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Abstract

In 1996, Kasianowicz et al. [1], studied the translocation of a RNA molecule through

an α−hemolycin pore. It was observed that the ionic current gets blocked whenever the

RNA molecule passes through the pore. Since this landmark experiment, considerable

efforts have been made in understanding the transport phenomena of macromolecules

through biological nanopores. One of the most investigated aspect is the fabrication

of various types of nanopores to enable rapid DNA sequencing. Computer simulation

studies using coarse-grained models with varying complexities, have greatly enhanced

our understanding of the translocation process through various kinds of channels. The

goal of this thesis is to understand the translocation of a polymer through an extended

conical shaped pore with attractive surface interactions and a driving force which varies

spatially inside the channel, using coarse grained molecular dynamics simulations. We

consider both flexible, and semiflexible polymers. In our study, the polymer is modelled

as a coarse-grained bead-spring chain, where non-bonded monomers interact via a short

ranged repulsive Lennard-Jones (rLJ) potential. The consecutive monomers of the chain

is bonded via a harmonic potential. To model a semiflexible polymer, an additional bend-

ing potential is introduced between consecutive bonds. The semiflexibility of the polymer

is controlled by tuning its persistence length. The attractive surface interaction between

the polymer and the conical channel is given by the standard Lennard-Jones interaction.

The system is in a heat bath modelled as a Langevin thermostat. Verlet algorithm is used

to solve the Langevin equation of motion to update the positions and the velocities of

the polymer beads. All the simulations are performed using LAMMPS software [2]. For

each set of simulation parameters, the results presented are averaged over 1500 − 2000

independent samples.

As a first problem, we study the translocation process when the polymer enters the

pore from the narrow entrance and exits from the wider end of the conical channel [3].

We refer to this as “Forward Translocation”. We find that the channel gives rise to non-
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monotonic features in the total translocation time as a function of the apex angle of the

channel. We also obtained the waiting time distributions of individual monomer beads in-

side the channel and found unique features that depend strongly on the driving force and

the surface interactions. Polymer stiffness results in longer translocation times for all an-

gles of the channel which is consistent with earlier reports [4, 5]. Further, non-monotonic

features in the translocation time as a function of the channel angle changes substantially

as the polymer becomes stiffer, which is also reflected in the changing features of the

waiting time distributions. The total translocation time τ decreases with increasing force

strength as expected. Furthermore, with increasing forces, the non-monotonic features

also reduce significantly. A break up of the total translocation time into a filling, transfer

and escape time provides valuable insight on the translocation dynamics. We construct a

free energy description of the system incorporating entropic and energetic contributions

in the low force regime to explain the simulation results.

In the second problem, we study the translocation process with the entrance and the

exit ends interchanged[6]. Now the polymer enters the pore from the wider side and exit

from the narrow end. We call this as “Reverse Translocation”. We again obtain the total

translocation time and the waiting time distributions, and compare them with the results

obtained in the “Forward Translocation” case. We find striking differences between the

two cases which we discuss in detail. Comparison of our simulation with experimental

results [7] shows a good agreement. We have also obtained the conditions for directional

independence of the translocation process so that results for the forward translocation

process overlaps with that of the reverse case. It is found that ratio of pore and polymer

lengths plays an important role in distinguishing the directional-dependent translocation

processes. We find that the two process appears to be same under two circumstances (a)

for a very rigid polymer chain, and (b) for a very long polymer chain.

As a third problem, we study the effect of different pore-polymer interactions as a

function of pore length on the translocation of different polymers. The transition in the
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behavior of average translocation time with pore and polymer length is studied. For an

extended pore with pore apex angle zero (i.e., a cylindrical pore), we find that the average

translocation time scales nicely with the pore and the polymer lengths with same set of

exponents for all ranges of the force considered in our study. However, for a conical

pore, the average translocation time shows different behaviour for shorter and longer

pore lengths and we do not observe a scaling behavior.
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Chapter 1

Introduction

1.1 Motivation: ”The Human Genome Project”

The fundamental unit of heredity is DNA (Deoxyribonucleic acid), which carries the ge-

netic information of living species. DNA is a complex molecule where each molecule

consists of two strands twisted to form a double helical structure[11]. The backbone of

strands is made up of alternative sugar and phosphate groups, and these strands are

bonded together with base pairs formed from four bases: Adenine(A) with Thymine(T),

and Cytosine(C) with Guanine(G). The bases are organized in a sequence one after an-

other to form a genetic code. Decoding the code extracts the information contained inside

the DNA! With this knowledge in mind Human Genome Project (HGP) [12] was initiated

in 1990 with a cost of 2.7 billion dollars to read the human genome, which has approx 3

billion base pairs. The project was closed in 2003, reporting a 1.3 billion base-pairs count

of DNA in the human genome. A lot of engineering techniques and technologies have

been developed over the years to extract information about the organism. Generation

after generation, various techniques have been introduced to reduce the time and cost of

DNA sequencing. Recently a third-generation DNA sequencing technique was invented,
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in which a single molecule of DNA is sequenced through a nanopore[13–15]. Here, differ-

ent current blockades are measured across the pore due to different nucleotide patterns

in DNA, which are further used to identify different sequences of DNA. The process is

called DNA sequencing through a nanopore. Since 1996, various experimental and com-

putational research has been performed on this area of DNA sequencing. It is found that

the method of DNA transport process through nanopores is very efficient in DNA iden-

tification, as it minimizes the noise by preventing interference with other neighboring

nucleotides, and at the same time is very cost-effective.

1.2 Definition: Polymer translocation

Polymer translocation terminology is used for the transport process of macromolecules

from one side to the other side of the nanopore. The translocation problem is treated at

the mesoscale level, and hence theoretically, the translocation process is studied by set-

ting various coarse-grained models. Fine and detailed simulation techniques are used via

force fields to incorporate the realistic chemical nature of the molecules, surrounding en-

vironment (e.g solvents), and the pores. The translocation process initiates when the first

bead of the molecule enters the pore from one side of the pore (the cis side), and the pro-

cess is successfully completed when all the beads of the molecule are transported through

the pore to the opposite side, i.e. on the trans side of the pore. The extent to which poly-

mer has passed through the pore or channel is decided by the polymer segment, s, on the

trans side. The successive passing of monomers, adding to the increase of successfully

translocated segment, s, on the trans side, is the net result of the forces from the cis-side

segment, pore-polymer interactions, external driving force, and entropy force from the

segment on the trans-side side itself. The nature of the translocation process depends on

various factors: polymer length, pore length, external driving force, pore friction, bead-

solvent interactions, pore-polymer adsorption strength, etc.
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1.3 Translocation process in biological phenomena:

Real evidence of polymer translocation can be seen inside a biological cell. A biological

cell consists of various proteins, ions, and polymers like DNA, RNA, etc, and is encapsu-

lated inside a bi-layer membrane. The membrane holds the cell along with its constituents

as a complete unit. The biomolecules leave the cell from the pores present on the bi-layer

membrane and the passage of the molecules is one of the processes which makes the cell

function. This is an example of multiple spontaneous translocations from a very complex

environment.

There are various applications of single file threading in biotechnology. A few important

examples are virus injection inside a host cell [10, 16–18], the transfer of DNA from bac-

teria to host cells, or gene swapping between two bacteria, and controlled drug delivery.

These applications lead a lot of interest in experimental and theoretical research to deeply

and thoroughly understand polymer translocation.

1.4 Progress in Theoretical and Experimental research:

Here are the chronology of progresses achieved in the last 3 decades, to study and evalu-

ate the physics of polymer transportation.

In 1996, Kasianowicz et al. [1] demonstrated an experiment showing the translocation

process through α-hemolycin pore (Fig. 1.1)1, they observed the appearance of current

blockades in the presence of RNA inside the pore, which is otherwise absent in the ab-

sence of the molecules inside the pore. This indicates the presence of a polymer inside

1Raw data for the alpha-hemolysin pore geometry is collected from Protein Data Bank[19].
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vestibule

Figure 1.1: 3D Structure showing the cross-section of α-hemolycin ion channel. The
internal dimension of the channel is self-assembled from seven subunits in the bilayer
to form a heptamer structure. The dimension varies from 1.5 nm (the narrowest lysine
opening) to 3.6 nm (the widest vestibule) opening[8, 9].

the channel. The duration of time for which the blockades appear is proportional to the

length of the molecules passing the channel. The achievements from the result of this

experiment paved the way to study DNA sequencing, both experimentally and theoreti-

cally. In 1995, Baumgärtner et.al. [20] studied the effect of pore curvature on the translo-

cation process of polymers. It was found that, the gain in the conformational entropy of

the polymer due to a curved membrane, facilitates the drive of polymer across the mem-

brane. This leads to a spontaneous transport process, where the polymer is transported

from a lower curved region to a higher curved region of the pore.In 1996, Sung et.al. [21],

introduced a new statistical model of polymer translocation through a pore in a mem-

brane, where the free energy barrier concept across the membrane was used to explain

the diffusion process. They built the formalism from the Fokker-Plank equation, where

they assumed that the friction coefficient was proportional to polymer length(N). The cal-

culated translocation time was proportional to N2+ν , ν equals to 1 in Rouse model and
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in Zimm model. Later in 1999, Akeson et.al. [22], showed that it is possible to distin-

guish between different kinds of composition in polymer through sequencing. In their

experiment, two different types of current blockades were observed for the two different

compositions, polycytidylic acid (poly A) and polyadenylic acid (poly C), of the same

single RNA molecule. Later, in a paper by Muthukumar[23], the same Fokker-Planck[24]

formalism was used to derive the translocation time. The only difference was that the

friction coefficient was not a constant length-dependent number, but rather a parameter

that depends on the ratchet potential which depends explicitly on the pore details. The

assumption of local interaction between the pore and the monomer helped to improve

the results for translocation time dependence on N . It was seen that long polymers, τ

are proportional to N , as was experimentally observed in [1]. These were a few pioneer-

ing works in the area of polymer transport. For the last three decades, research are in

progress to find various scaling laws and behavior of τ with other translocation parame-

ters, for example, the chain length, and the pore length. In 2001, Amit Meller et.al. [10, 25]

presented a letter describing the behaviour of τ with the chain length (Fig. 1.2). The ex-

periment was carried out for α hemolysin pore, it was seen that the translocation process

is faster with shorter chain length in comparison to longer chain length [26], and the ve-

locity of translocation was seen to be a non-linear function of the applied voltage across

the channel.

In 2007, Kaifu et.al. [27] performed Langevin dynamics simulation to establish relation

between τ and pore polymer interactions ϵ. Here it was seen that for strong pore-polymer

interactions, the translocation probabilities increases, and τ shows non-monotonic depen-

dence on chain length for strong ϵ and the weak force, whereas for strong ϵ and strong

force τ scales as N2ν , where ν is Flory’s exponent. The non-universal scaling explicitly

emphasizes the non-equilibrium nature of the polymer translocation problem. It was also

shown for the first time that for strong attractive interactions, where single file transloca-

tion are ensured, τ can be divided into three different time: filling time τ1, passage time

τ2 and escape time τ3, s.t. τ = τ1 + τ2 + τ3. This fragment analysis helped a lot to evaluate
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Figure 1.2: (a) Cartoon picture illustrating the set-up of polymer translocation through
α-hemolysin pore embedded in a phospholipid-membrane. Negatively charged DNA
molecules along with the salt ions are electrically driven across the pore. Ionic currents
are measured with and without the DNA passage, and it is seen that with DNA passage
ionic current drops by 90%. (b) The two current blockades at different time intervals are
for two events of translocation for different DNA molecules.[10]

the role of attractive pores on the cis and trans side polymer segments. In a series of pa-

pers by Gauthier [28, 29], Monte Carlo technique was used to find the translocation time

for flexible polymers through small nanopores. Here, it was established that for a long

polymer chain, the translocation time (τ ) scales as ≈ N1+ν for the Rouse model and as

N2ν in the case for Zimm model. Apart from studying the translocation process through

nanopores and extended-pores, various other kind of biological inspired pore structures

has been explored to study the effects of pore-polymer interactions [30–32].

Study of confined polymers and translocation of polymers through different geo-

metrical pores other than single bead pores, like extended pores, conical pores, circu-

lar pores, spherical channels, corrugated channels, etc. [33, 34], paved the way to study

sequencing of DNA and RNA, which has a lot of applications in the field of medicine
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and biotechnology. During the last few decades, a number of experimental and theo-

retical work has been performed to understand the dynamics of the transportation of

such biomolecules [1, 4, 5, 21, 23, 27–29, 31, 35–40, 40–51, 51–61, 61–75]. For polymer

driven translocation, tension propagation theory [46, 48–50, 52] is used to set up scaling

laws at different force regime [47]. In a recent study[76], translocation through a coni-

cal channel was studied, where the complexity of the pore was captured in a two-stage

process as capture and threading processes. Apart from flexible chain study, transloca-

tion problems for semi-flexible chains have been studied. It is seen that for long poly-

mer N = 256, the more rigid the polymer is less is the propagation tail, and the re-

traction vector increases respectively[52, 77]. The effect of rigidity on τ has also been

studied[33, 52, 54, 58, 59, 65, 77, 78]. Along with free energy description of translocation,

and tension propagation theory, flory theory or(blob theory)[4, 79] are also used to find

the scaling laws of τ with translocation parameters, like chain lengths, pore geometries,

etc.

The transport of DNA through a nanopore/nanochannel is facilitated by the applica-

tion of an electric field across the channel, giving rise to an electrostatic force that pulls

the DNA into the channel. Due to the reduction in conformational entropy of a polymer

in confinement, the geometry of the nanochannel has been found to strongly affect the

dynamics of the translocation process. For example, in DNA sequencing using biological

nanopores like α-hemolysin and MspA, it has been observed that the shape of the channel

plays a vital role in determining the ionic current through it [10, 24, 30, 68, 72, 73, 80, 81].

Compared to the α-hemolysin pore, where the cylindrical shape of the beta-barrel dilutes

the ion current specific to an individual nucleotide of the DNA inside the channel, thus

making sequencing difficult, the narrow constriction of the cone-shaped MspA allows

better resolution of current signatures corresponding to individual nucleotide [36, 82, 82,

83].
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In a bid to control the transport dynamics of the DNA inside the nanochannel to

achieve better sequencing, experimental approaches have shifted to the building of bio-

inspired nanopores and nanochannels with similar transport properties [84–88]. These

artificial solid-state nanochannels not only allow the control of the shape of the channel

and tunability of its surface properties but are also stable to changes in pH, temperature

and mechanical oscillations. Asymmetrical conically shaped nanopores have been found

to have excellent sensing applications, with the nanopore tip acting as a sensing zone [89–

94]. Conical nano capillaries show ionic current rectification at low salt concentrations.

Further, chemical modifications of the inner surfaces of a conical nanochannel can lead

to a reversal in the ion current rectification direction. A combination of a conical nano

funnel with a cylindrical nanochannel was shown to significantly reduce the threshold

external voltage required to trigger the translocation of DNA through the channel [93].

Theoretical studies of polymer translocation through conical nanochannels have shown

that the escape of a confined flexible polymer from a conical channel is a pore-driven pro-

cess and can proceed without an external force [4, 5]. The asymmetric shape of the chan-

nel ensures that the polymer has a larger entropic penalty near the constriction which

gives rise to an entropic force leading to the escape of the polymer from the larger open-

ing. Further, the passage time is a non-monotonic function of the apex angle of the cone

for a given length of the channel. Langevin dynamics studies of flexible polymer translo-

cation through conical channels have shown that translocation is dependent on channel

structure and interactions of the polymer with the channel [73, 76, 95]. Most biopoly-

mers and proteins are however semiflexible with an energy cost associated with bending,

characterized by the bending rigidity κ of the polymer. The natural question to ask is

how the stiffness of the polymer affects the translocation dynamics. It is with this moti-

vation that we characterize the translocation dynamics of a semiflexible polymer through

an interactive conical nanochannel. In this thesis, we investigated the translocation pro-

cess from both the openings of the conical channel separately to underline the directional

dependencies of the translocation dynamics.
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1.5 Polymer Models

In theory, a polymer is modelled as a long chain of repeated monomer units. The monomers

are connected with each other via some physical potentials. Depending on the type of in-

teractions, a polymer chain can be categorised as: (i) an ideal chain, (ii) a semiflexible

chain or (iii) a real chain.

1.5.1 Ideal chain:

Ideal chains are chains with no correlation between polymers monomer at long distance,

they do not have any excluded volume interaction. They are allowed to cross each other.

A few ideal chain models [96, 97] which are mostly used in theoretical studies are listed

below.

1.5.1.1 Freely jointed chain Model (FJC):

It is the simplest model to model an ideal chain, there is no constraint on configurations

and the bond angle θ and the torsion angle ϕ are allowed to take every possible value in

the configuration space. The bond lengths (b) of the chain are constant, with no correla-

tions between different bonds, such that the end-to-end distance (R⃗n) of the chain is the

end-to-end vector which is the sum of individual bond vectors (r⃗i):

R⃗n =
n∑

i=1

r⃗i (1.1)

where n is the total number of bonds. Since, there is no direction preference in FJC, the

ensemble average R⃗n of chains is always zero, i.e. ⟨R⃗n⟩ = 0. Whereas, the statistical mea-

sure of chain models is identified from the non-zero mean square end-to-end distance,

and is given by:
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Figure 1.3: Schematic of ’i’ bond vectors in freely rotating chain model in 2-d space,
where the projection along the bond vector contributes to the correlation value while
the normal components cancel out. The bond angle between vectors is θ, and the bond
length is ’b’.

⟨R2⟩ =
n∑

i=1

n∑
j=1

r⃗i · r⃗j (1.2)

= b2
n∑

i=1

n∑
j=1

⟨cos θij⟩ (1.3)

= nb2. (1.4)

1.5.1.2 Freely rotating chain model:

In this model, unlike FJC, the bond angles (θ) are fixed but torsion angle (ϕ) are free to

span over all values (see Fig. 1.3). The correlation between the bond vectors is then given

by the equation:
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Figure 1.4: Plot showing the decay of bond-bond correlations as a function of rigidity
along the chain contour. The rigidity of the chain varies from [2:128], as shown in the
plot with colored number keys. The solid lines along each correlation plots is a fit of
correlation exponent relation (exp(−|j − i|b/lp)) derived from WLC model.

⟨rirj⟩ = b2 cos|j−i| θ. (1.5)

Since, the torsion angle,ϕ, is free to rotate over the space, the components along the bond

vectors contribute to the statistical average while the components normal to the axis can-

cel out. The end-to-end distance of the chain then becomes:

⟨R2⟩ = nb2
1 + cos θ

1− cos θ
, (1.6)

where, n is the no. of bonds, and b is the length of each bond. From eq.1.6 we see that, for

the case θ > 0, ⟨R2⟩ for FRC model differs from the FJC model.
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1.5.1.3 Worm like Chain Model(WLC):

The WLC model is often used to introduce the notion of rigidity in chains. Here the

constraint is over the bond angle θ, i.e θ << 1. The correlation between the bond vectors

can be used to establish a relationship with the stiffness of the chain :

⟨rirj⟩ = b2 cos|j−i| θ

= b2 exp[|j − i| ln(cos θ)]

= b2 exp[−|j − i|b/lp], (1.7)

where, lp = −b
ln(cos θ)

is defined as the persistence length. The persistence length, lp, mea-

sures the decay of bonds correlations in a chain. Correlation for stiffer polymers, i.e with

higher persistence length, decays slowly in comparison to a less stiff polymer. As we

can see in Fig. 1.4, the dark-blue plot is decaying very slowly, which is for κ = 128, in

comparison to the brown curve, which is for κ = 2.

1.5.1.4 WLC in continuous space(Derivation of bending energy) :

One of the simplest ways to obtain the energy cost of bending is to study the beam bend-

ing technique[98]. A straight beam, with no bending, is deflected from its neutral axis,

say from zero angles to some angle θ, as seen in Fig. 1.5. The beam is bent from the end

side, such that the length of the beam along the axis is unaffected hence called the neu-

tral axis, while the portion above and below the neutral axis is extended and compressed

respectively. The arc hence formed can be mapped to a circle of radius R as the radius of

curvature. Let’s take a small portion of the arc with neutral arc length L0 = Rθ, let z be

the perpendicular distance above this arc with arc length Lz = (R + z)θ. So the extent of

12



Figure 1.5: Schematic diagram showing the emergence of curvature, with the radius of
curvature R, when the beam is bent. The cost of the bending of the beam is stored as
bending energy in the rod.

the compression or extension:

∆L = Lz − L0 =
z

R
L0. (1.8)

The strain is given by ∆L
L
, here small deformation is considered, such that the energy cost

of this strain is the quadratic function of stretching or bending. In the simplest picture of

bending, the stress-energy density is given as:

W =
1

2
Y ϵ2, (1.9)
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Y is Young’s modulus of the material and ϵ = ∆L
L

. The energy of the bending then is given

by the equation:

Ebend = L0

∫
∂Ω

dA
Y

2

z2

R2
(1.10)

= L0I
Y

2R2
(1.11)

where ∂Ω is the cross-section perpendicular above the neutral beam axis, and I =
∫
∂Ω
z2dA

is the geometric moment due to the bending. By considering the assumption that the total

energy can be written as the sum of energies of all the material particles along the same

curvature, we rewrite:

Ebend = Keff

∫ L

0

ds
1

R(s)2
(1.12)

where Keff = Y I . One can define 1
R(s)

as the curvature which can also be written as the

derivative of the tangent vector. Hence

Ebend =
Keff

2

∫ L

0

∣∣∣∣ dtds
∣∣∣∣2 ds. (1.13)

This is the continuous form for the discrete bending potential energy Ubend(θi) = κ(1 −
cos θi), which incorporates stiffness by adding angle dependent interactions between the

successive bonds (i.e., ith and (i+ 1)th bonds), respectively.

1.5.2 Semiflexible chain:

In theory, one can define a polymer chain to be completely flexible (as per FJC model). But

in practice, almost every molecule posses rigidity due to its composition. The biomolecules

have various ranges of stiffness and the WLC model is one of the useful models, in theory,

to introduce controlled semiflexibility in chains. As discussed above, Eq.1.13 is the best

way to talk about the degree of stiffness in chains from the cost of bending through the
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parameter(Keff ). Bending energy maps the elasticity of the chain between the beads. To

compute the semiflexible chains, the discretized form of Ebend, i.e. Ubend is preferred in

simulations, where the parameters and index have their usual definitions as described in

the WLC section.

1.5.3 Real chain:

In real chain, the nearby monomer-monomer interaction or the interaction between the

surrounding molecules is taken into account by an excluded volume interaction. The

real chain conformations are decided upon the type of monomer-monomer interactions.

It can be either attractive in nature or repulsive. Generally, in literature, these interac-

tions reveal a lot about the surrounding solvents. If the chain is in good solvent then

the monomer-monomer interactions are strong, or in other words, there is an attractive

well between them. And in the situation when the monomer-solvent interactions (ather-

mal solvents) are more strong in comparison to monomer-monomer interactions, then

the monomers have hardcore repulsion between them. In theory, we use Week-Chandler-

Anderson (WCA) potential or the Lennard-Jones (LJ) potential to incorporate the above-

mentioned interactions.

In a real chain, the repulsion between monomer-monomer beads tends to swell the

chain which causes the loss of conformational entropy. The chain then acquires an equi-

librium size due to the balance between both competitive forces. The energetic contribu-

tion from excluded volume is equal to the energy associated with N numbers of excluded

monomers occupying volume ’v’, within a pervaded volume V (= N/R3), with no inter-

actions between monomers:

Fenergetic =
KBTvN

2

R3
. (1.14)
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The entropy free energy contribution is equal to the energy required to stretch an ideal

coil to its end-to-end distance ’R’:

Fentropy =
KBTR

2

Nb2
. (1.15)

The minimum of both the energies gives the equilibrium size of the chain and it is approx

proportional to N3/5.

1.6 Theoretical description of translocation:

1.6.1 Free energy description of polymer translocation:

In the above section, the free energy of a free real chain is discussed. But when the chain

is in some confinement, the form of the equation is changed. During the translocation

process, the chain is supposed to cross a barrier. Due to the barrier, the number of con-

formations of the chain reduces in comparison to the free real chain. The decrease in

entropy increases the free energy due to the excluded volume effect in confinement. This

develops a free energy barrier across the channel, and to successfully translocates on the

opposite side of the pore, the chain has to overcome this barrier. The nature of transloca-

tion through various symmetric pores, e.g. nanopore, and cylindrical pores has been ex-

plained by establishing free energy for various regions during the transport process. This

formalism is valid for the relatively small driving force and equilibrium conformations

of polymer chains from m segments on the trans-side (compartment 1) and the remaining

N − m on the cis-side (compartment 2). The equilibrium partition function for the two

compartments is given individually by Z1 and Z2, s.t. the total partition function is the

product of the partition functions of both the compartments. Similarly, for an extended
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pore, the partition functions for the three regions can be written in the same way.

Z2(m) = mγ−1e−µm/KBT , (1.16)

and

Z1(N −m) = (N −m)γ−1e−µ(N−m)/KBT . (1.17)

The total Free energy then is given by −KBT (lnZ1 + lnZ2)

Ftotal(m) = (1− γ2) lnm+ (1− γ1) lnN −m−m
∆µ

KBT
, (1.18)

where ∆µ is the chemical potential difference between the two sides. The chemical po-

tential difference decides the favorable and unfavorable passage of segments on the trans

side, for the positive value of ∆µ the process is favorable whereas, for the negative value,

it is an unfavorable escape. From this theory, one can study the polymer translocation

process as a function of chain lengths (N ). Along with it, the nucleation point (the con-

dition for successful translocation) of the translocation can be calculated by finding the

minima of Eq.(1.18) w.r.t. the trans coordinate (m).

1.6.2 Tension propagation (TP) Theory for polymer translocation:

Tension propagation formalism is used to explain the single file translocation dynamics

of a polymer chain through nanopores. The length of the polymer chain considered in the

theory is finite. For a polymer of chain length,N0, the translocation process of the polymer

is tracked by the segment on the trans-side of the pore which is defined as translocation

coordinate s. The translocation coordinate s varies from 0, at the beginning of the translo-

cation process, to N0, on the completion of the translocation process. The motion of the
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Figure 1.6: Figure showing the translocation of a flexible polymer of chain length 128
through a slit: (a) Snapshot of translocation dynamics, (b) Waiting-time distribution,
w(s), as a function of translocation co-ordinate, s (empty squares). A fit to the waiting
time graph is provided with the TP-theory (filled squares).

translocation coordinate s is governed by a Langevin equation in the overdamped limit:

Γ̃(t̃)
ds̃

dt̃
= (1− γ′)

[
1

Ñ0 − s̃
− 1

s̃

]
+ f̃ext + ζ̃(t̃) ≡ f̃tot. (1.19)

The tilde sign in Eq.(1.19) is used to express the quantity in the dimensionless unit defined

as: X̃ ≡ X/Xu
2. In Eq. (1.19), Γ̃(t) is the effective friction and is equal to the sum of the

pore friction ñp and the friction due to the drag force on the cis-segments, ζ̃(t̃) is Gaussian

white noise, γ′ is the surface exponent. The flux, ds̃/dt̃ = ϕ̃(t̃), of mobile monomers, Ñ ,

is considered to be constant in space and time. In the TP theory for polymers, a tension

force f̃(x̃, t̃), arises due to a driving force exerted at the pore and it travels through the

backbone of the polymer segments on the cis-side of the pore and is given by:

f̃(x̃, t̃) = f̃0 − ϕ̃(t̃)(x̃) (1.20)

2Where the units are given by:time tu ≡ na2/KBT , length su ≡ a, velocity vu ≡ a/tu, force fu = KBT/a,
friction Γu ≡ η, flux density ϕu ≡ KBT/ηa

2 . Here a is the segment length, KB is the Boltzmann constant,
T is the temperature and η is the solvent friction.
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where, f̃0 = f̃tot − η̃pϕ(t̃) is the force at the pore entrance. The mobile and immobile

domains on the cis-side are separated by a tension front, R̃(t̃), such that the region from

the pore up to R̃(t̃) is always under the effect of the driving force (see Fig. 1.6(a)). The

end-to-end distance of the mobile part of the polymer segments within the tension front

can be used to calculate R̃(t̃),

R̃(t̃) = ÃνÑ
ν , (1.21)

where Ãν is a prefactor which depends on the polymer chain and dimension of the sys-

tem, Ñ is the last monomer under the tension force on the cis-side, and ν is the Flory

exponent. The exact expression for the equation of motion for R̃(t̃) can be obtained using

the iso-flux condition [46].

The force exerted on the part of the chain at the pore travels to the end of the chain on

the cis-side through its backbone, and therefore the tension (R̃(t̃)) propagates to the last

bead of the polymer on the cis-side through the backbone of the chain. Once the number

of monomers under tension propagation equals to the total number of monomer beads

in the chain Ñ0, the propagation tail retracts and R̃(t̃) decreases. The effective friction is

given by:

Γ̃(t̃) = η̃p + R̃(t̃) (1.22)

The solution of equations for tension front propagation and retraction are used to explain

the waiting time distribution w(s), obtained for the translocation of a polymer through

a nanopore. As seen in Fig. 1.6(b), the initial rise in w(s) is mapped to the tension prop-

agation part obtained by R̃(t̃), and the decrease in w(s) is mapped to the tail retraction

part. Due to the single file translocation of polymer through a nanopore, the sum of the

waiting-times solved for propagation and retraction gives the total translocation time.
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1.7 Langevin Equation

The bio-molecular system is complex in structure and is surrounded by fluids, where its

constituents atoms and molecules are in constant motion. In theory, the dynamics of the

bio-molecules are studied by a coarse-grained model, where every entity of the system is

captured by a physical potential. To get any closer to what the behavior of real molecules

would look like, one needs to average thousands and thousands of these coarse-grained

samples. Langevin equation is an example of such coarse-grained dynamics. It is used

to study classical non-equilibrium processes like “polymer translocation”. The equation

consists of random source terms making the process stochastic. The stochastic differential

equation is solved computationally to get a lucid picture of the underlying dynamics of

the system. Here the random Brownian force is of thermal origin. In the case of the

polymer translocation problem, the random distribution of the positions of the chain, is

also a source of stochastic noise. Due to the thermal fluctuation term in the equation,

the distribution of translocation parameters, like translocation time/velocity, is seen to

be a Gaussian process. The Langevin equation for a bead of mass m, under an external

potential Uext is given as:

m ¨⃗ri = −η ˙⃗ri −∇
∑

(ULJ + Uharm + Ubend) + ⃗fext + ζ. (1.23)

The particle of mass m is subjected to coarse grained thermal environment via frictional

force(−η ˙⃗ri) and random uncorrelated Gaussian random force ζ(t) (white noise), s.t.

⟨ζ(t)⟩ = 0 (1.24)

⟨ζi(t)ζj(t
′
)⟩ = 2KBTηδijδ(t− t

′
) (1.25)

Equation (1.25) is known as fluctuation-dissipation relation. The average (⟨·⟩), is over

different realizations of random forces, and δ(t) is the Dirac delta function. Eqs. (1.23),

(1.24), and (1.25) are known as Langevin thermostats. The presence of an external force
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in the Eq. (1.23) makes it a driven process. The second term on the R.H.S of Eq.(1.23) is

known as a force field, where ULJ is known as Lennard-Jones potential, Uharm is harmonic

potential and Ubend is cosine potential. ULJ potential is a long-range potential between the

neighboring beads within the cut-off region and is given by the expression:

ULJ(r) =


4ϵ

[ (
σ
r

)12 − (
σ
r

)6 ]
, r ≤ rc

0, otherwise,

(1.26)

where rc = 2.5σ is the cut-off distance, σ is the size of the molecule, and ϵ decides the

magnitude of attraction which is given by the depth of the potential below the point

(x, y) = (0, 0), The potential Uharm is between two connected beads of the chain. The other

famous alternative for Uharm is Ufene potential which is preferred in molecular dynamic

simulations and are given by Eq. (1.27) and Eq. (1.28), respectively.

Uharm =
1

2
K(r −R)2, (1.27)

Ufene = −K ln
(
1− (

r

R
)2
)
, (1.28)

where K is the spring constant, r is the distance between consecutive monomers, and

R is their equilibrium separation. Fig. 1.7 compares different forms of above mentioned

potentials. The value of spring constant(K) in Uharm and Ufene is chosen to be equal to 13

and the curves are shifted to -1 vertically so that the minimum of the plots coincides with

the minima of ULJ potential, r0 = 21/6σ. In this thesis, we solve Langevin equation to get

the coarse-grained dynamics of the polymer.
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Figure 1.7: Plots of Lennard-Jones potential(ULJ ), harmonic potential(Uharm and finite
extensible non-elastic potential (Ufene). Out of the three potentials, first two potentials
are used in our simulations. ULJ is between two neighboring beads, while Uharm/Ufene

acts between directly connected beads. The zeroes of Uharm and Ufene are shifted to the
minima point (r0) of ULJ at (21/6,−ϵ = −1).

1.8 Computer Simulations

There are two approaches to perform simulations of the molecular system. The first one

is a deterministic method called Molecular dynamics (MD), and the other method is a

stochastic method known as Monte Carlo (MC).

The MD simulations are performed to obtain trajectories3 of the molecular system. It

gives temporal evolution of the states (or coordinates of beads in terms of computational)

of the given system by solving the underlying dynamical equations, such as Newton’s

equation. The evolution is studied by computing the equations at extremely small time

steps, usually in the order of femtoseconds (10−15s) or in picoseconds (10−12s)4. Molecu-

lar dynamics is a very useful tool in molecular physics, and lot of software are designed

to incorporate the tools and techniques of MD. A few examples of such software are

3It is defined as the positions and velocities of the molecule as a function of time
4In Lennard Jones system all static and dynamic units are used in reduced units.
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GROMACS, LAMMPS, CHARMM, NAMD, and AMBER. In the process, the accelera-

tion of the particle is determined from the components of the force, which is further used

to determine velocities and positions. The next updated position and velocity are then

followed by the known states. There are different algorithms like Velocity Verlet, and

leap-frog to perform integration over infinitesimal time steps. To begin the molecular

dynamics simulation, all the atoms in the system are assigned initial positions and veloc-

ities. The velocity for each atom is assigned randomly from the Maxwell distribution at

some temperature, T . The system is first equilibrated 5 at some desired temperature. The

temperature of the system with n beads (of mass m) is related to the mean kinetic energy

of the system by:

T =
2

3nKB

n∑
i=1

miv
2
i

2
, (1.29)

where,mi and vi are respectively the mass and the velocity of the ith particle. Once the de-

sired temperature is reached, the equilibration run is stopped followed by the production

run.

In statistical mechanics, MC simulation is used to build the configuration space of the

molecular system. The ensemble is generated by creating an acceptable sample space.

The randomly chosen states must be feasible under the given thermodynamic conditions,

which are decided by calculating probabilities of the accessible states. MC does not pro-

vide temporal dynamics of the system like MD. In contrast, every time step in MD is a

new configuration in MC. On the other hand, in MD, one performs MC at every step. One

of the popular MC methods for complex molecular systems is the Metropolis method.

Monte Carlo simulation is a Markovian process, where a each state is defined from its

previous state. The typical steps in the Metropolis algorithm are:

1. Initialise coordinates of n beads.

2. Randomly choose a bead i and displace its coordinates by random displacement,
5A system is said to be equilibrated if all the intensive parameters e.g. temperature, pressure, chemical

potential, etc. are same in every spatial direction.
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∆xi, ∆yi, ∆zi to obtain a new state.

3. Calculate the change in energy, ∆E, between the two states.

4. If ∆E < 0, accept the new coordinates and repeat step 2.

5. If ∆E > 0, choose a random number, ψ ∈ [0, 1).

(a) If ψ < e
−∆E
KBT , accept the new coordinates and repeat step 2

(b) If ψ > e
−∆E
KBT , keep the original states and repeat step 2.

In the context of polymer physics, MC method is very efficient in studying the dynamics

of polymer chains on a lattice.

In the thesis, we have used the MD approach and all the simulations are performed

using LAMMPS software [2, 99].

1.9 Overview of the thesis:

The thesis is organised as follows:

In Chap. 2, we present our results on translocation of polymers though conical chan-

nels. The polymer enters the pore from the narrow end and exits from the wider end. We

refer it as “forward translocation” process. The main objective of the study is to under-

stand the influence of conical pore structure on the translocation process. The quantities

of interest are the total translocation time τ , and the waiting time distribution w(s). We

also provide a Free energy description, in the quasi-equilibrium limit, to map the translo-

cation dynamics at a lower force regime.

In Chap. 3, we present results for the case where the polymer enters from the wider

end and exits from the narrow end of the conical pore. We refer this as “reverse translo-
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cation” process. We again obtain the same quantities of interest and compare them with

the results obtained for the “forward” case. We found striking differences between the

two cases. We also discuss the conditions when the results for the “forward” and the

“reverse” cases are same.

In Chap. 4, we study the effect of pore length, polymer length, and pore patterning on

the total translocation time τ . We also establish the scaling laws for the total translocation

time with these parameters.

In Chap. 5, we summarise the results presented in the thesis.
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Chapter 2

Forward translocation of Semiflexible

polymer through conical channels

2.1 Introduction

In this chapter, we study the translocation dynamics of both flexible and semiflexible

polymers through cone shaped nanochannels in the presence of a spatially varying exter-

nal driving force and surface interactions, using coarse-grained Langevin dynamics sim-

ulations. The external force acting along the channel length mimics the voltage driven

translocation of polymers, higher at narrower regions of the channel and lower near the

larger channel openings. Using the results of the translocation dynamics of a flexible

polymer through an flat channel (α = 0◦) as control, we first show that the asymmetric

shape of the channel gives rise to non-monotonic features in the total translocation time

as a function of the apex angle of the channel. The waiting time distributions of individ-

ual monomer beads inside the channel show unique features strongly dependent on the

driving force and the surface interactions. Polymer stiffness results in longer translocation

times for all angles of the channel. Further, non-monotonic features in the translocation
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Figure 2.1: Snapshots from the simulation for various stages of the translocation pro-
cess of a semiflexible polymer with N = 64 beads, through a conical channel of length
Lp = 16σ, half apex angle α and channel entrance width d. (a) Equilibrium polymer
conformation on the cis side of the channel with one end fixed at the pore entrance.
Subsequent polymer conformations (b) midway through the translocation process, (c)
showing a possible hairpin formation near the channel exit and (d) when the polymer
has successfully translocated to the trans side of the channel.

time as a function of the channel angle changes substantially as the polymer becomes

stiffer, which is reflected in the changing features of the waiting time distributions. The

total translocation time τ decreases with increasing force strength as expected. A break

up of the total translocation time into a filling, transfer and escape time provides valuable

insight on the translocation dynamics. As the apex angle α (see Fig. 2.1for the defini-

tion of the system parameters) is varied, the translocation time shows non-monotonic

features, consistent with earlier reports [4, 5, 73, 76, 95]. We construct a free energy de-

scription of the system incorporating entropic and energetic contributions in the low force

regime to explain the simulation results. We comment on the detailed behavior of the

waiting time distribution with varying force strengths and α. We next present a detailed

study of the translocation dynamics of semiflexible polymers with increasing stiffness

through this conical nanochannel. The non-monotonic features observed in τ with vary-

ing α differs significantly from that of the flexible polymer. The translocation time is also

strongly dependent on the stiffness of the polymer. Further, with increasing forces, the

non-monotonic features reduce significantly and total translocation time increases with

increasing α for all values of polymer stiffness. We present phase plots of τ in the κ − α

plane and mean waiting time distributions to characterize the translocation dynamics in
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detail. Finally, we provide free energy arguments using a quasi-equilibrium approxima-

tion valid at low forces to explain our observations.

In Sec. 2.2, we introduce the simulation model and methods where the governing

equations are explained. This section also sets the notations used in the chapter. In

Sec. 2.3, we present the results and discussion of our simulations for (a) flexible and (b)

semiflexible polymer. In Sec. 2.4, we provide possible explanation for the observed be-

haviour at low forces via a free energy description. In Sec. 2.5, we conclude by discussing

the importance of our results and possible future directions to extend the domain of phys-

ical relevance of this work.

2.2 Model

To model the conical channel in two dimensions, we consider the walls of the channel to

be made up of two rows of fixed monomer beads of size σ and of length Lp = N ′σ, where

N ′ is the number of monomers making up a wall of the channel. The walls are symmetric

about the x−axis with the apex angle of the channel α defined with respect to the x-axis

as shown in Fig. 2.1. The diameter of the channel at the cis side is fixed at d to allow only a

single monomer entry. To separate the cis and trans regions of the channel, vertical walls

made up of fixed monomers beads are placed along the y− direction.

The polymer is modeled via a coarse-grained bead-spring chain, where non-bonded

monomers interact via a short ranged repulsive Lennard-Jones (rLJ) potential given by

Ubead(r) =


4ϵ

[ (
σ
r

)12 − (
σ
r

)6 ]
+ ϵ, r < rc

0, r ≥ rc

(2.1)
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where ϵ gives the strength of the potential. The above truncated and shifted LJ potential

has cut-off at rc = 2
1
6σ. The interaction between consecutive monomers of the chain is

harmonic with the interaction given by

Ubond =
1

2
K(r − r0)

2, (2.2)

where K is the spring constant and r0 is the equilibrium separation between consecutive

monomers.

To model a semiflexible polymer, an additional bending potential is introduced be-

tween consecutive bonds as follows :

Ubend(θi) = κ(1 + cos θi) (2.3)

where θi is the angle between the ith and (i− 1)th bond vectors. κ quantifies the bending

rigidity of the polymer.

The interaction of the polymer beads with the vertical walls is modeled by the same

repulsive Lennard-Jones (rLJ) introduced before for the polymer. The surface interaction

of the conical channel with the polymer is however attractive, with the attraction between

the beads of the polymer and the channel beads given by the standard Lennard-Jones

interaction as :

Uchannel(r) =


4ϵ

[ (
σ
r

)12 − (
σ
r

)6 ]
, r ≤ rljc .

0, otherwise

(2.4)

where rljc = 2.5σ.

In addition to the forces on the polymer due to its interactions with the channel, it ex-

periences an additional external force in the positive x− direction, modeled as a potential

gradient, Fig. 2.2 :
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Figure 2.2: External force fext as a function of the length of the channel along its axis
x, plotted for different apex angles α at a fixed f0 = 1.0 according to Eq. 2.5. With
increasing α, external force drops rapidly with x as expected.

fext =
f0d

(d+ 2x tanα)
(2.5)

where f0 is the constant force expected in a linear channel with α = 0◦. Evidently, for a

conical channel, the force decreases along its length.

The equation of motion for the position of the ith monomer of the polymer is given by

m ¨⃗ri = −ζ ˙⃗ri −∇Ui + f⃗ext + η⃗i, (2.6)

where m is the mass of the monomer, Ui is the net potential faced by the monomer, ζ is

the friction coefficient and η⃗i is a Gaussian random force with ⟨ηi(t)ηj(t′)⟩ = 2kBTζδijδ(t−
t
′
) where kB is the Boltzmann’s constant and T is the temperature. The equations are

simulated in LAMMPS using the Verlet update scheme. The scales of length, energy, and

mass are set by σ, ϵ, and m respectively. This sets the time scale as τ0 =
√

mσ2

ϵ
. In these

units, we choose kBT = 1.0, ζ = 1.0, r0 = 1.12, d = 1.25 and K = 103kBT/σ
2. f0 is

varied in the range 0.1− 2 kBT/σ and κ varies in the range 0− 8. The number of polymer

beads N = 64 and pore beads N ′ = 16 are fixed in our simulations. The time step is

set as ∆t = 0.001τ0 and all results presented are averaged over 1500 − 2000 independent

samples.
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We start our simulation by holding the first bead of the polymer at the narrow opening

of the channel while the rest of the polymer segment is allowed to relax to its equilibrium

conformation outside the channel. The translocation process is tracked by the transloca-

tion coordinate s. The counter for s starts once a bead of the polymer reaches the trans

side after crossing the channel. The polymer is said to be successfully translocated if s

is equal to the total number of beads N of the polymer and the simulation terminates.

The speed with which the polymer traverses the channel gives a detailed idea of what is

going on inside the channel. To trace the above effect, we focus on the waiting time w(s),

defined as the average time spent by a monomer inside the channel.

2.3 Results and Discussions

2.3.1 Flexible Polymer

We first look at the translocation dynamics of a flexible polymer through a flat channel

α = 0◦ which serves as a control. As the strength of the external force f0 acting inside the

channel is increased (fext = f0 for a flat channel), the total translocation time (τ ) of the

polymer decreases.

To explain this behavior, we look at the waiting time distribution w(s) of the polymer

at different values of f0 (Fig. 2.3). Tension propagation theory [46, 48, 50, 52] accurately

predicts the waiting time distribution for a slit (channel of unit size). The waiting time,

w(s), is expected to rise with s as the tension due to the external force reaches the end

of the polymer in the cis side. After that, the system is in the tail retraction stage and

w(s) starts decreasing with s. In our system, where the pore is extended and is attractive

in nature, we observe several interesting features in w(s) which are different from that

obtained for the polymer translocating through a slit. These arise due to the interplay

between surface interactions and the external drive.
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Figure 2.3: (a) Waiting time distribution w(s) of a flexible polymer through a flat channel
(α = 0◦) as a function of scaled translocation coordinate s/N , for weak forces f0 =
0.1, 0.2. (b) Waiting time distribution for strong forces : f0 = 1.0, 2.0. (Inset) w(s) for
force values, f0 = 4.0.

For the initial part of the translocation, when the polymer enters the pore, the attrac-

tive nature of the pore and the external force, suck the polymer inside the pore. For

smaller forces (f0 = 0.1, 0.2) (Fig. 2.3(a)), w(s) rises with s as the tension slowly reaches

towards the end. However, as f0 increases (see Fig. 2.3(b) with f0 = 1.0, 2.0), the combined

effect of the attractive pore and the external force pulls the initial monomers quickly in-

side the pore, thus reducing their waiting times. For the lower forces (Fig. 2.3(a)), we

observe a flat regime, where w(s) does not change with increasing s. Subsequently, once

the tension has propagated to the end, the tail retraction part sets in, and w(s) starts to

fall. Dramatically, however, w(s) shows a sharp rise for the end monomers of the poly-

mer. This feature is true for all external force values. As the number of monomers left in

the channel becomes lesser than the channel length and keeps decreasing, the net external

force on the polymer decreases. Therefore, the attractive nature of the channel becomes a

dominant factor for the end monomers resulting in increased waiting times. The behavior

of the waiting times as explained above can be better understood if we divide the total

translocation time as τ = τf + τp + τe where (i) τf is the initial filling time, the time taken

by the first monomer of the polymer to reach the exit without returning back into the

channel; (ii) τp is the transfer time, the time taken from the exit of the first monomer into
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Figure 2.4: Variation of different time components (τs) with external force f0 for a flat
channel (α = 0◦) in log scale. Here, τ = τf + τp + τe.

the trans side to the entry of the last monomer from the cis side; and (iii) τe is the escape

time, the time between the entry of the last monomer in the channel and its escape to the

trans-side [55, 72]. τf depends strongly on the external drive and the surface interactions

which sucks the polymer inside. τp depends on surface interactions and entropy of the

polymer segment outside the channel on the trans side and less on the external force since

these monomers see a constant force inside the channel. τe is strongly influenced by the

attractive interactions which hold back the polymer as it exits the channel.

In Fig. 2.4, we have plotted the three translocation times as a function of the force. For

low forces, τf is significantly smaller than τp and τe, suggesting that translocation is dom-

inated by the transfer and escape dynamics. This explains the initial rise in w(s) for small

s as successive monomers spent longer times inside the channel. At larger forces, τf be-

comes comparable to the transfer and escape times. As explained earlier, the combined

effect of surface interactions and external force pulls the monomer rapidly inside the pore.

Therefore, the initial monomers show a dip in the waiting times.

In Fig. 2.5, we have plotted the total translocation time of the polymer as a function

of the external force. The translocation time falls faster than 1/f0 for larger forces. This

behavior is reminiscent of the effect of attractive pore-polymer interactions which pro-
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Figure 2.5: Variation of total translocation time τ with external force f0 for a flat channel
(α = 0◦). τ ∼ 1/fγ

0 with γ ≈ 1.78.

vides an additional pull on the monomer beads as they enter the pore. Such behavior of τ

with f0 for driven polymer translocation through extended channels have been reported

earlier [27].

We next look at the situation for the conical channel (α ̸= 0). Since more polymer

conformations are possible in the extended part of the channel compared to the con-

stricted region, this shape asymmetry leads to a force of entropic origin which can fa-

cilitate movement of the polymer from the cis to the trans end. Therefore, in addition

to the effects of the attractive surface interactions of the channel, the shape asymmetry

influences the translocation process significantly. Further, the external force is space-

dependent (Fig. 2.2), and decreases as we move from the cis to the trans side of the chan-

nel. This leads to a global decrease in the total translocation time (τ ) when compared

to a flat channel. Additionally, τ displays distinct non-monotonic features as α is varied

(Fig. 2.6). We first analyze this non-monotonic behavior for very low forces (say f0 = 0.1).

As α starts to increase, τ decreases as translocation are facilitated by the additional

entropic drive when compared to α = 0◦ which drives the polymer inside the conical

pore faster compared to a flat channel. This continues till a certain α = α1 (see Fig. 2.6;
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Figure 2.6: Total translocation time (τ ) of flexible polymer as a function of apex angle
(α) for different external forces f0. (Inset) The magnified plot of τ versus α at larger
force values shows the disappearance of maxima-minima peaks.

for f0 = 0.1, α1 ≈ 1.5◦). Beyond this apex angle, τ starts increasing with α. Note that

with increasing α, the attractive interactions along the length of the channel weaken. This

lowering of the pull on the polymer near the entrance, leads to longer translocation times.

It is again useful to split the total translocation time as was done for the flat channel.

However, unlike a flat channel, a conical channel has a larger exit which results in the

folding of the polymer back into the channel (see Fig. 2.1(c)). Therefore, for such channels

it becomes convenient to split the translocation time into a passage time and an escape

time, τ = τp + τe. Passage time τp for a conical channel is defined as the the time elapsed

between the entrance of the first and the last bead of the polymer at the pore entrance.

The escape time τe is defined similar to that of the flat channel. It is the time taken after

τp until all the polymer beads have exited the pore from the trans side. As we see, from

Fig. 2.7(a), the non-monotonicity in τ for smaller α is completely governed by τp. The

weakening of the surface interactions near the cis side is what dominates the behavior.

This increase in τ with α continues till it reaches α = α2. Beyond α2, τ starts decreasing
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with α. This is a combined effect of the entropic drive and surface interactions. Due to

wider pore exit, the pore filled with a polymer experiences an entropic drive. Further,

the escape time (τe) also decreases because the attractive interaction near the pore exit

becomes negligible and cannot hold the polymer inside the pore. With increasing α, we

see a different behavior. At high α, τe starts increasing and surpasses τp at some α. This

crossover can be explained by noting that the wider exit allows the folding of a polymer

leading to hairpin formations inside the pore. The escape of the polymer becomes the

rate-limiting step. Note that τp saturates beyond some value of α as the force that drives

the entry and the subsequent passage of the polymer towards the exit do not change.

At higher forces (f0 > 0.4; see inset of Fig. 2.6), τ increase with α because the surface

interactions do not play a major role in this regime. The force along the channel axis is

larger for smaller α. This ensures that at large force values, the translocation process is

extremely fast. However, as α increases, the force along the channel axis decreases (see

Fig. 2.2), and the translocation becomes slower.

We further verify our findings for the translocation time by looking at the waiting time

distribution of the monomer beads (Fig. 2.8). At a force value of f0 = 0.1, 0.2 (Fig. 2.8(a-

b)), we note that as α is increased from 1.5◦ to 3.5◦, w(s) for the initial beads increases

dramatically. This is a result of weakening attractive interactions near the cis-side as the

pore broadens. Note that for the end beads, w(s) for α = 1.5◦ rises sharply because of the

attractive interactions at the trans-side which prevent the exit of the polymer. This effect

is reduced sharply for α = 3.5◦. As α is increased further, w(s) reduces due to weakening

attractive interactions near the exit and a greater entropic drive. At even higher α ≥ 10◦,

we start seeing the effects of the folding in of the polymer leading to increased w(s) for

all monomer beads when compared to w(s) at lower α values. The dip in w(s) for the

last few monomers at large values of α is easily explained. With surface interactions

lowered significantly and a large part of the polymer already outside the pore leading

to higher entropy, the end monomers are sucked out extremely fast. For higher force
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Figure 2.8: Waiting time distributions of a flexible polymer for different α. In (a) we
show the variation for f0 = 0.1. (Inset) The plot of w(s) for a flat channel serves as a
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values (Fig. 2.8(c-d)), w(s) increases with α for all values of s. The net behaviour of w(s)

is consistent with the total translocation results for higher force value, ( Inset of Fig. 2.6).

2.3.2 Semiflexible Polymer

We now discuss the translocation dynamics of a driven semiflexible polymer through the

conical channel. We first look at the total translocation time as a function of the apex angle

for different values of polymer rigidity and external driving force. In Fig. 2.9(a), we have

plotted τ as function of α for a low external force value (f0 = 0.2). The variation of the

translocation time with apex angle still shows a non-monotonic feature as observed in the

case of a flexible polymer. However, unlike that of the flexible polymer, rigid polymers

do not show a sharp secondary peak in τ .

The total translocation time shows an initial decrease with increasing α indicating

that as the apex angle increases, it becomes favorable for the polymer to exit the channel.

This is a result of the enhanced entropic drive that we discussed for the flexible case.

Beyond a critical value of α, τ starts to increase again. Note that the critical α shifts to

larger values of apex angle and to higher values of τ as the rigidity of the polymer is

increased (see Fig. 2.9(a)). This indicates that the translocation becomes more difficult

with increasing stiffness of the polymer. This feature is consistent with earlier results of

driven translocation of semiflexible polymers through extended channels [72, 77]. The

largely monotonic increase in τ with increasing α is different from that of the flexible

polymer. The effect of rigidity can be explained by looking at the multiple stages of the

translocation process. At lower values of rigidity (say κ = 2, see Fig. 2.10(b)), τp plays

a more significant role for most α values. This shows that the total translocation time is

dictated by the filling of the pore as in the flexible case. However, with increasing rigidity

(say κ = 4, see Fig. 2.10(c)), τe becomes the rate-limiting process. The increased influence

of the escape time dynamics happens because the rigid polymer, which at this stage fills
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Figure 2.9: Total translocation time versus α for a semiflexible polymer for four different
bending rigidities κ = 1, 2, 4 and 8. In (a) the variation is shown for f0 = 0.2. (Inset)
Magnified plot at lower α for κ = 1.0 and 2.0. As external force is increased : (b) f0 = 0.5
(c) f0 = 1.0 and (d) f0 = 2.0, τ increases almost linearly with α.
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the channel, keeps deflecting between the two walls of the channel. This is a behavior

typical of semiflexible polymers with increased rigidity [100]. The attractive interactions

of the two walls keep the polymer pinned inside the channel for a long time, increasing

the escape time τe. The monotonic increase of τ with α, as opposed to the appearance of

a second peak for flexible polymers in the conical channel, can also be explained by the

dominance of the escape time dynamics. The competition of the attractive interactions

with the entropic drive, which results in the lowering of translocation time beyond α2 for

flexible polymers, is no longer the rate-limiting step. Rather, escape time dynamics which

are dominated by the attractive interactions of the channel walls with the escaping beads

influences the translocation process.

As the external force is increased, the non-monotonicity observed in the variation of

τ with α starts decreasing (Fig. 2.9(b-d)). At very high forces, f0 ≥ 1.0 (see Fig. 2.9(d)),

the total translocation time increases monotonically with the apex angle for all rigidities

of the polymer. In Fig. 2.11 we construct phase plots for τ in the κ − α plane for various

values of f0. For small forces f0 = 0.2, τ is maximum for stiffer chains and smaller apex

angles (see Fig. 2.11(a), κ > 3, 0◦ ≤ α ≤ 1◦). For larger forces f0 = 1.0, the phase plot

shows a largely uniform increase in τ with increasing α for all κ values (see Fig. 2.11(b)).

The maximum translocation times are observed when both κ and α are large. Separate

phase plots for the entire range of α’s and κ’s are presented in Figs. 2.12(a-e) for lower

force value (f0 = 0.2), and for a higher force value (f0 = 1.0) in Fig. 2.12(f).

We look at the waiting time distribution w(s) of the semiflexible polymer as it moves

from the cis to the trans side of the channel at low forces (f0 = 0.2). In Fig. 2.13, we have

plotted w(s) for different values of the bending rigidity as the apex angle is varied. For

low bending rigidity, w(s) shows an increase with s initially and then a largely flat region

at intermediate s, for all values of α (Fig. 2.13(a)). These results are similar to that for

uniformly extended channels. Near the end, the attractive interactions prevent the exit

of the polymer leading to larger waiting times. For stiffer polymers, the waiting times
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Figure 2.11: Phase plot of total translocation time τ in the κ− α plane for two forces (a)
f0=0.2. and (b) f0 = 1.0.

for all monomers monotonically increase with α which is consistent with the behavior of

total translocation time. As the polymer rigidity increases (Fig. 2.13(b)), the entropic gain

in moving towards the trans end of the conical channel becomes lesser. The translocation

dynamics of the end monomers are now dominated by attractive surface interactions.

The end segment of the polymer keeps deflecting between the walls and is stuck in either

wall for long periods, thereby increasing the waiting times.

2.4 Free Energy

It has been established that the relaxation time of a polyelectrolyte chain in equilibrium

is much shorter than the translocation time for the typical range of chain lengths used

and typical voltages applied in most experiments [60]. This implies that a polymer chain

initially at equilibrium can be taken to be in quasi-equilibrium as it translocates across

the nanochannel, especially for low external forces. In fact, the quasi-equilibrium ap-

proximation in such cases can be even extended to translocation of every segment of the

polymer [60]. The quasi-equilibrium approximation obviously fails for high forces and

longer lengths of the polymer. Using this approximation for low forces and chain lengths

considered in our simulations, we construct the free energy landscape for the transloca-
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(a) f0=0.2 (b) f0=0.2

(c) f0=0.2 (d) f0=0.2

(e) f0=0.2 (f) f0=1.0

Figure 2.12: Phase plot displaying the dependence of τ on α’s and κ’s at lower force
value, f0 = 0.2, in (a-e) and for force 1.0 in (f) respectively. (a) The color variations
clearly project two minima for the lower κ and lower α range. (b) It displays one min-
imum for higher α values. (c) Phase plot for rigid polymer at lower α values, τ mono-
tonically decreases up to ≈ 5◦ and then increases after that(fig. (d)). Fig.(e) is the total
projection of τ . Fig.(f) is phase plot for force value 1.0, τ is a monotonic function of α
for all κ values.
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Figure 2.13: Waiting time distributions for various α at (a) κ = 2, and (b) κ = 4 for
f0 = 0.2. The distributions show distinct differences as the bending rigidity of the
polymer is increased.

tion process to understand the translocation behavior obtained in our simulations.

There are several contributions to the free energy : (i) the entropic contribution coming

from the confinement of the polymer segment inside the channel (ii) the entropic contri-

bution due to the polymer segments outside the channel (ii) the energetic contribution

due to surface interactions between the channel and the polymer and (iv) energetic con-

tribution due to the external force.

The total free energy of the system in terms of the translocation coordinate can be

written as

Ft(s) = Fe + Fc + Fpp (2.7)

where Fc is the confinement-free energy, Fe is the entropic component due to polymer

segments outside the channel, and Fpp is the free energy contribution due to the channel

polymer interactions.

To construct Fe for a semiflexible polymer segment inside a conical channel, we use

the approach in [4]. The contribution to the free-energy from a polymer of sizeR confined

in an area A of the cone in two-dimensions is given as Fc ∼ kBT
(

R2

A

) 1
2ν−1

[101]. If Np

denotes the number of polymer beads confined inside the channel, then R ∼ σNν
p , where
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ν = 3/4 is the Flory exponent in two-dimensions. A is dependent on the degree of con-

finement. If L denotes the length of the region inside the channel along the x−direction

that holds the confined polymer and a the length which is empty, then A is given as

A =
1

4 tanα

[
(D0 + 2(a+ L) tanα)2 − (D0 + 2a tanα)2

]
. (2.8)

In the case of rigid polymers, the analysis can be extended by replacing the number

of monomers Np with the number of Kuhn segments Ñp ≈ Npσ/lK where lK = 2lp is

the Kuhn length. lp is the persistence length of the polymer. In two-dimensions, the

bending rigidity is related to the persistence length as κ/kBT = lp/2. We would however

like to express Fe in terms of the translocation coordinate s. Therefore, we extract the

number of beads that are inside the channel from the simulations for a fixed translocation

coordinate. As is expected, there would be several configurations of the polymer (with

different values of Np) inside the channel for a given s. The confinement-free energies of

all such configurations are averaged to give Fc(s).

The free energy contribution from the polymer segments outside the channel is given

as[29]:

Fe =


γ′ logNc Nc > 1 and Nt = 0

γ′ logNc + γ′ logNt Nc > 1 and Nt > 1

γ′ logNt Nc = 0 and Nt > 1

where Nc is the number of beads on the cis-side of the channel and NT is the number of

beads on the trans-side of the channel. Note that Nc and NT are functions of the translo-

cation coordinate s and are obtained from the simulation similar to the confinement free

energy for every value of s. Further, Nc +Np +NT = N at all times.

The free energy contribution from the surface interaction Fpp is obtained by summing

over the LJ potential felt by each polymer bead when they are inside the channel. For a
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given translocation coordinate, we identify the number of beads inside the channel and

calculate the total potential felt by the beads. As we mentioned before, for a given s, there

would be multiple configurations of the polymer inside the channel (corresponding to

the time steps for which s = 1, 2, ...). All such contributions are appropriately accounted

for and the averaged free energy contribution Fpp due to surface interactions is evaluated

numerically as the translocation coordinate changes.

In Fig. 2.14(a), we plot the total free energy contributions which are entropic in ori-

gin for a flexible polymer, arising due to the confined segments of the polymer and the

segments outside the channel. The free energy contribution due to channel-polymer in-

teractions is plotted in Fig. 2.14(b). The entropic contribution exhibits a free energy barrier

for an intermediate s for all values of the channel angle α. This indicates that entropically

it is more difficult for the polymer to enter the channel from the cis-side. However, the en-

ergetic contribution coming from the attractive LJ potential dominates the initial stages

and the polymer is sucked into the channel. At intermediate s, the competition between

the two leads to the comparatively larger waiting times observed in Fig. 2.8(b). As α is

increased, we observe a clear non-monotonic behavior in the entropic part of the free en-

ergy. The free energy barrier increases as we go from α = 1.0◦ to α = 2.7◦ and decreases

as α is increased further. This indicates that translocation would be more difficult from

α = 1.0◦ to α = 2.7◦ and favorable as the channel angle increases. This is consistent with

the behavior observed in the translocation time as a function of the channel angle, where

for f0 = 0.1, τ shows a peak at α ≈ 2.7◦ and decreases with increasing α. The energetic

contribution Fpp does not show non-monotonic behavior at these values of α, with signif-

icant overlap in the free energy profiles (see Fig. 2.14(b)). As α is increased, Fpp becomes

shallower indicating easier translocation and therefore decreasing τ .

In Fig. 2.14(c), we plot the total free energy contributions which are entropic in origin

for a semiflexible polymer for various channel angles. Similar to the flexible polymer, the

entropic contribution indicates a barrier at intermediate s. However, unlike the flexible
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Figure 2.14: (a) Entropic part of the free energy (Fc + Fe) for a flexible polymer as a
function of the translocation coordinate s for different α values showing non-monotonic
behavior. (b) Energetic contribution to free energy for a flexible polymer from surface
interactions (Fpp) as a function of translocation coordinate s for various α values. (c)
Entropic part of the free energy (Fc + Fe) for a semiflexible polymer (κ = 8) as a func-
tion of the translocation coordinate s for different α values showing largely monotonic
behavior. (Inset) The barrier height decreases monotonically with α. (d) Energetic con-
tribution to free energy for the semiflexible polymer from surface interactions (Fpp) as
a function of translocation coordinate s for various α values.
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polymer, this barrier reduces monotonically with increasing α. The corresponding free

energy contribution due to channel-polymer interactions also becomes shallower mono-

tonically as α is increased (see Fig. 2.14(d)). Therefore, for a semiflexible polymer, translo-

cation becomes easier with increasing α. If we compare our analytical predictions with

that of the simulation results in Fig. 2.9(a) for κ = 8, we find that translocation time in-

deed decreases with increasing α up to α = 6◦ consistent with our predictions. However,

for larger channel angles, the translocation time increases. This behavior is very different

from the predictions from the free energy calculations.

To understand this behavior, it is crucial to look at the potential landscape inside the

channel. At large channel angles, the strength of the potential due to the channel walls

becomes negligible for large regions inside the channel. Even during the entry of the

polymer from the cis side of the channel, the attractive potential becomes much weaker

in the region close to the cis side for large angles. This hampers the pulling ability of

the channel resulting in larger waiting times of even the initial beads of the polymer.

As the polymer is pulled in, the segments of the stiff polymer inside the channel keeps

getting deflected from one wall to the other. The potential near the center of the channel

is negligible as is the external force and the polymer segments stay attached to either wall

for a considerable time. This leads to increasing translocation times at higher channel

angles. For smaller channel angles, the average positions of the polymer segments are

much closer to the middle of the channel as both walls try to pull on them. With external

force much stronger near the center, the polymer is pulled out faster. Note that for flexible

polymers, the possibility of more conformations of the polymer as compared to stiffer

chains at larger angles ensures that the situation is much more homogeneous and we do

not observe much change at larger channel angles.
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2.5 Conclusions

The translocation of polymers through asymmetric-shaped channels has sparked a lot of

interest due to its significant advantages in bio-sensing applications. Buoyed by experi-

mental studies using conical nanochannels, we have studied the translocation dynamics

of a semiflexible polymer through such a channel under the influence of a spatially vary-

ing external drive and attractive surface interactions. The waiting time distribution shows

rich features arising due to the polymer stiffness, surface interactions, and nature of the

external drive. We attempt to understand some of these features using a free energy argu-

ment based on a quasi-equilibrium approximation which is applicable for smaller poly-

mer lengths and low forces. The theory captures some of the non-monotonic features of

the translocation dynamics. At higher stiffness and larger channel angles, the variable

potential landscape arising from the surface interactions becomes dominant. This vari-

ability needs to be accounted for in order to provide a more accurate description of the

dynamics.

In our analysis, we have ignored the role of electrostatic interactions [102]. The translo-

cation rate depends on the charge density of the polymer and the density of the bulk

concentration of the solvent in a confined pore. Low polymer charge density and low sol-

vent concentration lead to lower translocation rates, while the translocation rate increases

sharply for high polymer charge density at high solvent concentration. It will be interest-

ing to ask how these rates could be modified when considering asymmetric channels like

the one considered in this study.

Recent experiments have revealed that driven polymer translocation through syn-

thetic nanopores is a two-stage process with translocation initially slowing with time

before accelerating close to the end of the process [94]. In our detailed simulations, we

show however that the translocation dynamics are strongly dependent on the stiffness

of the polymer and surface interactions. Attractive surface interactions can considerably
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slow down the translocation process near the ends while increasing the angle of the con-

ical pore may facilitate the process. We have considered one possible conical structure

where the polymer enters the pore from the constricted side of the channel. In the next

chapter, we will explore the detailed dynamics of the polymer as it enters from the wider

end of the channel and see that it gives rise to significantly different dynamics due to the

asymmetry of the channel.
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Chapter 3

Reverse Translocation process of

semiflexible polymer through conical

channels

3.1 INTRODUCTION

In Chap. 2, we have studied the translocation of a semiflexible polymer that enters the

pore from the narrower end and exits from the wider end of the conical channel. We refer

this as “Forward translocation”. In this chapter, we reverse the ends of the conical pore.

Now the polymer enters from the wider end and exits from the narrower end. To distin-

guish this from the previous case, we call this as “Reverse translocation” process[6]. It has

already been reported that the direction of transport through symmetric channels (e.g. a

flat channel) does not effect the translocation properties[86]. But, as soon as the symme-

try of the channel geometry breaks, which is the case for a conical pore, the translocation

properties become direction dependent for the same simulation parameters [70, 94]. The

nature of the force depends on the asymmetric design of the conical channels [4].
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Similar to Chap. 2, we have considered the effect of pore asymmetry on the nature

of the driving force by choosing a specific form of force (fx) which depends on channel

variables (α, x). We study the system using Langevin dynamics simulations. We concen-

trate in the weak force regime so that the pore effect on the polymer does not get washed

out. Due to the asymmetry of the conical pore and the position dependent external force,

each bead experiences a different velocity which results in the formation of different seg-

ment structures inside the pore. We have compared the translocation properties for both

the ”forward” and the ”reverse” translocation processes and found that our simulation

results agree well with the experimental studies [70, 94].

The chapter is organized as follows: In Sec. 3.2, we define our model and the simu-

lation set-up. In Sec. 3.3, we discuss the results of the translocation dynamics in terms

of the total translocation time and waiting time distributions. In Sec. 3.4, we conclude

the chapter by providing the limiting cases for the directional dependent translocation

processes.

3.2 MODEL AND METHOD

We simulate our model in 2-dimensions. We model a linear homopolymer of length N by

a coarse grained bead-spring model. The consecutive beads of the chain are connected to

each other via harmonic potential,

Ubond =
1

2
K(r − r0)

2, (3.1)

where K is the spring constant, and r0 is the equilibrium separation between the consec-

utive monomers. The non-bonded beads interact via repulsive Lennard-Jones (LJ) poten-
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tial, Ubead(r).

Ubead(r) =


4ϵ

[ (
σ
r

)12 − (
σ
r

)6 ]
+ ϵ, r < rc

0, r ≥ rc,

(3.2)

where ϵ is the depth of the regular LJ potential. The truncated and shifted LJ potential

has a cut-off at rc = 2
1
6σ, where σ is the diameter of the bead. The static conical channel is

constructed from Lp = 16 There exists a long range attractive LJ interaction between the

polymer beads and the channel beads:

ULJ(r) =


4ϵ

[ (
σ
r

)12 − (
σ
r

)6 ]
, r ≤ Rc

0, otherwise

(3.3)

where Rc = 2.5σ is the cut-off distance. The motion of polymer beads are governed by

the Langevin dynamics (LD) equation:

m ¨⃗ri = −η ˙⃗ri −∇
∑

(ULJ + Ubond) + ⃗fext + ζ, (3.4)

where m and ri are, respectively, the mass and the position of ith bead of the polymer,

η is the friction coefficient of the fluid, and ζ is an uncorrelated random force which fol-

lows the fluctuation-dissipation relation, ⟨ζi(t)ζj(t′)⟩ = 2KBTηδijδ(t − t
′
). The polymer

experiences a force-gradient, fx, along the x-direction of the channel:

fx =
f0d

(d+ 2(16 ∗ tanα))− (d+ 2(x ∗ tanα)) , (3.5)

where x varies from 0 (wider entrance) to 16 (narrow exit), f0 is the magnitude of the

force at the narrow opening of the conical channel, d is the diameter of the narrow end of

the channel and α is the cone apex angle. In Fig. 3.1, we have plotted the variation of fx

along the cone x-axis as a function of α. The force fx increases towards the narrower end

of conical pore according to Eq.(3.5).
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Figure 3.1: Variation of the magnitude of external force, fx, along the conical channel
for various cone angles (α). For any non-zero α value, fx increases towards the narrow
exit of the pore.

We set all the simulation parameters in reduced LJ units: ϵ (energy), σ (length), and m

(mass). The dimensionless parameter kBT , η are set to be equal to 1. The strength of the

force at the narrow end is taken to be f0 = 0.2 or stated otherwise. This value is found to

be apt to capture the transport properties without washing out the role of the pore effect.

Due to the wide opening at the entrance of the pore, there is no successful translocation

in the absence of external force.

Before the translocation starts, the system needs to be equilibrated. We anchor the first

bead at the axis of the pore entrance and allow the polymer beads to move according to

Eq. (3.4). Since the pore entrance is wider, multiple beads can enter the pore while equili-

brating. We therefore put additional beads at the pore entrance to prevent this to happen

(see yellow beads in Fig. 3.2). Once the polymer attains an equilibrium configuration,

the yellow beads are removed before we start monitoring the translocation process.

In our study we consider averaging over only those samples for which the process
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Figure 3.2: Schematic of an equilibrated flexible polymer sample for reverse transloca-
tion. The first bead of the chain is fixed at the entry of the conical pore, a few additional
beads along with the first bead of the polymer are present at the pore entrance to re-
strict the entry of any polymer segments during the equilibration process. Inset shows
the set-up for the forward translocation case, where the translocation takes place from
the narrower end to the wider end of the conical channel. The color in the conical pores,
represents the force gradient, fx.

begins with the entry of the first bead of the polymer chain, otherwise, the sample is

discarded. The total translocation time, τ , is the time lapse between the entrance of the

first bead of the polymer chain into the channel from the cis side and the exit of the last

bead from the narrow end (i.e., the trans side) of the conical channel. For each set of

simulation parameters, the translocation time (τ ) is averaged over 1500-2000 independent

samples.
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α=3.50

α=200

Figure 3.3: Plot of total time translocation (τ ) for flexible polymer(κ = 0) of length 64
beads along with the two time components: passage time (τp) and escape time (τe), s.t.
τ = τp + τe. Two simulation snapsorts are embedded in the plot to provide a visual
scenario of the translocation process at lower and higher apex angle.

3.3 Results and Discussions

To see the effect of different pore geometries on the translocation process, we measure the

average total translocation time (τ ), one of the most fundamental properties of transloca-

tion dynamics. We also measure the residence time w(s) of each monomer s, defined as

the average time spent by monomer s inside the channel during the translocation process.

This is another important quantity that quantifies the effect of the pore geometry.

3.3.1 Total Translocation Time

We first start with the case of a flexible polymer chain (i.e., κ = 0). For a flexible polymer,

we find that the total translocation time (τ ) shows a non-monotonic behavior when it is
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plotted as a function of cone apex angle α (see Fig. 3.3). As done in Chap. 2, the total

time, τ , can be divided into two times, the passage time (τp) and the escape time (τe).

The passage time is defined as the time taken for the first bead to reach the narrow exit

such that the pore is completely filled, while the time taken from the passage phase to

the exit of last bead from the narrow end is defined as escape time. Therefore, the total

translocation time, τ = τp + τe. The pattern of τ vs. α is decided by the time components

of the major contributions. In the case of a flexible polymer, we see from Fig. 3.3) that

major contribution to the total translocation time τ , which is shown by filled squares, is

from the escape time τe (empty circles). As evident from Fig. 3.1, the magnitude of the

external force fx increases towards the narrower side of the pore for all αs. Therefore, the

filling of the pore becomes much easier and hence the contribution of τp is much lesser in

comparison to the escape time τe.

In Fig. 3.4(a), we have re-plotted the total translocation time τ as a function of α for

the “reverse” translocation case for a flexible polymer. In the same figure, we have also

plotted the results for the “forward” case (see Fig. 2.6) from Chap. 2 to make out dif-

ferences between the forward and reverse translocation processes. From the figure, we

can clearly see that for both the forward and reverse processes, the τ vs α curves show

non-monotonic behavior. But, there are striking differences in the intermediate cone apex

angles (0.5◦ < α < 9◦). For example, we see that the translocation time for the reverse

case is much larger than the translocation time for the forward case in this region. Al-

though, the complexity of the problem makes it extremely difficult to pinpoint the exact

dynamics for the different behaviors of the forward and the reverse translocation pro-

cesses, but, we can still give some reasoning to understand the qualitative differences.As

seen in Fig. 3.4(a), for α ≈ 3◦, we have τreverse ≈ 1.5τforward. This observation is in agree-

ment with the results of ping-pong experiment performed with a fabricated conical pore

with apex angles in the range (2.6◦ − 3.6◦) [7]. In this experiment, it was found that the

translocation time in the reverse flow (i.e., from the wider to the narrower opening of the

conical pore), is always larger than the translocation time in the forward flow. From the

59



2000

3000

4000

5000

6000

7000

0 5 10 15 20

(a) κ = 0

1500

3000

4500

6000

7500

0 5 10 15 20

(b) κ = 2

0

4000

8000

12000

16000

20000

24000

0 5 10 15 20

(c) κ = 4

0

30000

60000

90000

120000

150000

0 5 10 15 20

(d) κ = 8

τ

α

forward
reverse

τ

α

forward
reverse

τ

α

forward
reverse

τ

α

forward
reverse

Figure 3.4: Comparison of forward (red) and reverse (blue) total translocation time (τ )
vs. cone apex angle (α) at lower force value, f0 = 0.2. Fig.(a-d) is plotted for κ′s =0, 2,
4 and 8 respectively.

geometry of the conical channel, we see that the wider y-extent of the cone for α ≈ 3.5◦ is

apt enough to fit two beads simultaneously in a way that they are always in a close prox-

imity to the attractive pore walls. The geometric construction and the entry of the flexible

polymer from the wider end have the potential to form a block-like situation, where the

polymer segment spends a lot of time inside the filled pore, either in a hairpin or in a

coiled conformation (see an embedded snapshot in Fig. 3.3), and hence costs a lot of time

to get out of the pore.

On introducing the rigidity in the translocating polymer, the situation becomes quite

different. In Fig. 3.4(b-d), we have plotted the average translocation time for a semiflex-

ible polymer for bending rigidity κ = 2, 4 and 8 as a function of pore apex angle α. In

these figures, we can clearly see that the bending energy associated with polymer seg-

ments can overcome the fluctuations inside the pore, which results in the disappearance

of differences in the translocation time between the forward and the reverse cases. From
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Rigidity Crossover angle Crossover time
(κ) (αc) τc(≈))
0 10◦ 3.2× 103

2 9◦ 4.0× 103

4 8◦ 4.5× 103

8 6◦ 7.5× 103

16 5◦ 1.4× 104

32 4.3◦ 3.5× 104

64 3.5◦ 105

Table 3.1: Values for the crossover angle (αc) in the τ measure for the two processes:
forward translocation and reverse translocation.With increasing rigidity (κ) of polymer,
αc shifts to lower alphas (col.2). Cross overtime (τc), on the other hand, increases with
increase in rigidity of the polymer chain.

Fig. 3.4, it is evident that for lower values of α, the average translocation time for the

reverse case is larger than that for the forward case (i.e., τreverse > τforward) for both the

flexible and the semiflexible polymer. However, for larger values of α, the translocation

time for the forward case is more than that for the reverse case. We will call the angle α at

which this crossover takes place as crossover α and represent it by αc. The translocation

time at αc will be represented by τc. In Table. 3.1, we have listed approximate values of

αc and τc for different bending rigidities of the polymer. With an increase in the polymer

rigidity, we observe that αc shifts towards a lower value. Therefore, one would expect

that for a rod-like polymer chain (i.e., κ → ∞), the channel will behave like a slit and the

translocation process will be independent of the direction of the channel and the τ vs. α

curves for both the forward and the reverse cases will overlap with each other.

In Fig. 3.5, we have plotted the phase diagram for the reverse translocation case. The

explicit non monotonic feature in τ at lower cone apex angles α and for lower κ is clearly

seen in Fig. 3.5(a-b). For higher values of κ, the translocation time τ decreases with α for

lower α values (see Fig. 3.5(c)), but increases for higher values of the cone apex angles α

(see Fig. 3.5(d)).
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(a) (b)

(c) (d)

Figure 3.5: Phase plot of τ for lower force (f0 = 0.2). The three subplots (a-c) is for lower
alpha values (α = [0 : 5]) for different ranges of κ: (a) for κ = [0 : 2], (b) for κ = [2 : 4]
and (c) for κ = [4 : 8]. Subplot (d) is for higher values of apex angle (α = [5 : 10]) for the
entire range of κ values i.e, for [0:8].
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(N = 64), for κ =0, and 4 respectively in Fig. (a), and (b) for F0 = 0.2. The plots are for
few intermediate apex angles to show the transition of w(s) behaviour.

3.3.2 Waiting Time Distributions

The effect of pore polymer interactions on the translocation process can be studied from

the waiting time distributions, w(s). In Figs. 3.6(a) and 3.6(b), we have plotted w(s), for

various cone apex angles α, as a function of scaled translocation coordinate s/N for a

polymer with bending rigidities κ = 0, and κ = 4, respectively. The length of the polymer

used is N = 64 and the strength of the driving force at the narrow end is f0 = 0.2. The ge-

ometry of the conical pore allows single-file exit from the narrow end and this constraint

can be used to track the overall escape process. Unlike the exit process, multiple beads

can enter the pore simultaneously. This allows coiling and hairpin formation of the poly-

mer segments near the entry which can block the pore and hence stalls the translocation

process. The extent of stalling depends on the pore apex angle α and the rigidity κ of

the polymer. We have seen in Fig. 3.4(a) (filled circles) that in the reverse translocation

case, the total translocation time for a flexible polymer in the range of cone apex angle α

between 3◦ and 5◦ (i.e., 3◦ < α < 5◦) varies a lot from the rest α values. This difference is

also reflected in the waiting time distributions. From Fig. 3.6(a), we see that w(s) plots for

apex angles α = 3.5◦(stars) and 5◦(filled squares), exhibit very different behaviour than
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the rest of α values. For α = 3.5◦ and 5◦, there is no retraction or the plateau region in

w(s), and it rises sharply as a function of scaled translocation coordinate (s/N ). However,

for other values of α, the waiting time distributions w(s) show retraction features.

On introducing the bending rigidity in the translocating polymer, we observe that

unlike the flexible case, the waiting time distribution curves w(s) for all cone apex angles

α show tail retraction features (see Fig. 3.6(b) for κ = 4). An interesting observation from

Fig. 3.6 is that irrespective of the values of α and κ, the w(s) curve for the end monomers

has a positive slope (i.e., dw(s)/ds > 0 as s/N → 1). This reflects the fact that in the

“reverse translocation” process, the escape of the polymer is single-file (i.e., one bead

can come out from the pore) and is difficult. In contrast, for the “forward translocation”

case, the w(s) curve has a negative slope as s/N → 1 (see Fig. 2.8) because in this case,

the polymer can make coiled conformations near the wider exit and multiple beads can

escape the channel easily.

3.3.3 Effect of Polymer length:

So far, we studied the translocation process for a polymer chain of fixed length having

N = 64 beads. We have seen that for the ”reverse translocation” case, w(s) shows distinct

features in the range α ∈ [3◦, 5◦] for a flexible polymer. In this range, w(s) increases

monotonically as a function of s/N . To see if this feature persists for the translocation of

longer polymer chains, we study the behavior of waiting time distributions as a function

of chain length N .

In Fig. 3.7, we have plotted w(s) for a flexible polymer chain of different lengths

N = 32, 64, 96, 128 and 256 for three different pore apex angles α = 1.5◦, 3.5◦, and

10◦ shown in Figs. 3.7(a), 3.7(b), and 3.7(c), respectively. These figures are for the ”reverse

translocation” process and these angles are representative for lower, intermediate, and

higher cone apex angles. The effect of chain length on the translocation process can be
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Figure 3.7: Residence time plot for flexible polymer with different polymer lengths
(L =32, 64, 96, 128 and 256) for conical pore α = 1.5◦, 3.5◦ and 10◦ in Figures (a), (b) and
(c) respectively, for the force value, f0 = 0.2.

witnessed with the appearance of a plateau and tail retraction patterns in w(s) with the

increase in the polymer lengths. As expected, the total translocation time τ increases with

the increase in the length of a translocating polymer for all cone apex angles α. However,

the waiting time distributions for different chain lengths depend on the cone apex angles.

For α = 3.5◦, w(s) increases monotonically for subsequent transition coordinates for

smaller polymer lengths, i.e, for N = 32 and 64 (Fig. 3.7(b)). With the increase in chain

length, e.g. forN = 96, a plateau starts emerging at approximately s/N ≈ 0.3 and persists

till s/N ≈ 0.75. This plateau region is due to the force balance experienced by the polymer
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segments inside the pore. However, for a longer polymer chain (e.g. N =256 (squares)),

the entropy from the polymer segment on the trans-side drives the polymer faster and

the plateau region of w(s) converts slowly to a tail-retraction part. In addition to this, for

a longer flexible polymer chain, the extent of tail propagation along the backbone of the

polymer segments reduces. Hence, the emergence of tail retraction keeps shifting to a

lower s/N value with the increase in chain lengths.

We have also plotted the residence time as a function of s/N for various polymer

lengths for lower (i.e., 1.5◦) and higher (i.e., 10◦) cone apex angles in Fig. 3.7(a) and

Fig. 3.7(c), respectively. For these α values, we see that, for a short polymer chains (i.e.,

for N = 32 and 64), w(s) is an increasing function of s/N . But, the rise in w(s) is much

slower in comparison to the rise for apex angle 3.5◦. With the increase in polymer chain

lengths, w(s) exhibits a tail retraction behavior, which is more enhanced in comparison to

the tail retraction part for α = 3.5◦.

Next, we compare the behavior of w(s) for the “forward” and the “reverse” processes

for the translocation of longer chain lengths from the conical pore with apex angle α =

3.5◦. In Fig. 3.8, we have plotted the residence time w(s), for both the “forward” and

the “reverse” cases, as a function of s/N for the polymer of lengths N = 128 and 320 at

two different driving forces f0. For a lower driving force f0 = 0.4 (see Fig. 3.8(a)), we

see that the tail retraction part becomes steeper for a longer chain for both the “forward”

and “reverse” processes. However, for the chain lengths used in our study, we observed

that the initial rise in w(s), which is due to the tension propagation, is for this range of

N values, we witness that in the case of reverse translocation, the propagation part (the

initial rise in w(s)) is shorter than that for the forward case.

With the increase in the force value, f0 = 0.8 (see Fig. 3.8(b)), the difference in the

propagation part of w(s) for the both processes starts to decrease.

By observing above features, our hypothesis is that for a very long polymer chain
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Figure 3.8: Effect of increasing force on w(s) pattern for longer flexible polymer chains
(N =128(square) and 320(circle)) at α = 3.5◦ for both the forward and reverse cases.
Fig.(a) is for force, f0 = 0.4 and Fig.(b) is for f0 = 0.8. (filled circles and filled squares
represent “reverse” case, and empty circles and empty squares represent “forward”
case, respectively.)

Figure 3.9: Plots showing the overlap in waiting time distributions for the forward and
reverse translocation process for a flexible polymer chain of length N = 512. In the
same graph, w(s) is plotted for the two force value: f0 = 0.8 and f0 = 1.6. The graphs
with filled circle and filled square are for reverse translocation case and the empty circle
and empty square represents forward translocation case.
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length the disparity in w(s) for the “forward” and the “reverse” translocation processes

will disappear completely and the translocation will appear to be a direction-independent

process. To test this hypothesis, we have plotted in Fig. 3.9 the waiting time distribution

curves w(s) as a function of s/N for the polymer of length N = 512 at two different

driving forces f0 = 0.8 and f0 = 1.6. We observe that even for f0 = 0.8, the w(s) curves for

the “forward” and the “reverse” translocation processes show reasonable overlap, except

at the tail retraction part (i.e., s/N → 1). On increasing the magnitude of the force (i.e.,

f0 = 1.6), the w(s) curve for both the processes, including the retraction portion, merged

completely. Note that the overlapped w(s) curve for f0 = 1.6 in Fig. 3.9 exhibits similar

w(s) curve (except an initial dip for s/N ∈ [0, a], and a rise for s/N ∈ [b, 1]) for a polymer

chain translocating through a slit. The dip at lower s/N values and the rise at higher s/N

values store the information about the filling and the escape processes, respectively, for

an extended and attractive pore.

3.4 Conclusions

In this chapter, we studied the driven polymer translocation through a conical pore when

the polymer enters the pore from its wide opening and exits from the narrow end. We

refer this process as “reverse translocation” to differentiate it with the “forward translo-

cation” process, where the polymer enters the pore from the narrow end and exits from

the pores wider end. Based on our previous study [3], we know that for lower force val-

ues, the translocation time τ is a non monotonic function of cone apex angle α. Therefore,

we choose the value of force at the narrow end f0 = 0.2. The samples are equilibrated

accordingly before the translocation process starts. The reverse dynamics allows multiple

bead entry of the equilibrated sample from the wider entrance of the conical pore, but

the exit process is a single-file from the narrow end of the conical pore. For every suc-

cessfully transported sample, we divide the translocation time τ into two times: (i) the
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passage time, and (ii) the escape time. The total translocation time τ is always equal to

the sum of the two times. However, the major contribution is from the escape time.

It is found that the cone asymmetry (α) and the flexibility of the polymer chains (κ)

play an important role in determining τ . For a flexible polymer, τ shows explicit non-

monotonic behavior with the cone apex angle α. While the non-monotonic behavior fades

away for rigid polymers. We found that for α ≤ 1.5◦, the total translocation time τ de-

creases as α is increased. However, for higher apex angles, i.e., α ≥ 7◦, τ increases as α is

increased.

On comparing the “forward” and the “reverse” translocation processes, we observe

that for a flexible polymer (i.e., κ = 0), the maximum disparity in τ is seen for the cone

apex angle α ≈ 3.5◦, where τreverse >> τforward. This finding is in agreement with the

experimental result [70]. The delay in τ for the reverse case is due to the coil and hairpin

formation of polymer segments near the wide pore entrance. However, on increasing

the rigidity of the polymers, the disparity in the translocation times between the two

processes reduces. It is observed that for a very rigid polymer chain, the translocation

process becomes direction independent and value of τ for both the “forward” and the

“reverse” translocation are equal.

Furthermore, we find that the polymer dynamics through conical channels depends

on the pore-polymer ratio. For a fixed pore length (Lp) and pore angle (α), we observe that

the behaviour of w(s) changes with the increase in polymer length N . We also see that,

for longer chain lengths (e.g., N = 512), the waiting time distributions for the “forward”

and the “reverse” cases overlap with each other and the translocation dynamics becomes

direction independent.
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Chapter 4

Effect of pore sequencing on

translocation and scaling laws

4.1 Introduction

As discussed in previous chapters, the total translocation time τ , and the waiting time

distributions w(s) are key properties in polymer translocation process. A lot of informa-

tion about the nature of the pore and polymer can be extracted from these quantities. The

pore-polymer interaction plays an important role at every stage of the translocation pro-

cess. In Chap. 2, we have seen the dominating role of the attractive channels during the

exit process. Furthermore, for a pore of fixed length, we have seen that the behaviour of

the total translocation time τ vs. the cone apex angle α transits from a non-monotonic

dependence at lower force values (i.e, f0 < 0.7), to a truly monotonic increasing function

of apex angle α at higher force values (i.e, f0 > 0.9).

In this chapter, we will extend our study to extended patterned pores, i.e., for pore

with different types of pore-polymer interactions along its channel length. These interac-
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tions could be attractive or repulsive and are modelled by LJ potential. Depending upon

the nature of the interaction at the opening of the pore, the polymer is either sucked in

or thrown out of the pore. However, the presence of an external drive along the channel

always facilitates the translocation process. We will study the effect of pore length Lp and

the polymer length N in the translocation process.

The chapter is organized as follows: In Sec. 4.2, we study the effect of pore length Lp of

conical as well as extended channel on the total translocation time, τ . In Sec. 4.3, we study

the effect of pattered pores on τ . We establish scaling relations between τ , pore lengths

and polymer lengths for extended as well as patterned pores. In Sec. 4.4, we conclude the

chapter by providing a discussion on the obtained scaling exponents.

4.2 Effect of pore length

The Length of the pore plays an important role in the dynamics of the polymer chain

translocating through a membrane channel. To demonstrate the effect of pore length

on the total translocation time τ , we study the translocation of a flexible polymer of

length N = 128 through conical pore of different lengths Lp ranging from 5σ to 10σ

(Lp ∈ [5σ, 10σ]). We consider the pore to be attractive in nature and vary the cone apex

angle α in the range between 0◦ to 5◦ (α ∈ [0◦, 5◦]). The magnitude of the external driving

force is kept fixed at 1 (i.e., f0 = 1). In Fig. 4.1, we have plotted τ as a function of α for

various Lp’s. From the figure, we observe that, irrespective of the value of α, the total

translocation time τ decreases with the increase of the pore length Lp.

For α = 0◦ the pore is cylindrical in geometry with diameter d0 = 2.25σ, and allows

only single-file translocation. For such a pore, the extent of the external force increases

as the pore length is increased. For example, for a pore of length Lp = 10σ, the force

experienced by number of beads are almost twice that of the beads for the pore of length

Lp = 5σ. Therefore, the polymer can be driven easily through a longer pore. This can
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Figure 4.1: Plots showing the variation of τ vs. α behaviour, with the change of pore-
length, Lp from [5:10]. Here the polymer is flexible with length (N ) 128 beads, and
pore-length varies from 5σ to 10σ.

be seen by lower τ value for Lp = 10σ in Fig. 4.1. From the figure, we can see that

for short pore lengths (e.g., Lp = 5, and 6), the translocation time τ decreases as α is

increased and quickly gets saturated around α ≈ 2◦. This is because, on increasing α, the

symmetry of the cylindrical channel gets broken. The diameter of the cylindrical channel

at the narrow entrance remains the same as before (d0 = 2.25σ), while the diameter at

the wider end increases by an amount 2Lp sinα (i.e., dLp = d0 + 2Lp sinα). Now due to

more area available on the wider side of the conical channel, the single-file nature of the

translocation process is no more true and more configurations of the polymer are possible

and an entropic force [4] assists the polymer to escape faster from the channel.

However, for longer pore lengths, we see an opposite behavior. As the length of the

pore increases, the diameter at the wider end increases proportionately. Since the external

force inside the channel decreases as f(x) ∼ 1/x, it also becomes weaker at the wider pore

exit for longer pores. Further, since the pore is attractive in nature there is more possibil-
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Figure 4.2: ⟨τ⟩ as a function of N (in log-log scale) for three different driving forces
when the polymer is translocating from an extended cylindrical pore (i.e., α = 0) of
length (a) Lp = 5, and (b) Lp = 10. The slopes mentioned in the plot are the values of
the translocation exponent, defined by ⟨τ⟩ ∼ Nβ , for different driving forces.

ity for the polymer to have have a configuration where the two consecutive monomers of

the chain occupy side-by-side position along y−direction at some location x in the chan-

nel. Combining all these factors, it was observed that the total force experienced by the

polymer inside a longer pore is lesser than that for α = 0◦ and the total translocation time

increases as the pore apex angle α is increased.

In Fig. 4.2(a) and 4.2(b), we have plotted the averaged total translocation time ⟨τ⟩ as

a function of chain length N for a flexible polymer translocating from a cylindrical pore

(i.e., α = 0) of lengths Lp = 5 and 10, respectively for various values of driving forces

f = 0.2, 0.6 and 1.0. The translocation time exponent β is defined as τ ∼ Nβ . For a

flexible polymer translocating from a slit, it was found that the exponent β < 1+ν, where

ν is the size exponent [48, 50]. In 1- and 2-dimensions ν = 1.0 and 0.75, respectively. It
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is known that the value of exponent β depends on many factors such as chain length,

chain flexibility, driving force, friction and pore structure. This is seen in our simulations

as well. For smaller driving force f = 0.2, we found that the numerical value of the

exponent for pore length Lp = 5 is β = 1.32, which is smaller than 1 + ν = 1.75. On

increasing the pore length to Lp = 10, the value of the exponent becomes β = 1.68 but

still less than 1.75. On increasing the driving force to f = 0.6, the translocation exponent

for Lp = 5 is β = 1.60 < 1.75. However, for for pore length Lp = 10, the exponent

becomes β = 1.87 > 1.75. For a driving force f = 1.0, the value of the translocation

exponent for pore lengths Lp = 5 and 10 are 1.80 and 1.95, respectively, both are greater

than 1.75 but less than 2. A similar behavior of increase in the exponent β is seen for

translocation from a slit when the rigidity of the polymer is increased [52]. A plausible

explanation could be that by increasing the pore length or the driving force reduces the

embedded dimension for the polymer from two- to one and hence the upper bound for

the translocation exponent for an extended pore should be 2.

We have seen that the translocation exponent β varies with the length of the extended

pore. We now seek if it is possible to plot τ values for different pore lengths Lp and chain

lengths N on a single curve. We use the following scaling form for this purpose

⟨τ⟩ ∼ NγF (LpN
ν) , (4.1)

where ν is the size exponent and γ is some other exponent and F is the scaling function.

In Fig. 4.3, we have plotted ⟨τ⟩/Nγ as a function of LpN
ν for pore lengths Lp varying

from 5 to 10, and the chain lengths N varying from 160 to 512. As we are working in

2-dimensions, we have used the size exponent ν = 0.75. We found that a nice collapse is

obtained for an exponent value γ = 2.6±0.05 for all the three driven force values f0 = 0.2,

0.6 and 1.0. The scaling function is of the form F(x) ∼ 1/xp with p values p = 1.5, 1.1, and

1.0 for f0 = 0.2, 0.6, and 1.0, respectively.
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4.3 Effect of pore patterning

In the previous section, we have studied the variation of total translocation time τ for

an attractive pore. In this section, we will discuss the effect of pore patterning on τ for

a flexible polymer of length N = 128. Figure 4.4 shows schematic diagram of three dif-

ferent pore patterns. The first row shows pores for length Lp = 5. The pore shown

in Fig. 4.4(a1) is a completely attractive pore, while Fig. 4.4(b1) shows the pore with

an attractive entrance and an attractive exit but separated by a repulsive bead in the

middle, and Fig. 4.4(c1) has an attractive entrance but a repulsive exit. Such pore pat-

terning has been studied earlier for cylindrical pores and many interesting results were

obtained [72, 81]. In this thesis, we are studying pore patterning of a conical channel.

Furthermore, we are also interested to know if the results change by increasing the length

of the pore. We increase the pore length in such a manner that the ratio of pore patterning

remains conserved. For example, in second and third rows of Fig. 4.4, we have plotted the

pores for lengths Lp = 10, and Lp = 15, respectively. Figures clearly shows that the ratios

of repulsive to attractive pore beads remains preserved on increasing the pore length. On

increasing the length of the pore, the wide area at the exit of the pore also increases. We

are interested to know how the total translocation time τ behaves for different type of

pores.

In Fig. 4.5, we have plotted the total translocation time, for a flexible polymer of length

N = 128, as a function of pore apex angle α for three different pore lengths Lp = 5,

10, and 15 at two different values of the driving force f0 = 0.6 and 1.0. We clearly see

that for shorter pore length, i.e., Lp = 5, the translocation time τ decreases with α and

gets saturated for all the three type of pores for both the force values (see Figs. 4.5(a)

and 4.5(d)). Further, we see that the pore with a repulsive exit (i.e., pore c1) favours

faster translocation with a least value of τ at all angles. This is followed by the pore with

an attractive entrance and exits and a repulsive bead in between (pore b1), and a fully

attractive pore (pore a1). For a pore of intermediate length (i.e., Lp = 10), the translocation
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(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

Figure 4.4: Schematic of sequenced pores with different lengths: 5, 10, and 15. The
colorful beads of the pore are to denote different interactions between the pore and
polymer beads. The polymer chain has repulsive interaction with the green static wall
beads, the blue beads of the pore are attractive in nature, and the yellow part of the pore
is repulsive in nature. Figures(a1-c1), are the pore designs for a pore length of 5 beads.
Fig.a1 is an attractive pore, in pore b1, the middle pore is repulsive and in pore c1, the
last three beads are repulsive and the rest of the beads are attractive in interactions.
Figures(a2-c2), is the pore design for a pore of length 10 beads. The design of the pore
with 10 beads is in the same ratio as the pore length of 5. Here pore (a2) is purely an
attractive pore, the middle two beads of the pore (b2) are repulsive and the rest beads
are attractive, and, in pore (c2), the last six beads are repulsive and first four beads are
attractive. Similarly, Figures (a3-c3) is the sequenced pore in the same ratio as discussed
above for pore length 15.
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Figure 4.5: Comparison of τ vs. α for three different pore sizes Lp = 5, 10 and 15 for two
different forces (f0 =) 0.6 and 1.0. The length(N ) of the flexible polymer chain (κ = 0)
is 128 beads.

time τ increases with α for both f0 = 0.6 and 1.0. It reaches a maximum at about α ≈
3◦ for pore types a2 and b2 and then decreases on increasing α and gets saturated (see

Figs. 4.5(b) and 4.5(e)). The above feature is more pronounced for lower force values

f0 = 0.6 and on increasing the force value i.e. for f0 = 1.0, τ gets saturated just after the

peak is attained. On increasing the pore length further (i.e., Lp = 15), the translocation

time first decreases with α. It reaches a minimum value at a different value of α for

different type of pores and then increase till it gets saturated (see Figs. 4.5(c) and 4.5(f)).

We next look at the effect of patterned pores on rigid polymer chains. In Fig. 4.6, we

have plotted the averaged total translocation time τ , as a function of apex pore angle

α for a polymer of length N = 128 having different bending rigidities κ = 12.8, 38.4,

and 64, translocating through conical pores of two different lengths Lp = 5 and 10. For

the pore of length Lp = 5, we observe that τ decreases with α and gets saturated (see

Figs. 4.6(a),(c),(e)). This is more pronounced for pores of types “a” and “b”. For pore

of type “c”, we observe initial decrease for smaller values of κ but τ becomes almost

constant for larger κ values (e.g., κ = 64 see Fig. 4.6(c)). However, for longer pore lengths
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Figure 4.6: Total translocation time versus apex angle plots for a rigid polymer of length
128 for f0 = 1.0, for two different pores (Lp = 5 and 10) described in Fig. 4.4. The
curves in fig.(a,b) are for semi flexible polymer with rigidity 12.8, curves in fig.(c,d)
are for κ = 38.4, and the curves in (e,f) represents polymer with rigidity 64 for pores:
LP = 5(a,c,e) and LP = 10(b,d,f) respectively.

80



0

0.0004

0.0008

0.0012

0.0016

0 100000 200000

(a)

γ = 3.0± 0.05

ν = 0.75± 0.05

b− type, f0 = 0.6

0

0.0004

0.0008

0.0012

0.0016

0 100000 200000

(b)

γ = 3.0± 0.05

ν = 0.75± 0.05

c− type, f0 = 0.6

0

0.0002

0.0004

0.0006

0.0008

0 50000 100000 150000

()

γ = 3.0± 0.05

ν = 0.73± 0.05

b− type, f0 = 1.0

0

0.0002

0.0004

0.0006

0.0008

0 50000 100000 150000

(d)

γ = 3.0± 0.05

ν = 0.73± 0.05

c− type, f0 = 1.0

〈τ
〉/
N

γ
160

192

256

384

416

448

480

512

H(x)

160

192

256

384

416

448

480

512

H(x)

〈τ
〉/
N

γ

LpN2ν

160

192

256

384

416

448

480

512

H(x)

LpN2ν

160

192

256

384

416

448

480

512

H(x)

Figure 4.7: Scaled translocation time(τ ) for the sequenced pore (Fig. 4.4) for three dif-
ferent pore lengths 5, 10 and 15. Plots (a), (b) is for force 0.6 and plots (c), (d) is for force
1.0 respectively.

(i.e.,. Lp = 10), we see that there is not much effect of the pore patterning on the net

translocation time as the rigidity of the polymer chain is increased (see Figs. 4.6(b),(d),(f)).

To obtain the scaling of the averaged total translocation time with pore length Lp and

chain length N for patterned pores, we again use the scaling relation of the form:

⟨τ⟩ ∼ NγH
(
LpN

2ν
)
, (4.2)

where ν and γ is scaling exponents, and H is the scaling function. When ⟨τ⟩/Nγ is plotted

as a function of LpN
2ν , for various pore lengths Lp and chain lengths N , the data collapse

to a scaling curve H(x) ∼ 1/xq. The value of the exponent q depends on the driving

force but not on the pore type. At a force value f0 = 0.6, the exponent is found to be

q = 0.75±0.01, while for f0 = 1.0 the exponent becomes q = 0.81±0.01. The data-collapse
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is shown in Fig. 4.7.

4.4 Conclusion

In this chapter, we have studied the effect of polymer length, pore length, and pore pat-

terning on the total translocation time τ for both the cylindrical (i.e., α = 0) and the conical

pores with various apex angles α.

For a polymer of fixed length N = 128 (see Fig. 4.1), we found that the behavior of

total translocation time τ switches from a decreasing function of α to a strictly increasing

function of α on increasing the pore length from 5 to 10. The two opposite translocation

behaviors seen for the shorter and the longer pore lengths are non-scalable, which shows

the non-equilibrium nature of the driven polymer translocation process. We also observe

that for a fixed pore apex angle α, the translocation time is a decreasing function of pore

length (Lp). Since the extent of the external driving force is larger for longer pore lengths,

the driven translocation process is favored for longer pores. This is found to be consistent

for the translocation of rigid polymer from the patterned pores.

We find that, the average total translocation time ⟨τ⟩ scales with the polymer lengths

N as ⟨τ⟩ ∼ Nβ , where the translocation exponent β depends on the pore length Lp as

well as the driving force. We found that for smaller driving force f = 0.2 the value of

the exponent is β < 1 + ν = 1.7 for pore lengths Lp = 5 and 10. However, for large

driving force f = 1.0, the exponent 1.75 < β < 2.0 for both the pore lengths. A plausible

explanation could be that by increasing the pore length or the driving force reduces the

embedded dimension for the polymer from two- to one and hence the upper bound for

the translocation exponent for an extended pore should be 2.

We also found that the translocation time ⟨τ⟩ scales with the pore length Lp and the

polymer length N as ⟨τ⟩ ∼ NγF(LpN
ν), with γ = 2.6± 0.05 and ν = 0.75 for an attractive
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pore for all driven forces used in our study. The scaling function is found to be of the

form F(x) ∼ 1/xp with p values 1.5, 1.1, and 1.0 for f0 = 0.2, 0.6, and 1.0, respectively. For

the patterned pores, ⟨τ⟩ ∼ NγH(LpN
2ν), with γ = 3.0 ± 0.05 and ν = 0.75. The scaling

function is found to be of the same form H(x) ∼ 1/xq with q = 0.75 at f0 = 0.6, and

q = 0.81 at f0 = 1.0.
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Chapter 5

Conclusion

In this thesis, we have studied the dynamics of polymer translocation through conical

pores.

In Chap. 2, we presented our results for the translocation of a semiflexible polymer

through conical channels under the influence of a spatially varying external drive and

attractive surface interactions. We considered the translocation dynamics of polymer di-

rected from the narrow end to the wide end of the conical pores, and refer this process

as “forward translocation”. The translocation dynamics is measured by the total translo-

cation time, τ , and the waiting time distributions, w(s). The total translocation time is

seen to be a non-monotonic function of cone apex angle α in the low force regime. To un-

derstand the effects arising due to the polymer stiffness, the surface interactions, and the

nature of the external drive, we studied w(s) for lower forces. We attempt to understand

some of these features using a free energy argument based on a quasi-equilibrium ap-

proximation which is applicable for smaller polymer lengths and low forces. The theory

captures some of the non-monotonic features of the translocation dynamics. For the case

of higher stiffness and larger channel angles, the variable potential landscape arising from

the surface interactions becomes dominant. This variability needs to be accounted for in
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order to provide a more accurate description of the dynamics. In our detailed simulations,

we observe that the translocation dynamics are strongly dependent on the stiffness of the

polymer and surface interactions. Attractive surface interactions can considerably slow

down the translocation process near the ends while increasing the angle of the conical

pore may facilitate the process.

In Chap. 3, we studied the driven translocation through a conical pore when the poly-

mer enters the pore from its wide opening and exits from the narrow end. We refer this

process as “reverse translocation” to differentiate it with the “forward translocation” pro-

cess. Based on our studies on the “forward” translocation (i.e., Chap. 2), we choose the

force value f0 = 0.2 at the lower end. We measure τ and w(s) to study the effect of pore

asymmetries on the translocation process. We found that the cone asymmetry, which

arises due to cone apex angle α, and the flexibility of the polymer chains, which arises

due to the bending rigidity κ, play an important role in determining τ . For a flexible

polymer, τ shows explicit non-monotonic behavior with the cone apex angle α. While

this non-monotonic pattern fades away for two cases: (i) for rigid polymers, and (ii) for

higher force values. We found that for α ≤ 1.5◦, the total translocation time τ decreases as

α is increased. However, for higher apex angles, i.e., α ≥ 7◦, τ increases as α is increased.

On comparing the “forward” and the “reverse” translocation processes, we observe that

for a flexible polymer (i.e., κ = 0), the maximum disparity in τ is seen for the cone apex

angle α ≈ 3.5◦, where τreverse >> τforward. This finding is in agreement with the ex-

perimental result [70]. The delay in τ for the reverse case is due to the coil and hairpin

formation of polymer segments near the wide pore entrance. However, on increasing

the rigidity of the polymers, the disparity in the translocation times between the two pro-

cesses reduces. It is observed that for a very rigid polymer chain, the translocation process

becomes direction independent and value of τ for both the “forward” and the “reverse”

translocation are equal. Furthermore, we find that the polymer dynamics through conical

channels depends on the pore-polymer ratio. For a fixed pore length (Lp) and pore angle

(α), we observe that the behaviour of w(s) changes with the increase in polymer lengthN .
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We also see that, for longer chain lengths (e.g., N = 512), the waiting time distributions

for the “forward” and the “reverse” cases overlap with each other and the translocation

dynamics becomes direction independent.

In Chap. 4, we presented our results for the effect of polymer length, pore length, and

pore patterning on the total translocation time τ for both the cylindrical (i.e., α = 0) and

the conical pores with various apex angles α. For a polymer of fixed length N = 128

(see Fig. 4.1), we found that the behavior of total translocation time τ switches from a

decreasing function to a strictly increasing function of α on increasing the pore length

from 5 to 10. The two opposite translocation behaviors seen for the shorter and the longer

pore lengths do not scale, which shows the non-equilibrium nature of the driven polymer

translocation process. We also observe that for a fixed pore apex angle α, the translo-

cation time is a decreasing function of pore length (Lp). Since the extent of the external

driving force is larger for longer pore lengths, the driven translocation process is favored

for longer pores. This is found to be consistent for the translocation of rigid polymer from

the patterned pores. Further, we find that, the average total translocation time ⟨τ⟩ scales

with the polymer lengths N as ⟨τ⟩ ∼ Nβ , where the translocation exponent β depends on

the pore length Lp as well as the driving force. We found that for smaller driving force

f = 0.2 the value of the exponent is β < 1 + ν = 1.75 for pore lengths Lp = 5 and 10,

where ν = 0.75 is the size exponent for a flexible polymer in 2D. However, for large driv-

ing force f = 1.0, the exponent is found to be 1.75 < β < 2.0 for both the pore lengths.

A plausible explanation could be that by increasing the pore length or the driving force

reduces the embedded dimension for the polymer from two- to one-dimension and hence

the upper bound for the translocation exponent for an extended pore should be 2, i.e., the

size exponent ν = 1. We also studied the behavior of τ with pore length Lp and the poly-

mer length N . We found that the translocation time ⟨τ⟩ scales as ⟨τ⟩ ∼ NγF(LpN
ν), with

γ = 2.6 ± 0.05 and ν = 0.75 for an attractive pore for all driven forces used in our study.

The scaling function is found to be of the form F(x) ∼ 1/xp with p values 1.5, 1.1, and

1.0 for f0 = 0.2, 0.6, and 1.0, respectively. For the patterned pores, the scaling becomes
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⟨τ⟩ ∼ NγH(LpN
2ν), with γ = 3.0 ± 0.05 and ν = 0.75. The scaling function is found to

have the same form H(x) ∼ 1/xq with q = 0.75 at f0 = 0.6, and q = 0.81 at f0 = 1.0.
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Appendix A

Free Energy for Conical pore

When the size of the molecules are large in comparison to the size of the pores, they can

be fully occupied inside the pores during the course of transport process. The free energy

due to this confinement plays a very important role in translocation. For conical pores

with different apex angles, the confinement effect will be different and can be estimated

from the blob theory. According to blob theory the free energy contribution due to the

confinement of polymer inside a d-dimension conical pore can be written as:

Fconf (N,α, d) =

[
Nνd bd tanα

(D0 + 2(a+ L) tanα)d − (D0 + 2a tanα)d

]1/(νd−1)

(A.1)

Here, N is the number of monomer beads confined inside the pore, α is half the apex

angle of the cone, a is the horizontal distance up to which the pore portion is empty and

L is the horizontal distance along the x-axis where the pore is filled. The projection of the

cone length (which consist of 16 beads) along the x-axis is equal to (a + L = 16 cosα), ν

is the Flory’s exponent which gives the size of the blob to the number of beads inside the

blob as R ≈ N ν . The force exerted on the polymer segment confined inside the pore can
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be obtained from the confinement free energy f = −∂F/∂a and is given by

fconf =
1

D0(1− νd)

(
(N νb)

D0

) d
νd−1

[
tanα

(1 + 2 tanα(a+L)
D0

)d − (1 + 22a tanα
D0

)d

]dν1/(dν−1)

×
[
(1 +

2 tanα(a+ L)

D0

)d−1 − (1 +
2a tanα

D0

)d−1

]
. (A.2)

Note: The area / volume of the occupied cone while filling the pore is ((D0 +2a tanα)d −
Dd

0)/ tanα.
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