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Abstract

In this thesis, we reconstruct cosmological quantities which dictate the late-
time evolution of the Universe using different statistical methods. In the first part
of the thesis, we apply the Principal Component Analysis(PCA) to reconstruct
the observables in Cosmological data-sets. PCA is a model independent, non-
parametric method and can be used to separate the noise of the data from the
signal. PCA is an application of linear algebra and we need only the tabulated
data-set of the observational quantity as our input. As output we obtain the
form of the observable which describes the data-set the best. We modify the
PCA algorithm via the calculation of the Covariance matrix. We show that the
combination of correlation coefficient calculation(CCC) and PCA (PCA + CCC)
can be used as a potential reconstruction tool. (PCA + CCC) give a prescription of
selecting the number of final principal components that are sufficient to reconstruct
the final observable. We apply our algorithm on a simulated data-set first to
validate and check the efficiency of our algorithm. We devise two approaches in
the PCA mechanism. The first one is a derived approach, where we reconstruct the
observable quantities using PCA and subsequently construct the equation of state
parameter of dark energy. The other approach is the direct reconstruction of the
equation of state from the data in hand. We use different initial basis vectors to
reconstruct the observable quantities and use CCC to select one particular initial
basis vector over the other. Given the data-set, we use CCC also to select one
approach over the other. The reconstruction of the equation of state indicates a
slowly varying equation of state of dark energy.

In the second part of the thesis, we combine PCA and Markov Chain Monte
Carlo (MCMC) to infer the cosmological model parameters. We use the No U Turn
Sampler (NUTS) to run the MCMC chains in the model parameter space. After
validating our methodology with simulated data, we apply the same to observed
data-sets. Here we take the points generated from the PCA reconstruction of the
observable as the data-set for the Maximum Likelihood Estimation (MLE) and a
specific cosmological model as our theory vector. We assume a polynomial expan-
sion over the variable (1 − a), where a is the scale factor as the parametrization
of the equation of state of dark energy(EoS). When the method of (PCA + CCC)
reconstruction is combined with MCMC tool, we have the freedom of selecting the
number of points in the observational part of MLE. We see that the predictions
for the model parameters are viable. We show that the parameter estimation
does not depend strongly on the prior probability assumption, and the idea can
be generalized to other data-sets as well as different sampling techniques. The
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relation between the Hubble parameter and the equation of state of dark energy
also contains the first differentiation of the Hubble parameter, which introduces
an unwanted error in the equation of state predictions. This method eliminates
the error that arises from the first order differentiation of the Hubble parameter
to infer the value and ranges of the Equation of State of dark energy. In this work,
we only use the error function that comes directly from the PCA algorithm, and
one can use different error functions in the error part of the MLE as well. It can
be used as a model selection tool and can be used in those data-sets which have
fewer data-points.
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Chapter 1

Introduction

"The perception that all the processes of nature are systematically connected drives
science on to prove this systematic connection throughout, both in general and in
particular."

- Anti-Dühring, F. Engels,

In the process of evolution of society, different scientific ideas and skills began
to develop. We came to know more and more about our surroundings and our
position in it. Gradually, we understood the interconnection between different
scientific branches, which were developed in isolation of each other. These bridges
between different disciplines mark the epochs of different new scientific discoveries
which revolutionized science. General theory of relativity is one of them, which
changed our way of understanding the Universe. In cosmology, we are interested
in studying the origin and evolution of the Universe. Theory of relativity equips
us with the mathematical tool to explore the Universe and also enables us to
have greater understanding of the fundamental forces of Nature. It establishes the
idea that the dynamics of space and time can solely be determined by the energy
content of it [1, 2]. Therefore, to understand the dynamics of the spacetime of the
Universe we must know the different energy contents of the Universe.

The observable physical quantity for us is the light of different frequencies from
stars, galaxies, clusters, and matter in between them as well as the gravitational
waves, which come from different merger objects. In the current era, we are not
only equipped with sophisticated cosmological models and precise observational
dataset, but also the deployment of advanced statistical techniques, which helps
us to predict and infer the dynamical models of Universe. In this thesis we explore
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methods of utilising the data to determine different parameters which govern the
evolution of the Universe.

1.1 An overview

Till the begining of 20th century, the prevailing belief was that the Universe is
static and everlasting. Einstein added the "Cosmological Constant (Λ)" to make
the solution of General Theory of Relativity (GTR) consistent for the steady state
of the Universe. Expansion of the Universe was established by the observations
of Hubble and Slipher [3, 4], which was a blow to the steady-state theory of the
Universe. After the discovery by Hubble, the next seven decades witnessed devel-
opment of different dataset which added to our understanding of the Universe’s
expansion.

The fundamental assumption in cosmology is that the Universe is homogeneous
and isotropic. This is known as the cosmological principle. The Einstein equation
for a homogeneous and isotropic Universe, give the dynamics of the Universe in
terms of cosmic time and determines the different phases of the Universe. The
discovery of Cosmic Microwave Background (CMB) by Penzias and Wilson [5, 6]
wrecked the deep rooted believe of the steady state theory of the Universe. The
‘excess antenna temperature’ measured by Penzias and Wilson isotropically in all
directions [5] was correctly interpreted in [6], which showed that Universe was
clearly adiabatically expanding and cooling as postulated by Lemaitre [7] using a
solution of Einstein’s field equation found previously by Friedman [8]. In 2006,
Mather and Smoot won the Nobel prize for the measurement of the black-body
spectrum and the discovery of temperature anisotropy of the cosmic microwave
background (CMB) [9]. This discovery put the big bang model of cosmology on a
firm footing.

In different phases of the Universe’s evolution, different energy components
dominate and drive the evolution of the Universe. The Universe underwent a
rapid, exponential energy at very early time. This phase namely, inflation gives
the causal mechanism for the existence of large-scale structures of the Universe.
Inflation solves cosmological problems, such as the flatness and the horizon prob-
lem. Universe entered a radiation-dominated era after the end of inflation. In
this phase, light elements such as Helium and Deuterium were formed. The
radiation-dominated era is followed by the matter-dominated era at around red-
shift z ≈ 3000. In the matter-dominated era, pressure-less dark matter began to
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dominate the total energy of the Universe. This is the era in which structures
(galaxies, clusters) formed.

The baryonic matter in the Universe contributes only about 4-5% to the energy
budget. The rest of the energy content of the Universe is "dark". The dark sector
of the Universe consists of dark energy and dark matter. Dark matter constitutes
almost 25% of the energy density of the Universe. By comparing the dispersion
velocities of galaxies in the COMA cluster with the observable star mass, Zwicky
had indicated the existence of dark matter as early as 1933[10]. Baryons and dark
matter are the main contributors to the formation of large-scale structures. Unlike
visible baryonic matters, dark matter does not interact with the electromagnetic
force. Its presence is mainly observed from the gravitational effect on surrounding
visible matter. From observation and simulation, the clustering property of dark
matter due to gravitational instability is proved.

In the year 1998, the observational data collected for Supernovae Type Ia(SNIa)
[11] by the High-redshift Supernova Search Team and by the Supernova Cosmology
Project Team [12] independently reported that the present Universe is accelerating.
This lead to flurry of activity to understand the source of this acceleration in the
energy content of the Universe. This unknown energy content of the Universe is
dubbed "Dark Energy". Presently, we do not understand whether dark energy is
a Cosmological Constant [13–16] or a time-evolving quantity [17, 18]. The energy
densities of the matter and radiation decrease with the passage of time. At late
times, dark energy catches up with the matter component and starts to dominate
the expansion. The onset of cosmic acceleration is around the redshift z ≈ 1. The
cosmological constant Λ is the simplest candidate for dark energy, which has a
constant energy density. There is huge discrepancy between the theoretical value
predicted and the value suggested by observation. For particle physics, the value
of cosmological constant appears as a vacuum energy density, and the estimated
value is ρvac ≈ 1074GeV 4. This value suggests an eternal early stage of cosmic
acceleration in the very early stage. The observed value of vacuum energy is
ρΛ ≈ 10−47GeV 4. We have to justify the small observed value of ρΛ in the case of
the cosmological constant scenario. This led to formulation of different alternative
scenarios which include fluid models or scalar field models.

The dark energy contribution should have a negative pressure to dictate the
accelerating phase of the Universe. Some models belonging to this class are
quintessence [19–43], K-essence [44–46], perfect fluid models [47, 48]. Quintessence
and K-essence use scalar fields to modify the potential and kinetic terms of the

3



Lagrangian such that deduction from the Einstein equation gives an accelerating
phase. Perfect-fluid models achieve this goal by a specific form of the equation of
state. Another approach is to modify the spacetime curvature part of the Einstein
equation. Some of the more popular ones are f(R) gravity [49–51], scalar tensor
theories [52–56], braneworld models [57, 58]. The models were proposed to solve
the fine tuning problem of cosmological constant, however these models have fine
tuning problem of their own.

It is an important task to constrain parameters of different models with ob-
servational data. The equation of the state of dark energy, which dictates the
dynamics of dark energy, is the physical quantity that distinguishes dark energy
models from one another. The equation of the state of dark energy is wDE = pDE

ρDE
,

where pDE is the pressure of dark energy and ρDE is the energy density. For
ΛCDM , the equation of state parameter is constant in time, wDE = −1. Other
dark energy models give a time-varying equation of state of dark energy.

We need statistical techniques and different observational datasets to distin-
guish one model from the other. Statistical techniques are also used to predict
and infer from observational datasets. The SNIa observations give us the dis-
tance information of different supernovae upto redshift z = 2.6 [59]. The cosmic
chronometer distance gives us the value of different Hubble parameter redshift
values upto z = 2.35 [60–64]. In the case of Hubble parameter dataset we use
different differential age techniques to find the value of Hubble parameter in a
particular redshift. Along with Hubble parameter and supernovae datasets we
also have Cosmic Microwave Background(CMB) and Baryon Acoustic Accelera-
tion(BAO) datasets, which are used in the cosmological parameter estimation. In
recent time the weak gravitational lensing data emerged as another observational
tool to understand the dark sector of the Universe. Weak gravitational lensing is
the perturbative distortion of the images of distant objects due to gravitational
deflection of light. It gives us the way to understand the distribution of matter
in the Universe, and as the dynamical dark energy and neutrino masses affect the
growth of the structure, the weak lensing data contains the valuable information
regarding the dark constituents of the Universe [65–69]. Again, the expression of
the dispersion measures(DM) of Fast Radio Burst(FRB)s contain the cosmologi-
cal parameters. Therefore, DM measurements is a potential tool to constrain the
cosmological parameters and can be used mainly to break the degeneracy of the
cosmological parameters [70–72].

Dark energy study is facilitated with sophisticated qualitative models which
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can give exact accurate predictions. Also, the increasing availability of precise and
large dataset helps in constraining these models. Along with these two aspects
another aspect which revolutionized the cosmological parameter fitting is the de-
ployment and advancement of statistical techniques, which helps in inference from
the dataset. With the availability of the large datasets, we also need the precise
measurements of the model parameters. Precision requires that we have sufficient
knowledge of the error bars of the data set, which may be an error function or
the errors for each measurement. There are four main applications of statistics in
cosmology [73]. These are hypothesis testing, parameter estimation, model test-
ing and forecasting. In the case of hypothesis testing, we deal with testing a null
hypothesis in the presence of an alternative hypothesis, and finally quantifying the
goodness of the hypothesis. Hypothesis may be an idea on the dynamics of the
Universe or an idea about the errors of a particular experimental set-up. Param-
eter estimation basically quantifies a model in the presence of the experimental
dataset in hand. It specifies the range of the parameter value if the dataset is
present. Model testing is a way to select one model over the other. This may
be done by checking and comparing the allowed parameter ranges of the model
parameters or may be done by calculating the complexity of each model. This is
also done in the presence of the observational dataset. The forecast part is useful
to suggest future data points for the new observational measurements.

In the following chapters we begin with a discussion of General Theory of Rela-
tivity and cosmology. After a brief explanation on different distance measurements
in cosmology, we discuss different statistical techniques used in cosmology which
are relevant to the work presented in the thesis.

1.2 General Theory of Relativity and the Ex-
panding Universe

We study the Universe based on the assumption that the Universe is homoge-
neous and isotropic on a large scale. There are justifications for treating the
distribution of matter as homogeneous for scales larger than around 100 Mpc.
This assumption of homogeneous and isotropic nature of the Universe is called
the cosmological principle. It also singles out a particular class of observer,
called the fundamental observer, for which the Universe appears to be isotropic.
Any other observer who is moving with uniform velocity with this class of ob-
server finds the universe to be anisotropic. The line element, which is the gen-
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eral spacetime interval, contains the information of spacetime geometry. Gen-
eral Theory of Relativity(GTR) connects this line element to the energy content
of the Universe and this is done by the Einstein field equation of gravitation.
The line element for a homogeneous and isotropic Universe is given by the Fried-
mann–Lemaître–Robertson–Walker(FLRW) metric

ds2 = gµνdxµdxν = −dt2 + a2(t)dσ2 (1.1)

Here, gµν is the ‘metric tensor’, with µ, ν = 0, 1, 2, 3. Eqn(1.1) gives the dis-
tance between two spacetime points, and hence it contains the information of the
geometry of spacetime. In the above equation, a(t) is the scale factor with the
cosmic time(t), and dσ2 is the time-independent metric of the 3-dimensional space
with constant curvature K. This is given by,

dσ2 = λijdxidxj = dr2

1 − Kr2 + r2(dθ2 + sin2θdϕ2) (1.2)

Here, K = −1, 0, 1 correspond to an open, flat, and closed universe. This
metric represents the Friedmann-Lemaitre-Robertson-Walker(FLRW) spacetime.
The indices, i, j = 1, 2, 3 and we have used the polar coordinates (r, θ, ϕ).

The curvature of spacetime is quantified by the Ricci tensor, which is given as

Rµν = Γα
µν,α − Γα

µα,ν + Γα
µνΓβ

αβ − Γα
µβΓβ

αν (1.3)

Contraction of this tensor gives us the Ricci scalar, which is the curvature of
a manifold.

R = gµνRµν (1.4)

Einstein field equation are given by,

Gµ
ν = 8πGT µ

ν , (1.5)

where Gµν = Rµν − 1
2gµνR is the Einstein tensor. Like any other field equation, it

connects the effect of a field with its cause or the source term. Eqn(1.5) connects
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the effect of the gravitational field with the source of gravity, which is the term
given by the energy-momentum tensor (Tµν).

The energy-momentum tensor of the Einstein equation 1.5 is given by the
equation of a perfect fluid as,

T µ
ν = (ρ + p)uµuν + pδµ

ν (1.6)

where uµ = (−1, 0, 0, 0) is the four-velocity of the perfect fluid in the comoving
coordinates, while both ρ and p are functions of t. The components of T ν

µ are
T 0

0 = −ρ and T j
i = pδi

j. The Hubble parameter H is defined as,

H ≡ ȧ

a
(1.7)

where the dot represents derivative with respect to time. For the FLRW metric,
the Einstein equation eqn(1.5), lead to the Friedmann equations

H2 = 8πG

3 ρ − K

a2 (1.8)

3H2 + 2Ḣ = −8πGp − K

a2 (1.9)

Combining these two equations we have

ä

a
= −4πG

3 (ρ + 3p) (1.10)

If (ρ + 3p) < 0 the expansion of the Universe accelerates.

After combining eqn(1.8) and eqn(1.10) we get,

ρ̇ + 3H(ρ + p) = 0 (1.11)

The equation of state (w)

w ≡ p

ρ
(1.12)
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From eqn(1.10) we can see that the value of w determines whether the Universe
is undergoing a decelerated expansion or an accelerated expansion. Therefore,
Universe is accelerating or decelerating if w < −1/3 or w > −1/3.

From the continuity equation eqn(1.11) we can write,

ρ ∝ a−3(1+w) (1.13)

For the cosmological constant w = −1 i.e. p = −ρ, and in this case eqn(1.11)
gives that ρ is constant. From eqn(1.8) we see that for a constant ρ, for a flat
Universe (K = 0), the scale factor will evolve exponentially: a ∝ exp(Ht).

We can write the eqn(1.8) in the form,

ΩM + ΩK = 1 (1.14)

where, ΩM ≡ 8πGρ

3H2 , ΩK ≡ − K

(aH)2 (1.15)

Inserting the relativistic matter, non-relativistic matter and dark energy as the
energy components, namely ρR, ρM , ρDE, in the total energy of a flat Universe we
get,

ρtotal = ρR(a) + ρM(a) + ρDE(a) (1.16)

For non-relativistic matter pressure is negligible, hence w = 0 and we can get
from eqn(1.13) ρM ∝ a−3. For relativistic matter w = 1/3 and we get ρr ∝ a−4.
As discussed above for the vacuum energy, p = −ρ and ρΛ is constant.

Then, from eqn(1.16) we get,

ȧ2 + K

a2 = H2
0 [ΩR0a

−4 + ΩM0a
−3 + ΩΛ0] (1.17)

Here, H0 is the Hubble constant, which is the present-day value of the Hubble
parameter and the parameters ΩM0, ΩR0, ΩΛ0 are the present-day values of non-
relativistic matter, relativistic matter and dark energy density respectively. The
subscript ‘0’ to denote the present-day value of the energy density. We can write
the cosmological parameters as,
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ΩR0 = 8πG

3H2
0

ρR0, ΩM0 = 8πG

3H2
0

ρM0, ΩΛ0 = 8πG

3H2
0

ρΛ0 (1.18)

For curvature if we define, ΩK0 = −K/(a0H0)2, from eqn(1.17) we will get,

ȧ2

a2 ≡ H2 = H2
0

(
ΩR0

a4
0

a4 + ΩM0
a3

0
a3 + ΩK0

a2
0

a2 + ΩΛ0

)
(1.19)

The 5 year WMAP [74–76] and the recent PLANCK [77] data suggested that
the value of ΩK0 is nearly zero (95% confidence range for ΩK0 was given as
−0.0175 < ΩK0 < 0.0085). We can safely assume the value of the curvature
parameter as ΩK0 = 0, i.e. the Universe is spatially flat. From eqn(1.8) we see
that Ω = ΩR + ΩM + ΩΛ = 1. It is clear from eqn(1.19) that there is a singularity
at t = 0 and that different species dominate different eras of the Universe. As the
equation of the value of the state parameter for the radiation and matter are 1/3
and 0 respectively, the universe went through a decelerating phase (ä < 0). Unless
the Universe is exactly flat from the start, i.e. K = 0, the curvature part would
dominate the contribution of other energy budgets of the Universe. In the present
era, when the energy budget of the Universe is dominated by the energy compo-
nent having a negative pressure component, the Universe can go to an accelerating
phase.

1.3 Hubble law

The Hubble law connects the observed wavelength of a distant galaxy to the
wavelength in the rest frame [78]. The observed wavelength is larger than the
rest frame wavelength; this indicates the first observational proof of an expanding
Universe. To quantify this effect, we introduce the redshift z,

z ≡ λ0

λ
− 1 = a0

a
− 1 (1.20)

Here, λ0 is the observed wavelength of a galaxy and λ is the wavelength in its
rest frame. For υ << c, λ0 ≈ (1 + υ/c)λ, which implies z ≈ υ/c. If the physical
distance between an observer and an object is denoted by r, then we can write
r = a(t)x, where x is the comoving distance. x remains constant for two points
in the Hubble flow. Differentiating the expression of r,
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ṙ = Hr + aẋ (1.21)

In the eqn(1.21), Hr appears for the Hubble expansion, whereas υp ≡ aẋ is
the peculiar velocity of the object with respect to the Hubble flow. Along the line
of sight, the speed of the object is,

υ ≡ ṙ · r/r = Hr + υp · r/r (1.22)

where, r ≡ |r|. When υp · r/r ≈ 0 we can recover the classical Hubble law
from eqn(1.22) as, υ ≈ H0r, H0 being the Hubble constant.

1.4 Distance measurements and Cosmological datasets

In this section, we discuss different distance measurements. We start with the
expression of the three-dimensional line element of eqn(1.1). From eqn(1.2) we
get for r = sin ξ (K = +1), r = ξ (K = 0) and r = sinh ξ (K=-1),

dσ2 = dξ2 + (fK(ξ))2(dθ2 + sin2θdϕ2) (1.23)

fK(ξ) =


sin(ξ), (K = +1),

ξ, (K = 0),

sinh(ξ), (K = −1).

(1.24)

1.4.1 Comoving distance

Light ray traveling along x direction satisfies the geodesic equation, ds2 = 0 and
we can write dx = −cdt/a(t). The comoving distance is then given by,

dc ≡ x1 =
∫ x1

0
dx = −

∫ t1

t0

c

a(t)dt (1.25)

Here, we assume that light is emitted at t = t1, with x = x1 . Eqn(1.20) can
be reduced to dt = −dz/[H(1 + z)] and in terms of redshift z we can write the
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comoving distance as

dc = c

a0H0

∫ z

0

dz′

E(z′) (1.26)

where, E(z) ≡ H(z)/H0. After expanding the function
∫ z

0 dz̃/E(z̃) about z = 0,
we get

∫ z

0

dz̃

E(z̃) = z − E ′(0)
2 z2 + 1

6
{
2E ′(0)2 − E ′′(0)

}
z3 + O(z4), (1.27)

prime in here represents the derivative with respect to the redshift z. For a
redshift z << 1, we can write

dc ≈ c

a0H0
z (1.28)

υ ≈ (a0H0)dc (1.29)

Eqn(1.29) is derived using eqn(1.28) and eqn(1.22). υ is the recession velocity and
we can write the physical distance r = a0dc as, r ≈ (c/H0)z ≈ υ/H0. Therefore,
for low redshift the relation of the physical distance is the familiar Hubble law.

1.4.2 Luminosity distance

The luminosity distance to supernova encodes information about the expansion
rate of the Universe. Through the comparison of apparent luminosities of super-
nova type Ia, in different redshifts we obtain the value of the luminosity distance
dL.

Between two observers at different points separated by the proper distance δl

and the comoving length difference δx, we can write δl = a(t)δx and the velocity
attribute due to the expansion of spacetime is

δυ = d

dt
δl = ȧδx = Hδl (1.30)

Let us consider that at one of these points there is a source of electromagnetic
radiation, and at another there is an observer. If the frequency of the electromag-
netic radiation is ω, the observer at the other point measures the frequency at the
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Doppler sifted frequency (ω + δω), where

δω

ω
= −δυ = − ȧ

a
δl = − ȧ

a
δt = −δa

a
(1.31)

For two infinitesimally close points we can apply the laws of special theory of
relativity. Eqn(1.31) can be integrated to,

ω(t)a(t) = constant (1.32)

For a material particle, we can also write the effective velocity equation. Let
two observers are situated δl proper distance away and a material particle passes
the first observer with velocity υ. Then, the velocity of the second observer,
relative to the first one when the material particle passes is

δu = ȧ

a
δl = ȧ

a
υdt = υ

δa

a
(1.33)

If the second observer attributes υ′ velocity to the particle, we can write,

υ′ = υ − δu

1 − υδu
= υ − (1 − υ2)υδa

a
(1.34)

δυ = −υ(1 − υ2)δa

a
(1.35)

By integrating eqn(1.35) we get, p = constant/a, indicating that the velocity
is decreasing as a−1.

Assume a pencil of light that is emitted by one source observer and received by
another. If for a comoving observer, there is dN number of photons in a volume
of V , which have the momentum range (p, p + d3p), we can write

dN = fdVd3p

Here, f(x, p, t) is the phase space distribution function. This expression is true
for all species of matter particles, including photons. As the phase space density
of photons is conserved, fγ(t, d3x, d3p) is invariant during the propagation of the
light beam between two observer. Therefore, we can write
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fγ(t, x, p) = dN
d3xd3p

= dNγ

dtdAdωdΩ
1
ω2 = invariant (1.36)

Here, d3p ∝ p2dpdΩ ∝ ω2dωdΩ and d3x ∝ cdtdA. dΩ is the solid angle and
dA is the area perpendicular to the propagation of the radiation. As, dE = ℏωdN
and intensity is I = (dE/dtdAdωdΩ) we get,

I

ω3 = invariant (1.37)

If F is the flux received from a source at distance r = rem and L is the
luminosity we can express,

F = 1
area

dErec

dtrec

(1.38)

= 1
4πa2

0r
2
em(1 + z)2 L (1.39)

In the above equations the subscript ‘rec’ is for the receiving observer and ‘em’
is for the source. In eqn(1.39) L is the luminosity distance of the source.

As luminosity is one of the observables, and the distance to an object can be
written with the help of flux F and luminosity L. If we can write,

dL(z) =
( L

4πF

)1/2
= a0rem(z)(1 + z) = a0(1 + z)Sκ (1.40)

where, Sk is the same function defined in eqn(1.24).

1.4.3 Angular diameter distance

If ∆l is the physical length of an object orthogonal to the line of sight of an
observer’s position, and if the object subtends an angle ∆θ at the observer, for a
smaller value of ∆θ we can write ∆l = rema(te)∆θ. We denote angular distance,
from the source to the receiver as dA then we will get ∆θ = ∆l/dA. Therefore,

dA(z) = rema(te) = a0rem(1 + z)−1 (1.41)
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Eqn(1.41) eventually give us,

dA = dL

(1 + z)2 (1.42)

Eqn(1.42) is popularly known as duality or reciprocity of the Ethergington relation.

In the fig(1.1), we see that for the model of a flat Universe where matter and
dark energy matter species are considered, the luminosity and angular diameter
distance increase monotonically for the low redshift and after that dA starts de-
creasing. We also see that, for a particular redshift, the value of dL decreases, as
ΩM increases. This is also true for dA.

1.5 Observational Datasets

In this section we will discuss the observational dataset used in our work, namely
the supernova type Ia dataset and the Hubble parameter or cosmic chronometer
dataset.

1.5.1 Supernovae Type Ia

Supernovae are characterized by its peak brightness that is associated with an
exploding star. These are one of the most violent explosions of the Universe, which
releases nearly 1044 J of energy at a timescale of about a second from a region of
planetary size. This outshines all stars of the galaxy at their maximum brightness
[79]. Supernovae Type Ia(SNIa) are the results of the explosion of a carbon-oxygen
white dwarf in a binary system as it goes beyond the Chandrasekhar limit, either
due to accretion from a donor or mergers. These are called the standard candles
of the Universe. A type Ia supernova is identified by its light-curve, where the
presence of spectral line for Silicon or Calcium is significant but not the spectral
lines of Hydrogen or Helium. The light curves of different SNIa are not the same
but similar, and the empirical methods that depend only on observations allow
these different light curves to collapse into a single curve.

From the SNIa discovered by the Pan-STARRS1 (PS1) Medium Deep Survey
pantheon dataset ([80, 81]) gives light-curves of more than a thousand SNIa, which
gives distance modulus µ values at 1048 different redshifts. The last two decades
marked different supernovae surveys, which probe a large range in redshift. CfA1-
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Figure 1.1: The plots in the figure shows the evolution of luminosity distance
and angular diameter distance. In the figures we plot for a specially flat Universe,
where only two components of matter have been consider, matter and dark energy.
Red and yellow curves are for ΩM = 0.25 and ΩM = 0.3 respectively. The blue
region shows the variation of ΩM from 0.1 to 0.4.
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CfA4 [82–84] CSP [85–87] LOSS [88] assembled large sets of low-redshift (0.01 < z
< 0.1) SNe. Fro z > 0.1 reshift there are many overlap surveys ESSENCE [89–91],
SNLS [92, 93], SDSS [94–96] and PS1 [97, 98] Now we also have high redshift data
from the SCP survey [99] as well as the GOODS [100, 101] and DELS/CLASH
surveys [102–104].

The pantheon compilation [80, 81] gives the value of the distance modulus µ

as
µ = mB − M + αx − βc + ∆M + ∆B (1.43)

where ∆M and ∆B are the distance correction based on the host-galaxy mass
of the SN and the distance correction based on the predicted biases of the simula-
tions, respectively. α and β are the coefficients of relation between luminosity and
stretch and between luminosity and color, respectively. M is the absolute B-band
magnitude of a fiducial SNIa with x = 0 and c = 0.

From [80, 81], we can write the error in the total distance of each SNIa as

σ2 = σ2
N + σ2

Mass + σµ−z + σ2
lens + σ2

int + σ2
Bias (1.44)

In eqn(1.44), σ2
N is the photometric error, Uncertainty due to mass step corre-

lation and distance bias corrections are as σ2
Mass and σ2

Bias. The uncertainty from
the peculiar velocity uncertainty and redshift measurement uncertainty in quadra-
ture is given as σµ−z, whereas σ2

lens is the uncertainty of stochastic gravitational
lensing. σ2

int is for the intrinsic scatter.

The theoretical value of µ is calculated as follows.

µ = 5 log10

(
dL

1MPc

)
+ 25 (1.45)

1.5.2 Hubble parameter dataset

We also use the cosmic chronometer measurements, which consists of the tabulated
38 data points of values H(z) versus z [60–64, 105–114].

Direct measurement of the Hubble parameter is a powerful tool to constrain the
cosmological parameter of a theory, which can be seen from the Friedman equation
1.19. The differential age method is used to measure the Hubble parameter at
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different redshifts. We can see from eqn(1.45) that to constrain the dark energy
Equation of State parameter(EoS) from the distance modulus measurement we
have to go through the process of integration, eqn(1.40). The differential age
method gives us the way to bypass the integration [115].

To find the value of Hubble parameter, we have to rely on a clock that dates
the variation in the age of the Universe with redshift. For the differential age
method, this clock is the spectroscopic dating of galaxy ages. Two passively evolv-
ing galaxies are chosen that formed at the same time but separated by a small
redshift interval δz such that the derivative dz/dt can be assumed as δz/δt, here
t(z) is the age of the Universe at redshift z. To improve the statistical significance
we have to select a fair sample of passively evolving galaxies at the two redshift
points. After selecting the galaxy pairs, we compare the upper cut-offs in their age
distributions. All selected galaxies must have similar metallicities, and we have to
ensure that the average age of their stars is much greater than the age difference
of the two galaxies.

Through the differential age method, we calculate dz/dt for different redshifts
z, from which we can calculate the Hubble parameter H(z) as

H(z) = − 1
(1 + z)

dz

dt
(1.46)

This differential age determination is more reliable than the absolute age de-
termination of galaxies [116, 117].

1.6 Statistical methods - A brief review

Classical statistics comprises of three steps:

• Formulation of a hypothesis using prior knowledge of the system under study.

• collecting and recording of the hypothesis-test data via experiments

• the construction of a test hypothesis.

Making a decision on the basis of test statistics requires that, one has to know
the sampling distribution or expectations of the statistics. Typically, one has
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to know the frequency distribution of the test statistics to validate the final re-
sult. This poses a problem, as in astronomy we deal with very small sample size,
and astronomers can not control or rerun “the experiment”. This poses a poor
assumption of the underlying distributions. Therefore, the process of extracting
information from observed data is incorporated with the statistics. Statistical tech-
niques are used in error estimation, finding correlation between the data points,
extracting information from the incomplete dataset, and finally in the process of
decision making. Development of astronomical ideas or the cosmological ideas in
particular, can be defined in the following categories.

• Observation

• Data reduction

• Analysis

• Inference

• Update Knowledge for the theoretical model

Observation is the process of collecting and recording data from the Universe.
In the data reduction, we reduce the noise and the unwanted data part from the
collected dataset. Different statistical techniques of data reductions are used in this
noise cancellation part. In the analysis part we use different statistical techniques
to infer prior knowledge or theory. Calculation of statics is also included in this
step. Statics are those quantities that summarize the data; it is the ultimate form
of data reduction. According to the dataset at hand, mean, median, or standard
deviation may be the statics of the dataset. After the analysis, we can compare
different models that hitherto existed. The concluding remarks after the analysis
quantifies the significance of a model. Inference tells us if the results are not
plausible then at which stage we have to re-check the experimental data. The next
step is the update of our knowledge for modification of our idea or theory. This
development is a two-way process and after getting inference from experiments
and the required modification, the developed theory has the potential to predict
the future data points. For these future data-points the experiment has to be
conducted again.
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For an astronomical experiment, this spiral development is defined by [118].
This is the process of development of both theory and experimental methods. Ex-
periments collect raw data, and the process of reduction cleans up the experimental
effect.

In the following section, we give a brief description of some of the most widely
used statistical methods and techniques that we use in our work.

1.7 Bayesian model selection and Inference of
the parameters

Selection of one correct cosmological model from the set, which consistent with
observation is one of the principal goals of cosmology [119]. Theoretical models
are quantified by the respective theoretical model parameters. Selection of cor-
rect or a best-suited model with the observation is a two-step process. First, we
determine the allowed theoretical range of the parameters, and then we attach a
distribution with the parameters. Range of the parameters is the prior information
we need in the model selection process, and in the light of the Bayesian approach,
probability distribution assigned to the parameters are called prior probabilities.
The combination of parameter set and prior distribution is called model; which
contains information of the theoretical and statistical prior input. The second step
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is the comparison of the theoretical model with the observation, which quantifies
the allowed range of parameters.

1.7.1 Bayes’ theorem

To infer a theory, we need both the multidimensional theoretical model parameters
θ⃗ as well as the observational dataset D. We can think of θ⃗ and D as two methods
to create the data-points, and P(. . . ) is the valuation that gives the probability
of that particular method. We can compile the necessary characteristics of the
probability as follows,

P(θ⃗) ≥ 0 −→ positivity∫
P(θ⃗)dθ⃗ = 1 −→ sum rule

P(θ⃗ ∩ D) = P(D|θ⃗)P(θ⃗) −→ product rule

 (1.47)

From eqn(1.47), the product rule of two joint probability of a model parameter
set (θ⃗) and data (D) can be given as

P(θ⃗)P(D|θ⃗) = P(θ⃗ ∩ D) = P(D)P(θ⃗|D)
Prior × Likelihood = Joint = Evidence × Posterior

π(θ⃗)L(D|θ⃗) = EΠ(θ⃗|D)

 (1.48)

To define the individual elements of Bayes’ Theorem, we follow the nomencla-
ture of [119]. Prior probability(π(θ⃗)) represents the information of our parameter
distribution. Likelihood(L(D|θ⃗)) is the probability distribution of the dataset for
allowed input of the parameters. Posterior probability is the inferred distribution
of probability after we have the dataset. Evidence is the representation of how
well our previous assignment was able to predict the data. Evidence is also called
‘marginalized likelihood’. We can summarize the above calculation of inference in
three equations given by,
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∫
π(θ⃗)dθ⃗ = 1 (1.49)

E =
∫

π(θ⃗)L(D|θ⃗)dθ⃗ (1.50)

P(θ⃗) = π(θ⃗)L(D|θ⃗)
E

(1.51)

The difference between the prior and the posterior is the information;

H(Π|π) =
∫

Π(θ⃗|D) log(Π(θ⃗|D)/π(θ⃗))dθ⃗ (1.52)

1.7.2 Bayesian model selection

Bayesian parameter estimation is a framework for model comparison or model
selection. Rather than singling out a particular model, we compare competing
models, which explain the observed outcome through different physical processes.
The typical use of the Bayesian methods is in the estimation of the allowed pa-
rameter values of a model. After selection of a correct model, we want to know
the allowed range of the parameters given the data. We decide the range of pa-
rameters that are needed in the model to explain the observed data. As every
model explains the observed data through some physical processes we would like
to know which are the physical processes that affect our observed data. There-
fore, the model comparison or model selection is the way to get to this goal. This
is done by computing posterior probability. From eqn(1.48) we can see that the
posterior probability is proportional to the likelihood. Bayesian inference gives
the acceptable range of parameter estimation.

As we have seen from the equations eqn(1.50, 1.51) of sec(1.7.1) to predict
the posterior probability of the parameters, we have to calculate the likelihood
L(D|θ⃗), which also depends on our previous belief represented by π(θ⃗). If now
we assume that our probabilities are conditioned on our assumed model, then we
have to modify eqn(1.48) to get the posterior probability of parameter set θ⃗ as

P(θ⃗|D, M) = P(D|θ⃗, M)P(θ⃗|M)
P(D|M) (1.53)

In eqn(1.53), P(D|M) is the likelihood of the data given the model, which is
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also known as Bayesian evidence. Rewriting the Bayesian posterior probability of
the model, we get

P(M|D) = P(D|M)P(M)
P(D) (1.54)

In eqn(1.54) we can see that the Bayesian evidence term P(D|M) appears. The
model selection needs to compute only the value of P(M|D), which depends on
the Bayesian evidence and the prior probability distribution of the model P(M).
For our convenience we take a flat prior. To get an expression of Bayesian evidence
term, we use eqn(1.53) and integrate over all possible values of θ⃗, which will make
the left hand side of eqn(1.53) unity.

P(D|M) =
∫

P(D|θ⃗, M)P(θ⃗|M)d⃗θ

Evidence =
∫
(Likelihood × Prior)d⃗θ

 (1.55)

From eqn(1.55) it is clear that evidence is the average likelihood of the param-
eters integrated over the prior parameter. Bayesian evidence gives us the model
predictiveness as an output. For a particular model, if it fits the observational
data well for most regions of the parameter space, then the average likelihood
and finally the Bayesian evidence will be high. This leads to good predictiveness
of that particular model. If the evidence is low, then it indicates that for some
regions of the parameter space, the model poorly predicts the observed value. For
a good predictive model, the desired observational quantity should not depend
strongly on the model parameters. If we define the simplicity of the model by the
number of parameters that it needs to calculate the observed quantity, then we
can say that the predictivity of the model is closely connected with the simplicity
of the model. It is because more number of parameters in the model leads to more
diverse predictions.

1.7.3 Information Criteria

If we consider two models, M0 and M1 then the ratio of Bayesian evidence of
these models is called the Bayes factor,

B01 ≡ E0

E1
(1.56)
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Eqn(1.56) is a measure of predictiveness of one model over the other, when
dataset is given. Therefore, if B01 is less than 1, we can say that the model M1

can agree with the data more than the model M0.

The comparison of models with a large number of parameters is a difficulty.
The main hindrance comes in solving the integration of eqn(1.55) to calculate the
evidence. In such a case, we use different information criteria. These informa-
tion criteria depend on the maximum likelihood rather than the likelihood for
the whole parameter range. Akaike information criteria(AIC) and Bayesian infor-
mation criteria(BIC) are two of the most widely used information criteria, which
are derived from the Gaussianity or near-Gaussianity of the posterior distribution
[73, 120, 121]. The AIC and BIC for a model are defined as

AIC = −2ln(Lmax) + 2k

BIC = −2ln(Lmax) + klnN

where Lmax is the maximum likelihood, k is the number of parameters of the model
under consideration, and N is the number of data points. In case of parameter
degeneracy the inclusion or rejection of an model parameter can be done by AIC
and BIC.

When we have a certain model M, data D, a set of parameters θ⃗ and a method
to find out the probabilities of the model parameters from the dataset, we can find
the possible value of the parameters with certain probability. This is called the
parameter estimation, and one of the prominent way of parameter estimation is
the Monte Carlo sampling.

1.7.4 Parameter estimation using Monte Carlo sampling

We start by collecting samples from the target population. Prior to the analysis
we have the following components,

• a model based on the physical system we have

• observational data

• the model parameters, which quantify the physical system
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• method for taking the sample from the population.

We can find the expectation value of any function f(θ⃗) of the parameters θ⃗ as,

⟨f(θ⃗)⟩ =
∫

dθ⃗f(θ⃗)P(θ⃗) (1.57)

In eqn(1.57), P(θ⃗) = P(θ⃗|D, M), is the posterior probability. The computa-
tionally efficient method for performing this integration is to explore the parameter
space by taking samples [119]. The probability of taking the sample is proportional
to the posterior density P(θ⃗) of the parameter space at that point. Our motive is
to calculate the full properties of the parameter space from the samples we have
collected. We are interested in calculating P(f(θ⃗)|{θ⃗}) instead of P(f(θ⃗)|P(θ⃗)).
Central limit theorem states that for a sample of large size, the sum of any quan-
tity calculated from different sample distributions tends to a normal probability
distribution. We can estimate ⟨f(θ⃗)⟩ as

Êf = 1
ns

ns∑
i=1

f(θ⃗i) (1.58)

Here, θ⃗i represents the ith sample from the parameter space and ns the total
number of collected samples. The law of large numbers states that the average of
sample mean and standard deviation of a quantity approximate the actual mean
and standard deviation of the targeted population. Therefore, the expectation of
the function of the parameter is the true expectation ⟨Êf⟩ = ⟨f(θ⃗)⟩. For the large
number of samples, P(Êf ) tends to the normal distribution N (⟨f(θ⃗)⟩, σ2

E), where
σE = σf/

√
ns and σ2

f is the true variance of f(θ⃗).

It is therefore computationally efficient to divide the posterior distribution in
small samples. Below, we briefly describe some of the sampling techniques.

Direct sampling:

Rather than generating samples only asymptotically, these methods generate
independent samples directly [119]. There are two distinct ways in this method-
ology.

In one case, the so called inverse method, we draw samples from the cumula-
tive distribution Q(θ⃗) and then draw the corresponding value through the inverse
calculation of probability density function (pdf) P(θ⃗). Q(θ⃗) is the monotonically
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increasing function and for the pdf P(θ⃗), it is given as

Q(θ⃗) =
∫

θ

−∞
dθ⃗′P(θ⃗′) (1.59)

If we consider the one-dimensional case, first a random sample xi is chosen from
the uniform distribution of zero to one. We try to find θi for which Q(θi) = xi.
Then we sample P(θi) with probability P(θi).

In the second case, which is called the accept-reject sampling method, selecting
an appropriate ‘umbrella’ or ‘envelope’ distribution U(θ⃗) from which it is easy to
sample. We take U(θ⃗) ≥ P(θ) for all points in the parameter space θ⃗. We keep a
sample with probability P(θ⃗)/U(θ⃗) or reject otherwise. Samples selected in this
are independent of each other.

Markovian sampling:

Direct methods of sampling are efficient in the one-dimensional parametric
case. For multi-dimensional parameteric case, the method which is mostly used
is the Markov chain method. If the probability to move from the current position
of the parameter space θ⃗i to the next point of the parameter space θ⃗i+1 depends
only on the current position θ⃗i, then the process is called the Markovian process.
The Markovian way to estimate the posterior probability P(θ⃗i) is such that, after
following a long Markov chain, the probability of arriving at the current position
is same as the actual probability of the posterior distribution P(θ⃗). If we use
the transition probability T (θi+1|θi), to define the probability of moving from the
position θi to θi+1 then probability at the point θi+1 is

P(θi+1) =
∫

dθiP(θi)T (θi+1|θi) (1.60)

The condition of transition depict in eqn(1.60) is ensured by the condition of
detailed balance.

P(θi+1)T (θi|θi+1) = P(θi)T (θi+1|θi) (1.61)

The condition of detailed balance indicates that the probability of going from θi

from θi+1 is same as that of moving from θi+1 to θi. The user has the freedom to
choose the form of T . The only thing that needs to be taken into account when
choosing T is that the transition probability should lead us to all the points of the
parameter space.
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Metropolis-Hasting algorithm:

Metropolis-Hasting [122, 123] is one of the Markovian methods which satisfies
the condition of detailed balance. Due to its simplicity, it is one of the most
popular methods. Metropolis-Hasting uses Bayes’ Theorem sec(1.7.1) to calculate
the posterior probability density from which sampling is difficult. It is a version of
accept-reject method where we need an umbrella distribution, called the proposal
distribution. This proposal distribution q(θi+1|θi) gives the probability of getting
to the point θi+1 when the current position θi is given. The acceptance probability
is

α(θi+1|θi) = min

{
1,

P(θi+1)q(θi|θi+1)
P(θi)q(θi+1|θi)

}
(1.62)

Here,
r ≡ P(θi+1)q(θi|θi+1)

P(θi)q(θi+1|θi)

is called the Hasting ratio. For symmetric case, q(θi|θi+1) = q(θi+1|θi) and
expression of r reduce to r ≡ P(θi+1)/P(θi), which is the Metropolis ratio. We
have the transition probability as

T (θi+1|θi) = α(θi+1|θi)q(θi+1|θi) (1.63)

This shows that eqn(1.63) satisfies the Markovian condition of detailed balance.

Hamiltonian(hybrid) Monte Carlo:

Hamiltonian Monte Carlo(HMC) is a modified form of the classical Metropolis-
Hasting algorithm. It is designed to follow the Hamiltonian dynamics such that
maximum part of the parameter space has been covered. Here with the regu-
lar variables(which in the Hamilonian Monte Carlo language called the position
variable) we introduce an auxiliary field variable (called the momentum variable).
Typically, these auxiliary variables have independent Gaussian distributions. Like
the Metropolis-Hasting algorithm, this method falls into the broad category of
acceptance-rejection algorithm.

If q and p are the position and the momentum variables, we have the Hamil-
tonian equations as
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dqi

dt
= ∂H

∂pi

dpi

dt
= −∂H

∂qi

Where, for HMC we write the Hamiltonian as H(p, q) = U(q) + K(p)

While performing the HMC the properties of the Hamiltonian dynamics should
be satisfied [124], which are

• Reversibility: We use this property to ensure that the target distribution is
left invariant while the updates in the MCMC iterations.

• Law of conservation: While each update we have to ensure that the time
derivative of the Hamiltonian should be zero. Here time variable basically
represents the steps we have taken. In HMC the acceptance probability is
one when the Hamiltonian is conserved.

• Preservation of volume: Following the Hamiltonian equations we obtain the
preservation of volume in (q, p) space. Preservation of the phase-space
volume is that the method explores a parameter space.

In HMC, the canonical distribution over the phase space has the following
probability density function.

P(θ⃗) = 1
Z

e−βH(p,q) (1.64)

Here, β = 1/T is the usual inverse temperature, and Z is the partition function.
Splitting eqn(1.64) in terms of potential and kinetic part, we have,

P(θ⃗) = 1
Z

e−βU(q)e−βK(p) (1.65)

Eqn(1.65) is the indication that both q and p are independent. The motive of
introducing momentum variable is that when both q and p satisfy Hamiltonian
dynamics, the chain will follow elliptical contours, which ensure exploration of a
greater area in parameter space.
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Leapfrog Method:

To solve the differential equations of Hamiltonian dynamics, we discretize the
time variables. The simplest and most efficient way to do this is the Leapfrog
method. If ϵ is the step size, then starting with the state at time zero, we can
compute the steps ϵ, 2ϵ, 3ϵ iteratively. The following are the steps for the leapfrog
method.

qi(t + 1
2ϵ) = qi(t) + 1

2ϵpi(t)
pi(t + ϵ) = pi(t) − ϵqi(t + 1

2ϵ)
qi(t + ϵ) = qi(t + 1

2ϵ) + 1
2ϵpi(t + ϵ)

 (1.66)

Eqn(1.66) summarize the leapfrog method. To change the state to t from t+ ϵ,
we first update the position variable in a half step, starting with qi(t) and the
momentum variable pi(t). Then we update the momentum variable pi(t) with the
full step. Then we update the second half of the position variable with the help
of updated position and momentum variable and the process iterate.

No-U-Turn Hamiltonian Monte Carlo:

HMC requires fixing the step size ϵ and the number of Leapfrog steps L. A
poor choice of either of these parameters will result in poor efficiency of the HMC.
No-U-Turn Hamiltonian Monte Carlo(NUTS) automatically fixes the value of L,
which is an extension of HMC. A small value of L dictates that the particle(selected
point of the parameter space) moving on a random walk. Again, for a larger value
of L the particle will oscillate and waste valuable computational time. NUTS
runs the Hamiltonian evolution equation for a particular case in both forward and
backward directions of time until the condition of U turn condition is satisfied.
NUTS proceeds by creating two particles (q+

n , p+
n ) and (q−

n , p−
n ), representing the

progress in the forward and backward direction of time. This means creating a
binary tree at each step of the iteration [125]. The U turn condition is given by

(q+
n − q−

n ).p−
n < 0

(q+
n − q−

n ).p+
n < 0

In NUTS, we move in both directions of the closed elliptical path of Hamilto-
nian phase space, and when the vector alignment of the momentum variables p+

n
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and p−
n flips it indicates that we have moved half way of the trajectory, and then

we stop.

There are also non-parametric and model independent techniques which can
be used in reconstruction of observational quantities and also in parameter esti-
mation. Here, we attempt to implement one of the non-parametric and model
independent technique called Principal Component Analysis(PCA). In the next
section we discuss different variants of the methodology and then we introduce
the PCA road map in general.

1.8 Application of Principal Component Analy-
sis in Cosmology

Principal Component Analysis(PCA) has the potential to predict the form of cos-
mological quantities in a model-independent, nonparametric manner [126–130]. In
[131] and [132], different variants of PCA techniques are adopted. From the point
of view of the application of PCA, there exist two distinct methodologies. These
methods differ mainly in the way the covariance matrix is calculated, which is the
first step of any PCA technique. One way to implement PCA is by computing
the Fisher matrix, [126–130, 133–139]. One can bin the redshift range and as-
sume a constant value for the quantity to be reconstructed in that redshift bin.
These constant values are the initial parameters of the PCA. The Fisher matrix
quantifies the correlation and uncertainties of these parameters. Therefore, by de-
riving these constants from different bins using PCA, we can reproduce our target
quantity in terms of redshift [130]. Alternatively, a polynomial expression for the
dynamical quantity can be assumed. In this case, the coefficients of the polyno-
mial are the initial parameters for PCA, and the analysis gives the final values of
these coefficients, which eventually gives the dynamical quantity [127].

Principal Component Analysis is independent of any prior biases and is also
helpful in comparing the quality of different datasets [134, 140]. It is an application
of linear algebra, which makes the linearly correlated data points uncorrelated.
The correlated data points of the dataset used in PCA are transformed by rotating
the axes, where the angle of rotation of these axes is such that linear correlations
between data points are the smallest compared to any other orientation. The new
axes are the Principal Component(PC)s of the data points, and these PCs are
orthogonal to each other. In terms of information in the dataset, PCA creates
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a hierarchy of priority between these PCs. The first PC contains information of
the signal the most, and hence has the smallest dispersion of data points about
it. The second PC contains less information than the first PC and therefore
provides a higher dispersion of the data points as compared to the first PC. Higher-
order PCs have the least priority as these correspond to noise and we can drop
them. The reduction of dimensions is a distinctive feature of PCA. Therefore,
the final reconstructed curve in the lower dimension corresponds predominantly
to the signal of the dataset. The PCA method also differs from the regression
algorithms, which cannot distinguish between signal and noise. PCA can omit the
noise-related features and pick the actual trend of the data points [73, 141, 142].
In the following section, we discuss the general formalism of PCA.

1.9 Introductory idea and the algorithm of Prin-
cipal Component Analysis

An interesting method to reconstruct the evolution of cosmological quantities is the
application of non-parametric techniques. Various statistical techniques have been
adopted for non-parametric reconstruction of cosmological quantities [143–148].
Along with PCA, another promising techniques in non-parametric approaches is
the Gaussian process (GP) [149–155], where we can create a multivariate Gaussian
function with a determined mean and corresponding covariance function from any
finite number of collections of random variables.

Principal Component Analysis(PCA) is an application of linear algebra that
has a wide spectrum of applications from neuroscience to computer graphics, in-
cluding almost all the basic science branches. PCA provides the roadmap to re-
duced a complex data-structure to a minimum dimension, also it omits the noise
part of the dataset and reveals new and sometimes hidden structure of the dataset.

1.9.1 The road-map of Principal Component Analysis

The goal is to find out the basis, which can express the dataset in a more meaning-
ful manner. In the process of expressing the dataset in new basis we differentiate
between signal and noise parts of the dataset.
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Initial basis:

We start by expressing the dataset in a basis vector. This choice of initial basis
vector is done on a case-by-case basis. After the selection of the initial basis, each
sample we create is one of the vector points of our dataset.

In linear algebra, the set of orthogonal basis vectors of dimension 1 × m is
written as,

B =


b1

b2
...

bm

 =


1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1

 = I (1.67)

In eqn(1.67) b is a orthogonal basis vector of dimension 1×m. Each component
bi has m number of terms. Eqn(1.67) can be expressed in a concise way as {bi}.
As a first step, we express the whole dataset in terms of {bi}.

Change of basis:

As the second step, we rearrange the basis vectors, which means the reorienta-
tion of the axis of the dataset. In most of the cases, we first place the origin of the
basis vector in the mean of the dataset. The final basis vector should represent
the dataset in a more expressive manner, which means expressing the significant
features of the dataset. In matrix form, we can express the dataset in U, in which
each column represents one sample of the dataset. If the total number of basis
is m, as shown in eqn(1.67) and n is the number of samples collected, then the
dimension of U will be m × n.

If V is the final dataset which is related to the initial dataset by linear trans-
formation then

PU = V (1.68)

Eqn(1.68) is the equation of rotation, which transform U to the basis vector
V. If pi are the rows of P, and ui and vi are the columns of U and V respectively,
we will get
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vi =


p1 · ui

p2 · ui

...
pm · ui

 (1.69)

We can say from eqn(1.69) that each element of V is a projection of pi to ui.
Therefore, vi is a projection on to the basis of {p1, p2, . . . , pm}. We can say, P
are the new form of basis which transforms the data matrix X to the newdata
matrix Y.

Covariance Matrix :

Reduction of redundant part of the dataset is the objective of PCA. If two
measurements are given as,

A = {a1, a2, . . . , an} B = {b1, b2, . . . , bn}

n is the total number of sample collected. We can write the variance and covariance
as

σ2
A = 1

n

∑
i

a2
i

σ2
B = 1

n

∑
i

b2
i

σ2
AB = 1

n

∑
i

aibi

The absolute magnitude of the covariance matrix is a measure of degree of
redundancy. The covariance matrix quantifies the linear relationship of the two
variables A and B. A large positive value of covariance indicates a positively cor-
related value, and similarly a negative covariance value indicates anticorrelation.
For a large numbers of variables, the dimension of covariance matrix increases
accordingly. Therefore, for two uncorrelated variables A and B we have σAB = 0,
and if σAB = σA then A = B.

Now if we generalize the PCA data-matrix X from two one-dimensional data-
variables A and B to an arbitrary m number of variables then this m × n matrix
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X is given as

X =


x1

x2

. . .

xm

 (1.70)

In eqn(1.70) each row of the data-matrix X represents all the measurements
correspond to a particular basis vector, while each column of the data-matrix
corresponds to the value of all the variables to a particular trial. The general
definition of the covariance matrix can be given as

CX = 1
n

XXT (1.71)

The matrix CX is a symmetric matrix, with dimension m × m. The diagonal
entries of CX are the variance of the corresponding basis variable and the off-
diagonal entries are the covariance. The covariance value gives the idea about
the redundancy and noise of the dataset. The covariance matrix contains all the
covariance pairs of the PCA dataset; the covariance matrix is at the heart of the
PCA methodology.

Let us assume that final data matrix is given by Y and the corresponding
covariance matrix is denoted as CY. The desired form of P should be that for
which the co-variance matrix CY has the following properties

• All off-diagonal entries of CY will be zero, so the linear correlation of the
pca data-matrix is omitted.

• PCA creating a hierarchy of priority and each successive dimension or the
basis vector in the data-matrix Y rank-ordered according to the variance.

In the matrix form, if P is the matrix which can diagonalize CX then, we can
write,

CY = PCXPT (1.72)

There are many ways to diagonalize the matrix CY. Here we describe the
decomposition with the help of eigenvector matrix to diagonalize CY. The result-
ing ordered set of the vector p is called principal components [156]. In the case
of eigenvector decomposition, we first find the eigenvector (E) of the covariance
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matrix (CX) of initial basis. The orthonormality of the basis vector ensures the
existence of the matrix E . From eqn(1.72) we can write P ≡ ET .

The salient assumptions of PCA: The following are the assumptions in the
algorithm of PCA.

I) Linearity:
PCA only can break the linear correlation of the data-matrix. This assump-
tion introduces the eigenvector matrix as the sole candidate for the rotational
matrix P.

II) Vibrant features attached to larger variance:
This assumption restrict PCA to the set of statistical techniques in which
application and implementation is possible only for the low noise dataset,
that is where Signal to Noise Ratio(SNR) is high.

III) Principal Components are orthogonal to each other:
This assumption implies the use of linear algebra to decompose the error-
matrix or covariance matrix and differentiate in between signal and noise.

In the following chapter, we discuss a special variant of PCA methodology that
we develop and its implementation in different cosmological datasets. We focus
mainly on dark energy equation of state parameter reconstruction. The method is
however a general method which can be applied to different datasets to determine
different parameters.
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Chapter 2

Reconstruction using Principal
Component Analysis

This chapter is based on "Reconstruction of late time cosmology using the Principal
Component Analysis; Ranbir Sharma, Ankan Mukherjee, H K Jassal; Eur. Phys.
J. Plus (2022) 137:219; [arXiv:2004.01393]

In this chapter we discuss the reconstruction of Hubble parameter H(z), dis-
tance modulus µ(z) from Principal Component Analysis (PCA). We introduce
two approaches in the reconstruction of the late time cosmological quantities and
incorporate the correlation test calculation(CCC) to fix the number of parameter
of final reconstruction of PCA. We show that the combination of PCA with CCC
reduces the biases in the PCA methodology. The only input in the (PCA + CCC)
technique is a tabulated dataset of the dependent variable or the observable. We
will get the functional form of the observable in terms of independent variable as
an output.

2.1 Methodology of reconstruction through Prin-
cipal Component Analysis

We begin with an initial basis, gi = f(x)i−1, where i = 1, 2, ...., N through which
we can express the quantity to be reconstructed as,

ξ(x) =
N∑

i=1
bif(x)(i−1) (2.1)
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The initial basis can be written in matrix form as, G = (f1(x), f2(x), ..., fN(x)).
Coefficients bi create a coefficient space of dimension N . Each point in the coef-
ficient space gives a realization of ξ(x), including a constant ξ(x). PCA modifies
the coefficient space and chooses a single realization. One can consider different
kinds of functions as well as different combinations of polynomials as initial bases.
Choosing one initial basis function over the other is done by correlation coefficient
calculation described below.

The Pearson correlation coefficient for two parameters A and B is given by,

ρ = Cov(A, B)
σAσB

(2.2)

where ρ ∈ [−1, 1]. For linearly uncorrelated variables, the correlation coefficient,
ρ = 0. An exact correlation is identified by ρ = −1 or ρ = +1. The Spearman
rank coefficient is, in turn, the Pearson correlation coefficient of the ranks of the
parameters; rank being the value assigned to a set of objects and it determines
the relation of every object in the set with the rest of them. We mark the highest
numeric value of a variable A as ranked 1, the second-highest numeric value of
the variable as ranked 2 and so on. A similar ranking is done for the ranks of the
parameter B.

To obtain the coefficients for the correlation analysis, we divide the parameter
space into n patches. We therefore have n values associated with one coefficient
of the polynomial; this is the number of columns of the coefficients matrix Y,
(eqn(2.6)). After ranking all the values of A and B, we obtain the table for
the ranks of A and B. We then proceed to compute the Spearman correlation
coefficient(r), which is the Pearson Correlation coefficient of rank of A and B.
Like in the case of the Pearson Correlation coefficients, r ∈ [−1, 1]. Computing
Kendall correlation coefficient(τ) gives a prescription to calculate the total number
of concordant and dis-concordant pairs from the values of the variables A and B

[157].

If we pick two pairs of points from the table of A and B, say (ai, bi) and (aj, bj),
for i ̸= j if ai > aj when bi > bj or if ai < aj when bi < bj; then that pair of points
are said to be in concordance with each other. On the other hand, for i ̸= j,
ai > aj when bi < bj or if ai < aj when bi > bj, then these two pairs are called
to be in dis-concordance with each other. Every concordant pair is scored +1 and
every dis-concordant pair is scored −1. The Kendall correlation coefficients are
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defined as,
τ = actual score

maximum possible score (2.3)

maximum possible score = n(n − 1)
2

Again, if Ncp is the number of concordance pair and Ndp is the number of dis-
concordance pair

actual score = Ncp − Ndp

Hence the expression of τ is,

τ = Ncp − Ndp

n(n − 1)/2 (2.4)

where, τ ∈ [−1, 1].

We perform the correlation coefficients calculation twice. The first time is to
select the number of terms in the initial polynomial N(eqn(2.1)), and second time
to select the number of terms in the final polynomial, (eqn(2.8)). We select that
value of N for which the Pearson Correlation Coefficient is higher than the Spear-
man and Kendall Correlation coefficients. We use the R-package for statistical
computing to calculate the correlation coefficients [158].

Values of linear and non-linear correlations depend on the quantity we want
to reconstruct. They are also sensitive towards the data-set that we use in re-
construction. For instance, reconstruction of a fast varying function, which has
non-zero higher order derivatives will introduce more non-linear contributions to
the correlation of bi than linear contributions, and we need a greater set of initial
basis, which means a higher value of N . We take different values of N and check
the linear and non-linear correlation coefficients to fix the value of N . Though a
large value would help, we can not, however, fix N to any arbitrarily significant
number as it makes the analysis computationally expensive.

To compute the covariance matrix, we define the coefficient matrix (Y) by
selecting different patches from the coefficient space, where n is the number of
patches that we have taken into account and N is the total number of initial bases
defined in eqn(2.1); therefore, Y is a matrix of dimension N × n and b(N)

n being
the value of Nth coefficient in the nth patch.

In the present analysis, we have taken n to be the order of 103. We estimate
the best-fit values of the coefficients at each patch by χ2 minimization, where χ2
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Figure 2.1: Figure gives the visual representation of the coefficient space created
by the repetitive use of χ2 in different patches, before the application of PCA.
Different axis represents different coefficient axis. This is the representation of the
data-matrix Y . Here every axis is perpendicular to each other.

is defined as
χ2 =

k∑
j=1

(ξ(x)data − ξ({bi}, x))2

σ2
j

(2.5)

k is the total number of points in the datasets. The coefficient space after the
application of repetitive χ2 can be visually represented as shown in fig(2.1). If the
observational dataset have significant non-diagonal elements in the data covariance
matrix(Cdata), we have to incorporate Cdata in eqn(2.5), as χ2 = ∆T C−1

data∆, where
∆ = ξ(x)data − ξ({bi}, x) and x, ξ(x)data vary for each data-points. Calculation of
χ2 in all the patches gives us the variation of the N coefficients and finally gives n

number of points in the coefficient space, over which we apply PCA. We calculate
the covariance matrix and correlations of the coefficients for these n points. In
this analysis, each patch contains the origin of the multi-dimensional coefficient
space.

The covariance matrix of the coefficients, C is written as,

C = 1
n

YYT (2.6)

Eigenvector matrix, E of this covariance matrix will rotate the initial basis of
the coefficient space to a position where the patch-points will be uncorrelated. We
organize the eigenvectors in the eigenvector matrix E in the increasing order of
eigenvalues. Eigenvalues of the Covariance matrix quantifies the error associated
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Figure 2.2: Figure gives the visual representation of rotation of the axis of co-
efficient space due to application of PCA. The red and brown axes are the final
principal components for the data-set Y . Here every axis is perpendicular to each
other.

with each principal component [126, 130, 159, 160].

If U = (u1(x), u2(x), ..., uN(x)) the final basis is given by,

U = GE (2.7)

The final reconstructed form of ξ(x) is,

ξ(x) =
M∑

i=1
βiui(x) (2.8)

where M ≤ N and the βis are the uncorrelated coefficients associated with the
final basis. The coefficients βi are re-calculated by using χ2 minimization, for
the same n patches considered earlier to create initial coefficient matrix eqn(2.6).
The value of M can be determined by correlation coefficient calculation discussed
above. As PCA only breaks the linear correlation, we select M for which PCA is
able to break Pearson correlation coefficient to the largest extent. As discussed
in the sec(1.9) PCA is an application of linear algebra, and to break the linear
correlation, PCA rotates the initial basis axes. The coefficient space view of the
rotation and the final orientation of the axes can be visualized as shown in the
fig(2.2). Eigenvalues of the covariance matrix (e1, e2, e3, ..., eM) indicate how well
PCA can pick the best patch point in the coefficient space. We look for the lowest
number of final basis which can break the linear correlation to the greatest extent.
We can start with smaller value of N which eventually influence the value of M ,
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but it will pose the risk of losing essential features from PCA data-set.

2.2 Reconstruction of dark energy equation of
state

The Hubble parameter (H(z)) for a spatially flat Universe, composed of dark
energy and non-relativistic matter is given by,

H2(z) = H2
0 [Ωm(1 + z)3 + Ωxe3

∫ z

0
1+w(z′)

1+z′ dz′
] (2.9)

Here we have assumed that the contributions to the energy density is only due
to the non-relativistic dark matter and dark energy. The density parameters for
non-relativistic matter and dark energy are given by Ωm and Ωx. The quantity
H0 denotes the present-day value of the Hubble parameter, namely the Hubble
constant and w(z) is the dark energy equation of state parameter (w(z)).

We assume no interaction between matter and dark energy in the present
analysis. In the following subsections, we discuss the derived and direct approach
to reconstruct w(z) using PCA.

2.2.1 Derived Approach

The derived approach is a two-step process in the reconstruction of dark energy
Equation of State(EoS). In the first step, we reconstruct the observable, namely the
Hubble parameter using the H(z) data and the distance modulus (µ(z)) using the
type Ia supernova data. Subsequently, we reconstruct w(z) as a derived quantity
from these two different physical quantities. Similar sequence of reconstructions
have already been discussed in [126, 128, 130, 140]. Differentiating eqn(3.2) with
redshift z as the argument and rearranging the terms we can express w(z) as,

w(z) = 3H2 − 2(1 + z)HH ′

3H2
0 (1 + z)3ΩM − 3H2 (2.10)

Here, H ′ is the derivative of Hubble parameter with respect to redshift z. Since
w(z) is related to H(z) through eqn(2.10) by the zeroth and the first order differ-
entiation of H(z), the small difference in the actual and the reconstructed curve
of H(z) is amplified by the H ′ term. This process of amplification of the deviation
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Figure 2.3: The plots in the figure show the reconstructed reduced Hubble param-
eter h(z) for simulated data-set along with their residues. δh(z) are the residues
in the Hubble parameter. Residues are calculated as the difference between PCA
reconstruction and the corresponding h(z) calculated from the cosmological con-
stant model. The left column is for the independent variable (1 − a), the middle
column is for a and the right column is for z. For the blue curves, there is no
reduction, that is, M = N = 7. The green and red curves are obtained by the
reduction of the highest and second-highest Principal Components, respectively.
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Figure 2.4: The plots in the figure show the reconstructed distance modulus µ(z)
for simulated data-set along with their residues. δµ(z) are the residues in the
distance modulus. Residues are calculated as the difference between PCA recon-
struction and the corresponding µ(z) calculated from the cosmological constant
model. The left column is for the independent variable (1−a), the middle column
is for a and the right column is for z. For the blue curves, there is no reduction,
that is, M = N = 7. The green and red curves are obtained by the reduction of
the highest and second-highest Principal Components, respectively.
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from actual nature becomes more severe with subsequent higher-order differenti-
ation of the reconstructed quantity.

The luminosity distance dL(z) is given by,

dL(z) = c

H0
(1 + z)

∫ z

0
dH(z′)dz′ (2.11)

where dH , in terms of eqn(3.2) is,

dH(z) =
(

Ωm(1 + z)3 + Ωxe
3
∫ z

0
(1+w(z′))dz′

(1+z′)

)−1/2

(2.12)

and is related to the distance modulus as

µ(z) = 5 log
(

dL

1Mpc

)
+ 25 (2.13)

which is the dependent-variable in the type Ia supernovae data. From PCA,
we determine the form of µ(z) directly from data and then from eqn(2.11) and
eqn(2.12) find the expression of dL. From eqn(2.13), we trace back to eqn(2.12)
and find an expression which gives the w(z) in terms of the distance modulus.

Since D(z) = (H0/c)(1 + z)−1dL(z), the equation of state parameter is given
by

w(z) = 2(1 + z)D′′ + 3D′

3D′3Ωm(1 + z)3 − 3D′ (2.14)

The second order derivative in eqn(2.14) makes the reconstruction of w(z) through
that of distance modulus unstable. For instance, if the reconstruction fails to pick
some of the minute difference in the observational curve, then that difference will
be amplified twice in the final calculation of the EoS. Therefore, the reconstruction
of µ(z) should be more accurate in picking up approximately all the features of
w(z) which may be hidden within the supernovae data [115, 127, 161, 162].

In the reconstruction of H(z) and µ(z), we begin with polynomial expansions
in terms of the different variables z, a and (1 − a) where z is the red-shift and a

is the scale factor. The analysis is carried out with seven terms in initial basis,
which means creating a coefficient space of N = 7 dimensions (eqn(2.1)). We
test our algorithm on a simulated data-set of ΛCDM cosmology. We generate
the data-points of H(z) and µ(z) for w(z) = −1 and the values of cosmological
parameters Ωm and H0 are fixed at Planck 2018 values [163]. Fig(2.5) and table
2.2 show that our algorithm can predict the simulated data.
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Figure 2.5: The plots in this figure show reconstruction of w(z) for the simulated
data. Red, blue and green curves are for the reconstruction with no reduction
and with reduction of one and two terms respectively. In these curves, the value
of Ωm is fixed at 0.364, the value of Ωm for which the reconstructed curve with
no reduction and reduction of one term of the initial basis are the closest to the
underlying w(z) = −1 for most of the low-redshift range. In the figure there are
three patches; grey, yellow and brown, corresponding to all the reconstruction with
Ωm vary from 0.1 to 0.5 with no reduction of final terms and with reduction of
one and two terms respectively. Here we fix the reduced Hubble constant at the
value predicted by PCA for the simulated data-set, h0 = 0.674. The black line is
for comparison and it corresponds to w(z) = −1.

2.2.2 Direct Approach

For the direct reconstruction approach, we begin with a polynomial form of w(z)
itself. In eqn(3.2), the quantity w(z) is in the exponent, and considering a polyno-
mial form for w(z) implies addition of some non-linear components to our linear
analysis in coefficient space. Again we fix the dimension of the initial basis N by
computing the correlation coefficients. Here we need to balance available com-
putational power as well as the non-linearity we introduce, with the accuracy we
demand to choose the value of N .

In this case too the independent variables are taken to be (1−a), a and z. Here
we introduce non-linear terms in the initial coefficients of PCA; here correlation

44



1.0 1.5 2.0 2.5
z

0.5

1.0

1.5

2.0

h(
z)

0.25 0.50 0.75 1.00 1.25
z

36

38

40

42

44

46

48

(z)

Figure 2.6: The plots show the reconstruction of h(z) and µ(z) from the simulated
Hubble parameter and supernovae data-set with allowed range wCDM cosmology
with the initial basis function (1−a). The brown patch is obtained for the variation
of w and Ωm in the range [-1.5 to -0.5] and [0.2 to 0.4] for wCDM cosmology. Solid
blue, green and red line are for PCA reconstruction with no-reduction and with
one and two terms respectively.
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Figure 2.7: Plots of w(z) in the direct approach with simulated data-sets. The
left panels are for simulated data with w(z) = −1 and the right panels are for
w(z) = − tanh (1/z). The first row is the reconstruction by variable (1 − a),
second and the third row is the reconstruction by variable a and z, respectively.
Black solid line corresponds to the minimum χ2 and the red shaded region is
the reconstruction using the PCA algorithm allowing a deviation of 0.3 from the
minimum χ2 curve.
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coefficients calculation is not of assistance as in the case of derived approach 2.2.1
to select M . Due to the risk of compromising different features of the data-set
and also due to the complex dynamics of correlation coefficients, we do not reduce
any terms in the final basis (N = M) of the direct approach.

To test the effectiveness of both the approaches described above, we first work
with simulated data-sets for specific models. We create simulated data-points for
w = −1 (ΛCDM) and w(z) = − tanh (1/z) [131] where the values of Ωm and
H0 are fixed at Planck 2018 values [163]. We use eqn(3.2) to calculate H(z) at
the same redshift value as in the real Hubble parameter vs redshift data-set [60–
64]. Similarly, the distance modulus data points are simulated using equations
(2.11),(2.12) and (2.13). Here we evaluate distance modulus µ(z) at the same
redshift values as are there in type Ia supernovae (SNe) Pantheon data-set [80].
We later utilize the observational measurements of Hubble parameter at different
redshift [60–64] and the distance modulus measurement of type Ia supernovae
(SNe) data [80].

2.3 Reconstruction of late time cosmology by
Principal Component Analysis

2.3.1 Correlation table

The correlation coefficients of the first three coefficients of the polynomial ex-
pression eqn(2.1) and eqn(2.8) of the reconstructed quantity is shown in table
3.1. PCA breaks the linear correlation of the coefficients, which is evident from
table[3.1]. Presence of the non-linear correlation in the initial coefficients com-
plicates the process. As the first three terms of the ultimate expression of the
reconstructed quantity contains the dominant trend of the data-points, we only
mention the correlation coefficients only for the first three parameters. The recon-
struction which can break Pearson Correlation to a greater extent as well as have
lesser Spearman and Kendall Correlation coefficients is selected. We can see from
table 3.1 that the reconstruction by (1 − a), breaks the correlation to a greater
extent than in the case of a and z. Variation of correlation coefficients before
and after the application of PCA is similar for both the simulated as well as the
real data-set. Difference of Pearson correlation coefficients for simulated and real
data-set in case of (1 − a) and a is of the order of 10−6 or less. For the variable z,
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the difference of Pearson correlation coefficients for real and simulated data is of
the order of 10−4 or less.

2.3.2 Derived approach

We first reconstruct H(z) and µ(z) using simulated dataset. The reconstruction
with simulated data is a check on the viability of the method. Fig (2.3, 2.4)
shows the reconstructed curves of the reduced Hubble parameter h(z) and distance
modulus µ(z) obtained for the simulated data. The reconstructed curves are for
three different reconstruction variables (1 − a), the scale factor a and the redshift
z. It is clear from the plot 2.4, 2.3 that the PCA reconstruction produces a
consistent result when (1 − a) is chosen as the independent variable. We also plot
the difference between the fiducial model and the reconstructed curves along for
a comparison. The plots of the residues clearly show that the reconstruction of
both h(z) and µ(z) validates the reconstruction appraoch. The number of terms
on the initial basis is fixed at N = 7. We also check our results for N = 8 and
N = 10, and find that the results do not vary significantly. Here, we present the
reconstruction curves from the variable z only for the simulated data-set. Since in
this case, we do not achieve a viable reconstruction, we do not analyse this further
for real data.

From table 2.2 we see that both (1 − a) and a variables are able to predict
the value of h0 closer to the assumed value of h0 in simulated data. We calculate
the error in the prediction of h0 from the Covariance matrix of the PCA data-set,
where we give a cut off χ2 value, χ2

cutoff to mask out some patch points which lead
to under-fitting [126, 164, 165].

Further, the correlation coefficient calculation suggests that the best choice of
number of terms for variable (1 − a) in the final polynomial(2.8) is M = N − 1,
reduction of one term from the initial polynomial expression(2.1). For variable a

and z, it is M = N , hence there is no reduction of terms.

Fig(2.5) shows that the variable (1−a) reproduces w = −1 behaviour when the
simulated data is used. Shaded region of fig(2.5) represents all possible w(z) vs z

curves produced by PCA for simulated data with a variation of Ωm from 0.1 to 0.5.
Ωm is one of the free parameters in our methodology, and the methodology does not
pick any one curve over another. The polynomial expression of H(z) in (1 − a) is
effectively an infinite series in terms of z. As the independent variable of the data-
sets is z, therefore, (1−a) and a can capture more features than the initial basis z.
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Basis State Pearson Spearman Kendall

(1-a)

[b12, b13, b23] [−0.99, 0.92, −0.96] [−0.52, 0.55, −0.94] [−0.45, 0.52, −0.85]

[β12, β13, β23] [0.94, 0.219, 0.506] [0.92, 0.69, 0.63] [0.845, 0.69, 0.56]

a

[b12, b13, b23] [−0.98, 0.93, −0.98] [−0.68, 0.60, −0.87] [−0.62, 0.53, −0.75]

[β12, β13, β23] [−0.99, 0.99, 1] [−0.30, −0.32, −0.99] [−0.21, −0.23, 0.97]

z

[b12, b13, b23] [−0.92, 0.64, −0.86] [−0.31, 0.35, −0.72] [−0.23, 0.35, −0.62]

[β12, β13, β23] [1, −0.96, −0.96] [0.999, −0.01, −0.01] [0.998, 0.09, 0.08]

Table 2.1: This table shows Pearson, Spearman and Kendall correlation coeffi-
cients between the coefficients of the first three terms of the series expansion of
the reconstructed quantity for the reconstruction variables (1 − a), a and z re-
spectively. This is in the derived approach for simulated Hubble parameter data.
Here, bij is the correlation coefficients of the initial coefficients bi and bj, whereas
βij are the correlation coefficients of the final coefficients βi and βj. The first,
third and fifth rows (b12, b13, b23), in the table, shows the correlation coefficients
of the first three coefficients of the initial polynomial we start with, viz b1,b2 and
b3 with each other, eqn(2.1) for the basis variables (1 − a), a and z respectively.
The correlation coefficients of the first three coefficients of the final polynomial,
viz β1, β2 and β3, eqn(2.8) given by the PCA algorithm is given in the second,
fourth, sixth rows ( β12, β13, β23) for the basis variables (1 − a), a and z respec-
tively. Since the correlation matrix is symmetric, here we only mention the upper
diagonal terms. All the diagonal terms bii and βii are unity.
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Figure 2.8: The plots in the figure show the reconstructed reduced Hubble param-
eter h(z) for observed data-sets along with their residues. δµ(z) are the residue
in the distance modulus respectively. Residues are calculated as the difference
between PCA reconstruction and the corresponding h(z) with the observational
data. The left column is for the independent variable (1−a), and the right column
is for a. For the blue curves, there is no reduction, that is, M = N = 7. The green
and red curves are obtained by the reduction of the highest and second-highest
Principal Components, respectively.
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Figure 2.9: The plots in the figure show the reconstructed distance modulus µ(z)
for observed data-sets along with their residues. δµ(z) represents the residue in
the distance modulus. Residues are calculated as the difference between PCA
reconstruction and the corresponding µ(z) from the observational data. The left
column is for the independent variable (1 − a), and the right column is for a. For
the blue curves, there is no reduction, that is, M = N = 7. The green and red
curves are obtained by the reduction of the highest and second-highest Principal
Components, respectively.
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Figure 2.10: The plots show the reconstruction of h(z) and µ(z) from the observed
Hubble parameter and supernovae data-set with allowed range wCDM cosmology
with the initial basis function (1−a). The brown patch is obtained for the variation
of w and Ωm in the range [-1.5 to -0.5] and [0.2 to 0.4] for wCDM cosmology. Solid
blue, green and red line are for PCA reconstruction with no-reduction and with
one and two terms respectively.
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Figure 2.11: The figure shows the reconstructed w(z) curves, obtained in the
derived approach using real Hubble parameter data, with variables (1 − a) and a.
Top figure is for (1 − a) and bottom one if for a. Each represents a reconstruction
with a fixed value of Ωm. Going from blue to the green color variation the value of
Ωm varies from 0.1 to 0.4, in a step of 0.015. We fix the reduced Hubble constant
h0 at a value obtained from the PCA algorithm, as mentioned in table 2.2.
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Figure 2.12: top and bottom plots are for real hubble parameter and supernovae
data-set respectively. For both the plot Brown, yellow, grey bands are for Ωm =
0.2, 0.3, 0.4 respectively. In the top plot blue thick line is for the z vs w(z) curve
chosen by PCA. Both the plots are for (1−a) and we vary w in the range [−2, 0.6].
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Reduced Hubble constant h0

Variable Simulated Observed

(1 − a) 0.674 ± 0.118 0.784 ± 0.01157

a 0.664 ± 0.443 0.739 ± 0.103

Table 2.2: The value of reduced Hubble constant estimated for the simulated as
well as real date-set using the derived approach. For generation of the simulated
data, h0 is fixed at 0.685. Error associated with the estimation of reduced Hubble
constant are also given.

When the observational data-set is used in this polynomial expression, it indicates
a time evolving w(z), fig(2.11). The other two variables, namely a and z, could
not successfully reproduce the w = −1 nature while using the simulated data. In
the case of simulated supernovae data-set we see that all the w(z) reconstructions
for h0 = 0.685 and Ωm varying from 0.1 to 0.4 follows a similar trend after we
choose a specific basis function. For all the three reconstruction variable w(z) vs
z curves fluctuate between phantom and non-phantom regime.

We now construct the equation of state parameter w(z) from the reconstructed
H(z) and µ(z). It is clear from fig(2.5) that the reconstruction by derived approach
for the variable (1 − a) successfully reproduces the w(z) assumed earlier. On the
other hand, the reconstruction variable a and z do not reproduce the w(z) which
has been assumed to simulate the data.

Using the reconstructed analytic form of H(z) from derived approach, we es-
timate the present day value of the Hubble parameter H0. The EoS parameter
w(z) calculated by the derived approach has the free parameter Ωm, which we
vary in the reconstructed w(z) curves, fig(2.11). We present the estimated values
of H0, scaled by 100 km sec−1 Mpc−1, for the analysis with simulated and the
observational data in table 2.2. We also calculate the present day value of w(z).

We calculate the range of w(z) from eqn(3.2). We assume w(z) to be con-
stant (w) and find out the allowed range of w for the range of h(z) determined by
PCA. This range of w(z) is dependent on Ωm and we do the analysis for Ωm =
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Variable PCA ΛCDM wCDM Planck(ΛCDM)

(1-a) 78.4001 ± 1.157 67.94 ± 5.15 68.07 ± 1.63 67.9 ± 2.6
(Plank+WP+ (Plank+WP+ (EE+lowE)
SDSS+SNLS) WP+JLA)

a 73.9271 ± 10.3 69.85 ± 4.44 68.19 ± 1.33 67.39 ± 0.54
(Plank+WP (WMAP9+JLA (TT,TE,EE
+JLA) +BAO) +lowE+lensing)

Table 2.3: This is the comparison table of the values of Hubble constant in stan-
dard units (km s−1 Mpc−1), obtained in the present analysis (PCA) and obtained
from other model-dependent estimations.

0.2, 0.3, 0.4, as shown in fig(2.12). The allowed range of w for Ωm = 0.2, 0.3, 0.4 are
[−2.73, −0.71], [−3.33, −0.71] and [−4.14, −0.91] respectively. We do the analysis
for (1 − a) as it is the selected variable by correlation test calculation. For super-
novae data-set we find out the allowed range of w(z), which lies within the error bar
of the data-set by considering a polynomial with variable (1−a). Range of w(0) for
Ωm = 0.2, 0.3, 0.4 are [−1.2112, −0.7431], [−1.224, −0.751] and [−1.215, −0.7496]
respectively.

Fig(2.6) indicates that the PCA reconstructions of h(z) is well within the range
of wCDM paramters for the simulated data. We vary Ωm and equation of state
parameter in wCDM cosmology (w) in the range [0.2, 0.4] and [−1.5, − 0.5]
respectively. The ability of our methodology to reconstruct h(z) and µ(z) reflects
in the reconstruction of w(z) for the simulated data.

To quantify the efficiency of our algorithm in picking up the underlying theory,
we create an error function by the method of interpolation with the errors of obser-
vational data and use χ2 with a data-set constructed from the final reconstruction
curve of PCA. For this testing purpose we assume w(z) and Ωm as parameters,
therefore constants for a particular data-set produced from PCA reconstruction.
We find out that PCA reconstruction for both simulated and observed data-set, if
we take ΛCDM as our model, the value Ωm = 0.3 and w(z) = −1 lies well within
the 1σ range.

We now do the same analysis using observed data. Fig(2.8, 2.9) shows the
reconstructed curves of reduced Hubble parameter h(z) and µ(z) obtained for
the real Hubble parameter and supernovae data-sets. It is evident from the plot
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that PCA reconstruction with (1 − a) variable produces consistent results for
observational data-set also. Fig(2.11) shows the final reconstruction of w(z) from
the observed Hubble parameter data-set with the reduced Hubble constant fixed
at the value predicted by PCA. Reconstruction of the functional form of h(z)
by choosing a point from coefficient space (eqn(2.8)) is the first step of derived
approach, which eventually gives us the value of h0 from the same point. We
do not vary the value of h0 in the w(z) reconstruction curves to ensure that both
h(z) and h0 are from the same point of coefficient space. The values obtained from
the observational data-set are higher as compared to the other model-dependent
estimations. Table 2.3 presents the values of h0, obtained, along with model-
dependent estimations of h0 from other studies [163, 166, 167] for a comparison.

2.3.3 Direct approach

For the direct approach, we have considered only the Hubble parameter data-set.
Reconstruction is carried out for all the three independent variables (1−a), a and
z. As in the case of derived approach, we first use simulated data-set. The results
obtained for the simulated data-sets are shown in fig(2.7). In this case, all three
independent variables reproduce the nature of the equation of state parameter. In
the direct approach, using the correlation test calculation, we find N = 5 to be
the best choice for the number of terms in the initial polynomial eqn(2.1). As the
number of terms on initial basis is comparatively low and we assume M = N as
our final basis number, the uncertainties which PCA poses in predicting the best
patch-point is relatively low. The tiny non-linearity we introduced in the H(z) by
considering a polynomial form of w(z) will be amplified in the case of supernovae
data-set. Hence it makes the reconstruction much more unstable in the case of
reconstruction of w(z) through distance modulus calculation.

For the observed Hubble parameter data-set too we reproduce the curves using
the same algorithm. In the case of direct approach, PCA cannot predict the value
of H0 and Ωm; therefore, these two parameters have to be fixed prior to the
analysis.

For real data-set, all the w(z) plots for the variation of Ωm from 0.2 to 0.4
after fixing reduced Hubble constant at h0 = 0.685 have the similar trend. We
also check the w(z) plot for the variation of h0 from 0.6 to 0.8 after fixing Ωm

at 0.30. Direct approach is more susceptible to model biasing as in the case of
direct approach we have to select the value of Ωm and h0. Correlation coefficient
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calculation also indicates that derived approach have more potential of breaking
the correlations of the coefficients of the polynomial than the direct approach.

In the direct approach, though the reconstruction of the fiducial w(z) is con-
sistent (fig(2.7)), the correlation test calculation for the direct approach shows
that the algorithm is not able to break the Pearson Correlation as it breaks down
in the case of the derived approach. In the case of direct approach, for (1 − a)
reconstruction, the magnitude of Pearson correlation coefficients decreases after
applying PCA but changes signs for the first two principal components, whereas
Kendall and Spearman correlation coefficient of (1−a) for these two principal com-
ponents assume higher negative value. Again, for reconstruction by the variable
a, the Pearson Correlation decreases, though both Spearman and Kendall Corre-
lation coefficients decrease in magnitude, it changes sign for the first two principal
components. For the variable z, up to the first two principal components, Pearson
correlation coefficients decrease, but Spearman and Kendall correlation coefficients
assume large negative value. From the correlation coefficient calculation the de-
rived approach is selected over the direct approach and selects the reconstruction
by the independent variable (1 − a) as compared to variables a and z.

2.4 Summary

In this chapter, we reconstruct late-time cosmology using the Principal Component
Analysis, which is a model independent and non-parametric approach. There are
very few prior assumptions about nature and distribution of different components
contributing to the energy of the Universe. Observational Hubble parameter and
distance modulus measurements of type Ia supernovae are the observable quan-
tities that are taken into account in the present analysis. We proceed in two
different ways to do the reconstruction. The first one is a derived approach where
the observable quantities are reconstructed from the data using PCA, and then
w(z) is obtained from the reconstructed quantities using Friedman equation. The
other approach is a direct one. In this case, w(z) is reconstructed directly from the
observational data using PCA without any intermediate reconstruction. Based on
the efficiency of the method to break the correlation among the coefficients we can
select one reconstruction curve over the other. We achieve a better reconstruction
in the derived approach as compared to the direct approach, even though the di-
rect approach has lesser uncertainties than the derived approach in predicting the
patch of the best coefficient point from the N dimensional coefficient space due to
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the lower number of initial and final bases.

We have adopted the simulated as well as observed data-sets for our analysis.
Simulated data-sets are used to check the efficiency. For the reconstruction of
w(z) the analysis produces consistent result only for the Hubble parameter data.
Though the reconstruction of µ(z) through the derived approach is consistent
and reconstruction of µ(z) is within the error bars of the data-set, the result for
the reconstructed w(z) deviates drastically from the physically acceptable range.
The increase in the order of differentiation to connect w(z) with µ(z) is a possible
reason for this inconsistency. Here we are focusing on the w(z) reconstruction only
from H(z) − z data-set. The reconstructed w(z) by the variable (1 − a), obtained
in the derived approach for H(z)−z data-set shows a phantom like nature, that is
w(z) < −1 at present and a non-phantom nature in the past for most of the values
of Ωm and h0. In the case of direct approach, w(z) curves show oscillations in the
phantom and non-phantom regime. The calculation of the correlation coefficients
clearly shows a preference for the derived approach. PCA lacks the efficiency of
breaking the correlation in the initial basis in case of the direct approach. This
probably causes the inconsistency between the results obtained in the derived and
direct approaches.

The other important factor is the variable of reconstruction. In the present
analysis, we have adopted three different reconstruction variables, namely (1 − a),
a and z, in both direct and derived approaches. Values of correlation coefficients
after PCA select the reconstruction variable (1−a) over the other two. We should
emphasize the result obtained for variable (1 − a) by derived approach. Since we
have a finite number of terms in the initial polynomial, due to the constraints set
by computational power, to some extent the results depends on the assumption
of polynomial expression of the observables. One of our future plans is to develop
an algorithm which can inclusively select the most suitable initial basis form for
a fix computational power and a given observational data-set. The reconstructed
curves, obtained for (1 − a), show that w(z) shows a phantom nature at present
epoch and it was in non-phantom nature in the past. The model-independent
reconstruction indicates an evolution of the dark energy equation of state param-
eter.
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Chapter 3

Principal Component Analysis
and Markov Chain Monte Carlo
Method- A combined analysis

In this chapter, we show that a combination of Principal Component Analysis
(PCA) and Markov Chain Monte Carlo (MCMC) is a competent method to de-
termine cosmological parameters. We use the No U Turn Sampler (NUTS) to run
the MCMC chains in the model parameter space. We test our methodology on
simulated data and subsequently apply the same to the observed dataset. Assum-
ing a polynomial expansion as the parametrization of the dark energy equation of
state parameter of dark energy(EoS), we apply the algorithm to the real dataset
and calculate the allowed range of EoS parameter.

3.1 Introduction

Likelihood analysis is the most commonly used technique in cosmological param-
eter estimation([168–173]). Increasing availability of observational datasets has
tightened the constrains on the parameters of theoretical models [19–28]. These
parametric methods are essential to understand the Universe and update our the-
oretical knowledge. Though it is crucial to determine the theory parameters, we
have the observational data dependencies in the core of these methods, and new
datasets reject or accept a model with a quantified precision.

As explained earlier in Chapters 1 and 2, using methods like the Principal
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Component Analysis (PCA), we can determine the functional form of the observ-
able of a dataset in a model independent manner [126–130, 133–137, 174–176].
If PCA brings the inherent functional form of the dataset then to constrain the
parameters of a theoretical model we can use the data points derived from the
functional form provided by the Principal Component Analysis.

3.2 Methodology and the results

In this section we first discuss the methodology of reconstruction of the functional
form of the dependent variable in terms of the independent variable. We then
explain the maximum likelihood method being used and the modification due to
PCA.

3.2.1 Reconstruction of functional form of the dependent
variable in terms of the independent variable

In our earlier work Chapter(2), we combined correlation coefficient calculation
with PCA to quantitatively reconstruct the best fit cosmological model. We start
by calculating the functional form of the reduced Hubble parameter h(z) directly
from the dataset, using Principal Component Analysis [174]. The steps of the
PCA reconstruction mechanism are summarized again here :

1) The observable of the dataset is expressed as a polynomial over an initial
basis function, which creates a coefficient space. The dimension of the coef-
ficient space is same as the number of initial basis function.

2) We select different patches in the coefficient space and do a χ2 calculation on
each patch. For each patch, we get a minimum value of χ2. These minimum
χ2 values for each patch give us the PCA data-matrix(D).

3) We calculate covariance matrix C of D, from which the eigenvector matrix
E is calculated. E is used to diagonalize C and omit the linear correlation of
the data matrix. It also creates a new set of basis functions.

4) The observable are then expressed in terms of the final basis function.

5) With the help of these new basis functions, we create the new data-matrix D′.
To select the value of the final basis number M , we compare the correlation
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Figure 3.1: In this figure, the plot at the top shows the 1σ and 2σ contours
for the three parameters α⃗ in the equation of state parameter of dark energy,
w(z′) = ∑2

i=0 αiF(z′)i with F(z) = z
(1+z) in the case of simulated dataset. The

figure at the bottom represents the 1σ, 2σ and 3σ contours for all the parameters
present in the dataset for the simulated dataset.
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Figure 3.2: The plot on the top shows the 1σ and 2σ contours for the three
parameters α⃗ of w(z′) = ∑2

i=0 αiF(z′)i with F(z) = z
(1+z) in the case of simulated

dataset. The lower plot represents the 1σ, 2σ, 3σ contours for all the parameter
presents in the dataset for the real, observed dataset.
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matrix of D and D′. Comparison of correlation matrix also helps us to choose
the better initial basis variable.

If the initial basis function is given by G = (f1(z), f2(z), ...., fN(z)) with fi(z) =
f(z)(i−1), the expression of reduced Hubble parameter is given by,

h(z) =
N∑

i=1
βif(z)(i−1)

. The value of N is the number of terms in the polynomial expression of h(z); it
is also the dimension of coefficient space β⃗.

The value of N is determined by the correlation coefficient calculation [157,
174]. The value should be large enough such that the function can capture most
of the features from the dataset. To select the value of N , we calculate Pearson,
Spearman and Kendall correlation coefficients for the data-matrix D [157, 177].
As explained in the sec(2.1), the Pearson correlation coefficient gives the linear
correlation exists in the dataset. Spearman and Kendall correlation coefficients
give the non-linear correlations of the dataset at hand. For the Spearman corre-
lation coefficient, we calculate the rank of the dataset. In our case, we arrange
the ranks according to the numerical value, that is, we give rank 1 to the highest
numerical value of the PCA dataset, and rank 2 to the second highest and so on.
Spearson correlation coefficient is the Pearson correlation coefficient of the rank
of the dataset. For Kendall correlation coefficient we find the concordant and
disconcordant pairs. Kendall correlation gives the information about whether the
dependent and independent variables are monotonically increasing or decreasing.

We choose the smallest value of N from the set of which the PCA data-matrix
give us a higher value of Pearson Correlation coefficient compared to the Spear-
man and Kendall correlation coefficients. Only if the expression of the Hubble
parameter h(z) in terms of the polynomial is exact, there would no correlation in
between the coefficients of the polynomial expression. Our motive is to break the
correlation of the coefficient and make the polynomial expression of h(z) as closer
as possible to the actual h(z). Again, PCA can only break the linear correlation;
this is the reason we have to make sure that the value of non-linear correlation
is negligible in comparison to the linear correlation, which is done by choosing
appropriate values of N .

After reduction of the higher order Principal Component(PC)s the number of
the terms in the polynomial of h(z) is M . In case of Hubble parameter the final
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data parameter 1σ 2σ 3σ

simulated

h0 [0.244, 0.415] [0.176, 0.504] [0.12, 0.597]

Ωm [0.567, 0.739] [0.511, 0.864] [0.47, 1.03]

α0 [-1.42, 1.64] [-2.9, 3.14] [-4.5, 4.6]

α1 [-2.76, 2.84] [-5.64, 5.55] [-8.3, 8.4]

α2 [-2.972, 2.96] [-5.84, 5.02] [-8.8, 8.9]

real

h0 [0.26, 0.42] [0.19, 0.51] [0.135, 0.603]

Ωm [0.598, 0.77] [0.545, 0.888] [0.503, 1.05]

α0 [-1.48, 1.44] [-2.89, 2.87] [-4.35, 4.34]

α1 [-2.797, 2.778] [-5.48, 5.49] [-8.23, 8.31]

α2 [-2.98, 2.92] [-5.795, 5.837] [-8.85, 8.773]

Table 3.1: The table gives 1σ, 2σ and 3σ ranges for the cosmological parameters,
h0, Ωm, α0, α1 and α2. α⃗ are the parameters of dark energy equation of state.
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functional form is,

h(z) =
M∑

i=1
αiui(z)

where, (u1(z), u2(z), ...., uN(z), and U = GE . After the application of PCA the
dimension of the coefficient space α⃗ is M .

From the functional form of Hubble parameter, we can reconstruct the EoS
w(z), but the presence of a differentiation term in the equation to relate EoS
with h(z) increases the errors of reconstruction. In this work we address this
problem. We suggest a new approach to bypass the differentiation in the process
of calculating EoS from the PCA reconstructed Hubble parameter function. This
has been done by combining PCA with the Maximum Likelihood technique (MLE),
using Markov Chain Monte Carlo (MCMC). In the next section we explain the
No-U-Turn sampler which is our choice of step selection in MCMC run. Then
we introduce the method of selecting the data points from PCA reconstruction.
Finally we explain the errors use in the MLE calculation.

3.2.2 No-U-Turn sampler

As discussed in sec(1.7.4), No-U-Turn sampler(NUTS) is a modification of the
Hamiltonian Monte Carlo(HMC), where the algorithm intrinsically selects the
Leapfrog steps. Selection of leapfrog steps are crucial to solve the Hamiltonian
differential equations of the HMC. NUTS is very effective in choosing the best
parameter region. To assess the MCMC methods we have to measure how good
the MCMC estimates are, which could be done using autocorrelation time, or by
the variance of the estimate, or the effective sample size. Autocorrelation of a
variable measures the relationship between its present value with any of the past
value which we can access. If instead of one value we compare the current series
of values with the past historical data it is called autocorrelation time series. The
classical sample techniques like Metropolis-Hasting or Hamiltonian Monte Carlo
create autocorrelated samples if the number of continuous parameters are very
large. NUTS works very effectively in the case of parameter space which consists
of large number of continuous variables [125, 178, 179].

We use publicly available code PyMC3 for the implementation of MCMC.
PyMC3 works more efficiently with the No-U-Turn sampler method. NUTS is
especially useful on models that have many continuous parameters. For the models
with many continuous parameters other MCMC algorithms are not very efficient.
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Based on the gradient of the log posterior-density, NUTS takes advantage of where
the regions of higher probability lies [125, 178]. This is the reason NUTS achieves
the convergence faster on large problem sets than the traditional sample technique.

At every step, NUTS proceeds by creating a binary tree. In this binary tree,
two particles which represent the progress in the forward and backward direction
are created. If these two particles are represented as (q+

n , p+
n ) and (q−

n , p−
n ) then

the NUTS can be given by,

(q+
n − q−

n ).p−
n < 0

(q+
n − q−

n ).p+
n < 0

NUTS is an improvement of Hamiltonian Monte Carlo sampling, where we
move in the phase space of q and p in the elliptical path [125, 179]. As discussed
in sec(1.7.4) of Chapter(1) the motivation of introducing the momentum variable
p is to ensure that we are exploring the greater area of the parameter space. This
is done by moving in a elliptical contours, which we get after solving the dynamical
Hamiltonian equation. In NUTS when we move half way of the elliptical path,
the sign of the momentum and the position variables are changed and we stop,
sec(1.7.4). This makes the NUTS more efficient than HMC, where there is no way
to ascertain if we are moving in the already explored region of parameter space.

We choose the value of the total sample points Ms by checking the convergence
limit using Gelman-Rubin statistic [178]. Gelman-Rubin statistic for convergence
is based on the notion that multiple convergence chain appears to be similar to
each other; otherwise, they will not converge. It is a standard method to run
multiple MCMC chains to test for convergence. Scale reduction factor r̂o is used
to check the Gelman-Rubin convergence. There are two main ways in which
the sequences of MCMC iterations can fail to converge. In one case, the chains
run in the different parts which have drastic difference in posterior probability
densities of the target distribution and in the another, the chains fails to attain
the stationarity. We change the value of Ms until we get r̂o = 1.
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3.2.3 Maximum likelihood calculation with PCA data-points

Here we replace the observational part of the Maximum Likelihood Estimation(MLE)
calculation with PCA. This method also omits the dependencies on the number of
observational data-points. MLE gives us a machinery to produce the most prob-
able value of model parameters by constraining the theory with the observational
data. The χ2 is given by,

χ2
o(β⃗) =

nd∑
i=1

hi
th(β⃗) − hi

obs

σi
obs

2

(3.1)

where, h(z) is the reduced Hubble parameter, nd is the total number of data-
points which we select from the PCA reconstructed curve and β⃗ is the parameter
vector, which have all the parameters of the EoS along with reduced Hubble
constant h0 and density parameter Ωm, β⃗ = {h0, Ωm, α⃗}. hi

th is the theoretical
reduced Hubble parameter. For a spatially flat Universe, composed of dark energy
and non-relativistic matter it is given by,

h2(z) = h0

[
Ωm(1 + z)3 + Ωxe3

∫ z

0
1+w(z′)

1+z′ dz′
]1/2

(3.2)

w(z′) =
m∑

i=0
αiF(z′)(i−1), F(z) = z

(1 + z) (3.3)

To introduce PCA we replace the hobs in eqn(3.1) with data-points selected
from PCA reconstructed curve. Here, nd is the total number of points being
selected. Therefore, the final expression of χ2 will be,

χ2
p(β⃗) =

nd∑
i=1

hi
th(β⃗) − hi

pca

σi
pca

2

(3.4)

In eqn(3.4), we replace the observed reduce Hubble parameter (hobs) of Eqn(3.1)
by the reconstructed functional form of PCA (hpca). For the error part, we use
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error-functions which are created from the co-variance matrix [126, 127, 174]. We
use the analysis first for simulated data and then apply it to real datasets. The
simulated dataset is created using the same parameter values as is fixed by [163].
For the simulated ΛCDM dataset we have fixed the values of cosmological pa-
rameters as, ωm = 0.3 and h0 = 0.684. For the real dataset we use the Hubble
parameter and redshift dataset [60–64].

In the present case, to get the reconstructed curve of reduced Hubble parameter
for both simulated and real dataset we use f(z) = z

(1+z) as initial basis function.
This initial basis function gives the best reconstruction as has been shown in the
chapter(2). Here in eqn(3.4), we have the freedom to choose the value of nd, which
is the number of data points in the observed part of MLE of eqn(3.1). We run
the Markov Chain Monte Carlo (MCMC) chain to serch for minimum χ2, which
give us the likelihood of the PCA dataset. For this purpose, we use the PyMC3
program [178] with the No-U turn sampler method (NUTS) [125]. In the MCMC
analysis we use normal priors N (0.70, 0.2) and N (0.35, 0.1) for reduced hubble
constant h0 and Ωm respectively. For the DE parameters, α⃗ we take N (0, 3).
Here, N (xmean, xmode) represents the normal probability density function with
xmean and spread of xmode.

We choose the largest possible value for nd which is limited by the computing
power. We then check the results for different values of nd and Ms and find out the
mean, median and mode of the posterior distribution. For m = 3 eqn(3.3), we do
the analysis for different values of nd and Ms. m = 3 is the CPL parametrization
with the next order term [180, 181]. nd is varied in the range 100 to 800 whereas
Ms in the range 1000 to 800000 and find out mean, median, mode as well as 1σ,
2σ, 3σ range of ωm, h0, α⃗.

In Figures 3.2, 3.1, we show results for nd = 600, where we fix the num-
ber of sample points at Ms = 80, 0000. This particular choice of nd and Ms

gives us the closest approximation of the model parameters for the simulated data
and we see that about this value of nd and Ms we get the smallest variation
in 1σ, 2σ and 3σ ranges of the model parameters. In particular for (nd, Ms) =
(600, 800000)&(1000, 50000) the difference in 1σ, 2σ and 3σ ranges are of the order
of O(−1) for α⃗ and O(−2) or less for Ωm and h0. To create the simulated data
we assume h0 = 0.685 and Ωm = 0.3, while the mean of the posterior of h0 and
Ωm from the algorithm are h0 = 0.68 and Ωm = 0.34, which are very close to the
assumed values, h0 = 0.685 and Ωm = 0.3. In table(3.1) we show the 1σ, 2σ, 3σ

ranges for the parameters of the theory, eqn(3.2). Mean of the posterior of h0 and
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Figure 3.3: In this Figure, the blue bands are 1σ confidence level for the dark
energy equation of state parameter w(z). The upper plot is for the simulated
dataset, and the lower one is for the real dataset. The value of observational
points nd and sample points Ms are 600 and 800000, respectively. The black and
red curve are median and mean of the posterior density function. In both the
curves, the white dotted line represents the w = −1 line.

71



0.2 0.4 0.6 0.8
z

0.0

0.5

1.0

1.5

2.0

′ /
′ 0

0.2 0.4 0.6 0.8
z

0.0

0.5

1.0

1.5

2.0

′ /
′ 0

Figure 3.4: Plots represent the dark energy density ratio ρ′(z)/ρ′
0 as a function of

redshift z. The upper plot is for the simulated data and the lower one is for the
real dataset. In both the plots, blue patch represents the 1σ confidence range for
ρ′(z)/ρ′

0. The white dotted line represents the ρ′(z)/ρ′
0 = 1 for the cosmological

constant model. Number of data-points and number of sample points are, 600 and
800000 respectively.
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Ωm for the real data from the algorithm are h0 = 0.71 and Ωm = 0.35 respectively.

It is also evident from the fig(3.3) that w(z) = −1 is well within the 1σ range
of w(z) parameters(α⃗). The plot of w(z) and ρ(z)/ρ0 are similar for both real and
simulated dataset. Difference in w(z) and ρ(z)/ρ0 curve between simulated and
real data are 0.442 and 0.024 respectively, fig(3.3, 3.4). The dark energy density
plot fig(3.4), ρ′(z)/ρ′

0 vs z, for simulated and real dataset are also similar and the
maximum difference between them is 0.36. The variation of 1σ, 2σ and 3σ ranges
are negligible in the case of h0, ωm and α⃗ when nd ≥ 600 and Ms ≥ 50000.

For each MCMC run, we calculate the Gelman-Rubin convergence factor r̂o.
We find that for the polynomial expansion in terms of z/(1+z) as parametrization
when Ms ≥ 10000 gives r̂o = 1. In the PyMC3 run for both the real and simu-
lated dataset, with (nd, Ms) = (600, 800000), the value of r̂o is 1. To check the
convergence we not only check the r̂o factor and eliminate those iterations which
do not satisfy the r̂o ≈ 1 criteria but we also check the trace plots, rank bar plots
and the rank vertical bar plots of the posterior sampling for visual confirmations
[179, 182, 183].

Fig 3.5, 3.6, and 3.7 shows the convergence of the MCMC chains for the simu-
lated dataset. These plots are created for (nd, Ms) = (600, 800000). For compari-
son we also show the same set of plots for (nd, Ms) = (100, 100), fig(3.8, 3.9, 3.10).
The convergence and the ability to draw successful samples from the parameter
space is apparent for (nd, Ms) = (600, 800000) set. For the (nd, Ms) = (100, 100)
from the smoothed histogram plot we see that for each MCMC chains get different
picks in MLE model. This means the low convergence of the MCMC chain using
NUTS with (nd, Ms) = (100, 100). Figures 3.11, 3.12 and 3.13 shows same set of
plots with real dataset.

In the likelihood analysis the error contribution comes from PCA algorithm,
which is composed by the eigenvalues and eigenfunctions of the covariance matrix
[126, 127, 174]. The eignevalues of the covariance matrix quantifies the error in
the reconstruction of h(z). If λi are the eigenvalues of the covariance matrix C,
then the error associated with each of the components is σ(αi) = λ

1/2
i . For M

number of final terms we have the final error as,

σ(h(za)) =
[

M∑
i=1

σ2(αi)e2
i (za)

]1/2

(3.5)
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Figure 3.5: The left column consists of a smoothed histogram, using kernel density
estimation of the marginal posteriors of each stochastic random variable. From the
top to bottom the random variables are density parameter for matter Ωm, reduced
Hubble constant h0 and the parameters of the equation of state of dark energy αi.
The right column contains the samples of the Markov chain plotted in sequential
order. There are four MCMC chains which are plotted in different colours. These
plots are created with (nd, Ms) = (600, 800000) and all are for simulated dataset.
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Figure 3.6: As in fig(3.5) the left column consists of a smoothed histogram, using
kernel density estimation of the marginal posteriors of each stochastic random
variable. From the top to bottom, the random variables are density parameter
for matter Ωm, reduced Hubble constant h0 and the parameters of the equation of
state of dark energy αi. The right column shows the number of successful draws
from the parameter space, which depends upon the sample size chosen as well as
the prior theory. The four MCMC chains are plotted in different color and all are
independent to each other. Simulated dataset is used to generate the plot and the
number of sample point as well as the simulated points taken from the PCA curve
are (nd, Ms) = (600, 800000).
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Figure 3.7: As in fig(3.5) the left column consists of a smoothed histogram, using
kernel density estimation of the marginal posteriors of each stochastic random
variable. As in the previous figures, the random variables are density parameter
for matter Ωm, reduced Hubble constant h0 and the parameters of the equation of
state of dark energy αi. The right hand column gives the auto-correlation for all
the random variables for all the four independent chains, which are depicted with
the vertical lines. Simulated dataset is used to generate the plot and the number
of sample point as well as the simulated points taken from the PCA curve are
(nd, Ms) = (600, 800000).
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Figure 3.8: The left column consists of a smoothed histogram, using kernel density
estimation of the marginal posteriors of each stochastic random variable. From the
top to bottom the random variables are density parameter for matter Ωm, reduced
Hubble constant h0 and the parameters of the equation of state of dark energy αi.
The right column contains the samples of the Markov chain plotted in sequential
order. There are four MCMC chains which are plotted in different colours. These
plots are created with (nd, Ms) = (100, 100) and all are for simulated dataset.
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Figure 3.9: As in fig(3.8) the left column consists of a smoothed histogram, using
kernel density estimation of the marginal posteriors of each stochastic random
variable. The random variables plotted here are same as in the previous figures
and in the same order. The right column shows the number of successful draws
from the parameter space, which depends upon the sample size chosen as well as
the prior theory. Simulated dataset is used to generate the plot and the number
of sample point as well as the simulated points taken from the PCA curve are
(nd, Ms) = (100, 100).
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Figure 3.10: As in fig(3.8) the left column consists of a smoothed histogram, using
kernel density estimation of the marginal posteriors of each stochastic random
variable. The right hand column gives the auto-correlation for all the random
variables for all the four independent chains, which are depicted with the vertical
lines. Simulated dataset is used to generate the plot and the number of sample
point as well as the simulated points taken from the PCA curve are (nd, Ms) =
(100, 100).
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Figure 3.11: The left column consists of a smoothed histogram, using kernel den-
sity estimation of the marginal posteriors of each stochastic random variable. The
right column contains the samples of the Markov chain plotted in sequential order.
These plots are created with (nd, Ms) = (600, 800000) and all are for real Hubble
parameter dataset.
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Figure 3.12: As in fig(3.6) the left column consists of a smoothed histogram, using
kernel density estimation of the marginal posteriors of each stochastic random
variable. The random variables plotted here are same as in the previous figures
and in the same order. The right column shows the number of successful draws
from the parameter space, which depends upon the sample size chosen as well
as the prior theory. The four MCMC chain plotted in different color and all are
independent to each other. Real Hubble parameter dataset is used to generate the
plot and the number of sample point as well as the simulated points taken from
the PCA curve are (nd, Ms) = (600, 800000).
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Figure 3.13: As in fig(3.5) the left column consists of a smoothed histogram, using
kernel density estimation of the marginal posteriors of each stochastic random
variable. The right hand column gives the auto-correlation for all the random
variables for all the four independent chains, which are depicted with the vertical
lines. In this case, real Hubble parameter dataset is used to generate the plot and
the number of sample points as well as the simulated points taken from the PCA
curve are (nd, Ms) = (600, 800000).
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Eqn(3.5) gives the error function for a particular reconstructed curve. We have
the error as a function of redshift za. We use this error function in the likelihood
analysis.

From the figure (A.1 - A.7) we see that NUTS and Hamiltonain Monte Carlo
sampler (HMC) are better than Matropolis Hasting sampler (MH). For HMC and
MH, we take same number of simulated datapoints and sample points as in the
case of NUTS (nd, Ms) = (600, 800000). In between HMC and NUTS, NUTS is
better than HMC as NUTS picks up the leapfrog steps and it automatically stops
when the NUTS conditions are satisfied, sec(1.7.4). For comparison we use the
same number of simulated datapoints nd as well as the sample points Ms as in
NUTS simulation, these are (nd, Ms) = (600, 800000) A.

3.3 Conclusion

When the method of PCA reconstruction is combined with MCMC tool, we have
the freedom of selecting the number of points in the observational part of maxi-
mum likelihood estimation. This gives us a reasonable prediction of the parameters
of a model. Here we use NUTS sampling technique with a specific parametriza-
tion form of DE. Also, we utilise the combined PCA and MCMC only on the
Hubble parameter dataset. We show that the parameter estimation is indepen-
dent of the prior probability assumption, and the idea can be generalized to other
datasets as well as different sampling techniques. The input of PCA reconstuction
part of the methodology is only the observational dataset. We need to do the
PCA reconstruction before the Maximum Likelihood Estimation(MLE) calcula-
tion. Combination of PCA reconstruction with MCMC (MCMC + PCA), for the
MLE is independent of any errors that may appear due to differentiation of the
PCA reconstructed quantity, particularly the first-order differentiation of h(z) to
infer the value of w(z). Here we only use the error function that comes from the
PCA algorithm, and one can use different error functions in the error part of the
MLE as well. It can be used as a model selection tool and can be used in those
dataset which has a fewer data-points.
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Chapter 4

Summary and Future Directions

With the development of sophisticated theoretical models and also the increasing
availability of large observational datasets, the dark energy study has taken a big
leap. Along with the theoretical and observational aspects, statistical methods
are being developed, created and applied in the dark energy study. In this thesis,
we employ Principal Component Analysis(PCA), which is a model-independent,
non-parametric method to cosmic chronometer and distance modulus datasets.
We develop a variant of PCA which can reconstruct the functional form of the
reconstructed quantity from the tabulated dataset of the same. This functional
form can also help us in constraining the parameter space of different dark energy
models.

In the second chapter, we reconstruct the late-time cosmological quantities
using PCA. We reconstruct the observables of cosmic chronometer and distance
modulus datasets, which are Hubble parameter H(z) and distance modulus µ(z).
The input of our methodology is the dataset of the quantity we want to recon-
struct. Both H(z) and µ(z) dataset give us tabulated data for H(z) and µ(z),
where we have different values of H(z) and µ(z) for different redshifts(z). For the
application of PCA we do not need any prior information on the distribution of
different quantities of the dataset. PCA is a model-independent technique, and
it is used to separate the noise of the data from the signal part. The method
is non-parametric in the sense that no additional parameters are needed for its
application in datasets.

Principal Component Analysis is an application of linear algebra, and we need
only the tabulated dataset of the observational quantity as our input. As an out-
put, we get the functional form of the observable in terms of the independent
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variable of the dataset. It is crucial in our PCA methodology to find the correla-
tions of the dataset. We start with a polynomial expression of the observable over
an independent basis variable. We use (1−a), a and z as our initial basis variable,
where a and z are the scale factor and redshift, respectively. Selection of one basis
variable over the other is done by the correlation coefficient calculation (CCC).
We calculate Pearson, Spearman, and Kendall correlation coefficients to check the
linear and non-linear correlation of the datasets. We show that a combination
of CCC and PCA (PCA + CCC) can be used as a potential reconstruction tool.
The polynomial expression over a particular variable creates the coefficients space.
The dimension of this coefficient space N is equal to the number of terms in the
polynomial expression of the dependent variable. CCC determines the dimension
of the coefficient space. We choose that value of N for which the linear correlation
is larger than the non-linear correlation. For a particular independent variable,
the dimension of the coefficient space also depends upon the computational power
we have. After the selection of the number of terms of the polynomial, we divide
the whole coefficient space into patches and apply χ2 minimization in each of these
patches. For each patch, we get the best-fit point of coefficient space. We apply
PCA in this set of points. CCC also quantifies how efficiently PCA can break
the linear correlation for a particular independent variable. (PCA + CCC) gives
an algorithm for selecting the number of final principal components which are
sufficient to reconstruct the observable quantity. First, we apply our algorithm
in the simulated dataset to check the efficiency of our algorithm. There are two
approaches to our PCA mechanism. The first one is a derived approach, where
we reconstruct the observable quantity using PCA and subsequently construct the
dark energy equation of state parameter w(z). The other approach is the direct
reconstruction of w(z). We use different initial basis variables to reconstruct the
observable quantities and use CCC to select one particular initial basis variable
over the other. Given the dataset, we use CCC to choose one approach over the
other. The derived approach is selected over the direct approach as well as (1 − a)
over the variables a and z as the better-reconstructed variable. The reconstruction
of the equation of state indicates a slowly varying equation of state of dark energy.

In the Chapter 3, we combine PCA and Markov Chain Monte Carlo (MCMC)
to infer the model parameters of a particular model. We first find out the func-
tional form of the observable H(z) from the Cosmic Chronometer dataset, using
the (PCA + CCC) method. In the reconstruction part of the PCA, we assume a
polynomial form of H(z) over the variable (1 − a). The CCC analysis determines
the number of terms in the polynomial. (PCA + CCC) gives us the functional
form of the dependent variable in terms of the independent variable in a non-
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parametric manner. We select several points from the functional form of H(z).
Error in PCA reconstruction is dependent upon the eigenvalues and eigenvectors
of the covariance matrix. In the error part of the MLE calculation we use the
error comes intrinsically from the PCA analysis. We then use No U Turn Sampler
(NUTS) as a sampling technique to run the MCMC chains in the model parameter
space. Here we try to constrain the parameters of a particular dark energy model
with the functional form of H(z) that comes from the PCA reconstruction. We
assume a test model for the dark energy equation of state parameter (w(z)), which
is a polynomial over the variable (1 − a). For simplicity, we take only the initial
three terms of the polynomial expression of w(z) over (1 − a). We aim to replace
the usual observational part of the MLE calculation with the PCA part. When
the method of (PCA + CCC) reconstruction is combined with MCMC tool, we
have the freedom of selecting the number of points in the PCA part of MLE. We
see that the predictions for the model parameters are reasonable.

Here we utilize the combined (PCA + CCC + MCMC) algorithm only on the
Hubble parameter dataset. We show that the parameter estimation is independent
of the prior probability assumption, and the idea can be generalized to other
datasets. The relation between the Hubble parameter and the equation of state of
dark energy also contains the first differentiation of the Hubble parameter, which
introduce some unwanted error in the equation of state predictions in (PCA +
CCC) method. (PCA + CCC + MCMC) method eliminates the error that appears
from the first-order differentiation of the Hubble parameter to infer the value and
ranges of the Equation of State of dark energy. In this work, we only use the error
function that comes directly from the PCA algorithm. (PCA + CCC + MCMC)
can be used as a model selection tool and can be used in those datasets which has
fewer number of data-points.

The methods discussed here are effective in constraining the cosmological pa-
rameters as well as applicable to diverse datasets. One of our future goals is to find
an algorithm that can inclusively select the best initial basis variable over a set of
variables for a fixed computational power and a fix dataset. Another direction is
the use of different cosmological data and their combination to find the combined
contours of the cosmological parameters.
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Appendix A

Maximum Likelihood Estimation
with Hamiltonian Monte Carlo
and Metropolis Hasting sampling
technique on the reconstruction
of Principal Component Analysis

In this section we add the figures using the same method of chapter(3.3) of sec(3.2),
but with Hamiltonian Monte Carlo(HMC) and Metropolis Hasting(MH) sampling
technique. MH and HMC are described in sec(1.7.4). Here we add the trace figures
with the rank bar and auto-correlation plots. Plots are for the same number of
simulated datapoints nd as well as the sample points Ms as in NUTS simulation,
which are (nd, Ms) = (600, 800000). Below we brief the HMC and MH methods.

Metropolis Hasting (MH) : Due to the simplicity it is one of the most popular
sampling technique. It is a kind of Markovian accept reject algorithm. In general
if the θ⃗ are the set of parameters then in MH we start with a proposal distribution
q(θi+1|θi), which gives the probability of getting the parameter point θi+1 when
the current position θi is given. The acceptance probability is given by α(θi+1|θ) =
min {1, r}, where

r ≡ P(θi+1)q(θi|θi+1)
P(θi)q(θi+1|θi)

89



r is called the Hasting ratio and in the symmetry case q(θi|θi+1) = (θi+1|θi).
We start the sampler by the maximum a posteriori (MAP) value calculated using
PyMC3, where MAP is found out using numerical optimization methods.

Hamiltonian Monte Carlo(HMC): In HMC with the regular variables, which
is called the position variables p, we introduce the auxilary field variable, called
the momentum variable p. These two variables create the Hamiltonain variable
H(p, q) = U(q) + K(p). We move in the parameter space in the path, which
we get by solving the Hamiltonian canonical equations of q and p, sec(1.7.4). In
this case also we start the sampler with the maximum a posteriori (MAP) value
calculated using PyMC3.
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Figure A.1: This plots are done using the Hamiltonian Monte Carlo sam-
pler(HMC). Figure in the top shows the 1σ, 2σ and 3σ for the three parameters of
equation of state parameter (EoS)in the case of simulated dataset. Bottom figure
represents the 1σ, 2σ and 3σ contours for all the parameter presents in the dataset
along with their marginal probability density plots for the real dataset.
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Figure A.2: This plots are done using the Hamiltonian Monte Carlo sam-
pler(HMC). The left column consists of a smoothed histogram, using kernel density
estimation of the marginal posteriors of each stochastic random variable. From
the top to bottom the random variables are density parameter for matter Ωm,
reduced Hubble constant h0 and the parameters of the equation of state of dark
energy αi. The right column contains the samples of the Markov chain plotted
in sequential order. There are four MCMC chains which are plotted in different
colours. These plots are created with (nd, Ms) = (600, 800000) and all are for real
Hubble parameter dataset.
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Figure A.3: This plots are done using the Hamiltonian Monte Carlo sam-
pler(HMC). As in fig(3.6) the left column consists of a smoothed histogram, using
kernel density estimation of the marginal posteriors of each stochastic random
variable. From the top to bottom the random variables are density parameter for
matter Ωm, reduced Hubble constant h0 and the parameters of the equation of
state of dark energy αi. The right column shows the number of successful draws
from the parameter space, which depend upon the sample size chosen as well as
the prior theory. The four MCMC chain plotted in different color and all are
independent to each other. Real Hubble parameter dataset is used to generate the
plot and the number of sample point as well as the simulated points taken from
the PCA curve are (nd, Ms) = (600, 800000).
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Figure A.4: This plots are done using the Hamiltonian Monte Carlo sam-
pler(HMC). As in fig(3.5) the left column consists of a smoothed histogram, using
kernel density estimation of the marginal posteriors of each stochastic random
variable. The random variables plotted here are same as in the previous figures
and in the same order. The right hand column gives the auto-correlation for all
the random variables for all the four independent chains, which are depicted with
the vertical lines. Real Hubble parameter dataset is used to generate the plot and
the number of sample points as well as the simulated points taken from the PCA
curve are (nd, Ms) = (600, 800000).
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Figure A.5: This plots are done using the Metropolis Hasting sampling technique
(MH) Figure in the top shows the 1σ, 2σ and 3σ contours for the three parameters
of equation of state parameter(EoS) in the case of simulated dataset. Bottom
figure represents the 1σ, 2σ and 3σ contours for all the parameter presents in the
dataset along with their marginal probability density plots for the real dataset.
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Figure A.6: This plots are done using the Metropolis Hasting sampling technique
(MH) The left column consists of a smoothed histogram, using kernel density
estimation of the marginal posteriors of each stochastic random variable. The
right column contains the samples of the Markov chain plotted in sequential order.
There are four MCMC chains which are plotted in different colours. These plots
are created with (nd, Ms) = (600, 800000) and all are for real Hubble parameter
dataset.
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Figure A.7: This plots are done using the Metropolis Hasting sampling technique
(MH) As in fig(3.6) the left column consists of a smoothed histogram, using kernel
density estimation of the marginal posteriors of each stochastic random variable.
The right column shows the number of successful draws from the parameter space,
which depend upon the sample size chosen as well as the prior theory. The four
MCMC chain plotted in different color and all are independent to each other. Real
Hubble parameter dataset is used to generate the plot and the number of sample
point as well as the simulated points taken from the PCA curve are (nd, Ms) =
(600, 800000).
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Figure A.8: This plots are done using the Metropolis Hasting sampling technique
(MH). As in fig(3.5) the left column consists of a smoothed histogram, using
kernel density estimation of the marginal posteriors of each stochastic random
variable. The right hand column gives the auto-correlation for all the random
variables for all the four independent chains, which are depicted with the vertical
lines. Real Hubble parameter dataset is used to generate the plot and the number
of sample points as well as the simulated points taken from the PCA curve are
(nd, Ms) = (600, 800000).

98



Bibliography

[1] A. Einstein, Cosmological considerations on the general theory of relativity,
pp. 175–188. 1952.

[2] A. Einstein, The Field Equations of Gravitation, Sitzungsber. Preuss.
Akad. Wiss. Berlin (Math. Phys. ) 1915 (1915) 844.

[3] V. M. Slipher, Spectrographic Observations of Nebulae, Popular Astronomy
23 (1915) 21.

[4] E. Hubble, A relation between distance and radial velocity among
extra-galactic nebulae, Proceedings of the National Academy of Sciences 15
(1929) 168
[https://www.pnas.org/content/15/3/168.full.pdf].

[5] A. A. Penzias and R. W. Wilson, A Measurement of Excess Antenna
Temperature at 4080 Mc/s., ApJ 142 (1965) 419.

[6] R. H. Dicke, P. J. E. Peebles, P. G. Roll and D. T. Wilkinson, Cosmic
Black-Body Radiation, Astrophys. J. 142 (1965) 414.

[7] G. Lemaitre, A Homogeneous Universe of Constant Mass and Growing
Radius Accounting for the Radial Velocity of Extragalactic Nebulae,
Annales Soc. Sci. Bruxelles A 47 (1927) 49.

[8] A. Friedman, On the Curvature of space, Z. Phys. 10 (1922) 377.

[9] G. F. Smoot, Nobel lecture: Cosmic microwave background radiation
anisotropies: Their discovery and utilization, Rev. Mod. Phys. 79 (2007)
1349.

[10] F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helv. Phys.
Acta 6 (1933) 110.

[11] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M.
Garnavich et al., Observational Evidence from Supernovae for an

99

https://doi.org/10.1073/pnas.15.3.168
https://doi.org/10.1073/pnas.15.3.168
https://arxiv.org/abs/https://www.pnas.org/content/15/3/168.full.pdf
https://doi.org/10.1086/148307
https://doi.org/10.1086/148306
https://doi.org/10.1007/s10714-013-1548-3
https://doi.org/10.1007/BF01332580
https://doi.org/10.1103/RevModPhys.79.1349
https://doi.org/10.1103/RevModPhys.79.1349
https://doi.org/10.1007/s10714-008-0707-4
https://doi.org/10.1007/s10714-008-0707-4


Accelerating Universe and a Cosmological Constant, The Astronomical
Journal 116 (1998) 1009 [astro-ph/9805201].

[12] S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G.
Castro et al., Measurements of Ω and Λ from 42 High-Redshift Supernovae,
ApJ 517 (1999) 565 [astro-ph/9812133].

[13] S. M. Carroll, W. H. Press and E. L. Turner, The cosmological constant,
Annual Review of Astronomy and Astrophysics 30 (1992) 499.

[14] S. M. Carroll, The Cosmological constant, Living Rev. Rel. 4 (2001) 1
[astro-ph/0004075].

[15] M. S. Turner and M. White, CDM models with a smooth component, prd
56 (1997) R4439 [astro-ph/9701138].

[16] T. Padmanabhan, Cosmological constant: The Weight of the vacuum,
Phys. Rept. 380 (2003) 235 [hep-th/0212290].

[17] P. J. E. Peebles and B. Ratra, The Cosmological constant and dark energy,
Rev. Mod. Phys. 75 (2003) 559 [astro-ph/0207347].

[18] E. J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int.
J. Mod. Phys. D15 (2006) 1753 [hep-th/0603057].

[19] M. Chevallier and D. Polarski, Accelerating universes with scaling dark
matter, Int. J. Mod. Phys. D10 (2001) 213 [gr-qc0009008].

[20] E. V. Linder, Exploring the expansion history of the universe, Phys. Rev.
Lett. 90 (2003) 091301 [astro-ph/0208512].

[21] H. K. Jassal, J. S. Bagla and T. Padmanabhan, WMAP constraints on low
redshift evolution of darkenergy, Mon. Not. Roy. Astron. Soc. 356 (2005)
L11 [astro-ph/0404378].

[22] Y.-G. Gong and A. Wang, Reconstruction of the deceleration parameter
and the equation of state of dark energy, Phys. Rev. D75 (2007) 043520
[astro-ph/0612196].

[23] A. Mukherjee, Acceleration of the universe: a reconstruction of the effective
equation of state, Mon. Not. Roy. Astron. Soc. 460 (2016) 273
[1605.08184].

100

https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://arxiv.org/abs/astro-ph/9805201
https://doi.org/10.1086/307221
https://arxiv.org/abs/astro-ph/9812133
https://doi.org/10.1146/annurev.aa.30.090192.002435
https://doi.org/10.12942/lrr-2001-1
https://arxiv.org/abs/astro-ph/0004075
https://doi.org/10.1103/PhysRevD.56.R4439
https://doi.org/10.1103/PhysRevD.56.R4439
https://arxiv.org/abs/astro-ph/9701138
https://doi.org/10.1016/S0370-1573(03)00120-0
https://arxiv.org/abs/hep-th/0212290
https://doi.org/10.1103/RevModPhys.75.559
https://arxiv.org/abs/astro-ph/0207347
https://doi.org/10.1142/S021827180600942X
https://doi.org/10.1142/S021827180600942X
https://arxiv.org/abs/hep-th/0603057
https://doi.org/10.1142S0218271801000822
https://arxiv.org/abs/gr-qc0009008
https://doi.org/10.1103/PhysRevLett.90.091301
https://doi.org/10.1103/PhysRevLett.90.091301
https://arxiv.org/abs/astro-ph/0208512
https://doi.org/10.1111/j.1745-3933.2005.08577.x
https://doi.org/10.1111/j.1745-3933.2005.08577.x
https://arxiv.org/abs/astro-ph/0404378
https://doi.org/10.1103/PhysRevD.75.043520
https://arxiv.org/abs/astro-ph/0612196
https://doi.org/10.1093/mnras/stw964
https://arxiv.org/abs/1605.08184


[24] S. Vagnozzi, S. Dhawan, M. Gerbino, K. Freese, A. Goobar and O. Mena,
Constraints on the sum of the neutrino masses in dynamical dark energy
models with w (z )≥-1 are tighter than those obtained in Λ CDM, Phys.
Rev. D 98 (2018) 083501 [1801.08553].

[25] E. Di Valentino, A. Melchiorri, E. V. Linder and J. Silk, Constraining Dark
Energy Dynamics in Extended Parameter Space, Phys. Rev. D96 (2017)
023523 [1704.00762].

[26] N. Bellomo, J. L. Bernal, G. Scelfo, A. Raccanelli and L. Verde, Beware of
commonly used approximations. Part I. Errors in forecasts, Journal of
Cosmology and Astroparticle Physics 2020 (2020) 016 [2005.10384].

[27] J. L. Bernal, N. Bellomo, A. Raccanelli and L. Verde, Beware of commonly
used approximations. Part II. Estimating systematic biases in the best-fit
parameters, Journal of Cosmology and Astroparticle Physics 2020 (2020)
017 [2005.09666].

[28] L. Verde, P. Protopapas and R. Jimenez, Planck and the local Universe:
Quantifying the tension, Physics of the Dark Universe 2 (2013) 166
[1306.6766].

[29] Y. Fujii, Origin of the gravitational constant and particle masses in a
scale-invariant scalar-tensor theory, Phys. Rev. D 26 (1982) 2580.

[30] R. D. Peccei, J. Solà and C. Wetterich, Adjusting the cosmological constant
dynamically: Cosmons and a new force weaker than gravity, Physics
Letters B 195 (1987) 183.

[31] L. H. Ford, Cosmological-constant damping by unstable scalar fields, Phys.
Rev. D 35 (1987) 2339.

[32] C. Wetterich, Cosmology and the Fate of Dilatation Symmetry, Nucl. Phys.
B 302 (1988) 668 [1711.03844].

[33] B. Ratra and P. J. E. Peebles, Cosmological consequences of a rolling
homogeneous scalar field, Phys. Rev. D 37 (1988) 3406.

[34] Y. Fujii and T. Nishioka, Model of a decaying cosmological constant, Phys.
Rev. D 42 (1990) 361.

[35] T. Chiba, N. Sugiyama and T. Nakamura, Cosmology with x-matter,
MNRAS 289 (1997) L5 [astro-ph/9704199].

101

https://doi.org/10.1103/PhysRevD.98.083501
https://doi.org/10.1103/PhysRevD.98.083501
https://arxiv.org/abs/1801.08553
https://doi.org/10.1103/PhysRevD.96.023523
https://doi.org/10.1103/PhysRevD.96.023523
https://arxiv.org/abs/1704.00762
https://doi.org/10.1088/1475-7516/2020/10/016
https://doi.org/10.1088/1475-7516/2020/10/016
https://arxiv.org/abs/2005.10384
https://doi.org/10.1088/1475-7516/2020/10/017
https://doi.org/10.1088/1475-7516/2020/10/017
https://arxiv.org/abs/2005.09666
https://doi.org/10.1016/j.dark.2013.09.002
https://arxiv.org/abs/1306.6766
https://doi.org/10.1103/PhysRevD.26.2580
https://doi.org/10.1016/0370-2693(87)91191-9
https://doi.org/10.1016/0370-2693(87)91191-9
https://doi.org/10.1103/PhysRevD.35.2339
https://doi.org/10.1103/PhysRevD.35.2339
https://doi.org/10.1016/0550-3213(88)90193-9
https://doi.org/10.1016/0550-3213(88)90193-9
https://arxiv.org/abs/1711.03844
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1103/PhysRevD.42.361
https://doi.org/10.1103/PhysRevD.42.361
https://doi.org/10.1093/mnras/289.2.L5
https://arxiv.org/abs/astro-ph/9704199


[36] P. G. Ferreira and M. Joyce, Structure formation with a self-tuning scalar
field, Phys. Rev. Lett. 79 (1997) 4740.

[37] P. G. Ferreira and M. Joyce, Cosmology with a primordial scaling field,
Phys. Rev. D 58 (1998) 023503 [astro-ph/9711102].

[38] R. R. Caldwell, R. Dave and P. J. Steinhardt, Cosmological imprint of an
energy component with general equation of state, Phys. Rev. Lett. 80
(1998) 1582.

[39] S. M. Carroll, Quintessence and the Rest of the World: Suppressing
Long-Range Interactions, Phys. Rev. Lett. 81 (1998) 3067
[astro-ph/9806099].

[40] E. J. Copeland, A. R. Liddle and D. Wands, Exponential potentials and
cosmological scaling solutions, Phys. Rev. D 57 (1998) 4686.

[41] I. Zlatev, L. Wang and P. J. Steinhardt, Quintessence, cosmic coincidence,
and the cosmological constant, Phys. Rev. Lett. 82 (1999) 896.

[42] P. J. Steinhardt, L. Wang and I. Zlatev, Cosmological tracking solutions,
Phys. Rev. D 59 (1999) 123504.

[43] A. Hebecker and C. Wetterich, Natural quintessence?, Physics Letters B
497 (2001) 281 [hep-ph/0008205].

[44] T. Chiba, T. Okabe and M. Yamaguchi, Kinetically driven quintessence,
Phys. Rev. D 62 (2000) 023511.

[45] C. Armendariz-Picon, V. Mukhanov and P. J. Steinhardt, Dynamical
Solution to the Problem of a Small Cosmological Constant and Late-Time
Cosmic Acceleration, Phys. Rev. Lett. 85 (2000) 4438
[astro-ph/0004134].

[46] C. Armendariz-Picon, V. Mukhanov and P. J. Steinhardt, Essentials of
k-essence, Phys. Rev. D 63 (2001) 103510.

[47] A. Kamenshchik, U. Moschella and V. Pasquier, An alternative to
quintessence, Physics Letters B 511 (2001) 265 [gr-qc/0103004].

[48] M. C. Bento, O. Bertolami and A. A. Sen, Generalized chaplygin gas,
accelerated expansion, and dark-energy-matter unification, Phys. Rev. D 66
(2002) 043507.

102

https://doi.org/10.1103/PhysRevLett.79.4740
https://doi.org/10.1103/PhysRevD.58.023503
https://arxiv.org/abs/astro-ph/9711102
https://doi.org/10.1103/PhysRevLett.80.1582
https://doi.org/10.1103/PhysRevLett.80.1582
https://doi.org/10.1103/PhysRevLett.81.3067
https://arxiv.org/abs/astro-ph/9806099
https://doi.org/10.1103/PhysRevD.57.4686
https://doi.org/10.1103/PhysRevLett.82.896
https://doi.org/10.1103/PhysRevD.59.123504
https://doi.org/10.1016/S0370-2693(00)01339-3
https://doi.org/10.1016/S0370-2693(00)01339-3
https://arxiv.org/abs/hep-ph/0008205
https://doi.org/10.1103/PhysRevD.62.023511
https://doi.org/10.1103/PhysRevLett.85.4438
https://arxiv.org/abs/astro-ph/0004134
https://doi.org/10.1103/PhysRevD.63.103510
https://doi.org/10.1016/S0370-2693(01)00571-8
https://arxiv.org/abs/gr-qc/0103004
https://doi.org/10.1103/PhysRevD.66.043507
https://doi.org/10.1103/PhysRevD.66.043507


[49] S. Capozziello and L. Z. Fang, Curvature Quintessence, International
Journal of Modern Physics D 11 (2002) 483 [gr-qc/0201033].

[50] S. Capozziello, V. F. Cardone, S. Carloni and A. Troisi, Curvature
Quintessence Matched with Observational Data, International Journal of
Modern Physics D 12 (2003) 1969 [astro-ph/0307018].

[51] S. M. Carroll, V. Duvvuri, M. Trodden and M. S. Turner, Is cosmic
speed-up due to new gravitational physics?, Phys. Rev. D 70 (2004) 043528
[astro-ph/0306438].

[52] L. Amendola, Scaling solutions in general nonminimal coupling theories,
Phys. Rev. D 60 (1999) 043501 [astro-ph/9904120].

[53] J.-P. Uzan, Cosmological scaling solutions of nonminimally coupled scalar
fields, Phys. Rev. D 59 (1999) 123510 [gr-qc/9903004].

[54] T. Chiba, Quintessence, the gravitational constant, and gravity, Phys. Rev.
D 60 (1999) 083508 [gr-qc/9903094].

[55] N. Bartolo and M. Pietroni, Scalar-tensor gravity and quintessence, Phys.
Rev. D 61 (1999) 023518 [hep-ph/9908521].

[56] F. Perrotta, C. Baccigalupi and S. Matarrese, Extended quintessence, Phys.
Rev. D 61 (1999) 023507 [astro-ph/9906066].

[57] G. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D
Minkowski space, Physics Letters B 485 (2000) 208 [hep-th/0005016].

[58] V. Sahni and Y. Shtanov, Braneworld models of dark energy, Journal of
Cosmology and Astroparticle Physics 2003 (2003) 014
[astro-ph/0202346].

[59] N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah, K. Barbary
et al., The Hubble Space Telescope Cluster Supernova Survey. V. Improving
the Dark-energy Constraints above z &gt; 1 and Building an
Early-type-hosted Supernova Sample, ApJ 746 (2012) 85 [1105.3470].

[60] C. Zhang, H. Zhang, S. Yuan, S. Liu, T.-J. Zhang and Y.-C. Sun, Four
new observational H(z) data from luminous red galaxies in the Sloan
Digital Sky Survey data release seven, Research in Astronomy and
Astrophysics 14 (2014) 1221 [1207.4541].

103

https://doi.org/10.1142/S0218271802002025
https://doi.org/10.1142/S0218271802002025
https://arxiv.org/abs/gr-qc/0201033
https://doi.org/10.1142/S0218271803004407
https://doi.org/10.1142/S0218271803004407
https://arxiv.org/abs/astro-ph/0307018
https://doi.org/10.1103/PhysRevD.70.043528
https://arxiv.org/abs/astro-ph/0306438
https://doi.org/10.1103/PhysRevD.60.043501
https://arxiv.org/abs/astro-ph/9904120
https://doi.org/10.1103/PhysRevD.59.123510
https://arxiv.org/abs/gr-qc/9903004
https://doi.org/10.1103/PhysRevD.60.083508
https://doi.org/10.1103/PhysRevD.60.083508
https://arxiv.org/abs/gr-qc/9903094
https://doi.org/10.1103/PhysRevD.61.023518
https://doi.org/10.1103/PhysRevD.61.023518
https://arxiv.org/abs/hep-ph/9908521
https://doi.org/10.1103/PhysRevD.61.023507
https://doi.org/10.1103/PhysRevD.61.023507
https://arxiv.org/abs/astro-ph/9906066
https://doi.org/10.1016/S0370-2693(00)00669-9
https://arxiv.org/abs/hep-th/0005016
https://doi.org/10.1088/1475-7516/2003/11/014
https://doi.org/10.1088/1475-7516/2003/11/014
https://arxiv.org/abs/astro-ph/0202346
https://doi.org/10.1088/0004-637X/746/1/85
https://arxiv.org/abs/1105.3470
https://doi.org/10.1088/1674-4527/14/10/002
https://doi.org/10.1088/1674-4527/14/10/002
https://arxiv.org/abs/1207.4541


[61] J. Simon, L. Verde and R. Jimenez, Constraints on the redshift dependence
of the dark energy potential, Phys. Rev. D71 (2005) 123001
[astro-ph/0412269].

[62] M. Moresco, L. Verde, L. Pozzetti, R. Jimenez and A. Cimatti, New
constraints on cosmological parameters and neutrino properties using the
expansion rate of the Universe to z 1.75, JCAP 1207 (2012) 053
[1201.6658].

[63] A. L. Ratsimbazafy, S. I. Loubser, S. Crawford, C. M. Cress, B. A. Bassett
and P. Nichol, R. C.and Väisänen, Age-dating Luminous Red Galaxies
observed with the Southern African Large Telescope, Mon. Not. Roy.
Astron. Soc. 467 (2017) 3239 [1702.00418].

[64] M. Moresco, Raising the bar: new constraints on the Hubble parameter with
cosmic chronometers at z 2, Mon. Not. Roy. Astron. Soc. 450 (2015) L16
[1503.01116].

[65] T. G. Brainerd, R. D. Blandford and I. Smail, Weak Gravitational Lensing
by Galaxies, ApJ 466 (1996) 623 [astro-ph/9503073].

[66] I. P. dell’Antonio and J. A. Tyson, Galaxy Dark Matter: Galaxy-Galaxy
Lensing in the Hubble Deep Field, ApJL 473 (1996) L17
[astro-ph/9608043].

[67] B. Geiger and P. Schneider, Constraining the mass distribution of cluster
galaxies by weak lensing, Monthly Notices of the Royal Astronomical
Society 295 (1998) 497
[https://academic.oup.com/mnras/article-pdf/295/3/497/18408309/295-3-497.pdf].

[68] P. Natarajan, J.-P. Kneib and I. Smail, Evidence for Tidal Stripping of
Dark Matter Halos in Massive Cluster Lenses, ApJL 580 (2002) L11
[astro-ph/0207049].

[69] T. Erben, H. Hildebrandt, L. Miller, L. van Waerbeke, C. Heymans,
H. Hoekstra et al., CFHTLenS: the Canada-France-Hawaii Telescope
Lensing Survey - imaging data and catalogue products, MNRAS 433 (2013)
2545 [1210.8156].

[70] H. Gao, Z. Li and B. Zhang, FAST RADIO BURST/GAMMA-RAY
BURST COSMOGRAPHY, The Astrophysical Journal 788 (2014) 189.

104

https://doi.org/10.1103/PhysRevD.71.123001
https://arxiv.org/abs/astro-ph/0412269
https://doi.org/10.1088/1475-7516/2012/07/053
https://arxiv.org/abs/1201.6658
https://doi.org/10.1093/mnras/stx301
https://doi.org/10.1093/mnras/stx301
https://arxiv.org/abs/1702.00418
https://doi.org/10.1093/mnrasl/slv037
https://arxiv.org/abs/1503.01116
https://doi.org/10.1086/177537
https://arxiv.org/abs/astro-ph/9503073
https://doi.org/10.1086/310378
https://arxiv.org/abs/astro-ph/9608043
https://doi.org/10.1046/j.1365-8711.1998.01146.x
https://doi.org/10.1046/j.1365-8711.1998.01146.x
https://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/295/3/497/18408309/295-3-497.pdf
https://doi.org/10.1086/345399
https://arxiv.org/abs/astro-ph/0207049
https://doi.org/10.1093/mnras/stt928
https://doi.org/10.1093/mnras/stt928
https://arxiv.org/abs/1210.8156
https://doi.org/10.1088/0004-637x/788/2/189


[71] Z.-W. Zhao, Z.-X. Li, J.-Z. Qi, H. Gao, J.-F. Zhang and X. Zhang,
Cosmological Parameter Estimation for Dynamical Dark Energy Models
with Future Fast Radio Burst Observations, ApJ 903 (2020) 83
[2006.01450].

[72] B. Zhou, X. Li, T. Wang, Y.-Z. Fan and D.-M. Wei, Fast radio bursts as a
cosmic probe?, Phys. Rev. D 89 (2014) 107303 [1401.2927].

[73] L. Verde, Statistical Methods in Cosmology, vol. 800, pp. 147–177. 2010.
10.1007/978-3-642-10598-24.

[74] D. N. Spergel, L. Verde, H. V. Peiris, E. Komatsu, M. R. Nolta, C. L. Bennett
et al., First-Year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Determination of Cosmological Parameters, ApJS 148 (2003) 175
[astro-ph/0302209].

[75] D. N. Spergel, R. Bean, O. Doré, M. R. Nolta, C. L. Bennett, J. Dunkley et al.,
Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:
Implications for Cosmology, ApJS 170 (2007) 377 [astro-ph/0603449].

[76] E. Komatsu, J. Dunkley, M. R. Nolta, C. L. Bennett, B. Gold, G. Hinshaw
et al., Five-Year Wilkinson Microwave Anisotropy Probe Observations:
Cosmological Interpretation, ApJS 180 (2009) 330 [0803.0547].

[77] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont,
C. Baccigalupi et al., Planck 2018 results. VI. Cosmological parameters, A&A
641 (2020) A6 [1807.06209].

[78] E. Hubble, A Relation between Distance and Radial Velocity among
Extra-Galactic Nebulae, Proceedings of the National Academy of Science 15
(1929) 168.

[79] M. Guidry and B. Messer, The physics and astrophysics of type ia supernova
explosions, Frontiers of Physics 8 (2013) 111.

[80] D. M. Scolnic, D. O. Jones, A. Rest, Y. C. Pan, R. Chornock, R. J. Foley et al.,
The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from
Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon
Sample, ApJ 859 (2018) 101 [1710.00845].

[81] D. O. Jones, D. M. Scolnic, A. G. Riess, A. Rest, R. P. Kirshner, E. Berger et al.,
Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS
Supernovae. II. Cosmological Parameters, ApJ 857 (2018) 51 [1710.00846].

105

https://doi.org/10.3847/1538-4357/abb8ce
https://arxiv.org/abs/2006.01450
https://doi.org/10.1103/PhysRevD.89.107303
https://arxiv.org/abs/1401.2927
https://doi.org/10.1086/377226
https://arxiv.org/abs/astro-ph/0302209
https://doi.org/10.1086/513700
https://arxiv.org/abs/astro-ph/0603449
https://doi.org/10.1088/0067-0049/180/2/330
https://arxiv.org/abs/0803.0547
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209
https://doi.org/10.1073/pnas.15.3.168
https://doi.org/10.1073/pnas.15.3.168
https://doi.org/10.1007/s11467-013-0317-9
https://doi.org/10.3847/1538-4357/aab9bb
https://arxiv.org/abs/1710.00845
https://doi.org/10.3847/1538-4357/aab6b1
https://arxiv.org/abs/1710.00846


[82] A. G. Riess, R. P. Kirshner, B. P. Schmidt, S. Jha, P. Challis, P. M. Garnavich
et al., BVRI Light Curves for 22 Type IA Supernovae, The Astronomical Journal
117 (1999) 707 [astro-ph/9810291].

[83] S. Jha, R. P. Kirshner, P. Challis, P. M. Garnavich, T. Matheson, A. M.
Soderberg et al., iUBVRI/ilight curves of 44 type ia supernovae, The
Astronomical Journal 131 (2006) 527.

[84] M. Hicken, P. Challis, S. Jha, R. P. Kirshner, T. Matheson, M. Modjaz et al.,
CfA3: 185 TYPE ia SUPERNOVA LIGHT CURVES FROM THE CfA, The
Astrophysical Journal 700 (2009) 331.

[85] C. Contreras, M. Hamuy, M. M. Phillips, G. Folatelli, N. B. Suntzeff, S. E.
Persson et al., THE CARNEGIE SUPERNOVA PROJECT: FIRST
PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE ia
SUPERNOVAE, The Astronomical Journal 139 (2010) 519.

[86] G. Folatelli, M. M. Phillips, C. R. Burns, C. Contreras, M. Hamuy, W. L.
Freedman et al., THE CARNEGIE SUPERNOVA PROJECT: ANALYSIS OF
THE FIRST SAMPLE OF LOW-REDSHIFT TYPE-ia SUPERNOVAE, The
Astronomical Journal 139 (2009) 120.

[87] M. D. Stritzinger, M. M. Phillips, L. N. Boldt, C. Burns, A. Campillay,
C. Contreras et al., THE CARNEGIE SUPERNOVA PROJECT: SECOND
PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE ia
SUPERNOVAE, The Astronomical Journal 142 (2011) 156.

[88] M. Ganeshalingam, W. Li and A. V. Filippenko, Constraints on dark energy with
the LOSS SN Ia sample, MNRAS 433 (2013) 2240 [1307.0824].

[89] G. Miknaitis, G. Pignata, A. Rest, W. M. Wood-Vasey, S. Blondin, P. Challis
et al., The ESSENCE Supernova Survey: Survey Optimization, Observations,
and Supernova Photometry, ApJ 666 (2007) 674 [astro-ph/0701043].

[90] W. M. Wood-Vasey, G. Miknaitis, C. W. Stubbs, S. Jha, A. G. Riess, P. M.
Garnavich et al., Observational constraints on the nature of dark energy: First
cosmological results from the ESSENCE supernova survey, The Astrophysical
Journal 666 (2007) 694.

[91] G. Narayan, A. Rest, B. E. Tucker, R. J. Foley, W. M. Wood-Vasey, P. Challis
et al., Light Curves of 213 Type Ia Supernovae from the ESSENCE Survey, ApJS
224 (2016) 3 [1603.03823].

106

https://doi.org/10.1086/300738
https://doi.org/10.1086/300738
https://arxiv.org/abs/astro-ph/9810291
https://doi.org/10.1086/497989
https://doi.org/10.1086/497989
https://doi.org/10.1088/0004-637x/700/1/331
https://doi.org/10.1088/0004-637x/700/1/331
https://doi.org/10.1088/0004-6256/139/2/519
https://doi.org/10.1088/0004-6256/139/1/120
https://doi.org/10.1088/0004-6256/139/1/120
https://doi.org/10.1088/0004-6256/142/5/156
https://doi.org/10.1093/mnras/stt893
https://arxiv.org/abs/1307.0824
https://doi.org/10.1086/519986
https://arxiv.org/abs/astro-ph/0701043
https://doi.org/10.1086/518642
https://doi.org/10.1086/518642
https://doi.org/10.3847/0067-0049/224/1/3
https://doi.org/10.3847/0067-0049/224/1/3
https://arxiv.org/abs/1603.03823


[92] A. Conley, J. Guy, M. Sullivan, N. Regnault, P. Astier, C. Balland et al.,
Supernova Constraints and Systematic Uncertainties from the First Three Years
of the Supernova Legacy Survey, ApJS 192 (2011) 1 [1104.1443].

[93] M. Sullivan, J. Guy, A. Conley, N. Regnault, P. Astier, C. Balland et al.,
SNLS3: Constraints on Dark Energy Combining the Supernova Legacy Survey
Three-year Data with Other Probes, ApJ 737 (2011) 102 [1104.1444].

[94] J. A. Frieman, B. Bassett, A. Becker, C. Choi, D. Cinabro, F. DeJongh et al.,
The Sloan Digital Sky Survey-II Supernova Survey: Technical Summary, The
Astronomical Journal 135 (2008) 338 [0708.2749].

[95] R. Kessler, A. C. Becker, D. Cinabro, J. Vanderplas, J. A. Frieman, J. Marriner
et al., First-Year Sloan Digital Sky Survey-II Supernova Results: Hubble Diagram
and Cosmological Parameters, ApJS 185 (2009) 32 [0908.4274].

[96] M. Sako, B. Bassett, A. C. Becker, P. J. Brown, H. Campbell, R. Wolf et al., The
Data Release of the Sloan Digital Sky Survey-II Supernova Survey, PASP 130
(2018) 064002 [1401.3317].

[97] A. Rest, D. Scolnic, R. J. Foley, M. E. Huber, R. Chornock, G. Narayan et al.,
Cosmological Constraints from Measurements of Type Ia Supernovae Discovered
during the First 1.5 yr of the Pan-STARRS1 Survey, ApJ 795 (2014) 44
[1310.3828].

[98] D. Scolnic, A. Rest, A. Riess, M. E. Huber, R. J. Foley, D. Brout et al.,
Systematic Uncertainties Associated with the Cosmological Analysis of the First
Pan-STARRS1 Type Ia Supernova Sample, ApJ 795 (2014) 45 [1310.3824].

[99] N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah, K. Barbary et al.,
The Hubble Space Telescope Cluster Supernova Survey. V. Improving the
Dark-energy Constraints above z > 1 and Building an Early-type-hosted
Supernova Sample, ApJ 746 (2012) 85 [1105.3470].

[100] A. G. Riess, L.-G. Strolger, J. Tonry, S. Casertano, H. C. Ferguson, B. Mobasher
et al., Type ia supernova discoveries atiz/i&gt 1 from theihubble space
telescope/i: Evidence for past deceleration and constraints on dark energy
evolution, The Astrophysical Journal 607 (2004) 665.

[101] A. G. Riess, L.-G. Strolger, S. Casertano, H. C. Ferguson, B. Mobasher, B. Gold
et al., New Hubble Space Telescope Discoveries of Type Ia Supernovae at z >= 1:
Narrowing Constraints on the Early Behavior of Dark Energy, ApJ 659 (2007)
98 [astro-ph/0611572].

107

https://doi.org/10.1088/0067-0049/192/1/1
https://arxiv.org/abs/1104.1443
https://doi.org/10.1088/0004-637X/737/2/102
https://arxiv.org/abs/1104.1444
https://doi.org/10.1088/0004-6256/135/1/338
https://doi.org/10.1088/0004-6256/135/1/338
https://arxiv.org/abs/0708.2749
https://doi.org/10.1088/0067-0049/185/1/32
https://arxiv.org/abs/0908.4274
https://doi.org/10.1088/1538-3873/aab4e0
https://doi.org/10.1088/1538-3873/aab4e0
https://arxiv.org/abs/1401.3317
https://doi.org/10.1088/0004-637X/795/1/44
https://arxiv.org/abs/1310.3828
https://doi.org/10.1088/0004-637X/795/1/45
https://arxiv.org/abs/1310.3824
https://doi.org/10.1088/0004-637X/746/1/85
https://arxiv.org/abs/1105.3470
https://doi.org/10.1086/383612
https://doi.org/10.1086/510378
https://doi.org/10.1086/510378
https://arxiv.org/abs/astro-ph/0611572


[102] S. A. Rodney, A. G. Riess, L.-G. Strolger, T. Dahlen, O. Graur, S. Casertano
et al., TYPE ia SUPERNOVA RATE MEASUREMENTS TO REDSHIFT 2.5
FROM CANDELS: SEARCHING FOR PROMPT EXPLOSIONS IN THE
EARLY UNIVERSE, The Astronomical Journal 148 (2014) 13.

[103] O. Graur, S. A. Rodney, D. Maoz, A. G. Riess, S. W. Jha, M. Postman et al.,
Type-Ia Supernova Rates to Redshift 2.4 from CLASH: The Cluster Lensing And
Supernova Survey with Hubble, ApJ 783 (2014) 28 [1310.3495].

[104] A. G. Riess, S. A. Rodney, D. M. Scolnic, D. L. Shafer, L.-G. Strolger, H. C.
Ferguson et al., Type Ia Supernova Distances at Redshift >1.5 from the Hubble
Space Telescope Multi-cycle Treasury Programs: The Early Expansion Rate, ApJ
853 (2018) 126 [1710.00844].

[105] O. Farooq, F. R. Madiyar, S. Crandall and B. Ratra, Hubble parameter
measurement constraints on the redshift of the deceleration-acceleration
transition, dynamical dark energy, and space curvature, The Astrophysical
Journal 835 (2017) 26.

[106] O. Farooq and B. Ratra, Hubble parameter measurement constraints on the
cosmological deceleration-acceleration transition redshift, The Astrophysical
Journal Letters 766 (2013) L7.

[107] O. Farooq, D. Mania and B. Ratra, Hubble parameter measurement constraints
on dark energy, The Astrophysical Journal 764 (2013) 138.

[108] L. Samushia and B. Ratra, Cosmological constraints from hubble parameter
versus redshift data, The Astrophysical Journal Letters 650 (2006) L5.

[109] D. Stern, R. Jimenez, L. Verde, M. Kamionkowski and S. A. Stanford, Cosmic
chronometers: constraining the equation of state of dark energy. I: H ( z )
measurements, Journal of Cosmology and Astroparticle Physics 2010 (2010) 008.

[110] M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C. Maraston, L. Verde et al., A
6% measurement of the hubble parameter at z∼0.45: direct evidence of the epoch
of cosmic re-acceleration, Journal of Cosmology and Astroparticle Physics 2016
(2016) 014.

[111] M. Moresco, Raising the bar: new constraints on the Hubble parameter with
cosmic chronometers at z ∼ 2 , Monthly Notices of the Royal Astronomical
Society: Letters 450 (2015) L16.

108

https://doi.org/10.1088/0004-6256/148/1/13
https://doi.org/10.1088/0004-637X/783/1/28
https://arxiv.org/abs/1310.3495
https://doi.org/10.3847/1538-4357/aaa5a9
https://doi.org/10.3847/1538-4357/aaa5a9
https://arxiv.org/abs/1710.00844
https://doi.org/10.1088/1475-7516/2016/05/014
https://doi.org/10.1088/1475-7516/2016/05/014
https://doi.org/10.1093/mnrasl/slv037
https://doi.org/10.1093/mnrasl/slv037


[112] M. Moresco, A. Cimatti, R. Jimenez, L. Pozzetti, G. Zamorani, M. Bolzonella
et al., Improved constraints on the expansion rate of the universe up to z ∼ 1.1
from the spectroscopic evolution of cosmic chronometers, Journal of Cosmology
and Astroparticle Physics 2012 (2012) 006.

[113] C.-H. Chuang and Y. Wang, Modelling the anisotropic two-point galaxy
correlation function on small scales and single-probe measurements of
H(z), DA(z) and f(z)σ8(z) from the sloan digital sky survey DR7 luminous red
galaxies, Monthly Notices of the Royal Astronomical Society 435 (2013) 255.

[114] Y. Chen and B. Ratra, Hubble parameter data constraints on dark energy,
Physics Letters B 703 (2011) 406 .

[115] R. Jimenez and A. Loeb, Constraining Cosmological Parameters Based on
Relative Galaxy Ages, ApJ 573 (2002) 37 [astro-ph/0106145].

[116] J. Peacock, R. Jimenez, J. Dunlop, I. Waddington, H. Spinrad, D. Stern et al.,
Old high-redshift galaxies and primordial density fluctuation spectra, Monthly
Notices of the Royal Astronomical Society 296 (1998) 1089
[https://academic.oup.com/mnras/article-pdf/296/4/1089/18408369/296-4-1089.pdf].

[117] J. S. Alcaniz and J. A. S. Lima, Dark energy and the epoch of galaxy formation,
The Astrophysical Journal 550 (2001) L133.

[118] J. V. Wall and C. R. Jenkins, Practical Statistics for Astronomers, Cambridge
Observing Handbooks for Research Astronomers. Cambridge University Press,
2003, 10.1017/CBO9780511536618.

[119] Bayesian Methods in Cosmology. Cambridge University Press, 2009,
10.1017/CBO9780511802461.

[120] R. Trotta, Applications of Bayesian model selection to cosmological parameters,
Monthly Notices of the Royal Astronomical Society 378 (2007) 72
[https://academic.oup.com/mnras/article-pdf/378/1/72/3961005/mnras0378-0072.pdf].

[121] A. R. Liddle, Information criteria for astrophysical model selection, Monthly
Notices of the Royal Astronomical Society: Letters 377 (2007) L74
[https://academic.oup.com/mnrasl/article-pdf/377/1/L74/4044139/377-1-L74.pdf].

[122] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller,
Equation of State Calculations by Fast Computing Machines, 21 (1953) 1087.

109

https://doi.org/10.1093/mnras/stt1290
https://doi.org/https://doi.org/10.1016/j.physletb.2011.08.035
https://doi.org/10.1086/340549
https://arxiv.org/abs/astro-ph/0106145
https://doi.org/10.1046/j.1365-8711.1998.01516.x
https://doi.org/10.1046/j.1365-8711.1998.01516.x
https://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/296/4/1089/18408369/296-4-1089.pdf
https://doi.org/10.1086/319642
https://doi.org/10.1017/CBO9780511536618
https://doi.org/10.1017/CBO9780511802461
https://doi.org/10.1111/j.1365-2966.2007.11738.x
https://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/378/1/72/3961005/mnras0378-0072.pdf
https://doi.org/10.1111/j.1745-3933.2007.00306.x
https://doi.org/10.1111/j.1745-3933.2007.00306.x
https://arxiv.org/abs/https://academic.oup.com/mnrasl/article-pdf/377/1/L74/4044139/377-1-L74.pdf
https://doi.org/10.1063/1.1699114


[123] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their
applications, Biometrika 57 (1970) 97
[https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf].

[124] A. Joseph, Markov Chain Monte Carlo Methods in Quantum Field Theories: A
Modern Primer, SpringerBriefs in Physics, Springer, 12, 2019, 1912.10997,
DOI.

[125] M. D. Hoffman and A. Gelman, The No-U-Turn Sampler: Adaptively Setting
Path Lengths in Hamiltonian Monte Carlo, arXiv e-prints (2011)
arXiv:1111.4246 [1111.4246].

[126] D. Huterer and G. Starkman, Parametrization of Dark-Energy Properties: A
Principal-Component Approach, Phys. Rev. Lett. 90 (2003) 031301
[astro-ph/0207517].

[127] C. Clarkson and C. Zunckel, Direct Reconstruction of Dark Energy, Phys. Rev.
Lett. 104 (2010) 211301 [1002.5004].

[128] D. Huterer and A. Cooray, Uncorrelated estimates of dark energy evolution,
Phys. Rev. D 71 (2005) 023506 [astro-ph/0404062].

[129] W. Zheng and H. Li, Constraints on parameterized dark energy properties from
new observations with principal component analysis, Astropart. Phys. 86 (2017)
1.

[130] E. E. O. Ishida and R. S. de Souza, Hubble parameter reconstruction from a
principal component analysis: minimizing the bias, A&A 527 (2011) A49
[1012.5335].

[131] H.-F. Qin, X.-B. Li, H.-Y. Wan and T.-J. Zhang, Reconstructing equation of
state of dark energy with principal component analysis, 1501.02971.

[132] Z.-E. Liu, H.-R. Yu, T.-J. Zhang and Y.-K. Tang, Direct reconstruction of
dynamical dark energy from observational Hubble parameter data, Phys. Dark
Univ. 14 (2016) 21 [1501.04176].

[133] S. Nesseris and J. García-Bellido, Comparative analysis of model-independent
methods for exploring the nature of dark energy, Phys. Rev. D 88 (2013) 063521
[1306.4885].

[134] R. G. Crittenden, L. Pogosian and G.-B. Zhao, Investigating dark energy
experiments with principal components, JCAP 0912 (2009) 025
[astro-ph/0510293].

110

https://doi.org/10.1093/biomet/57.1.97
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf
https://arxiv.org/abs/1912.10997
https://doi.org/10.1007/978-3-030-46044-0
https://arxiv.org/abs/1111.4246
https://doi.org/10.1103/PhysRevLett.90.031301
https://arxiv.org/abs/astro-ph/0207517
https://doi.org/10.1103/PhysRevLett.104.211301
https://doi.org/10.1103/PhysRevLett.104.211301
https://arxiv.org/abs/1002.5004
https://doi.org/10.1103/PhysRevD.71.023506
https://arxiv.org/abs/astro-ph/0404062
https://doi.org/10.1016/j.astropartphys.2016.10.005
https://doi.org/10.1016/j.astropartphys.2016.10.005
https://doi.org/10.1051/0004-6361/201015281
https://arxiv.org/abs/1012.5335
https://arxiv.org/abs/1501.02971
https://doi.org/10.1016/j.dark.2016.08.003
https://doi.org/10.1016/j.dark.2016.08.003
https://arxiv.org/abs/1501.04176
https://doi.org/10.1103/PhysRevD.88.063521
https://arxiv.org/abs/1306.4885
https://doi.org/10.1088/1475-7516/2009/12/025
https://arxiv.org/abs/astro-ph/0510293


[135] V. Miranda and C. Dvorkin, Model-independent predictions for smooth cosmic
acceleration scenarios, Phys. Rev. D 98 (2018) 043537 [1712.04289].

[136] L. Hart and J. Chluba, Improved model-independent constraints on the
recombination era and development of a direct projection method, arXiv e-prints
(2019) arXiv:1912.04682 [1912.04682].

[137] A. Hojjati, G.-B. Zhao, L. Pogosian, A. Silvestri, R. Crittenden and K. Koyama,
Cosmological tests of general relativity: A principal component analysis, Phys.
Rev. D 85 (2012) 043508 [1111.3960].

[138] R. Nair and S. Jhingan, Is dark energy evolving?, Journal of Cosmology and
Astroparticle Physics 2013 (2013) 049 [1212.6644].

[139] L. Hart and J. Chluba, Varying fundamental constants principal component
analysis: additional hints about the Hubble tension, 2107.12465.

[140] H.-R. Yu, S. Yuan and T.-J. Zhang, Nonparametric reconstruction of dynamical
dark energy via observational Hubble parameter data, Phys. Rev. D 88 (2013)
103528 [1310.0870].

[141] D. S. Sivia and J. Skilling, Data Analysis - A Bayesian Tutorial, Oxford Science
Publications. Oxford University Press, 2nd ed., 2006.

[142] C. L. Steinhardt and A. S. Jermyn, Nonparametric Methods in Astronomy:
Think, Regress, Observe—Pick Any Three, PASP 130 (2018) 023001
[1801.06545].

[143] A. Montiel, R. Lazkoz, I. Sendra, C. Escamilla-Rivera and V. Salzano,
Nonparametric reconstruction of the cosmic expansion with local regression
smoothing and simulation extrapolation, Phys. Rev. D 89 (2014) 043007
[1401.4188].

[144] J. E. González, J. S. Alcaniz and J. C. Carvalho, Non-parametric reconstruction
of cosmological matter perturbations, Journal of Cosmology and Astroparticle
Physics 2016 (2016) 016 [1602.01015].

[145] P. L. Taylor, T. D. Kitching and J. D. McEwen, Nonparametric cosmology with
cosmic shear, Phys. Rev. D 99 (2019) 043532 [1810.10552].

[146] N. Porqueres, T. A. Enßlin, M. Greiner, V. Böhm, S. Dorn, P. Ruiz-Lapuente
et al., Cosmic expansion history from SNe Ia data via information field theory:
the charm code, A&A 599 (2017) A92 [1608.04007].

111

https://doi.org/10.1103/PhysRevD.98.043537
https://arxiv.org/abs/1712.04289
https://arxiv.org/abs/1912.04682
https://doi.org/10.1103/PhysRevD.85.043508
https://doi.org/10.1103/PhysRevD.85.043508
https://arxiv.org/abs/1111.3960
https://doi.org/10.1088/1475-7516/2013/02/049
https://doi.org/10.1088/1475-7516/2013/02/049
https://arxiv.org/abs/1212.6644
https://arxiv.org/abs/2107.12465
https://doi.org/10.1103/PhysRevD.88.103528
https://doi.org/10.1103/PhysRevD.88.103528
https://arxiv.org/abs/1310.0870
https://doi.org/10.1088/1538-3873/aaa22a
https://arxiv.org/abs/1801.06545
https://doi.org/10.1103/PhysRevD.89.043007
https://arxiv.org/abs/1401.4188
https://doi.org/10.1088/1475-7516/2016/04/016
https://doi.org/10.1088/1475-7516/2016/04/016
https://arxiv.org/abs/1602.01015
https://doi.org/10.1103/PhysRevD.99.043532
https://arxiv.org/abs/1810.10552
https://doi.org/10.1051/0004-6361/201629527
https://arxiv.org/abs/1608.04007


[147] A. Diaz Rivero, V. Miranda and C. Dvorkin, Observable predictions for
massive-neutrino cosmologies with model-independent dark energy, Phys. Rev. D
100 (2019) 063504 [1903.03125].

[148] R. Arjona and S. Nesseris, What can machine learning tell us about the
background expansion of the Universe?, Phys. Rev. D 101 (2020) 123525
[1910.01529].

[149] A. Gómez-Valent and L. Amendola, H0 from cosmic chronometers and Type Ia
supernovae, with Gaussian Processes and the novel Weighted Polynomial
Regression method, Journal of Cosmology and Astroparticle Physics 2018 (2018)
051 [1802.01505].

[150] M. Sahlen, A. R. Liddle and D. Parkinson, Direct reconstruction of the
quintessence potential, Phys. Rev. D72 (2005) 083511 [astro-ph/0506696].

[151] T. Holsclaw, U. Alam, B. Sansó, H. Lee, K. Heitmann, S. Habib et al.,
Nonparametric Dark Energy Reconstruction from Supernova Data, prl 105
(2010) 241302 [1011.3079].

[152] A. Shafieloo, A. G. Kim and E. V. Linder, Gaussian process cosmography, prd 85
(2012) 123530 [1204.2272].

[153] F. Gerardi, M. Martinelli and A. Silvestri, Reconstruction of the Dark Energy
equation of state from latest data: the impact of theoretical priors, Journal of
Cosmology and Astroparticle Physics 2019 (2019) 042 [1902.09423].

[154] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.

[155] A. Bonilla, S. Kumar and R. C. Nunes, Measurements of H0 and reconstruction
of the dark energy properties from a model-independent joint analysis, arXiv
e-prints (2020) arXiv:2011.07140 [2011.07140].

[156] J. Shlens, A Tutorial on Principal Component Analysis, arXiv e-prints (2014)
arXiv:1404.1100 [1404.1100].

[157] Kendall, A NEW MEASURE OF RANK CORRELATION, Biometrika 30
(1938) 81
[https://academic.oup.com/biomet/article-pdf/30/1-2/81/423380/30-1-2-81.pdf].

[158] R Core Team, R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2013.

112

https://doi.org/10.1103/PhysRevD.100.063504
https://doi.org/10.1103/PhysRevD.100.063504
https://arxiv.org/abs/1903.03125
https://doi.org/10.1103/PhysRevD.101.123525
https://arxiv.org/abs/1910.01529
https://doi.org/10.1088/1475-7516/2018/04/051
https://doi.org/10.1088/1475-7516/2018/04/051
https://arxiv.org/abs/1802.01505
https://doi.org/10.1103/PhysRevD.72.083511
https://arxiv.org/abs/astro-ph/0506696
https://doi.org/10.1103/PhysRevLett.105.241302
https://doi.org/10.1103/PhysRevLett.105.241302
https://arxiv.org/abs/1011.3079
https://doi.org/10.1103/PhysRevD.85.123530
https://doi.org/10.1103/PhysRevD.85.123530
https://arxiv.org/abs/1204.2272
https://doi.org/10.1088/1475-7516/2019/07/042
https://doi.org/10.1088/1475-7516/2019/07/042
https://arxiv.org/abs/1902.09423
https://arxiv.org/abs/2011.07140
https://arxiv.org/abs/1404.1100
https://doi.org/10.1093/biomet/30.1-2.81
https://doi.org/10.1093/biomet/30.1-2.81
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/30/1-2/81/423380/30-1-2-81.pdf


[159] J. Görtler, T. Spinner, D. Streeb, D. Weiskopf and O. Deussen,
Uncertainty-Aware Principal Component Analysis, arXiv e-prints (2019)
arXiv:1905.01127 [1905.01127].

[160] L. Guttman, On smith’s paper on "’randomness of error’ in reproducible scales",
Educational and Psychological Measurement 13 (1953) 505
[https://doi.org/10.1177/001316445301300315].

[161] C. Ma and T.-J. Zhang, Power of Observational Hubble Parameter Data: A
Figure of Merit Exploration, ApJ 730 (2011) 74 [1007.3787].

[162] A. V. Pan and U. Alam, Reconstructing Dark Energy : A Comparison of
Cosmological Parameters, arXiv e-prints (2010) arXiv:1012.1591 [1012.1591].

[163] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont,
C. Baccigalupi et al., Planck 2018 results. VI. Cosmological parameters, arXiv
e-prints (2018) arXiv:1807.06209 [1807.06209].

[164] M. Vazirnia and A. Mehrabi, Nonparametric modeling of cosmological database
on the χ2 distribution, Phys. Rev. D 104 (2021) 123530 [2107.11539].

[165] D. Huterer and M. S. Turner, Prospects for probing the dark energy via
supernovadistance measurements, Phys. Rev. D60 (1999) 081301
[astro-ph/9808133].

[166] A. Mukherjee, N. Paul and H. K. Jassal, Constraining the dark energy
statefinder hierarchy in a kinematic approach, Journal of Cosmology and
Astro-Particle Physics 2019 (2019) 005 [1809.08849].

[167] B. S. Haridasu, V. V. Luković, M. Moresco and N. Vittorio, An improved
model-independent assessment of the late-time cosmic expansion, Journal of
Cosmology and Astro-Particle Physics 2018 (2018) 015 [1805.03595].

[168] A. Singh, A. Sangwan and H. K. Jassal, Low redshift observational constraints on
tachyon models of dark energy, JCAP 1904 (2019) 047 [1811.07513].

[169] H. K. Jassal, A comparison of perturbations in fluid and scalar field models of
dark energy, Phys. Rev. D79 (2009) 127301 [0903.5370].

[170] S. Nesseris and L. Perivolaropoulos, Comparison of cosmological models using
recent supernova data, Phys. Rev. D 70 (2004) 043531 [astro-ph/0401556].

[171] S. Nesseris and L. Perivolaropoulos, Comparison of the legacy and gold type Ia
supernovae dataset constraints on dark energy models, Phys. Rev. D 72 (2005)
123519 [astro-ph/0511040].

113

https://arxiv.org/abs/1905.01127
https://doi.org/10.1177/001316445301300315
https://arxiv.org/abs/https://doi.org/10.1177/001316445301300315
https://doi.org/10.1088/0004-637X/730/2/74
https://arxiv.org/abs/1007.3787
https://arxiv.org/abs/1012.1591
https://arxiv.org/abs/1807.06209
https://doi.org/10.1103/PhysRevD.104.123530
https://arxiv.org/abs/2107.11539
https://doi.org/10.1103/PhysRevD.60.081301
https://arxiv.org/abs/astro-ph/9808133
https://doi.org/10.1088/1475-7516/2019/01/005
https://doi.org/10.1088/1475-7516/2019/01/005
https://arxiv.org/abs/1809.08849
https://doi.org/10.1088/1475-7516/2018/10/015
https://doi.org/10.1088/1475-7516/2018/10/015
https://arxiv.org/abs/1805.03595
https://doi.org/10.1088/1475-7516/2019/04/047
https://arxiv.org/abs/1811.07513
https://doi.org/10.1103/PhysRevD.79.127301
https://arxiv.org/abs/0903.5370
https://doi.org/10.1103/PhysRevD.70.043531
https://arxiv.org/abs/astro-ph/0401556
https://doi.org/10.1103/PhysRevD.72.123519
https://doi.org/10.1103/PhysRevD.72.123519
https://arxiv.org/abs/astro-ph/0511040


[172] S. Nesseris and L. Perivolaropoulos, Crossing the phantom divide: theoretical
implications and observational status, Journal of Cosmology and Astroparticle
Physics 2007 (2007) 018 [astro-ph/0610092].

[173] A. Sangwan, A. Tripathi and H. K. Jassal, Observational constraints on
quintessence models of dark energy, arXiv e-prints (2018) arXiv:1804.09350
[1804.09350].

[174] R. Sharma, A. Mukherjee and H. K. Jassal, Reconstruction of late-time
cosmology using Principal Component Analysis, arXiv e-prints (2020)
arXiv:2004.01393 [2004.01393].

[175] R. Nair and S. Jhingan, Is dark energy evolving?, Journal of Cosmology and
Astroparticle Physics 2013 (2013) 049 [1212.6644].

[176] L. Hart and J. Chluba, Varying fundamental constants principal component
analysis: additional hints about the Hubble tension, MNRAS 510 (2022) 2206
[2107.12465].

[177] E. Kreyszig, H. Kreyszig and E. J. Norminton, Advanced engineering
mathematics. Wiley, Hoboken, N.J., tenth ed., 2011.

[178] J. Salvatier, T. V. Wiecki and C. Fonnesbeck, Probabilistic programming in
python using pymc3, PeerJ Computer Science 2 (2016) e55.

[179] A. Gelman and D. B. Rubin, Inference from iterative simulation using multiple
sequences, Statistical Science 7 (1992) 457.

[180] M. Chevallier and D. Polarski, Accelerating Universes with Scaling Dark Matter,
International Journal of Modern Physics D 10 (2001) 213 [gr-qc/0009008].

[181] E. V. Linder, Exploring the Expansion History of the Universe, Phys. Rev. Lett.
90 (2003) 091301 [astro-ph/0208512].

[182] S. P. Brooks and A. Gelman, General methods for monitoring convergence of
iterative simulations, Journal of Computational and Graphical Statistics 7 (1998)
434
[https://www.tandfonline.com/doi/pdf/10.1080/10618600.1998.10474787].

[183] M. K. Cowles and B. P. Carlin, Markov chain monte carlo convergence
diagnostics: A comparative review, Journal of the American Statistical
Association 91 (1996) 883
[https://www.tandfonline.com/doi/pdf/10.1080/01621459.1996.10476956].

114

https://doi.org/10.1088/1475-7516/2007/01/018
https://doi.org/10.1088/1475-7516/2007/01/018
https://arxiv.org/abs/astro-ph/0610092
https://arxiv.org/abs/1804.09350
https://arxiv.org/abs/2004.01393
https://doi.org/10.1088/1475-7516/2013/02/049
https://doi.org/10.1088/1475-7516/2013/02/049
https://arxiv.org/abs/1212.6644
https://doi.org/10.1093/mnras/stab2777
https://arxiv.org/abs/2107.12465
https://doi.org/10.1142/S0218271801000822
https://arxiv.org/abs/gr-qc/0009008
https://doi.org/10.1103/PhysRevLett.90.091301
https://doi.org/10.1103/PhysRevLett.90.091301
https://arxiv.org/abs/astro-ph/0208512
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1080/10618600.1998.10474787
https://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/10618600.1998.10474787
https://doi.org/10.1080/01621459.1996.10476956
https://doi.org/10.1080/01621459.1996.10476956
https://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/01621459.1996.10476956

	Introduction
	An overview
	General Theory of Relativity and the Expanding Universe
	Hubble law
	Distance measurements and Cosmological datasets
	Comoving distance
	Luminosity distance
	Angular diameter distance

	Observational Datasets
	Supernovae Type Ia
	Hubble parameter dataset

	Statistical methods - A brief review
	Bayesian model selection and Inference of the parameters
	Bayes' theorem
	Bayesian model selection
	Information Criteria
	Parameter estimation using Monte Carlo sampling

	Application of Principal Component Analysis in Cosmology
	Introductory idea and the algorithm of Principal Component Analysis
	The road-map of Principal Component Analysis


	Reconstruction using Principal Component Analysis
	Methodology of reconstruction through Principal Component Analysis
	Reconstruction of dark energy equation of state
	Derived Approach
	Direct Approach

	Reconstruction of late time cosmology by Principal Component Analysis
	Correlation table
	Derived approach
	Direct approach

	Summary

	Principal Component Analysis and Markov Chain Monte Carlo Method- A combined analysis
	Introduction
	Methodology and the results
	Reconstruction of functional form of the dependent variable in terms of the independent variable
	No-U-Turn sampler
	Maximum likelihood calculation with PCA data-points

	Conclusion

	Summary and Future Directions
	Maximum Likelihood Estimation with Hamiltonian Monte Carlo and Metropolis Hasting sampling technique on the reconstruction of Principal Component Analysis

