their monogamous relationships, on an NMR quantum information
processor.

The first two projects describe the experimental study of quantum contextual cor-
relations. The first project focuses on the experimental violation of state-dependent
contextuality in which we experimentally demonstrate the violation of two different
noncontextual inequalities capable of revealing fully contextual correlations. By de-
composing all of the observables in terms of Pauli operators, the expectation values of
the involved observables have been calculated, to reduce the need for quantum state
tomography. Further, the behavior of both the inequalities is analyzed when the under-
lying quantum state undergoes a rotation and the results suggest the non-linear nature
of the inequality values with respect to the rotation angle of the underlying state. The
second project describes the generalized scattering quantum circuit that can carry out
non-invasive measurements. We use our generalized quantum circuit to experimen-
tally demonstrate the state-independent contextual inequality, so-called temporal PM
inequality. Further, the violation of Bell-type inequality is demonstrated using the
quantum scattering circuit.

The next project describes the experimental construction of a symmetric three-
qubit entangled state. We use this state to experimentally simulate the tight Bell-type
inequality in the (3,2,2) scenario. The presence of entanglement is validated by two
entanglement measures, named negativity, and concurrence. Additionally, a theoretical
study is conducted to demonstrate how the Bell-type inequality can be employed as a
witness for entanglement.

The next two projects describe the study of monogamy of quantum correlations.
We first performed the experimental demonstration of the monogamous relationship
between contextuality and nonlocality using the ququart-qubit system. Ququart-qubit
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system is physically realized in NMR experiments via three NMR qubits, where the
first two qubits are clubbed together into a single ququart system. Next, we have devel-
oped a theoretical model to derive the monogamy relation between the ENC inequali-
ties using a graph theoretical approach. Then we apply our model to the tripartite Bell-
CHSH scenario and derive the monogamy relation between ENC inequalities. Further,
we experimentally verify the theoretical results for pure as well as mixed states. Our
results show that the monogamy relationship of ENC inequalities is satisfied for both
states.

The last project of the thesis describes study of various quantum algorithms and
their NMR implementation. We have simulated the ground state energy of the H2

molecule using the VQE algorithm and verified it experimentally. Further, excited
state energies of the H2 molecule are calculated using the VQD algorithm which is
the extension of VQE algorithm. Utilizing the UCCSD method, states are modified
in order to identify the one that minimised the energy expectation value. The simula-
tion and experimental demonstration of the energy calculation of the H2 molecule are
presented where the reduced one-qubit system is used instead of a two-qubit system.

In this thesis, we have used an NMR quantum processor as an experimental test
bed for the demonstration of foundational concepts of quantum theory. We have con-
structed a generalized quantum circuit that can perform non-invasive measurements
which is hardware-independent i.e. this circuit can be used for other quantum hard-
wares. Additionally, a theoretical protocol has been established utilizing a graph theo-
retical approach to derive the monogamous relation between ENC inequalities. Also,
we explored the potential applications of hybrid quantum algorithms in the field of
quantum chemistry and their NMR experimental implementations. Several non-trivial
tasks have been performed experimentally using an NMR quantum information pro-
cessor, such as calculation of correlation function involving the non-invasive measure-
ments, calculation of entropies, and implementation of hybrid algorithms. The results
discussed on this thesis are a step forward in the field of experimental quantum com-
putation.

In general, the thesis explores the experimental demonstration of foundational con-
cepts of quantum theory, including quantum contextuality, nonlocality, and entangle-
ment. These quantum properties have immense applications in the field of secure
communication and information theory. Quantum contextuality and nonlocality were
investigated separately for many years; however, the development of the monogamy
relation between them provides study of these quantum properties simultaneously. A
common ground of most quantum applications such as including self-testing, quan-
tum key distribution, device-independent quantum key distribution, and randomness
certification, is that they utilize the property of monogamy of correlations. An ex-
perimental implementation of such quantum correlations is an important step towards
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achieving information processing tasks, for which no classical theory can do better.
The loophole free experimental test of such quantum correlations on an NMR quan-
tum processor seems like an unexplored territory and needs to be brought into more
focus.
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