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Abstract

Quantum field theory in curved spacetime is an important framework not only from the point of view

of understanding conceptual notions like particle creation, Hawking radiation, etc., but it has turned out

to be useful in explaining many cosmological observations. Particularly, the quantization of the metric

perturbations during the inflationary phase of the Universe seems to provide a good explanation for the

observed temperature anisotropies in the cosmic microwave background. This thesis explores different

aspects of quantum field theories in cosmologically important FRW spacetimes. In the semiclassical

gravity approach, one is mainly concerned with the expectation value of the stress-energy operator and

ignores the quantum fluctuations in it assuming them to be insignificant. However, these considerations,

based solely on the first-order effects, are bound to fail in case the quantum fluctuations are significant.

The stochastic gravity paradigm considers these fluctuations and quantifies them by the noise kernel. We

show that, for scalar fields in de Sitter spacetime, the late time limit of the noise kernel shows a transition

from vanishing to divergent behavior as the ratio, m/H, is changed in the range [0,3/2]. Similarly, the

noise kernel is found to diverge for massless scalar fields in certain FRW spacetimes. In those cases

in which the noise kernel is non-vanishing (and comparable to the expectation values) or divergent, the

first-order semiclassical analyses are expected to break down and must be supplemented with the second-

order effects in order to make any robust predictions. For massive spinor fields in de Sitter spacetime,

the late time limit of the noise kernel vanishes irrespective of the mass of the spinor field. As far as

massless spinor fields in FRW spacetimes are concerned, the late time limit of the noise kernel vanishes

for expanding FRW spacetimes whereas it diverges for contracting FRW spacetimes. In addition to

the noise kernel behavior, one can also study the dynamics of quantum fields in FRW spacetimes by

coupling them with Unruh deWitt (UdW) detectors. This thesis includes analysis for the case of both

conventional as well as derivatively coupled UdW detectors with a particular focus on studying the

infrared divergences in FRW spacetimes. We find that the infrared divergence of massless scalar fields

in de Sitter spacetime contributes to the response rate of conventional UdW detector whereas it does not

for derivatively coupled UdW detector. However, for massless scalar fields in nearly matter-dominated

spacetimes, the infrared divergences contribute to the rates of both types of UdW detectors. Applying

these results to the coupling of gravitational waves (GWs) with a hydrogen atom, which takes the form of

a generalized derivative UdW coupling, it is argued that the quantized GWs lead to very rapid transitions

within the states of a hydrogen atom while the Universe passes through matter-dominated phase in the

expansion history. These conclusions provide an opportunity to witness quantum effects in relatively

later phases of the Universe as opposed to the quantum effects studied mostly for the early inflationary
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phase of the Universe. These investigations suggest that the cosmological observations corresponding

to the later phases of the Universe may also contain potential quantum signatures.
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Chapter 1

Introduction

The proposal of the existence of an exponentially accelerating inflationary phase [1, 2] for the early

Universe provides mechanisms to explain a number of cosmological observations, for example, the

temperature anisotropies in the cosmic microwave background (CMB), the large-scale structure of the

Universe, etc. [3, 4]. For the Universe to undergo an exponentially accelerating phase, it is required

that the fluid (or matter) driving the Universe through such a phase has negative pressure. The most

commonly used model for inflation assumes that the matter content of the Universe during inflation is

carried by a scalar field (called inflaton) in the presence of a potential [5–8]. By imposing that the form

of the potential satisfies certain ‘slow roll’ conditions, it can be ensured that the scalar field drives the

Universe through a (near de Sitter) inflationary phase. Inflation provides resolutions to many issues as-

sociated with the hot big bang model of the Universe like the horizon problem, flatness problem, etc.

[5, 8, 9]. However, the most remarkable predictions, that inflation provides, come from analyses which

combine the notions of both quantum theory and general relativity. The inflaton field is taken to be inde-

pendent of spatial coordinates, which gives rise to the average homogeneous and isotropic dynamics of

the Universe. On the other hand, the large-scale structure of the Universe represents its deviations from

a purely homogeneous and isotropic evolution. These deviations can be accounted for by considering

perturbations over the otherwise homogeneous and isotropic spacetime and the corresponding matter

content of the Universe [5–8, 10]. In fact, quantum mechanical treatment of these perturbations during

inflation gives rise to predictions which fit well with the observations like the temperature anisotropies

in the CMB, the large-scale structure of the Universe, etc [3, 4]. Hence, this success of the inflation-

ary paradigm suggests a quantum mechanical origin of the present day Universe. Since these metric

and matter perturbations or their combinations evolve over the (near de Sitter) inflationary phase of the
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early Universe, treating them quantum mechanically requires us to apply the concepts of quantum field

theory in curved spacetime. Thus, we see that the early Universe provides us with a very rare situa-

tion where both quantum theory and relativity are important and one can treat the early universe as a

test bed for theories which try to build a unified framework for gravity and quantum theory. The pre-

dictions that one obtains by considering quantum treatment of perturbations, depend upon the choice

of initial state in which the perturbations are placed at the start of the inflation. The choice of initial

state for perturbations amounts to assuming specific initial conditions for the Universe. For example,

by placing the perturbations in the ’Bunch-Davies’ vacuum [11–13], we obtain a nearly scale-invariant

power spectra for these perturbations which matches well with many cosmological observations like

CMB anisotropies, etc. [5, 7, 8]. Different choices [14–16] for the initial state like non Bunch-Davies

vacua or non-vacuous states can also be made, provided that the chosen initial state gives an almost

scale-invariant power spectrum with some small characteristic features of its own. One can expect to

be able to distinguish between different initial states only with more detailed cosmological data which

would put further constraints on the allowed initial states. Apart from the choice of initial state for

perturbations, there also exists a plethora of different inflationary models which try to generate the ob-

servationally found near scale-invariant power spectrum for CMB anisotropies. These different models

[17] also predict their own additional characteristic features for the cosmological data and hence, can

be constrained with the availability of detailed data. Therefore, there are many directions in which the

quantum origin of our Universe is being explored [5, 8, 17, 18]. In this chapter, we review some of

these aspects of early Universe physics. We discuss how the early Universe provides a scenario where

both general relativity and quantum mechanics play an important role and gives rise to results that can

be observationally tested. Particularly, we recall the basics of cosmological perturbation theory and the

decomposition of metric and matter perturbations into scalar, vector and tensor parts. By treating these

perturbations upto leading order and taking the case of a single scalar field driven inflation, we discuss

the dynamics of both scalar and tensor perturbations. We consider the quantization of both scalar and

tensor perturbations and their corresponding scale-invariant power spectra. The resultant power spectra

for scalar and tensor perturbations are related to the temperature and polarization maps, respectively, of

the CMB data. In addition to these considerations, there are also other related directions where quantum

effects in early Universe physics are expected to play an important role, for example, the transPlanck-

ian issues in early Universe physics, primordial magnetogenesis, effects of non-vacuous states for the

fluctuations, etc. We provide a brief overview of some of these avenues in early Universe physics where

quantum effects are important before going on to discuss a potential revival of quantum correlations in

late time cosmology.

2



1.1 Cosmological perturbation theory

Observations [3, 4, 19] tell us that the homogeneity and isotropy of the Universe is only an approxi-

mation. There exist perturbations over the otherwise homogeneous and isotropic FRW geometry of the

Universe and these perturbations are believed to give rise to galaxies, stars, etc., that we observe in the

Universe and also the temperature anisotropy in the cosmic microwave background (CMB). The mag-

nitude of these perturbations is, however, very small. For example, the temperature variations relative

to the average temperature in the CMB are of the order of 10−5 [19]. Therefore, one can treat these

departures from the homogeneous and isotropic FRW geometry by employing perturbation theory and

maintaining terms upto first order in the perturbations. The perturbed FRW geometry of the spacetime

can be written as follows [5–8, 10]

ds2 = a2
(

ηµν +hµν

)
dxµdxν

= a2
{
− (1+2φ)dη

2 +2(∂iB−Si)dηdxi +[(1−2ψ)δi j +2∂i∂ jE +2∂(iFj)+hi j]dxidx j
}
,

(1.1)

where ∂ iSi = ∂ iFi = ∂ ihi j = ∂ jhi j = 0, hi jδ
i j = 0 and hi j = h ji.

In the above expression, the perturbations to the FRW metric have been decomposed into scalar, vector,

and tensor perturbations. φ ,ψ,B and E are scalar perturbations, Si and Fi are vector perturbations and

hi j are tensor perturbations.

Using the Einstein equations and the form of the Einstein tensor for unperturbed FRW metric given in

Appendix A, one can show that the stress energy tensor driving the Universe through unperturbed FRW

phase can be written in a perfect fluid form [5, 9]. Einstein’s equations require that there be perturbations

in the stress energy tensor corresponding to the perturbations over the FRW metric. These perturbations

can be written as [5]

δTi j = p̄a2hi j +a2
(

δi jδ p+∂i∂ jπ
s +2∂(iπ

V
j)+π

T
i j

)
δT0i = p̄a2h0i−a(p̄+ ρ̄)(∂iδu+δuV

i )

δT00 = −ρ̄a2h00 +a2
δρ , (1.2)

where ∂ iδuV
i = ∂ iπV

i = ∂ iπT
i j = ∂ jπT

i j = 0, πT
i j δ

i j = 0 and πT
i j = πT

ji . The quantities p̄ and ρ̄ are the

unperturbed pressure and energy density that drive the background spacetime through a purely FRW

phase and all other quantities in the above expressions are perturbations.
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Using the above expressions for the perturbed stress energy tensor and the perturbed metric in Einstein’s

equations and the conservation equations of the stress energy tensor and maintaining terms up to first

order in perturbations, one can find the equations which govern the evolution of perturbations [5, 6, 10].

One important issue in cosmological perturbation theory is that of gauge fixing. One finds that one

can modify the scalar and vector perturbations by changing the coordinate system for the background

FRW metric and hence some of the scalar and vector perturbations ought to be unphysical. The tensor

perturbations, however, remain unaffected by coordinate transformations and are all physical except for

the constraints imposed by the transverse and traceless properties [5, 8]. We can get rid of the unphysical

scalar and vector modes by choosing to work in a particular gauge. There exist many choices for gauges

in the literature, for example, the Newtonian gauge, Synchronous gauge, etc [5, 8, 20, 21]. Particularly,

for Newtonian gauge, one has B = E = 0 and the only scalar perturbations that remain are Φ ≡ φ and

Ψ≡ ψ .

Let us take a scalar field, called the inflaton field [2], which drives the inflationary phase of the early

universe with the following action

S =
∫

d4x
√
−g
(
− 1

2
gµν

∂µϕ∂νϕ−V (ϕ)
)
. (1.3)

The equation of motion for the above scalar field is given by

ϕ
′′+2

a′

a
ϕ
′−∇

2
ϕ +a2V,ϕ = 0 , (1.4)

where ′ on ϕ and a denotes a derivative with respect to η and V,ϕ represents the derivative of V with

respect to ϕ . The stress energy tensor for the above scalar field is given by

Tαβ = ∂αϕ∂β ϕ−gαβ

(1
2

gµν
∂µϕ∂νϕ +V (ϕ)

)
. (1.5)

For this scalar field to drive the homogeneous and isotropic inflationary phase, it has to be a function

only of the time coordinate i.e., ϕ(x) = ϕ̄(η). Thus, the inflaton field satisfies the following equation of

motion i.e.,

ϕ̄
′′+2

a′

a
ϕ̄
′+a2 ∂V

∂ ϕ̄
= 0 . (1.6)

4



The energy density and pressure corresponding to the inflaton field are given by

ρ̄ =
(

ϕ̄ ′2

2a2 +V (ϕ̄)
)
, (1.7)

p̄ =
(

ϕ̄ ′2

2a2 −V (ϕ̄)
)
. (1.8)

Using the above form of the energy density and the Friedmann equation (2.9) for flat FRW spacetimes

i.e., k = 0, we obtain that
a′2

a4 =
8πG

3

(
ϕ̄ ′2

2a2 +V (ϕ̄)
)
. (1.9)

The equation of state parameter corresponding to the inflaton field is given by

w =
p
ρ
=

ϕ̄ ′2

2a2 −V (ϕ̄)

ϕ̄ ′2

2a2 +V (ϕ̄)
. (1.10)

In order to have an exponentially accelerating expansion of the Universe i.e., the de Sitter phase, the

equation of state parameter, w, should be −1 (see Chapter 2). We see that, for ϕ̄ ′2 << |V (ϕ̄)|, we

can have p ≈ −ρ and w ≈ −1. In fact, one can define a set of parameters, ε1 and ε2, called slow-roll

parameters,

ε1 =
1

16πG

(V,ϕ

V

)2
and ε2 =

1
8πG

V,ϕϕ

V
, (1.11)

such that ε1, |ε2|<< 1 is called the slow-roll condition and it ensures that the spacetime expansion is ap-

proximately exponentially accelerating [5, 6, 8, 22]. There exists a large number of inflaton field models

which differ from each other via the form of their potentials that are used to generate the inflationary

phase (See [17] and references therein).

1.1.1 Mukhanov-Sasaki equation

Let us consider perturbation, δϕ(x), to the inflaton field that drives the metric perturbations in the FRW

spacetimes i.e.,

ϕ(x) = ϕ̄(η)+δϕ(x) . (1.12)

One can define a gauge invariant quantity called the ‘comoving curvature perturbation’ which is given

by

R =−Ψ− a′δϕ

aϕ̄ ′
, (1.13)

5



and in fact, it can be shown to satisfy the following equation of motion

R′′+2
z′

z
R′−∇

2R = 0 , (1.14)

where z = a2ϕ̄ ′

a′ . This equation is the famous Mukhanov-Sasaki equation. Another quantity v = zR is also

easily seen to satisfy the following equation of motion

v′′−∇
2v− z′′

z
v = 0 , (1.15)

which is the same equation as that of a massless scalar field in an FRW spacetime with scale factor z

(see equation (2.24)). For a purely de Sitter phase, we consider the solutions of the above equation in

the next chapter and choose a particular vacuum state called the Bunch-Davies vacuum [5, 11] . On

superhorizon scales i.e., −kη << 1, the power spectrum of the quantity, ψ ≡ v
a , for the Bunch-Davies

vacuum is found to be [6, 8]

⟨ψ⃗kψ⃗k′⟩= (2π)3
δ (⃗k+ k⃗′)

H2

2k3 . (1.16)

From the above expression, we see that the quantity ψ has a scale-invariant power spectrum. In fact, one

also finds that, on super-horizon scales, the power spectrum of the comoving curvature perturbations,

∆2
R(k), is [6]

∆
2
R(k) =

1
2m2

plε1

( H
2π

)2( k
aH

)nR−1
, (1.17)

where nR− 1 = 2ε2− 6ε1 and nR is called the spectral index of the comoving curvature perturbation.

This power spectrum can be related to the temperature anisotropies in the CMB data [8]. Thus, we

obtain an almost scale-invariant power spectrum which agrees with the statistics of the CMB data [23].

The Planck collaboration estimates nR = 0.965±0.004 [23].

1.1.2 Gravitational waves

The tensor perturbations to the background FRW dynamics of the Universe can also be quantized in a

similar manner. The dynamics of the tensor perturbations, hi j, is decided by the following action

S =
1
8

∫
dη d3⃗x a2

(
(h
′
i j)

2− (∇hi j)
2
)
, (1.18)

where hi jδ
i j = 0 and ∂ ihi j = ∂ jhi j = 0. The above action for each component of the perturbations

is just the same as that of a massless scalar field in an FRW background and hence they satisfy the
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same equation of motion. However, the transverse traceless conditions on the tensor perturbations leave

only two independent components and hence the gravitational waves are dynamically equivalent to two

massless scalar fields in FRW backgrounds.

In addition to the temperature anisotropy map of the CMB, the polarization map of the CMB is also

expected to provide important information which would help constrain different inflationary models.

The electric field associated with CMB photons is polarized in the plane orthogonal to their direction

of motion [5]. The polarization of the electric field in these orthogonal planes can be decomposed in

E-modes and B-modes [24, 25]. The E-modes and B-modes have different parity transformations in the

plane of electric fields [8]. It can be shown [5, 24, 25] that the B-modes do not get any contribution from

scalar fluctuations and get contribution only from tensor fluctuations. Hence, the detection of B-mode

polarization in CMB data provides a probe of primordial tensor perturbations. The auto-correlation of

B-mode polarization can be related to the power spectrum of the tensor fluctuations [8] which we now

calculate for our inflaton field driven inflationary model.

The quantized gravitational waves can be expanded as

ĥi j (⃗x,η) = ∑
λ=+,×

∫
d3⃗q ei j(q̂,λ )

(
ei⃗q.⃗xhq(η)b̂q⃗,λ + e−i⃗q.⃗xh∗q(η)b̂†

q⃗,λ

)
, (1.19)

where λ =+,× refer to two polarization states. The ei j (⃗q,λ )′s satisfy [5]

∑
λ=+,×

ei j(q̂,λ )ekl(q̂,λ ) = δikδ jl +δilδ jk−δi jδkl +δi jq̂kq̂l +δkl q̂iq̂ j

−δikq̂ jq̂l−δil q̂ jq̂k−δ jkq̂iq̂l−δ jl q̂iq̂k + q̂iq̂ jq̂kq̂l . (1.20)

Also, b̂q⃗,λ and b̂†
q⃗,λ are the annihilation and creation operators for a state with wave-vector, q⃗, and

polarization, λ . The hq(η) is the time dependent component of the mode functions. Since the dynamics

of gravitational waves is just that of a massless scalar field in FRW spacetimes, we can choose the

Bunch-Davies vacuum for them as well. On super-horizon scales, the power spectrum of the tensor

perturbations, ∆2
T (k), is given by [6]

∆
2
T (k) =

8
m2

pl

( H
2π

)2( k
aH

)nT
. (1.21)

where nT = −2ε1 is called the spectral index of tensor perturbations. Thus, the power spectrum for

tensor perturbations is almost scale-invariant as well.

One can consider the ratio of the tensor and scalar power spectra, on horizon crossing, called the tensor-
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scalar ratio and denoted by r. It is given by

r = ∆
2
T (k = aH)/∆

2
R(k = aH) = 16ε1 . (1.22)

One of the major goals of the ongoing and planned missions [26] to probe the more detailed statistics of

the CMB is to determine the values of spectral index nR and the tensor-scalar ratio r. Since the power

spectra for scalar and tensor perturbations are defined in terms of the correlations of these perturbations,

they carry important information about the quantum correlations of these perturbations. Apart from these

observables, there are other avenues where quantum correlations are decisive in setting up of observable

effects and we discuss some of them next. All these different effects that we discuss below depend upon

the quantum correlations of metric and matter fluctuations and/or other different fields (like Maxwell

field) during the inflationary universe. So observing such effects tells us about the quantum nature of the

early Universe too, just as the temperature anisotropies in the CMB map, etc. Additional information

about the workings of the early Universe is expected to be obtained by observing the below-discussed

effects.

1.2 Some important avenues capturing quantum features in early uni-

verse physics

• Trans-Planckian issues for inflationary cosmology

The trans-Planckian issues in inflationary cosmology [27, 28] refers to the projection of modes of

super-Planck scales at the start of the inflation to the sub-Planckian and sub-Horizon scales which

are available for observations today. Models of inflation that are generally considered to explain

the observed CMB data last for a ’sufficiently’ long period. During this period of near exponen-

tial expansion of the Universe, the physical distances expand exponentially so much so that the

distances which are smaller than the Planck distance at the start of the inflation get expanded to

distances which are larger than the Planck distance and in fact, by the end of the inflation, they

become even larger than the Hubble radius (see Fig. (1.1)). These modes remain super-horizon

for most of the Universe’s evolution after the end of the inflationary phase and have only recently

become sub-horizon to become available to be observed. This picture presents to us some serious

conceptual issues as we explain the cosmological observations by applying the standard quan-

tum field theory techniques during the inflationary phase of the Universe which are, however,

expected to fail at the distances (energies) which are smaller (higher) than the Planck distance
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(energy). As the below-Planck scale lengths are expanded to cosmologically observable scales

during inflation, it is expected that they may carry signatures of their past below-Planck length

life with them in their new above-Planck length abode. Hence, other than raising doubts about the

applicability of known laws (which have been verified only in the above-Planck distance regimes)

to these crossing modes, this scenario provides us an opportunity to probe trans-Planckian physics

through cosmological observations at the scales which are not achievable with particle physics ac-

celerators. These issues have been addressed with a number of proposals for dealing with initially

trans-Planckian modes which have now become sub-Planckian. These include using modified

dispersion relations for these crossing modes to account for a possibly different physics at trans-

Planckian scales.

η

lC lH

Figure 1.1: In this figure, lC represents a cutoff length (say, Planck length) and lH represents the
Hubble radius at the end of inflation. Therefore, region I (the shaded area) is below-Planck length
regime, region II is above-Planck length and sub-Hubble regime and region III is both above-Planck
length and super-Hubble regime. The curve in the figure represents the projection of below-Planck
wavelengths to above-Planck lengths and super-Hubble regimes during the inflationary phase. Here
y-axis represents time. This figure is drawn along the lines of a similar figure in [27].

For example, [27, 29] discuss two types of modifications of dispersion relations where for one

type, the power spectrum is not affected by the new physics at trans-Planckian scales whereas the

other type of modification leads to changes in the prediction of scale-invariant power spectrum for

primordial fluctuations. Particularly, [27] divides the length scale into three regions with two pa-

rameters lC (represents the Planck-scale) and lH (represents the Hubble Radius). From Eq. (1.15),
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for any particular comoving wavenumber, one obtains

v
′′

k⃗
+ k2v⃗k−

z′′

z
v⃗k = 0 . (1.23)

Then, [27] assumes that the effect of different physics in super-Planckian regimes is to modify the

dispersion relation i.e., k = a(η)F(k/a(η)). Using the Unruh dispersion relation [30] i.e.,

F(k) = kC tanh
1
p

[( k
kC

)p]
, (1.24)

where kC = 2π

lC
and p is an arbitrary parameter and considering the minimum energy state with

this dispersion relation, [27] shows that the power spectrum, calculated for modes that are out-

side the horizon at the end of inflation, remains the same as that with standard dispersion relation

i.e., F(k) = k. Other studies [31–33] have also investigated the imprints of Planck scale physics

in terms of modified dispersion relations for trans-Planckian modes on the power spectrum of

primordial fluctuations. Sometimes, as in [34–37], the high-energy trans-Planckian physics is en-

coded through modified position and momentum commutation relations and their implications are

investigated for cosmological observations. Other proposals [38–41] to take into account possi-

ble trans-Planckian physics are also considered like considering non-standard vacua for initially

trans-Planckian modes.

• Choice of initial state

In order to obtain the almost scale-invariant power spectrum for primordial fluctuations, generally

all the modes are chosen to start in the Bunch-Davies vacuum in nearly de Sitter inflationary

phase of the Universe. But one can start with more general states than the Bunch-Davies vacuum

state and still find predictions which are in good agreement with the observed data. For example,

[42] argues that coherent states with some constraints are as good as Bunch-Davies state with

regard to explaining the observed data. In particular, [42] considers a coherent state, |C⟩, such

that â⃗k |C⟩=C(⃗k) |C⟩ and ⟨C|C⟩= 1 where â⃗k are the annihilation operators corresponding to the

Bunch-Davies vacuum. Now imposing the constraint that C(⃗k) = C∗(−⃗k), one can show that, in

superhorizon limit, the power spectrum of the comoving curvature perturbation is given by

∆
2
R(k) =

1
2m2

plε1

( H
2π

)2
, (1.25)

which is the same as the power spectrum for the Bunch-Davies state, Eq. (1.17), with nR ≈ 1.

Similarly, [43] considers an initial state with a thermal distribution and finds bounds on the cor-
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responding temperature to fit the predictions with the observations. These more general states

would also have their own characteristic features which are expected to be available for probing

in future observations. For example, [16] considers the effects of modifications in the initial state

on the CMB anisotropy, the distortion in the CMB black body radiation and in the Large scale

structure (LSS) of the Universe. Similarly, [14, 44–47] explore non-Gaussianity in CMB data

because of non-vacuum choice for the initial state of the primordial fluctuations. These studies

are expected to provide useful insight into the pre-inflationary era as what happens during that

phase of the Universe’s history would decide the initial state at the start of the inflation. This line

of investigation is also closely related to the trans-Planckian issues as the Planck scale provides

a natural cutoff with respect to which one can treat the sub-Planckian and trans-Planckian modes

differently and place them in different vacuum states as pointed out above. For example, [15] con-

siders non-vacuum states by assuming an inherent scale in the initial state with respect to which

some modes are taken to be vacuous whereas some are taken to be non-vacuous with non-zero

particle content and their power spectra are compared with the observations. Different types of

initial states for inflationary era and their effects on power spectrum have also been considered by

assuming a radiation-dominated pre-inflationary era [48–50].

• Inflationary magnetogenesis

There have been many proposals [51–53] to explain the magnetic fields present in the Universe

by considering a primordial inflationary origin for them. Since the standard electromagnetic ac-

tion is conformally invariant, it can be shown that the energy density of magnetic fields decreases

due to the inflationary expansion of the early Universe [54, 55]. However, by breaking the con-

formal invariance of the standard Maxwell’s action with modified actions, one can hope to have

observationally significant magnetic fields. For example, one can consider the following action

for electromagnetic fields [54–56] i.e.,

S =− 1
16π

∫
d4x
√
−g J2(ϕ)FµνFµν , (1.26)

where J(ϕ) breaks the conformal invariance of the standard Maxwell’s action and ϕ is the inflaton

field which drives the universe through inflationary phase. The inclusion of a term like J(ϕ) mod-

ifies the equation of motion for the vector potential and the mode functions for the vector potential

are no longer the plane wave solutions of the flat spacetime. Quantizing the vector potential, one

can find the energy density of both magnetic and electric fields by taking the vacuum expectation

value of the stress energy operator corresponding to the above action. In fact, specializing to the

11



de Sitter spacetime with scale factor a(η) =−(1)/(Hη) and taking J(η) ∝ (η)−2, one finds that

the power spectrum for the magnetic field is scale invariant [55] i.e.,

Pmagnetic(k) =
9H4

4π2 , (1.27)

at horizon crossing. Thus, with the chosen action, one can find a scale invariant power spectrum of

magnetic field generated during the inflationary phase. As already said, there exist many proposals

for modifying Maxwell’s actions with conformal breaking terms or parity violating terms etc [51,

52, 57]. The purpose of these considerations is to obtain a mechanism for primordial generation of

observed magnetic fields in the Universe while also respecting the constraints coming from other

considerations like CMB power spectra, etc.

In addition to the above considerations, there are other quantum effects that are believed to be important

during the early inflationary (near de Sitter) phase of the Universe and are expected to be detected in

more precise future observations. For example, the linear and uncoupled equations for scalar and tensor

perturbations that we discussed above are obtained by expanding the action up to second order in pertur-

bations but one can also study the contribution to the action coming from expansion of the action to third

or higher orders in perturbations. The resultant new terms [7, 58] would provide self-interactions of the

scalar and tensor perturbations and also couple the scalar and tensor perturbations. These interaction

terms give rise to non-Gaussianities [7, 58, 59] in CMB data and we should be able to test them with the

availability of more detailed data.

Most of the studies which consider quantum effects in cosmological contexts are generally considered

for the early Universe physics. It can be shown [60–62] that, starting with the Bunch-Davies state as

the initial state for quantized metric/matter perturbations, the quantum state evolves to become highly

squeezed for all those modes which cross the Hubble radius by the end of inflation. The highly-squeezed

modes remain frozen as such for much of the evolution of the Universe until they re-enter the region in-

side the Hubble radius to become available to be observed. For highly squeezed states, the quantum

averages are equivalent to the averages of classical ensemble of perturbations with stochastic Gaussian

amplitudes [61–63]. Also, for expanding Universe, the comoving distances get enhanced to large phys-

ical separations and the quantum correlations are expected to decay for large physical separations [64].

With all these observations, one expects that the quantum treatment of perturbations during later phases

(after inflation) of the Universe (for example, radiation and matter dominated epochs) should not be

much different from a classical treatment. However, in a recent work [65], it has been shown that the
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quantum correlations of scalar fields during these later phases of the Universe (e.g., for matter domi-

nated era and/or dark energy era) may still remain significant. Thus, it should be interesting to probe

whether quantum effects show revival during these phases of the Universe. Keeping this motivation in

mind and the fact that these later phases of the Universe are modelled by FRW spacetimes, this thesis

studies quantum correlations of fields in de Sitter and FRW spacetimes through noise kernel and Unruh

deWitt detectors as they depend upon the quantum correlations of background fields.

1.3 Outline of the thesis

We divide this thesis in 7 chapters including this one.

• In chapter 2, we discuss very briefly some basic notions about the objects of study in this thesis

i.e., the noise kernel and UdW detectors. We also review basic facts about FRW spacetimes and

discuss the dynamics of both scalar and spinor fields in de Sitter spacetime.

• In chapter 3, we calculate the behaviour of the noise kernel for certain massive scalar fields in de

Sitter spacetime. We find that as the mass of the scalar field is decreased, the noise kernel shows a

transition from vanishing to divergent behaviour. We also study the behaviour of the noise kernel

for massless scalar fields in power-law type FRW spacetimes. The most interesting behaviour is

obtained for massless fields in nearly matter-dominated spacetimes for which the noise kernel is

found to diverge as the spacetimes approach closer and closer to the matter dominated limit

• In chapter 4, we calculate the behaviour of the noise kernel for massive spinor fields in de Sitter

spacetime. We find that the noise kernel always decays as the spacetime expands and the decay

occurs irrespective of the mass of the spinor field. Then we carry out a similar study for massless

spinor fields in all types of FRW spacetimes. It is found that the noise kernel behaves in a manner

that is opposite to the behaviour of the scale factor i.e., the noise kernel decays for expanding

spacetimes and grows for contracting spacetimes.

• In chapter 5, we obtain the expressions of the response rates for conventional and derivatively

coupled Unruh deWitt detectors in different FRW spacetimes, particularly, de Sitter and matter

dominated spacetimes. We find that in the response rate, for derivatively coupled detectors, the

dominating infrared term vanishes in the de Sitter Universe but, for massless scalar fields in nearly

matter dominated cases, the infrared divergent term contributes to the transition probability and
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leads to very rapid transitions within the states of the detector.

• In chapter 6, we study how the metric perturbations over FRW spacetimes couple with atoms and

calculate the rate for the atom to make transitions between its different shells caused by metric

perturbations. We obtain that the coupling of perturbations with atoms has an Unruh deWitt like

form and using the results of chapter 5, we conclude that the atoms undergo very rapid transitions

during the nearly matter dominated eras of the Universe.

• In chapter 7, we conclude this thesis by providing a detailed chapter-wise summary of all the

results obtained in this thesis and discuss what new insights have been understood about quantum

fields evolving over FRW spacetimes. We also provide some future prospects of our study.
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Chapter 2

Operational Tools

Since the primary goal of this thesis is to study correlations of quantum fields living on de Sitter and

FRW spacetimes, let us collect here, in this chapter, some very basic properties of these spacetimes and

of quantum fields living on them. In particular, how these spacetimes are defined qualitatively and how

their line elements look in most commonly used coordinate systems is discussed. We focus on de Sitter

spacetime and the dynamics of different quantum fields living on this spacetime. One can then use these

studies of quantum fields in de Sitter spacetime to analyze similar studies of quantum fields living on

other FRW spacetimes using certain mappings that exist between quantum fields in de Sitter and FRW

spacetimes (which are discussed in more details in the following chapters). In this chapter, primarily

scalar and spinor fields in de Sitter spacetime are considered. We write the action for these fields, their

equations of motion and solutions to these equations. Since fixing arbitrary constants, which appear

in the solutions to these equations, corresponds to choosing particular particle and anti-particle modes

and hence corresponding particular vacuum state, one particular choice for mode functions is discussed

below which defines what is called the Bunch-Davies vacuum. The expressions of Bunch-Davies Wight-

mann functions for both scalar and spinor fields are also provided. Since we study the correlations of

quantum fields in de Sitter and FRW spacetimes through their noise kernel and by coupling them with

Unruh deWitt detectors, we also provide some preliminary notions about them.
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2.1 FRW spacetimes

The cosmological principle states that the spatial slices of the universe at any given instant of time must

be both homogeneous and isotropic i.e., these slices exhibit translational as well as rotational symmetries

and are, hence, maximally symmetric. We assume that, at least upto zeroth order, the universe obeys the

cosmological principle and hence propose that there exists a coordinate system in which the spacetime

metric of the universe is given by :

ds2 =−dt2 +a2(t)
( dr2

1− kr2 + r2dΩ
2
2

)
, (2.1)

where t, the time coordinate, is called cosmic time and a(t) is referred to as cosmic scale factor. Here

dΩ2
2 is the line element for a 2-sphere and k can take values 0,+1 and−1 corresponding to flat, spherical

and hyperbolic spaces. One can show [9, 66, 67] that there are only three types of maximally symmetric

spaces, to which are associated the mentioned three values of k, in any given dimension and the form

of the metric for these maximally symmetric spatial slices can be taken to be as given in the brackets

above. Any metric of the above type, with all types of functional forms for a(t), is called Friedmann

Robertson Walker (in short, FRW) metric and the coordinates in which the spacetime metric assumes

this mathematical form are called comoving coordinates. It is also important to note that the range of

the coordinate r is different for different values of k. For k = 0 i.e., flat space, r can take values from 0

to ∞, for k = 1 i.e., sphere, r can take values from 0 to 1, and for k = −1 i.e., hyperboloid, r can take

values from −∞ to ∞. The isometry groups for these three cases are also different e.g., for k = 0, the

isometry group is SO(3) ∗R3, for k = 1, the isometry group is SO(4) while, for k = −1, the isometry

group is SO(1,3). We can write the FRW metric in the following very frequently used form i.e.,

ds2 =−dt2 +a2(t)
(

dξ
2 + f 2(ξ )dΩ

2
2

)
, (2.2)

where

f (ξ ) =


ξ for k = 0

sinξ for k = 1

sinhξ for k =−1

. (2.3)

We can now make transformation from cosmic time coordinate, t, to what is called conformal time,

η . The motivation for introducing conformal time becomes readily apparent when we write the FRW
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metric in the following manner:

ds2 = a2(t)
(
− dt2

a2(t)
+

dr2

1− kr2 + r2dΩ
2
2

)
. (2.4)

The above form naturally suggests to define some new time coordinate, η , s.t. dη = dt
a(t) and the FRW

metric takes the following conformally flat avatar

ds2 = a2(η)
(
−dη

2 +
dr2

1− kr2 + r2dΩ
2
2

)
= a2(η)

(
−dη

2 +dξ
2 + f 2(ξ )dΩ

2
2

)
. (2.5)

In general, conformally flat metrics have the following form

ds2 = a2(x)(−dη
2 +gi jdxidx j) . (2.6)

where gi j is the metric for spatial slices in more general coordinates and the scale factor, a(x), can depend

on both time and spatial coordinates. For more details on FRW spacetimes, the form of the metric in

some other popular coordinates, their causal structure (in terms of Penrose diagrams), their geodesics

and how they fit with Hubble expansion etc., refer to [9, 66].

In order to study FRW spacetimes further, we need to calculate Christoffel connections, Riemann tensor,

Einstein tensor etc. for these spacetimes. Using Einstein equations and the form of the Einstein tensor

for FRW spacetimes, the expression of the corresponding energy momentum content of the universe

can be obtained. The expressions for these quantities are provided in Appendix A in both conformal

and cosmic time coordinates. In order to be definitive with further discussion, we choose to work with

cosmic time coordinates in the remainder of this section and will give the corresponding conformal time

coordinate results at the end of this section. From the expressions of the components of the Einstein

tensor, given in Appendix A, the form of the energy momentum tensor of the ’fluid’ driving the universe

through this FRW ’ride’ can be written as

Tµν = (ρ(t)+ p(t))uµuν + p(t)gµν , (2.7)

where uµ = (−1,0,0,0) and ρ(t) and p(t) have natural interpretation of energy density and pressure,

respectively.
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From the Einstein’s equations, one obtains the following two equations

−3
ä
a

= 4πG(ρ +3p)−Λ , (2.8)

ȧ2

a2 +
k
a2 =

8πG
3

ρ +
Λ

3
, (2.9)

where the presence of Λ in the equations just allows for the possibility of the existence of a cosmological

constant. These equations are called the Friedmann equations. We get one more equation from the

conservation of the energy momentum tensor i.e., ∇µT µν = 0. Conservation laws for ν = i i.e., spatial

indices don’t contribute anything whereas for ν = 0, we obtain that

ρ̇ =−3H(ρ + p) , (2.10)

where H, called Hubble parameter, is just a shorthand notation for ȧ/a. It can be easily shown that

certain manipulations of the 2nd and 3rd equations from the above three equations, give rise to the 1st

one in the collection. In that sense only two of these three equations are independent.

In order to deduce anything from the above derived Friedmann equations, we need to provide some

information about the ’nature’ of the fluid i.e., the matter content of the universe. This information is

encoded in what is called the equation of state of the fluid i.e., the functional dependence of the pressure

on the energy density, p = f (ρ). We use a particular class of equations of state where pressure and

energy density are linearly related i.e.,

p = wρ , (2.11)

where w is called the equation of state parameter. For these types of fluid, we see that, using (2.10),

ρ =Ca−3(1+w) , (2.12)

where C is some constant. Substituting this dependence of energy density on scaling factor a(t), in

equation (2.9), we find that

ȧ2 =
8πG

3 ∑
b

Cba−(1+3wb)+
Λ

3
a2− k , (2.13)

where the summation is over different types of fluids with linearly related equations of state. In fact, we

can drop the 2nd and the 3rd terms on the RHS of the above equation and include them in the summation

with wb =−1 and w =−1/3, in the summation, giving rise to the corresponding terms, respectively.

After the most remarkable discovery of the present day expansion of the universe, deduced from the red-

shifts of the light rays coming from distant galaxies, by Hubble [68], many astronomical surveys and
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cosmological observations have suggested that some of the important eras through which the universe

has evolved are when the RHS in the above equation is dominated by a term with

• w = 1
3 : This case is called the radiation dominated case. Since, in this case, ȧ2 ∝ a−2, we find that

a(t) ∝ t
1
2 . The universe is believed to have been dominated by radiation type of fluid from the end

of the inflation to the redshift of z≈ 3400 [69].

• w = 0: This case is called the dust (or matter) dominated case. Since, in this case, ȧ2 ∝ a−1,

we find that a(t) ∝ t
2
3 . The universe is believed to have been dominated by matter type of fluid

between z≈ 3300 to z≈ 0.3 [69].

• w = −1: This case is called the cosmological constant dominated case. Since, in this case, ȧ2 ∝

a2, we find that a(t) ∝ eHt . The present day universe is believed to be dominated by the dark

energy. The transition from matter dominated phase to dark-energy dominated phase modelled by

cosmological constant is believed to have taken place at around z≈ 0.3.

There exist many models (see [70] and references therein) to explain the present day dark-energy driven

accelerating expansion of the Universe. In fig. (2.1), we plot the evolution of the average equation of

state parameter as a function of redshift (on log scale) with the contribution coming from all radiation

dominated, matter dominated and dark-energy driven fluids. We have considered models for dark-energy

with constant equation of state parameter (blue and red curves in the figure) with wΛ = −1.03 and

wΛ =−0.5 as well as a dynamical dark-energy equation of state parameter model (magenta curve) with

wΛ = −1− 0.5 Log(1+ z) [70, 71]. Even though the dust (or radiation) type of fluid can still be the

dominant matter for some intervals of z outside the left (or right) shaded area in the figure, the shaded

area represents only that interval of z for which the average equation of state parameter is approximately

0 (or 1/3). This window, too, for which the average equation of state parameter is approximately 0 vary

for different models of dark-energy.
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Figure 2.1: In this figure, we have plotted the average equation of state parameter with the evolution
of universe in terms of redshift parameter, z (on log scale). The left and right shaded areas represent
the values of z corresponding to which the average equation of state parameter is approximately 0 and
1/3, respectively. Three different curves correspond to different models for dark energy component
of the Universe.

Other than the above deduced dependencies of a(t) on t for the mentioned important eras of the

universe, we find that, for an arbitrary w, the scaling factor, a(t) ∝ t
2

3(1+w) . In fact, one can also find

the dependence of the scaling factor on the conformal time coordinate, η , by observing that dη =

(dt)/(a(t)) ∝ (dt)/(t
2

3(1+w) ) gives η ∝ t
1+3w

3(1+w) . Substituting the just derived relation between the cosmic

time coordinate and the conformal time coordinate in the expression for the scaling factor, it is seen

that a(η) ∝ η
2

1+3w . From this relation, one sees that, for radiation dominated era a(η) ∝ η , for dust (or

matter) dominated era a(η) ∝ η2 and for cosmological constant dominated era a(η) ∝ η−1.

In order to simplify notations for further studies in this thesis, we express a ∝ t p ∝ η−q which implies

that

p =
2

3(1+w)
and q =− 2

1+3w
. (2.14)

Removing w in the above expressions, we obtain q = (p)/(p−1).

It is in these FRW spacetimes that we aim to study the fluctuations of quantum fields. Like mentioned

at the beginning of this chapter, we shall study quantum fields living on FRW spacetimes in terms

of quantum fields living on de Sitter spacetimes through certain mappings that we will come to in

the following chapters. Before discussing de Sitter spacetime in greater details in the next section of

this chapter, let us just point out that the w = −1 case i.e., the cosmological constant dominated case

with a ∝ eHt ∝ η−1 is what corresponds to the de Sitter case (or at least, a half of it). This is an
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extremely important case to study as it is believed that the present day dark energy dominated expansion

of the universe can be well approximated by this de Sitter phase. Also, the proposal of sufficiently long

inflationary phase of the universe is also modelled by a near de Sitter spacetime.

2.2 de Sitter spacetime

In this section, we introduce some basic aspects of the geometry of de Sitter spacetime. An n dimen-

sional de Sitter spacetime is described as the following embedding in (n+1) dimensional Minkowskian

spacetime i.e., R(1,n),

−(X0)2 +
n

∑
i=1

(X i)2 = H−2 . (2.15)

From the fact that the Minkowskian metric is symmetric under the group SO(1,n) and that the collec-

tion of points defining de Sitter spacetime, through the above equation, is also closed(mapped to the

same collection) under the action of SO(1,n), we can conclude that the metric induced on the de Sitter

spacetime, from the Minkowskian metric, is also symmetric under the group SO(1,n). Since the group

SO(1,n) is generated by ((n)(n+1))/2 number of vector fields and the fact that it is also the maximum

number of Killing vectors possible for any spacetime of dimension n, we conclude that the de Sitter

spacetime has ((n)(n+1))/2 Killing vectors and it is a maximally symmetric spacetime. One important

fact about maximally symmetric spacetimes is that the Ricci scalar is a constant for these spacetimes,

therefore, the Ricci scalar for de Sitter spacetime is also a constant and is given by 2(n− 1)(n− 2)H2.

One can also show that the de Sitter spacetime is a solution of the vacuum Einstein equations with a

positive cosmological constant, given by ((n− 1)(n− 2)/2)H2. Though this last remark about the de

Sitter spacetime can be proven as a theorem, we will see that it becomes quite apparent when we express

the de Sitter metric in the planar coordinates which resembles the above discussed (in the last section)

cosmological constant dominated FRW metric. If we move the −X2
0 to the RHS in the above definition

for the de Sitter spacetime, we observe that the topology of the de Sitter spacetime is R×Sn−1. Now let

us discuss the planar coordinates which can be used to cover the de Sitter spacetime. For more details,

refer to [9, 66, 72, 73].
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2.2.1 Planar coordinates with cosmic time and conformal time

In this subsection, we introduce the planar coordinates for the de Sitter spacetime. This is the most

commonly used coordinate system in cosmological applications. This coordinate system is defined by

relating the Minkowski Cartesian coordinates and the planar coordinates in the following way

Xn−X0 = ±eHt

H
,X i = xieHt , i = 1, .....,n−1,

Xn +X0 = ±
(e−Ht

H
− xixiHeHt

)
. (2.16)

Now calculating that dXn−dX0 =±dteHt ,dX i = dxieHt + xiHeHtdt and dXn +dX0 =±
(
− e−Htdt−

xixiH2eHtdt−2xidxieHtH
)

, we find that the metric induced on de Sitter spacetime is given by

ds2 =−dt2 + e2Ht d⃗x2 . (2.17)

One sees that the form of the metric for the spatial sheets, written in the planar coordinates, has the

general form of an FRW metric with k = 0 i.e., the metric on the spatial slices is that of flat space Rn−1.

This is the primary reason of referring to this coordinate system as the planar coordinates.

Now let’s make transformation to the conformal time coordinate, η , by defining dη = dt/a(t) which

casts the above metric in the following conformally flat form ds2 = a2(η)(−dη2 + d⃗x2) , where dη =

dt/eHt implies that η =−1/(HeHt) and a(η) =−1/(Hη). Since t lies between (−∞,∞), we have that,

from η = −1/(HeHt), η lies between (−∞,0). The region covered by any single planar coordinates

chart with its corresponding metric is what one usually understands as de Sitter spacetime in cosmologi-

cal contexts. In fact, this is the spactime that is used to approximately model the present day dark energy

driven universe as well as the early universe inflationary phase.

Before we end this section, let’s consider the Minkowski distance function between any two points of

the de Sitter spacetime which is given by

d(x,y) = ηab(Xa(x)−Xa(y))(Xb(x)−Xb(y)) = 2H−2(1−Z(x,y)) , (2.18)

where x and y are the coordinates of the considered points of the de Sitter spacetime in some co-

ordinate system laid out on it and Xa(x) and Xa(y) are the coordinates of the same points in the

ambient Minkowski space Cartesian coordinate system. Here Z(x,y) is easily seen to be equal to

H2ηabXa(x)Xb(y). One can argue that this function is a biscalar under the action of the de Sitter isome-
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try group. Under an isometry, σ , of the de Sitter spacetime, the points x and y go to the points σ(x) and

σ(y) and the corresponding Minkowski space Cartesian coordinates go to Xa(σ(x)) = Λa
b(σ)Xb(x) and

Xa(σ(y)) = Λa
b(σ)Xb(y) where Λ(σ) is the element of SO(1,n) corresponding to the de Sitter isometry,

σ . This implies that Z(σ(x),σ(y)) = Z(x,y) i.e., it is a biscalar and hence d(x,y) is also a biscalar. In

fact, any biscalar of the de Sitter spacetime can be written as a function of Z. For more details, refer

[72, 74]. We end this section by noticing that the function Z(x,y), in planar coordinates, is given by:

Z(x,y) = 1− −(η−η ′)2 +(⃗x− y⃗)2

2ηη ′
. (2.19)

2.3 Quantum fields in de Sitter spacetime

Study of quantum field theories on curved spacetimes is an old, rich and still a very thriving area of re-

search [12, 75, 76]. Analyses of this kind have led to deeper insights into the understanding of quantum

field theories and have given rise to phenomena such as Hawking radiation, Unruh effect etc[77–79]. A

major portion of the analyses of QFT on curved spacetimes is, in one way or another, related to the pos-

sibility of choosing different vacua and the lack of ’natural’ choices for vacuum in these setups. These

aspects of QFT are not exclusive to the presence of gravitational fields but to all kinds of external fields,

for example presence of external electric field gives rise to non-perturbative Schwinger effect [80, 81]

etc. In this section, we consider quantum fields in de Sitter spacetime which, other than being an im-

portant arena for theoretical investigations [11, 13, 75, 82–85], is immensely important for inflationary

cosmology [1, 2, 5, 7, 8, 10]. We are mainly considering scalar and spinor fields in de Sitter spacetime

and in these considerations, one is presented with the task of making a choice of vacuum before start

building a quantum theory. In this thesis, we work with what is called the Bunch-Davies vacuum for both

scalar and spinor fields and the motivation for making the Bunch-Davies choice is the fact that, in the

asymptotic past, the equations of motion in both these cases resemble the Minkowski spacetime equa-

tions of motion. The Bunch-Davies choice for vacuum corresponds to choosing the arbitrary constants

in such a way that, in the asymptotic past, the mode functions behave like Minkowski space positive

and negative frequency mode functions. Here are also provided outlines for deriving the form of the

Wightmann functions in both these cases.
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2.3.1 Scalar fields

Let us consider a scalar field in an FRW spacetime, in conformal time coordinates with spatially flat

slices. The dynamics of a scalar field in curved spacetime is governed by the following action:

S = −1
2

∫
d4x
√
−g
(
gαβ

∇αφ ∇β φ +V (φ)
)

= −1
2

∫
d4xa4 (a−2

η
αβ

∇αφ ∇β φ +V (φ)
)

= −1
2

∫
d4xa2 (− (φ

′
)2 +(∇φ)2 +a2V (φ)

)
(2.20)

= −1
2

∫
d4xa2 (− (φ

′
)2 +(∇φ)2 +a2V (φ)

)
(2.21)

where φ ′ represents derivative of φ with respect to η . Writing φ = a−1v, the above action reduces to

S =−1
2

∫
d4x

(
− (v

′
)2− a′2

a2 v2 +
2a′v′v

a
+(∇v)2 +a4V (v/a)

)
. (2.22)

In the above equation, v′ and a′ represent derivatives of v and a with respect to η . With the above action,

we find that the conjugate momentum is π = v′− (a′/a)v and the Hamiltonian is given by

H =
1
2

∫
d4x
(

π
2 +(∇v)2 +

a′

a
(πv+ vπ)+a4V (v/a)

)
. (2.23)

The equation of motion (e.o.m), for the above action, is given by

v′′−∇
2v− a′′

a
v+

1
2

a3V ′(v/a) = 0 , (2.24)

where v′′ and a′′ represent double derivatives of v and a with respect to η whereas V ′(v/a) represents a

derivative of V with respect to φ and after taking the derivative with respect to φ , we replace φ with v/a.

Considering a massive scalar field with no interaction i.e., taking V (φ) = m2φ 2, and going to the spatial

Fourier space i.e., taking Fourier transform with respect to spatial coordinates, the e.o.m becomes

v′′
k⃗
+ k2v⃗k−

a′′

a
v⃗k +m2a2v⃗k = 0 . (2.25)

The above Fourier space equation of motion is valid for all types of FRW spacetimes expressed in con-

formal time coordinates with flat spatial slices. However, we are interested in studying the dynamics of

quantum scalar fields only in de Sitter spacetime and will study quantum fields in other FRW spacetimes

only later on and, that too, in terms of quantum fields living on de Sitter spacetime through a mapping
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between these spacetimes. Therefore, let us consider the de Sitter case i.e., a(η) =−1/(Hη), for which

the equation of motion is given by

v′′
k⃗
+
(

k2−
ν2− 1

4
η2

)
v⃗k = 0 (2.26)

where ν2 = (9/4)− (m2/H2). This is Bessel equation and the most general solution to this equation is

given by

v⃗k = c⃗k

√
−ηH(1)

ν (−kη)+ d⃗k

√
−ηH(2)

ν (−kη) . (2.27)

Now, in order to build quantum field theory for the above setup, we express the field operator as follows

v(η , x⃗) =
∫ d3⃗k

(2π)3

[
a⃗kv⃗k(η)ei⃗k.⃗x +a†

k⃗
v∗

k⃗
(η)e−i⃗k.⃗x

]
. (2.28)

where a⃗k and a†
k⃗

are creation and annihilation operators. Here the above form of the field operator is

determined by requiring that it be Hermitian which is the quantum analog of the requirement that the

considered scalar field is real. Imposing the equal time canonical commutation relations between field

operator and its conjugate momentum operator and also requiring the bosonic statistics, it is found that

v′
k⃗
s need to satisfy the following condition

i(v∗
k⃗
v
′

k⃗
−h.c.) = 1 . (2.29)

The above condition holds true for all time if it holds true at any one instant of time. Noticing that

v
′

k⃗
=−k

√
−η
(
c⃗kH(1)

ν−1(−kη)+ d⃗kH(2)
ν−1(−kη)

)
+

1
η

(
−ν +

1
2
)
v⃗k , (2.30)

the above condition implies that

ikη

(
|c⃗k|

2(H(1)
ν−1(−kη)H(1)∗

ν (−kη)−H(1)∗
ν−1(−kη)H(1)

ν (−kη)
)

+ |d⃗k|
2(H(2)

ν−1(−kη)H(2)∗
ν (−kη)−H(2)∗

ν−1(−kη)H(2)
ν (−kη)

))
= 1 . (2.31)

Since the restriction given by the above constraint is satisfied at all times if it is satisfied at any one

instant of time, let us evaluate it at η →−∞ limit and find, using the large argument expansion of the

Hankel functions given in Appendix B, that

(
|c⃗k|

2−|d⃗k|
2
)
=

√
π

2
. (2.32)
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Thus, even after having considered all the aspects that are needed to be considered for building a con-

sistent quantum theory, we still have some arbitrariness left to define a unique vacuum. This particular

aspect is not specific to curved spacetimes only but appear in flat spacetime case as well. In order to fix

a vacuum state, we see that, in the η →−∞ limit, the equation of motion (2.26) reduces to

v′′
k⃗
+ k2v⃗k = 0 , (2.33)

which resembles equation of motion in flat spacetime. Therefore, requiring that the positive frequency

modes behave like flat spacetime positive frequency modes i.e.,≈ (e−ikη)/(
√

2k), in the kη→−∞ limit

and using the large argument expansion of the Hankel functions (see Appendix B), one concludes that

vk(η) =

√
π

2
eiπ( ν

2 +
1
4 )
√
−nH(1)

ν (−kη) . (2.34)

Notice that it is the magnitude of the wavevector, k, rather than the wavevector, k⃗, itself in the subscript of

the mode functions because the RHS is dependent only on the magnitude of the wavevector, k. Another

point is that these mode functions are defined only upto arbitrary phase factors. These mode functions

are generally referred to as the Bunch-Davies mode functions. Before we calculate the Wightmann

function corresponding to the Bunch-Davies vacuum for a massive scalar field, let us see the form of the

Bunch-Davies mode functions for a massless scalar field. For a massless scalar field, the most general

solution to the equation of motion is given by

v⃗k = c⃗ke−ikη

(
1− i

kη

)
+ d⃗keikη

(
1+

i
kη

)
. (2.35)

Now performing the same analysis as done for massive scalar fields, the Bunch-Davies positive fre-

quency modes are found to be given by

vk =
1√
2k

e−ikη

(
1− i

kη

)
. (2.36)

These Bunch-Davies mode functions for the massless case can be obtained smoothly from the Bunch-

Davies mode functions for massive field case in the limit m→ 0. Therefore, to obtain massless case

expressions, one can simply take the m→ 0 limit of the corresponding quantities in the massive case. Let

us now go to the calculation of the form of the Wightmann function for massive case. The Wightmann

function is defined as G(x,y) = ⟨0|φ(x)φ(y) |0⟩. Therefore, using the form of the field operator given
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above with mode functions taken to be the Bunch-Davies modes, we find that

G(x,y) =
πH2(ηη ′)

3
2

4

∫ d3⃗k
(2π)3 H(1)

ν (−kηx)H
(2)
ν (−kηy)ei⃗k.(⃗x−⃗y) , (2.37)

=
H2(ηη ′)

3
2

8πr

∫
∞

0
kdkH(1)

ν (−kηx)H
(2)
ν (−kηy)sin(kr) , (2.38)

where r = |⃗x− y⃗|. Obtaining a closed form expression for the above integral is an involved exercise

which is carried out at many places [11, 65]. The proof involves expressing the Hankel functions in

some integral representations, given in standard places like [86–89], so that one now has a triple integral

and then after some change of variables and further manipulations one can write the expression again as

a single integral which is then recognizable as an integral representation of the Legendre function. Some

further manipulations give us the commonly encountered following form of the Wightmann function

G(x,y) [11]

G(x,y) =
H2

16π2 Γ(a)Γ(b)2F1

(
a,b,2,

1+Z(x,y)
2

)
, (2.39)

where a,b = (3/2)± ν and Z(x,y)
(
= 1− (−(η −η ′)2 + (⃗x− y⃗)2)/(2ηη ′)

)
is the invariant distance

function between the points x and y [13]. We will make heavy use of this Wightmann function in the

following chapters as we will mostly be concerned with the Bunch-Davies vacuum. Let us consider

an alternative method to arrive at the above Wightmann function [13]. The field operator satisfies the

following equation

(□−m2)φ(x) = 0 . (2.40)

Since in the Wightman function, the spacetime dependence comes only from the field operators, one

concludes that the Wightmann function also satisfies the above equation i.e.,

(□−m2)G(x,x′) = 0 . (2.41)

Considering a vacuum state that is invariant under the full de Sitter isometry group, we can conclude

that the Wightmann function for such a state is a biscalar (for more information, refer [13]) and, by the

arguments presented above, one obtains that G(x,y) = G(Z(x,y)). Therefore, using the chain rule, the

above equation reduces to

(Z2−1)
d2G
dZ2 +4Z

dG
dZ

+
m2

H2 G(Z) = 0 . (2.42)

Substituting Z = 2Y −1, we obtain

Y (1−Y )
d2G
dY 2 +(2− (a+b+1)Y )

dG
dY
−abG(Y ) = 0 , (2.43)
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where a = 3/2 +
√

9/4−m2/H2 and b = 3/2−
√

9/4−m2/H2 or vice-versa. This has the form

of the hypergeometric equation and the most general solution to this equation is given by G(Z) =

a2F1(a,b,2, 1+Z
2 )+b2F1(a,b,2, 1−Z

2 ). We notice that, for b= 0 and a= (H2/16π2)Γ(a)Γ(b), the Wight-

mann function has the form of the above obtained Bunch-Davies Wightmann function. Different choices

of a and b give the Wightmann functions for different de Sitter invariant vacua [13, 82, 84, 90–92].

2.3.2 Spinor fields

Let us now consider a spinor field in FRW spacetimes. Spinors in curved spacetime are generally studied

using tetrad formalism. The action for a minimally coupled spinor field is given by

S =
∫

d4x
√
−g
[
iψ̄γ

µ
∇µψ−mψ̄ψ

]
=

∫
d4x
√
−g
2
[
iψ̄γ

µ
∇µψ− i(∇µ ψ̄)γµ

ψ−2mψ̄ψ
]
+
∫

d4x
√
−g
2

∇µ

(
iψ̄γ

µ
ψ
)
. (2.44)

where γµ = eµ
a Γa and {Γa,Γb}=−2ηab. Here eµ

a are a tetrad basis and satisfy eµ
a eν

b ηab = gµν . The co-

variant derivative, ∇µ = ∂µ − (1/8)ωab
µ [Γa,Γb] where the spin connections, ωab

µ = ea
λ

eτbΓλ
τµ − eτb∂µea

τ .

The equation of motion corresponding to the above action is given by

(iγλ
∇λ −m)ψ = 0. (2.45)

Let us consider conformally flat spacetimes i.e., ds2 = a2(η)(−dη2 + d⃗x2). For these spacetimes, one

finds that tetrad basis can be taken to be eµ
a = (1/a)δ µ

a which implies that ea
µ = aδ a

µ , eaµ = (1/a)ηaµ

and eaµ = aηaµ . With these expressions for tetrad basis and using the fact that Γλ
µν = (a′/a)(δ λ

ν δ 0
µ +

δ λ
µ δ 0

ν −ηµνηλ0) (see Appendix A), we find that the spin connections, ωµab = (a′/a)(ηaµδ 0
b −ηbµδ 0

a ).

With this expression for spin connections, one obtains that

iγλ
∇λ =

i
a

Γ
µ

(
∂µ −

1
8

ωµab[Γ
a,Γb]

)
=

i
a

(
Γ

µ
∂µ +

a′

4a
ηµaΓ

µ [Γ0,Γa]

)
=

i
a

(
Γ

µ
∂µ +

3a′

2a
Γ

0
)
. (2.46)

28



With the above expression, the equation of motion is seen to be given by

(
iΓµ

∂µ +
3ia′

2a
Γ

0−am
)

ψ = 0 . (2.47)

In Fourier space, it becomes

(
iΓ0

∂0− k⃗.⃗Γ+
3ia′

2a
Γ

0−am
)

ψ⃗k(η) = 0 , (2.48)

and by the field transforamtion , χ⃗k(η) = a
3
2 (η)ψ⃗k(η), it acquires the following form

(
iΓ0

∂0− k⃗.⃗Γ−am
)

χ⃗k(η) = 0 . (2.49)

Taking the Weyl representation of the Gamma matrices i.e.,

Γ
0 =

0 1

1 0

⊗
1 0

0 1

 and Γ
i =

 0 1

−1 0

⊗σi , (2.50)

where⊗ is the tensor product symbol and σ ′i s stand for the 2∗2 Pauli matrices, and decomposing χ⃗k(η)

as given below

χ
h(⃗k,η)≡ χ⃗k(η) =

χL,h(⃗k,η)

χR,h(⃗k,η)

⊗ξh , (2.51)

where (k̂.⃗σ)ξh = hξh, we obtain two coupled linear differential equations which are

i∂0χR,h(⃗k,η)− khχR,h(⃗k,η)−amχL,h(⃗k,η) = 0 ,

i∂0χL,h(⃗k,η)+ khχL,h(⃗k,η)−amχR,h(⃗k,η) = 0 . (2.52)

Considering the linear combinations of χL,h(⃗k,η) and χR,h(⃗k,η) i.e.,

u±h(k,η) =
χL,h(⃗k,η)±χR,h(⃗k,η)√

2
,

and taking the case of the de Sitter spacetime i.e., a(η) =−(1/(Hη)), one obtains the following equa-

tions

u′′±h +
(

k2 +
1
4 − (1

2 ∓
im
H )2

η2

)
u±h = 0. (2.53)
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These are Bessel’s equation and the most general solutions for u±h are

u±h(k,η) = α
h
±k

√
−kηH(1)

ν± (−kη)+β
h
±k

√
−kηH(2)

ν± (−kη) , (2.54)

where ν± = (1/2)∓ ((im)/(H)) and αh
±k’s and β h

±k’s are arbitrary constants.

We, again, have the standard conundrum of making a choice for the vacuum state. For this case, let us

take the fermionic counterpart of the scalar field Bunch-Davies vacuum by observing that the equation

of motion for spinors become that of flat spacetime equation of motion in the asymptotic past. Hence,

we take αh
±k’s and β h

±k’s to be such that, in the asymptotic past, the spinor mode functions have the form

of flat spacetime positive and negative frequency modes. From (2.53), it is seen that in the asymptotic

past i.e., kη →−∞ limit, u±h satisfies u′′±h + k2u±h = 0 equation. Thus, in the asymptotic past, one has

a criterion to define the positive and negative frequency modes in the same way that one defines them

in flat spacetime. In the kη →−∞ limit, the argument of the Hankel functions goes to large values and

therefore, using the expansion of the Hankel functions for large arguments (see Appendix B) i.e.,

H(1)
ν (z) =

√
2

πz
ei(z− π

2 ν− π

4 )
[
1+O

(1
z

)]
, (2.55)

H(2)
ν (z) =

√
2

πz
e−i(z− π

2 ν− π

4 )
[
1+O

(1
z

)]
, (2.56)

f or |z| → ∞, Re(ν)>−1
2

and |arg(z)|< π,

it is observed that taking αh
±k’s to be non-zero and β h

±k’s to be zero, the mode functions u±h behave like

e−ikη in the considered asymptotic past limit. For this choice of arbitrary constants i.e., for u±h(k,η) =

αh
±k
√
−kηH(1)

ν± (−kη), one can show, using properties of Hankel functions and the equations of motion,

that αh
−k = ihαh

+keiπν− . Imposing that limkη→−∞ u+h(k,η)=
(
(e−ikη)/(

√
2)
)
, we end up requiring αh

+k =√
π/4ei π

2 (ν++1/2) and the mode functions are given by

u+h(k,η) =

√
−πkη

4
ei π

2 (ν++1/2)H(1)
ν+

(−kη)≡ f (k,η) , (2.57)

u−h(k,η) = −h

√
−πkη

4
ei π

2 (ν−+1/2)H(1)
ν− (−kη)≡−hg∗(k,η) . (2.58)

Thus, one obtains that

χL,h(k,η) =
f −hg∗√

2
, (2.59)

χR,h(k,η) =
f +hg∗√

2
. (2.60)
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To obtain the negative frequency modes, a similar analysis can be carried out as has been done above

for positive frequency modes. For negative frequency modes, let us denote the Fourier coefficient of

e−i⃗k.⃗x by ν⃗k(η) and the differential equations, written again in the helicity and chirality basis, have−k as

opposed to k. Therefore, if we swap the placement of left and right handed fermions in the four column

spinor i.e., defining

ν
h(⃗k,η)≡ ν⃗k(η) =

νR,h(⃗k,η)

νL,h(⃗k,η)

⊗ξh , (2.61)

the set of differential equations for νR,h and νL,h is same as was for χR,h and χL,h i.e., (2.52). Now,

requiring the linear combinations of νR,h and νL,h to behave like (eikη)/(
√

2) in the asymptotic past, we

obtain that

νL,h(k,η) =
h f ∗+g√

2
, (2.62)

νR,h(k,η) =
−h f ∗+g√

2
. (2.63)

With these ‘Bunch-Davies modes’, the field operator and its conjugate are expressed as below

ψ̂(η , x⃗) = a−
3
2 (η)

∫ d3⃗k
(2π)3 ∑

h

[
â⃗k,hχ

h(⃗k,η)ei⃗k.⃗x + b̂†
k⃗,h

ν
h(⃗k,η)e−i⃗k.⃗x

]
, (2.64)

and

ˆ̄ψ(η , x⃗) = a−
3
2 (η)

∫ d3⃗k
(2π)3 ∑

h

[
â†

k⃗,h
χ̄

h(⃗k,η)e−i⃗k.⃗x + b̂⃗k,hν̄
h(⃗k,η)ei⃗k.⃗x

]
. (2.65)

Here â’s and b̂’s represent the annihilation operators whereas â†’s and b̂†’s represent the creation oper-

ators corresponding to the Bunch-Davies modes. The Bunch-Davies vacuum, |0⟩, is defined to be the

state which is annihilated by all the annihilation operators i.e., â⃗k,h |0⟩= 0 and b̂⃗k,h |0⟩= 0.

The Wightman function for the Bunch-Davies vacuum is given by

Si j(x,x′)≡ ⟨ψi(x)ψ̄ j(x′)⟩= a−
3
2 (η)a−

3
2 (η ′)

∫ d3⃗k
(2π)3 ∑

h
χ

h
i (⃗k,η)χ̄h

j (⃗k,η
′)ei⃗k.(⃗x−⃗x′) , (2.66)

and

R ji(x′,x)≡ ⟨ψ̄ j(x′)ψi(x)⟩= a−
3
2 (η)a−

3
2 (η ′)

∫ d3⃗k
(2π)3 ∑

h
ν

h
i (−⃗k,η)ν̄h

j (−⃗k,η ′)ei⃗k.(⃗x−⃗x′)

=−Si j(x,x′) . (2.67)
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Using the expressions of the above obtained Bunch-Davies modes and performing some calculations,

one finds that

Si j(x,x′) = ⟨ψi(x)ψ̄ j(x′)⟩

= a(ηx)
[
iγλ
−→
∇

x
λ
+m

] H2√
a(ηx)a(ηx′)

[
S+(x,x′)

1+Γ0

2
+S−(x,x′)

1−Γ0

2

]
,

(2.68)

where

S±(x,x′) =
Γ
(
2± i m

H

)
Γ
(
1∓ i m

H

)
(4π)2 2F1

(
2± i

m
H
,1∓ i

m
H
,2,Z(x,x′)

)
, (2.69)

and Z(x,x′) = 1+
(
((η −η ′)2− (∆⃗x)2)/(4ηη ′)

)
. Making use of (2.46), the above expression can be

cast in the following form

Si j(x,x′) =
[
iΓλ

∂
x
λ
+

3ia′(ηx)

2a(ηx)
Γ

0 +a(ηx)m
] H2√

a(ηx)a(ηx′)

[
S+(x,x′)

1+Γ0

2
+S−(x,x′)

1−Γ0

2

]

=
H2√

a(ηx)a(ηx′)

[
iΓλ

∂
x
λ
+ i

a′(ηx)

a(ηx)
Γ

0 +a(ηx)m
][

S+(x,x′)
1+Γ0

2
+S−(x,x′)

1−Γ0

2

]
.

(2.70)

For more details, refer to [93, 94]. We make very frequent use of the expressions of the Wightman

functions (both for scalar and spinor fields) in the following chapters.

2.4 Stress energy tensor

In classical general relativity (GR), the gravity is assumed to be encoded in the geometry of the spacetime

in terms of the spacetime metric, gµν . The evolution of spacetime background is given by the Einstein’s

equations i.e.,

Gµν +Λgµν = 8πG Tµν , (2.71)

where Gµν is the Einstein tensor, Λ is the cosmological constant and Tµν is the stress energy tensor

which is defined as the variation of the matter action with respect to the metric variation i.e.,

Tµν(x) =−
2√
−g

δSM

δgµν(x)
. (2.72)
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Here SM is the action for the dynamics of the matter content of the universe. The stress energy tensor

accounts for all the energy momentum content that is present in the spacetime. The Einstein’s equations

are a set of classical equations in the sense that nothing quantum mechanical has been assumed about

either the matter or the spacetime (metric). But we believe that everything is fundamentally quantum

mechanical in nature and to account for this quantum mechanical behaviour of, at least, the matter, we

can treat the matter present in the spacetime to be quantum mechanical and keep the spacetime back-

round as classical and this approach is called semiclassical approach. For example, in this approach, we

can take matter in the spacetime as a quantum field evolving over a fixed classical spacetime background.

These considerations lead us to an important arena of quantum field theory in curved spacetime. This

coming together of quantum mechanical ideas and general relativity concepts has given rise to a plethora

of theoretically and conceptually important phenomena like cosmological particle creation, Hawking ra-

diation, etc. [77–79, 95]. Most of these phenomena have their origin in the ambiguity in defining a

vacuum for all times i.e., the lack of the existence of a state which satisfies the notion of a vacuum for

both asymptotic past and asymptotic future in a dynamical spacetime. In this thesis, we focus on QFT in

FRW spacetimes. As discussed in the previous chapter, cosmology provides an area where these notions

based on the interplay of the quantum theory and general relativity play an important role. QFT on FRW

backgrounds has been investigated very extensively in the literature [12, 65, 75, 96–100].

The correlations of quantum fields over the inflationary de Sitter and Friedmann–Robertson–Walker

(FRW) spacetimes (which model the different stages of the evolution of the Universe) are the most

important objects in these quantum fields in curved spacetime analyses. The study of correlations of

quantum fields for the considered FRW spacetimes is the main topic of this thesis. We study the be-

haviour of these correlations, particularly in terms of the noise kernel (which we define below) and also

see that the noise kernel captures the quantum effects of the quantum fields on spacetime. Another line

of investigation to study the behaviour of these correlations that is considered in this thesis is the Unruh

deWitt coupling of discrete localized quantum systems with the quantum fields in these cosmological

spacetimes.

All that we have said till now has focused only on the dynamics of quantum fields in fixed curved space-

time background. But it is natural to ask how the dynamics of quantum fields affect the background

spacetime over which it is evolving. One resolution to this question leads to what is called the semiclas-

sical gravity paradigm. In this approach, one considers the quantum field over a class of spacetimes and

calculate the expectation value of the stress energy operator (which one obtains by replacing the classical

fields by field operators in the classical expression for the stress-energy tensor (2.72)), denoted by T̂ab,

corresponding to any state in which the quantum field is placed. One then replaces the classical stress
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energy tensor in the Einstein’s equations, (2.71), by the expectation value of the stress energy operator

and obtains the modified Einstein’s equations of semiclassical gravity i.e.,

Gµν +Λgµν = 8πG⟨T̂ R
ab⟩ , (2.73)

where ⟨T̂ R
ab⟩ represents the properly regularized and renormalized expectation value of stress energy op-

erator with respect to some state. In semiclassical gravity, the goal is to solve the dynamical equation

of the quantum field and the just introduced modified Einstein’s equations in a consistent manner. How-

ever, this approach takes into account only the expectation value of the stress energy operator and its

effect on the background spacetime. But the higher n-point correlations of stress energy operators at

n-spacetime points also carry quantum signatures of the field. In case these n-point correlations of stress

energy operators are relatively large, we expect the semiclassical gravity approach to break down and

realize the need to incorporate the quantum effects of the fields captured by higher n-point correlations

into our analysis. Only by taking into account quantum effects corresponding to higher correlations, we

can expect our theory to be able to make robust claims and predictions related to the behaviour of the

fields and spacetimes in these settings. As a first step to go beyond the semiclassical gravity, we look

at the fluctuations in the stress energy operator in terms of the two point correlations of stress energy

operators with respect to any state in which the field is placed. In fact, one can define such correlations

of stress energy operators through the noise kernel of quantum fields which we discuss in the next sec-

tion. In this thesis, we do not concern ourselves with the effects of three or higher-point correlations of

the stress energy operators. We call the effects based only on the expectation value of the stress energy

operator as first order quantum effects. As we discuss below that, in the stochastic gravity paradigm, the

noise kernel induces metric perturbations to the semiclassical gravity results to linear order, we call the

incorporation of the effects of the two-point correlations of stress energy operators, encoded in the noise

kernel, as second order effects. Only a fully quantum theory is expected to take into account the effects

of all n-point correlations but this is not what this thesis tries to achieve.

2.5 The noise kernel

As discussed in [101], the scope and the validity of the semiclassical gravity results cannot be definitely

known in the absence of a full quantum gravity theory. However, one criterion to be able to make some

remarks about the validity of the results of semiclassical gravity approach is to consider their stability
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in the light of quantum metric fluctuations. The stochastic gravity approach [101, 102] is such a theory

which tries to do just that. More definitely, consider that gab(x) is a solution of the modified Einstein’s

equation (2.73) and hab(x) are perturbations over it so that the full metric is given by gab(x)+ hab(x).

In stochastic gravity, the dynamics of this full metric is given by the following equation, called the

Einstein-Langevin equation [101] i.e.,

Gab(g+h,x)+Λ(gab(x)+hab(x)) = 8πG
(
⟨T̂ R

ab(g+h,x)⟩+ξab(g,x)
)
, (2.74)

where Gab(g+h,x) and ⟨T̂ R
ab(g+h,x)⟩ have the same meaning as in Eq. (2.72) but with spacetime metric

gab(x)+hab(x) (shown by an explicit dependence of these quantities on g+h). The quantity ξab(x)1 is

a stochastic Gaussian tensor field of rank 2 such that it satisfies the following relation

⟨ξab(x)⟩s = 0 and ⟨ξab(x)ξcd(x′)⟩s = Nabcd(x,x′) , (2.75)

where ⟨...⟩s means statistical average. The quantity Nabcd(x,x′), which is related to the two point statis-

tical average of the stochastic tensor field, is called the noise kernel and is one of the main objects in

this thesis to study the quantum correlations of fields in FRW spacetimes. The noise kernel is defined as

follows

Nabcd(x,x′)≡
1
2
⟨{t̂ab(x), t̂cd(x′)}⟩ , (2.76)

where t̂ab(x) = T̂ab(x)− ⟨T̂ab(x)⟩ and the curly brackets represent the anti-commutator i.e., {A,B} =

AB+BA. All the expectations are taken with respect to a state in which the field is placed.

In stochastic gravity paradigm, the Einstein-Langevin equation is considered to linear order in perturba-

tions hab(x) and hence, its dynamics is given by [101]

hab(x) = h0
ab(x)+8πG

∫
d4x′

√
−g(x′)Gabcd(x,x′)ξ cd(x′) , (2.77)

where h0
ab(x) is the solution of the homogeneous equation obtained by considering the Einstein’s Langevin

equation upto linear order in h. The quantity Gabcd(x,x′) is the retarded propagator of the mentioned lin-

ear equation in h [101] and the integral in the above expression represents the inhomogeneous solution

in the presence of the stochastic source term. From the above expression, it can also be shown that the

two-point statistical average of hab(x) is related to the noise kernel of the quantum field. Thus, we see

that the stochastic field ξab provides the backreaction effects of the two-point quantum correlations of

the stress energy operator on the dynamics of the spacetime. Since we consider linear perturbations

1We have suppressed the explicit dependence of the stochastic field on the background metric g.
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over the expectation value based semiclassical gravity results induced by the noise kernel, we call the

quantum effects encapsulated in the noise kernel as second order. In this thesis, we mainly study the

behaviour of the noise kernel and we will not solve the Einstein-Langevin equation for the derived noise

kernel for the quantum fields in the considered de Sitter and FRW spacetimes. For more details about the

stochastic gravity and the Einstein-Langevin equation, one should refer to the monumental work done

on it in [101]. We also define the following two point correlations of stress energy operators

⟨t̂abcd(x,x′)⟩ ≡ ⟨t̂ab(x)t̂cd(x′)⟩

= ⟨0|T̂ab(x)T̂cd(x′)|0⟩−⟨0|T̂ab(x)|0⟩⟨0|T̂cd(x′)|0⟩ . (2.78)

It is in terms of this above defined correlation of stress energy operators that we study the behaviour of

the correlations of quantum fields in de Sitter and other FRW spacetimes. The noise kernel is a bi-tensor

quantity i.e., it is a rank 2 tensor at spacetime point x and simultaneously it is a rank 2 tensor at spacetime

point x′. We will show that one can contract the noise kernel with some timelike vector field and build

an invariant quantity from the noise kernel. We come to this invariant correlator in chapters 3 and 4.

A number of important observations can be made about the behaviour of a quantum field in a specific

spacetime by studying its noise kernel in that spacetime. For example, the fluctuation in stress energy

operator at some space-time point x is equal to ⟨(t̂ab(x))2⟩, as is true for any quantum operator, and it

can be obtained from the noise kernel if we take a = c and b = d and evaluate the noise kernel in the

coincidence limit x′→ x i.e., lim
x′→x
⟨t̂abab(x,x′)⟩. But the coincidence limit, x′→ x, leads to UV divergences

in the quantities involving product of quantum fields and hence one needs to handle them properly by

employing proper regularization procedures as is usually required to be done for handling these UV

divergences in quantum field theory [12, 102, 103]. In this thesis, however, we do not concern ourselves

with the coincidence limit of the noise kernel and are mainly focused on studying the behaviour of the

noise kernel for well separated spacetime points. Let us now discuss another approach by which also,

one can study the correlations of quantum fields in cosmologically interesting spacetimes. This approach

is that of Unruh deWitt (UdW) detectors.

2.6 Unruh deWitt (UdW) detector

An Unruh deWitt detector is a point like object following a classical trajectory in spacetime with an

internal discrete quantum structure and it interacts with a quantum field evolving in the spacetime [75,
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104, 105]. The conventional UdW coupling with a quantum field has the following Hamiltonian in the

interaction picture

ĤI = cχ(τ)µ̂(τ)φ̂(x(τ)) (2.79)

where c is the coupling constant, χ(τ) is a switching (real valued) function which determines for how

long the detector interacts with the field, µ̂(t) = eiĤDτ µ̂(0)e−iĤDτ with HD being the Hamiltonian for the

internal structure of the detector and µ̂(0) determines the transitions between the internal states of the

detector. Here φ̂(x(τ)) is a quantum scalar field at spacetime point x(τ) which is the point along the

detector’s trajectory at which the detector is at proper time τ . One can consider the transition probability

for the detector to make a transition from some state |0⟩D with energy 0 to another state |Ω⟩D with energy

Ω whereas the quantum field starts in its vacuum state |0⟩ and ends up in some arbitrary state |ψ⟩. Using

the time dependent perturbation theory upto first order in coupling constant, c, it can be shown that the

transition amplitude for the above transition is given by

A|0⟩D⊗|0⟩→|Ω⟩D⊗|ψ⟩ = −ic
∫

∞

−∞

dτχ(τ)⟨Ω|D µ̂(τ) |0⟩D ⟨ψ| φ̂(x(τ)) |0⟩

= −ic⟨Ω|D µ̂(0) |0⟩D
∫

∞

−∞

dτχ(τ)eiΩτ ⟨ψ| φ̂(x(τ)) |0⟩ . (2.80)

Therefore, the transition probability for the detector to go from |0⟩D to |Ω⟩D irrespective of the final state

of the field is given by

P|0⟩D→|Ω⟩D
|c|2| ⟨Ω|D µ̂(0) |0⟩D |2

=
∫

∞

−∞

∫
∞

−∞

dτ1dτ2χ(τ1)χ(τ2)e−iΩ(τ1−τ2)

∑
|ψ⟩
⟨0| φ̂(x(τ1)) |ψ⟩⟨ψ| φ̂(x(τ2)) |0⟩ . (2.81)

Using the completeness of the final states i.e., ∑ψ |ψ⟩⟨ψ|= 1, the above expression becomes

P|0⟩D→|Ω⟩D
|c|2| ⟨Ω|D µ̂(0) |0⟩D |2

=
∫

∞

−∞

∫
∞

−∞

dτ1dτ2χ(τ1)χ(τ2)e−iΩ(τ1−τ2)G(x(τ1),x(τ2)) , (2.82)

where G(x(τ1),x(τ2)) = ⟨0| φ̂(x(τ1))φ̂(x(τ2)) |0⟩ is the Wightman function of the quantum field. There-

fore, the probability for the above considered process is related to the integrals of the Wightman function

of the quantum field and as such the probability would encode in itself the behaviour of the correlations

of the quantum fields. Thus, in addition to the noise kernel of the quantum fields, finding the expression

of the above probability for quantum fields in curved spacetimes will also provide important insights into

the behaviour of the quantum fields. The correlations of quantum fields at different spacetime points can

also be studied in a similar setting in terms of the generation of entanglement between spatially sepa-
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rated localized quantum systems [106–109]. One can also consider other modified UdW couplings like

the derivative UdW coupling [110–113] which we, in fact, analyze later in the thesis in the context of

quantum fields in FRW spacetimes only. Indeed, there exist many different types of UdW detectors

depending upon whether the detector quantum space is like that of a qubit [105, 114] or a quantum

harmonic oscillator [115, 116], etc. Other features like the point size or finite spatial size [117–120] of

the detector also gives rise to different UdW detectors. One important factor on which the response of

a UdW detector depends is the choice of timelike trajectory along which the UdW detector is moving.

In this work, the UdW detectors are taken to be moving along what are called the comoving trajectories

which will be explained later in the thesis. In this thesis, we also explore the UdW type interaction

of metric perturbations over the otherwise isotropic and homogeneous FRW spacetimes with localized

quantum systems.
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Chapter 3

Stress energy correlator of scalar fields in

FRW spacetimes

In this chapter, we look at the behaviour of the stress energy correlator or noise kernel of scalar fields

in FRW spacetimes. Particularly, we focus on massive scalar fields in de Sitter spacetime and massless

scalar fields in power-law type FRW spacetimes. We will carry out the analysis for scalar fields in de

Sitter spacetime while placing the field in the Bunch-Davies vacuum discussed in the first chapter. We

discuss an equivalence that exists between massless scalar fields in power-law type FRW spacetimes

with massive scalar fields in de Sitter spacetime. Using this equivalence, we place the massless scalar

fields of power-law type FRW spacetimes in the Bunch-Davies state of the corresponding massive scalar

field of the de Sitter spacetime. In case of de Sitter spacetime, we also provide the results for non

minimally coupled scalar fields. Finally, we discuss the implications of the obtained results.
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3.1 Introduction

As motivated in the previous chapter, one way to study the correlations of quantum fields is through

their noise kernel. The noise kernel, in fact, provides how these correlations in quantum fields can

cause fluctuations in the otherwise stable metric solutions of the semiclassical gravity. In that sense, if

the noise kernel or stress energy correlations are large relative to the expectation of the stress energy

operator, we may find ourselves in a situation where the self-consistent solutions of the semiclassical

gravity may no longer have any relevance and we may need to revisit the conclusions based on the

first order semiclassical gravity. Therefore, studying the noise kernel, which captures the second order

quantum effects of the fields, is an important exercise. Particularly, we want to carry out this analysis

for quantum fields in the early Universe as well as for other epochs of the cosmological expansion.

Observations [121] suggest that the Universe went through a near de Sitter configuration during the

early stages of its evolution. We also understand that the vacuum fluctuations in the quantum fields of the

metric and matter perturbations (over the otherwise maximally symmetric configuration of the de Sitter

Universe) sowed the seed of the large scale structure (LSS) of the Universe during the early phase of the

Universe [12, 67, 99, 122]. Therefore, studying the behaviour of the noise kernel for quantum fields in

the early Universe is worth spending time on because if the second order quantum effects are significant,

it may have important implications for how we understand the cosmic microwave background (CMB)

radiations and the origin of structures in the Universe. Quantization of scalar fields over de Sitter space-

time and studying its implications has been a focus of investigation for a long time [82] and a lot of effort

has gone into it [13, 84, 90, 122–136]. One of the most important object for studying free quantum

fields over any spacetime is its Wightman function. It contains in itself the information about how

the quantum field at different spacetime points are correlated with each other. In fact, the vacuum

expectation value of the stress energy operator that appears in the modified Einstein’s equations of

semiclassical gravity can also be written as some derivative operators acting on the Wightman function

of the field [12]. But the Wightman functions of quantum fields need to be handled carefully because

of the many divergences that they carry in cosmological settings [12, 137]. For example, the Wightman

function is an ill-defined object in the coincidence limit i.e., at the same space-time point, because, in

this limit, the Wightman function diverges in a quadratic as well as in a logarithmic manner which is also

called the Hadamard form [12]. These short-distance divergences are related to the high-energy limit of

the theory and can be removed by proper regularization and renormalization techniques in most physical

situations [12, 75, 138]. In case of scalar fields in de Sitter spacetime, the situation gets even worse as

the Wightman function shows a divergence even for different spacetime points when one considers the
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case of a minimally coupled massless scalar field [13, 84, 137]. This divergence for minimally coupled

massless scalar fields is often called the infra-red problem of the de Sitter spacetime and this infrared

divergence of the Wightman function can also be seen in its power spectrum [12, 65]. Some methods

have been worked out ([12, 139]) to make sense of these divergences and obtain physically sensible

results out of them. Using an equivalence between scalar fields in de Sitter and FRW spacetimes given

in [65], the Wightman functions of scalar fields in de Sitter and FRW spacetimes can be related and it

can be shown that the infrared divergence of the de Sitter case is inherited by scalar fields in some FRW

spacetimes. Now if we wish to analyze whether these infrared divergences in de Sitter and some FRW

spacetimes have the potential to make these spacetimes unstable or not, we can study the behaviour

of the noise kernel for the corresponding situations and see whether the second order quantum effects

encoded in the noise kernel are strong enough or not especially in the light of the infra-red problem.

Using the point split form of the stress energy tensor, one can write the noise kernel as a sum of products

of derivatives of Wightman functions [140] and because of this fact, we expect the noise kernel, in

general, to be also infected by the divergences of the Wightman functions. A lot of efforts has gone

into studying the backreation of the quantum fields [91, 96–98, 100, 138, 141]. In addition to de Sitter

spacetime [74, 142], the noise kernel has been investigated for other maximally symmetric spacetimes

[143, 144] as well. In this work, rather than explicitly calculating the backreaction in terms of the metric

fluctuations induced by the noise kernel, we mainly concentrate our attention to calculate the behaviour

of the noise kernel which carries the information about the stochastic part of the Einstein Langevin

equations of the stochastic gravity approach [101] and only qualitatively study the implications of its

behaviour.

To calculate the noise kernel, we follow in the footsteps of [140] but generalize our studies to the de

Sitter and FRW spacetimes. First, we take up the case of massive scalar fields in de Sitter spacetime

and calculate the noise kernel for it. We compare our results with a similar study carried out in [74],

point out the points of departure in our results compared with this study and explain the reasons. We

are interested in studying whether these second order quantum effects grow or decay as the physical

distances between any two spatially separated comoving points increase with the increasing scale factor

in de Sitter expansion. We also want to analyze similar study for FRW spacetimes. These observations

will provide insights into the stability or instability of the considered spacetimes.

We divide this chapter into 6 sections including this one. In section 3.2, we give a brief introduction

of the noise kernel for scalar fields in curved spacetime. In section 3.3, we obtain the late time behaviour

of the noise kernel for a minimally coupled massive scalar field in de Sitter spacetime and discuss its
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behaviour for various masses. We also perform a similar analysis for non-minimally coupled scalar

field case. In section 3.4, we carry out the analysis for massless scalar fields in power-law type FRW

spacetimes and discuss the stability of these spacetimes in light of the obtained results. In section 3.5,

we define an invariant object called the energy energy correlator and calculate its behaviour for all the

spacetimes considered in the sections before it. We discuss the main results obtained in this work and

further future prospects in Section 3.6.

3.2 The noise kernel

Let us consider the action of a minimally coupled massive scalar field in a general spacetime metric i.e.,

S[gαβ ,φ ] =−
1
2

∫
dηd3⃗x

√
−g
(
gαβ

∇αφ ∇β φ +m2
φ

2) . (3.1)

Now using the formula for stress energy tensor (2.72) i.e.,

Tαβ (x) =−
2√
−g

δSM

δgαβ (x)
, (3.2)

we see that the stress energy tensor for the above action of a minimally coupled scalar field in general

spacetime is given by

Tαβ (x) = ∇αφ∇β φ − 1
2

gαβ (g
γδ

∇γφ∇δ φ +m2
φ

2) . (3.3)

If we specialize to the case of Minkowski spacetime i.e., gαβ = ηαβ , we can write the stress energy

tensor in the following point-split form

Tab(x) = lim
y→x

Pab(x,y)φ(x)φ(y) , (3.4)

where

Pab(x,y) =
(
δ

c
(aδ

d
b)−

1
2

ηabη
cd)

∇
x
c∇

y
d−

1
2

ηabm2 . (3.5)

We can obtain the quantum stress energy operator from the above stress energy tensor expression by

replacing the classical field with the field operator i.e.,

T̂ab(x) = lim
y→x

Pab(x,y)φ̂(x)φ̂(y) . (3.6)
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Now using the above formula and the definition of the two point correlations of stress energy operators

i.e., (2.78), in a vacuum state, we see that the stress energy two point correlator is given by

⟨t̂abcd(x,x′)⟩= lim
y→x
y′→x′

Pab(x,y)Pcd(x′,y′)⟨0|φ̂(x)φ̂(y)φ̂(x′)φ̂(y′)|0⟩

− lim
y→x
y′→x′

Pab(x,y)Pcd(x′,y′)⟨0|φ̂(x)φ̂(y)|0⟩⟨0|φ̂(x′)φ̂(y′)|0⟩ . (3.7)

Using the Wick’s theorem, the above expression can also be written as [140]

⟨t̂abcd(x,x′)⟩= 2lim
y→x
y′→x′

Pab(x,y)Pcd(x′,y′)G(x,x′)G(y,y′) , (3.8)

where

G(x,x′) = ⟨0| φ̂(x)φ̂(x′) |0⟩ , (3.9)

i.e., the Wightman function of the scalar field in the considered vacuum.

3.3 Behaviour of the noise kernel for de Sitter spacetime

Let us write down the expression of the stress energy correlator1 i.e., (2.78), for a conformally flat

FRW space-time i.e., for gαβ = a(η)2ηαβ . For a minimally coupled scalar field in a conformally flat

space-time, the stress energy operator can again be written in the point split form (3.6) with

Pab(x,y) =
(
δ

c
(aδ

d
b)−

1
2

ηabη
cd)

∇
x
c∇

y
d−

1
2

(a(η)+a(η ′)
2

)2
ηabm2 . (3.10)

We find that the stress energy correlator for a conformally flat FRW spacetime is also given by (3.8) with

the above Pab(x,y). For de Sitter space-time i.e., a(η) =−1/(Hη), the explicit expression of the stress

1The noise kernel can be obtained from the stress energy correlator by simply comparing (2.76) with (2.78).
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energy correlator is given by

⟨t̂abcd(x,x′)⟩dS =

(
∇b∇

′
cG(x,x′)∇a∇

′
dG(x,x′)+∇b∇

′
dG(x,x′)∇a∇

′
cG(x,x′)

−ηcdη
ρσ

∇a∇
′
ρG(x,x′)∇b∇

′
σ G(x,x′)− 1

H2η ′2
m2

ηcd∇aG(x,x′)∇bG(x,x′)

−ηabη
γδ

∇γ∇
′
cG(x,x′)∇δ ∇

′
dG(x,x′)+

1
2

ηabη
γδ

ηcdη
ρσ

∇γ∇
′
ρG(x,x′)∇δ ∇

′
σ G(x,x′)

+
1

2H2η ′2
m2

ηabη
γδ

ηcd∇γG(x,x′)∇δ G(x,x′)− 1
H2η2 m2

ηab∇
′
cG(x,x′)∇′dG(x,x′)

+
1

2H2η2 m2
ηabηcdη

ρσ
∇
′
ρG(x,x′)∇′σ G(x,x′)+

1
2H4η2η ′2

m4
ηabηcdG(x,x′)G(x,x′)

)
. (3.11)

Now we want to find out what happens to the correlations of the stress energy operators as the Universe

expands in this de Sitter case. For the present work, we consider spacetime points with equal time

coordinates i.e., we work on equal time sheets. We take the points on equal time sheets to be co-moving

with finite spatial distances between them and want to analyse whether ⟨t̂abcd(x,x′)⟩dS grows or not

with the growth of the physical distances between the fixed co-moving points as the de Sitter spacetime

expands i.e., in the a(η)→ ∞ limit.

Minimal coupling

To make any inferences about the behaviour of the spacetime in the light of the magnitude of the noise

kernel or stress energy correlations, we must not have knowledge of the exact expressions of all compo-

nents of the noise kernel. We find that with only knowledge of the behaviour of the ⟨t̂0000⟩ component,

we are able to make a qualitative assessment about the stochastic corrections to the first order quantum

effects of the semiclassical gravity. In fact, the degree of the divergences for other components is either

sub dominant or equal to that of ⟨t̂0000⟩ (Refer Appendix D). We can also relate the ⟨t̂0000⟩ with the coor-

dinate independent invariant or energy energy correlator which is introduced below. Thus, we focus on

studying the behaviour of the (a = 0, b = 0, c = 0, d = 0) component of the noise kernel. For de Sitter

spacetime, the η → 0 limit is what corresponds to the late time that is the limit in which the scale factor

grows to large values. Thus, our goal is to analyse the behaviour of the (a = 0, b = 0, c = 0, d = 0)

component of the noise kernel on constant time sheets (i.e., η = η ′) with finite spatial distances (i.e.,

∆⃗x ̸= 0) in the η → 0 limit.
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Using the equation (3.11) and formulas from Appendix C, we see that

⟨t̂00(η , x⃗)t̂00(η , x⃗′)⟩dS =

(
(G′′)2

[(∆⃗x)6

4η10 +
(∆⃗x)8

32η12 +
(∆⃗x)4

2η8

]
+G2

[ m4

2H4η4

]
+(G′)2

[3(∆⃗x)2

2η6 +
(∆⃗x)4

8η8 +
2

η4 +
m2

H2

((∆⃗x)4

4η8 +
(∆⃗x)2

η6

)]
+(G′′G′)

[
− 5(∆⃗x)4

4η8 −
(∆⃗x)2

η6 −
(∆⃗x)6

8η10

])
.

(3.12)

In the above equation, a single prime (′) on G represents a single derivative with respect to Z and

similarly, two primes represent a double derivative with respect to Z. Now we need to make a choice

for the vacuum state of the scalar field and we choose the vacuum state to be the Bunch-Davies vacuum

introduced in chapter 2. The Wightman function of the scalar field in the Bunch-Davies vacuum is given

by equation (2.39) and therefore, we have

G(Z) =
H2

16π2 Γ

(3
2
+ν

)
Γ

(3
2
−ν

)
2F1

(3
2
+ν ,

3
2
−ν ,2,

1+Z
2

)
, (3.13)

G′(Z) =
H2

64π2 Γ

(5
2
+ν

)
Γ

(5
2
−ν

)
2F1

(5
2
+ν ,

5
2
−ν ,3,

1+Z
2

)
, (3.14)

G′′(Z) =
H2

384π2 Γ

(7
2
+ν

)
Γ

(7
2
−ν

)
2F1

(7
2
+ν ,

7
2
−ν ,4,

1+Z
2

)
, (3.15)

where ν =
√

(9/4)− (m2/H2). Using the late time limit (which corresponds Z→−∞ limit) for the 2F1

function [87] i.e.,

2F1(a,b,c,z) =
Γ(b−a)Γ(c)(−z)−a

Γ(b)Γ(c−a)

( ∞

∑
k=0

(a)k(a− c+1)kz−k

k!(a−b+1)k

)

+
Γ(a−b)Γ(c)(−z)−b

Γ(a)Γ(c−b)

( ∞

∑
k=0

(b)k(b− c+1)kz−k

k!(b−a+1)k

)
, (3.16)

it can be shown [145] that

⟨t̂00(η , x⃗)t̂00(η , x⃗′)⟩dS
∣∣
late time =

H4Γ2(ν)Γ2(5
2 −ν)

π5

[
9η2−4ν

32(∆⃗x)6−4ν

+
21(3−2ν)η4−4ν

16(∆⃗x)8−4ν
+

(656ν3−3244ν2 +5168ν−2655)η6−4ν

64(ν−1)(∆⃗x)10−4ν
+O(η2)

]
. (3.17)
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From the above expression, we observe that the correlations of the stress energy operators on equal time

sheets undergo a transition at ν = 1/2. The exponent of the most dominant term, η2−4ν , in the above

expression is positive for ν < 1/2, e.g., for ν = 0,

⟨t00(η , x⃗)t00(η , x⃗′)⟩dS
∣∣
late time = lim

η→0

[
O(η2)

]
, (3.18)

and hence the stress energy correlations vanish for ν < 1/2. Whereas, for ν = 1/2, the correlations

approach an η− independent leading term (of course, in the late time limit i.e., η → 0 limit) i.e.,

⟨t00(η , x⃗)t00(η , x⃗′)⟩dS
∣∣
late time = lim

η→0

[
9H4

32π4(∆⃗x)4 +O(η)

]
. (3.19)

This should not come as a surprise because, for ν = 1/2, the resultant scalar field theory in de Sitter

spacetime (with m2/H2 = 2) is a conformally invariant theory and as such should be ignorant of the

presence of a(η). On the other hand, the leading order behaviour of the correlations diverges for ν >

1/2. For example, for ν = 3/2 (which corresponds to a massless theory in de Sitter spacetime), the

correlations are given as follows [145]

⟨t00(η , x⃗)t00(η , x⃗′)⟩dS
∣∣
late time =

lim
η→0

lim
ε→0

[
9H4

128π4η4

[
1−4ε

]
+

21H4ε

32π4(∆⃗x)2η2 +
H4

16π4(∆⃗x)4

[3
2
+14ε

]
+O(η)

]

= lim
η→0

[
9H4

128π4η4 +
H4

16π4(∆⃗x)4

[3
2

]
+O(η)

]
→ ∞. (3.20)

In the above expression, we start with v = 3/2− ε where ε << 1 i.e., we start with nearly massless

scalar fields and we obtain the massless field case by taking ε→ 0. Thus, we observe that, for spacetime

points on constant time sheets with finite spatial distances between them and in the late time, η → 0,

limit, the (a = 0, b = 0, c = 0, d = 0) component of the noise kernel (for a minimally coupled scalar

field in de Sitter spacetime placed in the Bunch-Davies vacuum) shows a transition from a decaying to

a divergent behaviour as ν is changed between [0,3/2] with transition taking place at ν = 1/2. These

observations should be seen especially in the light of the well known fact that the de Sitter spacetime is

unstable against the particle creation of light mass particles [85, 90, 146–148].
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Comparison with large co-moving distance case

It is important that we compare our results with the ones obtained in [74]. In this work, the noise kernel

is expressed in terms of functions P,Q,R,S,T (which are sums of products of Wightman function and

its first and 2nd order derivatives with respect to the geodesic distance)

⟨tabcd(x,x′))⟩dS = P(µ)nanbncnd +Q(µ)(nanbgc′d′+nc′nd′gab)

+R(µ)(nsnc′gbd′+nbnd′gac′+nand′gbc′+nbnc′gad′)+S(µ)(gac′gbd′+gbc′gad′)+T (µ)gabgc′d′ ,

(3.21)

where µ is the distance of the geodesic which connects the points x and x′. The quantities na,nc′ ,gab,gad′ ,

gc′d′ , etc. appearing in the above expression are described with respect to the geodesic which connects

the points x and x′. Then, the unit vectors na and na′ are tangent vectors to this geodesic at the points x

and x′, respectively. The object gac′ is defined by its action which is to move a vector from x′ to x along

the above geodesic in parallel transport manner.

In [74], it is shown that

P,Q,T ∼ Z−2h and R∼ Z−2h −1 and S∼ Z−2h −2. (3.22)

for Z << −1. Using this, [74] argues that the fluctuations decay faster with the distance as mass

increases. However, such a conclusion is reached by ignoring the dependence of the coefficients of

P(µ),Q(µ) etc., in the above equation, on η
(
and hence on Z as Z = 1+((η−η ′)2− (∆⃗x)2)/(2ηη ′)

)
and which is justifiable only for the case in which the Z→−∞ by keeping the η and η ′ fixed and taking

(∆⃗x)2→∞ limit. However, for the case in which we do not hold η and η ′ fixed, then we will also have to

worry about the behaviour of the coefficients of the P(µ),Q(µ) etc. to reach to any conclusion about the

overall behaviour of the stress energy correlations in the Z <<−1 regime. Particularly, Z <<−1 case

can also be achieved by keeping the spatial distance finite ∆⃗x (̸= 0) and fixed and working on constant

η− sheets and taking a(η)→ ∞. The just mentioned case is the same one that we have considered in

our analysis and this work has also obtained the same divergences in this case as we have obtained, for

appropriate mass ranges.

Below we provide the calculations for arriving at the behaviour of the noise kernel for the case of non-

minimally coupled scalar fields. We find that though the technical details are a bit different but the overall
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qualitative conclusions can be carried over from the previous case by the replacement m2→m2+12ξ H2.

Non-minimal coupling

The action for a non-minimally coupled massive scalar field is given by2

Snm[gαβ ,φ ] =−
1
2

∫
dηd3⃗x

√
−g
(
gαβ

∇αφ ∇β φ +m2
φ

2 +ξ Rφ
2) . (3.23)

The corresponding equation of motion for the field, φ , is

[
□− (12ξ H2 +m2)

]
φ(x) = 0 , (3.24)

from which one can show that the Wightman function is now given by

G(Z(x,x′)) =
H2

16π2 Γ(a)Γ(b)2F1
(
a,b,2,

1+Z
2
)
, (3.25)

where a = 3/2+
√

9/4− (12ξ H2 +m2)/(H2) and b = 3/2−
√

9/4− (12ξ H2 +m2)/(H2).

Using the definition of the stress-energy tensor i.e., equation (2.72), we obtain

T nm
αβ

(x) = ∇αφ∇β φ − 1
2

gαβ (g
γδ

∇γφ∇δ φ + m2
φ

2) + ξ
(
Gαβ φ

2 + gαβ gγδ
∇γ∇δ φ

2 − ∇α∇β φ
2 ) ,
(3.26)

where Gαβ is the Einstein tensor. Making use of the fact that, for de Sitter spacetime i.e, gαβ =

ηαβ/H2η2, Gαβ =−3H2gαβ , we can write the stress energy tensor in the following point-split form

T nm
αβ

(x) = lim
y→x

Pnm
ab (x,y)φ(x)φ(y) = lim

y→x

(
Pab(x,y)+Mab(x,y)

)
φ(x)φ(y) , (3.27)

where

Pab(x,y) =

[(
(1−2ξ )δ r

(aδ
s
b)− (

1
2
−2ξ )ηabη

rs
)

∇
x
r∇

y
s−

2(3H2ξ + m2

2 )

(Hη)2 +(Hη ′)2 ηab

]
, (3.28)

and

Mab(x,y) =

[
2ξ ηabη

rs−2ξ δ
r
(aδ

s
b)

]
∇x

r∇x
s +∇

y
r∇

y
s

2
. (3.29)

2Here superscript nm refers to non-minimal coupling.
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We see that, for ξ = 0, we obtain the minimally coupled case back which should, in fact, be the case.

Particularly, Mab(x,y) vanishes whereas the Pab(x,y) goes to the corresponding expression of the mini-

mally coupled case.

We obtain the stress energy operator by replacing the classical fields by the field operator in the above

expression and find that the stress energy correlator is given by

⟨t̂nm
ab (x)t̂

nm
cd (x′)⟩= 2lim

y→x
y′→x′

Pnm
ab (x,y)Pnm

cd (x′,y′)G(x,x′)G(y,y′)

= 2lim
y→x
y′→x′

(
Pab(x,y)Pcd(x′,y′)+Pab(x,y)Mcd(x′,y′)

+Mab(x,y)Pcd(x′,y′)+Mab(x,y)Mcd(x′,y′)
)

G(x,x′)G(y,y′) . (3.30)

We provide the exact expressions of the PabPcd , PabMcd , MabPcd and MabMcd terms in the Appendix D.

As in the case of minimal coupling, we find (by using power counting argument) that the most dominant

power of η (in the limit η → 0) is still 2−4ν
(
where ν =

√
9/4− (12ξ H2 +m2)/(H2)

)
i.e.,

⟨tnm
ab (x)t

nm
cd (x′)⟩

∣∣
late time = lim

η→0

[
η2−4νH4

512π5(∆⃗x)6−4ν

[
32(12ξ −1)Γ

(5
2
−ν
)
Γ
(7

2
−ν
)

+
(

16
m4

H4 +8
m2

H2 (24ξ +(3−2ν)2)−48ξ (3−2ν)2 +(3−2ν)2(29−20ν +4ν
2)

+32ξ
2(27−12ν +4ν

2))
)

Γ
2(3

2
−q
)]

Γ[ν ]2 +O(η4−4ν)

]
. (3.31)

Thus, we find that the behaviour of the noise kernel for non-minimally coupled case is the same as the

behaviour of the noise kernel for minimally coupled case with the difference that m2/H2 is now replaced

by m2/H2 + 12ξ . Therefore, we, again, observe the transition of the noise kernel from decaying to

divergent behaviour as m2/H2 + 12ξ is varied in the range [0,3/2]. From the expression of ν , we see

that, for conformal coupling i.e., for ξ = 1/6, the value of ν = 1/2 for massless scalar field and therefore,

for this case, we do not have divergent behaviour for the noise kernel (in the η → 0 limit). As the mass

of the field is taken to non-zero values, the value of ν becomes less than 1/2 which implies that the stress

energy correlations for these cases vanish for late time limit. It is clear that there exists a range of mass

values for which we can have divergent behaviour of the stress energy correlations in those cases for

which ξ < 1/6. These divergences are, of course, different from the UV divergences of the Wightman

function as we are using the (a) Regularized Stress Energy Tensor (RSET), and (b) this divergence

appears only for finite co-moving distance in the large scale factor limit. The above analysis shows that
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the growth or the decay of the correlations between stress energy operators (as the physical distances

between the considered fixed co-moving points become large) depends on the value of the coupling ξ

and mass m of the field. We have discussed the de Sitter spacetime but the Universe is believed to have

undergone other FRW epochs as well. To study the issue of possible quantum backreaction in these

FRW phases, we turn to the case of the behaviour of the noise kernel for FRW spacetimes.

3.4 Behaviour of the noise kernel for FRW spacetimes

In this section, we calculate the behaviour of the noise kernel of massless scalar fields in FRW space-

times. For this, as we have already mentioned, we make use of an equivalence between massless scalar

fields in power-law type FRW spacetimes with massive scalar fields in de Sitter spacetime3. According

to this equivalence, for a power-law type FRW spacetime with scaling factor, a(η) = (Hη)−q, the mass

of the corresponding scalar field in de Sitter space-time is given by m2 = H2(1− q)(2+ q). Similarly,

the relationship between the Wightman functions in the two settings is given by

GP.L.(x,x′) = (Hη)q−1(Hη
′)q−1G(x,x′). (3.32)

With the use of the above relation, we find that

∇
′
µGP.L. = (H)2q−2[(q−1)(η)q−1(η ′)q−2Gδµ0 +(η)q−1(η ′)q−1

∇
′
µG], (3.33)

3This equivalence can be established by noticing that the action of a massless scalar field in a power-law type FRW space-
time i.e., gαβ = a2ηαβ with a(η) = (Hη)−q, is

S =−1
2

∫
d4xa4(a−2

η
αβ

∂α φ ∂β φ
)
.

and effecting a field redefinition φ(x) = (Hη)−1+q ψ(x), the action takes the following form

S =−1
2

∫
d4xb4(b−2

η
αβ

∂α ψ ∂β ψ−m2
e f f ψ

2) ,
where b(η) = (Hη)−1 and m2

e f f = H2(1−q)(2+q). Thus, we have been able to show that a massless scalar field in an FRW
spacetime with scaling factor, a(η) = (Hη)−q, can be mapped to a massive scalar field in a de Sitter spacetime with the use of
the above considered field redefinition. This field redefinition i.e., φ(x) = (Hη)−1+q ψ(x), also provide the relation between
the Wightman functions for the corresponding settings i.e., GP.L.(x,x′) = (Hη)q−1(Hη ′)q−1G(x,x′). For more details on this,
one can refer the Appendix A.2 of [65] where a similar equivalence for the non-minimal case is also considered.
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and

∇ν∇
′
µGP.L. = H2q−2[(q−1)2(η)q−2(η ′)q−2Gδµ0δν0 +(q−1)(η)q−1(η ′)q−2

δµ0∇νG

+(q−1)(η)q−2(η ′)q−1
δν0∇

′
µG+(η)q−1(η ′)q−1

∇ν∇
′
µG]

= (HηHη
′)q−1

((q−1)2

ηη ′
Gδµ0δν0 +

(q−1)
η ′

δµ0∇νG+
(q−1)

η
δν0∇

′
µG+∇ν∇

′
µG
)
.

(3.34)

Since we are interested in calculating the stress energy correlations between spacetime points which lie

on constant time sheets and have fixed spatial distances, we take η = η ′. Different components of the

above expression on constant time sheets are given as follows

∇0∇
′
0GP.L. = (Hη)2q−2

[(q−1)2

η2 G+
(q−1)

η
∇0G+

(q−1)
η

∇
′
0G+∇0∇

′
0G
]
,

∇0∇
′
jG

P.L. = (Hη)2q−2
[q−1

η
∇
′
jG+∇0∇

′
jG
]
,

∇i∇
′
0GP.L. = (Hη)2q−2

[q−1
η

∇iG+∇i∇
′
0G
]
,

∇i∇
′
jG

P.L. = (Hη)2q−2
[
∇i∇

′
jG
]
. (3.35)

Thus, we have the expressions for the covariant derivatives of the Wightman function for a massless

scalar field in a power-law type FRW spacetime in terms of the covariant derivatives of the Wightman

function for the corresponding field in de Sitter spacetime. Using these expressions, the expressions

given in Appendix C, and the expression of the (a = 0, b = 0, c = 0, d = 0) component of the stress

energy correlator for a massless scalar field in considered FRW spacetime, we obtain that the stress

energy correlations (for η = η ′) is

⟨t̂00(η , x⃗)t̂00(η , x⃗′)⟩P.L. = (Hη)4(q−1)

[
G2

2η4 (q−1)4 +GG′
[(2q3−7q2 +8q−3)(∆x)2

2η6 − (q−1)2

η4

]

+GG′′
(q−1)2(∆⃗x)4

4η8 +G′G′′
[(q− 3

2)(∆⃗x)6

4η10 +
(q− 9

4)(∆⃗x)4

η8 − (∆⃗x)2

η6

]

+(G′)2
[ 2

η4 +
(q2−5q+ 11

2 )(∆⃗x)2

η6 +
(2q2−6q+ 9

2)(∆⃗x)4

4η8

]

+(G′′)2
[(∆⃗x)6

4η10 +
(∆⃗x)8

32η12 +
(∆⃗x)4

2η8

]]
. (3.36)
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Using the above expression, we can analyze the behaviour of the correlations of stress energy operators

(for points on constant time sheets) for different values of q i.e., for different types of power-law FRW

spacetimes. We notice that it is only for q∈ [−2,1] that the square of the mass of the corresponding field

in de Sitter spacetime is positive and the corresponding values of ν lie in the range [−3/2,3/2] which is

also the range that we have considered for the de Sitter case. The values of |ν |> 3/2 correspond to the

cases in which q lie outside [−2,1]. Since our goal is to study the correlations of stress energy operators

in the limit of physical distances (between co-moving points with same time coordinate) going to very

large values i.e., in the late time universe, we conclude that, for q ∈ (0,1], it is the η → 0 limit which

corresponds to late time limit and for q ∈ [−2,0), the η → ∞ limit represents the late time limit. Below

we discuss the behaviour of the stress energy correlator for different FRW spacetimes.

• q = 1 : This case is that of a massless scalar field in de Sitter space-time which have already dis-

cussed in the previous section for ν = 3/2. So, we already know that, in this case, the correlations

diverge as η−4 or a4 as η → 0 limit.

• q ∈ (0,1) : Using (3.36) along with (3.13) (expression of the Wightman function in the Bunch-

Davies vacuum), we see that [145]

⟨t̂00(η , x⃗)t̂00(η , x⃗′)⟩P.L.
∣∣
late time =

lim
η→0

(Hη)4q−4

(∆⃗x)4

[
H4η4−4q(∆⃗x)4q−4

8π5

(
(11−12q+4q2)(Γ(2−q))2(Γ(0.5+q))2

)

+
44qη4q+4H4

32π5(∆⃗x)4+4q

(
(1+2q)4(Γ(2+q))2(Γ(−0.5−q))2

)
+O(η6−4q)

]
. (3.37)

The leading term, in the η→ 0 limit, is
(
(H4q(∆⃗x)4q−8)/(8π5)

)(
(11−12q+4q2)(Γ(2−q))2(Γ(0.5+

q))2
)

which is η− independent and implies that even though the physical distances between co-

moving points on constant time sheets increase with time, the correlations between the stress

energy operators for these points saturates to a constant. Thus, for these cases, we may have the

scenario where the stochastic term in the Einstein Langevin equation may become important pro-

vided that the value it settles to is of the same magnitude or more as compared to the expectation

values used in the semiclassical analysis.

For these cases, in the late time limit, we find that the Wightman function (and hence the stress

energy correlator) does not depend on time (or the scale factor). For spacetime points with same
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η coordinate i.e., on constant time-sheets, the Wightman function is given by

GP.L.(η , x⃗,η ′, x⃗′) =
H2(Hη)2q−2

16π2 2F1(2+q,1−q,2,1− (∆⃗x)2

4η2 ) . (3.38)

Considering the late time i.e., η → 0 limit, we obtain

GP.L.(η , x⃗,η ′, x⃗′) =
H2(Hη)2q−2

16π2 Γ(2+q)Γ(1−q)

[Γ(−1−2q)(
( (∆⃗x)2

4η2

)
)−2−q

Γ(1−q)Γ(−q)

∞

∑
k=0

(2+q)k(1+q)k
(
− (∆⃗x)2

4η2

)−k

k!(2+2q)k

+
Γ(1+2q)

( (∆⃗x)2

4η2

)−1+q

Γ(2+q)Γ(1+q)

∞

∑
k=0

(1−q)k(−q)k
(
− (∆⃗x)2

4η2

)−k

k!(−2q)k

]
. (3.39)

Using the form of the scale factor i.e. a(η) = (Hη)−q, we can write Hη = a−1/q and substituting

this in the above expression, we find the above expansion in terms of the physical distance on

constant time sheets, i.e. a2(∆⃗x)2, and scale factor a(η) i.e.,

GP.L.(η , x⃗,η ′, x⃗′) =
H2

16π2 Γ(2+q)Γ(1−q)[
Γ(−1−2q)

(H2

4

)−2−qa2q−2/q

Γ(1−q)Γ(−q)(a2(∆⃗x)2)2+q

∞

∑
k=0

(2+q)k(1+q)k
(
− H2

4

)−k
(a2(∆⃗x)2)−k(a−2+2/q)−k

k!(2+2q)k

+
Γ(1+2q)

(H2

4

)−1+qa2−2q

Γ(2+q)Γ(1+q)(a2(∆⃗x)2)1−q

∞

∑
k=0

(1−q)k(−q)k
(
− H2

4

)−k
(a2(∆⃗x)2)−k(a−2+2/q)−k

k!(−2q)k

]
. (3.40)

From the above expression, it is easy to see that, for the range of q under consideration and in

the η → 0 limit, the most dominant term is the leading term of the second series in the square

bracket, which has no a dependence and hence the above expression is a independent for late

times. Though, the above expression was η− dependent for the prior times and it is only for late

times that the η dependence gradually wears off and we obtain a constant term as the leading

order term in the η→ 0 limit. Thus, at late times, even though the physical distances between any

two co-moving points with small coordinate distances are large, the correlations between them

survive.

• q = 0 : This case (i.e., a(η) = 1) corresponds to the flat Minkowski spacetime which has already

been studied previously [140, 149, 150]. In the Minkowski spacetime, the Wightman function

for a massless scalar field is G(x,x′) = (1)/(4π2(−(η −η ′)2 +(∆⃗x)2)). The expression for the

correlations between stress energy operators for spacetime points with same time coordinate i.e.,
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on constant time-sheets, and with finite spatial distance, is as follows

⟨t̂00(η , x⃗)t̂00(η , x⃗′)⟩P.L. =
3

2π4(∆⃗x)8 . (3.41)

In case of the Minkowski spacetime, the coordinate distances and the physical distances are the

same and for co-moving points, the correlator has no dynamics i.e., it remains the same for all the

times. Also, the correlations decay with increasing co-moving distances.

• q ∈ (−2,0) : For these negative values of q, the exponent of the scale factor i.e., a(η) = (Hη)−q

is positive and hence it is the η → ∞ limit which corresponds to the scale factor going to large

values i.e., the late time limit. The stress energy correlator for these cases is given by [145]

⟨t̂00(η , x⃗)t̂00(η , x⃗′)⟩P.L.
∣∣
late time = lim

η→∞
(Hη)4q−4

[
3H4η4

2π4(∆⃗x)8 +
η2H4(3q+4q2)

8π4(∆⃗x)6

+
H4q

64π4(∆⃗x)4

(
(−4−7q+6q2 +11q3)

+2(1+q)(−1+q)2[2γ + log
((∆⃗x)2

4η2

)
+ψ

(0)(1−q)+ψ
(0)(2+q))

])
+O(η−2)

]
. (3.42)

In the above expression, γ is the Euler gamma symbol whereas ψ(0)(z) is the PolyGamma func-

tion. For η → ∞, the most dominant term is O(η4q) which, for fixed ∆x, implies that no quantum

correlations survive between stress energy operators in the late time limit.

• q = −2 : We treat this case by considering massless scalar fields in nearly matter dominated

spacetimes i.e., q = −2+ ε (with ε → 0) which then get mapped to nearly massless scalar fields

in de Sitter spacetime as can be seen from the formula, m2 = H2(1− q)(2+ q) ≈ 3H2ε → 0.

For this case, the expression of the correlations between stress energy operators has the following
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expansion [145]

⟨t̂00(η , x⃗)t̂00(η , x⃗′)⟩P.L.
∣∣
late time = lim

η→∞
lim
ε→0

H−12

[
3H4

2π4η8(∆⃗x)8+

4
(∆⃗x)6η10

( 5H4

16π4 +O(ε)
)
+

1
η12(∆⃗x)4

( 9H4

16π4ε
+

9(6H4 +H4log( (∆⃗x)2

4η2 ))

16π4 +O(ε)
)

+
1

4(∆⃗x)2η14

(
− 27H4

8π4ε
−

27(7H4 +2H4log( (∆⃗x)2

4η2 ))

16π4 +O(ε)
)

+
1

16η16

( 81H4

8π4ε2 +
27H4(10+3log( (∆⃗x)2

4η2 )))

4π4ε
+O(ε0)

)
+O(η−18)

]
.

(3.43)

For large but finite η , we see that the correlations between stress energy operators become in-

finitely large due to presence of 1/ε terms in the limit ε → 0 and hence one has to necessarily

perform the stochastic gravity analysis to take into account the second order quantum effects to

make any reliable conclusion for this setting. One can easily see that this divergence is, in fact,

present at all times. The origin of this divergence is the infrared problem of the massless scalar

field theory in de Sitter spacetime. To see this, notice that the Wightman function for massless

scalar field in q =−2 space-time is related to the Wightman function of the corresponding scalar

field in de Sitter case by the relation

Gq=−2
m=0 (x,x′) = (H2

ηη
′)−3GdS

m=0(x,x
′), (3.44)

and therefore the term giving rise to infrared divergence in the de Sitter spacetime (which is

spacetime independent) develops a time dependence in the q=−2 spacetime case. Because of this

fact, this infrared term does not go away under the action of the derivative operators of (3.8). One

finds that, for spacetimes with q < −2 and q > 1 corresponding to |ν | > 3/2, similar spacetime

dependent divergence shows up (refer to Appendix E) and the semiclassical analysis for these

cases is also vulnerable to breakdown in light of these large quantum fluctuations.
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3.5 The invariant or energy-energy correlator

Up until this point, we have looked at the behaviour of ⟨t̂0000⟩ component of the noise kernel for cer-

tain massive scalar fields in de Sitter spacetime and massless scalar fields in a class of power-law type

FRW spacetimes. But this quantity is a particular component of a bitensor quantity whose functional

dependence changes from one coordinate system to another which is also clear from the fact that it

is, in some of the cases considered above, dependent only on the co-ordinate separation (∆x) which

is not a coordinate invariant object. It is, however, not very difficult to construct invariant scalar ob-

jects out of this bitensor quantity. We define one such invariant scalar out of the stress energy corre-

lators. For this purpose, we consider a vector field whose components (in conformal coordinates) are

tα(η , x⃗) = (1/a(η),0,0,0) and hence gαβ tαtβ = −1 for all spacetime points. It is easy to see that the

considered vector field is normalized tangent vector field to co-moving observers whose spatial coor-

dinates remain fixed. By contracting both the indices of stress energy operator with this vector field

i.e., T̂αβ (x)tα(x)tβ (x) (= T̂00(η , x⃗)/a2(η) in conformal coordinates), we obtain a coordinate invariant

object for all spacetime points. In fact, it can be shown that, in the considered spacetimes, the vacuum

expectation value of the stress energy tensor for scalar and spinor fields has the perfect fluid form with

the above chosen vector field i.e., ⟨T̂µν⟩ = (ρ + p)tµtν + pgµν and therefore, the quantity ⟨T̂αβ ⟩tαtβ is

equal to the energy density i.e.,−⟨T̂ 0
0 ⟩= ρ . Thus, we can now define the following ‘invariant’ correlator

⟨
(

T̂µν(x)tµ(x)tν(x)
)(

T̂αβ (y)t
α(y)tβ (y)

)
⟩−⟨

(
T̂µν(x)tµ(x)tν(x)

)
⟩⟨
(

T̂αβ (y)t
α(y)tβ (y)

)
⟩

=
(
⟨T̂µν(x)T̂αβ (y)⟩−⟨T̂µν(x)⟩⟨T̂αβ (y)⟩

)
tµ(x)tν(x)tα(y)tβ (y)

= ⟨t̂µναβ (x,y)⟩tµ(x)tν(x)tα(y)tβ (y) . (3.45)

We will refer this coordinate independent object as the invariant correlator or energy-energy correlator

for the rest of this thesis. In conformal coordinates, it acquires the following form

⟨t̂µναβ (x,y)⟩tµ(x)tν(x)tα(y)tβ (y) =
⟨t̂0000(x,y)⟩

a2(ηx)a2(ηy)
. (3.46)

At this point, it is important that we emphasize that the quantity which is coordinate invariant is

⟨t̂µναβ (x,y)⟩tµ(x)tν(x)tα(y)tβ (y) , (3.47)
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but not (⟨t̂0000(x,y)⟩)/(a2(ηx)a2(ηy)). It is just that, in conformal coordinates, the invariant correlator is

given by (⟨t̂0000(x,y)⟩)/(a2(ηx)a2(ηy)).

We now present the results for the behaviour of the invariant correlator in all the cases considered above

in this chapter. For this purpose, we use the results for ⟨t̂0000⟩ obtained in the previous section. Thus, we

have [145]

• q = 1 : This case corresponds to de Sitter spacetime. From equation (3.46), we find that, in the

late time i.e, η → 0 limit, the energy energy correlator is 0 for all the considered values of ν

except for ν = 3/2. For ν = 3/2, the energy energy correlator attains a constant value which is

9H8/128π4. The infrared problem of the de Sitter spacetime, present at the level of the Wightman

function for ν = 3/2, does not make its presence felt at the level of the stress energy correlator

or the energy energy correlator. In order to treat this case, we need to regularize the Wightman

function properly as a limiting case since the massless fields have no de Sitter invariant vacuum

[13] but the action of the derivative operators in (3.12) remove the problematic part of regularized

massless Wightman function. Similar issue is dealt within [151] and it is shown that the infrared

piece does not contribute to the energy energy correlator.

• q ∈ (0,1) : Making use of the formula (3.46), we find that, for this case, the energy energy

correlator vanishes in the late time η → 0 limit.

• q = 0 : For this case, we have a(η) = 1 and hence the energy energy correlator is same as the

stress energy correlator ⟨t̂0000⟩.

• q ∈ (−2,0) : For this case also, results from the previous section and the formula (3.46) imply

that the energy energy correlator vanishes in the late time η → ∞ limit.

• q =−2 : In this case, the energy energy correlator is divergent in the late time limit (holds, in fact,

for all values of η) because of the infrared divergent factor present in the Wightman function at

ν = 3/2. The energy energy correlator similarly diverges for the cases q <−2 and q > 1.

From the above results, we see that the above defined invariant or energy energy correlator vanishes

for most of the cases and hence, for these cases, we do not expect large corrections coming from this

correlator. However, it diverges for a number of cases which we discuss about more in the following.
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3.5.1 Some implications

From chapter 2, we know that the equation of state parameter, w, for an ideal fluid which drives a

particular FRW spacetime is related to the exponent of that spacetime by the formula (2.14) i.e.,

q =−2/(1+3w) . (3.48)

As discussed in chapter 2, for any FRW phase of the Universe i.e., for a given exponent, the ideal

fluid with the corresponding equation of state parameter represents the dominant matter content of the

Universe during that phase. For example, dust phase (q =−2) of the Universe is driven by a fluid with

w = 0 whereas the fluid with w = 1/3 drives the Universe through radiation (q = −1) phase. From

the above formula, we find that the FRW spacetimes with q ∈ (0,1] have the corresponding equation of

state parameter w lying in the range ∈ (−∞,−1] whereas fluids with w ∈ [0,∞) are related to spacetimes

with q ∈ [−2,0). Thus, using the results obtained in the previous sections, we conclude that the second

order quantum effects ((a = 0,b = 0,c = 0,d = 0) component of the stress energy correlator or the noise

kernel) may be important for w ∈ (−∞,−1] in the late time limit whereas the second order quantum

fluctuations are absent for w ∈ (0,∞) in the late time limit. For the case of pressureless dust i.e., w = 0,

driving the Universe through the q = −2 phase, we find that the semiclassical analysis is vulnerable to

a complete breakdown because of the divergent noise kernel. Thus, conclusions derived on the basis

of semi-classical or probably even classical analysis in dust driven spacetime need to be looked with

suspicion and are to be modified by taking into account the stochastic analysis. Thus, for this spacetime,

only a completely (at least including second order quantum effects) quantum analysis is needed to arrive

at reliable results. We expect similar arguments to hold true for q <−2 or q > 1 cases which correspond

to fluids with w ∈ [−1,0]. Therefore, it is necessary to perform a higher order quantum analysis for

these spacetimes. Particularly interesting is the case of accelerating spacetimes (the ones corresponding

to w < −1/3) which as per the analysis performed in this chapter necessarily require a completely

quantum treatment. We can summarize the results of this section by the following diagram:
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Figure 3.1: Relation between different types of fluid (and the corresponding Friedmann space-times)
and the behaviour of noise kernel in these regions.

3.6 Summary

In this chapter, we focus on the second order quantum effects of scalar fields in FRW Universes and

discuss whether these second order effects have the potential to significantly modify the first order semi-

classical gravity analysis. For flat spacetime, we know that the quantum correlations between field (or

stress energy operator) for fixed co-moving spacetime points with same time coordinates remain the

same as the time evolves. In this case, the correlations decay for the points with large physical sepa-

rations whereas they are significant only for points with smaller separations. For FRW spacetimes, the

physical distances between the fixed comoving points with same time coordinates increase as the time

evolves and points which have small physical separations initially grow further in physical separations

with time. Because of this, there are situations, e.g. for conformal fields, where the correlations depend

only on the coordinate distances but not on physical distances and thus, we see that the correlations

remain the same between fixed comoving points even though the physical separation between them is

increasing. What may even happen is that the quantum fluctuations between points with small coordi-

nate distances can get amplified by the scale factors of the FRW spacetimes and develop a potential to

completely breakdown the semiclassical analysis. We present that such behaviour is, in fact, manifested
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by certain FRW spacetimes in the late time limit. Below we present the main results obtained in this

chapter :

• Minimally Coupled Massive Scalar Fields in de Sitter Space-time : First, we analyse the case

of a minimally coupled massive scalar field in de Sitter spacetime. We study how the (a = 0, b =

0, c = 0, d = 0) component of the noise kernel changes as the mass of the field is varied. In order

to consider only those cases for which the mass is real, we restrict to |ν | ∈ [0,3/2] (recall that

m2/H2 = 9/4−ν2). From our analysis, we conclude that the considered component of the stress

energy correlator or the noise kernel, for finitely separated points with same time coordinates in

the late time η → 0 limit, shows a transition from zero to divergent behaviour as mass of the field

is varied. More precisely, the considered noise kernel component is vanishing for ν ∈ [0,1/2) and

has a finite non-zero value at ν = 1/2. However, the same component of the noise kernel diverges

for ν > 1/2 in the limit η → 0. Similarly, the invariant or the energy energy correlator (defined

above in the main text) vanishes in the η → 0 limit for all the considered values of ν except for

ν = 3/2 for which it has the value 9H8/128π4.

• Non-Minimally Coupled Scalar Field in de Sitter Space-time: We perform a similar analy-

sis for studying the behaviour of the noise kernel for non-minimally coupled scalar field in de

Sitter spacetime (again, for spacetime points with same time coordinates in the η → 0 limit).

This case has an extra term added to the minimally coupled Lagrangian which is ξ Rφ 2. In

this case, one obtains a similar variation of the (a = 0,b = 0,c = 0,d = 0) component of the

noise kernel with ν as in the previous case of minimally coupled scalar field except that now

ν =
√

9/4− (m2 +12ξ H2)/H2. Thus, we conclude that the considered noise kernel compo-

nent vanishes for (m2/H2 + 12ξ ) > 2 and is non-zero for (m2/H2 + 12ξ ) = 2 but diverges for

(m2/H2 + 12ξ ) < 2. This observation implies that the noise kernel does not diverge for any

mass value in the conformal case i.e., ξ = 1/6. Similar conclusions regarding the energy-energy

correlator can be made e.g., it is 0 for (m2/H2 + 12ξ ) ∈ [0,9/4) but is a non-zero constant for

m2/H2 +12ξ = 0.

• Massless Scalar Fields in FRW Spacetimes: We make use of an equivalence (shown in [65])

between massless scalar fields in FRW spacetimes with massive scalar fields in de Sitter spacetime

to calculate the noise kernel for the former setting. We, again, consider cases with |ν | ∈ [0,3/2] in

de Sitter spacetime for which the corresponding FRW spacetimes have the exponent of the scaling

factor q ∈ [−2,1]. We notice that, for q ∈ (0,1], the late time limit (in which the scale factor
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becomes very large) corresponds to η → 0 whereas for q ∈ [−2,0), it corresponds to η → ∞. We

show that, in the late time limit, the considered noise kernel component goes to 0 for q ∈ (−2,0)

whereas it approaches a constant value for q ∈ [0,1). As far as the energy energy correlator is

concerned, we found that, for q ∈ (−2,0)∪ (0,1), it is zero. For the remaining power-law type

FRW spacetimes i.e., for q ≤ −2 and q ≥ 1 (with the correpsonding equation of state paramter

lying in the range −1 < w < 0), the Wightman function contains a spacetime dependent divergent

term in it. The conformal time dependent factors relating the de Sitter and the corresponding

FRW Wightman functions provide extra time dependence to the divergent term of the de Sitter

Wightman function and this term then dominates in the noise kernel and the invariant or energy

energy correlator. Hence, these spacetimes are prone to significant quantum fluctuations at late

times.

One can observe many interesting implications of these results. We find that the spacetimes, driven by

fluids with equation of state parameter, w > 0, or w < −1 (corresponding to phantom Universes), do

not get significant corrections from second order quantum effects and are likely stable against stochastic

fluctuations provided that the expectation values are large. These implications, therefore, lend support to

the structure of quantum fluctuations suggested in [65]. A number of other interesting conclusions can

be drawn from this work. For example, the divergence in the de Sitter noise kernel, in the η → 0 limit,

for the cases with ν > 1/2 has a time dependence (i.e., it is dynamical) as opposed to the spacetime

independent divergence in the Wightman function which, too, is present only for the minimally coupled

massless case. We also observe, in the case of phantom spacetimes i.e., for w < −1, the considered

noise kernel component does not blow up but still has a non-zero value which is significant even at

large physical distances corresponding to the points which have otherwise small coordinate separations.

The most drastic effect of second order quantum fluctuations (and hence, leading to potentially large

stochastic corrections to the semiclassical analysis and in fact, probably even disrupting the first order

analysis altogether) is expected for the q = −2 case which has a divergence present in the noise kernel

for all times. Similar behaviour is also expected for spacetimes driven by fluids with w ∈ (−1,0]. Thus,

it is important that we take these second order quantum fluctuations into account to study the dynamics

of massless scalar fields in these spacetimes and only with such an analysis, we will be able to make

robust predictions about these spacetimes and the massless fields evolving in them.
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Chapter 4

Stress energy correlator of spinor fields in

de Sitter and FRW spacetimes

In this chapter, we evaluate the behaviour of the stress energy correlator of spinor fields in FRW space-

times. We consider the cases of arbitrarily massive spinor fields in de Sitter spacetime and massless

spinor fields in all types of FRW spacetimes. For spinor fields in de Sitter spacetime, we perform the

calculations by placing the field in the fermionic Bunch-Davies vacuum which is discussed in chapter 2.

For massless spinor fields, we make use of their conformal invariance in FRW spacetimes and place the

massless fields in the Poincare vacuum of the corresponding massless spinor field in flat spacetime. Like

in the scalar field study, we look at the behaviour of the stress energy correlator for spacetime points ly-

ing on constant time sheets. We also compare the obtained results for spinor fields with the ones derived

for scalar fields in the previous chapter.

4.1 Introduction

We know that, other than the scalar fields, the fermionic fields are also present in the Universe and

the second order quantum effects of these spinor fields, encoded in the noise kernel, may also affect

the dynamics of the background spacetimes. Thus, it is important to analyze the behaviour of the stress

energy correlator for spinor fields in FRW spacetimes because, on the basis of the behaviour of the stress

energy correlator, we will be able to say something about the stability of the background spacetimes

against second order quantum effects of spinor fields. Since spinor fields, just like any other field,
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can couple with the metric perturbations through their stress energy tensor, the stress energy correlator

also provides corrections to the power spectrum of metric perturbations, particularly gravitational waves.

There are some past works that have considered the modifications to gravitational waves by spinor fields.

For example, in the works [152, 153], correction to the gravitational wave spectra by the spinor fields

has been analyzed for the inflationary phase of the Universe. Similarly, in [154–156], the backreaction

of spinor fields on gravitational waves have been looked at during the reheating era, assuming that the

fermions are produced during this reheating phase of the Universe. Studying the stress energy correlator

of spinor fields in FRW spacetimes can provide us with new insights into the dynamics of these FRW

spacetimes. In this chapter, we study the behaviour of the stress energy correlator/noise kernel of spinor

fields in general FRW spacetimes. For arbitrarily massive spinor fields in de Sitter spacetime, we perform

this analysis for the case in which they are placed in the fermionic Bunch-Davies vacuum of chapter 2,

which, as we saw, are defined analogously to how one defines scalar field Bunch-Davies vacuum. We

also consider massless spinor fields in general FRW spacetimes. To perform the analysis for these cases,

we use the conformal invariance of massless spinor fields in FRW spacetimes according to which one can

relate a massless spinor field in any FRW spacetime with another massless spinor field in any other FRW

spacetime through some time-dependent conformal factors. This equivalence also relates the Wightman

functions in the two related settings. We also compare our results for spinor fields obtained in this chapter

with the results for scalar fields obtained in chapter 3. This analysis of massless spinor fields in FRW

spacetimes can be directly applied to cosmological contexts since different eras in the evolution history

of the Universe can be approximated by FRW spacetimes. For example, the equation of state parameter

for present day dark energy driven Universe is estimated to be equal to −1.03± 0.03 using the data

from surveys [23] and hence, our analysis which includes both the quintessence regime (−1 < w <−1
3 )

and the phantom regime (w < −1) can be applied to the present day phase of the Universe [157]. This

analysis, as applied to phantom Universes, has a physical appeal only if the phantom phase can prevent

itself from its inherent big rip [157, 158] problem (in which the scale factor and the energy density

diverges in a finite time interval) which is, in fact, possible if we have a dynamical equation of state

parameter caused by certain potentials [159] for which the Universe indeed goes through a phantom

phase but exits it before the big rip of the phantom phase arrives.

This chapter is divided into 6 sections including this one. In section 4.2, we make use of mapping

between massless spinor fields in de Sitter and general FRW spacetimes to relate the expressions of the

Wightman function in the two settings. In section 4.3, we express the noise kernel as a sum of some

derivatives acting on product of Wightman functions using the point-split form of the stress energy

operator. In section 4.4, we study the behaviour of the noise kernel for massive spinor fields in de Sitter
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spacetime placing them in the Bunch-Davies vacuum and analyse how it varies with the mass of the field.

In section 4.5, we carry out a similar exercise for massless spinor fields in general FRW spacetimes. In

section 4.6, we provide a summary of all our findings and discuss their possible implications.

4.2 Equivalence between massless spinor fields in FRW spacetimes and

de Sitter spacetime

In the last chapter, we made use of an equivalence between massless scalar fields in power-law type

FRW spacetimes with massive scalar fields in de Sitter spacetime. In this chapter, we employ the con-

formal invariance of massless spinor fields to relate the Wightman function in one FRW spacetime to the

Wightman function in other FRW spacetime. Let us first consider a massive spinor field in an arbitrary

FRW spacetime with ds2 = a2(η)(−dη2 + d⃗x2) whose action is given by

S =
∫

d4x
√
−g
[
iψ̄γ

µ
∇µψ−mψ̄ψ

]
=

∫
d4xa3

ψ̄

[
iΓµ

∂µ + i
3a′

2a
Γ

0−am
]
ψ . (4.1)

Under the field redefinition, ψ = F(η)Ω, the above action becomes

S =
∫

d4xa3F2
Ω̄

[
iΓµ

∂µ + i
3a′

2a
Γ

0 + i
F ′

F
Γ

0−am
]
Ω , (4.2)

and if we demand that a3F2 = b3 and
[
i 3a′

2a Γ0 + i F ′
F Γ0−am

]
=
[
i 3b′

2b Γ0−bm′
]
, we have the action for a

spinor field in an FRW spacetime with ds2 = b2(η)(−dη2 + d⃗x2) i.e.,

S =
∫

d4xb3
Ω̄

[
iΓµ

∂µ + i
3b′

2b
Γ

0−bm′
]
Ω . (4.3)

The condition that a3F2 = b3 translates to

3a′

2a
+

F ′

F
=

3b′

2b
. (4.4)

which, when used with the condition

[
i
3a′

2a
Γ

0 + i
F ′

F
Γ

0−am
]
=
[
i
3b′

2b
Γ

0−bm′
]
, (4.5)
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implies that m′ = a
b m. We can make the following observations from this analysis

• Firstly, we see that a massless spinor field in an FRW spacetime can be related to another massless

spinor field in any other arbitrary FRW spacetime, in particular we can map a massless spinor in

any FRW spacetime to a massless spinor field in de Sitter or flat spacetime.

• Secondly, we can use the above mapping to study particle creation of spinor fields in FRW space-

times in terms of similar questions in flat/de Sitter spacetimes. For example, if we take b(η) = 1

and m = (1/a(η)), then we have m′ = constant i.e., we have mapped a spinor field with time-

dependent mass in an FRW spacetime to a spinor field in flat spacetime with constant mass. Simi-

lar types of equivalences can be used to study usual investigations of particle creation etc. in FRW

spacetimes in terms of equivalent questions in relatively more easily tractable settings.

• Another very exciting possibility is to map a massless spinor (ψ) and a massless scalar field (φ)

interacting through Yukawa coupling (with d being the coupling constant) in an FRW spacetime

(a(η) ∝ η−q) to a massless spinor field and a massive scalar field interacting through Yukawa

coupling in de Sitter spacetime. For this, we notice that the relevant action i.e.,

S =
∫

d4x
[
a3

ψ̄

(
iΓµ

∂µ +
3ia′

2a
Γ

0
)

ψ +
a2

2
(−η

µν
∂µφ∂νφ)+a4dφψ̄ψ

]
, (4.6)

under the mapping ψ = (−Hη)−
3
2 (1−q)Ω (from above analysis) and φ = (−Hη)−(1−q)ζ (Refer

[65]), transforms to

S =
∫

d4x
[
(−Hη)−3

Ω̄

(
iΓµ

∂µ −
3i
2η

Γ
0
)

Ω+
(−Hη)−2

2

(
−η

µν
∂µζ ∂νζ

−ζ
2(−Hη)−2(2+q)(1−q)H2

)
+(−Hη)−4dζ Ω̄Ω

]
, (4.7)

which is just a massless spinor field and a massive, m2 = (2+ q)(1− q), scalar field interacting

through Yukawa coupling in de Sitter spacetime. A number of past works ([160–162]) have con-

sidered Yukawa coupling in FRW spacetimes and one can try to analyse how above considered

transformations fit into these considerations.

All of these are interesting and possibly important directions to explore. However, in the present work,

we are concerned with studying the behaviour of noise kernel of massless spinor fields in FRW space-

times which, as we have seen, are related to massless spinor fields in de Sitter spacetime. Employing

this equivalence we evaluate the behaviour of the noise kernel for massless spinor fields in general FRW
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spacetimes in terms of the de Sitter quantities i.e., we take b(η) =−(1/(Hη)). The Wightman functions

for the two settings are related as follows

SFRW
i j (x,x′) = ⟨ψi(x)ψ̄ j(x′)⟩ = (F(η)F(η ′))⟨Ωi(x)Ω̄ j(x′)⟩

=
(b(η)

a(η)

) 3
2
(b(η ′)

a(η ′)

) 3
2
SdS

i j (x,x
′)

=
1

a
3
2 (ηx)a

3
2 (ηx′)

S f lat
i j (x,x′) . (4.8)

We also have

RFRW
ji (x′,x) = ⟨ψ̄ j(x′)ψi(x)⟩ = (F(η)F(η ′))⟨Ω̄ j(x′)Ωi(x)⟩

=
(b(η)

a(η)

) 3
2
(b(η ′)

a(η ′)

) 3
2
RdS

ji (x
′,x)

=
1

a
3
2 (ηx)a

3
2 (ηx′)

R f lat
ji (x′,x) . (4.9)

We employ these relations later on when we evaluate the noise kernel for massless spinor fields in general

FRW spacetimes.

4.3 Noise kernel for spinor fields

Using the formula (2.72) for the stres energy tensor i.e.,

Tµν(x) =−
2√
−g

δS
δgµν(x)

, (4.10)

we obtain that the stress energy tensor for minimally coupled spinor fields in curved spacetime (with the

action (2.44)) is given by [12, 163]

Tµν = − i
2

gµν

[
ψ̄γ

λ
−→
∇ λ ψ− ψ̄

←−
∇ λ γ

λ
ψ
]
+

i
2
[
ψ̄γ(µ

−→
∇ ν)ψ− ψ̄

←−
∇ (νγµ)ψ

]
+mψ̄ψgµν

= −
gµν

2
ψ̄

[
(iγλ
−→
∇ λ −m)− (i

←−
∇ λ γ

λ +m)
]
ψ +

i
2

ψ̄
[
γ(µ
−→
∇ ν)−

←−
∇ (νγµ)

]
ψ .

(4.11)

Like in the case of scalar field, we write the spinor field stress energy tensor in a point-split form i.e.,

Tµν(x) = lim
x′→x

Pµν i j(x,x′)ψ̄i(x)ψ j(x′) , (4.12)
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where there is an implicit sum over i and j and

Pµν i j(x,x′) =−
gµν

2

[
(iγλ
−→
∇

x′
λ
−m)− (i

←−
∇

x
λ

γ
λ +m)

]
i j
+

i
2
[
γ(µ
−→
∇

x′
ν)−
←−
∇

x
(νγµ)

]
i j .

(4.13)

We obtain the stress energy operator from the stress energy tensor by replacing the classical spinor fields

by the corresponding quantum spinor fields. Now we use the above obtained point-split form of the

stress energy operator in the definition of the stress energy correlator (2.78) i.e.,

⟨t̂abcd(x,y)⟩= ⟨T̂ab(x)T̂cd(y)⟩−⟨T̂ab(x)⟩⟨T̂cd(y)⟩ , (4.14)

and obtain that it is given by

⟨t̂abcd(x,y)⟩= lim
x′→x

lim
y′→y

Pabi j(x,x′)Pcdkl(y,y′)
[
⟨ ˆ̄ψi(x)ψ̂ j(x′) ˆ̄ψk(y)ψ̂l(y′)⟩

−⟨ ˆ̄ψi(x)ψ̂ j(x′)⟩⟨ ˆ̄ψk(y)ψ̂l(y′)⟩
]
. (4.15)

Using Wick’s theorem, the above expression becomes

⟨t̂abcd(x,y)⟩= lim
x′→x

lim
y′→y

Pabi j(x,x′)Pcdkl(y,y′)
[
⟨ ˆ̄ψi(x)ψ̂l(y′)⟩⟨ψ̂ j(x′) ˆ̄ψk(y)⟩

]
. (4.16)

Identifying that the terms in the first square bracket in (4.13) are just the Dirac equation operator and its

adjoint and the fact that ψ̂ is a linear combination of the solutions of the Dirac equation and ˆ̄ψ is a linear

combination of the solutions of the adjoint of the Dirac equation, the terms in the first bracket in (4.13)

gives zero when they act on ψ̂ and ˆ̄ψ . Keeping this into account, we obtain that the noise kernel is given

by

⟨t̂abcd(x,y)⟩ = lim
x′→x

lim
y′→y

1
4
[
γ(a
−→
∇

x′
b)−
←−
∇

x
(aγb)

]
i j

[
γ(c
−→
∇

y′

d)−
←−
∇

y
(cγd)

]
klS jk(x′,y)Sli(y′,x)

= lim
x′→x

lim
y′→y

1
4

[
Tr
(
γ(a
−→
∇

x′
b)S(x

′,y)γ(c
−→
∇

y′

d)S(y
′,x)
)

−Tr
(
γ(a
−→
∇

x′
b)S(x

′,y)
←−
∇

y
(cγd)S(y

′,x)
)
−Tr

(
S(x′,y)γ(c

−→
∇

y′

d)S(y
′,x)
←−
∇

x
(aγb)

)
+Tr

(
S(x′,y)

←−
∇

y
(cγd)S(y

′,x)
←−
∇

x
(aγb)

)]
. (4.17)

The above expressions have been derived without assuming any particular spacetime metric and are

valid for any general spacetime. Now we specialize to the case of arbitrarily massive spinor fields in
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de Sitter spacetime and provide the behaviour of the noise kernel for this case in the next section. We

perform the noise kernel calculations for the fermionic Bunch Davies vacuum which we considered in

Chapter 2. Like in the scalar field case, here also we calculate the behaviour of the (a = b = c = d = 0)

component of the noise kernel for exactly the same reasons as for the scalar fields case.

4.4 Noise kernel for spinor fields in de Sitter spacetime

Let us now consider the case of masssive spinor fields in de Sitter spacetime. Using the above obtained

expression of the noise kernel as a sum of derivatives acting on product of Wightman functions i.e.,

(4.17), and taking the vacuum to be the fermionic Bunch-Davies vacuum for which the Wightman func-

tion is given by (2.70) and also using that
−→
∇ x

0 = ∂ x
0 , we obtain that the (a = b = c = d = 0) component

of the noise kernel is given by [164]

⟨t̂0000(x,y)⟩= lim
x′→x

lim
y′→y

a(ηx)a(ηy)

4

[
∂

x′
0 ∂

y′
0 +∂

x
0 ∂

y
0 −∂

x′
0 ∂

y
0 −∂

x
0 ∂

y′
0

]
Tr
(
Γ0S(x′,y)Γ0S(y′,x)

)
= lim

x′→x
lim
y′→y

axay

4

[
∂

x′
0 ∂

y′
0 +∂

x
0 ∂

y
0 −∂

x′
0 ∂

y
0 −∂

x
0 ∂

y′
0

]
H4

√axax′ayay′

Tr

(
Γ0

[
iΓλ

∂
x′
λ
+ i

a′x′
ax′

Γ
0 +ax′m

][
∑

ε=±
Sε(x′,y)

1+ εΓ0

2

]
Γ0

[
iΓσ

∂
y′
σ + i

a′y′
ay′

Γ
0 +ay′m

][
∑

ε=±
Sε(y′,x)

1+ εΓ0

2

])
, (4.18)

where ax stands for −(1/(Hηx)) (we take this convention for the rest of this section). By applying the

operators in the big square brackets on the factor ((H4)/(
√axax′ayay′)) and using the product rule, we

find that this factor cancels the factor axay in the above expression in the above limits. Finally, we are

left with the following expression

⟨t̂0000(x,y)⟩= lim
x′→x

lim
y′→y

H4

4

[
∂

x′
0 ∂

y′
0 +∂

x
0 ∂

y
0 −∂

x′
0 ∂

y
0 −∂

x
0 ∂

y′
0

]

Tr

(
Γ0

[
iΓλ

∂
x′
λ
+ i

a′x′
ax′

Γ
0 +ax′m

][
∑

ε=±
Sε(x′,y)

1+ εΓ0

2

]
Γ0

[
iΓσ

∂
y′
σ + i

a′y′
ay′

Γ
0 +ay′m

][
∑

ε=±
Sε(y′,x)

1+ εΓ0

2

])
. (4.19)
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Therefore, to study the behaviour of the above expression for the stress energy correlator, we need to

evaluate the above derivatives. We also need to find the traces of the gamma matrices which can be

evaluated using the known properties [12] of the gamma matrices.

4.4.1 Gamma mechanics

The expression (4.19) can be written as follows (using cyclic property of the traces)

⟨t̂0000(x,y)⟩ = lim
x′→x

lim
y′→y

H4

4

[
∂

x′
0 ∂

y′
0 +∂

x
0 ∂

y
0 −∂

x′
0 ∂

y
0 −∂

x
0 ∂

y′
0

]

∑
ε=±

∑
δ=±

Tr

(
Γ0

[
iΓλ

∂
x′
λ
+ i

a′x′
ax′

Γ
0 +ax′m

][1+ εΓ0

2

]
Γ0

[
iΓσ

∂
y′
σ + i

a′y′
ay′

Γ
0 +ay′m

][1+δΓ0

2

])
Sε(x′,y)Sδ (y

′,x)

= lim
x′→x

lim
y′→y

H4

4

[
∂

x′
0 ∂

y′
0 +∂

x
0 ∂

y
0 −∂

x′
0 ∂

y
0 −∂

x
0 ∂

y′
0

]

∑
ε=±

∑
δ=±

Tr

(
i2Γ

λ MΓ
σ P∂

x′
λ

∂
y′
σ + i2Γ

λ MΓ
0P

a′y′
ay′

∂
x′
λ
+ iay′mΓ

λ MP∂
x′
λ

+i2
a′x′
ax′

Γ
0MΓ

σ P∂
y′
σ + i2

a′x′
ax′

a′y′
ay′

Γ
0MΓ

0P+ im
a′x′
ax′

ay′Γ
0MP

+iax′mMΓ
σ P∂

y′
σ + iax′m

a′y′
ay′

MΓ
0P+ax′ay′m2MP

)
Sε(x′,y)Sδ (y

′,x) ,

(4.20)

where M =
[

Γ0+ε

2

]
and P =

[
Γ0+δ

2

]
.

If we now evaluate the traces of the gamma matrices in the above expression, we find that it reduces to

[164]

⟨t̂0000(x,y)⟩ = − lim
x′→x

lim
y′→y

2H4

4

[
∂

x′
0 ∂

y′
0 +∂

x
0 ∂

y
0 −∂

x′
0 ∂

y
0 −∂

x
0 ∂

y′
0

]
×[

∑
ε=±

(
∂

x′
0 ∂

y′
0 +

(a′x′
ax′
− εimax′

)
∂

y′
0 +

(a′y′
ay′
− εimay′

)
∂

x′
0

+
(a′y′

ay′
− εimay′

)(a′x′
ax′
− εimax′

))
Sε(x′,y)Sε(y′,x)

+δ
kl

∂
x′
k ∂

y′
l

(
S+(x′,y)S−(y′,x)+S−(x′,y)S+(y′,x)

)]
. (4.21)
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4.4.2 Stress energy correlator on equal time sheets

As in the scalar field case, we find the behaviour of the considered component of the stress energy

correlator for spacetime points which lie on same time sheets i.e., for which η = ηx = ηy, and have

finite spatial separation between them. However, it is important that we take all the derivatives before

taking ηx = ηy and in fact, all the limits appearing in the above expression should also be taken only

after evaluating the derivatives first. In order to evaluate the derivatives in the above obtained expression

of the stress energy correlator, we use the property of S±(x,y) that it is a function of x and y only through

the de Sitter invariant distance i.e., S±(x,x′) = S±(Z(x,x′)). Making use of formulae in Appendix C, the

considered stress energy correlator component for points on equal time sheets is given by

− 2
H4 ⟨t̂0000(x,y)⟩ =

(
S′′+S′−+(−↔+)

)[
− (∆⃗x)4

8η8 −
(∆⃗x)2

4η6

]
+
(
S′′+S′′−)

[
− (∆⃗x)6

16η10

]
+

(
S′′′+S′−+(−↔+)

)[ (∆⃗x)6

32η10

]
+ ∑

ε=±

(
1− εim

H

)[(S′ε)2

4

[(∆⃗x)4

2η8 −
(∆⃗x)2

η6

]
+

2
η4 SεS′ε

+ SεS′′ε
[
− 3(∆⃗x)4

8η8 −
(∆⃗x)2

4η6

]
+(SεS′′′ε −S′εS′′ε )

(∆⃗x)6

32η10

]

+
(

1− εim
H

)2
[
(S′ε)

2

4

[(∆⃗x)4

2η8

]
+

SεSε

η4 +SεS′ε
[(∆⃗x)2

2η6 +
1

η4

]
−SεS′′ε

(∆⃗x)4

8η8

]
+

[
(S′ε)

2

4

[(∆⃗x)4

4η8 −2
(∆⃗x)2

η6 +
2

η4

]
+

S′εS′′ε
8

(∆⃗x)4

4η6

[ 2
η2 +

(∆⃗x)2

η4

]
+

S′′ε S′′ε
16

(∆⃗x)8

8η12 −
S′εS′′′ε

16
(∆⃗x)8

8η12

]
. (4.22)

As in the scalar field case, we want to study the behaviour of the stress energy correlator for the limit

in which the scale factor goes to infinity which, for de Sitter case, corresponds to η → 0 limit. We

now recall that the S′εs are Hypergeometric functions (refer (2.69)) and the derivatives of Hypergeo-

metric functions are also Hypergeometric functions [165]. Taking these facts into account and using

the asymptotic behaviour of Hypergeometric functions, the considered component of the stress energy

correlator, in the η → 0 limit, has the following leading order behaviour [164]

⟨t̂0000(x,y)⟩=
2H4η2

π3(∆⃗x)6

(1+ m2

H2 )(
m3

H3 )

sinh(2πm
H )

+O(η4). (4.23)
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There are a number of observations that one can make from the above expression. We see that the

considered component of the stress energy correlator/noise kernel decays to 0 in the late time limit

i.e., η → 0. This decay of the correlations of stress energy operators, for spatially separated points,

occurs independently of the mass of the field and hence we see that this decay is a universal feature

for all spinor fields whether massive or light. We observe that these results for spinor fields stand in

contrast with the results for scalar fields, obtained in the previous chapter. Where in this case, we

always have decay in the stress energy correlations, the considered component of the stress energy

correlator for scalar fields shows a transition from decaying to divergent behaviour with the variation

of the mass of the scalar field (refer Chapter 3). To understand these results better, recall that any

two spatially separated points with finite coordinate distance have negligible physical separation in the

past (i.e., in the η →−∞ limit) because the scale factor goes to zero in the asymptotic past and hence

the correlations between quantum fields for these spatially separated points is large in the asymptotic

past. However, as time progresses, the scale factor (multiplying the coordinate distances to give the

physical distances) increases and the physical separations between spatially separated points (with finite

coordinate distances) increase. We expect that the correlations between stress energy operators (or

any other quantities depending upon quantum field correlations) for spatially separated points should

decrease as the physical distances between these points increase with time and this is, in fact, what we

observe for stress energy correlations of arbitrarily massive spinor fields. This means that the quantum

dynamics of spinor fields (whether massive or light) over de Sitter spacetime can not compensate for the

decay in the correlations caused by the increasing physical separations between spatially separated points

in the de Sitter spacetime and the stress energy correlations vanish in the η → 0 limit. But the results of

the previous chapter suggest that the quantum dynamics of light scalar fields, with (m2/H2) ∈ [0,2], can

indeed overcome the decay in the correlations caused by the increasing physical separations between

spatially separated points and we have divergenct correlations between stress energy operators in these

cases. We also observe that the considered component of the stress energy correlator/noise kernel goes

inversely to the coordinate distances of the spatially separated points which is to say that it takes longer

to have the same decay between points with less coordinate distances compared to the ones with large

coordinate distances.

Since we know that the noise kernel is a bi-tensor quantity and hence frame dependent, we express our

results also in terms of the invariant/ energy-energy correlator of the previous chapter. Recall that, in the

conformal coordinates, the invariant correlator has the following form

⟨t̂µναβ (x,y)⟩tµ(x)tν(x)tα(y)tβ (y) =
⟨t̂0000(x,y)⟩

a2(ηx)a2(ηy)
. (4.24)
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Using the expression of the stress energy correlations obtained above for spatially separated points in

the late time limit, we find that the leading order behaviour of the invariant correlator in the late time

limit is [164]
2H8η6

π3(∆⃗x)6

(1+ m2

H2 )(
m3

H3 )

sinh(2πm
H )

. (4.25)

We observe that the qualitative behaviour of the invariant corrrelator is the same as that of the above

considered component of the noise kernel i.e., we still have a universal decay for invariant correlations

independent of the mass of the spinor field. The only change that we have for the invariant correlator

compared to the noise kernel component is that we have an extra factor of (Hη)4 multiplying the noise

kernel expression and because of which the late time decay of the invariant correlator is even faster.

4.5 Noise kernel for massless spinors in general FRW spacetimes

Now we turn our focus to the case of massless spinor fields in general FRW spacetimes and calculate

the behaviour of the stress energy correlator and the invariant correlator for them. To perform the

analysis for this case, we employ the relation between the Wightman functions of massless spinor fields

in general FRW spacetimes with that of the corresponding massless spinor field in de Sitter spacetime

that we discussed in section 4.2. As we discussed earlier in section 4.2, this equivalence is analogous

to the equivalence between scalar fields in FRW and de Sitter spacetimes that we made use of in last

chapter. According to the equivalence of spinor fields, we can relate a massless spinor field, ψ , in an

FRW spacetime with scale factor, a(η), to another massless spinor field, Ω, in de Sitter spacetime and

the relation between them is ψ(x) =
(
(b(η))/(a(η))

) 3
2 Ω(x) where b(η) = −(1/(Hη)). The relations

between the Wightman functions in these related settings are as follows

SFRW
i j (x,y) =

(b(η)

a(η)

) 3
2
(b(η ′)

a(η ′)

) 3
2
SdS

i j (x,y) (4.26)

and

RFRW
ji (y,x) =

(b(η)

a(η)

) 3
2
(b(η ′)

a(η ′)

) 3
2
RdS

ji (y,x) . (4.27)

Substituting these relations in the formula (4.17), we obtain the following expression for the (a = 0, b =

0, c = 0, d = 0) component of the stress energy correlator/ noise kernel for a massless spinor field in an

73



FRW spacetime (with scale factor ax ≡ a(ηx))

⟨t̂FRW
0000 (x,y)⟩ = lim

x′→x
lim
y′→y

axay

4

[
∂

x′
0 ∂

y′
0 +∂

x
0 ∂

y
0 −∂

x′
0 ∂

y
0 −∂

x
0 ∂

y′
0

]
H4 (bxbx′byby′)

(axax′ayay′)
3
2

Tr

(
Γ0

[
iΓλ

∂
x′
λ
+ i

b′x′
bx′

Γ
0
][

∑
ε=±

Sε(x′,y)
1+ εΓ0

2

]
Γ0

[
iΓσ

∂
y′
σ + i

b′y′
by′

Γ
0
][

∑
ε=±

Sε(y′,x)
1+ εΓ0

2

])
. (4.28)

Using the product rule of differentiation, one finds that the action of the derivative operators in the larger

square brackets is such that the factor H4
(
(bxbx′byby′)/(axax′ayay′)

3
2
)

on the right of the brackets comes

to the left of the brackets with the derivatives in the larger square brackets acting only on the left over

trace term. Also, the factor H4
(
(bxbx′byby′)/(axax′ayay′)

3
2
)

multiplies the factor axay to give us that the

above considered component of the noise kernel is
(
(bxby)

2/(axay)
2) times the noise kernel of massless

spinor field in de Sitter spacetime. Using the fact that, for massless spinor fields in de Sitter spacetime,

we have

S+(Z(x,y)) = S−(Z(x,y)) =
1

16π2(1−Z(x,y))
, (4.29)

the above expression for the stress energy correlator of massless spinor field in FRW spacetimes becomes

[164]

⟨t̂FRW
0000 (x,y)⟩=

b4
x

a4
x

3H4η4

2π4(∆⃗x)8 =
3

2π4(∆⃗x)8 a−4
x . (4.30)

From the above expression, we observe that the considered noise kernel component (corresponding to

a massless spinor field in an FRW spacetime with scale factor ax = a(ηx)) has a behaviour opposite to

that of the scale factor. For spatially separated points with same time coordinates i.e., on constant time

sheets, the correlations between stress energy operators for massless spinor field grow for contracting

spacetimes whereas the stress energy correlations decay for expanding spacetimes. We also observe

that any monotonic or non-monotonic behaviour in the scale factor is reflected in the behaviour of the

stress energy correlations. For example, for a monotonically increasing scale factor corresponding to

an expanding spacetime, the stress energy correlations between spatially separated points are always

smaller on a given constant time sheet compared to their magnitude for all constant time slices that lie

earlier than the given time sheet. Let us now consider the behaviour of the considered component of the

stress energy correlator for power-law type FRW spacetimes i.e., a(η) ∝ η−q. We obtain the following

expression for these spacetimes [164]

⟨t̂FRW
0000 (x,y)⟩=

3
2π4(∆⃗x)8 (Hη)4q . (4.31)
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Here, as in the previous chapter for scalar field case, we discuss these results for different power-law type

FRW spacetimes in terms of the corresponding equation of state parameter. As discussed in the previous

chapter, for spacetimes with positive values of q i.e for q ∈ (0,∞), the late time limit (in which the scale

factor goes to infinity) corresponds to the η→ 0 limit and the corresponding equation of state paramer, w,

belongs to the range (−∞,−1/3). Phantom spacetimes driven by fluids with equation of state parameter,

w ∈ (−∞,−1), and quintessence spacetimes driven by fluids with w ∈ (−1,−1/3) belong to this class

of power-law type FRW spacetimes. In fact, the present day dark-energy driven Universe belongs to this

regime with w = −1.03± 0.03 [23]. Spacetimes with negative values of q i.e. q ∈ (−∞,0), have the

late time limit given by η → ∞ and the corresponding equation of state parameter, w ∈ (−1/3,∞). This

class of power-law type FRW spacetimes with negative q values include both the radiation dominated as

well as matter dominated cases. For all power-law type FRW spacetimes, the considered stress energy

correlator component vanishes in the late time limit as all of them are expanding spacetimes for which we

have already seen that the correlations decay with the evolution of the spacetimes. Along similar lines

as in the previous section, such an observation about the decay of correlations between stress energy

operators (for spatially separated comoving points) with the evolution of expanding spacetimes imply

that the quantum evolution of massless spinor fields in expanding FRW spacetimes is different than that

for massless scalar fields in certain FRW spacetimes (see previous chapter) in that it can overcome the

decaying effects of increasing physical separations between spatially separated comoving points in an

expanding spacetime.

As is done for previously considered cases, for this case also, we look at the behaviour of the coordinate

independent correlator introduced in the previous chapter and also discussed in the previous section

i.e., the invariant correlator. For spatially separated points on equal time sheets, the invariant correlator

behaves as follows
⟨t̂FRW

0000 (x,y)⟩
a2(ηx)a2(ηy)

= a−8
x

3
2π4(∆⃗x)8 . (4.32)

From the above expression, it is easily seen that the qualitative behaviour of the invariant correlator is

same as the behaviour of the (a = b = c = d = 0) component of the stress energy correlator except

for the fact that the scale factor has more negative power in the former case as compared to the latter.

Particularly, we notice that the invariant correlator vanishes for expanding spacetimes whereas it diverges

for contracting spacetimes.

We can compare the results obtained here for massless spinor fields in power-law type FRW spacetimes

with the ones obtained in the previous chapter for massless scalar fields in the same spacetimes. On one

hand, we have seen that, for massless spinor fields, there is always a decay of stress energy correlations in
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power-law type expanding spacetimes whereas, on the other hand, in case of minimally coupled massless

scalar fields, we found that there are certain power-law type expanding FRW spacetimes for which the

stress energy correlations are significant. For example, for spacetimes with w∈ (0,−1/3)∪(−1/3,−1),

there are significant second order quantum effects of massless scalar fields quantified by the noise kernel/

stress energy correlator. Thus, we conclude that, in cases where we have both massless spinor and scalar

fields present in these power-law FRW spacetimes, we expect only the scalar field (but not the spinor

field) to provide second order quantum corrections to first order semiclassical gravity analysis.

4.6 Summary

Here, we collect all the important results that we have derived in this chapter. Our focus, in this chapter,

has been on studying the dynamics of massive spinor fields in de Sitter spacetime and massless spinor

fields in general FRW spacetimes. Particularly, we have calculated the behaviour of the stress energy

correlator for spatially separated points in the late time limit. We place the massive spinor fields consid-

ered in de Sitter spacetime in the fermionic Bunch-Davies vacuum and for massless spinor fields in FRW

spacetimes, we have employed their conformal invariance to place them in the Bunch-Davies vacuum of

the related massless spinor field of de Sitter spacetime. The main results of this chapter are as follows

• Behaviour of the noise kernel for spinor fields in de Sitter spacetime: First, we look at the

behaviour of the (a = b = c = d = 0) component of the stress energy correlator for arbitrarily

massive spinor fields in de Sitter spacetime. We observe that the leading order behaviour of this

component of the stress energy correlator, for spatially separated points on constant time slices,

vanishes in the late time η → 0 limit. We also observe that the decay in the stress energy corre-

lations is a universal feature of these correlations for massive spinor fields in de Sitter spacetime

as this decay occurs independently of the mass of the field. In that sense, the behaviour of the

stress energy correlators for spinor fields is in contrast to that for scalar fields as there are scalar

fields with certain mass range which have, in fact, divergent stress energy correlator (see previous

chapter). The invariant correlator for arbitrarily massive spinor fields also decays in the late time

limit (with even faster rate compared to the considered stress energy correlator component). The

considered correlators also have the usual decay with the increasing coordinate distances between

the spatially separated points.
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• Behaviour of the noise kernel for spinor fields in FRW spacetimes: We also look at the be-

haviour of the (a = b = c = d = 0) component of the stress energy correlator/noise kernel for

massless spinor fields in FRW spacetimes. For this purpose, we have employed the equivalence

between massless spinor fields in general FRW spacetimes with that of massless spinor field in

de Sitter spacetime. We observe that the considered component of the stress energy correlator

behaves opposite to the scale factor. For expanding spacetimes, the correlations decay whereas

they grow for contracting spacetimes. This is true, particularly, for power-law expanding FRW

spacetimes and hence, we find that these results for massless spinor fields is in contrast to those for

massless scalar fields in the same spacetimes (as seen in the last chapter, there are certain power-

law type expanding FRW spacetimes for which the noise kernel does not decay). The invariant

correlator for massless spinor fields in FRW spacetimes also behaves opposite to the behaviour of

the scale factor.

On the basis of these results, one can infer that, for massless spinor fields in expanding FRW spacetimes

and arbitrarily massive spinor fields in de Sitter spacetime, the second order quantum effects (quanti-

fied by the stress energy correlator) do not provide any significant corrections to the results obtained

using the first order quantum analysis based only on the quantum averages of the stress energy operator.

Hence, in these scenarios, we can expect the predictions made from the first order analysis to hold true

against quantum fluctuations. One important point to emphasize is that the above conclusions have been

obtained assuming the Bunch-Davies like vacua for spinor fields and it would be interesting to perform

similar analysis for other vacua as well.
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Chapter 5

Response of derivatively coupled Unruh

deWitt detectors in FRW spacetimes

As argued in chapter 2, one way to study the correlations of quantum fields in curved spacetime is

through studying the response of UdW detectors which couple with quantum fields. In this chapter, we

study the quantum fields in FRW spacetimes by coupling them with both conventional and derivatively

coupled UdW detectors. In this analysis also, we make use of the FRW-de Sitter equivalence that we

have talked about earlier. Particularly, the focus of this study is on the infrared divergence of the Bunch-

Davies vacuum in the massless limit and also on the related infrared divergence which is inherited by

massless scalar field in matter dominated spacetime.

5.1 Introduction

It can be shown [166, 167] that the UdW detectors can be used to model the interaction between electro-

magnetic waves and atoms. This provides an opportunity to verify the predictions obtained from UdW

detector analyses through quantum optical setups like testing the validity of thermal response of UdW

detector while in uniformly accelerating motion in flat spacetime [104, 105]. It should also be interesting

to analyse the curvature effect of curved spacetimes on the response of UdW detectors [168]. In that

regard, our Universe’s expansion history provides a situation where there is curvature present and one

can study the curvature effects of these FRW spacetimes on UdW detectors. Many works in the past

[169–174], have taken up the analysis of quantum fields in FRW spacetimes through UdW coupling.
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For example, response of UdW detector coupled with real quantum scalar fields in de Sitter spacetime

have been studied in [169], whereas the case of complex scalar fields which are quadratically coupled

with UdW detectors in de Sitter spacetime have been analysed in [173], [171] considers the case of

scalar fields for conformal vacua in FRW spacetimes. The Wightman function of quantum fields in

FRW spacetimes are well known to show infrared divergences [13, 65, 84, 123, 124, 134, 137]. In a

study done in [175] for flat spacetimes, it has been shown that the divergences in correlation functions

have the potential to strongly enhance the UdW responses so as to reveal small acceleration dependence.

Since the quantum fields in FRW spacetimes possess infrared divergences, we expect that these diver-

gences can also cause an enhancement in the response of UdW detectors. This motivates us to analyse

the response of UdW detectors which are coupled to quantum fields in FRW spacetimes. We consider

the response of both conventionally coupled and derivatively coupled UdW detectors by coupling them

to quantum fields in FRW spacetimes. The motivation for studying derivatively coupled UdW detectors

will be explained once we discuss conventional UdW detectors.

We divide the remaining chapter in three sections. In section 5.2, the case of conventionally coupled

UdW detectors is considered. Particularly, we look at the finite time response rate of UdW detectors

which are coupled to scalar fields in de Sitter, radiation-dominated and matter-dominated spacetimes.

In section 5.3, a similar consideration with derivatively coupled UdW detectors has been carried out. In

section 5.4, we collect all the important results derived in this chapter.

5.2 Conventional UdW detectors

This section considers the analysis of massless scalar fields in FRW spacetimes by coupling them with

conventional UdW detectors. From chapter 2, we recall that the interaction Hamiltonian for conventional

UdW detectors is given by equation (2.79) i.e.,

Hint = cχ(τ)µ̂(τ)φ̂(x(τ)) , (5.1)

where the meaning of different symbols is explained in chapter 2.

For the scenario in which the detector goes from a state |0⟩D to another state |Ω⟩D (which have en-

ergies 0 and Ω, respectively) while the field goes from |ψ⟩ to any arbitrary final state which we finally
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trace over, the transition probability, is given by Eq. (2.82) i.e.,

P0→Ω = c2|D ⟨Ω|µ̂(0)|0⟩D |
2
∫∫

dτ1dτ2χ(τ1)χ(τ2)e−iΩ(τ1−τ2)G(x(τ1),x(τ2)), (5.2)

where G(x(τ1),x(τ2)) = ⟨ψ|φ̂(x(τ1))φ̂(x(τ2))|ψ⟩ is the Wightman function of the field for the state |ψ⟩.

Considering the case of finite time uniform switching for the interval (τi, τ f ), the above expression

reduces to

P0→Ω = c2|D ⟨Ω|µ̂(0)|0⟩D |
2
∫

τ f

τi

∫
τ f

τi

dτ1dτ2e−iΩ(τ1−τ2)G(x(τ1),x(τ2)) . (5.3)

As already mentioned, we want to analyse how the response of UdW detectors is affected by the cur-

vature of different FRW epochs of the Universe and the divergences present in the field correlations

in these spacetimes. To perform this analysis, we specialize to the case of FRW spacetimes. We take

UdW detectors to be moving along the comoving trajectories i.e., for which the spatial coordinates

are fixed and the comoving or cosmic time is the proper time. We switch to the conformal coordi-

nates i.e., dτ = a(η)dη with a(η) being the scale factor of the FRW spacetime under investigation i.e.,

ds2 = a2(η)(−dη2 + d⃗x2). In conformal coordinates, the above expression becomes

P0→Ω = c2|D ⟨Ω|µ̂(0)|0⟩D |
2
∫

η f

ηi

∫
η f

ηi

dη1dη2e−iΩ(τ(η1)−τ(η2))a(η1)a(η2)G(x(η1),x(η2)) , (5.4)

where ηi and η f are the conformal coordinate values corresponding to τi and τ f , respectively.

Let us introduce the following combinations of η1 and η2

η̃ ≡ η1 +η2

2
and ∆η ≡ η1−η2 .

For η1,η2 ∈ (ηi,η f ), η̃ ∈ (ηi,η f ). For any fixed η̃ ∈ (ηi,(ηi + η f )/2), we have η2 ∈ (ηi,2η̃ −

ηi) and ∆η ∈ (−2(η̃−ηi),2(η̃−ηi)). For η̃ ∈ ((ηi+η f )/2,η f ), we have η2 ∈ (2η̃−η f ,η f ) and ∆η ∈

(−2(η f − η̃),2(η f − η̃)). Changing the variables to (η̃ ,∆η) in the equation (5.4), the rate of transition

probability with respect to η̃ , for η̃ ∈ (ηi,(ηi +η f )/2), is found to be

1
c2|D ⟨Ω|µ̂(0)|0⟩D |2

dP0→Ω

dη̃
=
∫ 2(η̃−ηi)

−2(η̃−ηi)
d(∆η) e−iΩ(τ(η̃+(∆η)/2)−τ(η̃−(∆η)/2))

G
(

x
(
η̃ +(∆η)/2

)
,x
(
η̃− (∆η)/2

))
a
(
η̃ +(∆η)/2

)
a
(
η̃− (∆η)/2

)
. (5.5)
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For η̃ ∈ ((ηi +η f )/2,η f ), the rate has the following form

1
c2|D ⟨Ω|µ̂(0)|0⟩D |2

dP0→Ω

dη̃
=
∫ 2(η f−η̃)

−2(η f−η̃)
d(∆η) e−iΩ(τ(η̃+(∆η)/2)−τ(η̃−(∆η)/2))

G
(

x
(
η̃ +(∆η)/2

)
,x
(
η̃− (∆η)/2

))
a
(
η̃ +(∆η)/2

)
a
(
η̃− (∆η)/2

)
. (5.6)

Let us now analyze the case of interest i.e., massless scalar fields in power-law type FRW spacetimes.

To perform the calculations for this case, we employ the FRW-de Sitter equivalence which we discussed

in chapter 3. The Wightman functions in the two settings are related by the Eq. (3.32) i.e.,

GFRW (x1,x2) = (Hη1)
q−1(Hη2)

q−1GdS(x1,x2) . (5.7)

As in chapter 3, we take the de Sitter vacuum to be the Bunch-Davies vacuum of chapter 2 for which the

Wightman function is given by Eq. (2.39) and we perform the calculations corresponding to it.

Formula for the mass of the scalar field in de Sitter spacetime which is equivalent to a massless scalar

field in FRW spacetime with a(η) = (Hη)−q i.e., m2 = H2(1−q)(2+q), implies that the square of the

mass is positive only for the cases in which q ∈ [−2,1). These are the spacetimes that we considered in

Chapter 3 and in this chapter also, we focus only on them. Let us briefly look at the response rate for

UdW detectors which remain operative for the full time range of these spacetimes. One can argue (see

Appendix F) that the Ω and H dependences of the infinite time response rate with respect to η̃ is given

by
1

c2|D ⟨Ω|µ̂(0)|0⟩D |2
dP0→Ω

dη̃
∝ (ΩH−q)

1
1−q . (5.8)

This expression tells us that the response rate increases with increasing H for q ∈ (−2,0) whereas it

decreases with increasing H for q ∈ (0,1). Since, for FRW spacetimes, the Ricci scalar, R ∝ H2q, we

see that the Ricci scalar and the above response rate behaves opposite of each other as a function of H.

We also observe that the response rate changes maximally with H either for q =−2 or q = 1 depending

upon whether H > 1 or H < 1 respectively.

During the evolution history of our Universe, it has stayed in any particular FRW like phase only for a

finite time, therefore we now take up the finite time response rates for the following cases. We again

take the case in which UdW detectors move along comoving trajectories.
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5.2.1 Nearly massless scalar fields in de Sitter spacetime

In this subsection, we look at the finite time response rate of a UdW detector when it is coupled to nearly

massless scalar fields in de Sitter spacetime. For nearly massless fields, ν = 3/2− δ where δ << 1.

The Wightman function [65] for this case, expanded as a power series in δ , is

GdS(Z(x,x′)) =
( H2

16π2

)( 2
δ
+

4
y
−4−2ln(y)+4ln2+O(δ )

)
. (5.9)

Thus, from the above expression, we notice the well known infrared divergence [84, 124, 125, 134] of

massless scalar fields in de Sitter spacetime. Making use of (5.5), the UdW detector response rate, for

η̃ ∈ (ηi,(ηi +η f )/2), is

1
c2|D ⟨Ω|µ̂(0)|0⟩D |2

dPdS
0→Ω

dη̃
=

1
16π2

∫ 2(η̃−ηi)

−2(η̃−ηi)
d(∆η)

(
η̃ +(∆η)/2
η̃− (∆η)/2

) iΩ
H 1
(η̃2− (∆η)2/4)( 2

δ
− 4(η̃2− (∆η)2/4)

(∆η− iε)2 −4−2ln
(
− (∆η− iε)2

(η̃2− (∆η)2/4)

)
+4ln2+O(δ )

)
. (5.10)

One can obtain a similar formula for the case in which η̃ ∈ ((ηi+η f )/2,η f ) using Eq. (5.6). The above

integrand is easily seen to have poles at (∆η) =±2η̃ , iε but the interval over which the above integral is

performed does not contain the ±η̃ poles. If we enclose the contour in the lower half plane of the (∆η)

complex plane (see Fig. (5.1)), then the value of the integral for any term in the Wightman function along

the above real line segment is equal to the integral of that term along the curved part of the contour in

the lower half plane, with the iε pole of the upper half plane making no contribution. The integral along

the curved part of the above contour is a proper integral and hence is finite. Keeping these observations

in mind, we find that the response rate has the following expansion in δ [176]

1
c2| ⟨Ω|µ̂(0)|0⟩ |2

dPdS
0→Ω

dη̃
=

1
δ

(
1

8π2

∫ 2(η̃−ηi)

−2(η̃−ηi)
d(∆η)

(
η̃ +(∆η)/2
η̃− (∆η)/2

) iΩ
H 1
(η̃2− (∆η)2/4)

)
+O(δ 0). (5.11)

Thus, we observe that the UdW response rate for the present case of nearly massless fields in de Sitter

spacetime shows the same infrared (IR) divergence as is present in the Wightman function for this case.

Therefore, the smaller the mass becomes, the faster the transitions take place within the internal states

of UdW detectors.

There have been a number of past works which consider UdW detectors coupled with scalar fields in de
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Sitter spacetime. For example, the infinite time UdW response rate has been analysed in [169] for scalar

fields in de Sitter spacetime. [177–179] analyse the dynamics of scalar fields in de Sitter spacetime

from open quantum systems framework with different detector trajectories and different field vacua. We

now consider a similar analysis for other FRW spacetimes which model different epochs of universe’s

evolution history.

ᐳ

ᐳ

iϵ 

η∼ η∼2-2

η∼ ηi-2( )η∼ ηi-2( )-

Figure 5.1: The chosen contour does not contain the poles inside it.

5.2.2 Massless scalar fields in radiation dominated spacetime

In this subsection, we consider a UdW detector which couples to a massless scalar field in radiation

dominated universe. The radiation dominated spacetime phase of the Universe is believed to suceed the

inflationary phase of the Universe. The scale factor for this case is a(η) = (Hη) i.e., q =−1. The mass

of the scalar field in de Sitter spacetime corresponding to the massless field in radiation dominated case

is (m2/H2) = 2 and the Wightman function is

Grad(x(η1),x(η2)) = (H2
η1η2)

−2 H2

4π2y(x(η1),x(η2))
=−(H2

η1η2)
−1 1

4π2(η1−η2− iε)2 . (5.12)

This case of massless scalar field in radiation dominated spacetime is also conformally related to a

massless scalar field in flat spacetime (refer to Chapter 3 of [75]). For this case, the comoving time is

related to the conformal time by the relation (2Ht)
1
2 = Hη . With the above Wightman function and the

comoving time and conformal time relation, the transition probability for this case is found to be

Prad
0→Ω = −c2|D ⟨Ω|µ̂(0)|0⟩D |2

4π2

∫
η f

ηi

∫
η f

ηi

dη1dη2e−
iΩH

2 (η2
1−η2

2 )
1

(η1−η2− iε)2 . (5.13)
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Using the expression (5.5), the UdW detector response rate with respect to η̃ , for η̃ ∈
(
ηi,(ηi +η f )/2

)
,

is seen to be given by [176]

1
c2|D ⟨Ω|µ̂(0)|0⟩D |2

dPrad
0→Ω

dη̃
= − 1

4π2

∫ 2(η̃−ηi)

−2(η̃−ηi)
d(∆η)e−iΩHη̃(∆η) 1

(∆η− iε)2 . (5.14)

A similar formula is obtained for η̃ ∈ ((ηi+η f )/2,η f ) if one uses the formula (5.6). The above response

rate for massless scalar fields in radiation dominated spacetimes is easily seen to be similar to that of

flat spacetime case except that in the present case one has ΩHη̃ in place of Ω in the flat spacetime case.

Making use of the same arguments as were used in the previous subsection, we enclose the contour in

the lower half plane and thus the iε pole does not lie inside the contour. Hence, the above integral on

the specified real line segment is equal to the integral of the above integrand along the curved part of

the contour. This integral is a proper integral and hence is finite in value. Therefore, we can say that the

UdW response rate for a massless field in radiation dominated spacetime is finite and it does not lead

to any significant enchancement of transitions within the internal quantum states of the detector. Let us

now turn to the case of massless scalar fields in nearly matter dominated spacetimes.

5.2.3 Massless scalar fields in nearly matter dominated spacetimes

Let us now couple UdW detectors to massless scalar fields in nearly matter-dominated spacetimes. For

nearly matter dominated spacetimes i.e., for q =−2+δ where δ << 1, the mass of the scalar fields in

de Sitter spacetime corresponding to massless fields in these spacetimes is given by

m2

H2 = (1−q)(2+q) = (3−δ )δ ≈ 3δ , (5.15)

and it approaches zero as δ goes to zero. Thus, we see that as spacetimes approach the matter dominated

spacetime limit the mass of the corresponding scalar field in de Sitter spacetime approaches zero and we

expect that the infrared divergence of massless scalar fields in de Sitter spacetime is inherited by massless

scalar fields in nearly matter dominated spacetimes and they manifest themselves in the UdW response

rate for these cases. In fact, the Wightman function for massless fields in nearly matter dominated

spacetimes, using Eq. (5.7) and Eq. (5.15), is seen to have the following expression

Gmatter(x(η1),x(η2)) = (H2
η1η2)

−3+δ

( H2

16π2

)( 2
δ
+

4
y
−4−2ln(y)+4ln2+O(δ )

)
. (5.16)

85



For this case, the comoving time is related to the conformal time by the relation
(
(3− δ )Ht

) 1
3−δ =

(Hη). From expression (5.5), we find that the UdW detector response rate for the present case, for

η̃ ∈ (ηi,(ηi +η f )/2), is

1
c2|D ⟨Ω|µ̂(0)|0⟩D |2

dPmatter
0→Ω

dη̃
=

1
16π2

∫ 2(η̃−ηi)

−2(η̃−ηi)
d(∆η)e−

iΩH2(3η̃2+(∆η)2/(4))(∆η)
3

1
(η̃2− (∆η)2/4)(

2
δ
− 4(η̃2− (∆η)2/4)

(∆η− iε)2 −4−2ln
(
− (∆η− iε)2

(η̃2− (∆η)2/4)

)
+4ln2

−2iΩH2(η̃ +(∆η)/2)3

3

(1
3
− log(H(η̃ +(∆η)/2))

)
+

2iΩH2(η̃− (∆η)/2)3

3

(1
3
− log(H(η̃− (∆η)/2))

)
+O(δ )

)
. (5.17)

As in the previous cases, the integral of any of the above terms can be argued to be finite. Hence, the

expansion of the above expression in the δ → 0 limit is given by [176]

1
c2|D ⟨Ω|µ̂(0)|0⟩D |2

dPmatter
0→Ω

dη̃
=

1
δ

(
1

8π2

∫ 2(η̃−ηi)

−2(η̃−ηi)
d(∆η)e−

iΩH2(3η̃2+(∆η)2/(4))(∆η)
3

1
(η̃2− (∆η)2/4)

)
+O(δ 0) . (5.18)

Thus, the UdW response rate for massless scalar fields in nearly matter dominated spacetimes has 1/δ

term as the most dominant term in the δ → 0 limit. From the above expression, we can conclude that

the response rate becomes very fast for δ being close to zero. The origin of this behaviour of response

rate for the present case of nearly matter dominated spacetimes is in the infrared divergence of the

corresponding nearly massless scalar fields in de Sitter spacetime. From the formula m2 = H2(1−

q)(2+ q), we see that the mass of the scalar field in de Sitter spacetime equivalent to massless scalar

fields in FRW spacetimes approaches zero for both q =−2 and q = 1 cases. Hence, for both these limits,

the UdW response rate is expected to show divergent behaviour. To demonstrate this for the considered

spacetimes i.e, for q∈ (−2,1), we numerically plot the formula (5.5) for the Wightman function (5.7) as

a function of q taking specific values for ηi, η f , η̃ , Ω and H. Figure 5.2a shows the variation of response

rate as a function of q for the range (−2,0) while the variation of the response rate as a function of q

for the range (0,1) is shown in figure 5.2b. The figures show that the UdW response rate is finite for all

q values except when q approaches the values −2 and 1. We saw above that the UdW response rate for

massless scalar fields in de Sitter spacetime inherits the infrared divergence of its Wightman function.

Any quantity which depends upon the Wightman function can be, in general, expected to suffer from
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Figure 5.2: Variation of the response rate for a conventionally coupled UdW detector as a function of
q. (a) shows that the response rate diverges as q approaches −2 i.e., matter dominated spacetime and
similarly (b) shows that the response rate diverges as q approaches 1 i.e., de Sitter spacetime.

the same infrared divergences as that of the Wightman function. The infrared divergence of massless

scalar fields in de Sitter spacetime has been discussed at many places [84, 123, 124, 134, 180, 181]. In

order to obtain physically meaningful IR finite results, many suggestions have been given [181, 182].

For example, one resolution is to consider vacua which do not enjoy the full de Sitter symmetry but

which are IR finite for massless fields in de Sitter spacetime [13, 84, 125, 180]. Sometimes, it is also

argued that only those operators which are IR finite should be considered physical. Such a line of

argument is presented in [131] which states that only shift invariant operators, like the differences of the

field operators and derivatives of the field operators etc., should be taken as truly physical observables

as they are free from infrared divergences, as [131] shows, at least, for massless scalar fields in de

Sitter spacetime. Similarly, the derivative operators in the stress energy tensor kill the time independent

infrared divergence term of massless scalar fields in de Sitter spacetime in the evaluation of the stress

energy expectation and hence it does not suffer from infrared divergence [90]. From these arguments,

one would expect that for more ‘physical’ derivatively coupled UdW detectors, the UdW rates would not

suffer from IR divergences. In fact, certain previous works [110, 113, 183] have considered derivatively

coupled UdW detectors to deal with IR divergences. Keeping in mind this motivation, we now consider

derivatively coupled UdW detectors coupled with massless fields in FRW spacetimes.
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5.3 Derivatively coupled UdW detectors

This section considers the case of derivatively coupled UdW detectors. In case of these detectors, the

interaction Hamiltonian is given as follows [110]

Hint = cµ̂(τ)χ(τ)ẋσ
∇σ φ̂(x(τ)) = cµ̂(τ)χ(τ)

d
dτ

φ̂(x(τ)) , (5.19)

where we see that instead of coupling with the field operator, the detector couples with the derivative of

the field with respect to the proper time along the classical trajectory of the detector i.e., (d/dτ)φ̂(x(τ)),

and all other terms have the same meaning as in the previous section. The dot over ẋσ denotes a derivative

with respect to the proper time. Considering the case in which the detector starts in some state |0⟩D with

energy 0 and makes a transition to a state |Ω⟩D with energy Ω while the field starting from the state

|ψ⟩ is allowed to go to any arbitrary final state, the probability for this to take place, upto first order in

perturbation theory, is

P0→Ω = c2|D ⟨Ω|µ̂(0)|0⟩D |
2
∫∫

dτ1dτ2e−iΩ(τ1−τ2)χ(τ1)χ(τ2)
d

dτ1

d
dτ2

G(x(τ1),x(τ2)). (5.20)

Let us again specialize to the case of FRW spacetimes. Like in the previous section, the UdW detectors

are taken to move along comoving trajectories for which the comoving time is the proper time for

detectors. Thus, transforming to conformal coordinates i.e., dτ = a(η)dη , the probability, for a detector

that is uniformly operative for a finite time interval, can be expressed as

P0→Ω = c2|D ⟨Ω|µ̂(0)|0⟩D |
2
∫

η f

ηi

∫
η f

ηi

dη1dη2e−iΩ(τ(η1)−τ(η2))
d

dη1

d
dη2

GFRW (x(η1),x(η2)) . (5.21)

Let us transform to the (η̃ ,∆η) coordinates of the previous section. In these coordinates, the rate of

transition with respect to η̃ , for η̃ ∈ (ηi,(ηi +η f )/2), is

1
c2|D ⟨Ω|µ̂(0)|0⟩D |2

dP0→Ω

dη̃
=

∫ 2(η̃−ηi)

−2(η̃−ηi)
d(∆η) e−iΩ(τ(η̃+(∆η)/2)−τ(η̃−(∆η)/2))

[( d
dη1

d
dη2

GFRW
)(

x
(
η̃ +(∆η)/2

)
,x
(
η̃− (∆η)/2

))]
. (5.22)
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For η̃ ∈ ((ηi +η f )/2,η f ), the rate has the following form

1
c2|D ⟨Ω|µ̂(0)|0⟩D |2

dP0→Ω

dη̃
=

∫ 2(η f−η̃)

−2(η f−η̃)
d(∆η)e−iΩ(τ(η̃+(∆η)/2)−τ(η̃−(∆η)/2))

[( d
dη1

d
dη2

GFRW
)(

x
(
η̃ +(∆η)/2

)
,x
(
η̃− (∆η)/2

))]
. (5.23)

To express the term
[(

(d/dη1)(d/dη2)GFRW
)(

x
(
η̃ +(∆η)/2

)
,x
(
η̃− (∆η)/2

))]
in the square brack-

ets, as a function of η̃ and ∆η , we first evaluate the derivatives of the Wightman function with respect

to η1 and η2 and only after that we transform the resultant expression in (η̃ ,∆η) coordinates.

Using the Wightman function (5.7) for massless scalar fields in FRW spacetimes, we see that (refer to

Appendix G)

d
dη1

d
dη2

GFRW (x(η1),x(η2)) = (H2
η1η2)

q−1
[
(q−1)2 GdS

η1η2
+(q−1)

dGdS

dy

((η1−η2− iε)(−2iε)
η2

1 η2
2

)
+

d2GdS

dy2
y((η1 +η2)

2 + ε2)

η2
1 η2

2
+

dGdS

dy
(η2

1 +η2
2 + ε2)

η2
1 η2

2

]
. (5.24)

Substituting the above expression for the derivatives of the Wightman function in the response rate for-

mula (5.22), we investigate the behavior of the rate for derivatively coupled UdW detectors. We compare

the results obtained for the present derivatively coupled case to the case of conventional coupling of the

previous section.

As in the previous section, let us first discuss how the infinite time response rate for these detectors

depend on the energy gap, Ω, between the detector states and on the parameter H which appears in the

expression of the scale factor (a(η) = (Hη)−q) of the FRW spacetime. In Appendix F, we argue that

the Ω and H dependence of the infinite time rate for these detectors in FRW spacetimes is given by

1
c2|D ⟨Ω|µ̂(0)|0⟩D |2

dP0→Ω

dη̃
∝ Ω

2(ΩH−q)
1

1−q . (5.25)

Therefore, compared to the infinite time rate for conventional UdW detectors, the Ω dependence has an

extra factor of 2 in the exponent. But the H dependence is the same for the present case as for the case of

conventional UdW detectors considered in the previous section. Particularly, we see that, for q ∈ (0,1),

the exponent of H is negative and hence the rate decreases as H increases. Whereas for q ∈ (−2,0), the

exponent of H is positive and hence the rate increases as H increases. Recalling that, for the considered

FRW spacetimes, the Ricci scalar, R ∝ H2q, it is seen that the behaviours of the Ricci scalar and the

infinite time rate with H are opposite of each other.
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Let us now consider the analysis of finite time response rate of derivatively coupled UdW detectors for

the cases which were considered in the previous section. For these detectors, we find that the infrared di-

vergence of massless scalar fields in de Sitter spacetime does not contribute to the response rate whereas

for massless scalar fields in nearly matter dominated spacetimes, the corresponding infrared divergence

contributes to the response rate.

5.3.1 Nearly massless scalar fields in de Sitter spacetime

In this subsection, the analysis is carried out for nearly massless scalar fields in de Sitter spacetime

which couple to derivatively coupled UdW detectors. Because the infrared divergence for this case has

no spacetime dependence (see equation (5.9)) and it is the derivatives of the Wightman function which

appears in the expression of the rate i.e., equation (5.22), we find that the rate for nearly massless fields

in de Sitter spacetime does not share the infrared divergence of the Wightman function for this case. To

see it explicitly, let us substitute the expression (5.24) in the formula for the rate i.e., (5.22), taking q = 1

and the expression (5.9) for GdS. We obtain that the rate, for η̃ ∈ (ηi,(ηi +η f )/2), is given by [176]

1
c2|D ⟨Ω|µ̂(0)|0⟩D |2

dPdS
0→Ω

dη̃
=

H2

4π2

∫ 2(η̃−ηi)

−2(η̃−ηi)
d(∆η)

(
η̃ +(∆η)/2
η̃− (∆η)/2

) iΩ
H 1
(∆η− iε)4

(
6(η̃2− (∆η)2/4)

+2ε
2 +2iε(∆η)

)
+O(δ ) . (5.26)

From the above expression, we see that the rate for the present case does not contain infrared divergence

of the massless fields in de Sitter spacetime. Hence, the rate of transitions for derivatively coupled

UdW detectors among its internal quantum levels does not diverge as the mass of the field approaches

zero. The behaviour of the rate for the present case can be demonstrated by numerically plotting its

expression (5.26). In fig. 5.3a, we plot the variation of the rate as a function of Ω taking δ = 0.001

with the values of other parameters specified in the figure. Negative values for Ω in the plot, refer to the

cases in which the detector de-excites to a lower energy state from a higher energy state whereas positive

values of Ω refer to the cases in which the detector makes a transition from a lower energy state to a

higher energy state. For more ‘physical’ derivative operators, the infrared divergence of massless scalar

fields in de Sitter spacetime is expected not to make its appearance in the response rate corresponding

to the derivative coupling [131]. These infrared divergences, however, may still appear for certain FRW

spacetimes even with these ‘physical’ derivative couplings.
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5.3.2 Massless scalar fields in radiation dominated spacetime

Now we consider the behavior of derivatively coupled UdW detectors interacting with massless scalar

fields in radiation-dominated spacetime i.e., q =−1 case. Taking q =−1 in (5.24), one finds that

d
dη1

d
dη2

Grad(x(η),x(η ′)) = (H2
η1η2)

−2
[
−4

H2

4π2(η1−η2− iε)2 −
4H2iε(η1−η2− iε)
4π2(η1−η2− iε)4

+
2H2((η1 +η2)

2 + ε2)

4π2(η1−η2− iε)4 −
H2(η2

1 +η2
2 + ε2)

4π2(η1−η2− iε)4

]
. (5.27)

Thus, the rate with respect to η̃ , for η̃ ∈ (ηi,(ηi +η f )/2), is [176]

1
c2|D ⟨Ω|µ̂(0)|0⟩D |2

dPrad
0→Ω

dη̃
=

∫ 2(η̃−ηi)

−2(η̃−ηi)
d(∆η)

e−iΩHη̃(∆η)

H2π2
1(

η̃2− (∆η)2/4
)2

[
− 1

(∆η− iε)2 −
iε

(∆η− iε)3

+
(4η̃2 + ε2)

2(∆η− iε)4 −
(2η̃2 +(∆η)2/2+ ε2)

4(∆η− iε)4

]
. (5.28)

Employing the same arguments as have been used in the previous section, the above expression for the

rate is seen to be finite in value. Therefore, we conclude that, for the present case, the rate of transitions

for a derivatively coupled UdW detector among its internal quantum levels are finite just as the rate of

transitions are finite for conventional UdW detectors coupled with massless fields in radiation dominated

spacetime. We plot the above expression for the rate as a function of Ω in figure 5.3b. From figures 5.3a

and 5.3b, we see that the de-excitation rate for both de Sitter and radiation dominated cases are more

pronounced than the excitation rates.

5.3.3 Massless scalar fields in nearly matter dominated spacetimes

This subsection considers the case of derivatively coupled UdW detectors which interact with massless

scalar fields in nearly matter-dominated spacetimes. For this case, the infrared divergent term that the

Wightman function (5.16) inherits from the corresponding nearly massless scalar fields in de Sitter

spacetime has spacetime-dependent factors multiplying it. Thus, under the action of the derivatives

appearing in the response rate expression (5.22) or (5.23), this term survives. Using the relation that the

conformal and comoving times are related by

t =
H2η3e−δ (ln(Hη))

3−δ
=

H2η3

3

(
1+

δ

3
−δ ln(Hη)

)
+O(δ 2) , (5.29)
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(a) For a nearly massless field in de
Sitter spacetime

(Taking ηi = −3,η f = 0, η̃ = −2,
H = 1 and δ = 0.001)
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(c) For a massless field in a nearly matter
dominated spacetime

(Taking ηi = 1,η f = 4, η̃ = 2, H = 1
and δ = 0.001)

Figure 5.3: Variation of the response rate for a derivatively coupled UdW detector as a function of Ω.

and the Wightman function (5.16) in the response rate formula (5.22), one obtains that the rate, for

η̃ ∈ (ηi,(ηi +η f )/2), has the following form [176]

1
c2|D ⟨Ω|µ̂(0)|0⟩D |2

dPmatter
0→Ω

dη̃
=

1
δ

(
9

8H4π2

∫ 2(η̃−ηi)

−2(η̃−ηi)
d(∆η)e−

iΩH2(3η̃2+(∆η)2/(4))(∆η)
3

1
(η̃2− (∆η)2/4)4

)
+O(δ 0) . (5.30)

Thus, we conclude that in the limit δ → 0, the leading order term is the (1/δ ) term and this results in

very rapid transitions within the internal quantum states of the detector. Therefore, the present case UdW

rate shows the infrared divergence of the considered massless scalar fields in nearly matter dominated

spacetimes. The behaviour of detectors for the present case is unlike the behaviour of detectors for the

case of nearly massless scalar fields in de Sitter spacetime where the derivatively coupled UdW detectors
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do not manifest the infrared divergence of the field.
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(Taking ηi = 1,η f = 4, η̃ = 2,
Ω = 1 and H = 1)

0.2 0.4 0.6 0.8 1.0

-0.5

0.5

1.0

q --->

R
es
po
ns
e
R
at
e

(b) For q ∈ (0,1)
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Figure 5.4: Variation of the response rate for a derivatively coupled UdW detector as a function
of q. (a) shows that the response rate diverges as q approaches −2 i.e., derivatively coupled UdW
detectors manifest infrared divergence for matter dominated spacetime. However, (b) shows that the
response rate is finite for all q ∈ (0,1) i.e., the infrared divergence of de Sitter spacetime disappears
for derivatively coupled detectors.

Figure 5.3c shows the variation of the rate for the present case as a function of Ω. The values of the

other parameters which appear in the rate expression are given in the caption of the figure. From the

figure, we see that, for small values of Ω, the rate shows similar behaviour for both excitations and de-

excitations. This can be argued to be expected from the above expression where the leading order term

is invariant under the change of sign of Ω and in the limit δ → 0, this term is the one which would decide

the rate. In the case of non-zero but small values of δ , the other subdominant terms grow for larger Ω

to make the vacuum de-excitations take over the excitations and break the Ω→−Ω symmetry. This

behaviour of the present case is not seen for the previously considered cases of de Sitter and radiation

dominated spacetimes where there was no symmetry between de-excitation and excitation rates. In order

to demonstrate the behaviour of the derivatively coupled UdW detectors interacting with massless scalar

fields in different FRW spacetimes, we plot the corresponding response rates in figure 5.4 as a function

of q. As argued above, we see that the response rate diverges as q→ −2 whereas it remains finite

as q→ 1. This is different from the behaviour of the response rate for conventionally coupled UdW

detectors where it diverges as q approaches both −2 and 1.
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5.4 Summary

In this chapter, we have looked at the correlations of quantum fields in FRW spacetimes by coupling

them to UdW detectors. The cases of both conventionally and derivatively coupled UdW detectors have

been considered. We have employed the FRW-de Sitter equivalence that we discussed in Chapter 3.

Using this equivalence we place the massless fields in FRW spacetimes in the Bunch-Davies like vacua

of the corresponding massive scalar fields in de Sitter spacetime. The main results obtained in this

chapter are as follows

1. Conventional UdW detectors : First, we consider the case of conventionally coupled UdW de-

tectors interacting with massless scalar fields in FRW spacetimes. It is found that, for nearly

massless scalar fields in de Sitter spacetime, the infrared divergent term present in the Wightman

function manifests itself at the response rate level and leads to very rapid transitions within the

detector states as the mass of the field is taken to smaller and smaller values. We also consider

the case of massless scalar fields in nearly matter dominated spacetimes in which the Wightman

function inherits the infrared divergence of the corresponding nearly massless scalar fields in de

Sitter spacetime. The response rate for massless scalar fields in nearly matter dominated space-

times also shows these infrared divergences. We analyse the response rate of UdW detectors for

some other FRW spacetimes also but the mentioned divergence occurs for the de Sitter and matter

dominated spacetimes.

2. Derivatively coupled UdW detectors : Next, we take up the case of derivatively coupled UdW

detectors interacting with massless scalar fields in FRW spacetimes and nearly massless scalar

fields in de Sitter spacetime. In this case, because the derivatives of the Wightman function decide

the rate, the spacetime independent infrared divergent term of the de Sitter case vanishes under

the action of derivatives and does not contribute to the transition rates of the detector. In the case

of massless scalar fields in nearly matter dominated spacetimes, the infrared divergent term is

spacetime dependent and does not vanish under the action of derivatives. Hence, the response

rate for this case gets contribution from the infrared divergent term and the rate becomes faster

and faster as the spacetimes approach the matter dominated limit. Among the considered FRW

spacetimes in the chapter, it is shown that it is only for the case of matter dominated spacetime

that the response rate shows infrared divergences.

Analysis performed in this chapter has been mostly formal but in the next chapter, we consider the appli-
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cability of the results obtained in this chapter to the case of coupling of atoms with metric perturbations

over FRW spacetimes, which can be shown to harbour same kind of vacuum correlator structure as that

of a scalar field.
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Chapter 6

Atoms in FRW spacetimes

In this chapter, we look at the dynamics of atoms in FRW spacetimes with and without metric per-

turbations over them. We consider the atoms to be moving along comoving trajectories and write the

interaction between the atoms and the spacetime curvature by building Fermi normal coordinates about

the comoving trajectories of atoms. We show that the coupling of atoms with tensor perturbations over

FRW spacetimes takes the form of a generalized UdW detector and apply the results obtained in the

previous chapter to this situation. We also discuss the potential observational signatures of this analysis.

6.1 Atoms in curved spacetime

Let us consider the dynamics of atoms in curved spacetimes. Following the treatment given in [184], let

us assume that the center of mass of an atom follows a classical time-like trajectory in spacetime. The

internal structure of the atom is governed by considering that the electron follows the Dirac equation in

the presence of the electromagnetic potential of the nucleus. Thus, the internal quantum space of the

atom is decided by

i∇0ψ =
(
− (g00)−1

γ
0m+ i(g00)−1

γ
0
γ

i
∇i

)
ψ , (6.1)

where ψ is a four component Dirac spinor and γµ = eµ
a Γa are the curved spacetime gamma matrices

that relate to flat spacetime gamma matrices, Γa, via tetrad basis eµ
a . The flat space gamma matrices, Γa,

satisfy the algebra that {Γa,Γb}=−2ηab and the tetrad basis relate the metric of the spacetime with the
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Minkowski metric as eu
aeν

b gµν = ηab. The covariant derivatives are given by

∇µ = ∂µ −
1
8

ω
ab
µ [Γa,Γb]− iqAµ , (6.2)

where ωab
µ = ea

λ
eτbΓλ

τµ − eτb∂µea
τ are components of the spin connection. The electromagnetic four-

potential, Aµ , is determined by solving the curved spacetime Maxwell’s equations in the presence of a

point source at the nucleus.

Now we build Fermi normal coordinates (FNCs) around the ‘central’ timelike geodesic that the center of

mass of the atom follows. The construction of the FNCs is shown in figure 6.1. The points which lie on

the central timelike geodesic are taken to have zero spatial coordinates and the time component for these

points is taken to be the proper time for them along the central geodesic. For a point, say P, which does

not lie on the central geodesic (as shown in the figure 6.1), we consider the unique space-like geodesic,

Γ, passing from P which intersects the central geodesic orthogonally at point, say G, then the point P

is assigned the time coordinate of the point G. To assign spatial coordinates to point P, we consider the

tangent vector, vi, to Γ at point G and take the spatial coordinates to be xi = vis where s is the proper

time along Γ from P to G.

One can show that the different components of the metric written upto 2nd order in FNCs have the

Figure 6.1: This figure captures the construction of Fermi normal coordinates. Here, γ is some time-
like geodesic about which we construct FNCs. P is some point in the spacetime which intersects γ

orthogonally at point G via the unique spacelike geodesic Γ. vi are the components of the tangent
vector to Γ at point G.
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following expansion

g00 = −1−R0l0mxlxm , (6.3)

g0i = −2
3

R0limxlxm , (6.4)

gi j = δi j−
1
3

Ril jmxlxm , (6.5)

g = −1+
1
3
(Rlm−2R0l0m)xlxm . (6.6)

Other quantities like the inverse metric components, the tetrad bases, and the Christoffel connections,

etc. can also be similarly written up to second order in FNCs. For more details, refer to [184, 185].

Substituting the above given expansion of spacetime metric in the curved spacetime Dirac equation and

Maxwell’s equation, it can be shown that the Dirac equation has the following form

i∂tψ =
(
− iα i

∂i +mβ − ζ

r
+HI

)
ψ , (6.7)

where β ,α i are the Dirac matrices. Here HI denotes the perturbation to the flat spacetime Dirac equation

in the central Coulomb potential ζ

r by the curvature induced terms. Here ζ =Ze2 where e is the electron’s

charge and Z is the number of protons in the nucleus. The full expression for the interaction Hamiltonian,

HI , is given in [184].

Taking the non-relativistic limit of the above equation, we obtain the following Schrodinger equation

form [184] (
i

∂

∂ t
−m

)
ψ =

(
− 1

2m
∇

2− ζ

r
+

1
2

mR0l0mxlxm
)

ψ . (6.8)

In the above equation, the term containing R0l0m represents the corrections to the flat spacetime Schrodinger

equation (with the central Coulomb potential of the nucleus) by the curvature of the spacetime. Unlike ψ

in the Dirac equation, ψ in the above equation is a one-component function of space and time. The above

introduced curvature induced corrections are obtained by working only upto 2nd order in FNCs. Here

R0l0m are the Riemann tensor components and are to be evaluated for the points on central geodesic

in FNCs. The Riemann components in FNCs are related to those in an arbitrary coordinate system,

Rarbitrary
µνγδ

, by

RFNC
abcd = Rarbitrary

µνγδ
e⃗µ

a e⃗ν
b e⃗γ

c e⃗δ
d , (6.9)

where e⃗µ
a are a set of orthonormal basis parallel transported along the central timelike geodesic. The

vector field e⃗µ

0 represents the tangent vector field to the central geodesic.
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In subsequent sections, we make use of the formalism presented in this section to study the curvature

effects of the unperturbed and perturbed FRW spacetimes on the atoms moving in these spacetimes.

6.2 FRW spacetimes with no perturbation

Let us take the case of an atom in flat FRW spacetimes with scale factor a(η) and consider that the

center of mass of the atom moves along comoving trajectories for which the spatial coordinates are fixed

i.e., xµ(t) = (η(t),ci). Hence, we obtain the following tangent vector field for comoving trajectories in

FRW spacetimes
dxµ

dt
=
(1

a
,0
)
. (6.10)

One can take the following set of orthonormal basis vectors which are parallel transported along the

considered comoving geodesics

e⃗µ

0 =
1
a
(1,0,0,0), e⃗µ

1 =
1
a
(0,1,0,0), e⃗µ

2 =
1
a
(0,0,1,0), e⃗µ

3 =
1
a
(0,0,0,1). (6.11)

Thus, the relation between the Riemann tensor in the chosen conformal coordinates and FNCs, using

RFNC
0l0m =RCon

µνγδ
e⃗µ

0 e⃗ν
l e⃗γ

0⃗eδ
m , is found to be given by RFNC

0l0m =RCon
0l0m/a4. Substituting RCon

0l0m =−δlm(aa′′−a′2)

in this relation, we see that

RFNC
0l0m =−δlm

1
a4 (aa′′−a′2) , (6.12)

where ′ represents a derivative with respect to conformal time, η ,. The interaction Hamiltonian in

Eq. (6.8) becomes

HI =−
m
2

ä
a

r2 , (6.13)

where˙represents a derivative with respect to comoving time coordinate, t.

If we consider the case in which the atom makes a transition from some atomic state ψnlm to ψn′l′m′ under

the cosmological expansion of FRW spacetimes, then the probability for this to happen, up to first order

in perturbation theory, is given by

Pψnlm→ψn′l′m′ =
m2

4
| ⟨ψn′l′m′ |r2 |ψnlm⟩ |2

∫
η f

ηi

dη1

∫
η f

ηi

dη2e−iΩ(t(η1)−t(η2))
1

a1a2

(a′′1
a1
− a′21

a2
1

)(a′′2
a2
− a′22

a2
2

)
,

(6.14)

where Ω = En′l′−Enl is the difference in the energies of the considered atomic states.

It is clear from the form of the interaction Hamiltonian that the above transition probability is zero for
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those cases in which the considered atomic states (between which the atom makes the transition) have

different spherical harmonics. To make it precise, let us consider

⟨ψn′l′m′ |r2 |ψnlm⟩=
∫

dr r4R∗n′l′(r)Rnl(r)
∫ ∫

sinθ dθ dφ Y m′∗
l′ (θ ,φ) Y m

l (θ ,φ) . (6.15)

From the above integral, we see that the interaction Hamiltonian makes a contribution only in the radial

integral part but not in the angular integrals. Thus, for states with different spherical harmonics, the

above integral vanishes because of the orthonormality of the spherical harmonics (allowed transitions

for the x̂ix̂k term i.e., the selection rules are given in Appendix H). This result is not surprising as the

FRW expansion of the Universe has homogeneous and isotropic spatial slices at all times and thus the

expansion respects the spherical symmetry of the spatial slices. In fact, taking a(η) = (Hη)−q, one

finds that the above expression for transition probability, between states with same spherical harmonics,

is given by [176]

Pψnlm→ψn′lm =
m2H4q2

4

∣∣∣∫ dr r4R∗n′l(r)Rnl(r)
∣∣∣2 ∫ η f

ηi

dη1

∫
η f

ηi

dη2e−iΩ(t(η1)−t(η2))(H2
η1η2)

q−2 . (6.16)

From the above formula, one can then find the rate of transitions with respect to η̃ by going to (η̃ ,∆η)

coordinates. But the main point is that the transitions take place only between states with same spherical

harmonics and hence there is no change of angular momenta that is caused by FRW spacetimes with no

metric perturbations. Other thing to notice from the above formula is that as the overlap between the

radial wavefunctions of the states (which are participating in the transition) decreases, the probability

of transition between them also decreases. We also notice that to obtain this result, nothing quantum

has been assumed for the background spacetime and hence the considered transitions are the result

of the purely classical expansion of the FRW spacetimes. Therefore, by considering quantized metric

perturbations over FRW backgrounds if one finds that they can lead to transitions between states with

different spherical harmonics, then observing such transitions would provide a hint for the quantum

nature of the perturbations over FRW backgrounds.

6.3 FRW spacetimes with perturbations

In this section, we consider FRW spacetimes with metric perturbations over them i.e.,

ds2 = a2(η)(ηµν +hµν)dxµdxν . (6.17)
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The perturbation in the above metric leads to perturbations in the comoving trajectories of the previous

section. Considering the above metric, one finds that (refer to [186]) the set of parallel transported

orthonormal basis considered in the previous section has the following perturbations upto first order in

h i.e.,

e⃗µ

0 =
1
a
(1+

h00

2
,V0i) , (6.18)

e⃗µ

i =
1
a
(V0i +h0i,δ

j
i −

h j
i

2
+

1
2

ε
jk

i ωk), (6.19)

where V0i,ωk along with hµν denote deviations from the comoving geodesics of the unperturbed FRW

spacetimes of the previous section. The quantities V0i,ωk are given by

V ′0i +
a′

a
V0i =

1
2

∂ih00−h′0i−
a′

a
h0i , (6.20)

ω
′
k = −1

2
ε

i j
k (∂iho j−∂ jhoi) . (6.21)

Instead of studying all scalar, vector and tensor perturbations, we specialize to the case of gravitational

waves i.e., we take h00 = h0i = 0 and only hi j non-zero. The tensor perturbations, hi j, satisfy hi jδ
i j = 0

and δ ki∂khi j = 0. For the case of tensor perturbations, the quantities V0i = ωk = 0 and the perturbed

comoving geodesics in perturbed FRW spacetimes have the following form

e⃗µ

0 =
1
a
(1,0) , (6.22)

e⃗µ

i =
1
a
(0,δ j

i −
h j

i
2
) . (6.23)

The above expressions tell us that the tangent vector field to the considered comoving geodesics is not

affected upto first order in h. This implies that for comoving geodesics, upto first order in h, the spatial

coordinates remain fixed and the proper time is just the same as the cosmic time i.e., xµ(t) = (η(t),ci).

Thus, using the formula Eq. (6.9) and the above derived set of orthonormal basis to the comoving

geodesics in the perturbed FRW spacetimes, we relate the Reimann tensor coponents in FNCs in terms

of those in conformal coordinate system as follows

RFNC
abcd = RCon

µνγδ
e⃗µ

a e⃗ν
b e⃗γ

c e⃗δ
d . (6.24)
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For the components of the Riemann tensor that appear in the interaction Hamiltonian Eq. (6.8) are given

by

RFNC
0l0m = RCon

µνγδ
e⃗µ

0 e⃗ν
l e⃗γ

0⃗eδ
m

=
1
a4 RCon

0k0p
(
δ

k
l −

hk
l

2
)(

δ
p
m−

hp
m

2
)
. (6.25)

The Riemann tensor components that we need, have the following form in conformal coordinates (refer

[7, 10])

RCon
0l0m =−δlm(aa′′−a′2)− (aa′′−a′2)hlm−

aa′

2
h
′
lm−

a2

2
h
′′
lm . (6.26)

Substituting the above expression in Eq. (6.25), we obtain that the relevant Riemann tensor components

in the FNCs, upto first order in h, are given by

RFNC
0l0m =

1
a4

(
−δkp(aa′′−a′2)− (aa′′−a′2)hkp−

aa′

2
h
′
kp−

a2

2
h
′′
kp

)(
δ

k
l −

hk
l

2

)(
δ

p
m−

hp
m

2

)
=

1
a4

(
−δlm(aa′′−a′2)− aa′

2
h
′
lm−

a2

2
h
′′
lm

)
+O(h2) . (6.27)

Therefore, using the above expression, the interaction Hamiltonian becomes

HI =
m
2

1
a4

(
−δlm(aa′′−a′2)− aa′

2
h
′
lm−

a2

2
h
′′
lm

)
xlxm (6.28)

=
m
2

(
−δlm

ä
a
− ȧ

a
ḣlm−

1
2

ḧlm

)
xlxm =

m
2

Hlmxlxm . (6.29)

As already mentioned above, ′ represents derivative with respect to conformal time, η , and˙ represents

derivative with respect to comoving time, t. Here,

Hlm =
(
−δlm

ä
a
− ȧ

a
ḣlm−

1
2

ḧlm

)
. (6.30)

Let us look at the probability for the above interaction term to cause the atom to make a transition from

ψnlm to ψn′l′m′ and for the field to make a transition from an initial vacuum state to all possible final

states i.e., we trace over all the allowed final states of the field. For the above interaction Hamiltonian,

the transition probability, upto first order in perturbation theory, is given by [176]

Pψnlm→ψn′l′m′ =
m2

4
⟨ψn′l′m′ | x̂ix̂ j |ψnlm⟩∗ ⟨ψn′l′m′ | x̂px̂k |ψnlm⟩∫

η f

ηi

dη1

∫
η f

ηi

dη2e−iΩ(t(η1)−t(η2))a(η1)a(η2)⟨0| Ĥi j (⃗c,η1)Ĥpk(⃗c,η2) |0⟩ , (6.31)
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where Ω=En′l′−Enl is the difference in the energies of the considered atomic states and the fixed spatial

coordinates for the comoving trajectory of the atom are denoted by c⃗. It is clear that in case there are no

perturbations over FRW backgrounds i.e., for hµν = 0, the interaction Hamiltonian reduces to the case

of the previous section. Though, without perturbations, the only allowed transitions are between states

with the same spherical harmonics (as seen in the previous section), we expect that the introduction of

perturbations would also lead to transitions between states with different spherical harmonics.

6.3.1 Tensor perturbation induced transitions

As seen in chapter 1, any component of the gravitational waves or the tensor perturbations in FRW

spacetimes satisfy the same equation of motion as satisfied by a massless scalar field in FRW background

i.e.,

h
′′
lm +2

a′

a
h
′
lm−∇

2hlm = 0 . (6.32)

Because of the symmetry, transverse and traceless properties of the tensor perturbations, there are only

two independent polarization states of gravitational waves in an FRW spacetime. Thus, the dynamics

of gravitational waves in an FRW background are equivalent to that of two massless scalar fields in that

FRW spacetime.

Using the equation of motion for the components of the tensor perturbations i.e., Eq. (6.32), the Hlm can

be written in the following form

Hlm =−δlm

a4 (aa′′−a′2)+
1
a4

(aa′

2
∂

∂η
− a2

2
∇

2
c⃗

)
hlm(η , c⃗) . (6.33)

As seen in chapter 1, the quantized tensor perturbations have the following expansion

ĥi j (⃗c,η) = ∑
λ=+,×

∫
d3⃗q ei j(q̂,λ )

(
ei⃗q.⃗chq(η)b̂q⃗,λ + e−i⃗q.⃗ch∗q(η)b̂†

q⃗,λ

)
, (6.34)

where c⃗ is the constant spatial vector for the considered comoving trajectories and all other symbols

have their usual meaning (see chapter 1). The ei j (⃗q,λ )′s satisfy Eq. (1.20) [5] i.e.,

∑
λ=+,×

ei j(q̂,λ )ekl(q̂,λ ) = δikδ jl +δilδ jk−δi jδkl +δi jq̂kq̂l +δkl q̂iq̂ j

−δikq̂ jq̂l−δil q̂ jq̂k−δ jkq̂iq̂l−δ jl q̂iq̂k + q̂iq̂ jq̂kq̂l . (6.35)
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The time evolution part of the mode functions i.e., hq(η), satisfy

h
′′
q(η)+2

a′

a
h
′
q(η)+q2hq(η) = 0 , (6.36)

and hence we see that it is independent of the polarization state and direction of the wave vector of mode

functions.

For the rest of the chapter, we specialize to those transitions that take place between states with different

spherical harmonics i.e., (l,m) ̸= (l′,m′). For these transitions, the δlm term of Eq. (6.33) i.e., Hlm, drops

out. Using Eq. (6.33) and the point splitting technique, we can write the two point correlation between

Ĥi j’s as follows

⟨0| Ĥi j (⃗c1,η1)Ĥpk(⃗c1,η2) |0⟩

= lim
c⃗2→c⃗1

1
a4

1

(a1a
′
1

2
∂

∂η1
− a2

1
2

∇
2
c⃗1

) 1
a4

2

(a2a
′
2

2
∂

∂η2
− a2

2
2

∇
2
c⃗2

)
⟨0| ĥi j (⃗c1,η1)ĥpk(⃗c2,η2) |0⟩ . (6.37)

Using Eq. (6.34) for hi j and the commutation relations between creation and annihilation operators, the

two point correlation between hi j’s appearing in the above expression is seen to be given by

⟨0| ĥi j (⃗c1,η1)ĥpk(⃗c2,η2) |0⟩ = ∑
λ=+,×

∫
d3⃗q ei j(q̂,λ )epk(q̂,λ )ei⃗q.(⃗c1−⃗c2)hq(η1)h∗q(η2)

=
∫

d3⃗q
(

∑
λ=+,×

ei j(q̂,λ )epk(q̂,λ )
)

ei⃗q.(⃗c1−⃗c2)hq(η1)h∗q(η2) .(6.38)

We make use of the relation (6.35) in the above integral and move every qi contribution from (6.35)

outside of the above integral by replacing every such factor with a partial derivative with respect to spatial

coordinates. Finally, we obtain that the two point function of tensor perturbations can be expressed as

a sum of products of different Kronecker delta’s and spatial partial derivatives acting on the two point

correlation of some scalar field i.e.,

⟨0| ĥi j (⃗c1,η1)ĥpk(⃗c2,η2) |0⟩=
(

δipδ jk +δikδ jp−δi jδpk +δi j
∂⃗c1p ∂⃗c1k

∇2
c⃗1

+δpk
∂⃗c1i ∂⃗c1 j

∇2
c⃗1

−δip
∂⃗c1 j ∂⃗c1k

∇2
c⃗1

−δik
∂⃗c1 j ∂⃗c1p

∇2
c⃗1

−δ jp
∂⃗c1i ∂⃗c1k

∇2
c⃗1

−δ jk
∂⃗c1i ∂⃗c1p

∇2
c⃗1

+
∂⃗c1i ∂⃗c1 j ∂⃗c1p ∂⃗c1k

∇2
c⃗1

∇2
c⃗1

)∫
d3⃗qei⃗q.(⃗c1−⃗c2)hq(η1)h∗q(η2) . (6.39)

From Eqs. (6.31), (6.37) and (6.39), we see that the interaction of atoms with gravitational waves takes

the form of a generalized derivatively coupled UdW detector where we now also have spatial derivatives

along with time derivatives. Here instead of having two levels for the UdW detector, we have many (in
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fact, infinite) quantum levels corresponding to the atomic states of the hydrogen atom and in place of

quantum scalar fields, we have quantized tensor perturbations. Combining these equations, one obtains

that the transition probability for the atom to make transitions between states with different angular

momentum quantum numbers is given by [176]

Pψnlm→ψn′l′m′ =
m2

4
⟨ψn′l′m′ | x̂ix̂ j |ψnlm⟩∗ ⟨ψn′l′m′ | x̂px̂k |ψnlm⟩ lim

c⃗1→c⃗2

∫
η f

ηi

dη1

∫
η f

ηi

dη2e−iΩ(t(η1)−t(η2))

1
a3

1

(a1a
′
1

2
∂

∂η1
− a2

1
2

∇
2
c⃗1

) 1
a3

2

(a2a
′
2

2
∂

∂η2
− a2

2
2

∇
2
c⃗2

)(
δipδ jk +δikδ jp−δi jδpk +δi j

∂⃗c1p ∂⃗c1k

∇2
c⃗1

+δpk
∂⃗c1i ∂⃗c1 j

∇2
c⃗1

−δip
∂⃗c1 j ∂⃗c1k

∇2
c⃗1

−δik
∂⃗c1 j ∂⃗c1p

∇2
c⃗1

−δ jp
∂⃗c1i ∂⃗c1k

∇2
c⃗1

−δ jk
∂⃗c1i ∂⃗c1p

∇2
c⃗1

+
∂⃗c1i ∂⃗c1 j ∂⃗c1p ∂⃗c1k

∇2
c⃗1

∇2
c⃗1

)∫
d3⃗qei⃗q.(⃗c1−⃗c2)hq(η1)h∗q(η2) .

(6.40)

The above expression leads to a number of important results. For example, as we have considered only

those transitions which involve a non-trivial change of spherical harmonics, the classical FRW expansion

considered in the previous section does not contribute to the present case, and hence, the considered

transitions are the results of the metric perturbations only. To make further remarks, one needs to specify

the state in which the quantized metric perturbations are placed. Since the equation satisfied by hq(η)

is the same as that of time dependent part of massless scalar field mode functions in FRW backgrounds,

we can take the integral in the above expression corresponding to different scalar field vacua. As an

example, we can take the above integral to be the Wightman function Eq. (5.7) considered in the previous

chapter. As we saw in the last chapter that the derivatively coupled UdW detectors experience very rapid

transitions within their internal quantum space while interacting with massless scalar fields in nearly

matter dominated spacetimes, we expect that the atoms should also experience these rapid transitions

when they pass through nearly matter dominated phases of the Universe because of their interaction

with quantized tensor perturbations. In fact, if we consider the case in which the atom is in nearly matter

dominated backgrounds and we take the above integral to be given by Eq. (5.16) i.e.,

Gmatter(x(η1),x(η2)) = (H2
η1η2)

−3+δ

( H2

16π2

)( 2
δ
+

4
y
−4−2ln(y)+4ln2+O(δ )

)
,

then we see that the 1/δ term has time dependent conformal factors multiplying it and hence it does not

vanish under the derivatives present in the transition probability expression given above. Hence, in the

limit δ → 0, the rate becomes very large and we expect that these transitions within the atomic states

during nearly matter dominated spacetimes should have potentially important observational signatures.
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6.4 Summary

In this chapter, we have looked at the dynamics of atoms in FRW backgrounds with and without pertur-

bations over them. By working in the leading order in FNCs built around the classical time-like geodesic

of the center of mass of the atom, the interaction term between the atom and the curvature of the back-

ground spacetime has been written for FRW spacetimes with and without metric perturbations. We show

that the classical expansion of the FRW backgrounds with no metric perturbations can cause transitions

only between those atomic states which have the same spherical harmonics. This result is expected as

the FRW expansion of the Universe respects the homogeneity and isotropy of the spatial slices of the

spacetime. Also, these transitions are purely classical in the sense that nothing quantum mechanical has

been assumed about the background spacetime while deriving the stated conclusion. We also arrive at

the coupling of atoms with tensor perturbations over FRW spacetimes and find that the coupling takes

the form of a generalized derivatively coupled UdW detector. Since the tensor perturbations over an

FRW spacetime are equivalent to two massless scalar fields in the same FRW spacetime, the vacuum

correlations of quantized tensor perturbations have the same structure as that of massless scalar fields in

FRW spacetimes. This fact implies that the vacuum correlations of tensor perturbations during nearly

matter dominated phases acquire the infrared divergences of the nearly massless scalar fields in de Sitter

spacetime (as discussed in previous chapter). Thus, by considering quantized tensor perturbations and

the equivalence of tensor perturbations with two massless scalar fields in FRW background, we argue

that the results obtained in the previous chapter regarding the derivatively coupled UdW detector can

be carried over to the coupling of atoms with quantized tensor perturbations. Particularly, atoms in-

teracting with gravitational waves during nearly matter dominated spacetimes are expected to lead to

very rapid transitions within their internal quantum space. We expect that these rapid transitions within

the atomic states of an atom caused by quantized tensor perturbations (gravitons), have the tendency to

leave significant imprint on the CMB while they pass through nearly matter dominated phase of the Uni-

verse. Compared to the case of FRW spacetimes with no perturbations over them, we find that the tensor

perturbations can also cause transitions even between states which have different spherical harmonics.

Another important aspect is that the transitions caused by the tensor perturbations are quantum in nature

as we have considered the quantized tensor perturbations over FRW spacetimes.
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Chapter 7

Conclusion

Quantum field theory in curved spacetimes is an important framework that tries to bring together notions

of quantum theory and relativity and explores the implications that follow from such an interplay. Appli-

cations of quantum field theory in curved spacetime during the early inflationary phase of the Universe

have provided predictions that fit well with observations like the temperature anisotropies in the cosmic

microwave background (CMB) etc [23]. Thus, quantum effects during the evolution of the Universe

play an important role, particularly during the early inflationary (near de Sitter) phase. After passing

through the inflationary phase, the universe also underwent radiation dominated phase which was then

followed by matter dominated phase. In this thesis, we have investigated quantum fields during different

epochs of the Universe’s evolution. We have considered not only de Sitter spacetime but also other FRW

spacetimes (including radiation and matter dominated phases) to see whether quantum effects during

these later phases of the Universe evolution can become important or not. We have investigated quan-

tum fields in FRW backgrounds through the behaviour of corresponding noise kernels and by coupling

them with Unruh deWitt (UdW) detectors.

In chapter 3, we have studied the quantum effects of scalar fields evolving on fixed classical back-

grounds encapsulated in the behaviour of the noise kernel of the stochastic gravity paradigm [101]. In

semiclassical gravity, one is interested in effects of the expectation of the stress energy operator of the

field under consideration whereas the noise kernel captures the two point correlations of stress energy

operators. Considering massive scalar fields in de Sitter spacetime and placing them in the Bunch-Davies

vacuum, we have looked at the behaviour of the noise kernel for spacetime points which have same time

coordinates but a finite spatial distance. It is shown that the noise kernel for this case, in the late time
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limit i.e., the limit in which the scale factor becomes very large, shows a transition from vanishing to

divergent behavior as the parameter ν
(
=
√
(9/4)− (m2/H2)

)
is changed in the range [0,3/2] with the

transition taking place at ν = 1/2. Similarly, to study the behaviour of the noise kernel for massless

scalar fields in power-law FRW spacetimes, we employed an equivalence that relates a massless scalar

field in a power-law FRW spacetime with a massive scalar field in de Sitter spacetime. Using this equiv-

alence, we expressed the Wightman function of the massless field in the considered FRW spacetime in

terms of time dependent conformal factors and the Wightman function of the corresponding massive

field in de Sitter which is taken to be corresponding to the Bunch-Davies one. Again considering the

case of spacetime points which have the same time coordinates and finite spatial distance, we find that,

for power-law FRW spacetimes with q ∈ [0,1), the noise kernel saturates to constant values in the late

time limits of those spacetimes. The most interesting behaviour is obtained for massless fields in nearly

matter dominated spacetimes. For these cases, it is found that, for sufficiently late time limit, the noise

kernel becomes larger and larger as the spacetimes approach closer and closer to the matter dominated

limit. Since the matter dominated case corresponds to later phase of the Universe’s evolution, it can

be expected that the quantum effects can become very large during these phases. In fact, the cases

for which the noise kernel becomes significantly large, we expect that, for these cases, second-order

quantum effects have the potential to modify the conclusions drawn from the first-order semiclassical

gravity.

In chapter 4, we have investigated the dynamics of spinor fields in de Sitter and FRW spacetimes

by studying the behaviour of the corresponding noise kernel. For arbitrarily massive spinor fields in

de Sitter spacetime, the analysis has been carried out by placing them in the fermionic Bunch-Davies

vacuum which is defined analogously to how one defines the scalar field Bunch-Davies vacuum. Like

in the case of scalar fields, the behaviour of the noise kernel for the present case has been studied for

spacetime points which have same time coordinates and have finite spatial distance between them. It

is shown in this thesis that the noise kernel for massive spinor fields in de Sitter spacetime decays in

the late time limit. Thus, the correlations between stress energy operators of spinor matter decay as

the de Sitter spacetime expands. This decay of correlations for spinor fields, for spatially separated

points on constant time sheets, has been shown to occur irrespective of the mass of the spinor field i.e.,

the fact that how massive or light the spinor field is, does not save it from the eventual decay of the

correlations. This behaviour of the noise kernel is in contrast to the behaviour of the noise kernel for

scalar fields where for light scalar fields, the noise kernel can attain very large values in late time limits.

This thesis has also looked at how the stress energy correlations of massless spinor fields in general
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FRW spacetimes behave. For these cases, we have used the conformal invariance of the massless spinor

fields and placed the fields in the Poincare vacuum of the corresponding massless spinor field of the flat

spacetime. Since massless spinor fields are conformal, their correlations in FRW spacetimes follow a

similar structure as that of massless spinors in flat spacetime along with some time dependent conformal

factors and in fact, the noise kernel for FRW spacetimes is also found to be conformally related to the flat

spacetime noise kernel. One would expect similar such results for electromagnetic fields as well which

are also conformal. It is shown that the noise kernel of a massless spinor field in an FRW spacetime,

for spatially separated spacetime points on constant time sheets, behaves opposite to the behaviour of

the scale factor. This implies that the correlations, between (massless) spinor matter located at spatially

separated points on constant time sheets, decay during the expanding phases of the universe while they

grow for contracting spacetime metrics. Thus, we have found that the second order quantum effects

of spinor fields do not play any significant role during the entire (expanding) evolution history of the

Universe. Therefore, with both scalar and spinor fields present in expanding FRW backgrounds, it is only

the scalar fields which are expected to contribute second order quantum effects and hence potentially

modify the predictions obtained solely from first order semiclassical gravity analyses.

In chapter 5, we studied the correlations of scalar fields by coupling them with Unruh deWitt (UdW)

detectors. Unruh deWitt detectors record the correlations of quantum fields in any particular state by

undergoing transitions within its internal quantum space while following classical trajectories in space-

time. First, we considered the case of conventional UdW coupling where the operator causing transitions

within the UdW detector’s internal quantum space couples with the field through a monopole coupling.

For the case in which the detector makes a transition from some state |0⟩ to another state |Ω⟩ with en-

ergies 0 and Ω, respectively and the field starts in vacuum while is allowed to go any arbitrary state,

the transition probability depends upon the Wightman function of the field in the considered spacetime.

With this setting, we studied the case of massless scalar fields in FRW spacetimes as well as nearly mass-

less scalar fields in de Sitter spacetime. We again employed the equivalence between massless fields in

FRW spacetimes with massive fields in de Sitter spacetime that was also used for analyzing the noise

kernel for these fields. The detectors were taken to follow comoving trajectories and the scalar fields

were placed in the Bunch-Davies like vacua just as in the noise kernel analysis. For nearly massless

scalar fields in de Sitter spacetime or massless scalar fields in nearly matter dominated spacetimes, the

Wightman functions have a term of infrared origin which dominates over any other term. It was shown

that the transition probability, in these cases, are dominated by these dominating terms of infrared origin

and they lead to very fast transition rates. We also considered the case of derivatively coupled Un-
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ruh deWitt detectors where the detector couples to the derivative of the field with respect to the proper

time along the detector’s trajectory. For these detectors, the transition probability depends upon the

derivatives of the Wightman function of the field under consideration. It was shown that the dominating

infrared term vanishes in the de Sitter Universe because the infrared term is spacetime independent in

this case and goes to zero under the action of derivatives. But, for massless scalar fields in nearly matter

dominated case, there are time dependent conformal factors multiplying the infrared divergent term and

it contributes to the transition probability even in this derivatively coupled case. Thus, we expect that if

there are physical systems which couple with background scalar fields in a derivatively coupled UdW

manner during matter dominated phases of the Universe, then the background field should lead to very

rapid transitions within the internal states of the physical systems.

In chapter 6, we have explored the dynamics of atoms in unperturbed FRW backgrounds as well

as perturbed FRW backgrounds i.e., with metric perturbations over FRW spacetimes. Particularly, the

tensor perturbations over an FRW spacetime behave like two massless scalar fields in the same FRW

spacetime and hence this analysis again provides a scenario where one hopes to see the effects of corre-

lations of quantum scalar fields in FRW spacetimes. For this analysis, we have taken the center of mass

of the atom to move along classical trajectories, which we take to be comoving trajectories, and the in-

ternal structure of the atom is taken to be decided by the quantum mechanics of a particle in the presence

of the electromagnetic potential of the nucleus in curved spacetime. Building Fermi normal coordinates

(FNCs) about the timelike trajectory of the atom, one can show that, in curved spacetimce to the lowest

order in FNCs, the internal structure of the atom is governed by the flat spacetime Schrodinger equation

in the central electrostatic potential of the nucleus and interaction term between the atom and the curva-

ture of the spacetime is given by (m/2)R0l0px̂l x̂p [184] where m is the mass of the electron in the atom,

e is the charge of the electron and R0l0p are the Riemann tensor components expressing the curvature

induced corrections to the flat spacetime Schrodinger equation with the central Coulomb potential of the

nucleus. We showed that for unperturbed FRW spacetimes, the interaction term can cause transitions

of electrons only within those atomic states which have same spherical harmonics as one would expect

because of the spatial homogeneity and isotropy of the FRW backgrounds. We then considered the case

of perturbed FRW backgrounds with metric perturbations i.e., ds2 = a2(η)(ηµν +hµν)dxµdxν where a

is the scaling factor of the background FRW spacetime. For this case, it has been shown in the thesis that

the interaction term between curvature of the spacetime and the atom takes the form of a generalized

derivatively coupled Unruh deWitt detector where the internal transitions in the atom are induced by the

position operators and background fields are the metric perturbations over the FRW spacetimes. Thus,

112



one can carry the results obtained in the previous study to this case. Particularly, with this interaction

Hamiltonian and specializing to the case of only tensor perturbations, we have shown that the rate of

transitions within the atomic states of the atom when it passes through nearly matter dominated phases

of the Universe, becomes extremely large. We expect that these extremely rapid transitions within atoms

during the nearly matter dominated phases of the Universe would leave their characteristic imprints on

CMB whose presence in observations should provide a hint of quantum nature of gravity.

Thus, these studies have shown that the quantum effects in cosmological contexts are not only im-

portant for early inflationary (near de Sitter) phase but they can become important also during the late

time epochs (particularly matter dominated era) of the Universe. We conclude this from the large noise

kernel for massless scalar fields in nearly matter dominated spacetimes as well as rapid transitions within

the derivatively coupled UdW detectors e.g., atoms, caused by massless fields in nearly matter domi-

nated spacetimes. Though these results have been derived by placing quantum fields in FRW spacetimes

in the Bunch-Davies like vacua, we expect that for other well-behaved normalizable states also these

results are not going to change significantly as such states also have the Bunch-Davies like character

along with their own characteristic features [42, 187, 188]. In any case, it is important to perform the

analysis carried out here (for Bunch-Davies like vacua) to other states as well. Hence, performing these

analyses for non-vacuous states as well as other vacua is a direction that we think is worth exploring.

The investigation of the potential consequences of the rapid transition rates within atoms caused by their

coupling with quantized tensor perturbations while they pass through nearly matter dominated phases

of the Universe is something that, we expect, may provide a new window for testing quantum nature

of gravity. It should be particularly interesting to explore its signatures on cosmological data like the

cosmic microwave background. Another interesting possibility that one can explore in this setting of

coupling of atoms with quantized tensor perturbations is that of entanglement generation between spa-

tially separated atoms via the tensor perturbations. Such an analysis would fit in the general paradigm of

testing quantum nature of gravity through entanglement generation between spatially separated quantum

systems, mainly in quantum optical settings [189–192]. The analysis that should be followed for this

scenario is, though, more akin to what is done in [193, 194] but with the derivatively coupled UdW like

interaction term that we have for atoms interacting with tensor perturbations. The generation of entan-

glement between spatially separated quantum systems is possible because of the non-trivial quantum

correlations of quantum fields between different spacetime points.

One important quantum feature, other than the ones considered in this work, that one can investigate
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for quantum fields in FRW spacetimes is that of quantum entanglement. It should be interesting and

potentially important to investigate quantum information theoretic notions in cosmological contexts and

whether they will have any characteristic features in the cosmological data that one can look for. For

example, one can analyze the effects of the existence of entanglement between modes of scalar and

tensor perturbations or between the modes of metric perturbations and the electromagnetic field. These

analyses would require checking whether the presence of the mentioned entanglement leaves the other-

wise well-verified features of the data unaffected as well as at the same time leaving their own imprints

whose presence in the data would confirm the presence of the considered entanglement. Another impor-

tant quantum consideration for cosmological contexts is to look for mechanisms that lead the quantum

fluctuations during the inflation to decohere to give rise to the observed classical CMB spectrum. One

mechanism that could be a possible explanation for this quantum to classical transition is based on the

fact that it is only the super horizon modes during the inflation that are observationally available today

not the sub horizon modes. Therefore, we can treat the quantum system consisting only of the super hori-

zon modes as an open quantum system interacting with the environment consisting of the sub horizon

modes and study the consequences of the evolution of this system. This setting provides a background

for potentially important studies. For example, we can consider the evolution of the reduced density

matrices of super horizon scalar and tensor modes by solving for their corresponding equations obtained

by tracing over the unobserved sub-horizon modes. We obtain Lindblad terms leading to non-unitary

evolution only if we include non-linear interaction terms which couple the sub and super horizon modes

[195–197]. Such an analysis would tell us how the off diagonal terms in the reduced density matrices

vanish and lead to the decoherence of the quantum system of super horizon modes. One can also anal-

yse how a partial decoherence would manifest itself in the CMB data and provide the signatures of the

quantum origin of our universe.

Another line of investigation that may further enrich our understanding of the quantum workings of the

Universe is to explore the spectrum of tensor modes sourced by primordial magnetic fields. In order to

explain large scale magnetic fields observed in our universe, many primordial origin proposals [51–55]

have been put forth. Among these models, certain inflationary models with particular types of con-

formal invariance breaking terms and parity-violating terms for the Maxwell field seem to provide an

explanation for the observationally relevant values for magnetic fields. Other than explaining the ob-

served values, the Maxwell field can act as a source for primordial scalar and tensor mode fluctuations.

Therefore, this allows for the possibility of testing the viability of these models of primordial origin for

magnetic fields by comparing the theoretical predictions for Maxwell field induced characteristics in the

scalar and tensor spectra with the upcoming data.
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Appendix A

Christoffel connections and geometrical

quantities for FRW spacetimes

In this appendix, we provide expressions of Christoffel connections, Riemann tensor, Ricci tensor, Ricci

scalar and Einstein tensor for FRW spacetimes in both cosmic and conformal time coordinates

A.1 In conformal time coordinates

In conformal time coordinates, the FRW metric is given by:

ds2 = a2(η)(−dη
2 + g̃i jdxidx j) (A.1)

i.e.,

gµν = a2(η)


−1 0 0 0

0

0 g̃i j

0

 . (A.2)

With this, we find that the non-zero Christoffel connections are

Γ
0
00 =

a′

a
, Γ

0
kl = g̃kl

a′

a
, Γ

k
0l = δ

k
l

a′

a
, Γ

i
jk = Γ̃

i
jk, (A.3)
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where Γ̃i
jk are the Christoffel connections for the 3-metric g̃i j and prime, ′, denotes a derivative with

respect to η . Using the above expressions for Christoffel connections, we see that the only non-zero

components of the Riemann tensor are

R0
k0i =

(a′′

a
− a′2

a2

)
g̃ki, Rk

00i =
(a′′

a
− a′2

a2

)
δ

k
i , Ri

jkl = R̃i
jkl +

a′2

a2 (δ
i
kg̃ jl − δ

i
l g̃ jk) (A.4)

where R̃i
jkl

(
= k(δ i

kg̃ jl−δ i
l g̃ jk) for maximally symmetric spaces and k corresponds to different types of

maximally symmetric spaces.
)

are the components of the Riemann tensor for the 3-metric g̃i j. Similarly,

the components of the Ricci tensor are given by :

R00 = −3
(a′′

a
− a′2

a2

)
, R0i = 0, Ri j =

(a′′

a
+

a′2

a2 + 2k
)
g̃i j . (A.5)

This provides the expression for Ricci scalar which is given by:

R = 6
(a′′

a3 +
k
a2

)
(A.6)

which readily implies that the components of the Einstein tensor are the following:

G00 = 3
(a′2

a2 + k
)
, G0i = 0, Gi j =

(
− 2

a′′

a
+

a′2

a2 − k
)
g̃i j . (A.7)

A.2 In cosmic time coordinates

In cosmic time coordinates, the FRW metric is given by:

ds2 =−dt2 +a2(t)g̃i jdxidx j (A.8)

i.e.,

gµν =


−1 0 0 0

0

0 a2(t)g̃i j

0

 . (A.9)
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With this, we find that the non-zero Christoffel connections are

Γ
0
kl = g̃kl ȧa, Γ

k
0l = δ

k
l

ȧ
a
, Γ

i
jk = Γ̃

i
jk, (A.10)

where Γ̃i
jk are the Christoffel connections for the 3-metric g̃i j and a dot over scaling factor, a(t), denotes

a derivative with respect to cosmic time, t. Using the above expressions for Christoffel connections, we

see that the only non-zero components of the Riemann tensor are

R0
k0i = aäg̃ki, Rk

00i =
ä
a

δ
k
i , Ri

jkl = R̃i
jkl + ȧ2(δ i

kg̃ jl − δ
i
l g̃ jk) (A.11)

where R̃i
jkl is the same as in the above section. Similarly, the components of the Ricci tensor are given

by :

R00 = −3
ä
a
, R0i = 0, Ri j =

(
aä + 2ȧ2 + 2k

)
g̃i j . (A.12)

This provides the following expression for Ricci scalar:

R = 6
( ä

a
+

ȧ2

a2 +
k
a2

)
(A.13)

using which, we find that the components of the Einstein tensor are given as follows:

G00 = 3
( ȧ2

a2 +
k
a2

)
, G0i = 0, Gi j = −

(
2aä + ȧ2 + k

)
g̃i j . (A.14)
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Appendix B

Some basic properties of the Hankel

functions

In this appendix, we collect some important properties of the Hankel functions that have been used in

this thesis. The following differential equation, called Bessel’s equation,

d2 f (z)
d2z

+
1
z

d f (z)
dz

+
(
1− ν2

z2

)
f (z) = 0 , (B.1)

has two linearly independent solutions, Jν(z) and Yν(z), called the Bessel functions. Hankel functions

are related to the Bessel functions by the relations H(1)
ν (z) = Jν(z)+ iYν(z) and H(2)

ν (z) = Jν(z)− iYν(z)

which implies that the Hankel functions are also solutions of the Bessel’s equation. We also observe that

(
H(1)

ν (z)
)∗

= H(2)
ν∗ (z

∗) (B.2)

using the fact that the Bessel functions satisfy similar properties.

Derivative of the Hankel functions w.r.t. z is given by:

d
dz

H(1,2)
ν (z) = H(1,2)

ν−1 (z)−
ν

z
H(1,2)

ν (z) (B.3)
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We also make use of the following large argument expansion of the Hankel functions quite often in this

thesis.

H(1)
ν (z) =

√
2

πz
ei(z− π

2 ν− π

4 )
[
1+O

(1
z

)]
, (B.4)

H(2)
ν (z) =

√
2

πz
e−i(z− π

2 ν− π

4 )
[
1+O

(1
z

)]
, (B.5)

f or |z| → ∞, Re(ν)>−1
2

and |arg(z)|< π .

Certain other properties that have been used in the main text, but may not have been necessarily referred

to, are

H(1)
−ν (z) = eiπνH(1)

ν (z) , (B.6)

H(2)
−ν (z) = e−iπνH(2)

ν (z) , (B.7)

H(1)
ν (eiπz) = −H(2)

−ν (z) =−e−iπνH(2)
ν (z) , (B.8)

H(2)
ν (e−iπz) = −H(1)

−ν (z) =−eiπνH(1)
ν (z) . (B.9)

Above given properties of the Hankel functions have been taken from [86, 89]. For more, refer to same.
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Appendix C

Basic computation on constant time

surface

Here we enlist some important formulae that are used in evaluating stress energy correlator/noise kernel.

Z(x′,y) = 1+
(ηx′−ηy)

2− (⃗x′− y⃗)2

2ηx′ηy
(C.1)

∂Z(x′,y)
∂x′µ

=

[
∆s2

2η2
x′ηy

δµ0−
(x′− y)µ

ηx′ηy

]
(C.2)

∂Z(x′,y)
∂yν

=

[
∆s2

2ηx′η
2
y

δν0 +
(x′− y)ν

ηx′ηy

]
(C.3)

∂ 2Z(x′,y)
∂x′ν∂x′µ

=

[
− ∆s2

η3
x′ηy

δµ0δν0 +
(x′− y)ν

η2
x′ηy

δµ0 +
(x′− y)µ

η2
x′ηy

δν0−
ηµν

ηx′ηy

]
(C.4)

∂ 2Z(x′,y)
∂yν∂yµ

=

[
− ∆s2

ηx′η
3
y

δµ0δν0−
(x′− y)ν

ηx′η
2
y

δµ0−
(x′− y)µ

ηx′η
2
y

δν0−
ηµν

ηx′ηy

]
(C.5)

∂ 2Z(x′,y)
∂yν∂x′µ

=

[
− ∆s2

2η2
x′η

2
y

δµ0δν0−
(x′− y)ν

η2
x′ηy

δµ0 +
(x′− y)µ

ηx′η
2
y

δν0 +
ηµν

ηx′ηy

]
(C.6)

∂ 3Z(x′,y)
∂yρ∂x′ν∂x′µ

=

[
∆s2

η3
x′η

2
y

δµ0δν0δρ0−
(x′− y)ν

η2
x′η

2
y

δµ0δρ0−
(x′− y)µ

η2
x′η

2
y

δν0δρ0

+
ηµν

ηx′η
2
y

δρ0−
ηµρ

η2
x′ηy

δν0−
ηνρ

η2
x′ηy

δµ0 +2
(x′− y)ρ

η3
x′ηy

δµ0δν0

]
(C.7)

∂ 3Z(x′,y)
∂x′ρ∂yν∂yµ

=

[
∆s2

η2
x′η

3
y

δµ0δν0δρ0 +
(x′− y)ν

η2
x′η

2
y

δµ0δρ0 +
(x′− y)µ

η2
x′η

2
y

δν0δρ0
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+
ηµν

η2
x′ηy

δρ0−
ηµρ

ηx′η
2
y

δν0−
ηνρ

ηx′η
2
y

δµ0−2
(x′− y)ρ

ηx′η
3
y

δµ0δν0

]
(C.8)

In the above expressions, ∆s2 = −(ηx′ −ηy)
2 + (⃗x′− y⃗)2. With the above formulae and using the fact

that, for de-Sitter invariant vacuum, G(x′,y) = G(Z(x′,y)), we obtain

∇yµ G = G′
[(x′− y)µ

ηx′ηy
+

∆s2

2ηx′η
2
y

δµ0

]
, (C.9)

∇x′ν G = G′
[
− (x′− y)ν

ηx′ηy
+

∆s2

2η2
x′ηy

δν0

]
, (C.10)

∇x′ν ∇yµ G = G′′
[(x′− y)µ

ηx′ηy
+

∆s2

2ηx′η
2
y

δµ0

][
− (x′− y)ν

ηx′ηy
+

∆s2

2η2
x′ηy

δν0

]
+ G′

[
ηµν

ηx′ηy
−

(x′− y)µ

η2
x ηy

δν0 +
(x′− y)ν

ηx′η
2
y

δµ0−
∆s2

2η2
x′η

2
y

δν0δµ0

]
. (C.11)

In the above expressions, a single prime (′) on G represents a single derivative with respect to Z and

similarly, two primes represent a double derivative with respect to Z. On constant time sheets i.e.,

ηx′ = ηy, we have

Z(x′,y) = 1− (∆x⃗′)2

2η2
x′

, (C.12)

∇yiG = G′
[(x′− y)i

η2
x′

]
, (C.13)

∇x′iG = G′
[
− (x′− y)i

η2
x′

]
, (C.14)

∇y0G = G′
[ (⃗x′− y⃗)2

2η3
x′

]
, (C.15)

∇x′0G = G′
[ (⃗x′− y⃗)2

2η3
x′

]
, (C.16)

∇x′i∇y j G = G′′
[
−

(x′− y)i(x′− y) j

η4
x′

]
+G′

[
δi j

η2
x′

]
, (C.17)

∇x′0∇y j G = G′′
[(x′− y) j (⃗x′− y⃗)2

2η5
x′

]
−G′

[(x′− y) j

η3
x′

]
, (C.18)

∇x′i∇y0G = G′′
[
− (x′− y)i(⃗x′− y⃗)2

2η5
x′

]
+G′

[(x′− y)i

η3
x′

]
, (C.19)

∇x′0∇y0G = G′′
[ (⃗x′− y⃗)4

4η6
x′

]
+G′

[
− 1

η2
x′
− (⃗x′− y⃗)2

2η4
x′

]
. (C.20)
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Appendix D

Power counting for noise kernel

D.0.1 Minimal coupling

In this appendix, we present a power counting argument to find out for what values of ν the noise kernel

for de Sitter space-time i.e., the equation (3.12), diverges as η → 0 (late time universe). If we look at

the first term in the equation (3.12) i.e.,

(G′′)2
[(∆⃗x)6

4η10 +
(∆⃗x)8

32η12 +
(∆⃗x)4

2η8

]
, (D.1)

we see that the most divergent term in the square brackets is O(η−12). So, if we can find the values of ν

for which the least power of η in (G′′)2 is < 12, then we have found the range of ν for which this term

diverges.

Since the Wightman function and its derivatives are functions of ((1+Z)/2)
(
= 1− ((∆⃗x)2/(4η2))

)
1,

we must look at the series expansion of the Wightman function and its derivative at large values of their

arguments in the η → 0 limit. If we look at the following series expansion of 2F1(a,b,c,z) [87] (valid

for large |z| and a−b /∈ Z)2:

2F1(a,b,c,z) =
Γ(b−a)Γ(c)(−z)−a

Γ(b)Γ(c−a)

∞

∑
k=0

ak(a− c+1)kz−k

k!(a−b+1)k

+
Γ(a−b)Γ(c)(−z)−b

Γ(a)Γ(c−b)

∞

∑
k=0

bk(b− c+1)kz−k

k!(−a+b+1)k
, (D.2)

1See equations (3.13), (3.14), (3.15).
2In our case, a− b = 2ν which is not an integer for every value of ν in the range [0, 3

2 ] except for ν = 0, 1
2 ,1,

3
2 . But we

have already considered these cases separately in the section 3.
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and keep in mind equation (3.15), we find that the least power of η in (G′′)2 is 14−4ν . Therefore, the

above term diverges for ν > 1/2. A similar analysis with the other terms in the equation (3.12) tells us

that the equation (3.12) diverges for ν > 1/2.

These arguments can be applied to the general components of the noise kernel. In fact, looking at

the least powers of η in the formulae listed in the Appendix C for different covariant derivatives of

Wightman function on constant time sheets and the equation (3.11), we see that

⟨t̂ab(η , x⃗)t̂cd(η , x⃗′)>dS

Leading order
behaviour in

η

a = 0,b = 0,c = 0,d = 0 O(η2−4ν)

a = 0,b = 0,c = 0,d = l O(η3−4ν)

a = 0,b = j,c = 0,d = 0 O(η3−4ν)

a = 0,b = j,c = 0,d = l O(η4−4ν)

a = i,b = j,c = 0,d = 0 O(η2−4ν)

a = 0,b = 0,c = k,d = l O(η2−4ν)

a = i,b = j,c = k,d = 0 O(η3−4ν)

a = 0,b = j,c = k,d = l O(η3−4ν)

a = i,b = i,c = k,d = l and k ̸= l O(η4−4ν)

a = i,b = j,c = k,d = k and i ̸= j O(η4−4ν)

a = i,b = i,c = k,d = k O(η2−4ν)

a = i,b = j,c = k,d = l and i ̸= j,k ̸= l O(η6−4ν)

D.0.2 Non-minimal coupling

Below is given the expression of the noise kernel for the non-minimally coupled massive scalar field on

de Sitter space-time in terms of the Wightman function and its covariant derivatives. First, we substituted

the expression (3.27) for stress-energy tensor in the definition of the noise kernel (2.78). Since the

definition of the noise kernel contains the vacuum expectation of product of two stress-energy tensors

and each stress-energy operator contains two field operators, we would get the vacuum expectation of

product of four field operators. Then, we can use the Wick theorem to express this vacuum expectation

as the product of two Wightman function and obtain the equation (3.30). We obtain the below given

expression by substituting the expressions (3.28), (3.29) for Pab(x,y) and Mab(x,y) in equation(3.30)

⟨tnm
ab (x)t

nm
cd (x′)⟩=

[
(1−2ξ )2(

∇b∇
′
cG(x,x′)∇a∇

′
dG(x,x′)+∇b∇

′
dG(x,x′)∇a∇

′
cG(x,x′)

)
− (1−4ξ )(1−2ξ )ηcdη

ρσ
∇a∇

′
ρG(x,x′)∇b∇

′
σ G(x,x′)− (m2 +6H2ξ )(1−2ξ )

H2η ′2
ηcd∇aG(x,x′)∇bG(x,x′)

−(1−4ξ )(1−2ξ )ηabη
γδ

∇γ∇
′
cG(x,x′)∇δ ∇

′
dG(x,x′)+

(1−4ξ )2

2
ηabη

γδ
ηcdη

ρσ
∇γ∇

′
ρG(x,x′)∇δ ∇

′
σ G(x,x′)
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+
(m2 +6H2ξ )(1−4ξ )

2H2η ′2
ηabη

γδ
ηcd∇γG(x,x′)∇δ G(x,x′)− (m2 +6H2ξ )(1−2ξ )

H2η2 ηab∇
′
cG(x,x′)∇′dG(x,x′)

+
(m2 +6H2ξ )(1−4ξ )

2H2η2 ηabηcdη
ρσ

∇
′
ρG(x,x′)∇′σ G(x,x′)+

1
2H4η2η ′2

(6H2
ξ +m2)2

ηabηcdG2

]

+2ξ

[
2ηcd(1−2ξ )

(
∇(aG∇b)□

′
G
)
−2(1−2ξ )

(
∇(aG∇b)∇

′
(c∇
′
d)G
)
− (6H2ξ +m2)

(Hη)2 ηabηcdG□′G

− (1−4ξ )ηabηcd(η
rs

∇sG∇r□
′G)+(1−4ξ )ηab(η

rs
∇sG∇r∇

′
(c∇
′
d)G)+

(6H2ξ +m2)

(Hη)2 ηabG∇
′
(c∇
′
d)G

]

+2ξ

[
2ηab(1−2ξ )

(
□∇

′
(cG∇

′
d)G
)
−2(1−2ξ )

(
∇(a∇b)∇

′
(cG∇

′
d)G
)
− (6H2ξ +m2)

(Hη ′)2 ηabηcdG□G

− (1−4ξ )ηabηcd(η
rs□∇

′
sG∇

′
rG)+(1−4ξ )ηcd(η

mn
∇(a∇b)∇

′
nG∇

′
mG)+

(6H2ξ +m2)

(Hη ′)2 ηcdG∇(a∇b)G

]

+4ξ
2

[
ηabηcd

(
□′G□G+G□□′G

)
−ηab

(
∇
′
(c∇
′
d)G□G+G□∇

′
(c∇
′
d)G
)

−ηcd
(
∇(a∇b)G□′G+G∇(a∇b)□

′G
)
+
(
∇(a∇b)G∇

′
(c∇
′
d)G+G∇(a∇b)∇

′
(c∇
′
d)G
)]

. (D.3)

The first square bracket contains the PabPcd term, the second and the third square brackets contain the

PabMcd and MabPcd terms respectively. Whereas the fourth square bracket contains the MabMcd term. We

can use the same power counting analysis as is done for the minimal coupling section of this appendix

and study the behaviour of divergences for noise kernel as a function of mass and the coupling constant

ξ .
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Appendix E

Divergence in noise kernel for ω ∈ (−1,0)

driven universe

Looking at the equation (85) of [65], we see that the Wightman function for massless scalar field in

Friedmann space-times is given by :

G(x,x′) =
β 2(ηη ′)q−1

8π2

∫
∞

0
ds

s
1
2−ν

(s2−2Zs+1)
3
2
. (E.1)

Case q <−2:

For this case, we have ν = q+1/2 <−3/2. Now, consider the integral for large s values i.e.,

G(x,x′) =
β 2(ηη ′)q−1

8π2

[
f inite term+

∫
∞

N
ds s−

5
2−ν

(
1−2

Z
s
+

1
s2

)− 3
2
]

=
β 2(ηη ′)q−1

8π2

[
f inite term+

∫
∞

N
ds s−

5
2−ν

(
1− 3

2

(
−2

Z
s
+

1
s2

)
+

3∗5
2∗2∗2

(
−2

Z
s
+

1
s2

)2

+ ...
)]

=
β 2(ηη ′)q−1

8π2

[
f inite term+

( s−
3
2−ν

−3
2 −ν

+3Z
s−

5
2−ν

−5
2 −ν

− 3
2

s−
7
2−ν

−7
2 −ν

+(lower powers o f s)
)
|∞N
]
. (E.2)

In the above expression N is used to divide the integration range (0,∞) to (0,N)∪ (N,∞) and the finite

term above corresponds to the part of the integral with the integration range (0,N). Since Z = 1+
(η−η ′)2−(∆⃗x)2

2ηη ′ , we see that the highest collective power of η and η ′ is−3+2v and one such highest power

term is multiplying an η and η ′ independent and always diverging term s−
3
2−ν |∞N in the expression for
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Wightman function. This implies that the behaviour of noise kernel, in this case, is similar to the q =−2

(or correspondingly to ν =−3
2 case). In fact, the leading order divergent term is

⟨t00(η , x⃗)t00(η , x⃗′)⟩P.L. =
H4q(q−1)4

128π4η8−4qε2 , (E.3)

where q = ν− 1
2 and 1

ε
=

s−
3
2−ν |∞N
3
2+ν

.

Case q > 1:

For this case, we have ν = q+1/2 > 3/2. Now, consider the integral for small s values i.e.,

G(x,x′) =
β 2(ηη ′)q−1

8π2

[
f inite term+

∫
ε

0
ds s

1
2−ν

(
1−2Zs+ s2

)− 3
2
]

=
β 2(ηη ′)q−1

8π2

[
f inite term+

∫
ε

0
ds s

1
2−ν

(
1− 3

2

(
−2Zs+ s2

)
+

3∗5
2∗2∗2

(
−2Zs+ s2

)2

+ ...
)]

=
β 2(ηη ′)q−1

8π2

[
f inite term+

( s
3
2−ν

3
2 −ν

+3Z
s

5
2−ν

5
2 −ν

− 3
2

s
7
2−ν

7
2 −ν

+(higher powers o f s)
)
|ε0
]
. (E.4)

In the above expression ε is used to divide the integration range (0,∞) to (0,ε)∪ (ε,∞) and the fi-

nite term above corresponds to the part of the integral with the integration range (ε,∞). From the

above expression, we find that the term s3/2−ν |ε0 is most divergent for the considered case of q > 1 and

hence correspondingly for ν > 3/2. This always divergent term comes with the time dependent factors

(ηη ′)(q−1) and hence is also present in the noise kernel expressions as this survives the time derivatives

present in the noise kernel expression. Thus, for the considered case of q > 1, the behaviour of the noise

kernel is similar to the noise kernel behaviour for the case of q =−2.
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Appendix F

Ω and H dependence of infinite time

response rate

In this appendix, we consider the infinite time response rate of conventionally and derivatively coupled

UdW detectors in FRW spacetimes i.e., a(η) = (Hη)−q with q ∈ (−2,1). By making use of the dimen-

sional analysis, we try to find out the dependence of the response rate on the energy gap between the

detector’s states as well as on the parameter H.

F.0.1 Conventionally coupled Unruh deWitt detector

Let us consider the spacetimes with q ∈ (−2,0) for which the cosmic time is related to the conformal

time by the relation t = H−qη1−q

1−q and t ∈ (0,∞) for η ∈ (0,∞). Using these relations and the formulae

(5.4),(5.7), we find that the transition probability is given by

P0→Ω = c2|D ⟨Ω|µ̂(0)|0⟩D |
2
∫

∞

0

∫
∞

0
dη1dη2ei ΩH−q

(1−q) (η
1−q
1 −η

1−q
2 )

(H2
η1η2)

−1GdS(y(x(η1),x(η2))) . (F.1)

Now defining a new variable z = ΩH−qη1−q, we can pull out all the Ω and H dependence out of the

integral

P0→Ω

c2|D ⟨Ω|µ̂(0)|0⟩D |2
=

∫
∞

0

∫
∞

0

dz1dz2

(1−q)2
(z1z2)

q
1−q

(ΩH−q)
2

1−q
ei (z1−z2)

(1−q)
(ΩH−q)

2
1−q

H2(z1z2)
1

1−q
GdS(y(x(η1),x(η2)))
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=
∫

∞

0

∫
∞

0

dz1dz2

(1−q)2 e−i (z1−z2)
(1−q)

Γ

(
3
2 +ν

)
Γ

(
3
2 −ν

)
16π2(z1z2)

2F1

(3
2
+ν ,

3
2
−ν ,2,1− y

4

)
.(F.2)

where y =−
(

z
1

1−q
1 −z

1
1−q
2 −iε(ΩH−q)

1
1−q
)2

(z1z2)
1

1−q
for comoving observers. Since the only Ω and H dependences in

the integral are through the term ε(ΩH−q)
1

1−q which go to zero in the ε→ 0 limit, we find that the above

integral does not depend upon Ω and H. However, the rate, say with respect to η̃ = η1+η2
2 or some other

linear combinations of η1 and η2 has the Ω and H dependence of the following type

1
c2|D ⟨Ω|µ̂(0)|0⟩D |2

dP0→Ω

dη̃
∝ (ΩH−q)

1
1−q (F.3)

Similarly, for spacetimes with q∈ (0,1), the response rate again has the same Ω and H dependences.

F.0.2 Derivatively coupled Unruh deWitt detector

Let us again consider the spacetimes with q ∈ (−2,0). In order to find the Ω and H dependences of

response rate for derivatively coupled cases, we make use of the following formulae for the infinite time

transition probability for derivatively coupled UdW detectors

P0→Ω = c2|D ⟨Ω|µ̂(0)|0⟩D |
2
∫

∞

0

∫
∞

0
dη1dη2e−iΩ(τ(η1)−τ(η2))

d
dη1

d
dη2

G(x(η1),x(η2)) . (F.4)

Performing the same steps as in the previous subsection and using the formulae (5.24) for double deriva-

tives of the Wightman function for FRW spacetimes, one obtains that the response rate for derivatively

coupled UdW detectors has the following Ω and H dependences

1
c2|D ⟨Ω|µ̂(0)|0⟩D |2

dP0→Ω

dη̃
∝ Ω

2(ΩH−q)
1

1−q (F.5)

We obtain the same Ω and H dependences of the response rate for spacetimes with q ∈ (0,1)
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Appendix G

Derivatives of the Wightman function

In this appendix, we express the double time derivative (appearing in the expression (5.21) of the re-

sponse rate for derivatively coupled UdW detectors) of the FRW Wightman function in terms of the

derivatives of the de Sitter Wightman function by using the relation (5.7) between the Wightman func-

tions in the two settings i.e.,

GFRW (x1,x2) = (H2
η1η2)

q−1GdS(y(x1,x2)) . (G.1)

Using the product rule of differentiation, we have

d
dη1

d
dη2

GFRW (x(η1),x(η2)) = (H2
η1η2)

q−1
[
(q−1)2 GdS

η1η2
+(q−1)

dGdS

dy

( 1
η1

dy
dη2

+
1

η2

dy
dη1

)
+
(d2GdS

dy2
dy

dη1

dy
dη2

+
dGdS

dy
d2y

dη1dη2

)]
. (G.2)

In conformal coordinates, the de Sitter invariant distance is given by

y =
−(η1−η2− iε)2 +(∆⃗x)2

η1η2
. (G.3)

For comoving observers, we have

dy
dη1

=
(η1−η2− iε)(−η1−η2− iε)

η2
1 η2

(G.4)

dy
dη2

=
(η1−η2− iε)(η1 +η2− iε)

η1η2
2

(G.5)
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d2y
dη1dη2

=
−(η1−η2− iε)(η1 +η2− iε)+2(η1− iε)η1

η2
1 η2

2
(G.6)

dy
dη1

dy
dη2

=
y((η1 +η2)

2 + ε2)

η2
1 η2

2
. (G.7)

Using these expressions, we see that

d
dη1

d
dη2

GFRW (x(η1),x(η2)) = (H2
η1η2)

q−1
[
(q−1)2 GdS

η1η2
+(q−1)

dGdS

dy

((η1−η2− iε)(−2iε)
η2

1 η2
2

)
+

d2GdS

dy2
y((η1 +η2)

2 + ε2)

η2
1 η2

2
+

dGdS

dy
(η2

1 +η2
2 + ε2)

η2
1 η2

2

]
. (G.8)
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Appendix H

Flat spacetime hydrogen atom and

selection rules

We can solve for the energy eigenfunctions of the unperturbed flat spacetime hydrogen atom Hamilto-

nian. We find that they are given by

ψnlm = Rnl(r)Y m
l (θ ,φ) (H.1)

where Y m
l (θ ,φ) are the spherical harmonics and Rnl(r) are the radial part of the eigenfunctions. Rnl(r)

are given by

Rnl(r) =−

√( 2
na0

)3 (n− l−1)!
2n((n+ l)!)3 e−

r
na0

( 2r
na0

)l
L2l+1

n+l

( 2r
na0

)
(H.2)

where L2l+1
n+l are associated Laguerre polynomials and a0 =

1
me2 . Here n, l and m are just the hydrogen

atom quantum numbers.

Using the orthonormality of spherical harmonics and the properties of addition of angular momenta, we

find that the selections rules for the transitions

< n′, l′,m′|xi|n, l,m >

are as given in table 1.

Using the above selection rules, we can find the selection rules for the transitions of the form

< n′, l′,m′|xixp|n, l,m >
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x,y z
∆l ∆m ∆l ∆m
± 1 ± 1 ± 1 0

Table H.1: Selection rules for transitions of the type < n′, l′,m′|xi|n, l,m >.

which are given in the table 2.

x2,y2,xy,yx xz,yz z2

∆l ∆m ∆l ∆m ∆l ∆m
-2,0,2 -2,0,2 -2,0,2 -1,1 -2,0,2 0

Table H.2: Selection rules for transitions of the type < n′, l′,m′|xixp|n, l,m >.
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